ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.57 by dl, Wed Jul 7 19:52:31 2010 UTC vs.
Revision 1.68 by jsr166, Wed Sep 1 06:40:12 2010 UTC

# Line 52 | Line 52 | import java.util.concurrent.CountDownLat
52   * convenient form for informal monitoring.
53   *
54   * <p> As is the case with other ExecutorServices, there are three
55 < * main task execution methods summarized in the follwoing
55 > * main task execution methods summarized in the following
56   * table. These are designed to be used by clients not already engaged
57   * in fork/join computations in the current pool.  The main forms of
58   * these methods accept instances of {@code ForkJoinTask}, but
# Line 60 | Line 60 | import java.util.concurrent.CountDownLat
60   * Runnable}- or {@code Callable}- based activities as well.  However,
61   * tasks that are already executing in a pool should normally
62   * <em>NOT</em> use these pool execution methods, but instead use the
63 < * within-computation forms listed in the table. To avoid inadvertant
64 < * cyclic task dependencies and to improve performance, task
65 < * submissions to the current pool by an ongoing fork/join
66 < * computations may be implicitly translated to the corresponding
67 < * ForkJoinTask forms.
63 > * within-computation forms listed in the table.
64   *
65   * <table BORDER CELLPADDING=3 CELLSPACING=1>
66   *  <tr>
# Line 73 | Line 69 | import java.util.concurrent.CountDownLat
69   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70   *  </tr>
71   *  <tr>
72 < *    <td> <b>Arange async execution</td>
72 > *    <td> <b>Arrange async execution</td>
73   *    <td> {@link #execute(ForkJoinTask)}</td>
74   *    <td> {@link ForkJoinTask#fork}</td>
75   *  </tr>
# Line 88 | Line 84 | import java.util.concurrent.CountDownLat
84   *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85   *  </tr>
86   * </table>
87 < *
87 > *
88   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89   * used for all parallel task execution in a program or subsystem.
90   * Otherwise, use would not usually outweigh the construction and
# Line 113 | Line 109 | import java.util.concurrent.CountDownLat
109   * {@code IllegalArgumentException}.
110   *
111   * <p>This implementation rejects submitted tasks (that is, by throwing
112 < * {@link RejectedExecutionException}) only when the pool is shut down.
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhausted.
114   *
115   * @since 1.7
116   * @author Doug Lea
# Line 140 | Line 137 | public class ForkJoinPool extends Abstra
137       * of tasks profit from cache affinities, but others are harmed by
138       * cache pollution effects.)
139       *
140 +     * Beyond work-stealing support and essential bookkeeping, the
141 +     * main responsibility of this framework is to take actions when
142 +     * one worker is waiting to join a task stolen (or always held by)
143 +     * another.  Because we are multiplexing many tasks on to a pool
144 +     * of workers, we can't just let them block (as in Thread.join).
145 +     * We also cannot just reassign the joiner's run-time stack with
146 +     * another and replace it later, which would be a form of
147 +     * "continuation", that even if possible is not necessarily a good
148 +     * idea. Given that the creation costs of most threads on most
149 +     * systems mainly surrounds setting up runtime stacks, thread
150 +     * creation and switching is usually not much more expensive than
151 +     * stack creation and switching, and is more flexible). Instead we
152 +     * combine two tactics:
153 +     *
154 +     *   Helping: Arranging for the joiner to execute some task that it
155 +     *      would be running if the steal had not occurred.  Method
156 +     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 +     *      links to try to find such a task.
158 +     *
159 +     *   Compensating: Unless there are already enough live threads,
160 +     *      method helpMaintainParallelism() may create or
161 +     *      re-activate a spare thread to compensate for blocked
162 +     *      joiners until they unblock.
163 +     *
164 +     * It is impossible to keep exactly the target (parallelism)
165 +     * number of threads running at any given time.  Determining
166 +     * existence of conservatively safe helping targets, the
167 +     * availability of already-created spares, and the apparent need
168 +     * to create new spares are all racy and require heuristic
169 +     * guidance, so we rely on multiple retries of each.  Compensation
170 +     * occurs in slow-motion. It is triggered only upon timeouts of
171 +     * Object.wait used for joins. This reduces poor decisions that
172 +     * would otherwise be made when threads are waiting for others
173 +     * that are stalled because of unrelated activities such as
174 +     * garbage collection.
175 +     *
176 +     * The ManagedBlocker extension API can't use helping so relies
177 +     * only on compensation in method awaitBlocker.
178 +     *
179       * The main throughput advantages of work-stealing stem from
180       * decentralized control -- workers mostly steal tasks from each
181       * other. We do not want to negate this by creating bottlenecks
182 <     * implementing the management responsibilities of this class. So
183 <     * we use a collection of techniques that avoid, reduce, or cope
184 <     * well with contention. These entail several instances of
185 <     * bit-packing into CASable fields to maintain only the minimally
186 <     * required atomicity. To enable such packing, we restrict maximum
187 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
188 <     * bit field), which is far in excess of normal operating range.
189 <     * Even though updates to some of these bookkeeping fields do
190 <     * sometimes contend with each other, they don't normally
191 <     * cache-contend with updates to others enough to warrant memory
192 <     * padding or isolation. So they are all held as fields of
193 <     * ForkJoinPool objects.  The main capabilities are as follows:
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195       *
196       * 1. Creating and removing workers. Workers are recorded in the
197       * "workers" array. This is an array as opposed to some other data
# Line 170 | Line 207 | public class ForkJoinPool extends Abstra
207       * blocked workers. However, all other support code is set up to
208       * work with other policies.
209       *
210 +     * To ensure that we do not hold on to worker references that
211 +     * would prevent GC, ALL accesses to workers are via indices into
212 +     * the workers array (which is one source of some of the unusual
213 +     * code constructions here). In essence, the workers array serves
214 +     * as a WeakReference mechanism. Thus for example the event queue
215 +     * stores worker indices, not worker references. Access to the
216 +     * workers in associated methods (for example releaseEventWaiters)
217 +     * must both index-check and null-check the IDs. All such accesses
218 +     * ignore bad IDs by returning out early from what they are doing,
219 +     * since this can only be associated with shutdown, in which case
220 +     * it is OK to give up. On termination, we just clobber these
221 +     * data structures without trying to use them.
222 +     *
223       * 2. Bookkeeping for dynamically adding and removing workers. We
224       * aim to approximately maintain the given level of parallelism.
225       * When some workers are known to be blocked (on joins or via
226       * ManagedBlocker), we may create or resume others to take their
227       * place until they unblock (see below). Implementing this
228       * requires counts of the number of "running" threads (i.e., those
229 <     * that are neither blocked nor artifically suspended) as well as
229 >     * that are neither blocked nor artificially suspended) as well as
230       * the total number.  These two values are packed into one field,
231       * "workerCounts" because we need accurate snapshots when deciding
232 <     * to create, resume or suspend.  To support these decisions,
233 <     * updates to spare counts must be prospective (not
234 <     * retrospective).  For example, the running count is decremented
235 <     * before blocking by a thread about to block as a spare, but
186 <     * incremented by the thread about to unblock it. Updates upon
187 <     * resumption ofr threads blocking in awaitJoin or awaitBlocker
188 <     * cannot usually be prospective, so the running count is in
189 <     * general an upper bound of the number of productively running
190 <     * threads Updates to the workerCounts field sometimes transiently
191 <     * encounter a fair amount of contention when join dependencies
192 <     * are such that many threads block or unblock at about the same
193 <     * time. We alleviate this by sometimes performing an alternative
194 <     * action on contention like releasing waiters or locating spares.
232 >     * to create, resume or suspend.  Note however that the
233 >     * correspondence of these counts to reality is not guaranteed. In
234 >     * particular updates for unblocked threads may lag until they
235 >     * actually wake up.
236       *
237       * 3. Maintaining global run state. The run state of the pool
238       * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
# Line 220 | Line 261 | public class ForkJoinPool extends Abstra
261       * workers that previously could not find a task to now find one:
262       * Submission of a new task to the pool, or another worker pushing
263       * a task onto a previously empty queue.  (We also use this
264 <     * mechanism for termination and reconfiguration actions that
264 >     * mechanism for configuration and termination actions that
265       * require wakeups of idle workers).  Each worker maintains its
266       * last known event count, and blocks when a scan for work did not
267       * find a task AND its lastEventCount matches the current
# Line 231 | Line 272 | public class ForkJoinPool extends Abstra
272       * a record (field nextEventWaiter) for the next waiting worker.
273       * In addition to allowing simpler decisions about need for
274       * wakeup, the event count bits in eventWaiters serve the role of
275 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
276 <     * in task diffusion, workers not otherwise occupied may invoke
277 <     * method releaseWaiters, that removes and signals (unparks)
278 <     * workers not waiting on current count. To minimize task
279 <     * production stalls associate with signalling, any worker pushing
280 <     * a task on an empty queue invokes the weaker method signalWork,
240 <     * that only releases idle workers until it detects interference
241 <     * by other threads trying to release, and lets them take
242 <     * over. The net effect is a tree-like diffusion of signals, where
243 <     * released threads (and possibly others) help with unparks.  To
244 <     * further reduce contention effects a bit, failed CASes to
245 <     * increment field eventCount are tolerated without retries.
275 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
276 >     * released threads also try to release at most two others.  The
277 >     * net effect is a tree-like diffusion of signals, where released
278 >     * threads (and possibly others) help with unparks.  To further
279 >     * reduce contention effects a bit, failed CASes to increment
280 >     * field eventCount are tolerated without retries in signalWork.
281       * Conceptually they are merged into the same event, which is OK
282       * when their only purpose is to enable workers to scan for work.
283       *
284 <     * 5. Managing suspension of extra workers. When a worker is about
285 <     * to block waiting for a join (or via ManagedBlockers), we may
286 <     * create a new thread to maintain parallelism level, or at least
287 <     * avoid starvation (see below). Usually, extra threads are needed
288 <     * for only very short periods, yet join dependencies are such
289 <     * that we sometimes need them in bursts. Rather than create new
290 <     * threads each time this happens, we suspend no-longer-needed
291 <     * extra ones as "spares". For most purposes, we don't distinguish
292 <     * "extra" spare threads from normal "core" threads: On each call
293 <     * to preStep (the only point at which we can do this) a worker
294 <     * checks to see if there are now too many running workers, and if
295 <     * so, suspends itself.  Methods awaitJoin and awaitBlocker look
296 <     * for suspended threads to resume before considering creating a
297 <     * new replacement. We don't need a special data structure to
298 <     * maintain spares; simply scanning the workers array looking for
299 <     * worker.isSuspended() is fine because the calling thread is
300 <     * otherwise not doing anything useful anyway; we are at least as
301 <     * happy if after locating a spare, the caller doesn't actually
302 <     * block because the join is ready before we try to adjust and
303 <     * compensate.  Note that this is intrinsically racy.  One thread
304 <     * may become a spare at about the same time as another is
305 <     * needlessly being created. We counteract this and related slop
306 <     * in part by requiring resumed spares to immediately recheck (in
307 <     * preStep) to see whether they they should re-suspend. The only
308 <     * effective difference between "extra" and "core" threads is that
309 <     * we allow the "extra" ones to time out and die if they are not
310 <     * resumed within a keep-alive interval of a few seconds. This is
311 <     * implemented mainly within ForkJoinWorkerThread, but requires
312 <     * some coordination (isTrimmed() -- meaning killed while
313 <     * suspended) to correctly maintain pool counts.
314 <     *
315 <     * 6. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads,
317 <     * in methods awaitJoin and awaitBlocker. We always need to create
318 <     * one when the number of running threads becomes zero. But
319 <     * because blocked joins are typically dependent, we don't
320 <     * necessarily need or want one-to-one replacement. Instead, we
321 <     * use a combination of heuristics that adds threads only when the
322 <     * pool appears to be approaching starvation.  These effectively
323 <     * reduce churn at the price of systematically undershooting
324 <     * target parallelism when many threads are blocked.  However,
325 <     * biasing toward undeshooting partially compensates for the above
326 <     * mechanics to suspend extra threads, that normally lead to
327 <     * overshoot because we can only suspend workers in-between
328 <     * top-level actions. It also better copes with the fact that some
329 <     * of the methods in this class tend to never become compiled (but
330 <     * are interpreted), so some components of the entire set of
331 <     * controls might execute many times faster than others. And
284 >     * 5. Managing suspension of extra workers. When a worker notices
285 >     * (usually upon timeout of a wait()) that there are too few
286 >     * running threads, we may create a new thread to maintain
287 >     * parallelism level, or at least avoid starvation. Usually, extra
288 >     * threads are needed for only very short periods, yet join
289 >     * dependencies are such that we sometimes need them in
290 >     * bursts. Rather than create new threads each time this happens,
291 >     * we suspend no-longer-needed extra ones as "spares". For most
292 >     * purposes, we don't distinguish "extra" spare threads from
293 >     * normal "core" threads: On each call to preStep (the only point
294 >     * at which we can do this) a worker checks to see if there are
295 >     * now too many running workers, and if so, suspends itself.
296 >     * Method helpMaintainParallelism looks for suspended threads to
297 >     * resume before considering creating a new replacement. The
298 >     * spares themselves are encoded on another variant of a Treiber
299 >     * Stack, headed at field "spareWaiters".  Note that the use of
300 >     * spares is intrinsically racy.  One thread may become a spare at
301 >     * about the same time as another is needlessly being created. We
302 >     * counteract this and related slop in part by requiring resumed
303 >     * spares to immediately recheck (in preStep) to see whether they
304 >     * they should re-suspend.
305 >     *
306 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
307 >     * shed unused workers: The oldest (first) event queue waiter uses
308 >     * a timed rather than hard wait. When this wait times out without
309 >     * a normal wakeup, it tries to shutdown any one (for convenience
310 >     * the newest) other spare or event waiter via
311 >     * tryShutdownUnusedWorker. This eventually reduces the number of
312 >     * worker threads to a minimum of one after a long enough period
313 >     * without use.
314 >     *
315 >     * 7. Deciding when to create new workers. The main dynamic
316 >     * control in this class is deciding when to create extra threads
317 >     * in method helpMaintainParallelism. We would like to keep
318 >     * exactly #parallelism threads running, which is an impossible
319 >     * task. We always need to create one when the number of running
320 >     * threads would become zero and all workers are busy. Beyond
321 >     * this, we must rely on heuristics that work well in the
322 >     * presence of transient phenomena such as GC stalls, dynamic
323 >     * compilation, and wake-up lags. These transients are extremely
324 >     * common -- we are normally trying to fully saturate the CPUs on
325 >     * a machine, so almost any activity other than running tasks
326 >     * impedes accuracy. Our main defense is to allow parallelism to
327 >     * lapse for a while during joins, and use a timeout to see if,
328 >     * after the resulting settling, there is still a need for
329 >     * additional workers.  This also better copes with the fact that
330 >     * some of the methods in this class tend to never become compiled
331 >     * (but are interpreted), so some components of the entire set of
332 >     * controls might execute 100 times faster than others. And
333       * similarly for cases where the apparent lack of work is just due
334       * to GC stalls and other transient system activity.
335       *
# Line 308 | Line 344 | public class ForkJoinPool extends Abstra
344       *
345       * Style notes: There are lots of inline assignments (of form
346       * "while ((local = field) != 0)") which are usually the simplest
347 <     * way to ensure read orderings. Also several occurrences of the
348 <     * unusual "do {} while(!cas...)" which is the simplest way to
349 <     * force an update of a CAS'ed variable. There are also a few
350 <     * other coding oddities that help some methods perform reasonably
351 <     * even when interpreted (not compiled).
347 >     * way to ensure the required read orderings (which are sometimes
348 >     * critical). Also several occurrences of the unusual "do {}
349 >     * while(!cas...)" which is the simplest way to force an update of
350 >     * a CAS'ed variable. There are also other coding oddities that
351 >     * help some methods perform reasonably even when interpreted (not
352 >     * compiled), at the expense of some messy constructions that
353 >     * reduce byte code counts.
354       *
355       * The order of declarations in this file is: (1) statics (2)
356       * fields (along with constants used when unpacking some of them)
# Line 380 | Line 418 | public class ForkJoinPool extends Abstra
418          new AtomicInteger();
419  
420      /**
421 <     * Absolute bound for parallelism level. Twice this number must
422 <     * fit into a 16bit field to enable word-packing for some counts.
421 >     * The time to block in a join (see awaitJoin) before checking if
422 >     * a new worker should be (re)started to maintain parallelism
423 >     * level. The value should be short enough to maintain global
424 >     * responsiveness and progress but long enough to avoid
425 >     * counterproductive firings during GC stalls or unrelated system
426 >     * activity, and to not bog down systems with continual re-firings
427 >     * on GCs or legitimately long waits.
428 >     */
429 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
430 >
431 >    /**
432 >     * The wakeup interval (in nanoseconds) for the oldest worker
433 >     * worker waiting for an event invokes tryShutdownUnusedWorker to shrink
434 >     * the number of workers.  The exact value does not matter too
435 >     * much, but should be long enough to slowly release resources
436 >     * during long periods without use without disrupting normal use.
437       */
438 <    private static final int MAX_THREADS = 0x7fff;
438 >    private static final long SHRINK_RATE_NANOS =
439 >        30L * 1000L * 1000L * 1000L; // 2 per minute
440 >
441 >    /**
442 >     * Absolute bound for parallelism level. Twice this number plus
443 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
444 >     * word-packing for some counts and indices.
445 >     */
446 >    private static final int MAX_WORKERS   = 0x7fff;
447  
448      /**
449       * Array holding all worker threads in the pool.  Array size must
# Line 423 | Line 483 | public class ForkJoinPool extends Abstra
483      private volatile long stealCount;
484  
485      /**
486 <     * Encoded record of top of treiber stack of threads waiting for
486 >     * Encoded record of top of Treiber stack of threads waiting for
487       * events. The top 32 bits contain the count being waited for. The
488 <     * bottom word contains one plus the pool index of waiting worker
489 <     * thread.
488 >     * bottom 16 bits contains one plus the pool index of waiting
489 >     * worker thread. (Bits 16-31 are unused.)
490       */
491      private volatile long eventWaiters;
492  
493      private static final int  EVENT_COUNT_SHIFT = 32;
494 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
494 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
495  
496      /**
497       * A counter for events that may wake up worker threads:
498       *   - Submission of a new task to the pool
499       *   - A worker pushing a task on an empty queue
500 <     *   - termination and reconfiguration
500 >     *   - termination
501       */
502      private volatile int eventCount;
503  
504      /**
505 +     * Encoded record of top of Treiber stack of spare threads waiting
506 +     * for resumption. The top 16 bits contain an arbitrary count to
507 +     * avoid ABA effects. The bottom 16bits contains one plus the pool
508 +     * index of waiting worker thread.
509 +     */
510 +    private volatile int spareWaiters;
511 +
512 +    private static final int SPARE_COUNT_SHIFT = 16;
513 +    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
514 +
515 +    /**
516       * Lifecycle control. The low word contains the number of workers
517       * that are (probably) executing tasks. This value is atomically
518       * incremented before a worker gets a task to run, and decremented
# Line 452 | Line 523 | public class ForkJoinPool extends Abstra
523       * These are bundled together to ensure consistent read for
524       * termination checks (i.e., that runLevel is at least SHUTDOWN
525       * and active threads is zero).
526 +     *
527 +     * Notes: Most direct CASes are dependent on these bitfield
528 +     * positions.  Also, this field is non-private to enable direct
529 +     * performance-sensitive CASes in ForkJoinWorkerThread.
530       */
531 <    private volatile int runState;
531 >    volatile int runState;
532  
533      // Note: The order among run level values matters.
534      private static final int RUNLEVEL_SHIFT     = 16;
# Line 461 | Line 536 | public class ForkJoinPool extends Abstra
536      private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
537      private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
538      private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
464    private static final int ONE_ACTIVE         = 1; // active update delta
539  
540      /**
541       * Holds number of total (i.e., created and not yet terminated)
# Line 470 | Line 544 | public class ForkJoinPool extends Abstra
544       * making decisions about creating and suspending spare
545       * threads. Updated only by CAS. Note that adding a new worker
546       * requires incrementing both counts, since workers start off in
547 <     * running state.  This field is also used for memory-fencing
474 <     * configuration parameters.
547 >     * running state.
548       */
549      private volatile int workerCounts;
550  
# Line 503 | Line 576 | public class ForkJoinPool extends Abstra
576       */
577      private final int poolNumber;
578  
579 <    // utilities for updating fields
579 >    // Utilities for CASing fields. Note that most of these
580 >    // are usually manually inlined by callers
581  
582      /**
583 <     * Increments running count.  Also used by ForkJoinTask.
583 >     * Increments running count part of workerCounts
584       */
585      final void incrementRunningCount() {
586          int c;
587          do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
588 <                                               c = workerCounts,
588 >                                               c = workerCounts,
589                                                 c + ONE_RUNNING));
590      }
591 <    
591 >
592      /**
593       * Tries to decrement running count unless already zero
594       */
# Line 527 | Line 601 | public class ForkJoinPool extends Abstra
601      }
602  
603      /**
604 <     * Tries incrementing active count; fails on contention.
605 <     * Called by workers before executing tasks.
604 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
605 >     * (rarely) necessary when other count updates lag.
606       *
607 <     * @return true on success
607 >     * @param dr -- either zero or ONE_RUNNING
608 >     * @param dt == either zero or ONE_TOTAL
609       */
610 <    final boolean tryIncrementActiveCount() {
611 <        int c;
612 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
613 <                                        c = runState, c + ONE_ACTIVE);
610 >    private void decrementWorkerCounts(int dr, int dt) {
611 >        for (;;) {
612 >            int wc = workerCounts;
613 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
614 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
615 >                if ((runState & TERMINATED) != 0)
616 >                    return; // lagging termination on a backout
617 >                Thread.yield();
618 >            }
619 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
620 >                                         wc, wc - (dr + dt)))
621 >                return;
622 >        }
623      }
624  
625      /**
# Line 545 | Line 629 | public class ForkJoinPool extends Abstra
629      final boolean tryDecrementActiveCount() {
630          int c;
631          return UNSAFE.compareAndSwapInt(this, runStateOffset,
632 <                                        c = runState, c - ONE_ACTIVE);
632 >                                        c = runState, c - 1);
633      }
634  
635      /**
# Line 574 | Line 658 | public class ForkJoinPool extends Abstra
658          lock.lock();
659          try {
660              ForkJoinWorkerThread[] ws = workers;
661 <            int nws = ws.length;
662 <            if (k < 0 || k >= nws || ws[k] != null) {
663 <                for (k = 0; k < nws && ws[k] != null; ++k)
661 >            int n = ws.length;
662 >            if (k < 0 || k >= n || ws[k] != null) {
663 >                for (k = 0; k < n && ws[k] != null; ++k)
664                      ;
665 <                if (k == nws)
666 <                    ws = Arrays.copyOf(ws, nws << 1);
665 >                if (k == n)
666 >                    ws = Arrays.copyOf(ws, n << 1);
667              }
668              ws[k] = w;
669              workers = ws; // volatile array write ensures slot visibility
# Line 594 | Line 678 | public class ForkJoinPool extends Abstra
678       */
679      private void forgetWorker(ForkJoinWorkerThread w) {
680          int idx = w.poolIndex;
681 <        // Locking helps method recordWorker avoid unecessary expansion
681 >        // Locking helps method recordWorker avoid unnecessary expansion
682          final ReentrantLock lock = this.workerLock;
683          lock.lock();
684          try {
# Line 606 | Line 690 | public class ForkJoinPool extends Abstra
690          }
691      }
692  
609    // adding and removing workers
610
693      /**
694 <     * Tries to create and add new worker. Assumes that worker counts
695 <     * are already updated to accommodate the worker, so adjusts on
696 <     * failure.
694 >     * Final callback from terminating worker.  Removes record of
695 >     * worker from array, and adjusts counts. If pool is shutting
696 >     * down, tries to complete termination.
697       *
698 <     * @return new worker or null if creation failed
698 >     * @param w the worker
699       */
700 <    private ForkJoinWorkerThread addWorker() {
701 <        ForkJoinWorkerThread w = null;
702 <        try {
703 <            w = factory.newThread(this);
704 <        } finally { // Adjust on either null or exceptional factory return
705 <            if (w == null) {
624 <                onWorkerCreationFailure();
625 <                return null;
626 <            }
627 <        }
628 <        w.start(recordWorker(w), ueh);
629 <        return w;
700 >    final void workerTerminated(ForkJoinWorkerThread w) {
701 >        forgetWorker(w);
702 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
703 >        while (w.stealCount != 0) // collect final count
704 >            tryAccumulateStealCount(w);
705 >        tryTerminate(false);
706      }
707  
708 +    // Waiting for and signalling events
709 +
710      /**
711 <     * Adjusts counts upon failure to create worker
711 >     * Releases workers blocked on a count not equal to current count.
712 >     * Normally called after precheck that eventWaiters isn't zero to
713 >     * avoid wasted array checks. Gives up upon a change in count or
714 >     * upon releasing two workers, letting others take over.
715       */
716 <    private void onWorkerCreationFailure() {
717 <        for (;;) {
718 <            int wc = workerCounts;
719 <            if ((wc >>> TOTAL_COUNT_SHIFT) > 0 &&
720 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
721 <                                         wc, wc - (ONE_RUNNING|ONE_TOTAL)))
716 >    private void releaseEventWaiters() {
717 >        ForkJoinWorkerThread[] ws = workers;
718 >        int n = ws.length;
719 >        long h = eventWaiters;
720 >        int ec = eventCount;
721 >        boolean releasedOne = false;
722 >        ForkJoinWorkerThread w; int id;
723 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
724 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
725 >               id < n && (w = ws[id]) != null) {
726 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
727 >                                          h,  w.nextWaiter)) {
728 >                LockSupport.unpark(w);
729 >                if (releasedOne) // exit on second release
730 >                    break;
731 >                releasedOne = true;
732 >            }
733 >            if (eventCount != ec)
734                  break;
735 +            h = eventWaiters;
736          }
643        tryTerminate(false); // in case of failure during shutdown
737      }
738  
739      /**
740 <     * Create enough total workers to establish target parallelism,
741 <     * giving up if terminating or addWorker fails
740 >     * Tries to advance eventCount and releases waiters. Called only
741 >     * from workers.
742       */
743 <    private void ensureEnoughTotalWorkers() {
744 <        int wc;
745 <        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
746 <               runState < TERMINATING) {
747 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
655 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
656 <                 addWorker() == null))
657 <                break;
658 <        }
743 >    final void signalWork() {
744 >        int c; // try to increment event count -- CAS failure OK
745 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
746 >        if (eventWaiters != 0L)
747 >            releaseEventWaiters();
748      }
749  
750      /**
751 <     * Final callback from terminating worker.  Removes record of
752 <     * worker from array, and adjusts counts. If pool is shutting
664 <     * down, tries to complete terminatation, else possibly replaces
665 <     * the worker.
751 >     * Adds the given worker to event queue and blocks until
752 >     * terminating or event count advances from the given value
753       *
754 <     * @param w the worker
754 >     * @param w the calling worker thread
755 >     * @param ec the count
756       */
757 <    final void workerTerminated(ForkJoinWorkerThread w) {
758 <        if (w.active) { // force inactive
759 <            w.active = false;
760 <            do {} while (!tryDecrementActiveCount());
761 <        }
762 <        forgetWorker(w);
763 <
764 <        // Decrement total count, and if was running, running count
765 <        // Spin (waiting for other updates) if either would be negative
766 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
679 <        int unit = ONE_TOTAL + nr;
680 <        for (;;) {
681 <            int wc = workerCounts;
682 <            int rc = wc & RUNNING_COUNT_MASK;
683 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
684 <                Thread.yield(); // back off if waiting for other updates
685 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
686 <                                              wc, wc - unit))
757 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
758 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
759 >        long h;
760 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
761 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
762 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
763 >               eventCount == ec) {
764 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765 >                                          w.nextWaiter = h, nh)) {
766 >                awaitEvent(w, ec);
767                  break;
768 +            }
769          }
689
690        accumulateStealCount(w); // collect final count
691        if (!tryTerminate(false))
692            ensureEnoughTotalWorkers();
770      }
771  
695    // Waiting for and signalling events
696
772      /**
773 <     * Releases workers blocked on a count not equal to current count.
773 >     * Blocks the given worker (that has already been entered as an
774 >     * event waiter) until terminating or event count advances from
775 >     * the given value. The oldest (first) waiter uses a timed wait to
776 >     * occasionally one-by-one shrink the number of workers (to a
777 >     * minimum of one) if the pool has not been used for extended
778 >     * periods.
779 >     *
780 >     * @param w the calling worker thread
781 >     * @param ec the count
782       */
783 <    private void releaseWaiters() {
784 <        long top;
785 <        int id;
786 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
787 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
788 <            ForkJoinWorkerThread[] ws = workers;
789 <            ForkJoinWorkerThread w;
790 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
791 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
792 <                                          top, w.nextWaiter))
793 <                LockSupport.unpark(w);
783 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
784 >        while (eventCount == ec) {
785 >            if (tryAccumulateStealCount(w)) { // transfer while idle
786 >                boolean untimed = (w.nextWaiter != 0L ||
787 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
788 >                long startTime = untimed? 0 : System.nanoTime();
789 >                Thread.interrupted();         // clear/ignore interrupt
790 >                if (eventCount != ec || w.runState != 0 ||
791 >                    runState >= TERMINATING)  // recheck after clear
792 >                    break;
793 >                if (untimed)
794 >                    LockSupport.park(w);
795 >                else {
796 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
797 >                    if (eventCount != ec || w.runState != 0 ||
798 >                        runState >= TERMINATING)
799 >                        break;
800 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
801 >                        tryShutdownUnusedWorker(ec);
802 >                }
803 >            }
804          }
805      }
806  
807 +    // Maintaining parallelism
808 +
809      /**
810 <     * Ensures eventCount on exit is different (mod 2^32) than on
716 <     * entry and wakes up all waiters
810 >     * Pushes worker onto the spare stack
811       */
812 <    private void signalEvent() {
813 <        int c;
814 <        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
815 <                                               c = eventCount, c+1));
722 <        releaseWaiters();
812 >    final void pushSpare(ForkJoinWorkerThread w) {
813 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
814 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
815 >                                               w.nextSpare = spareWaiters,ns));
816      }
817  
818      /**
819 <     * Advances eventCount and releases waiters until interference by
820 <     * other releasing threads is detected.
819 >     * Tries (once) to resume a spare if the number of running
820 >     * threads is less than target.
821       */
822 <    final void signalWork() {
823 <        // EventCount CAS failures are OK -- any change in count suffices.
824 <        int ec;
825 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
826 <        outer:for (;;) {
827 <            long top = eventWaiters;
828 <            ec = eventCount;
829 <            for (;;) {
830 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
831 <                int id = (int)(top & WAITER_INDEX_MASK);
832 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
833 <                    return;
834 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
835 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
836 <                                               top, top = w.nextWaiter))
837 <                    continue outer;      // possibly stale; reread
822 >    private void tryResumeSpare() {
823 >        int sw, id;
824 >        ForkJoinWorkerThread[] ws = workers;
825 >        int n = ws.length;
826 >        ForkJoinWorkerThread w;
827 >        if ((sw = spareWaiters) != 0 &&
828 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
829 >            id < n && (w = ws[id]) != null &&
830 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
831 >            spareWaiters == sw &&
832 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
833 >                                     sw, w.nextSpare)) {
834 >            int c; // increment running count before resume
835 >            do {} while(!UNSAFE.compareAndSwapInt
836 >                        (this, workerCountsOffset,
837 >                         c = workerCounts, c + ONE_RUNNING));
838 >            if (w.tryUnsuspend())
839                  LockSupport.unpark(w);
840 <                if (top != eventWaiters) // let someone else take over
841 <                    return;
748 <            }
840 >            else   // back out if w was shutdown
841 >                decrementWorkerCounts(ONE_RUNNING, 0);
842          }
843      }
844  
845      /**
846 <     * If worker is inactive, blocks until terminating or event count
847 <     * advances from last value held by worker; in any case helps
848 <     * release others.
849 <     *
850 <     * @param w the calling worker thread
846 >     * Tries to increase the number of running workers if below target
847 >     * parallelism: If a spare exists tries to resume it via
848 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
849 >     * existing workers are busy, adds a new worker. In all cases also
850 >     * helps wake up releasable workers waiting for work.
851       */
852 <    private void eventSync(ForkJoinWorkerThread w) {
853 <        if (!w.active) {
854 <            int prev = w.lastEventCount;
855 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
856 <                            ((long)(w.poolIndex + 1)));
857 <            long top;
858 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
859 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
860 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
861 <                   eventCount == prev) {
862 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
863 <                                              w.nextWaiter = top, nextTop)) {
864 <                    accumulateStealCount(w); // transfer steals while idle
865 <                    Thread.interrupted();    // clear/ignore interrupt
866 <                    while (eventCount == prev)
867 <                        w.doPark();
852 >    private void helpMaintainParallelism() {
853 >        int pc = parallelism;
854 >        int wc, rs, tc;
855 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
856 >               (rs = runState) < TERMINATING) {
857 >            if (spareWaiters != 0)
858 >                tryResumeSpare();
859 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
860 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
861 >                break;   // enough total
862 >            else if (runState == rs && workerCounts == wc &&
863 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
864 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
865 >                ForkJoinWorkerThread w = null;
866 >                try {
867 >                    w = factory.newThread(this);
868 >                } finally { // adjust on null or exceptional factory return
869 >                    if (w == null) {
870 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
871 >                        tryTerminate(false); // handle failure during shutdown
872 >                    }
873 >                }
874 >                if (w == null)
875                      break;
876 +                w.start(recordWorker(w), ueh);
877 +                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
878 +                    int c; // advance event count
879 +                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
880 +                                             c = eventCount, c+1);
881 +                    break; // add at most one unless total below target
882                  }
883              }
778            w.lastEventCount = eventCount;
884          }
885 <        releaseWaiters();
885 >        if (eventWaiters != 0L)
886 >            releaseEventWaiters();
887 >    }
888 >
889 >    /**
890 >     * Callback from the oldest waiter in awaitEvent waking up after a
891 >     * period of non-use. If all workers are idle, tries (once) to
892 >     * shutdown an event waiter or a spare, if one exists. Note that
893 >     * we don't need CAS or locks here because the method is called
894 >     * only from one thread occasionally waking (and even misfires are
895 >     * OK). Note that until the shutdown worker fully terminates,
896 >     * workerCounts will overestimate total count, which is tolerable.
897 >     *
898 >     * @param ec the event count waited on by caller (to abort
899 >     * attempt if count has since changed).
900 >     */
901 >    private void tryShutdownUnusedWorker(int ec) {
902 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
903 >            ForkJoinWorkerThread[] ws = workers;
904 >            int n = ws.length;
905 >            ForkJoinWorkerThread w = null;
906 >            boolean shutdown = false;
907 >            int sw;
908 >            long h;
909 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
910 >                int id = (sw & SPARE_ID_MASK) - 1;
911 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
912 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
913 >                                             sw, w.nextSpare))
914 >                    shutdown = true;
915 >            }
916 >            else if ((h = eventWaiters) != 0L) {
917 >                long nh;
918 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
919 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
920 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
921 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
922 >                    shutdown = true;
923 >            }
924 >            if (w != null && shutdown) {
925 >                w.shutdown();
926 >                LockSupport.unpark(w);
927 >            }
928 >        }
929 >        releaseEventWaiters(); // in case of interference
930      }
931  
932      /**
933       * Callback from workers invoked upon each top-level action (i.e.,
934 <     * stealing a task or taking a submission and running
935 <     * it). Performs one or both of the following:
934 >     * stealing a task or taking a submission and running it).
935 >     * Performs one or more of the following:
936       *
937 <     * * If the worker cannot find work, updates its active status to
938 <     * inactive and updates activeCount unless there is contention, in
939 <     * which case it may try again (either in this or a subsequent
940 <     * call).  Additionally, awaits the next task event and/or helps
941 <     * wake up other releasable waiters.
942 <     *
943 <     * * If there are too many running threads, suspends this worker
944 <     * (first forcing inactivation if necessary).  If it is not
945 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
946 <     * -- killed while suspended within suspendAsSpare. Otherwise,
947 <     * upon resume it rechecks to make sure that it is still needed.
937 >     * 1. If the worker is active and either did not run a task
938 >     *    or there are too many workers, try to set its active status
939 >     *    to inactive and update activeCount. On contention, we may
940 >     *    try again in this or a subsequent call.
941 >     *
942 >     * 2. If not enough total workers, help create some.
943 >     *
944 >     * 3. If there are too many running workers, suspend this worker
945 >     *    (first forcing inactive if necessary).  If it is not needed,
946 >     *    it may be shutdown while suspended (via
947 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
948 >     *    rechecks running thread count and need for event sync.
949 >     *
950 >     * 4. If worker did not run a task, await the next task event via
951 >     *    eventSync if necessary (first forcing inactivation), upon
952 >     *    which the worker may be shutdown via
953 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
954 >     *    existing event waiters that are now releasable,
955       *
956       * @param w the worker
957 <     * @param worked false if the worker scanned for work but didn't
802 <     * find any (in which case it may block waiting for work).
957 >     * @param ran true if worker ran a task since last call to this method
958       */
959 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
959 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
960 >        int wec = w.lastEventCount;
961          boolean active = w.active;
962 <        boolean inactivate = !worked & active;
963 <        for (;;) {
964 <            if (inactivate) {
965 <                int rs = runState;
966 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
967 <                                             rs, rs - ONE_ACTIVE))
968 <                    inactivate = active = w.active = false;
813 <            }
962 >        boolean inactivate = false;
963 >        int pc = parallelism;
964 >        int rs;
965 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
966 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
967 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
968 >                inactivate = active = w.active = false;
969              int wc = workerCounts;
970 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
971 <                if (!worked)
972 <                    eventSync(w);
973 <                return;
970 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
971 >                if (!(inactivate |= active) && // must inactivate to suspend
972 >                    workerCounts == wc &&      // try to suspend as spare
973 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
974 >                                             wc, wc - ONE_RUNNING))
975 >                    w.suspendAsSpare();
976              }
977 <            if (!(inactivate |= active) &&  // must inactivate to suspend
978 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
979 <                                         wc, wc - ONE_RUNNING) &&
980 <                !w.suspendAsSpare())        // false if trimmed
981 <                return;
977 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
978 >                helpMaintainParallelism();     // not enough workers
979 >            else if (!ran) {
980 >                long h = eventWaiters;
981 >                int ec = eventCount;
982 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
983 >                    releaseEventWaiters();     // release others before waiting
984 >                else if (ec != wec) {
985 >                    w.lastEventCount = ec;     // no need to wait
986 >                    break;
987 >                }
988 >                else if (!(inactivate |= active))
989 >                    eventSync(w, wec);         // must inactivate before sync
990 >            }
991 >            else
992 >                break;
993          }
994      }
995  
996      /**
997 <     * Tries to decrement running count, and if so, possibly creates
998 <     * or resumes compensating threads before blocking on task joinMe.
831 <     * This code is sprawled out with manual inlining to evade some
832 <     * JIT oddities.
997 >     * Helps and/or blocks awaiting join of the given task.
998 >     * See above for explanation.
999       *
1000       * @param joinMe the task to join
1001 <     * @return task status on exit
1001 >     * @param worker the current worker thread
1002       */
1003 <    final int tryAwaitJoin(ForkJoinTask<?> joinMe) {
1004 <        int cw = workerCounts; // read now to spoil CAS if counts change as ...
1005 <        releaseWaiters();      // ... a byproduct of releaseWaiters
1006 <        int stat = joinMe.status;
1007 <        if (stat >= 0 && // inline variant of tryDecrementRunningCount
1008 <            (cw & RUNNING_COUNT_MASK) > 0 &&
1009 <            UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1010 <                                     cw, cw - ONE_RUNNING)) {
1011 <            int pc = parallelism;
1012 <            int scans = 0;  // to require confirming passes to add threads
1013 <            outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
1014 <                if ((stat = joinMe.status) < 0)
1015 <                    break;
1016 <                ForkJoinWorkerThread spare = null;
1017 <                ForkJoinWorkerThread[] ws = workers;
1018 <                int nws = ws.length;
1019 <                for (int i = 0; i < nws; ++i) {
1020 <                    ForkJoinWorkerThread w = ws[i];
1021 <                    if (w != null && w.isSuspended()) {
1022 <                        spare = w;
1023 <                        break;
1024 <                    }
1025 <                }
1026 <                if ((stat = joinMe.status) < 0) // recheck to narrow race
1027 <                    break;
1028 <                int wc = workerCounts;
1029 <                int rc = wc & RUNNING_COUNT_MASK;
864 <                if (rc >= pc)
865 <                    break;
866 <                if (spare != null) {
867 <                    if (spare.tryUnsuspend()) {
868 <                        int c; // inline incrementRunningCount
869 <                        do {} while (!UNSAFE.compareAndSwapInt
870 <                                     (this, workerCountsOffset,
871 <                                      c = workerCounts, c + ONE_RUNNING));
872 <                        LockSupport.unpark(spare);
873 <                        break;
874 <                    }
875 <                    continue;
876 <                }
877 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
878 <                int sc = tc - pc;
879 <                if (rc > 0) {
880 <                    int p = pc;
881 <                    int s = sc;
882 <                    while (s-- >= 0) { // try keeping 3/4 live
883 <                        if (rc > (p -= (p >>> 2) + 1))
884 <                            break outer;
885 <                    }
886 <                }
887 <                if (scans++ > sc && tc < MAX_THREADS &&
888 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
889 <                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
890 <                    addWorker();
891 <                    break;
892 <                }
1003 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1004 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1005 >        while (joinMe.status >= 0) {
1006 >            int wc;
1007 >            worker.helpJoinTask(joinMe);
1008 >            if (joinMe.status < 0)
1009 >                break;
1010 >            else if (retries > 0)
1011 >                --retries;
1012 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1013 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1014 >                                              wc, wc - ONE_RUNNING)) {
1015 >                int stat, c; long h;
1016 >                while ((stat = joinMe.status) >= 0 &&
1017 >                       (h = eventWaiters) != 0L && // help release others
1018 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1019 >                    releaseEventWaiters();
1020 >                if (stat >= 0 &&
1021 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1022 >                     (stat =
1023 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1024 >                    helpMaintainParallelism(); // timeout or no running workers
1025 >                do {} while (!UNSAFE.compareAndSwapInt
1026 >                             (this, workerCountsOffset,
1027 >                              c = workerCounts, c + ONE_RUNNING));
1028 >                if (stat < 0)
1029 >                    break;   // else restart
1030              }
894            if (stat >= 0)
895                stat = joinMe.internalAwaitDone();
896            int c; // inline incrementRunningCount
897            do {} while (!UNSAFE.compareAndSwapInt
898                         (this, workerCountsOffset,
899                          c = workerCounts, c + ONE_RUNNING));
1031          }
901        return stat;
1032      }
1033  
1034      /**
1035 <     * Same idea as (and mostly pasted from) tryAwaitJoin, but
906 <     * self-contained
1035 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1036       */
1037      final void awaitBlocker(ManagedBlocker blocker)
1038          throws InterruptedException {
1039 <        for (;;) {
911 <            if (blocker.isReleasable())
912 <                return;
913 <            int cw = workerCounts;
914 <            releaseWaiters();
915 <            if ((cw & RUNNING_COUNT_MASK) > 0 &&
916 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
917 <                                         cw, cw - ONE_RUNNING))
918 <                break;
919 <        }
920 <        boolean done = false;
921 <        int pc = parallelism;
922 <        int scans = 0;
923 <        outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
924 <            if (done = blocker.isReleasable())
925 <                break;
926 <            ForkJoinWorkerThread spare = null;
927 <            ForkJoinWorkerThread[] ws = workers;
928 <            int nws = ws.length;
929 <            for (int i = 0; i < nws; ++i) {
930 <                ForkJoinWorkerThread w = ws[i];
931 <                if (w != null && w.isSuspended()) {
932 <                    spare = w;
933 <                    break;
934 <                }
935 <            }
936 <            if (done = blocker.isReleasable())
937 <                break;
1039 >        while (!blocker.isReleasable()) {
1040              int wc = workerCounts;
1041 <            int rc = wc & RUNNING_COUNT_MASK;
1042 <            if (rc >= pc)
1043 <                break;
1044 <            if (spare != null) {
1045 <                if (spare.tryUnsuspend()) {
1041 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1042 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1043 >                                         wc, wc - ONE_RUNNING)) {
1044 >                try {
1045 >                    while (!blocker.isReleasable()) {
1046 >                        long h = eventWaiters;
1047 >                        if (h != 0L &&
1048 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1049 >                            releaseEventWaiters();
1050 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1051 >                                 runState < TERMINATING)
1052 >                            helpMaintainParallelism();
1053 >                        else if (blocker.block())
1054 >                            break;
1055 >                    }
1056 >                } finally {
1057                      int c;
1058                      do {} while (!UNSAFE.compareAndSwapInt
1059                                   (this, workerCountsOffset,
1060                                    c = workerCounts, c + ONE_RUNNING));
948                    LockSupport.unpark(spare);
949                    break;
950                }
951                continue;
952            }
953            int tc = wc >>> TOTAL_COUNT_SHIFT;
954            int sc = tc - pc;
955            if (rc > 0) {
956                int p = pc;
957                int s = sc;
958                while (s-- >= 0) {
959                    if (rc > (p -= (p >>> 2) + 1))
960                        break outer;
1061                  }
962            }
963            if (scans++ > sc && tc < MAX_THREADS &&
964                UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
965                                         wc + (ONE_RUNNING|ONE_TOTAL))) {
966                addWorker();
1062                  break;
1063              }
1064          }
1065 <        try {
971 <            if (!done)
972 <                do {} while (!blocker.isReleasable() &&
973 <                             !blocker.block());
974 <        } finally {
975 <            int c;
976 <            do {} while (!UNSAFE.compareAndSwapInt
977 <                         (this, workerCountsOffset,
978 <                          c = workerCounts, c + ONE_RUNNING));
979 <        }
980 <    }  
1065 >    }
1066  
1067      /**
1068       * Possibly initiates and/or completes termination.
# Line 1007 | Line 1092 | public class ForkJoinPool extends Abstra
1092  
1093      /**
1094       * Actions on transition to TERMINATING
1095 +     *
1096 +     * Runs up to four passes through workers: (0) shutting down each
1097 +     * (without waking up if parked) to quickly spread notifications
1098 +     * without unnecessary bouncing around event queues etc (1) wake
1099 +     * up and help cancel tasks (2) interrupt (3) mop up races with
1100 +     * interrupted workers
1101       */
1102      private void startTerminating() {
1103 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1104 <            cancelSubmissions();
1105 <            shutdownWorkers();
1106 <            cancelWorkerTasks();
1107 <            signalEvent();
1108 <            interruptWorkers();
1103 >        cancelSubmissions();
1104 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1105 >            int c; // advance event count
1106 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1107 >                                     c = eventCount, c+1);
1108 >            eventWaiters = 0L; // clobber lists
1109 >            spareWaiters = 0;
1110 >            ForkJoinWorkerThread[] ws = workers;
1111 >            int n = ws.length;
1112 >            for (int i = 0; i < n; ++i) {
1113 >                ForkJoinWorkerThread w = ws[i];
1114 >                if (w != null) {
1115 >                    w.shutdown();
1116 >                    if (passes > 0 && !w.isTerminated()) {
1117 >                        w.cancelTasks();
1118 >                        LockSupport.unpark(w);
1119 >                        if (passes > 1) {
1120 >                            try {
1121 >                                w.interrupt();
1122 >                            } catch (SecurityException ignore) {
1123 >                            }
1124 >                        }
1125 >                    }
1126 >                }
1127 >            }
1128          }
1129      }
1130  
# Line 1031 | Line 1141 | public class ForkJoinPool extends Abstra
1141          }
1142      }
1143  
1034    /**
1035     * Sets all worker run states to at least shutdown,
1036     * also resuming suspended workers
1037     */
1038    private void shutdownWorkers() {
1039        ForkJoinWorkerThread[] ws = workers;
1040        int nws = ws.length;
1041        for (int i = 0; i < nws; ++i) {
1042            ForkJoinWorkerThread w = ws[i];
1043            if (w != null)
1044                w.shutdown();
1045        }
1046    }
1047
1048    /**
1049     * Clears out and cancels all locally queued tasks
1050     */
1051    private void cancelWorkerTasks() {
1052        ForkJoinWorkerThread[] ws = workers;
1053        int nws = ws.length;
1054        for (int i = 0; i < nws; ++i) {
1055            ForkJoinWorkerThread w = ws[i];
1056            if (w != null)
1057                w.cancelTasks();
1058        }
1059    }
1060
1061    /**
1062     * Unsticks all workers blocked on joins etc
1063     */
1064    private void interruptWorkers() {
1065        ForkJoinWorkerThread[] ws = workers;
1066        int nws = ws.length;
1067        for (int i = 0; i < nws; ++i) {
1068            ForkJoinWorkerThread w = ws[i];
1069            if (w != null && !w.isTerminated()) {
1070                try {
1071                    w.interrupt();
1072                } catch (SecurityException ignore) {
1073                }
1074            }
1075        }
1076    }
1077
1144      // misc support for ForkJoinWorkerThread
1145  
1146      /**
# Line 1085 | Line 1151 | public class ForkJoinPool extends Abstra
1151      }
1152  
1153      /**
1154 <     * Accumulates steal count from a worker, clearing
1155 <     * the worker's value
1154 >     * Tries to accumulates steal count from a worker, clearing
1155 >     * the worker's value.
1156 >     *
1157 >     * @return true if worker steal count now zero
1158       */
1159 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1159 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1160          int sc = w.stealCount;
1161 <        if (sc != 0) {
1162 <            long c;
1163 <            w.stealCount = 0;
1164 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1165 <                                                    c = stealCount, c + sc));
1161 >        long c = stealCount;
1162 >        // CAS even if zero, for fence effects
1163 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1164 >            if (sc != 0)
1165 >                w.stealCount = 0;
1166 >            return true;
1167          }
1168 +        return sc == 0;
1169      }
1170  
1171      /**
# Line 1103 | Line 1173 | public class ForkJoinPool extends Abstra
1173       * active thread.
1174       */
1175      final int idlePerActive() {
1176 <        int pc = parallelism; // use targeted parallelism, not rc
1177 <        int ac = runState;    // no mask -- artifically boosts during shutdown
1176 >        int pc = parallelism; // use parallelism, not rc
1177 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1178          // Use exact results for small values, saturate past 4
1179          return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1180      }
# Line 1154 | Line 1224 | public class ForkJoinPool extends Abstra
1224       * use {@link java.lang.Runtime#availableProcessors}.
1225       * @param factory the factory for creating new threads. For default value,
1226       * use {@link #defaultForkJoinWorkerThreadFactory}.
1227 <     * @param handler the handler for internal worker threads that
1228 <     * terminate due to unrecoverable errors encountered while executing
1227 >     * @param handler the handler for internal worker threads that
1228 >     * terminate due to unrecoverable errors encountered while executing
1229       * tasks. For default value, use <code>null</code>.
1230 <     * @param asyncMode if true,
1230 >     * @param asyncMode if true,
1231       * establishes local first-in-first-out scheduling mode for forked
1232       * tasks that are never joined. This mode may be more appropriate
1233       * than default locally stack-based mode in applications in which
# Line 1171 | Line 1241 | public class ForkJoinPool extends Abstra
1241       *         because it does not hold {@link
1242       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1243       */
1244 <    public ForkJoinPool(int parallelism,
1244 >    public ForkJoinPool(int parallelism,
1245                          ForkJoinWorkerThreadFactory factory,
1246                          Thread.UncaughtExceptionHandler handler,
1247                          boolean asyncMode) {
1248          checkPermission();
1249          if (factory == null)
1250              throw new NullPointerException();
1251 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1251 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1252              throw new IllegalArgumentException();
1253          this.parallelism = parallelism;
1254          this.factory = factory;
# Line 1197 | Line 1267 | public class ForkJoinPool extends Abstra
1267       * @param pc the initial parallelism level
1268       */
1269      private static int initialArraySizeFor(int pc) {
1270 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1271 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1270 >        // If possible, initially allocate enough space for one spare
1271 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1272 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1273          size |= size >>> 1;
1274          size |= size >>> 2;
1275          size |= size >>> 4;
# Line 1216 | Line 1287 | public class ForkJoinPool extends Abstra
1287              throw new NullPointerException();
1288          if (runState >= SHUTDOWN)
1289              throw new RejectedExecutionException();
1290 <        // Convert submissions to current pool into forks
1291 <        Thread t = Thread.currentThread();
1292 <        ForkJoinWorkerThread w;
1293 <        if ((t instanceof ForkJoinWorkerThread) &&
1223 <            (w = (ForkJoinWorkerThread) t).pool == this)
1224 <            w.pushTask(task);
1225 <        else {
1226 <            submissionQueue.offer(task);
1227 <            signalEvent();
1228 <            ensureEnoughTotalWorkers();
1229 <        }
1290 >        submissionQueue.offer(task);
1291 >        int c; // try to increment event count -- CAS failure OK
1292 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1293 >        helpMaintainParallelism(); // create, start, or resume some workers
1294      }
1295  
1296      /**
1297       * Performs the given task, returning its result upon completion.
1234     * If the caller is already engaged in a fork/join computation in
1235     * the current pool, this method is equivalent in effect to
1236     * {@link ForkJoinTask#invoke}.
1298       *
1299       * @param task the task
1300       * @return the task's result
# Line 1248 | Line 1309 | public class ForkJoinPool extends Abstra
1309  
1310      /**
1311       * Arranges for (asynchronous) execution of the given task.
1251     * If the caller is already engaged in a fork/join computation in
1252     * the current pool, this method is equivalent in effect to
1253     * {@link ForkJoinTask#fork}.
1312       *
1313       * @param task the task
1314       * @throws NullPointerException if the task is null
# Line 1279 | Line 1337 | public class ForkJoinPool extends Abstra
1337  
1338      /**
1339       * Submits a ForkJoinTask for execution.
1282     * If the caller is already engaged in a fork/join computation in
1283     * the current pool, this method is equivalent in effect to
1284     * {@link ForkJoinTask#fork}.
1340       *
1341       * @param task the task to submit
1342       * @return the task
# Line 1473 | Line 1528 | public class ForkJoinPool extends Abstra
1528      public long getQueuedTaskCount() {
1529          long count = 0;
1530          ForkJoinWorkerThread[] ws = workers;
1531 <        int nws = ws.length;
1532 <        for (int i = 0; i < nws; ++i) {
1531 >        int n = ws.length;
1532 >        for (int i = 0; i < n; ++i) {
1533              ForkJoinWorkerThread w = ws[i];
1534              if (w != null)
1535                  count += w.getQueueSize();
# Line 1532 | Line 1587 | public class ForkJoinPool extends Abstra
1587       * @return the number of elements transferred
1588       */
1589      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1590 <        int n = submissionQueue.drainTo(c);
1536 <        ForkJoinWorkerThread[] ws = workers;
1537 <        int nws = ws.length;
1538 <        for (int i = 0; i < nws; ++i) {
1539 <            ForkJoinWorkerThread w = ws[i];
1540 <            if (w != null)
1541 <                n += w.drainTasksTo(c);
1542 <        }
1543 <        return n;
1544 <    }
1545 <
1546 <    /**
1547 <     * Returns count of total parks by existing workers.
1548 <     * Used during development only since not meaningful to users.
1549 <     */
1550 <    private int collectParkCount() {
1551 <        int count = 0;
1590 >        int count = submissionQueue.drainTo(c);
1591          ForkJoinWorkerThread[] ws = workers;
1592 <        int nws = ws.length;
1593 <        for (int i = 0; i < nws; ++i) {
1592 >        int n = ws.length;
1593 >        for (int i = 0; i < n; ++i) {
1594              ForkJoinWorkerThread w = ws[i];
1595              if (w != null)
1596 <                count += w.parkCount;
1596 >                count += w.drainTasksTo(c);
1597          }
1598          return count;
1599      }
# Line 1576 | Line 1615 | public class ForkJoinPool extends Abstra
1615          int pc = parallelism;
1616          int rs = runState;
1617          int ac = rs & ACTIVE_COUNT_MASK;
1579        //        int pk = collectParkCount();
1618          return super.toString() +
1619              "[" + runLevelToString(rs) +
1620              ", parallelism = " + pc +
# Line 1586 | Line 1624 | public class ForkJoinPool extends Abstra
1624              ", steals = " + st +
1625              ", tasks = " + qt +
1626              ", submissions = " + qs +
1589            //            ", parks = " + pk +
1627              "]";
1628      }
1629  
# Line 1693 | Line 1730 | public class ForkJoinPool extends Abstra
1730       * Interface for extending managed parallelism for tasks running
1731       * in {@link ForkJoinPool}s.
1732       *
1733 <     * <p>A {@code ManagedBlocker} provides two methods.
1734 <     * Method {@code isReleasable} must return {@code true} if
1735 <     * blocking is not necessary. Method {@code block} blocks the
1736 <     * current thread if necessary (perhaps internally invoking
1737 <     * {@code isReleasable} before actually blocking).
1733 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1734 >     * {@code isReleasable} must return {@code true} if blocking is
1735 >     * not necessary. Method {@code block} blocks the current thread
1736 >     * if necessary (perhaps internally invoking {@code isReleasable}
1737 >     * before actually blocking). The unusual methods in this API
1738 >     * accommodate synchronizers that may, but don't usually, block
1739 >     * for long periods. Similarly, they allow more efficient internal
1740 >     * handling of cases in which additional workers may be, but
1741 >     * usually are not, needed to ensure sufficient parallelism.
1742 >     * Toward this end, implementations of method {@code isReleasable}
1743 >     * must be amenable to repeated invocation.
1744       *
1745       * <p>For example, here is a ManagedBlocker based on a
1746       * ReentrantLock:
# Line 1715 | Line 1758 | public class ForkJoinPool extends Abstra
1758       *     return hasLock || (hasLock = lock.tryLock());
1759       *   }
1760       * }}</pre>
1761 +     *
1762 +     * <p>Here is a class that possibly blocks waiting for an
1763 +     * item on a given queue:
1764 +     *  <pre> {@code
1765 +     * class QueueTaker<E> implements ManagedBlocker {
1766 +     *   final BlockingQueue<E> queue;
1767 +     *   volatile E item = null;
1768 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1769 +     *   public boolean block() throws InterruptedException {
1770 +     *     if (item == null)
1771 +     *       item = queue.take();
1772 +     *     return true;
1773 +     *   }
1774 +     *   public boolean isReleasable() {
1775 +     *     return item != null || (item = queue.poll()) != null;
1776 +     *   }
1777 +     *   public E getItem() { // call after pool.managedBlock completes
1778 +     *     return item;
1779 +     *   }
1780 +     * }}</pre>
1781       */
1782      public static interface ManagedBlocker {
1783          /**
# Line 1757 | Line 1820 | public class ForkJoinPool extends Abstra
1820      public static void managedBlock(ManagedBlocker blocker)
1821          throws InterruptedException {
1822          Thread t = Thread.currentThread();
1823 <        if (t instanceof ForkJoinWorkerThread)
1824 <            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1823 >        if (t instanceof ForkJoinWorkerThread) {
1824 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1825 >            w.pool.awaitBlocker(blocker);
1826 >        }
1827          else {
1828              do {} while (!blocker.isReleasable() && !blocker.block());
1829          }
# Line 1789 | Line 1854 | public class ForkJoinPool extends Abstra
1854          objectFieldOffset("eventWaiters",ForkJoinPool.class);
1855      private static final long stealCountOffset =
1856          objectFieldOffset("stealCount",ForkJoinPool.class);
1857 +    private static final long spareWaitersOffset =
1858 +        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1859  
1860      private static long objectFieldOffset(String field, Class<?> klazz) {
1861          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines