ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.52 by dl, Sat Dec 5 11:39:03 2009 UTC vs.
Revision 1.60 by dl, Sat Jul 24 20:28:18 2010 UTC

# Line 13 | Line 13 | import java.util.Arrays;
13   import java.util.Collection;
14   import java.util.Collections;
15   import java.util.List;
16 import java.util.concurrent.locks.Condition;
16   import java.util.concurrent.locks.LockSupport;
17   import java.util.concurrent.locks.ReentrantLock;
18   import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.atomic.AtomicLong;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24 < * from non-{@code ForkJoinTask}s, as well as management and
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25   * monitoring operations.
26   *
27   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 31 | Line 30 | import java.util.concurrent.atomic.Atomi
30   * execute subtasks created by other active tasks (eventually blocking
31   * waiting for work if none exist). This enables efficient processing
32   * when most tasks spawn other subtasks (as do most {@code
33 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
34 < * execution of some plain {@code Runnable}- or {@code Callable}-
35 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37   * <p>A {@code ForkJoinPool} is constructed with a given target
38   * parallelism level; by default, equal to the number of available
39 < * processors. Unless configured otherwise via {@link
40 < * #setMaintainsParallelism}, the pool attempts to maintain this
41 < * number of active (or available) threads by dynamically adding,
42 < * suspending, or resuming internal worker threads, even if some tasks
43 < * are stalled waiting to join others. However, no such adjustments
44 < * are performed in the face of blocked IO or other unmanaged
45 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
# Line 62 | Line 51 | import java.util.concurrent.atomic.Atomi
51   * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89   * used for all parallel task execution in a program or subsystem.
90   * Otherwise, use would not usually outweigh the construction and
# Line 86 | Line 109 | import java.util.concurrent.atomic.Atomi
109   * {@code IllegalArgumentException}.
110   *
111   * <p>This implementation rejects submitted tasks (that is, by throwing
112 < * {@link RejectedExecutionException}) only when the pool is shut down.
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhuasted.
114   *
115   * @since 1.7
116   * @author Doug Lea
# Line 94 | Line 118 | import java.util.concurrent.atomic.Atomi
118   public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to take actions when
142 >     * one worker is waiting to join a task stolen (or always held by)
143 >     * another.  Becauae we are multiplexing many tasks on to a pool
144 >     * of workers, we can't just let them block (as in Thread.join).
145 >     * We also cannot just reassign the joiner's run-time stack with
146 >     * another and replace it later, which would be a form of
147 >     * "continuation", that even if possible is not necessarily a good
148 >     * idea. Given that the creation costs of most threads on most
149 >     * systems mainly surrounds setting up runtime stacks, thread
150 >     * creation and switching is usually not much more expensive than
151 >     * stack creation and switching, and is more flexible). Instead we
152 >     * combine two tactics:
153 >     *
154 >     *   Helping: Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   Compensating: Unless there are already enough live threads,
160 >     *      creating or or re-activating a spare thread to compensate
161 >     *      for the (blocked) joiner until it unblocks.  Spares then
162 >     *      suspend at their next opportunity or eventually die if
163 >     *      unused for too long.  See below and the internal
164 >     *      documentation for tryAwaitJoin for more details about
165 >     *      compensation rules.
166 >     *
167 >     * Because the determining existence of conservatively safe
168 >     * helping targets, the availability of already-created spares,
169 >     * and the apparent need to create new spares are all racy and
170 >     * require heuristic guidance, joins (in
171 >     * ForkJoinWorkerThread.joinTask) interleave these options until
172 >     * successful.  Creating a new spare always succeeds, but also
173 >     * increases application footprint, so we try to avoid it, within
174 >     * reason.
175 >     *
176 >     * The ManagedBlocker extension API can't use helping so uses a
177 >     * special version of compensation in method awaitBlocker.
178 >     *
179 >     * The main throughput advantages of work-stealing stem from
180 >     * decentralized control -- workers mostly steal tasks from each
181 >     * other. We do not want to negate this by creating bottlenecks
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195 >     *
196 >     * 1. Creating and removing workers. Workers are recorded in the
197 >     * "workers" array. This is an array as opposed to some other data
198 >     * structure to support index-based random steals by workers.
199 >     * Updates to the array recording new workers and unrecording
200 >     * terminated ones are protected from each other by a lock
201 >     * (workerLock) but the array is otherwise concurrently readable,
202 >     * and accessed directly by workers. To simplify index-based
203 >     * operations, the array size is always a power of two, and all
204 >     * readers must tolerate null slots. Currently, all worker thread
205 >     * creation is on-demand, triggered by task submissions,
206 >     * replacement of terminated workers, and/or compensation for
207 >     * blocked workers. However, all other support code is set up to
208 >     * work with other policies.
209 >     *
210 >     * 2. Bookkeeping for dynamically adding and removing workers. We
211 >     * aim to approximately maintain the given level of parallelism.
212 >     * When some workers are known to be blocked (on joins or via
213 >     * ManagedBlocker), we may create or resume others to take their
214 >     * place until they unblock (see below). Implementing this
215 >     * requires counts of the number of "running" threads (i.e., those
216 >     * that are neither blocked nor artifically suspended) as well as
217 >     * the total number.  These two values are packed into one field,
218 >     * "workerCounts" because we need accurate snapshots when deciding
219 >     * to create, resume or suspend.  Note however that the
220 >     * correspondance of these counts to reality is not guaranteed. In
221 >     * particular updates for unblocked threads may lag until they
222 >     * actually wake up.
223 >     *
224 >     * 3. Maintaining global run state. The run state of the pool
225 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
226 >     * those in other Executor implementations, as well as a count of
227 >     * "active" workers -- those that are, or soon will be, or
228 >     * recently were executing tasks. The runLevel and active count
229 >     * are packed together in order to correctly trigger shutdown and
230 >     * termination. Without care, active counts can be subject to very
231 >     * high contention.  We substantially reduce this contention by
232 >     * relaxing update rules.  A worker must claim active status
233 >     * prospectively, by activating if it sees that a submitted or
234 >     * stealable task exists (it may find after activating that the
235 >     * task no longer exists). It stays active while processing this
236 >     * task (if it exists) and any other local subtasks it produces,
237 >     * until it cannot find any other tasks. It then tries
238 >     * inactivating (see method preStep), but upon update contention
239 >     * instead scans for more tasks, later retrying inactivation if it
240 >     * doesn't find any.
241 >     *
242 >     * 4. Managing idle workers waiting for tasks. We cannot let
243 >     * workers spin indefinitely scanning for tasks when none are
244 >     * available. On the other hand, we must quickly prod them into
245 >     * action when new tasks are submitted or generated.  We
246 >     * park/unpark these idle workers using an event-count scheme.
247 >     * Field eventCount is incremented upon events that may enable
248 >     * workers that previously could not find a task to now find one:
249 >     * Submission of a new task to the pool, or another worker pushing
250 >     * a task onto a previously empty queue.  (We also use this
251 >     * mechanism for termination and reconfiguration actions that
252 >     * require wakeups of idle workers).  Each worker maintains its
253 >     * last known event count, and blocks when a scan for work did not
254 >     * find a task AND its lastEventCount matches the current
255 >     * eventCount. Waiting idle workers are recorded in a variant of
256 >     * Treiber stack headed by field eventWaiters which, when nonzero,
257 >     * encodes the thread index and count awaited for by the worker
258 >     * thread most recently calling eventSync. This thread in turn has
259 >     * a record (field nextEventWaiter) for the next waiting worker.
260 >     * In addition to allowing simpler decisions about need for
261 >     * wakeup, the event count bits in eventWaiters serve the role of
262 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
263 >     * in task diffusion, workers not otherwise occupied may invoke
264 >     * method releaseWaiters, that removes and signals (unparks)
265 >     * workers not waiting on current count. To minimize task
266 >     * production stalls associate with signalling, any worker pushing
267 >     * a task on an empty queue invokes the weaker method signalWork,
268 >     * that only releases idle workers until it detects interference
269 >     * by other threads trying to release, and lets them take
270 >     * over. The net effect is a tree-like diffusion of signals, where
271 >     * released threads (and possibly others) help with unparks.  To
272 >     * further reduce contention effects a bit, failed CASes to
273 >     * increment field eventCount are tolerated without retries.
274 >     * Conceptually they are merged into the same event, which is OK
275 >     * when their only purpose is to enable workers to scan for work.
276 >     *
277 >     * 5. Managing suspension of extra workers. When a worker is about
278 >     * to block waiting for a join (or via ManagedBlockers), we may
279 >     * create a new thread to maintain parallelism level, or at least
280 >     * avoid starvation. Usually, extra threads are needed for only
281 >     * very short periods, yet join dependencies are such that we
282 >     * sometimes need them in bursts. Rather than create new threads
283 >     * each time this happens, we suspend no-longer-needed extra ones
284 >     * as "spares". For most purposes, we don't distinguish "extra"
285 >     * spare threads from normal "core" threads: On each call to
286 >     * preStep (the only point at which we can do this) a worker
287 >     * checks to see if there are now too many running workers, and if
288 >     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
289 >     * look for suspended threads to resume before considering
290 >     * creating a new replacement. We don't need a special data
291 >     * structure to maintain spares; simply scanning the workers array
292 >     * looking for worker.isSuspended() is fine because the calling
293 >     * thread is otherwise not doing anything useful anyway; we are at
294 >     * least as happy if after locating a spare, the caller doesn't
295 >     * actually block because the join is ready before we try to
296 >     * adjust and compensate.  Note that this is intrinsically racy.
297 >     * One thread may become a spare at about the same time as another
298 >     * is needlessly being created. We counteract this and related
299 >     * slop in part by requiring resumed spares to immediately recheck
300 >     * (in preStep) to see whether they they should re-suspend. The
301 >     * only effective difference between "extra" and "core" threads is
302 >     * that we allow the "extra" ones to time out and die if they are
303 >     * not resumed within a keep-alive interval of a few seconds. This
304 >     * is implemented mainly within ForkJoinWorkerThread, but requires
305 >     * some coordination (isTrimmed() -- meaning killed while
306 >     * suspended) to correctly maintain pool counts.
307 >     *
308 >     * 6. Deciding when to create new workers. The main dynamic
309 >     * control in this class is deciding when to create extra threads,
310 >     * in methods awaitJoin and awaitBlocker. We always need to create
311 >     * one when the number of running threads would become zero and
312 >     * all workers are busy. However, this is not easy to detect
313 >     * reliably in the presence of transients so we use retries and
314 >     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
315 >     * effectively reduce churn at the price of systematically
316 >     * undershooting target parallelism when many threads are blocked.
317 >     * However, biasing toward undeshooting partially compensates for
318 >     * the above mechanics to suspend extra threads, that normally
319 >     * lead to overshoot because we can only suspend workers
320 >     * in-between top-level actions. It also better copes with the
321 >     * fact that some of the methods in this class tend to never
322 >     * become compiled (but are interpreted), so some components of
323 >     * the entire set of controls might execute many times faster than
324 >     * others. And similarly for cases where the apparent lack of work
325 >     * is just due to GC stalls and other transient system activity.
326 >     *
327 >     * Beware that there is a lot of representation-level coupling
328 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
329 >     * ForkJoinTask.  For example, direct access to "workers" array by
330 >     * workers, and direct access to ForkJoinTask.status by both
331 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
332 >     * trying to reduce this, since any associated future changes in
333 >     * representations will need to be accompanied by algorithmic
334 >     * changes anyway.
335 >     *
336 >     * Style notes: There are lots of inline assignments (of form
337 >     * "while ((local = field) != 0)") which are usually the simplest
338 >     * way to ensure read orderings. Also several occurrences of the
339 >     * unusual "do {} while(!cas...)" which is the simplest way to
340 >     * force an update of a CAS'ed variable. There are also other
341 >     * coding oddities that help some methods perform reasonably even
342 >     * when interpreted (not compiled), at the expense of messiness.
343 >     *
344 >     * The order of declarations in this file is: (1) statics (2)
345 >     * fields (along with constants used when unpacking some of them)
346 >     * (3) internal control methods (4) callbacks and other support
347 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
348 >     * methods (plus a few little helpers).
349       */
350  
101    /** Mask for packing and unpacking shorts */
102    private static final int  shortMask = 0xffff;
103
104    /** Max pool size -- must be a power of two minus 1 */
105    private static final int MAX_THREADS =  0x7FFF;
106
351      /**
352       * Factory for creating new {@link ForkJoinWorkerThread}s.
353       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 124 | Line 368 | public class ForkJoinPool extends Abstra
368       * Default ForkJoinWorkerThreadFactory implementation; creates a
369       * new ForkJoinWorkerThread.
370       */
371 <    static class  DefaultForkJoinWorkerThreadFactory
371 >    static class DefaultForkJoinWorkerThreadFactory
372          implements ForkJoinWorkerThreadFactory {
373          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
374 <            try {
131 <                return new ForkJoinWorkerThread(pool);
132 <            } catch (OutOfMemoryError oom)  {
133 <                return null;
134 <            }
374 >            return new ForkJoinWorkerThread(pool);
375          }
376      }
377  
# Line 167 | Line 407 | public class ForkJoinPool extends Abstra
407          new AtomicInteger();
408  
409      /**
410 <     * Array holding all worker threads in the pool. Initialized upon
411 <     * first use. Array size must be a power of two.  Updates and
172 <     * replacements are protected by workerLock, but it is always kept
173 <     * in a consistent enough state to be randomly accessed without
174 <     * locking by workers performing work-stealing.
410 >     * Absolute bound for parallelism level. Twice this number must
411 >     * fit into a 16bit field to enable word-packing for some counts.
412       */
413 <    volatile ForkJoinWorkerThread[] workers;
413 >    private static final int MAX_THREADS = 0x7fff;
414  
415      /**
416 <     * Lock protecting access to workers.
416 >     * Array holding all worker threads in the pool.  Array size must
417 >     * be a power of two.  Updates and replacements are protected by
418 >     * workerLock, but the array is always kept in a consistent enough
419 >     * state to be randomly accessed without locking by workers
420 >     * performing work-stealing, as well as other traversal-based
421 >     * methods in this class. All readers must tolerate that some
422 >     * array slots may be null.
423       */
424 <    private final ReentrantLock workerLock;
424 >    volatile ForkJoinWorkerThread[] workers;
425  
426      /**
427 <     * Condition for awaitTermination.
427 >     * Queue for external submissions.
428       */
429 <    private final Condition termination;
429 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
430  
431      /**
432 <     * The uncaught exception handler used when any worker
190 <     * abruptly terminates
432 >     * Lock protecting updates to workers array.
433       */
434 <    private Thread.UncaughtExceptionHandler ueh;
434 >    private final ReentrantLock workerLock;
435  
436      /**
437 <     * Creation factory for worker threads.
437 >     * Latch released upon termination.
438       */
439 <    private final ForkJoinWorkerThreadFactory factory;
439 >    private final Phaser termination;
440  
441      /**
442 <     * Head of stack of threads that were created to maintain
201 <     * parallelism when other threads blocked, but have since
202 <     * suspended when the parallelism level rose.
442 >     * Creation factory for worker threads.
443       */
444 <    private volatile WaitQueueNode spareStack;
444 >    private final ForkJoinWorkerThreadFactory factory;
445  
446      /**
447       * Sum of per-thread steal counts, updated only when threads are
448       * idle or terminating.
449       */
450 <    private final AtomicLong stealCount;
450 >    private volatile long stealCount;
451  
452      /**
453 <     * Queue for external submissions.
453 >     * Encoded record of top of treiber stack of threads waiting for
454 >     * events. The top 32 bits contain the count being waited for. The
455 >     * bottom word contains one plus the pool index of waiting worker
456 >     * thread.
457       */
458 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
458 >    private volatile long eventWaiters;
459 >
460 >    private static final int  EVENT_COUNT_SHIFT = 32;
461 >    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
462  
463      /**
464 <     * Head of Treiber stack for barrier sync. See below for explanation.
464 >     * A counter for events that may wake up worker threads:
465 >     *   - Submission of a new task to the pool
466 >     *   - A worker pushing a task on an empty queue
467 >     *   - termination and reconfiguration
468       */
469 <    private volatile WaitQueueNode syncStack;
469 >    private volatile int eventCount;
470  
471      /**
472 <     * The count for event barrier
473 <     */
474 <    private volatile long eventCount;
472 >     * Lifecycle control. The low word contains the number of workers
473 >     * that are (probably) executing tasks. This value is atomically
474 >     * incremented before a worker gets a task to run, and decremented
475 >     * when worker has no tasks and cannot find any.  Bits 16-18
476 >     * contain runLevel value. When all are zero, the pool is
477 >     * running. Level transitions are monotonic (running -> shutdown
478 >     * -> terminating -> terminated) so each transition adds a bit.
479 >     * These are bundled together to ensure consistent read for
480 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
481 >     * and active threads is zero).
482 >     */
483 >    private volatile int runState;
484 >
485 >    // Note: The order among run level values matters.
486 >    private static final int RUNLEVEL_SHIFT     = 16;
487 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
488 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
489 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
490 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491 >    private static final int ONE_ACTIVE         = 1; // active update delta
492  
493      /**
494 <     * Pool number, just for assigning useful names to worker threads
494 >     * Holds number of total (i.e., created and not yet terminated)
495 >     * and running (i.e., not blocked on joins or other managed sync)
496 >     * threads, packed together to ensure consistent snapshot when
497 >     * making decisions about creating and suspending spare
498 >     * threads. Updated only by CAS. Note that adding a new worker
499 >     * requires incrementing both counts, since workers start off in
500 >     * running state.
501       */
502 <    private final int poolNumber;
502 >    private volatile int workerCounts;
503 >
504 >    private static final int TOTAL_COUNT_SHIFT  = 16;
505 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
506 >    private static final int ONE_RUNNING        = 1;
507 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
508  
509      /**
510 <     * The maximum allowed pool size
510 >     * The target parallelism level.
511 >     * Accessed directly by ForkJoinWorkerThreads.
512       */
513 <    private volatile int maxPoolSize;
513 >    final int parallelism;
514  
515      /**
516 <     * The desired parallelism level, updated only under workerLock.
516 >     * True if use local fifo, not default lifo, for local polling
517 >     * Read by, and replicated by ForkJoinWorkerThreads
518       */
519 <    private volatile int parallelism;
519 >    final boolean locallyFifo;
520  
521      /**
522 <     * True if use local fifo, not default lifo, for local polling
522 >     * The uncaught exception handler used when any worker abruptly
523 >     * terminates.
524       */
525 <    private volatile boolean locallyFifo;
525 >    private final Thread.UncaughtExceptionHandler ueh;
526  
527      /**
528 <     * Holds number of total (i.e., created and not yet terminated)
249 <     * and running (i.e., not blocked on joins or other managed sync)
250 <     * threads, packed into one int to ensure consistent snapshot when
251 <     * making decisions about creating and suspending spare
252 <     * threads. Updated only by CAS.  Note: CASes in
253 <     * updateRunningCount and preJoin assume that running active count
254 <     * is in low word, so need to be modified if this changes.
528 >     * Pool number, just for assigning useful names to worker threads
529       */
530 <    private volatile int workerCounts;
530 >    private final int poolNumber;
531  
532 <    private static int totalCountOf(int s)           { return s >>> 16;  }
533 <    private static int runningCountOf(int s)         { return s & shortMask; }
260 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
532 >    // Utilities for CASing fields. Note that several of these
533 >    // are manually inlined by callers
534  
535      /**
536 <     * Adds delta (which may be negative) to running count.  This must
264 <     * be called before (with negative arg) and after (with positive)
265 <     * any managed synchronization (i.e., mainly, joins).
266 <     *
267 <     * @param delta the number to add
536 >     * Increments running count.  Also used by ForkJoinTask.
537       */
538 <    final void updateRunningCount(int delta) {
539 <        int s;
540 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
538 >    final void incrementRunningCount() {
539 >        int c;
540 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
541 >                                               c = workerCounts,
542 >                                               c + ONE_RUNNING));
543      }
544  
545      /**
546 <     * Adds delta (which may be negative) to both total and running
276 <     * count.  This must be called upon creation and termination of
277 <     * worker threads.
278 <     *
279 <     * @param delta the number to add
546 >     * Tries to decrement running count unless already zero
547       */
548 <    private void updateWorkerCount(int delta) {
549 <        int d = delta + (delta << 16); // add to both lo and hi parts
550 <        int s;
551 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
548 >    final boolean tryDecrementRunningCount() {
549 >        int wc = workerCounts;
550 >        if ((wc & RUNNING_COUNT_MASK) == 0)
551 >            return false;
552 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
553 >                                        wc, wc - ONE_RUNNING);
554      }
555  
556      /**
557 <     * Lifecycle control. High word contains runState, low word
289 <     * contains the number of workers that are (probably) executing
290 <     * tasks. This value is atomically incremented before a worker
291 <     * gets a task to run, and decremented when worker has no tasks
292 <     * and cannot find any. These two fields are bundled together to
293 <     * support correct termination triggering.  Note: activeCount
294 <     * CAS'es cheat by assuming active count is in low word, so need
295 <     * to be modified if this changes
557 >     * Tries to increment running count
558       */
559 <    private volatile int runControl;
560 <
561 <    // RunState values. Order among values matters
562 <    private static final int RUNNING     = 0;
563 <    private static final int SHUTDOWN    = 1;
302 <    private static final int TERMINATING = 2;
303 <    private static final int TERMINATED  = 3;
304 <
305 <    private static int runStateOf(int c)             { return c >>> 16; }
306 <    private static int activeCountOf(int c)          { return c & shortMask; }
307 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
559 >    final boolean tryIncrementRunningCount() {
560 >        int wc;
561 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
562 >                                        wc = workerCounts, wc + ONE_RUNNING);
563 >    }
564  
565      /**
566       * Tries incrementing active count; fails on contention.
567 <     * Called by workers before/during executing tasks.
567 >     * Called by workers before executing tasks.
568       *
569       * @return true on success
570       */
571      final boolean tryIncrementActiveCount() {
572 <        int c = runControl;
573 <        return casRunControl(c, c+1);
572 >        int c;
573 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
574 >                                        c = runState, c + ONE_ACTIVE);
575      }
576  
577      /**
578       * Tries decrementing active count; fails on contention.
579 <     * Possibly triggers termination on success.
323 <     * Called by workers when they can't find tasks.
324 <     *
325 <     * @return true on success
579 >     * Called when workers cannot find tasks to run.
580       */
581      final boolean tryDecrementActiveCount() {
582 <        int c = runControl;
583 <        int nextc = c - 1;
584 <        if (!casRunControl(c, nextc))
331 <            return false;
332 <        if (canTerminateOnShutdown(nextc))
333 <            terminateOnShutdown();
334 <        return true;
582 >        int c;
583 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
584 >                                        c = runState, c - ONE_ACTIVE);
585      }
586  
587      /**
588 <     * Returns {@code true} if argument represents zero active count
589 <     * and nonzero runstate, which is the triggering condition for
340 <     * terminating on shutdown.
588 >     * Advances to at least the given level. Returns true if not
589 >     * already in at least the given level.
590       */
591 <    private static boolean canTerminateOnShutdown(int c) {
592 <        // i.e. least bit is nonzero runState bit
593 <        return ((c & -c) >>> 16) != 0;
591 >    private boolean advanceRunLevel(int level) {
592 >        for (;;) {
593 >            int s = runState;
594 >            if ((s & level) != 0)
595 >                return false;
596 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
597 >                return true;
598 >        }
599      }
600  
601 +    // workers array maintenance
602 +
603      /**
604 <     * Transition run state to at least the given state. Return true
349 <     * if not already at least given state.
604 >     * Records and returns a workers array index for new worker.
605       */
606 <    private boolean transitionRunStateTo(int state) {
607 <        for (;;) {
608 <            int c = runControl;
609 <            if (runStateOf(c) >= state)
610 <                return false;
611 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
612 <                return true;
606 >    private int recordWorker(ForkJoinWorkerThread w) {
607 >        // Try using slot totalCount-1. If not available, scan and/or resize
608 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
609 >        final ReentrantLock lock = this.workerLock;
610 >        lock.lock();
611 >        try {
612 >            ForkJoinWorkerThread[] ws = workers;
613 >            int nws = ws.length;
614 >            if (k < 0 || k >= nws || ws[k] != null) {
615 >                for (k = 0; k < nws && ws[k] != null; ++k)
616 >                    ;
617 >                if (k == nws)
618 >                    ws = Arrays.copyOf(ws, nws << 1);
619 >            }
620 >            ws[k] = w;
621 >            workers = ws; // volatile array write ensures slot visibility
622 >        } finally {
623 >            lock.unlock();
624          }
625 +        return k;
626      }
627  
628      /**
629 <     * Controls whether to add spares to maintain parallelism
629 >     * Nulls out record of worker in workers array
630       */
631 <    private volatile boolean maintainsParallelism;
631 >    private void forgetWorker(ForkJoinWorkerThread w) {
632 >        int idx = w.poolIndex;
633 >        // Locking helps method recordWorker avoid unecessary expansion
634 >        final ReentrantLock lock = this.workerLock;
635 >        lock.lock();
636 >        try {
637 >            ForkJoinWorkerThread[] ws = workers;
638 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
639 >                ws[idx] = null;
640 >        } finally {
641 >            lock.unlock();
642 >        }
643 >    }
644  
645 <    // Constructors
645 >    // adding and removing workers
646  
647      /**
648 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
649 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
650 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
648 >     * Tries to create and add new worker. Assumes that worker counts
649 >     * are already updated to accommodate the worker, so adjusts on
650 >     * failure.
651       *
652 <     * @throws SecurityException if a security manager exists and
374 <     *         the caller is not permitted to modify threads
375 <     *         because it does not hold {@link
376 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
652 >     * @return new worker or null if creation failed
653       */
654 <    public ForkJoinPool() {
655 <        this(Runtime.getRuntime().availableProcessors(),
656 <             defaultForkJoinWorkerThreadFactory);
654 >    private ForkJoinWorkerThread addWorker() {
655 >        ForkJoinWorkerThread w = null;
656 >        try {
657 >            w = factory.newThread(this);
658 >        } finally { // Adjust on either null or exceptional factory return
659 >            if (w == null)
660 >                onWorkerCreationFailure();
661 >        }
662 >        if (w != null)
663 >            w.start(recordWorker(w), ueh);
664 >        return w;
665      }
666  
667      /**
668 <     * Creates a {@code ForkJoinPool} with the indicated parallelism
385 <     * level and using the {@linkplain
386 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
387 <     *
388 <     * @param parallelism the parallelism level
389 <     * @throws IllegalArgumentException if parallelism less than or
390 <     *         equal to zero, or greater than implementation limit
391 <     * @throws SecurityException if a security manager exists and
392 <     *         the caller is not permitted to modify threads
393 <     *         because it does not hold {@link
394 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
668 >     * Adjusts counts upon failure to create worker
669       */
670 <    public ForkJoinPool(int parallelism) {
671 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
670 >    private void onWorkerCreationFailure() {
671 >        for (;;) {
672 >            int wc = workerCounts;
673 >            int rc = wc & RUNNING_COUNT_MASK;
674 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
675 >            if (rc == 0 || wc == 0)
676 >                Thread.yield(); // must wait for other counts to settle
677 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
678 >                                              wc - (ONE_RUNNING|ONE_TOTAL)))
679 >                break;
680 >        }
681 >        tryTerminate(false); // in case of failure during shutdown
682      }
683  
684      /**
685 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
686 <     * java.lang.Runtime#availableProcessors}, and using the given
403 <     * thread factory.
404 <     *
405 <     * @param factory the factory for creating new threads
406 <     * @throws NullPointerException if the factory is null
407 <     * @throws SecurityException if a security manager exists and
408 <     *         the caller is not permitted to modify threads
409 <     *         because it does not hold {@link
410 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
685 >     * Creates enough total workers to establish target parallelism,
686 >     * giving up if terminating or addWorker fails
687       */
688 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
689 <        this(Runtime.getRuntime().availableProcessors(), factory);
688 >    private void ensureEnoughTotalWorkers() {
689 >        int wc;
690 >        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
691 >               runState < TERMINATING) {
692 >            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
693 >                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
694 >                 addWorker() == null))
695 >                break;
696 >        }
697      }
698  
699      /**
700 <     * Creates a {@code ForkJoinPool} with the given parallelism and
701 <     * thread factory.
700 >     * Final callback from terminating worker.  Removes record of
701 >     * worker from array, and adjusts counts. If pool is shutting
702 >     * down, tries to complete terminatation, else possibly replaces
703 >     * the worker.
704       *
705 <     * @param parallelism the parallelism level
421 <     * @param factory the factory for creating new threads
422 <     * @throws IllegalArgumentException if parallelism less than or
423 <     *         equal to zero, or greater than implementation limit
424 <     * @throws NullPointerException if the factory is null
425 <     * @throws SecurityException if a security manager exists and
426 <     *         the caller is not permitted to modify threads
427 <     *         because it does not hold {@link
428 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
705 >     * @param w the worker
706       */
707 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
708 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
709 <            throw new IllegalArgumentException();
710 <        if (factory == null)
711 <            throw new NullPointerException();
712 <        checkPermission();
713 <        this.factory = factory;
714 <        this.parallelism = parallelism;
715 <        this.maxPoolSize = MAX_THREADS;
716 <        this.maintainsParallelism = true;
717 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
718 <        this.workerLock = new ReentrantLock();
719 <        this.termination = workerLock.newCondition();
720 <        this.stealCount = new AtomicLong();
721 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
722 <        // worker array and workers are lazily constructed
707 >    final void workerTerminated(ForkJoinWorkerThread w) {
708 >        if (w.active) { // force inactive
709 >            w.active = false;
710 >            do {} while (!tryDecrementActiveCount());
711 >        }
712 >        forgetWorker(w);
713 >
714 >        // Decrement total count, and if was running, running count
715 >        // Spin (waiting for other updates) if either would be negative
716 >        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
717 >        int unit = ONE_TOTAL + nr;
718 >        for (;;) {
719 >            int wc = workerCounts;
720 >            int rc = wc & RUNNING_COUNT_MASK;
721 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
722 >            if (rc - nr < 0 || tc == 0)
723 >                Thread.yield(); // back off if waiting for other updates
724 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
725 >                                              wc, wc - unit))
726 >                break;
727 >        }
728 >
729 >        accumulateStealCount(w); // collect final count
730 >        if (!tryTerminate(false))
731 >            ensureEnoughTotalWorkers();
732      }
733  
734 +    // Waiting for and signalling events
735 +
736      /**
737 <     * Creates a new worker thread using factory.
738 <     *
451 <     * @param index the index to assign worker
452 <     * @return new worker, or null if factory failed
737 >     * Releases workers blocked on a count not equal to current count.
738 >     * @return true if any released
739       */
740 <    private ForkJoinWorkerThread createWorker(int index) {
741 <        Thread.UncaughtExceptionHandler h = ueh;
742 <        ForkJoinWorkerThread w = factory.newThread(this);
743 <        if (w != null) {
744 <            w.poolIndex = index;
745 <            w.setDaemon(true);
746 <            w.setAsyncMode(locallyFifo);
747 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
748 <            if (h != null)
749 <                w.setUncaughtExceptionHandler(h);
740 >    private void releaseWaiters() {
741 >        long top;
742 >        while ((top = eventWaiters) != 0L) {
743 >            ForkJoinWorkerThread[] ws = workers;
744 >            int n = ws.length;
745 >            for (;;) {
746 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
747 >                int e = (int)(top >>> EVENT_COUNT_SHIFT);
748 >                if (i < 0 || e == eventCount)
749 >                    return;
750 >                ForkJoinWorkerThread w;
751 >                if (i < n && (w = ws[i]) != null &&
752 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
753 >                                              top, w.nextWaiter)) {
754 >                    LockSupport.unpark(w);
755 >                    top = eventWaiters;
756 >                }
757 >                else
758 >                    break;      // possibly stale; reread
759 >            }
760          }
465        return w;
761      }
762  
763      /**
764 <     * Returns a good size for worker array given pool size.
765 <     * Currently requires size to be a power of two.
764 >     * Ensures eventCount on exit is different (mod 2^32) than on
765 >     * entry and wakes up all waiters
766       */
767 <    private static int arraySizeFor(int poolSize) {
768 <        if (poolSize <= 1)
769 <            return 1;
770 <        // See Hackers Delight, sec 3.2
771 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
477 <        c |= c >>>  1;
478 <        c |= c >>>  2;
479 <        c |= c >>>  4;
480 <        c |= c >>>  8;
481 <        c |= c >>> 16;
482 <        return c + 1;
767 >    private void signalEvent() {
768 >        int c;
769 >        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
770 >                                               c = eventCount, c+1));
771 >        releaseWaiters();
772      }
773  
774      /**
775 <     * Creates or resizes array if necessary to hold newLength.
776 <     * Call only under exclusion.
488 <     *
489 <     * @return the array
775 >     * Advances eventCount and releases waiters until interference by
776 >     * other releasing threads is detected.
777       */
778 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
779 <        ForkJoinWorkerThread[] ws = workers;
780 <        if (ws == null)
781 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
782 <        else if (newLength > ws.length)
783 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
784 <        else
785 <            return ws;
778 >    final void signalWork() {
779 >        int c;
780 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
781 >        long top;
782 >        while ((top = eventWaiters) != 0L) {
783 >            int ec = eventCount;
784 >            ForkJoinWorkerThread[] ws = workers;
785 >            int n = ws.length;
786 >            for (;;) {
787 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
788 >                int e = (int)(top >>> EVENT_COUNT_SHIFT);
789 >                if (i < 0 || e == ec)
790 >                    return;
791 >                ForkJoinWorkerThread w;
792 >                if (i < n && (w = ws[i]) != null &&
793 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
794 >                                              top, top = w.nextWaiter)) {
795 >                    LockSupport.unpark(w);
796 >                    if (top != eventWaiters) // let someone else take over
797 >                        return;
798 >                }
799 >                else
800 >                    break;      // possibly stale; reread
801 >            }
802 >        }
803      }
804  
805      /**
806 <     * Tries to shrink workers into smaller array after one or more terminate.
806 >     * Blockss worker until terminating or event count
807 >     * advances from last value held by worker
808 >     *
809 >     * @param w the calling worker thread
810       */
811 <    private void tryShrinkWorkerArray() {
812 <        ForkJoinWorkerThread[] ws = workers;
813 <        if (ws != null) {
814 <            int len = ws.length;
815 <            int last = len - 1;
816 <            while (last >= 0 && ws[last] == null)
817 <                --last;
818 <            int newLength = arraySizeFor(last+1);
819 <            if (newLength < len)
820 <                workers = Arrays.copyOf(ws, newLength);
811 >    private void eventSync(ForkJoinWorkerThread w) {
812 >        int wec = w.lastEventCount;
813 >        long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
814 >                        ((long)(w.poolIndex + 1)));
815 >        long top;
816 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
817 >               (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
818 >                (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
819 >               eventCount == wec) {
820 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
821 >                                          w.nextWaiter = top, nextTop)) {
822 >                accumulateStealCount(w); // transfer steals while idle
823 >                Thread.interrupted();    // clear/ignore interrupt
824 >                while (eventCount == wec)
825 >                    w.doPark();
826 >                break;
827 >            }
828          }
829 +        w.lastEventCount = eventCount;
830      }
831  
832      /**
833 <     * Initializes workers if necessary.
833 >     * Callback from workers invoked upon each top-level action (i.e.,
834 >     * stealing a task or taking a submission and running
835 >     * it). Performs one or both of the following:
836 >     *
837 >     * * If the worker cannot find work, updates its active status to
838 >     * inactive and updates activeCount unless there is contention, in
839 >     * which case it may try again (either in this or a subsequent
840 >     * call).  Additionally, awaits the next task event and/or helps
841 >     * wake up other releasable waiters.
842 >     *
843 >     * * If there are too many running threads, suspends this worker
844 >     * (first forcing inactivation if necessary).  If it is not
845 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
846 >     * -- killed while suspended within suspendAsSpare. Otherwise,
847 >     * upon resume it rechecks to make sure that it is still needed.
848 >     *
849 >     * @param w the worker
850 >     * @param retries the number of scans by caller failing to find work
851 >     * find any (in which case it may block waiting for work).
852       */
853 <    final void ensureWorkerInitialization() {
854 <        ForkJoinWorkerThread[] ws = workers;
855 <        if (ws == null) {
856 <            final ReentrantLock lock = this.workerLock;
857 <            lock.lock();
858 <            try {
859 <                ws = workers;
860 <                if (ws == null) {
861 <                    int ps = parallelism;
862 <                    updateWorkerCount(ps);
863 <                    ws = ensureWorkerArrayCapacity(ps);
864 <                    for (int i = 0; i < ps; ++i) {
865 <                        ForkJoinWorkerThread w = createWorker(i);
866 <                        if (w != null) {
867 <                            ws[i] = w;
868 <                            w.start();
853 >    final void preStep(ForkJoinWorkerThread w, int retries) {
854 >        boolean active = w.active;
855 >        boolean inactivate = active && retries > 0;
856 >        for (;;) {
857 >            int rs, wc;
858 >            if (inactivate &&
859 >                UNSAFE.compareAndSwapInt(this, runStateOffset,
860 >                                         rs = runState, rs - ONE_ACTIVE))
861 >                inactivate = active = w.active = false;
862 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
863 >                if (retries > 0) {
864 >                    if (retries > 1 && !active)
865 >                        eventSync(w);
866 >                    releaseWaiters();
867 >                }
868 >                break;
869 >            }
870 >            if (!(inactivate |= active) &&  // must inactivate to suspend
871 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
872 >                                         wc, wc - ONE_RUNNING) &&
873 >                !w.suspendAsSpare())             // false if trimmed
874 >                break;
875 >        }
876 >    }
877 >
878 >    /**
879 >     * Awaits join of the given task if enough threads, or can resume
880 >     * or create a spare. Fails (in which case the given task might
881 >     * not be done) upon contention or lack of decision about
882 >     * blocking.
883 >     *
884 >     * We allow blocking if:
885 >     *
886 >     * 1. There would still be at least as many running threads as
887 >     *    parallelism level if this thread blocks.
888 >     *
889 >     * 2. A spare is resumed to replace this worker. We tolerate
890 >     *    races in the decision to replace when a spare is found.
891 >     *    This may release too many, but if so, the superfluous ones
892 >     *    will re-suspend via preStep().
893 >     *
894 >     * 3. After #spares repeated retries, there are fewer than #spare
895 >     *    threads not running. We allow this slack to avoid hysteresis
896 >     *    and as a hedge against lag/uncertainty of running count
897 >     *    estimates when signalling or unblocking stalls.
898 >     *
899 >     * 4. All existing workers are busy (as rechecked via #spares
900 >     *    repeated retries by caller) and a new spare is created.
901 >     *
902 >     * If none of the above hold, we escape out by re-incrementing
903 >     * count and returning to caller, which can retry later.
904 >     *
905 >     * @param joinMe the task to join
906 >     * @param retries the number of calls to this method for this join
907 >     */
908 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
909 >        int pc = parallelism;
910 >        boolean running = true; // false when running count decremented
911 >        outer:while (joinMe.status >= 0) {
912 >            int wc = workerCounts;
913 >            int rc = wc & RUNNING_COUNT_MASK;
914 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
915 >            if (running) { // replace with spare or decrement count
916 >                if (rc <= pc && tc > pc &&
917 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
918 >                    ForkJoinWorkerThread[] ws = workers; // search for spare
919 >                    int nws = ws.length;
920 >                    for (int i = 0; i < nws; ++i) {
921 >                        ForkJoinWorkerThread w = ws[i];
922 >                        if (w != null && w.isSuspended()) {
923 >                            if ((workerCounts & RUNNING_COUNT_MASK) > pc)
924 >                                continue outer;
925 >                            if (joinMe.status < 0)
926 >                                break outer;
927 >                            if (w.tryResumeSpare()) {
928 >                                running = false;
929 >                                break outer;
930 >                            }
931 >                            continue outer; // rescan on failure to resume
932                          }
537                        else
538                            updateWorkerCount(-1);
933                      }
934                  }
935 <            } finally {
936 <                lock.unlock();
935 >                if ((rc <= pc && (rc == 0 || --retries < 0)) || // no retry
936 >                    joinMe.status < 0)
937 >                    break;
938 >                if (workerCounts == wc &&
939 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
940 >                                             wc, wc - ONE_RUNNING))
941 >                    running = false;
942 >            }
943 >            else { // allow blocking if enough threads
944 >                int sc = tc - pc + 1;          // = spares, plus the one to add
945 >                if (sc > 0 && rc > 0 && rc >= pc - sc && rc > pc - retries)
946 >                    break;  
947 >                if (--retries > sc && tc < MAX_THREADS &&
948 >                    tc == (runState & ACTIVE_COUNT_MASK) &&
949 >                    workerCounts == wc &&
950 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
951 >                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
952 >                    addWorker();
953 >                    break;
954 >                }
955 >                if (workerCounts == wc &&
956 >                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
957 >                                              wc, wc + ONE_RUNNING)) {
958 >                    running = true;            // back out; allow retry
959 >                    break;
960 >                }
961              }
962          }
963 +        if (!running) { // can block
964 +            int c;                      // to inline incrementRunningCount
965 +            joinMe.internalAwaitDone();
966 +            do {} while (!UNSAFE.compareAndSwapInt
967 +                         (this, workerCountsOffset,
968 +                          c = workerCounts, c + ONE_RUNNING));
969 +        }
970      }
971  
972      /**
973 <     * Worker creation and startup for threads added via setParallelism.
973 >     * Same idea as (and shares many code snippets with) tryAwaitJoin,
974 >     * but self-contained because there are no caller retries.
975 >     * TODO: Rework to use simpler API.
976       */
977 <    private void createAndStartAddedWorkers() {
978 <        resumeAllSpares();  // Allow spares to convert to nonspare
979 <        int ps = parallelism;
980 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
981 <        int len = ws.length;
982 <        // Sweep through slots, to keep lowest indices most populated
983 <        int k = 0;
984 <        while (k < len) {
985 <            if (ws[k] != null) {
986 <                ++k;
987 <                continue;
977 >    final void awaitBlocker(ManagedBlocker blocker)
978 >        throws InterruptedException {
979 >        int pc = parallelism;
980 >        boolean running = true;
981 >        int retries = 0;
982 >        boolean done;
983 >        outer:while (!(done = blocker.isReleasable())) {
984 >            int wc = workerCounts;
985 >            int rc = wc & RUNNING_COUNT_MASK;
986 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
987 >            if (running) {
988 >                if (rc <= pc && tc > pc &&
989 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
990 >                    ForkJoinWorkerThread[] ws = workers;
991 >                    int nws = ws.length;
992 >                    for (int i = 0; i < nws; ++i) {
993 >                        ForkJoinWorkerThread w = ws[i];
994 >                        if (w != null && w.isSuspended()) {
995 >                            if ((workerCounts & RUNNING_COUNT_MASK) > pc)
996 >                                continue outer;
997 >                            if (done = blocker.isReleasable())
998 >                                break outer;
999 >                            if (w.tryResumeSpare()) {
1000 >                                running = false;
1001 >                                break outer;
1002 >                            }
1003 >                            continue outer;
1004 >                        }
1005 >                    }
1006 >                    if (done = blocker.isReleasable())
1007 >                        break;
1008 >                }
1009 >                if (rc > 0 && workerCounts == wc &&
1010 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1011 >                                             wc, wc - ONE_RUNNING)) {
1012 >                    running = false;
1013 >                    if (rc > pc)
1014 >                        break;
1015 >                }
1016              }
1017 <            int s = workerCounts;
563 <            int tc = totalCountOf(s);
564 <            int rc = runningCountOf(s);
565 <            if (rc >= ps || tc >= ps)
1017 >            else if (rc >= pc)
1018                  break;
1019 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1020 <                ForkJoinWorkerThread w = createWorker(k);
1021 <                if (w != null) {
1022 <                    ws[k++] = w;
1023 <                    w.start();
1024 <                }
1025 <                else {
1026 <                    updateWorkerCount(-1); // back out on failed creation
1027 <                    break;
1019 >            else if (tc < MAX_THREADS &&
1020 >                     tc == (runState & ACTIVE_COUNT_MASK) &&
1021 >                     workerCounts == wc &&
1022 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1023 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
1024 >                addWorker();
1025 >                break;
1026 >            }
1027 >            else if (workerCounts == wc &&
1028 >                     UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1029 >                                              wc, wc + ONE_RUNNING)) {
1030 >                Thread.yield();
1031 >                ++retries;
1032 >                running = true;            // allow rescan
1033 >            }
1034 >        }
1035 >
1036 >        try {
1037 >            if (!done)
1038 >                do {} while (!blocker.isReleasable() && !blocker.block());
1039 >        } finally {
1040 >            if (!running) {
1041 >                int c;
1042 >                do {} while (!UNSAFE.compareAndSwapInt
1043 >                             (this, workerCountsOffset,
1044 >                              c = workerCounts, c + ONE_RUNNING));
1045 >            }
1046 >        }
1047 >    }
1048 >
1049 >    /**
1050 >     * Possibly initiates and/or completes termination.
1051 >     *
1052 >     * @param now if true, unconditionally terminate, else only
1053 >     * if shutdown and empty queue and no active workers
1054 >     * @return true if now terminating or terminated
1055 >     */
1056 >    private boolean tryTerminate(boolean now) {
1057 >        if (now)
1058 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1059 >        else if (runState < SHUTDOWN ||
1060 >                 !submissionQueue.isEmpty() ||
1061 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1062 >            return false;
1063 >
1064 >        if (advanceRunLevel(TERMINATING))
1065 >            startTerminating();
1066 >
1067 >        // Finish now if all threads terminated; else in some subsequent call
1068 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1069 >            advanceRunLevel(TERMINATED);
1070 >            termination.arrive();
1071 >        }
1072 >        return true;
1073 >    }
1074 >
1075 >    /**
1076 >     * Actions on transition to TERMINATING
1077 >     */
1078 >    private void startTerminating() {
1079 >        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1080 >            cancelSubmissions();
1081 >            shutdownWorkers();
1082 >            cancelWorkerTasks();
1083 >            signalEvent();
1084 >            interruptWorkers();
1085 >        }
1086 >    }
1087 >
1088 >    /**
1089 >     * Clear out and cancel submissions, ignoring exceptions
1090 >     */
1091 >    private void cancelSubmissions() {
1092 >        ForkJoinTask<?> task;
1093 >        while ((task = submissionQueue.poll()) != null) {
1094 >            try {
1095 >                task.cancel(false);
1096 >            } catch (Throwable ignore) {
1097 >            }
1098 >        }
1099 >    }
1100 >
1101 >    /**
1102 >     * Sets all worker run states to at least shutdown,
1103 >     * also resuming suspended workers
1104 >     */
1105 >    private void shutdownWorkers() {
1106 >        ForkJoinWorkerThread[] ws = workers;
1107 >        int nws = ws.length;
1108 >        for (int i = 0; i < nws; ++i) {
1109 >            ForkJoinWorkerThread w = ws[i];
1110 >            if (w != null)
1111 >                w.shutdown();
1112 >        }
1113 >    }
1114 >
1115 >    /**
1116 >     * Clears out and cancels all locally queued tasks
1117 >     */
1118 >    private void cancelWorkerTasks() {
1119 >        ForkJoinWorkerThread[] ws = workers;
1120 >        int nws = ws.length;
1121 >        for (int i = 0; i < nws; ++i) {
1122 >            ForkJoinWorkerThread w = ws[i];
1123 >            if (w != null)
1124 >                w.cancelTasks();
1125 >        }
1126 >    }
1127 >
1128 >    /**
1129 >     * Unsticks all workers blocked on joins etc
1130 >     */
1131 >    private void interruptWorkers() {
1132 >        ForkJoinWorkerThread[] ws = workers;
1133 >        int nws = ws.length;
1134 >        for (int i = 0; i < nws; ++i) {
1135 >            ForkJoinWorkerThread w = ws[i];
1136 >            if (w != null && !w.isTerminated()) {
1137 >                try {
1138 >                    w.interrupt();
1139 >                } catch (SecurityException ignore) {
1140                  }
1141              }
1142          }
1143      }
1144  
1145 +    // misc support for ForkJoinWorkerThread
1146 +
1147 +    /**
1148 +     * Returns pool number
1149 +     */
1150 +    final int getPoolNumber() {
1151 +        return poolNumber;
1152 +    }
1153 +
1154 +    /**
1155 +     * Accumulates steal count from a worker, clearing
1156 +     * the worker's value
1157 +     */
1158 +    final void accumulateStealCount(ForkJoinWorkerThread w) {
1159 +        int sc = w.stealCount;
1160 +        if (sc != 0) {
1161 +            long c;
1162 +            w.stealCount = 0;
1163 +            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1164 +                                                    c = stealCount, c + sc));
1165 +        }
1166 +    }
1167 +
1168 +    /**
1169 +     * Returns the approximate (non-atomic) number of idle threads per
1170 +     * active thread.
1171 +     */
1172 +    final int idlePerActive() {
1173 +        int pc = parallelism; // use parallelism, not rc
1174 +        int ac = runState;    // no mask -- artifically boosts during shutdown
1175 +        // Use exact results for small values, saturate past 4
1176 +        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1177 +    }
1178 +
1179 +    // Public and protected methods
1180 +
1181 +    // Constructors
1182 +
1183 +    /**
1184 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1185 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1186 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1187 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1188 +     *
1189 +     * @throws SecurityException if a security manager exists and
1190 +     *         the caller is not permitted to modify threads
1191 +     *         because it does not hold {@link
1192 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1193 +     */
1194 +    public ForkJoinPool() {
1195 +        this(Runtime.getRuntime().availableProcessors(),
1196 +             defaultForkJoinWorkerThreadFactory, null, false);
1197 +    }
1198 +
1199 +    /**
1200 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1201 +     * level, the {@linkplain
1202 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1203 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1204 +     *
1205 +     * @param parallelism the parallelism level
1206 +     * @throws IllegalArgumentException if parallelism less than or
1207 +     *         equal to zero, or greater than implementation limit
1208 +     * @throws SecurityException if a security manager exists and
1209 +     *         the caller is not permitted to modify threads
1210 +     *         because it does not hold {@link
1211 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1212 +     */
1213 +    public ForkJoinPool(int parallelism) {
1214 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1215 +    }
1216 +
1217 +    /**
1218 +     * Creates a {@code ForkJoinPool} with the given parameters.
1219 +     *
1220 +     * @param parallelism the parallelism level. For default value,
1221 +     * use {@link java.lang.Runtime#availableProcessors}.
1222 +     * @param factory the factory for creating new threads. For default value,
1223 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1224 +     * @param handler the handler for internal worker threads that
1225 +     * terminate due to unrecoverable errors encountered while executing
1226 +     * tasks. For default value, use <code>null</code>.
1227 +     * @param asyncMode if true,
1228 +     * establishes local first-in-first-out scheduling mode for forked
1229 +     * tasks that are never joined. This mode may be more appropriate
1230 +     * than default locally stack-based mode in applications in which
1231 +     * worker threads only process event-style asynchronous tasks.
1232 +     * For default value, use <code>false</code>.
1233 +     * @throws IllegalArgumentException if parallelism less than or
1234 +     *         equal to zero, or greater than implementation limit
1235 +     * @throws NullPointerException if the factory is null
1236 +     * @throws SecurityException if a security manager exists and
1237 +     *         the caller is not permitted to modify threads
1238 +     *         because it does not hold {@link
1239 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1240 +     */
1241 +    public ForkJoinPool(int parallelism,
1242 +                        ForkJoinWorkerThreadFactory factory,
1243 +                        Thread.UncaughtExceptionHandler handler,
1244 +                        boolean asyncMode) {
1245 +        checkPermission();
1246 +        if (factory == null)
1247 +            throw new NullPointerException();
1248 +        if (parallelism <= 0 || parallelism > MAX_THREADS)
1249 +            throw new IllegalArgumentException();
1250 +        this.parallelism = parallelism;
1251 +        this.factory = factory;
1252 +        this.ueh = handler;
1253 +        this.locallyFifo = asyncMode;
1254 +        int arraySize = initialArraySizeFor(parallelism);
1255 +        this.workers = new ForkJoinWorkerThread[arraySize];
1256 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1257 +        this.workerLock = new ReentrantLock();
1258 +        this.termination = new Phaser(1);
1259 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1260 +    }
1261 +
1262 +    /**
1263 +     * Returns initial power of two size for workers array.
1264 +     * @param pc the initial parallelism level
1265 +     */
1266 +    private static int initialArraySizeFor(int pc) {
1267 +        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1268 +        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1269 +        size |= size >>> 1;
1270 +        size |= size >>> 2;
1271 +        size |= size >>> 4;
1272 +        size |= size >>> 8;
1273 +        return size + 1;
1274 +    }
1275 +
1276      // Execution methods
1277  
1278      /**
# Line 586 | Line 1281 | public class ForkJoinPool extends Abstra
1281      private <T> void doSubmit(ForkJoinTask<T> task) {
1282          if (task == null)
1283              throw new NullPointerException();
1284 <        if (isShutdown())
1284 >        if (runState >= SHUTDOWN)
1285              throw new RejectedExecutionException();
591        if (workers == null)
592            ensureWorkerInitialization();
1286          submissionQueue.offer(task);
1287 <        signalIdleWorkers();
1287 >        signalEvent();
1288 >        ensureEnoughTotalWorkers();
1289      }
1290  
1291      /**
1292       * Performs the given task, returning its result upon completion.
1293 +     * If the caller is already engaged in a fork/join computation in
1294 +     * the current pool, this method is equivalent in effect to
1295 +     * {@link ForkJoinTask#invoke}.
1296       *
1297       * @param task the task
1298       * @return the task's result
# Line 610 | Line 1307 | public class ForkJoinPool extends Abstra
1307  
1308      /**
1309       * Arranges for (asynchronous) execution of the given task.
1310 +     * If the caller is already engaged in a fork/join computation in
1311 +     * the current pool, this method is equivalent in effect to
1312 +     * {@link ForkJoinTask#fork}.
1313       *
1314       * @param task the task
1315       * @throws NullPointerException if the task is null
# Line 637 | Line 1337 | public class ForkJoinPool extends Abstra
1337      }
1338  
1339      /**
1340 +     * Submits a ForkJoinTask for execution.
1341 +     * If the caller is already engaged in a fork/join computation in
1342 +     * the current pool, this method is equivalent in effect to
1343 +     * {@link ForkJoinTask#fork}.
1344 +     *
1345 +     * @param task the task to submit
1346 +     * @return the task
1347 +     * @throws NullPointerException if the task is null
1348 +     * @throws RejectedExecutionException if the task cannot be
1349 +     *         scheduled for execution
1350 +     */
1351 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1352 +        doSubmit(task);
1353 +        return task;
1354 +    }
1355 +
1356 +    /**
1357       * @throws NullPointerException if the task is null
1358       * @throws RejectedExecutionException if the task cannot be
1359       *         scheduled for execution
# Line 674 | Line 1391 | public class ForkJoinPool extends Abstra
1391      }
1392  
1393      /**
677     * Submits a ForkJoinTask for execution.
678     *
679     * @param task the task to submit
680     * @return the task
681     * @throws NullPointerException if the task is null
682     * @throws RejectedExecutionException if the task cannot be
683     *         scheduled for execution
684     */
685    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
686        doSubmit(task);
687        return task;
688    }
689
690
691    /**
1394       * @throws NullPointerException       {@inheritDoc}
1395       * @throws RejectedExecutionException {@inheritDoc}
1396       */
# Line 700 | Line 1402 | public class ForkJoinPool extends Abstra
1402          invoke(new InvokeAll<T>(forkJoinTasks));
1403  
1404          @SuppressWarnings({"unchecked", "rawtypes"})
1405 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1405 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1406          return futures;
1407      }
1408  
# Line 714 | Line 1416 | public class ForkJoinPool extends Abstra
1416          private static final long serialVersionUID = -7914297376763021607L;
1417      }
1418  
717    // Configuration and status settings and queries
718
1419      /**
1420       * Returns the factory used for constructing new workers.
1421       *
# Line 732 | Line 1432 | public class ForkJoinPool extends Abstra
1432       * @return the handler, or {@code null} if none
1433       */
1434      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1435 <        Thread.UncaughtExceptionHandler h;
736 <        final ReentrantLock lock = this.workerLock;
737 <        lock.lock();
738 <        try {
739 <            h = ueh;
740 <        } finally {
741 <            lock.unlock();
742 <        }
743 <        return h;
744 <    }
745 <
746 <    /**
747 <     * Sets the handler for internal worker threads that terminate due
748 <     * to unrecoverable errors encountered while executing tasks.
749 <     * Unless set, the current default or ThreadGroup handler is used
750 <     * as handler.
751 <     *
752 <     * @param h the new handler
753 <     * @return the old handler, or {@code null} if none
754 <     * @throws SecurityException if a security manager exists and
755 <     *         the caller is not permitted to modify threads
756 <     *         because it does not hold {@link
757 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
758 <     */
759 <    public Thread.UncaughtExceptionHandler
760 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
761 <        checkPermission();
762 <        Thread.UncaughtExceptionHandler old = null;
763 <        final ReentrantLock lock = this.workerLock;
764 <        lock.lock();
765 <        try {
766 <            old = ueh;
767 <            ueh = h;
768 <            ForkJoinWorkerThread[] ws = workers;
769 <            if (ws != null) {
770 <                for (int i = 0; i < ws.length; ++i) {
771 <                    ForkJoinWorkerThread w = ws[i];
772 <                    if (w != null)
773 <                        w.setUncaughtExceptionHandler(h);
774 <                }
775 <            }
776 <        } finally {
777 <            lock.unlock();
778 <        }
779 <        return old;
780 <    }
781 <
782 <
783 <    /**
784 <     * Sets the target parallelism level of this pool.
785 <     *
786 <     * @param parallelism the target parallelism
787 <     * @throws IllegalArgumentException if parallelism less than or
788 <     * equal to zero or greater than maximum size bounds
789 <     * @throws SecurityException if a security manager exists and
790 <     *         the caller is not permitted to modify threads
791 <     *         because it does not hold {@link
792 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
793 <     */
794 <    public void setParallelism(int parallelism) {
795 <        checkPermission();
796 <        if (parallelism <= 0 || parallelism > maxPoolSize)
797 <            throw new IllegalArgumentException();
798 <        final ReentrantLock lock = this.workerLock;
799 <        lock.lock();
800 <        try {
801 <            if (isProcessingTasks()) {
802 <                int p = this.parallelism;
803 <                this.parallelism = parallelism;
804 <                if (workers != null) {
805 <                    if (parallelism > p)
806 <                        createAndStartAddedWorkers();
807 <                    else
808 <                        trimSpares();
809 <                }
810 <            }
811 <        } finally {
812 <            lock.unlock();
813 <        }
814 <        signalIdleWorkers();
1435 >        return ueh;
1436      }
1437  
1438      /**
# Line 832 | Line 1453 | public class ForkJoinPool extends Abstra
1453       * @return the number of worker threads
1454       */
1455      public int getPoolSize() {
1456 <        return totalCountOf(workerCounts);
836 <    }
837 <
838 <    /**
839 <     * Returns the maximum number of threads allowed to exist in the
840 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
841 <     * maximum is an implementation-defined value designed only to
842 <     * prevent runaway growth.
843 <     *
844 <     * @return the maximum
845 <     */
846 <    public int getMaximumPoolSize() {
847 <        return maxPoolSize;
848 <    }
849 <
850 <    /**
851 <     * Sets the maximum number of threads allowed to exist in the
852 <     * pool. The given value should normally be greater than or equal
853 <     * to the {@link #getParallelism parallelism} level. Setting this
854 <     * value has no effect on current pool size. It controls
855 <     * construction of new threads.
856 <     *
857 <     * @throws IllegalArgumentException if negative or greater than
858 <     * internal implementation limit
859 <     */
860 <    public void setMaximumPoolSize(int newMax) {
861 <        if (newMax < 0 || newMax > MAX_THREADS)
862 <            throw new IllegalArgumentException();
863 <        maxPoolSize = newMax;
864 <    }
865 <
866 <
867 <    /**
868 <     * Returns {@code true} if this pool dynamically maintains its
869 <     * target parallelism level. If false, new threads are added only
870 <     * to avoid possible starvation.  This setting is by default true.
871 <     *
872 <     * @return {@code true} if maintains parallelism
873 <     */
874 <    public boolean getMaintainsParallelism() {
875 <        return maintainsParallelism;
876 <    }
877 <
878 <    /**
879 <     * Sets whether this pool dynamically maintains its target
880 <     * parallelism level. If false, new threads are added only to
881 <     * avoid possible starvation.
882 <     *
883 <     * @param enable {@code true} to maintain parallelism
884 <     */
885 <    public void setMaintainsParallelism(boolean enable) {
886 <        maintainsParallelism = enable;
887 <    }
888 <
889 <    /**
890 <     * Establishes local first-in-first-out scheduling mode for forked
891 <     * tasks that are never joined. This mode may be more appropriate
892 <     * than default locally stack-based mode in applications in which
893 <     * worker threads only process asynchronous tasks.  This method is
894 <     * designed to be invoked only when the pool is quiescent, and
895 <     * typically only before any tasks are submitted. The effects of
896 <     * invocations at other times may be unpredictable.
897 <     *
898 <     * @param async if {@code true}, use locally FIFO scheduling
899 <     * @return the previous mode
900 <     * @see #getAsyncMode
901 <     */
902 <    public boolean setAsyncMode(boolean async) {
903 <        boolean oldMode = locallyFifo;
904 <        locallyFifo = async;
905 <        ForkJoinWorkerThread[] ws = workers;
906 <        if (ws != null) {
907 <            for (int i = 0; i < ws.length; ++i) {
908 <                ForkJoinWorkerThread t = ws[i];
909 <                if (t != null)
910 <                    t.setAsyncMode(async);
911 <            }
912 <        }
913 <        return oldMode;
1456 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1457      }
1458  
1459      /**
# Line 918 | Line 1461 | public class ForkJoinPool extends Abstra
1461       * scheduling mode for forked tasks that are never joined.
1462       *
1463       * @return {@code true} if this pool uses async mode
921     * @see #setAsyncMode
1464       */
1465      public boolean getAsyncMode() {
1466          return locallyFifo;
# Line 927 | Line 1469 | public class ForkJoinPool extends Abstra
1469      /**
1470       * Returns an estimate of the number of worker threads that are
1471       * not blocked waiting to join tasks or for other managed
1472 <     * synchronization.
1472 >     * synchronization. This method may overestimate the
1473 >     * number of running threads.
1474       *
1475       * @return the number of worker threads
1476       */
1477      public int getRunningThreadCount() {
1478 <        return runningCountOf(workerCounts);
1478 >        return workerCounts & RUNNING_COUNT_MASK;
1479      }
1480  
1481      /**
# Line 943 | Line 1486 | public class ForkJoinPool extends Abstra
1486       * @return the number of active threads
1487       */
1488      public int getActiveThreadCount() {
1489 <        return activeCountOf(runControl);
947 <    }
948 <
949 <    /**
950 <     * Returns an estimate of the number of threads that are currently
951 <     * idle waiting for tasks. This method may underestimate the
952 <     * number of idle threads.
953 <     *
954 <     * @return the number of idle threads
955 <     */
956 <    final int getIdleThreadCount() {
957 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
958 <        return (c <= 0) ? 0 : c;
1489 >        return runState & ACTIVE_COUNT_MASK;
1490      }
1491  
1492      /**
# Line 970 | Line 1501 | public class ForkJoinPool extends Abstra
1501       * @return {@code true} if all threads are currently idle
1502       */
1503      public boolean isQuiescent() {
1504 <        return activeCountOf(runControl) == 0;
1504 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1505      }
1506  
1507      /**
# Line 985 | Line 1516 | public class ForkJoinPool extends Abstra
1516       * @return the number of steals
1517       */
1518      public long getStealCount() {
1519 <        return stealCount.get();
989 <    }
990 <
991 <    /**
992 <     * Accumulates steal count from a worker.
993 <     * Call only when worker known to be idle.
994 <     */
995 <    private void updateStealCount(ForkJoinWorkerThread w) {
996 <        int sc = w.getAndClearStealCount();
997 <        if (sc != 0)
998 <            stealCount.addAndGet(sc);
1519 >        return stealCount;
1520      }
1521  
1522      /**
# Line 1011 | Line 1532 | public class ForkJoinPool extends Abstra
1532      public long getQueuedTaskCount() {
1533          long count = 0;
1534          ForkJoinWorkerThread[] ws = workers;
1535 <        if (ws != null) {
1536 <            for (int i = 0; i < ws.length; ++i) {
1537 <                ForkJoinWorkerThread t = ws[i];
1538 <                if (t != null)
1539 <                    count += t.getQueueSize();
1019 <            }
1535 >        int nws = ws.length;
1536 >        for (int i = 0; i < nws; ++i) {
1537 >            ForkJoinWorkerThread w = ws[i];
1538 >            if (w != null)
1539 >                count += w.getQueueSize();
1540          }
1541          return count;
1542      }
# Line 1073 | Line 1593 | public class ForkJoinPool extends Abstra
1593      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1594          int n = submissionQueue.drainTo(c);
1595          ForkJoinWorkerThread[] ws = workers;
1596 <        if (ws != null) {
1597 <            for (int i = 0; i < ws.length; ++i) {
1598 <                ForkJoinWorkerThread w = ws[i];
1599 <                if (w != null)
1600 <                    n += w.drainTasksTo(c);
1081 <            }
1596 >        int nws = ws.length;
1597 >        for (int i = 0; i < nws; ++i) {
1598 >            ForkJoinWorkerThread w = ws[i];
1599 >            if (w != null)
1600 >                n += w.drainTasksTo(c);
1601          }
1602          return n;
1603      }
1604  
1605      /**
1606 +     * Returns count of total parks by existing workers.
1607 +     * Used during development only since not meaningful to users.
1608 +     */
1609 +    private int collectParkCount() {
1610 +        int count = 0;
1611 +        ForkJoinWorkerThread[] ws = workers;
1612 +        int nws = ws.length;
1613 +        for (int i = 0; i < nws; ++i) {
1614 +            ForkJoinWorkerThread w = ws[i];
1615 +            if (w != null)
1616 +                count += w.parkCount;
1617 +        }
1618 +        return count;
1619 +    }
1620 +
1621 +    /**
1622       * Returns a string identifying this pool, as well as its state,
1623       * including indications of run state, parallelism level, and
1624       * worker and task counts.
# Line 1091 | Line 1626 | public class ForkJoinPool extends Abstra
1626       * @return a string identifying this pool, as well as its state
1627       */
1628      public String toString() {
1094        int ps = parallelism;
1095        int wc = workerCounts;
1096        int rc = runControl;
1629          long st = getStealCount();
1630          long qt = getQueuedTaskCount();
1631          long qs = getQueuedSubmissionCount();
1632 +        int wc = workerCounts;
1633 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1634 +        int rc = wc & RUNNING_COUNT_MASK;
1635 +        int pc = parallelism;
1636 +        int rs = runState;
1637 +        int ac = rs & ACTIVE_COUNT_MASK;
1638 +        //        int pk = collectParkCount();
1639          return super.toString() +
1640 <            "[" + runStateToString(runStateOf(rc)) +
1641 <            ", parallelism = " + ps +
1642 <            ", size = " + totalCountOf(wc) +
1643 <            ", active = " + activeCountOf(rc) +
1644 <            ", running = " + runningCountOf(wc) +
1640 >            "[" + runLevelToString(rs) +
1641 >            ", parallelism = " + pc +
1642 >            ", size = " + tc +
1643 >            ", active = " + ac +
1644 >            ", running = " + rc +
1645              ", steals = " + st +
1646              ", tasks = " + qt +
1647              ", submissions = " + qs +
1648 +            //            ", parks = " + pk +
1649              "]";
1650      }
1651  
1652 <    private static String runStateToString(int rs) {
1653 <        switch (rs) {
1654 <        case RUNNING: return "Running";
1655 <        case SHUTDOWN: return "Shutting down";
1656 <        case TERMINATING: return "Terminating";
1117 <        case TERMINATED: return "Terminated";
1118 <        default: throw new Error("Unknown run state");
1119 <        }
1652 >    private static String runLevelToString(int s) {
1653 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1654 >                ((s & TERMINATING) != 0 ? "Terminating" :
1655 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1656 >                  "Running")));
1657      }
1658  
1122    // lifecycle control
1123
1659      /**
1660       * Initiates an orderly shutdown in which previously submitted
1661       * tasks are executed, but no new tasks will be accepted.
# Line 1135 | Line 1670 | public class ForkJoinPool extends Abstra
1670       */
1671      public void shutdown() {
1672          checkPermission();
1673 <        transitionRunStateTo(SHUTDOWN);
1674 <        if (canTerminateOnShutdown(runControl)) {
1140 <            if (workers == null) { // shutting down before workers created
1141 <                final ReentrantLock lock = this.workerLock;
1142 <                lock.lock();
1143 <                try {
1144 <                    if (workers == null) {
1145 <                        terminate();
1146 <                        transitionRunStateTo(TERMINATED);
1147 <                        termination.signalAll();
1148 <                    }
1149 <                } finally {
1150 <                    lock.unlock();
1151 <                }
1152 <            }
1153 <            terminateOnShutdown();
1154 <        }
1673 >        advanceRunLevel(SHUTDOWN);
1674 >        tryTerminate(false);
1675      }
1676  
1677      /**
# Line 1172 | Line 1692 | public class ForkJoinPool extends Abstra
1692       */
1693      public List<Runnable> shutdownNow() {
1694          checkPermission();
1695 <        terminate();
1695 >        tryTerminate(true);
1696          return Collections.emptyList();
1697      }
1698  
# Line 1182 | Line 1702 | public class ForkJoinPool extends Abstra
1702       * @return {@code true} if all tasks have completed following shut down
1703       */
1704      public boolean isTerminated() {
1705 <        return runStateOf(runControl) == TERMINATED;
1705 >        return runState >= TERMINATED;
1706      }
1707  
1708      /**
# Line 1196 | Line 1716 | public class ForkJoinPool extends Abstra
1716       * @return {@code true} if terminating but not yet terminated
1717       */
1718      public boolean isTerminating() {
1719 <        return runStateOf(runControl) == TERMINATING;
1719 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1720      }
1721  
1722      /**
# Line 1205 | Line 1725 | public class ForkJoinPool extends Abstra
1725       * @return {@code true} if this pool has been shut down
1726       */
1727      public boolean isShutdown() {
1728 <        return runStateOf(runControl) >= SHUTDOWN;
1209 <    }
1210 <
1211 <    /**
1212 <     * Returns true if pool is not terminating or terminated.
1213 <     * Used internally to suppress execution when terminating.
1214 <     */
1215 <    final boolean isProcessingTasks() {
1216 <        return runStateOf(runControl) < TERMINATING;
1728 >        return runState >= SHUTDOWN;
1729      }
1730  
1731      /**
# Line 1229 | Line 1741 | public class ForkJoinPool extends Abstra
1741       */
1742      public boolean awaitTermination(long timeout, TimeUnit unit)
1743          throws InterruptedException {
1232        long nanos = unit.toNanos(timeout);
1233        final ReentrantLock lock = this.workerLock;
1234        lock.lock();
1235        try {
1236            for (;;) {
1237                if (isTerminated())
1238                    return true;
1239                if (nanos <= 0)
1240                    return false;
1241                nanos = termination.awaitNanos(nanos);
1242            }
1243        } finally {
1244            lock.unlock();
1245        }
1246    }
1247
1248    // Shutdown and termination support
1249
1250    /**
1251     * Callback from terminating worker. Nulls out the corresponding
1252     * workers slot, and if terminating, tries to terminate; else
1253     * tries to shrink workers array.
1254     *
1255     * @param w the worker
1256     */
1257    final void workerTerminated(ForkJoinWorkerThread w) {
1258        updateStealCount(w);
1259        updateWorkerCount(-1);
1260        final ReentrantLock lock = this.workerLock;
1261        lock.lock();
1262        try {
1263            ForkJoinWorkerThread[] ws = workers;
1264            if (ws != null) {
1265                int idx = w.poolIndex;
1266                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1267                    ws[idx] = null;
1268                if (totalCountOf(workerCounts) == 0) {
1269                    terminate(); // no-op if already terminating
1270                    transitionRunStateTo(TERMINATED);
1271                    termination.signalAll();
1272                }
1273                else if (isProcessingTasks()) {
1274                    tryShrinkWorkerArray();
1275                    tryResumeSpare(true); // allow replacement
1276                }
1277            }
1278        } finally {
1279            lock.unlock();
1280        }
1281        signalIdleWorkers();
1282    }
1283
1284    /**
1285     * Initiates termination.
1286     */
1287    private void terminate() {
1288        if (transitionRunStateTo(TERMINATING)) {
1289            stopAllWorkers();
1290            resumeAllSpares();
1291            signalIdleWorkers();
1292            cancelQueuedSubmissions();
1293            cancelQueuedWorkerTasks();
1294            interruptUnterminatedWorkers();
1295            signalIdleWorkers(); // resignal after interrupt
1296        }
1297    }
1298
1299    /**
1300     * Possibly terminates when on shutdown state.
1301     */
1302    private void terminateOnShutdown() {
1303        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1304            terminate();
1305    }
1306
1307    /**
1308     * Clears out and cancels submissions.
1309     */
1310    private void cancelQueuedSubmissions() {
1311        ForkJoinTask<?> task;
1312        while ((task = pollSubmission()) != null)
1313            task.cancel(false);
1314    }
1315
1316    /**
1317     * Cleans out worker queues.
1318     */
1319    private void cancelQueuedWorkerTasks() {
1320        final ReentrantLock lock = this.workerLock;
1321        lock.lock();
1322        try {
1323            ForkJoinWorkerThread[] ws = workers;
1324            if (ws != null) {
1325                for (int i = 0; i < ws.length; ++i) {
1326                    ForkJoinWorkerThread t = ws[i];
1327                    if (t != null)
1328                        t.cancelTasks();
1329                }
1330            }
1331        } finally {
1332            lock.unlock();
1333        }
1334    }
1335
1336    /**
1337     * Sets each worker's status to terminating. Requires lock to avoid
1338     * conflicts with add/remove.
1339     */
1340    private void stopAllWorkers() {
1341        final ReentrantLock lock = this.workerLock;
1342        lock.lock();
1343        try {
1344            ForkJoinWorkerThread[] ws = workers;
1345            if (ws != null) {
1346                for (int i = 0; i < ws.length; ++i) {
1347                    ForkJoinWorkerThread t = ws[i];
1348                    if (t != null)
1349                        t.shutdownNow();
1350                }
1351            }
1352        } finally {
1353            lock.unlock();
1354        }
1355    }
1356
1357    /**
1358     * Interrupts all unterminated workers.  This is not required for
1359     * sake of internal control, but may help unstick user code during
1360     * shutdown.
1361     */
1362    private void interruptUnterminatedWorkers() {
1363        final ReentrantLock lock = this.workerLock;
1364        lock.lock();
1365        try {
1366            ForkJoinWorkerThread[] ws = workers;
1367            if (ws != null) {
1368                for (int i = 0; i < ws.length; ++i) {
1369                    ForkJoinWorkerThread t = ws[i];
1370                    if (t != null && !t.isTerminated()) {
1371                        try {
1372                            t.interrupt();
1373                        } catch (SecurityException ignore) {
1374                        }
1375                    }
1376                }
1377            }
1378        } finally {
1379            lock.unlock();
1380        }
1381    }
1382
1383    /*
1384     * Nodes for event barrier to manage idle threads.  Queue nodes
1385     * are basic Treiber stack nodes, also used for spare stack.
1386     *
1387     * The event barrier has an event count and a wait queue (actually
1388     * a Treiber stack).  Workers are enabled to look for work when
1389     * the eventCount is incremented. If they fail to find work, they
1390     * may wait for next count. Upon release, threads help others wake
1391     * up.
1392     *
1393     * Synchronization events occur only in enough contexts to
1394     * maintain overall liveness:
1395     *
1396     *   - Submission of a new task to the pool
1397     *   - Resizes or other changes to the workers array
1398     *   - pool termination
1399     *   - A worker pushing a task on an empty queue
1400     *
1401     * The case of pushing a task occurs often enough, and is heavy
1402     * enough compared to simple stack pushes, to require special
1403     * handling: Method signalWork returns without advancing count if
1404     * the queue appears to be empty.  This would ordinarily result in
1405     * races causing some queued waiters not to be woken up. To avoid
1406     * this, the first worker enqueued in method sync rescans for
1407     * tasks after being enqueued, and helps signal if any are
1408     * found. This works well because the worker has nothing better to
1409     * do, and so might as well help alleviate the overhead and
1410     * contention on the threads actually doing work.  Also, since
1411     * event counts increments on task availability exist to maintain
1412     * liveness (rather than to force refreshes etc), it is OK for
1413     * callers to exit early if contending with another signaller.
1414     */
1415    static final class WaitQueueNode {
1416        WaitQueueNode next; // only written before enqueued
1417        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1418        final long count; // unused for spare stack
1419
1420        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1421            count = c;
1422            thread = w;
1423        }
1424
1425        /**
1426         * Wakes up waiter, also clearing thread field
1427         */
1428        void signal() {
1429            ForkJoinWorkerThread t = thread;
1430            if (t != null) {
1431                thread = null;
1432                LockSupport.unpark(t);
1433            }
1434        }
1435    }
1436
1437    /**
1438     * Ensures that no thread is waiting for count to advance from the
1439     * current value of eventCount read on entry to this method, by
1440     * releasing waiting threads if necessary.
1441     */
1442    final void ensureSync() {
1443        long c = eventCount;
1444        WaitQueueNode q;
1445        while ((q = syncStack) != null && q.count < c) {
1446            if (casBarrierStack(q, null)) {
1447                do {
1448                    q.signal();
1449                } while ((q = q.next) != null);
1450                break;
1451            }
1452        }
1453    }
1454
1455    /**
1456     * Increments event count and releases waiting threads.
1457     */
1458    private void signalIdleWorkers() {
1459        long c;
1460        do {} while (!casEventCount(c = eventCount, c+1));
1461        ensureSync();
1462    }
1463
1464    /**
1465     * Signals threads waiting to poll a task. Because method sync
1466     * rechecks availability, it is OK to only proceed if queue
1467     * appears to be non-empty, and OK if CAS to increment count
1468     * fails (since some other thread succeeded).
1469     */
1470    final void signalWork() {
1471        if (syncStack != null) {
1472            long c = eventCount;
1473            casEventCount(c, c+1);
1474            WaitQueueNode q = syncStack;
1475            if (q != null && q.count <= c) {
1476                if (casBarrierStack(q, q.next))
1477                    q.signal();
1478                else
1479                    ensureSync(); // awaken all on contention
1480            }
1481        }
1482    }
1483
1484    /**
1485     * Possibly blocks until event count advances from last value held
1486     * by caller, or if excess threads, caller is resumed as spare, or
1487     * caller or pool is terminating. Updates caller's event on exit.
1488     *
1489     * @param w the calling worker thread
1490     */
1491    final void sync(ForkJoinWorkerThread w) {
1492        updateStealCount(w); // Transfer w's count while it is idle
1493
1494        if (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1495            long prev = w.lastEventCount;
1496            WaitQueueNode node = null;
1497            WaitQueueNode h;
1498            long c;
1499            while ((c = eventCount) == prev &&
1500                   ((h = syncStack) == null || h.count == prev)) {
1501                if (node == null)
1502                    node = new WaitQueueNode(prev, w);
1503                if (casBarrierStack(node.next = h, node)) {
1504                    if (!Thread.interrupted() &&
1505                        node.thread != null &&
1506                        eventCount == prev &&
1507                        (h != null || // cover signalWork race
1508                         (!ForkJoinWorkerThread.hasQueuedTasks(workers) &&
1509                          eventCount == prev)))
1510                        LockSupport.park(this);
1511                    c = eventCount;
1512                    if (node.thread != null) { // help signal if not unparked
1513                        node.thread = null;
1514                        if (c == prev)
1515                            casEventCount(prev, prev + 1);
1516                    }
1517                    break;
1518                }
1519            }
1520            w.lastEventCount = c;
1521            ensureSync();
1522        }
1523    }
1524
1525    /**
1526     * Returns {@code true} if a new sync event occurred since last
1527     * call to sync or this method, if so, updating caller's count.
1528     */
1529    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1530        long wc = w.lastEventCount;
1531        long c = eventCount;
1532        if (wc != c)
1533            w.lastEventCount = c;
1534        ensureSync();
1535        return wc != c || wc != eventCount;
1536    }
1537
1538    //  Parallelism maintenance
1539
1540    /**
1541     * Decrements running count; if too low, adds spare.
1542     *
1543     * Conceptually, all we need to do here is add or resume a
1544     * spare thread when one is about to block (and remove or
1545     * suspend it later when unblocked -- see suspendIfSpare).
1546     * However, implementing this idea requires coping with
1547     * several problems: we have imperfect information about the
1548     * states of threads. Some count updates can and usually do
1549     * lag run state changes, despite arrangements to keep them
1550     * accurate (for example, when possible, updating counts
1551     * before signalling or resuming), especially when running on
1552     * dynamic JVMs that don't optimize the infrequent paths that
1553     * update counts. Generating too many threads can make these
1554     * problems become worse, because excess threads are more
1555     * likely to be context-switched with others, slowing them all
1556     * down, especially if there is no work available, so all are
1557     * busy scanning or idling.  Also, excess spare threads can
1558     * only be suspended or removed when they are idle, not
1559     * immediately when they aren't needed. So adding threads will
1560     * raise parallelism level for longer than necessary.  Also,
1561     * FJ applications often encounter highly transient peaks when
1562     * many threads are blocked joining, but for less time than it
1563     * takes to create or resume spares.
1564     *
1565     * @param joinMe if non-null, return early if done
1566     * @param maintainParallelism if true, try to stay within
1567     * target counts, else create only to avoid starvation
1568     * @return true if joinMe known to be done
1569     */
1570    final boolean preJoin(ForkJoinTask<?> joinMe,
1571                          boolean maintainParallelism) {
1572        maintainParallelism &= maintainsParallelism; // overrride
1573        boolean dec = false;  // true when running count decremented
1574        while (spareStack == null || !tryResumeSpare(dec)) {
1575            int counts = workerCounts;
1576            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1577                if (!needSpare(counts, maintainParallelism))
1578                    break;
1579                if (joinMe.status < 0)
1580                    return true;
1581                if (tryAddSpare(counts))
1582                    break;
1583            }
1584        }
1585        return false;
1586    }
1587
1588    /**
1589     * Same idea as preJoin
1590     */
1591    final boolean preBlock(ManagedBlocker blocker,
1592                           boolean maintainParallelism) {
1593        maintainParallelism &= maintainsParallelism;
1594        boolean dec = false;
1595        while (spareStack == null || !tryResumeSpare(dec)) {
1596            int counts = workerCounts;
1597            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1598                if (!needSpare(counts, maintainParallelism))
1599                    break;
1600                if (blocker.isReleasable())
1601                    return true;
1602                if (tryAddSpare(counts))
1603                    break;
1604            }
1605        }
1606        return false;
1607    }
1608
1609    /**
1610     * Returns {@code true} if a spare thread appears to be needed.
1611     * If maintaining parallelism, returns true when the deficit in
1612     * running threads is more than the surplus of total threads, and
1613     * there is apparently some work to do.  This self-limiting rule
1614     * means that the more threads that have already been added, the
1615     * less parallelism we will tolerate before adding another.
1616     *
1617     * @param counts current worker counts
1618     * @param maintainParallelism try to maintain parallelism
1619     */
1620    private boolean needSpare(int counts, boolean maintainParallelism) {
1621        int ps = parallelism;
1622        int rc = runningCountOf(counts);
1623        int tc = totalCountOf(counts);
1624        int runningDeficit = ps - rc;
1625        int totalSurplus = tc - ps;
1626        return (tc < maxPoolSize &&
1627                (rc == 0 || totalSurplus < 0 ||
1628                 (maintainParallelism &&
1629                  runningDeficit > totalSurplus &&
1630                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1631    }
1632
1633    /**
1634     * Adds a spare worker if lock available and no more than the
1635     * expected numbers of threads exist.
1636     *
1637     * @return true if successful
1638     */
1639    private boolean tryAddSpare(int expectedCounts) {
1640        final ReentrantLock lock = this.workerLock;
1641        int expectedRunning = runningCountOf(expectedCounts);
1642        int expectedTotal = totalCountOf(expectedCounts);
1643        boolean success = false;
1644        boolean locked = false;
1645        // confirm counts while locking; CAS after obtaining lock
1744          try {
1745 <            for (;;) {
1746 <                int s = workerCounts;
1747 <                int tc = totalCountOf(s);
1650 <                int rc = runningCountOf(s);
1651 <                if (rc > expectedRunning || tc > expectedTotal)
1652 <                    break;
1653 <                if (!locked && !(locked = lock.tryLock()))
1654 <                    break;
1655 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1656 <                    createAndStartSpare(tc);
1657 <                    success = true;
1658 <                    break;
1659 <                }
1660 <            }
1661 <        } finally {
1662 <            if (locked)
1663 <                lock.unlock();
1664 <        }
1665 <        return success;
1666 <    }
1667 <
1668 <    /**
1669 <     * Adds the kth spare worker. On entry, pool counts are already
1670 <     * adjusted to reflect addition.
1671 <     */
1672 <    private void createAndStartSpare(int k) {
1673 <        ForkJoinWorkerThread w = null;
1674 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1675 <        int len = ws.length;
1676 <        // Probably, we can place at slot k. If not, find empty slot
1677 <        if (k < len && ws[k] != null) {
1678 <            for (k = 0; k < len && ws[k] != null; ++k)
1679 <                ;
1680 <        }
1681 <        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1682 <            ws[k] = w;
1683 <            w.start();
1684 <        }
1685 <        else
1686 <            updateWorkerCount(-1); // adjust on failure
1687 <        signalIdleWorkers();
1688 <    }
1689 <
1690 <    /**
1691 <     * Suspends calling thread w if there are excess threads.  Called
1692 <     * only from sync.  Spares are enqueued in a Treiber stack using
1693 <     * the same WaitQueueNodes as barriers.  They are resumed mainly
1694 <     * in preJoin, but are also woken on pool events that require all
1695 <     * threads to check run state.
1696 <     *
1697 <     * @param w the caller
1698 <     */
1699 <    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1700 <        WaitQueueNode node = null;
1701 <        for (;;) {
1702 <            int s = workerCounts;
1703 <            int rc = runningCountOf(s);
1704 <            int tc = totalCountOf(s);
1705 <            int ps = parallelism;
1706 <            // use tc as bound if rc transiently out of sync
1707 <            if (tc <= ps || rc <= ps)
1708 <                return false; // not a spare
1709 <            if (node == null)
1710 <                node = new WaitQueueNode(0, w);
1711 <            if (casWorkerCounts(s, workerCountsFor(tc, rc - 1)))
1712 <                break;
1713 <        }
1714 <        // push onto stack
1715 <        do {} while (!casSpareStack(node.next = spareStack, node));
1716 <        // block until released by resumeSpare
1717 <        while (!Thread.interrupted() && node.thread != null)
1718 <            LockSupport.park(this);
1719 <        return true;
1720 <    }
1721 <
1722 <    /**
1723 <     * Tries to pop and resume a spare thread.
1724 <     *
1725 <     * @param updateCount if true, increment running count on success
1726 <     * @return true if successful
1727 <     */
1728 <    private boolean tryResumeSpare(boolean updateCount) {
1729 <        WaitQueueNode q;
1730 <        while ((q = spareStack) != null) {
1731 <            if (casSpareStack(q, q.next)) {
1732 <                if (updateCount)
1733 <                    updateRunningCount(1);
1734 <                q.signal();
1735 <                return true;
1736 <            }
1737 <        }
1738 <        return false;
1739 <    }
1740 <
1741 <    /**
1742 <     * Pops and resumes all spare threads. Same idea as ensureSync.
1743 <     *
1744 <     * @return true if any spares released
1745 <     */
1746 <    private boolean resumeAllSpares() {
1747 <        WaitQueueNode q;
1748 <        while ( (q = spareStack) != null) {
1749 <            if (casSpareStack(q, null)) {
1750 <                do {
1751 <                    updateRunningCount(1);
1752 <                    q.signal();
1753 <                } while ((q = q.next) != null);
1754 <                return true;
1755 <            }
1756 <        }
1757 <        return false;
1758 <    }
1759 <
1760 <    /**
1761 <     * Pops and shuts down excessive spare threads. Call only while
1762 <     * holding lock. This is not guaranteed to eliminate all excess
1763 <     * threads, only those suspended as spares, which are the ones
1764 <     * unlikely to be needed in the future.
1765 <     */
1766 <    private void trimSpares() {
1767 <        int surplus = totalCountOf(workerCounts) - parallelism;
1768 <        WaitQueueNode q;
1769 <        while (surplus > 0 && (q = spareStack) != null) {
1770 <            if (casSpareStack(q, null)) {
1771 <                do {
1772 <                    updateRunningCount(1);
1773 <                    ForkJoinWorkerThread w = q.thread;
1774 <                    if (w != null && surplus > 0 &&
1775 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1776 <                        --surplus;
1777 <                    q.signal();
1778 <                } while ((q = q.next) != null);
1779 <            }
1745 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1746 >        } catch(TimeoutException ex) {
1747 >            return false;
1748          }
1749      }
1750  
# Line 1829 | Line 1797 | public class ForkJoinPool extends Abstra
1797       * Blocks in accord with the given blocker.  If the current thread
1798       * is a {@link ForkJoinWorkerThread}, this method possibly
1799       * arranges for a spare thread to be activated if necessary to
1800 <     * ensure parallelism while the current thread is blocked.
1833 <     *
1834 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1835 <     * supports it ({@link #getMaintainsParallelism}), this method
1836 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1837 <     * it activates a thread only if necessary to avoid complete
1838 <     * starvation. This option may be preferable when blockages use
1839 <     * timeouts, or are almost always brief.
1800 >     * ensure sufficient parallelism while the current thread is blocked.
1801       *
1802       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1803       * behaviorally equivalent to
# Line 1850 | Line 1811 | public class ForkJoinPool extends Abstra
1811       * first be expanded to ensure parallelism, and later adjusted.
1812       *
1813       * @param blocker the blocker
1853     * @param maintainParallelism if {@code true} and supported by
1854     * this pool, attempt to maintain the pool's nominal parallelism;
1855     * otherwise activate a thread only if necessary to avoid
1856     * complete starvation.
1814       * @throws InterruptedException if blocker.block did so
1815       */
1816 <    public static void managedBlock(ManagedBlocker blocker,
1860 <                                    boolean maintainParallelism)
1816 >    public static void managedBlock(ManagedBlocker blocker)
1817          throws InterruptedException {
1818          Thread t = Thread.currentThread();
1819 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1820 <                             ((ForkJoinWorkerThread) t).pool : null);
1821 <        if (!blocker.isReleasable()) {
1822 <            try {
1867 <                if (pool == null ||
1868 <                    !pool.preBlock(blocker, maintainParallelism))
1869 <                    awaitBlocker(blocker);
1870 <            } finally {
1871 <                if (pool != null)
1872 <                    pool.updateRunningCount(1);
1873 <            }
1819 >        if (t instanceof ForkJoinWorkerThread)
1820 >            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1821 >        else {
1822 >            do {} while (!blocker.isReleasable() && !blocker.block());
1823          }
1824      }
1825  
1877    private static void awaitBlocker(ManagedBlocker blocker)
1878        throws InterruptedException {
1879        do {} while (!blocker.isReleasable() && !blocker.block());
1880    }
1881
1826      // AbstractExecutorService overrides.  These rely on undocumented
1827      // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1828      // implement RunnableFuture.
# Line 1894 | Line 1838 | public class ForkJoinPool extends Abstra
1838      // Unsafe mechanics
1839  
1840      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1897    private static final long eventCountOffset =
1898        objectFieldOffset("eventCount", ForkJoinPool.class);
1841      private static final long workerCountsOffset =
1842          objectFieldOffset("workerCounts", ForkJoinPool.class);
1843 <    private static final long runControlOffset =
1844 <        objectFieldOffset("runControl", ForkJoinPool.class);
1845 <    private static final long syncStackOffset =
1846 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1847 <    private static final long spareStackOffset =
1848 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1849 <
1850 <    private boolean casEventCount(long cmp, long val) {
1909 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1910 <    }
1911 <    private boolean casWorkerCounts(int cmp, int val) {
1912 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1913 <    }
1914 <    private boolean casRunControl(int cmp, int val) {
1915 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1916 <    }
1917 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1918 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1919 <    }
1920 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1921 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1922 <    }
1843 >    private static final long runStateOffset =
1844 >        objectFieldOffset("runState", ForkJoinPool.class);
1845 >    private static final long eventCountOffset =
1846 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1847 >    private static final long eventWaitersOffset =
1848 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1849 >    private static final long stealCountOffset =
1850 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1851  
1852      private static long objectFieldOffset(String field, Class<?> klazz) {
1853          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines