ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.1 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.53 by dl, Mon Apr 5 15:52:26 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.ArrayList;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Collections;
15 > import java.util.List;
16 > import java.util.concurrent.locks.LockSupport;
17 > import java.util.concurrent.locks.ReentrantLock;
18 > import java.util.concurrent.atomic.AtomicInteger;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22 < * Host for a group of ForkJoinWorkerThreads.  A ForkJoinPool provides
23 < * the entry point for tasks submitted from non-ForkJoinTasks, as well
24 < * as management and monitoring operations.  Normally a single
25 < * ForkJoinPool is used for a large number of submitted
20 < * tasks. Otherwise, use would not usually outweigh the construction
21 < * and bookkeeping overhead of creating a large set of threads.
22 < *
23 < * <p>ForkJoinPools differ from other kinds of Executor mainly in that
24 < * they provide <em>work-stealing</em>: all threads in the pool
25 < * attempt to find and execute subtasks created by other active tasks
26 < * (eventually blocking if none exist). This makes them efficient when
27 < * most tasks spawn other subtasks (as do most ForkJoinTasks) but
28 < * possibly less so otherwise. It is however fine to combine execution
29 < * of some plain Runnable- or Callable- based activities with that of
30 < * ForkJoinTasks.
22 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 > * A {@code ForkJoinPool} provides the entry point for submissions
24 > * from non-{@code ForkJoinTask}s, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>A ForkJoinPool may be constructed with a given parallelism level
28 < * (target pool size), which it attempts to maintain by dynamically
29 < * adding, suspending, or resuming threads, even if some tasks have
30 < * blocked waiting to join others. However, no such adjustments are
31 < * performed in the face of blocked IO or other unmanaged
32 < * synchronization. The nested ManagedBlocker interface enables
33 < * extension of the kinds of synchronization accommodated.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
34 > * execution of some plain {@code Runnable}- or {@code Callable}-
35 > * based activities along with {@code ForkJoinTask}s. When setting
36 > * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 > * also be appropriate for use with fine-grained tasks of any form
38 > * that are never joined. Otherwise, other {@code ExecutorService}
39 > * implementations are typically more appropriate choices.
40   *
41 < * <p>The target parallelism level may also be set dynamically. You
42 < * can limit the number of threads dynamically constructed using
43 < * method <tt>setMaximumPoolSize</tt> and/or
44 < * <tt>setMaintainParallelism</tt>.
41 > * <p>A {@code ForkJoinPool} is constructed with a given target
42 > * parallelism level; by default, equal to the number of available
43 > * processors. Unless configured otherwise via {@link
44 > * #setMaintainsParallelism}, the pool attempts to maintain this
45 > * number of active (or available) threads by dynamically adding,
46 > * suspending, or resuming internal worker threads, even if some tasks
47 > * are stalled waiting to join others. However, no such adjustments
48 > * are performed in the face of blocked IO or other unmanaged
49 > * synchronization. The nested {@link ManagedBlocker} interface
50 > * enables extension of the kinds of synchronization accommodated.
51 > * The target parallelism level may also be changed dynamically
52 > * ({@link #setParallelism}). The total number of threads may be
53 > * limited using method {@link #setMaximumPoolSize}, in which case it
54 > * may become possible for the activities of a pool to stall due to
55 > * the lack of available threads to process new tasks. When the pool
56 > * is executing tasks, these and other configuration setting methods
57 > * may only gradually affect actual pool sizes. It is normally best
58 > * practice to invoke these methods only when the pool is known to be
59 > * quiescent.
60   *
61   * <p>In addition to execution and lifecycle control methods, this
62   * class provides status check methods (for example
63 < * <tt>getStealCount</tt>) that are intended to aid in developing,
63 > * {@link #getStealCount}) that are intended to aid in developing,
64   * tuning, and monitoring fork/join applications. Also, method
65 < * <tt>toString</tt> returns indications of pool state in a convenient
66 < * form for informal monitoring.
65 > * {@link #toString} returns indications of pool state in a
66 > * convenient form for informal monitoring.
67 > *
68 > * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
69 > * used for all parallel task execution in a program or subsystem.
70 > * Otherwise, use would not usually outweigh the construction and
71 > * bookkeeping overhead of creating a large set of threads. For
72 > * example, a common pool could be used for the {@code SortTasks}
73 > * illustrated in {@link RecursiveAction}. Because {@code
74 > * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
75 > * daemon} mode, there is typically no need to explicitly {@link
76 > * #shutdown} such a pool upon program exit.
77 > *
78 > * <pre>
79 > * static final ForkJoinPool mainPool = new ForkJoinPool();
80 > * ...
81 > * public void sort(long[] array) {
82 > *   mainPool.invoke(new SortTask(array, 0, array.length));
83 > * }
84 > * </pre>
85   *
86   * <p><b>Implementation notes</b>: This implementation restricts the
87 < * maximum parallelism to 32767. Attempts to create pools with greater
88 < * than the maximum result in IllegalArgumentExceptions.
87 > * maximum number of running threads to 32767. Attempts to create
88 > * pools with greater than the maximum number result in
89 > * {@code IllegalArgumentException}.
90 > *
91 > * <p>This implementation rejects submitted tasks (that is, by throwing
92 > * {@link RejectedExecutionException}) only when the pool is shut down.
93 > *
94 > * @since 1.7
95 > * @author Doug Lea
96   */
97 < public class ForkJoinPool extends AbstractExecutorService
57 <    implements ExecutorService {
97 > public class ForkJoinPool extends AbstractExecutorService {
98  
99      /*
100 <     * See the extended comments interspersed below for design,
101 <     * rationale, and walkthroughs.
100 >     * Implementation Overview
101 >     *
102 >     * This class provides the central bookkeeping and control for a
103 >     * set of worker threads: Submissions from non-FJ threads enter
104 >     * into a submission queue. Workers take these tasks and typically
105 >     * split them into subtasks that may be stolen by other workers.
106 >     * The main work-stealing mechanics implemented in class
107 >     * ForkJoinWorkerThread give first priority to processing tasks
108 >     * from their own queues (LIFO or FIFO, depending on mode), then
109 >     * to randomized FIFO steals of tasks in other worker queues, and
110 >     * lastly to new submissions. These mechanics do not consider
111 >     * affinities, loads, cache localities, etc, so rarely provide the
112 >     * best possible performance on a given machine, but portably
113 >     * provide good throughput by averaging over these factors.
114 >     * (Further, even if we did try to use such information, we do not
115 >     * usually have a basis for exploiting it. For example, some sets
116 >     * of tasks profit from cache affinities, but others are harmed by
117 >     * cache pollution effects.)
118 >     *
119 >     * The main throughput advantages of work-stealing stem from
120 >     * decentralized control -- workers mostly steal tasks from each
121 >     * other. We do not want to negate this by creating bottlenecks
122 >     * implementing the management responsibilities of this class. So
123 >     * we use a collection of techniques that avoid, reduce, or cope
124 >     * well with contention. These entail several instances of
125 >     * bit-packing into CASable fields to maintain only the minimally
126 >     * required atomicity. To enable such packing, we restrict maximum
127 >     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
128 >     * bit field), which is far in excess of normal operating range.
129 >     * Even though updates to some of these bookkeeping fields do
130 >     * sometimes contend with each other, they don't normally
131 >     * cache-contend with updates to others enough to warrant memory
132 >     * padding or isolation. So they are all held as fields of
133 >     * ForkJoinPool objects.  The main capabilities are as follows:
134 >     *
135 >     * 1. Creating and removing workers. Workers are recorded in the
136 >     * "workers" array. This is an array as opposed to some other data
137 >     * structure to support index-based random steals by workers.
138 >     * Updates to the array recording new workers and unrecording
139 >     * terminated ones are protected from each other by a lock
140 >     * (workerLock) but the array is otherwise concurrently readable,
141 >     * and accessed directly by workers. To simplify index-based
142 >     * operations, the array size is always a power of two, and all
143 >     * readers must tolerate null slots. Currently, all but the first
144 >     * worker thread creation is on-demand, triggered by task
145 >     * submissions, replacement of terminated workers, and/or
146 >     * compensation for blocked workers. However, all other support
147 >     * code is set up to work with other policies.
148 >     *
149 >     * 2. Bookkeeping for dynamically adding and removing workers. We
150 >     * maintain a given level of parallelism (or, if
151 >     * maintainsParallelism is false, at least avoid starvation). When
152 >     * some workers are known to be blocked (on joins or via
153 >     * ManagedBlocker), we may create or resume others to take their
154 >     * place until they unblock (see below). Implementing this
155 >     * requires counts of the number of "running" threads (i.e., those
156 >     * that are neither blocked nor artifically suspended) as well as
157 >     * the total number.  These two values are packed into one field,
158 >     * "workerCounts" because we need accurate snapshots when deciding
159 >     * to create, resume or suspend.  To support these decisions,
160 >     * updates must be prospective (not retrospective).  For example,
161 >     * the running count is decremented before blocking by a thread
162 >     * about to block, but incremented by the thread about to unblock
163 >     * it. (In a few cases, these prospective updates may need to be
164 >     * rolled back, for example when deciding to create a new worker
165 >     * but the thread factory fails or returns null. In these cases,
166 >     * we are no worse off wrt other decisions than we would be
167 >     * otherwise.)  Updates to the workerCounts field sometimes
168 >     * transiently encounter a fair amount of contention when join
169 >     * dependencies are such that many threads block or unblock at
170 >     * about the same time. We alleviate this by sometimes bundling
171 >     * updates (for example blocking one thread on join and resuming a
172 >     * spare cancel each other out), and in most other cases
173 >     * performing an alternative action (like releasing waiters and
174 >     * finding spares; see below) as a more productive form of
175 >     * backoff.
176 >     *
177 >     * 3. Maintaining global run state. The run state of the pool
178 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
179 >     * those in other Executor implementations, as well as a count of
180 >     * "active" workers -- those that are, or soon will be, or
181 >     * recently were executing tasks. The runLevel and active count
182 >     * are packed together in order to correctly trigger shutdown and
183 >     * termination. Without care, active counts can be subject to very
184 >     * high contention.  We substantially reduce this contention by
185 >     * relaxing update rules.  A worker must claim active status
186 >     * prospectively, by activating if it sees that a submitted or
187 >     * stealable task exists (it may find after activating that the
188 >     * task no longer exists). It stays active while processing this
189 >     * task (if it exists) and any other local subtasks it produces,
190 >     * until it cannot find any other tasks. It then tries
191 >     * inactivating (see method preStep), but upon update contention
192 >     * instead scans for more tasks, later retrying inactivation if it
193 >     * doesn't find any.
194 >     *
195 >     * 4. Managing idle workers waiting for tasks. We cannot let
196 >     * workers spin indefinitely scanning for tasks when none are
197 >     * available. On the other hand, we must quickly prod them into
198 >     * action when new tasks are submitted or generated.  We
199 >     * park/unpark these idle workers using an event-count scheme.
200 >     * Field eventCount is incremented upon events that may enable
201 >     * workers that previously could not find a task to now find one:
202 >     * Submission of a new task to the pool, or another worker pushing
203 >     * a task onto a previously empty queue.  (We also use this
204 >     * mechanism for termination and reconfiguration actions that
205 >     * require wakeups of idle workers).  Each worker maintains its
206 >     * last known event count, and blocks when a scan for work did not
207 >     * find a task AND its lastEventCount matches the current
208 >     * eventCount. Waiting idle workers are recorded in a variant of
209 >     * Treiber stack headed by field eventWaiters which, when nonzero,
210 >     * encodes the thread index and count awaited for by the worker
211 >     * thread most recently calling eventSync. This thread in turn has
212 >     * a record (field nextEventWaiter) for the next waiting worker.
213 >     * In addition to allowing simpler decisions about need for
214 >     * wakeup, the event count bits in eventWaiters serve the role of
215 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
216 >     * in task diffusion, workers not otherwise occupied may invoke
217 >     * method releaseWaiters, that removes and signals (unparks)
218 >     * workers not waiting on current count. To minimize task
219 >     * production stalls associate with signalling, any worker pushing
220 >     * a task on an empty queue invokes the weaker method signalWork,
221 >     * that only releases idle workers until it detects interference
222 >     * by other threads trying to release, and lets them take
223 >     * over. The net effect is a tree-like diffusion of signals, where
224 >     * released threads and possibly others) help with unparks.  To
225 >     * further reduce contention effects a bit, failed CASes to
226 >     * increment field eventCount are tolerated without retries.
227 >     * Conceptually they are merged into the same event, which is OK
228 >     * when their only purpose is to enable workers to scan for work.
229 >     *
230 >     * 5. Managing suspension of extra workers. When a worker is about
231 >     * to block waiting for a join (or via ManagedBlockers), we may
232 >     * create a new thread to maintain parallelism level, or at least
233 >     * avoid starvation (see below). Usually, extra threads are needed
234 >     * for only very short periods, yet join dependencies are such
235 >     * that we sometimes need them in bursts. Rather than create new
236 >     * threads each time this happens, we suspend no-longer-needed
237 >     * extra ones as "spares". For most purposes, we don't distinguish
238 >     * "extra" spare threads from normal "core" threads: On each call
239 >     * to preStep (the only point at which we can do this) a worker
240 >     * checks to see if there are now too many running workers, and if
241 >     * so, suspends itself.  Methods preJoin and doBlock look for
242 >     * suspended threads to resume before considering creating a new
243 >     * replacement. We don't need a special data structure to maintain
244 >     * spares; simply scanning the workers array looking for
245 >     * worker.isSuspended() is fine because the calling thread is
246 >     * otherwise not doing anything useful anyway; we are at least as
247 >     * happy if after locating a spare, the caller doesn't actually
248 >     * block because the join is ready before we try to adjust and
249 >     * compensate.  Note that this is intrinsically racy.  One thread
250 >     * may become a spare at about the same time as another is
251 >     * needlessly being created. We counteract this and related slop
252 >     * in part by requiring resumed spares to immediately recheck (in
253 >     * preStep) to see whether they they should re-suspend. The only
254 >     * effective difference between "extra" and "core" threads is that
255 >     * we allow the "extra" ones to time out and die if they are not
256 >     * resumed within a keep-alive interval of a few seconds. This is
257 >     * implemented mainly within ForkJoinWorkerThread, but requires
258 >     * some coordination (isTrimmed() -- meaning killed while
259 >     * suspended) to correctly maintain pool counts.
260 >     *
261 >     * 6. Deciding when to create new workers. The main dynamic
262 >     * control in this class is deciding when to create extra threads,
263 >     * in methods preJoin and doBlock. We always need to create one
264 >     * when the number of running threads becomes zero. But because
265 >     * blocked joins are typically dependent, we don't necessarily
266 >     * need or want one-to-one replacement. Using a one-to-one
267 >     * compensation rule often leads to enough useless overhead
268 >     * creating, suspending, resuming, and/or killing threads to
269 >     * signficantly degrade throughput.  We use a rule reflecting the
270 >     * idea that, the more spare threads you already have, the more
271 >     * evidence you need to create another one; where "evidence" is
272 >     * expressed as the current deficit -- target minus running
273 >     * threads. To reduce flickering and drift around target values,
274 >     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
275 >     * (where dc is deficit, sc is number of spare threads and pc is
276 >     * target parallelism.)  This effectively reduces churn at the
277 >     * price of systematically undershooting target parallelism when
278 >     * many threads are blocked.  However, biasing toward undeshooting
279 >     * partially compensates for the above mechanics to suspend extra
280 >     * threads, that normally lead to overshoot because we can only
281 >     * suspend workers in-between top-level actions. It also better
282 >     * copes with the fact that some of the methods in this class tend
283 >     * to never become compiled (but are interpreted), so some
284 >     * components of the entire set of controls might execute many
285 >     * times faster than others. And similarly for cases where the
286 >     * apparent lack of work is just due to GC stalls and other
287 >     * transient system activity.
288 >     *
289 >     * 7. Maintaining other configuration parameters and monitoring
290 >     * statistics. Updates to fields controlling parallelism level,
291 >     * max size, etc can only meaningfully take effect for individual
292 >     * threads upon their next top-level actions; i.e., between
293 >     * stealing/running tasks/submission, which are separated by calls
294 >     * to preStep.  Memory ordering for these (assumed infrequent)
295 >     * reconfiguration calls is ensured by using reads and writes to
296 >     * volatile field workerCounts (that must be read in preStep anyway)
297 >     * as "fences" -- user-level reads are preceded by reads of
298 >     * workCounts, and writes are followed by no-op CAS to
299 >     * workerCounts. The values reported by other management and
300 >     * monitoring methods are either computed on demand, or are kept
301 >     * in fields that are only updated when threads are otherwise
302 >     * idle.
303 >     *
304 >     * Beware that there is a lot of representation-level coupling
305 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
306 >     * ForkJoinTask.  For example, direct access to "workers" array by
307 >     * workers, and direct access to ForkJoinTask.status by both
308 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
309 >     * trying to reduce this, since any associated future changes in
310 >     * representations will need to be accompanied by algorithmic
311 >     * changes anyway.
312 >     *
313 >     * Style notes: There are lots of inline assignments (of form
314 >     * "while ((local = field) != 0)") which are usually the simplest
315 >     * way to ensure read orderings. Also several occurrences of the
316 >     * unusual "do {} while(!cas...)" which is the simplest way to
317 >     * force an update of a CAS'ed variable. There are also a few
318 >     * other coding oddities that help some methods perform reasonably
319 >     * even when interpreted (not compiled).
320 >     *
321 >     * The order of declarations in this file is: (1) statics (2)
322 >     * fields (along with constants used when unpacking some of them)
323 >     * (3) internal control methods (4) callbacks and other support
324 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
325 >     * methods (plus a few little helpers).
326       */
327  
64    /** Mask for packing and unpacking shorts */
65    private static final int  shortMask = 0xffff;
66
67    /** Max pool size -- must be a power of two minus 1 */
68    private static final int MAX_THREADS =  0x7FFF;
69
328      /**
329 <     * Factory for creating new ForkJoinWorkerThreads.  A
330 <     * ForkJoinWorkerThreadFactory must be defined and used for
331 <     * ForkJoinWorkerThread subclasses that extend base functionality
332 <     * or initialize threads with different contexts.
329 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
330 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
331 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
332 >     * functionality or initialize threads with different contexts.
333       */
334      public static interface ForkJoinWorkerThreadFactory {
335          /**
336           * Returns a new worker thread operating in the given pool.
337           *
338           * @param pool the pool this thread works in
339 <         * @throws NullPointerException if pool is null;
339 >         * @throws NullPointerException if the pool is null
340           */
341          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
342      }
343  
344      /**
345 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
345 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
346       * new ForkJoinWorkerThread.
347       */
348 <    public static class  DefaultForkJoinWorkerThreadFactory
348 >    static class  DefaultForkJoinWorkerThreadFactory
349          implements ForkJoinWorkerThreadFactory {
350          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
351 <            try {
94 <                return new ForkJoinWorkerThread(pool);
95 <            } catch (OutOfMemoryError oom)  {
96 <                return null;
97 <            }
351 >            return new ForkJoinWorkerThread(pool);
352          }
353      }
354  
355      /**
356 <     * The default ForkJoinWorkerThreadFactory, used unless overridden
357 <     * in ForkJoinPool constructors.
356 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
357 >     * overridden in ForkJoinPool constructors.
358       */
359 <    private static final DefaultForkJoinWorkerThreadFactory
359 >    public static final ForkJoinWorkerThreadFactory
360          defaultForkJoinWorkerThreadFactory =
361          new DefaultForkJoinWorkerThreadFactory();
362  
109
363      /**
364       * Permission required for callers of methods that may start or
365       * kill threads.
# Line 131 | Line 384 | public class ForkJoinPool extends Abstra
384          new AtomicInteger();
385  
386      /**
387 <     * Array holding all worker threads in the pool. Array size must
387 >     * Absolute bound for parallelism level. Twice this number must
388 >     * fit into a 16bit field to enable word-packing for some counts.
389 >     */
390 >    private static final int MAX_THREADS = 0x7fff;
391 >
392 >    /**
393 >     * Array holding all worker threads in the pool.  Array size must
394       * be a power of two.  Updates and replacements are protected by
395 <     * workerLock, but it is always kept in a consistent enough state
396 <     * to be randomly accessed without locking by workers performing
397 <     * work-stealing.
395 >     * workerLock, but the array is always kept in a consistent enough
396 >     * state to be randomly accessed without locking by workers
397 >     * performing work-stealing, as well as other traversal-based
398 >     * methods in this class. All readers must tolerate that some
399 >     * array slots may be null.
400       */
401      volatile ForkJoinWorkerThread[] workers;
402  
403      /**
404 <     * Lock protecting access to workers.
404 >     * Queue for external submissions.
405       */
406 <    private final ReentrantLock workerLock;
406 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
407  
408      /**
409 <     * Condition for awaitTermination.
409 >     * Lock protecting updates to workers array.
410       */
411 <    private final Condition termination;
411 >    private final ReentrantLock workerLock;
412  
413      /**
414 <     * The uncaught exception handler used when any worker
154 <     * abrupty terminates
414 >     * Latch released upon termination.
415       */
416 <    private Thread.UncaughtExceptionHandler ueh;
416 >    private final CountDownLatch terminationLatch;
417  
418      /**
419       * Creation factory for worker threads.
# Line 161 | Line 421 | public class ForkJoinPool extends Abstra
421      private final ForkJoinWorkerThreadFactory factory;
422  
423      /**
424 <     * Head of stack of threads that were created to maintain
425 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
424 >     * Sum of per-thread steal counts, updated only when threads are
425 >     * idle or terminating.
426       */
427 <    private volatile WaitQueueNode spareStack;
427 >    private volatile long stealCount;
428  
429      /**
430 <     * Sum of per-thread steal counts, updated only when threads are
431 <     * idle or terminating.
430 >     * Encoded record of top of treiber stack of threads waiting for
431 >     * events. The top 32 bits contain the count being waited for. The
432 >     * bottom word contains one plus the pool index of waiting worker
433 >     * thread.
434       */
435 <    private final AtomicLong stealCount;
435 >    private volatile long eventWaiters;
436 >
437 >    private static final int  EVENT_COUNT_SHIFT = 32;
438 >    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
439  
440      /**
441 <     * Queue for external submissions.
441 >     * A counter for events that may wake up worker threads:
442 >     *   - Submission of a new task to the pool
443 >     *   - A worker pushing a task on an empty queue
444 >     *   - termination and reconfiguration
445       */
446 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
446 >    private volatile int eventCount;
447 >
448 >    /**
449 >     * Lifecycle control. The low word contains the number of workers
450 >     * that are (probably) executing tasks. This value is atomically
451 >     * incremented before a worker gets a task to run, and decremented
452 >     * when worker has no tasks and cannot find any.  Bits 16-18
453 >     * contain runLevel value. When all are zero, the pool is
454 >     * running. Level transitions are monotonic (running -> shutdown
455 >     * -> terminating -> terminated) so each transition adds a bit.
456 >     * These are bundled together to ensure consistent read for
457 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
458 >     * and active threads is zero).
459 >     */
460 >    private volatile int runState;
461 >
462 >    // Note: The order among run level values matters.
463 >    private static final int RUNLEVEL_SHIFT     = 16;
464 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
465 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
466 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
467 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
468 >    private static final int ONE_ACTIVE         = 1; // active update delta
469  
470      /**
471 <     * Head of Treiber stack for barrier sync. See below for explanation
471 >     * Holds number of total (i.e., created and not yet terminated)
472 >     * and running (i.e., not blocked on joins or other managed sync)
473 >     * threads, packed together to ensure consistent snapshot when
474 >     * making decisions about creating and suspending spare
475 >     * threads. Updated only by CAS. Note that adding a new worker
476 >     * requires incrementing both counts, since workers start off in
477 >     * running state.  This field is also used for memory-fencing
478 >     * configuration parameters.
479 >     */
480 >    private volatile int workerCounts;
481 >
482 >    private static final int TOTAL_COUNT_SHIFT  = 16;
483 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
484 >    private static final int ONE_RUNNING        = 1;
485 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
486 >
487 >    /*
488 >     * Fields parallelism. maxPoolSize, locallyFifo,
489 >     * maintainsParallelism, and ueh are non-volatile, but external
490 >     * reads/writes use workerCount fences to ensure visability.
491       */
184    private volatile WaitQueueNode barrierStack;
492  
493      /**
494 <     * The count for event barrier
494 >     * The target parallelism level.
495       */
496 <    private volatile long eventCount;
496 >    private int parallelism;
497  
498      /**
499 <     * Pool number, just for assigning useful names to worker threads
499 >     * The maximum allowed pool size.
500       */
501 <    private final int poolNumber;
501 >    private int maxPoolSize;
502  
503      /**
504 <     * The maximum allowed pool size
504 >     * True if use local fifo, not default lifo, for local polling
505 >     * Replicated by ForkJoinWorkerThreads
506       */
507 <    private volatile int maxPoolSize;
507 >    private boolean locallyFifo;
508  
509      /**
510 <     * The desired parallelism level, updated only under workerLock.
510 >     * Controls whether to add spares to maintain parallelism
511       */
512 <    private volatile int parallelism;
512 >    private boolean maintainsParallelism;
513  
514      /**
515 <     * Holds number of total (i.e., created and not yet terminated)
516 <     * and running (i.e., not blocked on joins or other managed sync)
209 <     * threads, packed into one int to ensure consistent snapshot when
210 <     * making decisions about creating and suspending spare
211 <     * threads. Updated only by CAS.  Note: CASes in
212 <     * updateRunningCount and preJoin running active count is in low
213 <     * word, so need to be modified if this changes
515 >     * The uncaught exception handler used when any worker
516 >     * abruptly terminates
517       */
518 <    private volatile int workerCounts;
518 >    private Thread.UncaughtExceptionHandler ueh;
519 >
520 >    /**
521 >     * Pool number, just for assigning useful names to worker threads
522 >     */
523 >    private final int poolNumber;
524  
525 <    private static int totalCountOf(int s)           { return s >>> 16;  }
218 <    private static int runningCountOf(int s)         { return s & shortMask; }
219 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
525 >    // utilities for updating fields
526  
527      /**
528 <     * Add delta (which may be negative) to running count.  This must
529 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
528 >     * Adds delta to running count.  Used mainly by ForkJoinTask.
529 >     *
530       * @param delta the number to add
531       */
532      final void updateRunningCount(int delta) {
533 <        int s;
534 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
533 >        int wc;
534 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535 >                                               wc = workerCounts,
536 >                                               wc + delta));
537      }
538  
539      /**
540 <     * Add delta (which may be negative) to both total and running
541 <     * count.  This must be called upon creation and termination of
235 <     * worker threads.
236 <     * @param delta the number to add
540 >     * Write fence for user modifications of pool parameters
541 >     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
542       */
543 <    private void updateWorkerCount(int delta) {
544 <        int d = delta + (delta << 16); // add to both lo and hi parts
545 <        int s;
546 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
543 >    private void workerCountWriteFence() {
544 >        int wc;
545 >        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 >                                 wc = workerCounts, wc);
547      }
548  
549      /**
550 <     * Lifecycle control. High word contains runState, low word
551 <     * contains the number of workers that are (probably) executing
247 <     * tasks. This value is atomically incremented before a worker
248 <     * gets a task to run, and decremented when worker has no tasks
249 <     * and cannot find any. These two fields are bundled together to
250 <     * support correct termination triggering.  Note: activeCount
251 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
550 >     * Read fence for external reads of pool parameters
551 >     * (parallelism. maxPoolSize, etc).
552       */
553 <    private volatile int runControl;
554 <
555 <    // RunState values. Order among values matters
257 <    private static final int RUNNING     = 0;
258 <    private static final int SHUTDOWN    = 1;
259 <    private static final int TERMINATING = 2;
260 <    private static final int TERMINATED  = 3;
261 <
262 <    private static int runStateOf(int c)             { return c >>> 16; }
263 <    private static int activeCountOf(int c)          { return c & shortMask; }
264 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
553 >    private void workerCountReadFence() {
554 >        int ignore = workerCounts;
555 >    }
556  
557      /**
558 <     * Increment active count. Called by workers before/during
559 <     * executing tasks.
558 >     * Tries incrementing active count; fails on contention.
559 >     * Called by workers before executing tasks.
560 >     *
561 >     * @return true on success
562       */
563 <    final void incrementActiveCount() {
563 >    final boolean tryIncrementActiveCount() {
564          int c;
565 <        do;while (!casRunControl(c = runControl, c+1));
565 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
566 >                                        c = runState, c + ONE_ACTIVE);
567      }
568  
569      /**
570 <     * Decrement active count; possibly trigger termination.
571 <     * Called by workers when they can't find tasks.
570 >     * Tries decrementing active count; fails on contention.
571 >     * Called when workers cannot find tasks to run.
572       */
573 <    final void decrementActiveCount() {
574 <        int c, nextc;
575 <        do;while (!casRunControl(c = runControl, nextc = c-1));
576 <        if (canTerminateOnShutdown(nextc))
283 <            terminateOnShutdown();
573 >    final boolean tryDecrementActiveCount() {
574 >        int c;
575 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
576 >                                        c = runState, c - ONE_ACTIVE);
577      }
578  
579      /**
580 <     * Return true if argument represents zero active count and
581 <     * nonzero runstate, which is the triggering condition for
289 <     * terminating on shutdown.
580 >     * Advances to at least the given level. Returns true if not
581 >     * already in at least the given level.
582       */
583 <    private static boolean canTerminateOnShutdown(int c) {
584 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
583 >    private boolean advanceRunLevel(int level) {
584 >        for (;;) {
585 >            int s = runState;
586 >            if ((s & level) != 0)
587 >                return false;
588 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
589 >                return true;
590 >        }
591      }
592  
593 +    // workers array maintenance
594 +
595      /**
596 <     * Transition run state to at least the given state. Return true
297 <     * if not already at least given state.
596 >     * Records and returns a workers array index for new worker.
597       */
598 <    private boolean transitionRunStateTo(int state) {
599 <        for (;;) {
600 <            int c = runControl;
601 <            if (runStateOf(c) >= state)
602 <                return false;
603 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
604 <                return true;
598 >    private int recordWorker(ForkJoinWorkerThread w) {
599 >        // Try using slot totalCount-1. If not available, scan and/or resize
600 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
601 >        final ReentrantLock lock = this.workerLock;
602 >        lock.lock();
603 >        try {
604 >            ForkJoinWorkerThread[] ws = workers;
605 >            int len = ws.length;
606 >            if (k < 0 || k >= len || ws[k] != null) {
607 >                for (k = 0; k < len && ws[k] != null; ++k)
608 >                    ;
609 >                if (k == len)
610 >                    ws = Arrays.copyOf(ws, len << 1);
611 >            }
612 >            ws[k] = w;
613 >            workers = ws; // volatile array write ensures slot visibility
614 >        } finally {
615 >            lock.unlock();
616          }
617 +        return k;
618      }
619  
620      /**
621 <     * Controls whether to add spares to maintain parallelism
621 >     * Nulls out record of worker in workers array
622       */
623 <    private volatile boolean maintainsParallelism;
623 >    private void forgetWorker(ForkJoinWorkerThread w) {
624 >        int idx = w.poolIndex;
625 >        // Locking helps method recordWorker avoid unecessary expansion
626 >        final ReentrantLock lock = this.workerLock;
627 >        lock.lock();
628 >        try {
629 >            ForkJoinWorkerThread[] ws = workers;
630 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
631 >                ws[idx] = null;
632 >        } finally {
633 >            lock.unlock();
634 >        }
635 >    }
636  
637 <    // Constructors
637 >    // adding and removing workers
638  
639      /**
640 <     * Creates a ForkJoinPool with a pool size equal to the number of
641 <     * processors available on the system and using the default
642 <     * ForkJoinWorkerThreadFactory,
643 <     * @throws SecurityException if a security manager exists and
644 <     *         the caller is not permitted to modify threads
322 <     *         because it does not hold {@link
323 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
640 >     * Tries to create and add new worker. Assumes that worker counts
641 >     * are already updated to accommodate the worker, so adjusts on
642 >     * failure.
643 >     *
644 >     * @return new worker or null if creation failed
645       */
646 <    public ForkJoinPool() {
647 <        this(Runtime.getRuntime().availableProcessors(),
648 <             defaultForkJoinWorkerThreadFactory);
646 >    private ForkJoinWorkerThread addWorker() {
647 >        ForkJoinWorkerThread w = null;
648 >        try {
649 >            w = factory.newThread(this);
650 >        } finally { // Adjust on either null or exceptional factory return
651 >            if (w == null) {
652 >                onWorkerCreationFailure();
653 >                return null;
654 >            }
655 >        }
656 >        w.start(recordWorker(w), locallyFifo, ueh);
657 >        return w;
658      }
659  
660      /**
661 <     * Creates a ForkJoinPool with the indicated parellelism level
332 <     * threads, and using the default ForkJoinWorkerThreadFactory,
333 <     * @param parallelism the number of worker threads
334 <     * @throws IllegalArgumentException if parallelism less than or
335 <     * equal to zero
336 <     * @throws SecurityException if a security manager exists and
337 <     *         the caller is not permitted to modify threads
338 <     *         because it does not hold {@link
339 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
661 >     * Adjusts counts upon failure to create worker
662       */
663 <    public ForkJoinPool(int parallelism) {
664 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
663 >    private void onWorkerCreationFailure() {
664 >        int c;
665 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
666 >                                               c = workerCounts,
667 >                                               c - (ONE_RUNNING|ONE_TOTAL)));
668 >        tryTerminate(false); // in case of failure during shutdown
669      }
670  
671      /**
672 <     * Creates a ForkJoinPool with a pool size equal to the number of
673 <     * processors available on the system and using the given
674 <     * ForkJoinWorkerThreadFactory,
675 <     * @param factory the factory for creating new threads
676 <     * @throws NullPointerException if factory is null
677 <     * @throws SecurityException if a security manager exists and
678 <     *         the caller is not permitted to modify threads
679 <     *         because it does not hold {@link
680 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
681 <     */
682 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
683 <        this(Runtime.getRuntime().availableProcessors(), factory);
672 >     * Create enough total workers to establish target parallelism,
673 >     * giving up if terminating or addWorker fails
674 >     */
675 >    private void ensureEnoughTotalWorkers() {
676 >        int wc;
677 >        while (runState < TERMINATING &&
678 >               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
679 >            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
680 >                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
681 >                 addWorker() == null))
682 >                break;
683 >        }
684      }
685  
686      /**
687 <     * Creates a ForkJoinPool with the indicated target number of
688 <     * worker threads and the given factory.
687 >     * Final callback from terminating worker.  Removes record of
688 >     * worker from array, and adjusts counts. If pool is shutting
689 >     * down, tries to complete terminatation, else possibly replaces
690 >     * the worker.
691       *
692 <     * @param parallelism the targeted number of worker threads
365 <     * @param factory the factory for creating new threads
366 <     * @throws IllegalArgumentException if parallelism less than or
367 <     * equal to zero, or greater than implementation limit.
368 <     * @throws NullPointerException if factory is null
369 <     * @throws SecurityException if a security manager exists and
370 <     *         the caller is not permitted to modify threads
371 <     *         because it does not hold {@link
372 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
692 >     * @param w the worker
693       */
694 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
695 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
696 <            throw new IllegalArgumentException();
697 <        if (factory == null)
698 <            throw new NullPointerException();
699 <        checkPermission();
700 <        this.factory = factory;
701 <        this.parallelism = parallelism;
702 <        this.maxPoolSize = MAX_THREADS;
703 <        this.maintainsParallelism = true;
704 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
705 <        this.workerLock = new ReentrantLock();
706 <        this.termination = workerLock.newCondition();
707 <        this.stealCount = new AtomicLong();
708 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
709 <        createAndStartInitialWorkers(parallelism);
694 >    final void workerTerminated(ForkJoinWorkerThread w) {
695 >        if (w.active) { // force inactive
696 >            w.active = false;
697 >            do {} while (!tryDecrementActiveCount());
698 >        }
699 >        forgetWorker(w);
700 >
701 >        // decrement total count, and if was running, running count
702 >        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703 >        int wc;
704 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705 >                                               wc = workerCounts, wc - unit));
706 >
707 >        accumulateStealCount(w); // collect final count
708 >        if (!tryTerminate(false))
709 >            ensureEnoughTotalWorkers();
710 >    }
711 >
712 >    // Waiting for and signalling events
713 >
714 >    /**
715 >     * Ensures eventCount on exit is different (mod 2^32) than on
716 >     * entry.  CAS failures are OK -- any change in count suffices.
717 >     */
718 >    private void advanceEventCount() {
719 >        int c;
720 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
721      }
722  
723      /**
724 <     * Create new worker using factory.
725 <     * @param index the index to assign worker
726 <     * @return new worker, or null of factory failed
727 <     */
728 <    private ForkJoinWorkerThread createWorker(int index) {
729 <        Thread.UncaughtExceptionHandler h = ueh;
730 <        ForkJoinWorkerThread w = factory.newThread(this);
731 <        if (w != null) {
732 <            w.poolIndex = index;
733 <            w.setDaemon(true);
734 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
735 <            if (h != null)
736 <                w.setUncaughtExceptionHandler(h);
724 >     * Releases workers blocked on a count not equal to current count.
725 >     */
726 >    final void releaseWaiters() {
727 >        long top;
728 >        int id;
729 >        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
730 >               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
731 >            ForkJoinWorkerThread[] ws = workers;
732 >            ForkJoinWorkerThread w;
733 >            if (ws.length >= id && (w = ws[id - 1]) != null &&
734 >                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
735 >                                          top, w.nextWaiter))
736 >                LockSupport.unpark(w);
737          }
407        return w;
738      }
739  
740      /**
741 <     * Return a good size for worker array given pool size.
742 <     * Currently requires size to be a power of two.
741 >     * Advances eventCount and releases waiters until interference by
742 >     * other releasing threads is detected.
743       */
744 <    private static int arraySizeFor(int ps) {
745 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
744 >    final void signalWork() {
745 >        int ec;
746 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
747 >        outer:for (;;) {
748 >            long top = eventWaiters;
749 >            ec = eventCount;
750 >            for (;;) {
751 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
752 >                int id = (int)(top & WAITER_INDEX_MASK);
753 >                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
754 >                    return;
755 >                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
756 >                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
757 >                                               top, top = w.nextWaiter))
758 >                    continue outer;      // possibly stale; reread
759 >                LockSupport.unpark(w);
760 >                if (top != eventWaiters) // let someone else take over
761 >                    return;
762 >            }
763 >        }
764      }
765  
766      /**
767 <     * Create or resize array if necessary to hold newLength
768 <     * @return the array
767 >     * If worker is inactive, blocks until terminating or event count
768 >     * advances from last value held by worker; in any case helps
769 >     * release others.
770 >     *
771 >     * @param w the calling worker thread
772       */
773 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
774 <        ForkJoinWorkerThread[] ws = workers;
775 <        if (ws == null)
776 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
777 <        else if (newLength > ws.length)
778 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
779 <        else
780 <            return ws;
773 >    private void eventSync(ForkJoinWorkerThread w) {
774 >        if (!w.active) {
775 >            int prev = w.lastEventCount;
776 >            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
777 >                            ((long)(w.poolIndex + 1)));
778 >            long top;
779 >            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
780 >                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
781 >                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
782 >                   eventCount == prev) {
783 >                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
784 >                                              w.nextWaiter = top, nextTop)) {
785 >                    accumulateStealCount(w); // transfer steals while idle
786 >                    Thread.interrupted();    // clear/ignore interrupt
787 >                    while (eventCount == prev)
788 >                        w.doPark();
789 >                    break;
790 >                }
791 >            }
792 >            w.lastEventCount = eventCount;
793 >        }
794 >        releaseWaiters();
795      }
796  
797      /**
798 <     * Try to shrink workers into smaller array after one or more terminate
798 >     * Callback from workers invoked upon each top-level action (i.e.,
799 >     * stealing a task or taking a submission and running
800 >     * it). Performs one or both of the following:
801 >     *
802 >     * * If the worker cannot find work, updates its active status to
803 >     * inactive and updates activeCount unless there is contention, in
804 >     * which case it may try again (either in this or a subsequent
805 >     * call).  Additionally, awaits the next task event and/or helps
806 >     * wake up other releasable waiters.
807 >     *
808 >     * * If there are too many running threads, suspends this worker
809 >     * (first forcing inactivation if necessary).  If it is not
810 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
811 >     * -- killed while suspended within suspendAsSpare. Otherwise,
812 >     * upon resume it rechecks to make sure that it is still needed.
813 >     *
814 >     * @param w the worker
815 >     * @param worked false if the worker scanned for work but didn't
816 >     * find any (in which case it may block waiting for work).
817       */
818 <    private void tryShrinkWorkerArray() {
819 <        ForkJoinWorkerThread[] ws = workers;
820 <        int len = ws.length;
821 <        int last = len - 1;
822 <        while (last >= 0 && ws[last] == null)
823 <            --last;
824 <        int newLength = arraySizeFor(last+1);
825 <        if (newLength < len)
826 <            workers = Arrays.copyOf(ws, newLength);
818 >    final void preStep(ForkJoinWorkerThread w, boolean worked) {
819 >        boolean active = w.active;
820 >        boolean inactivate = !worked & active;
821 >        for (;;) {
822 >            if (inactivate) {
823 >                int c = runState;
824 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
825 >                                             c, c - ONE_ACTIVE))
826 >                    inactivate = active = w.active = false;
827 >            }
828 >            int wc = workerCounts;
829 >            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
830 >                if (!worked)
831 >                    eventSync(w);
832 >                return;
833 >            }
834 >            if (!(inactivate |= active) &&  // must inactivate to suspend
835 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836 >                                         wc, wc - ONE_RUNNING) &&
837 >                !w.suspendAsSpare())        // false if trimmed
838 >                return;
839 >        }
840      }
841  
842      /**
843 <     * Initial worker array and worker creation and startup. (This
844 <     * must be done under lock to avoid interference by some of the
845 <     * newly started threads while creating others.)
843 >     * Adjusts counts and creates or resumes compensating threads for
844 >     * a worker about to block on task joinMe, returning early if
845 >     * joinMe becomes ready. First tries resuming an existing spare
846 >     * (which usually also avoids any count adjustment), but must then
847 >     * decrement running count to determine whether a new thread is
848 >     * needed. See above for fuller explanation.
849       */
850 <    private void createAndStartInitialWorkers(int ps) {
851 <        final ReentrantLock lock = this.workerLock;
852 <        lock.lock();
853 <        try {
854 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
855 <            for (int i = 0; i < ps; ++i) {
856 <                ForkJoinWorkerThread w = createWorker(i);
857 <                if (w != null) {
858 <                    ws[i] = w;
859 <                    w.start();
860 <                    updateWorkerCount(1);
850 >    final void preJoin(ForkJoinTask<?> joinMe) {
851 >        boolean dec = false;       // true when running count decremented
852 >        for (;;) {
853 >            releaseWaiters();      // help other threads progress
854 >
855 >            if (joinMe.status < 0) // surround spare search with done checks
856 >                return;
857 >            ForkJoinWorkerThread spare = null;
858 >            for (ForkJoinWorkerThread w : workers) {
859 >                if (w != null && w.isSuspended()) {
860 >                    spare = w;
861 >                    break;
862 >                }
863 >            }
864 >            if (joinMe.status < 0)
865 >                return;
866 >
867 >            if (spare != null && spare.tryUnsuspend()) {
868 >                if (dec || joinMe.requestSignal() < 0) {
869 >                    int c;
870 >                    do {} while (!UNSAFE.compareAndSwapInt(this,
871 >                                                           workerCountsOffset,
872 >                                                           c = workerCounts,
873 >                                                           c + ONE_RUNNING));
874 >                } // else no net count change
875 >                LockSupport.unpark(spare);
876 >                return;
877 >            }
878 >
879 >            int wc = workerCounts; // decrement running count
880 >            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 >                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 >                                                wc, wc -= ONE_RUNNING)) &&
883 >                joinMe.requestSignal() < 0) { // cannot block
884 >                int c;                        // back out
885 >                do {} while (!UNSAFE.compareAndSwapInt(this,
886 >                                                       workerCountsOffset,
887 >                                                       c = workerCounts,
888 >                                                       c + ONE_RUNNING));
889 >                return;
890 >            }
891 >
892 >            if (dec) {
893 >                int tc = wc >>> TOTAL_COUNT_SHIFT;
894 >                int pc = parallelism;
895 >                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896 >                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897 >                                 !maintainsParallelism)) ||
898 >                    tc >= maxPoolSize) // cannot add
899 >                    return;
900 >                if (spare == null &&
901 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 >                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 >                    addWorker();
904 >                    return;
905                  }
906              }
464        } finally {
465            lock.unlock();
907          }
908      }
909  
910      /**
911 <     * Worker creation and startup for threads added via setParallelism.
911 >     * Same idea as preJoin but with too many differing details to
912 >     * integrate: There are no task-based signal counts, and only one
913 >     * way to do the actual blocking. So for simplicity it is directly
914 >     * incorporated into this method.
915       */
916 <    private void createAndStartAddedWorkers() {
917 <        resumeAllSpares();  // Allow spares to convert to nonspare
918 <        int ps = parallelism;
919 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
920 <        int len = ws.length;
921 <        // Sweep through slots, to keep lowest indices most populated
922 <        int k = 0;
923 <        while (k < len) {
924 <            if (ws[k] != null) {
925 <                ++k;
926 <                continue;
916 >    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
917 >        throws InterruptedException {
918 >        maintainPar &= maintainsParallelism; // override
919 >        boolean dec = false;
920 >        boolean done = false;
921 >        for (;;) {
922 >            releaseWaiters();
923 >            if (done = blocker.isReleasable())
924 >                break;
925 >            ForkJoinWorkerThread spare = null;
926 >            for (ForkJoinWorkerThread w : workers) {
927 >                if (w != null && w.isSuspended()) {
928 >                    spare = w;
929 >                    break;
930 >                }
931              }
932 <            int s = workerCounts;
485 <            int tc = totalCountOf(s);
486 <            int rc = runningCountOf(s);
487 <            if (rc >= ps || tc >= ps)
932 >            if (done = blocker.isReleasable())
933                  break;
934 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
935 <                ForkJoinWorkerThread w = createWorker(k);
936 <                if (w != null) {
937 <                    ws[k++] = w;
938 <                    w.start();
934 >            if (spare != null && spare.tryUnsuspend()) {
935 >                if (dec) {
936 >                    int c;
937 >                    do {} while (!UNSAFE.compareAndSwapInt(this,
938 >                                                           workerCountsOffset,
939 >                                                           c = workerCounts,
940 >                                                           c + ONE_RUNNING));
941                  }
942 <                else {
943 <                    updateWorkerCount(-1); // back out on failed creation
942 >                LockSupport.unpark(spare);
943 >                break;
944 >            }
945 >            int wc = workerCounts;
946 >            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947 >                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948 >                                               wc, wc -= ONE_RUNNING);
949 >            if (dec) {
950 >                int tc = wc >>> TOTAL_COUNT_SHIFT;
951 >                int pc = parallelism;
952 >                int dc = pc - (wc & RUNNING_COUNT_MASK);
953 >                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954 >                                 !maintainPar)) ||
955 >                    tc >= maxPoolSize)
956 >                    break;
957 >                if (spare == null &&
958 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959 >                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960 >                    addWorker();
961                      break;
962                  }
963              }
964          }
965 +
966 +        try {
967 +            if (!done)
968 +                do {} while (!blocker.isReleasable() && !blocker.block());
969 +        } finally {
970 +            if (dec) {
971 +                int c;
972 +                do {} while (!UNSAFE.compareAndSwapInt(this,
973 +                                                       workerCountsOffset,
974 +                                                       c = workerCounts,
975 +                                                       c + ONE_RUNNING));
976 +            }
977 +        }
978      }
979  
980      /**
981 <     * Sets the handler for internal worker threads that terminate due
505 <     * to unrecoverable errors encountered while executing tasks.
506 <     * Unless set, the current default or ThreadGroup handler is used
507 <     * as handler.
981 >     * Possibly initiates and/or completes termination.
982       *
983 <     * @param h the new handler
984 <     * @return the old handler, or null if none
985 <     * @throws SecurityException if a security manager exists and
986 <     *         the caller is not permitted to modify threads
987 <     *         because it does not hold {@link
988 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
983 >     * @param now if true, unconditionally terminate, else only
984 >     * if shutdown and empty queue and no active workers
985 >     * @return true if now terminating or terminated
986 >     */
987 >    private boolean tryTerminate(boolean now) {
988 >        if (now)
989 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
990 >        else if (runState < SHUTDOWN ||
991 >                 !submissionQueue.isEmpty() ||
992 >                 (runState & ACTIVE_COUNT_MASK) != 0)
993 >            return false;
994 >
995 >        if (advanceRunLevel(TERMINATING))
996 >            startTerminating();
997 >
998 >        // Finish now if all threads terminated; else in some subsequent call
999 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1000 >            advanceRunLevel(TERMINATED);
1001 >            terminationLatch.countDown();
1002 >        }
1003 >        return true;
1004 >    }
1005 >
1006 >    /**
1007 >     * Actions on transition to TERMINATING
1008       */
1009 <    public Thread.UncaughtExceptionHandler
1010 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1011 <        checkPermission();
1012 <        Thread.UncaughtExceptionHandler old = null;
1013 <        final ReentrantLock lock = this.workerLock;
1014 <        lock.lock();
1015 <        try {
1016 <            old = ueh;
1017 <            ueh = h;
1018 <            ForkJoinWorkerThread[] ws = workers;
1019 <            for (int i = 0; i < ws.length; ++i) {
1020 <                ForkJoinWorkerThread w = ws[i];
1021 <                if (w != null)
1022 <                    w.setUncaughtExceptionHandler(h);
1009 >    private void startTerminating() {
1010 >        // Clear out and cancel submissions, ignoring exceptions
1011 >        ForkJoinTask<?> task;
1012 >        while ((task = submissionQueue.poll()) != null) {
1013 >            try {
1014 >                task.cancel(false);
1015 >            } catch (Throwable ignore) {
1016 >            }
1017 >        }
1018 >        // Propagate run level
1019 >        for (ForkJoinWorkerThread w : workers) {
1020 >            if (w != null)
1021 >                w.shutdown();    // also resumes suspended workers
1022 >        }
1023 >        // Ensure no straggling local tasks
1024 >        for (ForkJoinWorkerThread w : workers) {
1025 >            if (w != null)
1026 >                w.cancelTasks();
1027 >        }
1028 >        // Wake up idle workers
1029 >        advanceEventCount();
1030 >        releaseWaiters();
1031 >        // Unstick pending joins
1032 >        for (ForkJoinWorkerThread w : workers) {
1033 >            if (w != null && !w.isTerminated()) {
1034 >                try {
1035 >                    w.interrupt();
1036 >                } catch (SecurityException ignore) {
1037 >                }
1038              }
531        } finally {
532            lock.unlock();
1039          }
534        return old;
1040      }
1041  
1042 +    // misc support for ForkJoinWorkerThread
1043 +
1044      /**
1045 <     * Returns the handler for internal worker threads that terminate
539 <     * due to unrecoverable errors encountered while executing tasks.
540 <     * @return the handler, or null if none
1045 >     * Returns pool number
1046       */
1047 <    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1048 <        Thread.UncaughtExceptionHandler h;
1049 <        final ReentrantLock lock = this.workerLock;
1050 <        lock.lock();
1051 <        try {
1052 <            h = ueh;
1053 <        } finally {
1054 <            lock.unlock();
1047 >    final int getPoolNumber() {
1048 >        return poolNumber;
1049 >    }
1050 >
1051 >    /**
1052 >     * Accumulates steal count from a worker, clearing
1053 >     * the worker's value
1054 >     */
1055 >    final void accumulateStealCount(ForkJoinWorkerThread w) {
1056 >        int sc = w.stealCount;
1057 >        if (sc != 0) {
1058 >            long c;
1059 >            w.stealCount = 0;
1060 >            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1061 >                                                    c = stealCount, c + sc));
1062          }
1063 <        return h;
1063 >    }
1064 >
1065 >    /**
1066 >     * Returns the approximate (non-atomic) number of idle threads per
1067 >     * active thread.
1068 >     */
1069 >    final int idlePerActive() {
1070 >        int ac = runState;    // no mask -- artifically boosts during shutdown
1071 >        int pc = parallelism; // use targeted parallelism, not rc
1072 >        // Use exact results for small values, saturate past 4
1073 >        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1074 >    }
1075 >
1076 >    /**
1077 >     * Returns the approximate (non-atomic) difference between running
1078 >     * and active counts.
1079 >     */
1080 >    final int inactiveCount() {
1081 >        return (workerCounts & RUNNING_COUNT_MASK) -
1082 >            (runState & ACTIVE_COUNT_MASK);
1083 >    }
1084 >
1085 >    // Public and protected methods
1086 >
1087 >    // Constructors
1088 >
1089 >    /**
1090 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1091 >     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1092 >     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1093 >     *
1094 >     * @throws SecurityException if a security manager exists and
1095 >     *         the caller is not permitted to modify threads
1096 >     *         because it does not hold {@link
1097 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1098 >     */
1099 >    public ForkJoinPool() {
1100 >        this(Runtime.getRuntime().availableProcessors(),
1101 >             defaultForkJoinWorkerThreadFactory);
1102 >    }
1103 >
1104 >    /**
1105 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1106 >     * level and using the {@linkplain
1107 >     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1108 >     *
1109 >     * @param parallelism the parallelism level
1110 >     * @throws IllegalArgumentException if parallelism less than or
1111 >     *         equal to zero, or greater than implementation limit
1112 >     * @throws SecurityException if a security manager exists and
1113 >     *         the caller is not permitted to modify threads
1114 >     *         because it does not hold {@link
1115 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1116 >     */
1117 >    public ForkJoinPool(int parallelism) {
1118 >        this(parallelism, defaultForkJoinWorkerThreadFactory);
1119 >    }
1120 >
1121 >    /**
1122 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1123 >     * java.lang.Runtime#availableProcessors}, and using the given
1124 >     * thread factory.
1125 >     *
1126 >     * @param factory the factory for creating new threads
1127 >     * @throws NullPointerException if the factory is null
1128 >     * @throws SecurityException if a security manager exists and
1129 >     *         the caller is not permitted to modify threads
1130 >     *         because it does not hold {@link
1131 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1132 >     */
1133 >    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1134 >        this(Runtime.getRuntime().availableProcessors(), factory);
1135 >    }
1136 >
1137 >    /**
1138 >     * Creates a {@code ForkJoinPool} with the given parallelism and
1139 >     * thread factory.
1140 >     *
1141 >     * @param parallelism the parallelism level
1142 >     * @param factory the factory for creating new threads
1143 >     * @throws IllegalArgumentException if parallelism less than or
1144 >     *         equal to zero, or greater than implementation limit
1145 >     * @throws NullPointerException if the factory is null
1146 >     * @throws SecurityException if a security manager exists and
1147 >     *         the caller is not permitted to modify threads
1148 >     *         because it does not hold {@link
1149 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1150 >     */
1151 >    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1152 >        checkPermission();
1153 >        if (factory == null)
1154 >            throw new NullPointerException();
1155 >        if (parallelism <= 0 || parallelism > MAX_THREADS)
1156 >            throw new IllegalArgumentException();
1157 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1158 >        int arraySize = initialArraySizeFor(parallelism);
1159 >        this.parallelism = parallelism;
1160 >        this.factory = factory;
1161 >        this.maxPoolSize = MAX_THREADS;
1162 >        this.maintainsParallelism = true;
1163 >        this.workers = new ForkJoinWorkerThread[arraySize];
1164 >        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1165 >        this.workerLock = new ReentrantLock();
1166 >        this.terminationLatch = new CountDownLatch(1);
1167 >        // Start first worker; remaining workers added upon first submission
1168 >        workerCounts = ONE_RUNNING | ONE_TOTAL;
1169 >        addWorker();
1170 >    }
1171 >
1172 >    /**
1173 >     * Returns initial power of two size for workers array.
1174 >     * @param pc the initial parallelism level
1175 >     */
1176 >    private static int initialArraySizeFor(int pc) {
1177 >        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1178 >        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1179 >        size |= size >>> 1;
1180 >        size |= size >>> 2;
1181 >        size |= size >>> 4;
1182 >        size |= size >>> 8;
1183 >        return size + 1;
1184      }
1185  
1186      // Execution methods
# Line 557 | Line 1189 | public class ForkJoinPool extends Abstra
1189       * Common code for execute, invoke and submit
1190       */
1191      private <T> void doSubmit(ForkJoinTask<T> task) {
1192 <        if (isShutdown())
1192 >        if (task == null)
1193 >            throw new NullPointerException();
1194 >        if (runState >= SHUTDOWN)
1195              throw new RejectedExecutionException();
1196          submissionQueue.offer(task);
1197 <        signalIdleWorkers(true);
1197 >        advanceEventCount();
1198 >        releaseWaiters();
1199 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1200 >            ensureEnoughTotalWorkers();
1201      }
1202  
1203      /**
1204 <     * Performs the given task; returning its result upon completion
1204 >     * Performs the given task, returning its result upon completion.
1205 >     *
1206       * @param task the task
1207       * @return the task's result
1208 <     * @throws NullPointerException if task is null
1209 <     * @throws RejectedExecutionException if pool is shut down
1208 >     * @throws NullPointerException if the task is null
1209 >     * @throws RejectedExecutionException if the task cannot be
1210 >     *         scheduled for execution
1211       */
1212      public <T> T invoke(ForkJoinTask<T> task) {
1213          doSubmit(task);
# Line 577 | Line 1216 | public class ForkJoinPool extends Abstra
1216  
1217      /**
1218       * Arranges for (asynchronous) execution of the given task.
1219 +     *
1220       * @param task the task
1221 <     * @throws NullPointerException if task is null
1222 <     * @throws RejectedExecutionException if pool is shut down
1221 >     * @throws NullPointerException if the task is null
1222 >     * @throws RejectedExecutionException if the task cannot be
1223 >     *         scheduled for execution
1224       */
1225 <    public <T> void execute(ForkJoinTask<T> task) {
1225 >    public void execute(ForkJoinTask<?> task) {
1226          doSubmit(task);
1227      }
1228  
1229      // AbstractExecutorService methods
1230  
1231 +    /**
1232 +     * @throws NullPointerException if the task is null
1233 +     * @throws RejectedExecutionException if the task cannot be
1234 +     *         scheduled for execution
1235 +     */
1236      public void execute(Runnable task) {
1237 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1237 >        ForkJoinTask<?> job;
1238 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1239 >            job = (ForkJoinTask<?>) task;
1240 >        else
1241 >            job = ForkJoinTask.adapt(task, null);
1242 >        doSubmit(job);
1243      }
1244  
1245 +    /**
1246 +     * @throws NullPointerException if the task is null
1247 +     * @throws RejectedExecutionException if the task cannot be
1248 +     *         scheduled for execution
1249 +     */
1250      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1251 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1251 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1252          doSubmit(job);
1253          return job;
1254      }
1255  
1256 +    /**
1257 +     * @throws NullPointerException if the task is null
1258 +     * @throws RejectedExecutionException if the task cannot be
1259 +     *         scheduled for execution
1260 +     */
1261      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1262 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1262 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1263          doSubmit(job);
1264          return job;
1265      }
1266  
1267 +    /**
1268 +     * @throws NullPointerException if the task is null
1269 +     * @throws RejectedExecutionException if the task cannot be
1270 +     *         scheduled for execution
1271 +     */
1272      public ForkJoinTask<?> submit(Runnable task) {
1273 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1273 >        ForkJoinTask<?> job;
1274 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1275 >            job = (ForkJoinTask<?>) task;
1276 >        else
1277 >            job = ForkJoinTask.adapt(task, null);
1278          doSubmit(job);
1279          return job;
1280      }
1281  
612    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
613        return new AdaptedRunnable(runnable, value);
614    }
615
616    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
617        return new AdaptedCallable(callable);
618    }
619
1282      /**
1283 <     * Adaptor for Runnables. This implements RunnableFuture
1284 <     * to be compliant with AbstractExecutorService constraints
1283 >     * Submits a ForkJoinTask for execution.
1284 >     *
1285 >     * @param task the task to submit
1286 >     * @return the task
1287 >     * @throws NullPointerException if the task is null
1288 >     * @throws RejectedExecutionException if the task cannot be
1289 >     *         scheduled for execution
1290       */
1291 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
1292 <        implements RunnableFuture<T> {
1293 <        final Runnable runnable;
627 <        final T resultOnCompletion;
628 <        T result;
629 <        AdaptedRunnable(Runnable runnable, T result) {
630 <            if (runnable == null) throw new NullPointerException();
631 <            this.runnable = runnable;
632 <            this.resultOnCompletion = result;
633 <        }
634 <        public T getRawResult() { return result; }
635 <        public void setRawResult(T v) { result = v; }
636 <        public boolean exec() {
637 <            runnable.run();
638 <            result = resultOnCompletion;
639 <            return true;
640 <        }
641 <        public void run() { invoke(); }
1291 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1292 >        doSubmit(task);
1293 >        return task;
1294      }
1295  
1296      /**
1297 <     * Adaptor for Callables
1297 >     * @throws NullPointerException       {@inheritDoc}
1298 >     * @throws RejectedExecutionException {@inheritDoc}
1299       */
647    static final class AdaptedCallable<T> extends ForkJoinTask<T>
648        implements RunnableFuture<T> {
649        final Callable<T> callable;
650        T result;
651        AdaptedCallable(Callable<T> callable) {
652            if (callable == null) throw new NullPointerException();
653            this.callable = callable;
654        }
655        public T getRawResult() { return result; }
656        public void setRawResult(T v) { result = v; }
657        public boolean exec() {
658            try {
659                result = callable.call();
660                return true;
661            } catch (Error err) {
662                throw err;
663            } catch (RuntimeException rex) {
664                throw rex;
665            } catch (Exception ex) {
666                throw new RuntimeException(ex);
667            }
668        }
669        public void run() { invoke(); }
670    }
671
1300      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1301 <        ArrayList<ForkJoinTask<T>> ts =
1301 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1302              new ArrayList<ForkJoinTask<T>>(tasks.size());
1303 <        for (Callable<T> c : tasks)
1304 <            ts.add(new AdaptedCallable<T>(c));
1305 <        invoke(new InvokeAll<T>(ts));
1306 <        return (List<Future<T>>)(List)ts;
1303 >        for (Callable<T> task : tasks)
1304 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1305 >        invoke(new InvokeAll<T>(forkJoinTasks));
1306 >
1307 >        @SuppressWarnings({"unchecked", "rawtypes"})
1308 >        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1309 >        return futures;
1310      }
1311  
1312      static final class InvokeAll<T> extends RecursiveAction {
1313          final ArrayList<ForkJoinTask<T>> tasks;
1314          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1315          public void compute() {
1316 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1316 >            try { invokeAll(tasks); }
1317 >            catch (Exception ignore) {}
1318          }
1319 +        private static final long serialVersionUID = -7914297376763021607L;
1320      }
1321  
689    // Configuration and status settings and queries
690
1322      /**
1323 <     * Returns the factory used for constructing new workers
1323 >     * Returns the factory used for constructing new workers.
1324       *
1325       * @return the factory used for constructing new workers
1326       */
# Line 698 | Line 1329 | public class ForkJoinPool extends Abstra
1329      }
1330  
1331      /**
1332 <     * Sets the target paralleism level of this pool.
1332 >     * Returns the handler for internal worker threads that terminate
1333 >     * due to unrecoverable errors encountered while executing tasks.
1334 >     *
1335 >     * @return the handler, or {@code null} if none
1336 >     */
1337 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1338 >        workerCountReadFence();
1339 >        return ueh;
1340 >    }
1341 >
1342 >    /**
1343 >     * Sets the handler for internal worker threads that terminate due
1344 >     * to unrecoverable errors encountered while executing tasks.
1345 >     * Unless set, the current default or ThreadGroup handler is used
1346 >     * as handler.
1347 >     *
1348 >     * @param h the new handler
1349 >     * @return the old handler, or {@code null} if none
1350 >     * @throws SecurityException if a security manager exists and
1351 >     *         the caller is not permitted to modify threads
1352 >     *         because it does not hold {@link
1353 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1354 >     */
1355 >    public Thread.UncaughtExceptionHandler
1356 >        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1357 >        checkPermission();
1358 >        workerCountReadFence();
1359 >        Thread.UncaughtExceptionHandler old = ueh;
1360 >        if (h != old) {
1361 >            ueh = h;
1362 >            workerCountWriteFence();
1363 >            for (ForkJoinWorkerThread w : workers) {
1364 >                if (w != null)
1365 >                    w.setUncaughtExceptionHandler(h);
1366 >            }
1367 >        }
1368 >        return old;
1369 >    }
1370 >
1371 >    /**
1372 >     * Sets the target parallelism level of this pool.
1373 >     *
1374       * @param parallelism the target parallelism
1375       * @throws IllegalArgumentException if parallelism less than or
1376 <     * equal to zero or greater than maximum size bounds.
1376 >     * equal to zero or greater than maximum size bounds
1377       * @throws SecurityException if a security manager exists and
1378       *         the caller is not permitted to modify threads
1379       *         because it does not hold {@link
1380 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1380 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1381       */
1382      public void setParallelism(int parallelism) {
1383          checkPermission();
1384          if (parallelism <= 0 || parallelism > maxPoolSize)
1385              throw new IllegalArgumentException();
1386 <        final ReentrantLock lock = this.workerLock;
1387 <        lock.lock();
1388 <        try {
1389 <            if (!isTerminating()) {
1390 <                int p = this.parallelism;
1391 <                this.parallelism = parallelism;
1392 <                if (parallelism > p)
1393 <                    createAndStartAddedWorkers();
1394 <                else
1395 <                    trimSpares();
1386 >        workerCountReadFence();
1387 >        int pc = this.parallelism;
1388 >        if (pc != parallelism) {
1389 >            this.parallelism = parallelism;
1390 >            workerCountWriteFence();
1391 >            // Release spares. If too many, some will die after re-suspend
1392 >            for (ForkJoinWorkerThread w : workers) {
1393 >                if (w != null && w.tryUnsuspend()) {
1394 >                    updateRunningCount(1);
1395 >                    LockSupport.unpark(w);
1396 >                }
1397              }
1398 <        } finally {
1399 <            lock.unlock();
1398 >            ensureEnoughTotalWorkers();
1399 >            advanceEventCount();
1400 >            releaseWaiters(); // force config recheck by existing workers
1401          }
728        signalIdleWorkers(false);
1402      }
1403  
1404      /**
1405 <     * Returns the targeted number of worker threads in this pool.
733 <     * This value does not necessarily reflect transient changes as
734 <     * threads are added, removed, or abruptly terminate.
1405 >     * Returns the targeted parallelism level of this pool.
1406       *
1407 <     * @return the targeted number of worker threads in this pool
1407 >     * @return the targeted parallelism level of this pool
1408       */
1409      public int getParallelism() {
1410 +        //        workerCountReadFence(); // inlined below
1411 +        int ignore = workerCounts;
1412          return parallelism;
1413      }
1414  
1415      /**
1416       * Returns the number of worker threads that have started but not
1417       * yet terminated.  This result returned by this method may differ
1418 <     * from <tt>getParallelism</tt> when threads are created to
1418 >     * from {@link #getParallelism} when threads are created to
1419       * maintain parallelism when others are cooperatively blocked.
1420       *
1421       * @return the number of worker threads
1422       */
1423      public int getPoolSize() {
1424 <        return totalCountOf(workerCounts);
1424 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1425      }
1426  
1427      /**
1428       * Returns the maximum number of threads allowed to exist in the
1429 <     * pool, even if there are insufficient unblocked running threads.
1429 >     * pool. Unless set using {@link #setMaximumPoolSize}, the
1430 >     * maximum is an implementation-defined value designed only to
1431 >     * prevent runaway growth.
1432 >     *
1433       * @return the maximum
1434       */
1435      public int getMaximumPoolSize() {
1436 +        workerCountReadFence();
1437          return maxPoolSize;
1438      }
1439  
1440      /**
1441       * Sets the maximum number of threads allowed to exist in the
1442 <     * pool, even if there are insufficient unblocked running threads.
1443 <     * Setting this value has no effect on current pool size. It
1444 <     * controls construction of new threads.
1445 <     * @throws IllegalArgumentException if negative or greater then
1446 <     * internal implementation limit.
1442 >     * pool. The given value should normally be greater than or equal
1443 >     * to the {@link #getParallelism parallelism} level. Setting this
1444 >     * value has no effect on current pool size. It controls
1445 >     * construction of new threads.
1446 >     *
1447 >     * @throws IllegalArgumentException if negative or greater than
1448 >     * internal implementation limit
1449       */
1450      public void setMaximumPoolSize(int newMax) {
1451          if (newMax < 0 || newMax > MAX_THREADS)
1452              throw new IllegalArgumentException();
1453          maxPoolSize = newMax;
1454 +        workerCountWriteFence();
1455      }
1456  
777
1457      /**
1458 <     * Returns true if this pool dynamically maintains its target
1459 <     * parallelism level. If false, new threads are added only to
1460 <     * avoid possible starvation.
1461 <     * This setting is by default true;
1462 <     * @return true if maintains parallelism
1458 >     * Returns {@code true} if this pool dynamically maintains its
1459 >     * target parallelism level. If false, new threads are added only
1460 >     * to avoid possible starvation.  This setting is by default true.
1461 >     *
1462 >     * @return {@code true} if maintains parallelism
1463       */
1464      public boolean getMaintainsParallelism() {
1465 +        workerCountReadFence();
1466          return maintainsParallelism;
1467      }
1468  
# Line 790 | Line 1470 | public class ForkJoinPool extends Abstra
1470       * Sets whether this pool dynamically maintains its target
1471       * parallelism level. If false, new threads are added only to
1472       * avoid possible starvation.
1473 <     * @param enable true to maintains parallelism
1473 >     *
1474 >     * @param enable {@code true} to maintain parallelism
1475       */
1476      public void setMaintainsParallelism(boolean enable) {
1477          maintainsParallelism = enable;
1478 +        workerCountWriteFence();
1479      }
1480  
1481      /**
1482 <     * Returns the approximate number of worker threads that are not
1483 <     * blocked waiting to join tasks or for other managed
1484 <     * synchronization.
1482 >     * Establishes local first-in-first-out scheduling mode for forked
1483 >     * tasks that are never joined. This mode may be more appropriate
1484 >     * than default locally stack-based mode in applications in which
1485 >     * worker threads only process asynchronous tasks.  This method is
1486 >     * designed to be invoked only when the pool is quiescent, and
1487 >     * typically only before any tasks are submitted. The effects of
1488 >     * invocations at other times may be unpredictable.
1489 >     *
1490 >     * @param async if {@code true}, use locally FIFO scheduling
1491 >     * @return the previous mode
1492 >     * @see #getAsyncMode
1493 >     */
1494 >    public boolean setAsyncMode(boolean async) {
1495 >        workerCountReadFence();
1496 >        boolean oldMode = locallyFifo;
1497 >        if (oldMode != async) {
1498 >            locallyFifo = async;
1499 >            workerCountWriteFence();
1500 >            for (ForkJoinWorkerThread w : workers) {
1501 >                if (w != null)
1502 >                    w.setAsyncMode(async);
1503 >            }
1504 >        }
1505 >        return oldMode;
1506 >    }
1507 >
1508 >    /**
1509 >     * Returns {@code true} if this pool uses local first-in-first-out
1510 >     * scheduling mode for forked tasks that are never joined.
1511 >     *
1512 >     * @return {@code true} if this pool uses async mode
1513 >     * @see #setAsyncMode
1514 >     */
1515 >    public boolean getAsyncMode() {
1516 >        workerCountReadFence();
1517 >        return locallyFifo;
1518 >    }
1519 >
1520 >    /**
1521 >     * Returns an estimate of the number of worker threads that are
1522 >     * not blocked waiting to join tasks or for other managed
1523 >     * synchronization. This method may overestimate the
1524 >     * number of running threads.
1525       *
1526       * @return the number of worker threads
1527       */
1528      public int getRunningThreadCount() {
1529 <        return runningCountOf(workerCounts);
1529 >        return workerCounts & RUNNING_COUNT_MASK;
1530      }
1531  
1532      /**
1533 <     * Returns the approximate number of threads that are currently
1533 >     * Returns an estimate of the number of threads that are currently
1534       * stealing or executing tasks. This method may overestimate the
1535       * number of active threads.
1536 <     * @return the number of active threads.
1536 >     *
1537 >     * @return the number of active threads
1538       */
1539      public int getActiveThreadCount() {
1540 <        return activeCountOf(runControl);
818 <    }
819 <
820 <    /**
821 <     * Returns the approximate number of threads that are currently
822 <     * idle waiting for tasks. This method may underestimate the
823 <     * number of idle threads.
824 <     * @return the number of idle threads.
825 <     */
826 <    final int getIdleThreadCount() {
827 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
828 <        return (c <= 0)? 0 : c;
1540 >        return runState & ACTIVE_COUNT_MASK;
1541      }
1542  
1543      /**
1544 <     * Returns true if all worker threads are currently idle. An idle
1545 <     * worker is one that cannot obtain a task to execute because none
1546 <     * are available to steal from other threads, and there are no
1547 <     * pending submissions to the pool. This method is conservative:
1548 <     * It might not return true immediately upon idleness of all
1549 <     * threads, but will eventually become true if threads remain
1550 <     * inactive.
1551 <     * @return true if all threads are currently idle
1544 >     * Returns {@code true} if all worker threads are currently idle.
1545 >     * An idle worker is one that cannot obtain a task to execute
1546 >     * because none are available to steal from other threads, and
1547 >     * there are no pending submissions to the pool. This method is
1548 >     * conservative; it might not return {@code true} immediately upon
1549 >     * idleness of all threads, but will eventually become true if
1550 >     * threads remain inactive.
1551 >     *
1552 >     * @return {@code true} if all threads are currently idle
1553       */
1554      public boolean isQuiescent() {
1555 <        return activeCountOf(runControl) == 0;
1555 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1556      }
1557  
1558      /**
# Line 847 | Line 1560 | public class ForkJoinPool extends Abstra
1560       * one thread's work queue by another. The reported value
1561       * underestimates the actual total number of steals when the pool
1562       * is not quiescent. This value may be useful for monitoring and
1563 <     * tuning fork/join programs: In general, steal counts should be
1563 >     * tuning fork/join programs: in general, steal counts should be
1564       * high enough to keep threads busy, but low enough to avoid
1565       * overhead and contention across threads.
1566 <     * @return the number of steals.
1566 >     *
1567 >     * @return the number of steals
1568       */
1569      public long getStealCount() {
1570 <        return stealCount.get();
1570 >        return stealCount;
1571      }
1572  
1573      /**
1574 <     * Accumulate steal count from a worker. Call only
1575 <     * when worker known to be idle.
1576 <     */
1577 <    private void updateStealCount(ForkJoinWorkerThread w) {
1578 <        int sc = w.getAndClearStealCount();
1579 <        if (sc != 0)
1580 <            stealCount.addAndGet(sc);
1581 <    }
868 <
869 <    /**
870 <     * Returns the total number of tasks currently held in queues by
871 <     * worker threads (but not including tasks submitted to the pool
872 <     * that have not begun executing). This value is only an
873 <     * approximation, obtained by iterating across all threads in the
874 <     * pool. This method may be useful for tuning task granularities.
875 <     * @return the number of queued tasks.
1574 >     * Returns an estimate of the total number of tasks currently held
1575 >     * in queues by worker threads (but not including tasks submitted
1576 >     * to the pool that have not begun executing). This value is only
1577 >     * an approximation, obtained by iterating across all threads in
1578 >     * the pool. This method may be useful for tuning task
1579 >     * granularities.
1580 >     *
1581 >     * @return the number of queued tasks
1582       */
1583      public long getQueuedTaskCount() {
1584          long count = 0;
1585 <        ForkJoinWorkerThread[] ws = workers;
1586 <        for (int i = 0; i < ws.length; ++i) {
1587 <            ForkJoinWorkerThread t = ws[i];
882 <            if (t != null)
883 <                count += t.getQueueSize();
1585 >        for (ForkJoinWorkerThread w : workers) {
1586 >            if (w != null)
1587 >                count += w.getQueueSize();
1588          }
1589          return count;
1590      }
1591  
1592      /**
1593 <     * Returns the approximate number tasks submitted to this pool
1594 <     * that have not yet begun executing. This method takes time
1593 >     * Returns an estimate of the number of tasks submitted to this
1594 >     * pool that have not yet begun executing.  This method takes time
1595       * proportional to the number of submissions.
1596 <     * @return the number of queued submissions.
1596 >     *
1597 >     * @return the number of queued submissions
1598       */
1599      public int getQueuedSubmissionCount() {
1600          return submissionQueue.size();
1601      }
1602  
1603      /**
1604 <     * Returns true if there are any tasks submitted to this pool
1605 <     * that have not yet begun executing.
1606 <     * @return <tt>true</tt> if there are any queued submissions.
1604 >     * Returns {@code true} if there are any tasks submitted to this
1605 >     * pool that have not yet begun executing.
1606 >     *
1607 >     * @return {@code true} if there are any queued submissions
1608       */
1609      public boolean hasQueuedSubmissions() {
1610          return !submissionQueue.isEmpty();
# Line 908 | Line 1614 | public class ForkJoinPool extends Abstra
1614       * Removes and returns the next unexecuted submission if one is
1615       * available.  This method may be useful in extensions to this
1616       * class that re-assign work in systems with multiple pools.
1617 <     * @return the next submission, or null if none
1617 >     *
1618 >     * @return the next submission, or {@code null} if none
1619       */
1620      protected ForkJoinTask<?> pollSubmission() {
1621          return submissionQueue.poll();
1622      }
1623  
1624      /**
1625 +     * Removes all available unexecuted submitted and forked tasks
1626 +     * from scheduling queues and adds them to the given collection,
1627 +     * without altering their execution status. These may include
1628 +     * artificially generated or wrapped tasks. This method is
1629 +     * designed to be invoked only when the pool is known to be
1630 +     * quiescent. Invocations at other times may not remove all
1631 +     * tasks. A failure encountered while attempting to add elements
1632 +     * to collection {@code c} may result in elements being in
1633 +     * neither, either or both collections when the associated
1634 +     * exception is thrown.  The behavior of this operation is
1635 +     * undefined if the specified collection is modified while the
1636 +     * operation is in progress.
1637 +     *
1638 +     * @param c the collection to transfer elements into
1639 +     * @return the number of elements transferred
1640 +     */
1641 +    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1642 +        int n = submissionQueue.drainTo(c);
1643 +        for (ForkJoinWorkerThread w : workers) {
1644 +            if (w != null)
1645 +                n += w.drainTasksTo(c);
1646 +        }
1647 +        return n;
1648 +    }
1649 +
1650 +    /**
1651       * Returns a string identifying this pool, as well as its state,
1652       * including indications of run state, parallelism level, and
1653       * worker and task counts.
# Line 922 | Line 1655 | public class ForkJoinPool extends Abstra
1655       * @return a string identifying this pool, as well as its state
1656       */
1657      public String toString() {
925        int ps = parallelism;
926        int wc = workerCounts;
927        int rc = runControl;
1658          long st = getStealCount();
1659          long qt = getQueuedTaskCount();
1660          long qs = getQueuedSubmissionCount();
1661 +        int wc = workerCounts;
1662 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1663 +        int rc = wc & RUNNING_COUNT_MASK;
1664 +        int pc = parallelism;
1665 +        int rs = runState;
1666 +        int ac = rs & ACTIVE_COUNT_MASK;
1667          return super.toString() +
1668 <            "[" + runStateToString(runStateOf(rc)) +
1669 <            ", parallelism = " + ps +
1670 <            ", size = " + totalCountOf(wc) +
1671 <            ", active = " + activeCountOf(rc) +
1672 <            ", running = " + runningCountOf(wc) +
1668 >            "[" + runLevelToString(rs) +
1669 >            ", parallelism = " + pc +
1670 >            ", size = " + tc +
1671 >            ", active = " + ac +
1672 >            ", running = " + rc +
1673              ", steals = " + st +
1674              ", tasks = " + qt +
1675              ", submissions = " + qs +
1676              "]";
1677      }
1678  
1679 <    private static String runStateToString(int rs) {
1680 <        switch(rs) {
1681 <        case RUNNING: return "Running";
1682 <        case SHUTDOWN: return "Shutting down";
1683 <        case TERMINATING: return "Terminating";
948 <        case TERMINATED: return "Terminated";
949 <        default: throw new Error("Unknown run state");
950 <        }
1679 >    private static String runLevelToString(int s) {
1680 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1681 >                ((s & TERMINATING) != 0 ? "Terminating" :
1682 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1683 >                  "Running")));
1684      }
1685  
953    // lifecycle control
954
1686      /**
1687       * Initiates an orderly shutdown in which previously submitted
1688       * tasks are executed, but no new tasks will be accepted.
1689       * Invocation has no additional effect if already shut down.
1690       * Tasks that are in the process of being submitted concurrently
1691       * during the course of this method may or may not be rejected.
1692 +     *
1693       * @throws SecurityException if a security manager exists and
1694       *         the caller is not permitted to modify threads
1695       *         because it does not hold {@link
1696 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1696 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1697       */
1698      public void shutdown() {
1699          checkPermission();
1700 <        transitionRunStateTo(SHUTDOWN);
1701 <        if (canTerminateOnShutdown(runControl))
970 <            terminateOnShutdown();
1700 >        advanceRunLevel(SHUTDOWN);
1701 >        tryTerminate(false);
1702      }
1703  
1704      /**
1705 <     * Attempts to stop all actively executing tasks, and cancels all
1706 <     * waiting tasks.  Tasks that are in the process of being
1707 <     * submitted or executed concurrently during the course of this
1708 <     * method may or may not be rejected. Unlike some other executors,
1709 <     * this method cancels rather than collects non-executed tasks,
1710 <     * so always returns an empty list.
1705 >     * Attempts to cancel and/or stop all tasks, and reject all
1706 >     * subsequently submitted tasks.  Tasks that are in the process of
1707 >     * being submitted or executed concurrently during the course of
1708 >     * this method may or may not be rejected. This method cancels
1709 >     * both existing and unexecuted tasks, in order to permit
1710 >     * termination in the presence of task dependencies. So the method
1711 >     * always returns an empty list (unlike the case for some other
1712 >     * Executors).
1713 >     *
1714       * @return an empty list
1715       * @throws SecurityException if a security manager exists and
1716       *         the caller is not permitted to modify threads
1717       *         because it does not hold {@link
1718 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1718 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1719       */
1720      public List<Runnable> shutdownNow() {
1721          checkPermission();
1722 <        terminate();
1722 >        tryTerminate(true);
1723          return Collections.emptyList();
1724      }
1725  
1726      /**
1727 <     * Returns <tt>true</tt> if all tasks have completed following shut down.
1727 >     * Returns {@code true} if all tasks have completed following shut down.
1728       *
1729 <     * @return <tt>true</tt> if all tasks have completed following shut down
1729 >     * @return {@code true} if all tasks have completed following shut down
1730       */
1731      public boolean isTerminated() {
1732 <        return runStateOf(runControl) == TERMINATED;
1732 >        return runState >= TERMINATED;
1733      }
1734  
1735      /**
1736 <     * Returns <tt>true</tt> if the process of termination has
1737 <     * commenced but possibly not yet completed.
1736 >     * Returns {@code true} if the process of termination has
1737 >     * commenced but not yet completed.  This method may be useful for
1738 >     * debugging. A return of {@code true} reported a sufficient
1739 >     * period after shutdown may indicate that submitted tasks have
1740 >     * ignored or suppressed interruption, causing this executor not
1741 >     * to properly terminate.
1742       *
1743 <     * @return <tt>true</tt> if terminating
1743 >     * @return {@code true} if terminating but not yet terminated
1744       */
1745      public boolean isTerminating() {
1746 <        return runStateOf(runControl) >= TERMINATING;
1746 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1747      }
1748  
1749      /**
1750 <     * Returns <tt>true</tt> if this pool has been shut down.
1750 >     * Returns {@code true} if this pool has been shut down.
1751       *
1752 <     * @return <tt>true</tt> if this pool has been shut down
1752 >     * @return {@code true} if this pool has been shut down
1753       */
1754      public boolean isShutdown() {
1755 <        return runStateOf(runControl) >= SHUTDOWN;
1755 >        return runState >= SHUTDOWN;
1756      }
1757  
1758      /**
# Line 1024 | Line 1762 | public class ForkJoinPool extends Abstra
1762       *
1763       * @param timeout the maximum time to wait
1764       * @param unit the time unit of the timeout argument
1765 <     * @return <tt>true</tt> if this executor terminated and
1766 <     *         <tt>false</tt> if the timeout elapsed before termination
1765 >     * @return {@code true} if this executor terminated and
1766 >     *         {@code false} if the timeout elapsed before termination
1767       * @throws InterruptedException if interrupted while waiting
1768       */
1769      public boolean awaitTermination(long timeout, TimeUnit unit)
1770          throws InterruptedException {
1771 <        long nanos = unit.toNanos(timeout);
1034 <        final ReentrantLock lock = this.workerLock;
1035 <        lock.lock();
1036 <        try {
1037 <            for (;;) {
1038 <                if (isTerminated())
1039 <                    return true;
1040 <                if (nanos <= 0)
1041 <                    return false;
1042 <                nanos = termination.awaitNanos(nanos);
1043 <            }
1044 <        } finally {
1045 <            lock.unlock();
1046 <        }
1771 >        return terminationLatch.await(timeout, unit);
1772      }
1773  
1049    // Shutdown and termination support
1050
1774      /**
1775 <     * Callback from terminating worker. Null out the corresponding
1776 <     * workers slot, and if terminating, try to terminate, else try to
1054 <     * shrink workers array.
1055 <     * @param w the worker
1056 <     */
1057 <    final void workerTerminated(ForkJoinWorkerThread w) {
1058 <        updateStealCount(w);
1059 <        updateWorkerCount(-1);
1060 <        final ReentrantLock lock = this.workerLock;
1061 <        lock.lock();
1062 <        try {
1063 <            ForkJoinWorkerThread[] ws = workers;
1064 <            int idx = w.poolIndex;
1065 <            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1066 <                ws[idx] = null;
1067 <            if (totalCountOf(workerCounts) == 0) {
1068 <                terminate(); // no-op if already terminating
1069 <                transitionRunStateTo(TERMINATED);
1070 <                termination.signalAll();
1071 <            }
1072 <            else if (!isTerminating()) {
1073 <                tryShrinkWorkerArray();
1074 <                tryResumeSpare(true); // allow replacement
1075 <            }
1076 <        } finally {
1077 <            lock.unlock();
1078 <        }
1079 <        signalIdleWorkers(false);
1080 <    }
1081 <
1082 <    /**
1083 <     * Initiate termination.
1084 <     */
1085 <    private void terminate() {
1086 <        if (transitionRunStateTo(TERMINATING)) {
1087 <            stopAllWorkers();
1088 <            resumeAllSpares();
1089 <            signalIdleWorkers(true);
1090 <            cancelQueuedSubmissions();
1091 <            cancelQueuedWorkerTasks();
1092 <            interruptUnterminatedWorkers();
1093 <            signalIdleWorkers(true); // resignal after interrupt
1094 <        }
1095 <    }
1096 <
1097 <    /**
1098 <     * Possibly terminate when on shutdown state
1099 <     */
1100 <    private void terminateOnShutdown() {
1101 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1102 <            terminate();
1103 <    }
1104 <
1105 <    /**
1106 <     * Clear out and cancel submissions
1107 <     */
1108 <    private void cancelQueuedSubmissions() {
1109 <        ForkJoinTask<?> task;
1110 <        while ((task = pollSubmission()) != null)
1111 <            task.cancel(false);
1112 <    }
1113 <
1114 <    /**
1115 <     * Clean out worker queues.
1116 <     */
1117 <    private void cancelQueuedWorkerTasks() {
1118 <        final ReentrantLock lock = this.workerLock;
1119 <        lock.lock();
1120 <        try {
1121 <            ForkJoinWorkerThread[] ws = workers;
1122 <            for (int i = 0; i < ws.length; ++i) {
1123 <                ForkJoinWorkerThread t = ws[i];
1124 <                if (t != null)
1125 <                    t.cancelTasks();
1126 <            }
1127 <        } finally {
1128 <            lock.unlock();
1129 <        }
1130 <    }
1131 <
1132 <    /**
1133 <     * Set each worker's status to terminating. Requires lock to avoid
1134 <     * conflicts with add/remove
1135 <     */
1136 <    private void stopAllWorkers() {
1137 <        final ReentrantLock lock = this.workerLock;
1138 <        lock.lock();
1139 <        try {
1140 <            ForkJoinWorkerThread[] ws = workers;
1141 <            for (int i = 0; i < ws.length; ++i) {
1142 <                ForkJoinWorkerThread t = ws[i];
1143 <                if (t != null)
1144 <                    t.shutdownNow();
1145 <            }
1146 <        } finally {
1147 <            lock.unlock();
1148 <        }
1149 <    }
1150 <
1151 <    /**
1152 <     * Interrupt all unterminated workers.  This is not required for
1153 <     * sake of internal control, but may help unstick user code during
1154 <     * shutdown.
1155 <     */
1156 <    private void interruptUnterminatedWorkers() {
1157 <        final ReentrantLock lock = this.workerLock;
1158 <        lock.lock();
1159 <        try {
1160 <            ForkJoinWorkerThread[] ws = workers;
1161 <            for (int i = 0; i < ws.length; ++i) {
1162 <                ForkJoinWorkerThread t = ws[i];
1163 <                if (t != null && !t.isTerminated()) {
1164 <                    try {
1165 <                        t.interrupt();
1166 <                    } catch (SecurityException ignore) {
1167 <                    }
1168 <                }
1169 <            }
1170 <        } finally {
1171 <            lock.unlock();
1172 <        }
1173 <    }
1174 <
1175 <
1176 <    /*
1177 <     * Nodes for event barrier to manage idle threads.
1178 <     *
1179 <     * The event barrier has an event count and a wait queue (actually
1180 <     * a Treiber stack).  Workers are enabled to look for work when
1181 <     * the eventCount is incremented. If they fail to find some,
1182 <     * they may wait for next count. Synchronization events occur only
1183 <     * in enough contexts to maintain overall liveness:
1775 >     * Interface for extending managed parallelism for tasks running
1776 >     * in {@link ForkJoinPool}s.
1777       *
1778 <     *   - Submission of a new task to the pool
1779 <     *   - Creation or termination of a worker
1780 <     *   - pool termination
1781 <     *   - A worker pushing a task on an empty queue
1778 >     * <p>A {@code ManagedBlocker} provides two methods.
1779 >     * Method {@code isReleasable} must return {@code true} if
1780 >     * blocking is not necessary. Method {@code block} blocks the
1781 >     * current thread if necessary (perhaps internally invoking
1782 >     * {@code isReleasable} before actually blocking).
1783       *
1190     * The last case (pushing a task) occurs often enough, and is
1191     * heavy enough compared to simple stack pushes to require some
1192     * special handling: Method signalNonEmptyWorkerQueue returns
1193     * without advancing count if the queue appears to be empty.  This
1194     * would ordinarily result in races causing some queued waiters
1195     * not to be woken up. To avoid this, a worker in sync
1196     * rescans for tasks after being enqueued if it was the first to
1197     * enqueue, and aborts the wait if finding one, also helping to
1198     * signal others. This works well because the worker has nothing
1199     * better to do anyway, and so might as well help alleviate the
1200     * overhead and contention on the threads actually doing work.
1201     *
1202     * Queue nodes are basic Treiber stack nodes, also used for spare
1203     * stack.
1204     */
1205    static final class WaitQueueNode {
1206        WaitQueueNode next; // only written before enqueued
1207        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1208        final long count; // unused for spare stack
1209        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1210            count = c;
1211            thread = w;
1212        }
1213        final boolean signal() {
1214            ForkJoinWorkerThread t = thread;
1215            thread = null;
1216            if (t != null) {
1217                LockSupport.unpark(t);
1218                return true;
1219            }
1220            return false;
1221        }
1222    }
1223
1224    /**
1225     * Release at least one thread waiting for event count to advance,
1226     * if one exists. If initial attempt fails, release all threads.
1227     * @param all if false, at first try to only release one thread
1228     * @return current event
1229     */
1230    private long releaseIdleWorkers(boolean all) {
1231        long c;
1232        for (;;) {
1233            WaitQueueNode q = barrierStack;
1234            c = eventCount;
1235            long qc;
1236            if (q == null || (qc = q.count) >= c)
1237                break;
1238            if (!all) {
1239                if (casBarrierStack(q, q.next) && q.signal())
1240                    break;
1241                all = true;
1242            }
1243            else if (casBarrierStack(q, null)) {
1244                do {
1245                 q.signal();
1246                } while ((q = q.next) != null);
1247                break;
1248            }
1249        }
1250        return c;
1251    }
1252
1253    /**
1254     * Returns current barrier event count
1255     * @return current barrier event count
1256     */
1257    final long getEventCount() {
1258        long ec = eventCount;
1259        releaseIdleWorkers(true); // release to ensure accurate result
1260        return ec;
1261    }
1262
1263    /**
1264     * Increment event count and release at least one waiting thread,
1265     * if one exists (released threads will in turn wake up others).
1266     * @param all if true, try to wake up all
1267     */
1268    final void signalIdleWorkers(boolean all) {
1269        long c;
1270        do;while (!casEventCount(c = eventCount, c+1));
1271        releaseIdleWorkers(all);
1272    }
1273
1274    /**
1275     * Wake up threads waiting to steal a task. Because method
1276     * sync rechecks availability, it is OK to only proceed if
1277     * queue appears to be non-empty.
1278     */
1279    final void signalNonEmptyWorkerQueue() {
1280        // If CAS fails another signaller must have succeeded
1281        long c;
1282        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1283            releaseIdleWorkers(false);
1284    }
1285
1286    /**
1287     * Waits until event count advances from count, or some thread is
1288     * waiting on a previous count, or there is stealable work
1289     * available. Help wake up others on release.
1290     * @param w the calling worker thread
1291     * @param prev previous value returned by sync (or 0)
1292     * @return current event count
1293     */
1294    final long sync(ForkJoinWorkerThread w, long prev) {
1295        updateStealCount(w);
1296
1297        while (!w.isShutdown() && !isTerminating() &&
1298               (parallelism >= runningCountOf(workerCounts) ||
1299                !suspendIfSpare(w))) { // prefer suspend to waiting here
1300            WaitQueueNode node = null;
1301            boolean queued = false;
1302            for (;;) {
1303                if (!queued) {
1304                    if (eventCount != prev)
1305                        break;
1306                    WaitQueueNode h = barrierStack;
1307                    if (h != null && h.count != prev)
1308                        break; // release below and maybe retry
1309                    if (node == null)
1310                        node = new WaitQueueNode(w, prev);
1311                    queued = casBarrierStack(node.next = h, node);
1312                }
1313                else if (Thread.interrupted() ||
1314                         node.thread == null ||
1315                         (node.next == null && w.prescan()) ||
1316                         eventCount != prev) {
1317                    node.thread = null;
1318                    if (eventCount == prev) // help trigger
1319                        casEventCount(prev, prev+1);
1320                    break;
1321                }
1322                else
1323                    LockSupport.park(this);
1324            }
1325            long ec = eventCount;
1326            if (releaseIdleWorkers(false) != prev)
1327                return ec;
1328        }
1329        return prev; // return old count if aborted
1330    }
1331
1332    //  Parallelism maintenance
1333
1334    /**
1335     * Decrement running count; if too low, add spare.
1336     *
1337     * Conceptually, all we need to do here is add or resume a
1338     * spare thread when one is about to block (and remove or
1339     * suspend it later when unblocked -- see suspendIfSpare).
1340     * However, implementing this idea requires coping with
1341     * several problems: We have imperfect information about the
1342     * states of threads. Some count updates can and usually do
1343     * lag run state changes, despite arrangements to keep them
1344     * accurate (for example, when possible, updating counts
1345     * before signalling or resuming), especially when running on
1346     * dynamic JVMs that don't optimize the infrequent paths that
1347     * update counts. Generating too many threads can make these
1348     * problems become worse, because excess threads are more
1349     * likely to be context-switched with others, slowing them all
1350     * down, especially if there is no work available, so all are
1351     * busy scanning or idling.  Also, excess spare threads can
1352     * only be suspended or removed when they are idle, not
1353     * immediately when they aren't needed. So adding threads will
1354     * raise parallelism level for longer than necessary.  Also,
1355     * FJ applications often enounter highly transient peaks when
1356     * many threads are blocked joining, but for less time than it
1357     * takes to create or resume spares.
1358     *
1359     * @param joinMe if non-null, return early if done
1360     * @param maintainParallelism if true, try to stay within
1361     * target counts, else create only to avoid starvation
1362     * @return true if joinMe known to be done
1363     */
1364    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1365        maintainParallelism &= maintainsParallelism; // overrride
1366        boolean dec = false;  // true when running count decremented
1367        while (spareStack == null || !tryResumeSpare(dec)) {
1368            int counts = workerCounts;
1369            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1370                if (!needSpare(counts, maintainParallelism))
1371                    break;
1372                if (joinMe.status < 0)
1373                    return true;
1374                if (tryAddSpare(counts))
1375                    break;
1376            }
1377        }
1378        return false;
1379    }
1380
1381    /**
1382     * Same idea as preJoin
1383     */
1384    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1385        maintainParallelism &= maintainsParallelism;
1386        boolean dec = false;
1387        while (spareStack == null || !tryResumeSpare(dec)) {
1388            int counts = workerCounts;
1389            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1390                if (!needSpare(counts, maintainParallelism))
1391                    break;
1392                if (blocker.isReleasable())
1393                    return true;
1394                if (tryAddSpare(counts))
1395                    break;
1396            }
1397        }
1398        return false;
1399    }
1400
1401    /**
1402     * Returns true if a spare thread appears to be needed.  If
1403     * maintaining parallelism, returns true when the deficit in
1404     * running threads is more than the surplus of total threads, and
1405     * there is apparently some work to do.  This self-limiting rule
1406     * means that the more threads that have already been added, the
1407     * less parallelism we will tolerate before adding another.
1408     * @param counts current worker counts
1409     * @param maintainParallelism try to maintain parallelism
1410     */
1411    private boolean needSpare(int counts, boolean maintainParallelism) {
1412        int ps = parallelism;
1413        int rc = runningCountOf(counts);
1414        int tc = totalCountOf(counts);
1415        int runningDeficit = ps - rc;
1416        int totalSurplus = tc - ps;
1417        return (tc < maxPoolSize &&
1418                (rc == 0 || totalSurplus < 0 ||
1419                 (maintainParallelism &&
1420                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1421    }
1422
1423    /**
1424     * Returns true if at least one worker queue appears to be
1425     * nonempty. This is expensive but not often called. It is not
1426     * critical that this be accurate, but if not, more or fewer
1427     * running threads than desired might be maintained.
1428     */
1429    private boolean mayHaveQueuedWork() {
1430        ForkJoinWorkerThread[] ws = workers;
1431        int len = ws.length;
1432        ForkJoinWorkerThread v;
1433        for (int i = 0; i < len; ++i) {
1434            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1435                releaseIdleWorkers(false); // help wake up stragglers
1436                return true;
1437            }
1438        }
1439        return false;
1440    }
1441
1442    /**
1443     * Add a spare worker if lock available and no more than the
1444     * expected numbers of threads exist
1445     * @return true if successful
1446     */
1447    private boolean tryAddSpare(int expectedCounts) {
1448        final ReentrantLock lock = this.workerLock;
1449        int expectedRunning = runningCountOf(expectedCounts);
1450        int expectedTotal = totalCountOf(expectedCounts);
1451        boolean success = false;
1452        boolean locked = false;
1453        // confirm counts while locking; CAS after obtaining lock
1454        try {
1455            for (;;) {
1456                int s = workerCounts;
1457                int tc = totalCountOf(s);
1458                int rc = runningCountOf(s);
1459                if (rc > expectedRunning || tc > expectedTotal)
1460                    break;
1461                if (!locked && !(locked = lock.tryLock()))
1462                    break;
1463                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1464                    createAndStartSpare(tc);
1465                    success = true;
1466                    break;
1467                }
1468            }
1469        } finally {
1470            if (locked)
1471                lock.unlock();
1472        }
1473        return success;
1474    }
1475
1476    /**
1477     * Add the kth spare worker. On entry, pool coounts are already
1478     * adjusted to reflect addition.
1479     */
1480    private void createAndStartSpare(int k) {
1481        ForkJoinWorkerThread w = null;
1482        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1483        int len = ws.length;
1484        // Probably, we can place at slot k. If not, find empty slot
1485        if (k < len && ws[k] != null) {
1486            for (k = 0; k < len && ws[k] != null; ++k)
1487                ;
1488        }
1489        if (k < len && (w = createWorker(k)) != null) {
1490            ws[k] = w;
1491            w.start();
1492        }
1493        else
1494            updateWorkerCount(-1); // adjust on failure
1495        signalIdleWorkers(false);
1496    }
1497
1498    /**
1499     * Suspend calling thread w if there are excess threads.  Called
1500     * only from sync.  Spares are enqueued in a Treiber stack
1501     * using the same WaitQueueNodes as barriers.  They are resumed
1502     * mainly in preJoin, but are also woken on pool events that
1503     * require all threads to check run state.
1504     * @param w the caller
1505     */
1506    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1507        WaitQueueNode node = null;
1508        int s;
1509        while (parallelism < runningCountOf(s = workerCounts)) {
1510            if (node == null)
1511                node = new WaitQueueNode(w, 0);
1512            if (casWorkerCounts(s, s-1)) { // representation-dependent
1513                // push onto stack
1514                do;while (!casSpareStack(node.next = spareStack, node));
1515
1516                // block until released by resumeSpare
1517                while (node.thread != null) {
1518                    if (!Thread.interrupted())
1519                        LockSupport.park(this);
1520                }
1521                w.activate(); // help warm up
1522                return true;
1523            }
1524        }
1525        return false;
1526    }
1527
1528    /**
1529     * Try to pop and resume a spare thread.
1530     * @param updateCount if true, increment running count on success
1531     * @return true if successful
1532     */
1533    private boolean tryResumeSpare(boolean updateCount) {
1534        WaitQueueNode q;
1535        while ((q = spareStack) != null) {
1536            if (casSpareStack(q, q.next)) {
1537                if (updateCount)
1538                    updateRunningCount(1);
1539                q.signal();
1540                return true;
1541            }
1542        }
1543        return false;
1544    }
1545
1546    /**
1547     * Pop and resume all spare threads. Same idea as
1548     * releaseIdleWorkers.
1549     * @return true if any spares released
1550     */
1551    private boolean resumeAllSpares() {
1552        WaitQueueNode q;
1553        while ( (q = spareStack) != null) {
1554            if (casSpareStack(q, null)) {
1555                do {
1556                    updateRunningCount(1);
1557                    q.signal();
1558                } while ((q = q.next) != null);
1559                return true;
1560            }
1561        }
1562        return false;
1563    }
1564
1565    /**
1566     * Pop and shutdown excessive spare threads. Call only while
1567     * holding lock. This is not guaranteed to eliminate all excess
1568     * threads, only those suspended as spares, which are the ones
1569     * unlikely to be needed in the future.
1570     */
1571    private void trimSpares() {
1572        int surplus = totalCountOf(workerCounts) - parallelism;
1573        WaitQueueNode q;
1574        while (surplus > 0 && (q = spareStack) != null) {
1575            if (casSpareStack(q, null)) {
1576                do {
1577                    updateRunningCount(1);
1578                    ForkJoinWorkerThread w = q.thread;
1579                    if (w != null && surplus > 0 &&
1580                        runningCountOf(workerCounts) > 0 && w.shutdown())
1581                        --surplus;
1582                    q.signal();
1583                } while ((q = q.next) != null);
1584            }
1585        }
1586    }
1587
1588    /**
1589     * Returns approximate number of spares, just for diagnostics.
1590     */
1591    private int countSpares() {
1592        int sum = 0;
1593        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1594            ++sum;
1595        return sum;
1596    }
1597
1598    /**
1599     * Interface for extending managed parallelism for tasks running
1600     * in ForkJoinPools. A ManagedBlocker provides two methods.
1601     * Method <tt>isReleasable</tt> must return true if blocking is not
1602     * necessary. Method <tt>block</tt> blocks the current thread
1603     * if necessary (perhaps internally invoking isReleasable before
1604     * actually blocking.).
1784       * <p>For example, here is a ManagedBlocker based on a
1785       * ReentrantLock:
1786 <     * <pre>
1787 <     *   class ManagedLocker implements ManagedBlocker {
1788 <     *     final ReentrantLock lock;
1789 <     *     boolean hasLock = false;
1790 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1791 <     *     public boolean block() {
1792 <     *        if (!hasLock)
1793 <     *           lock.lock();
1794 <     *        return true;
1795 <     *     }
1796 <     *     public boolean isReleasable() {
1797 <     *        return hasLock || (hasLock = lock.tryLock());
1619 <     *     }
1786 >     *  <pre> {@code
1787 >     * class ManagedLocker implements ManagedBlocker {
1788 >     *   final ReentrantLock lock;
1789 >     *   boolean hasLock = false;
1790 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1791 >     *   public boolean block() {
1792 >     *     if (!hasLock)
1793 >     *       lock.lock();
1794 >     *     return true;
1795 >     *   }
1796 >     *   public boolean isReleasable() {
1797 >     *     return hasLock || (hasLock = lock.tryLock());
1798       *   }
1799 <     * </pre>
1799 >     * }}</pre>
1800       */
1801      public static interface ManagedBlocker {
1802          /**
1803           * Possibly blocks the current thread, for example waiting for
1804           * a lock or condition.
1805 <         * @return true if no additional blocking is necessary (i.e.,
1806 <         * if isReleasable would return true).
1805 >         *
1806 >         * @return {@code true} if no additional blocking is necessary
1807 >         * (i.e., if isReleasable would return true)
1808           * @throws InterruptedException if interrupted while waiting
1809 <         * (the method is not required to do so, but is allowe to).
1809 >         * (the method is not required to do so, but is allowed to)
1810           */
1811          boolean block() throws InterruptedException;
1812  
1813          /**
1814 <         * Returns true if blocking is unnecessary.
1814 >         * Returns {@code true} if blocking is unnecessary.
1815           */
1816          boolean isReleasable();
1817      }
1818  
1819      /**
1820       * Blocks in accord with the given blocker.  If the current thread
1821 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1822 <     * spare thread to be activated if necessary to ensure parallelism
1823 <     * while the current thread is blocked.  If
1824 <     * <tt>maintainParallelism</tt> is true and the pool supports it
1825 <     * (see <tt>getMaintainsParallelism</tt>), this method attempts to
1826 <     * maintain the pool's nominal parallelism. Otherwise if activates
1827 <     * a thread only if necessary to avoid complete starvation. This
1828 <     * option may be preferable when blockages use timeouts, or are
1829 <     * almost always brief.
1830 <     *
1831 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1832 <     * equivalent to
1833 <     * <pre>
1834 <     *   while (!blocker.isReleasable())
1835 <     *      if (blocker.block())
1836 <     *         return;
1837 <     * </pre>
1838 <     * If the caller is a ForkJoinTask, then the pool may first
1839 <     * be expanded to ensure parallelism, and later adjusted.
1821 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1822 >     * arranges for a spare thread to be activated if necessary to
1823 >     * ensure parallelism while the current thread is blocked.
1824 >     *
1825 >     * <p>If {@code maintainParallelism} is {@code true} and the pool
1826 >     * supports it ({@link #getMaintainsParallelism}), this method
1827 >     * attempts to maintain the pool's nominal parallelism. Otherwise
1828 >     * it activates a thread only if necessary to avoid complete
1829 >     * starvation. This option may be preferable when blockages use
1830 >     * timeouts, or are almost always brief.
1831 >     *
1832 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1833 >     * behaviorally equivalent to
1834 >     *  <pre> {@code
1835 >     * while (!blocker.isReleasable())
1836 >     *   if (blocker.block())
1837 >     *     return;
1838 >     * }</pre>
1839 >     *
1840 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1841 >     * first be expanded to ensure parallelism, and later adjusted.
1842       *
1843       * @param blocker the blocker
1844 <     * @param maintainParallelism if true and supported by this pool,
1845 <     * attempt to maintain the pool's nominal parallelism; otherwise
1846 <     * activate a thread only if necessary to avoid complete
1847 <     * starvation.
1848 <     * @throws InterruptedException if blocker.block did so.
1844 >     * @param maintainParallelism if {@code true} and supported by
1845 >     * this pool, attempt to maintain the pool's nominal parallelism;
1846 >     * otherwise activate a thread only if necessary to avoid
1847 >     * complete starvation.
1848 >     * @throws InterruptedException if blocker.block did so
1849       */
1850      public static void managedBlock(ManagedBlocker blocker,
1851                                      boolean maintainParallelism)
1852          throws InterruptedException {
1853          Thread t = Thread.currentThread();
1854 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1855 <                             ((ForkJoinWorkerThread)t).pool : null);
1856 <        if (!blocker.isReleasable()) {
1857 <            try {
1858 <                if (pool == null ||
1678 <                    !pool.preBlock(blocker, maintainParallelism))
1679 <                    awaitBlocker(blocker);
1680 <            } finally {
1681 <                if (pool != null)
1682 <                    pool.updateRunningCount(1);
1683 <            }
1684 <        }
1854 >        if (t instanceof ForkJoinWorkerThread)
1855 >            ((ForkJoinWorkerThread) t).pool.
1856 >                doBlock(blocker, maintainParallelism);
1857 >        else
1858 >            awaitBlocker(blocker);
1859      }
1860  
1861 +    /**
1862 +     * Performs Non-FJ blocking
1863 +     */
1864      private static void awaitBlocker(ManagedBlocker blocker)
1865          throws InterruptedException {
1866 <        do;while (!blocker.isReleasable() && !blocker.block());
1866 >        do {} while (!blocker.isReleasable() && !blocker.block());
1867 >    }
1868 >
1869 >    // AbstractExecutorService overrides.  These rely on undocumented
1870 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1871 >    // implement RunnableFuture.
1872 >
1873 >    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1874 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1875      }
1876  
1877 +    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1878 +        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1879 +    }
1880  
1881 <    // Temporary Unsafe mechanics for preliminary release
1881 >    // Unsafe mechanics
1882  
1883 <    static final Unsafe _unsafe;
1884 <    static final long eventCountOffset;
1885 <    static final long workerCountsOffset;
1886 <    static final long runControlOffset;
1887 <    static final long barrierStackOffset;
1888 <    static final long spareStackOffset;
1883 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1884 >    private static final long workerCountsOffset =
1885 >        objectFieldOffset("workerCounts", ForkJoinPool.class);
1886 >    private static final long runStateOffset =
1887 >        objectFieldOffset("runState", ForkJoinPool.class);
1888 >    private static final long eventCountOffset =
1889 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1890 >    private static final long eventWaitersOffset =
1891 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1892 >    private static final long stealCountOffset =
1893 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1894  
1895 <    static {
1895 >
1896 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1897          try {
1898 <            if (ForkJoinPool.class.getClassLoader() != null) {
1899 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1900 <                f.setAccessible(true);
1901 <                _unsafe = (Unsafe)f.get(null);
1902 <            }
1903 <            else
1710 <                _unsafe = Unsafe.getUnsafe();
1711 <            eventCountOffset = _unsafe.objectFieldOffset
1712 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
1713 <            workerCountsOffset = _unsafe.objectFieldOffset
1714 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
1715 <            runControlOffset = _unsafe.objectFieldOffset
1716 <                (ForkJoinPool.class.getDeclaredField("runControl"));
1717 <            barrierStackOffset = _unsafe.objectFieldOffset
1718 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
1719 <            spareStackOffset = _unsafe.objectFieldOffset
1720 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
1721 <        } catch (Exception e) {
1722 <            throw new RuntimeException("Could not initialize intrinsics", e);
1898 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1899 >        } catch (NoSuchFieldException e) {
1900 >            // Convert Exception to corresponding Error
1901 >            NoSuchFieldError error = new NoSuchFieldError(field);
1902 >            error.initCause(e);
1903 >            throw error;
1904          }
1905      }
1906  
1907 <    private boolean casEventCount(long cmp, long val) {
1908 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1909 <    }
1910 <    private boolean casWorkerCounts(int cmp, int val) {
1911 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1912 <    }
1913 <    private boolean casRunControl(int cmp, int val) {
1914 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1915 <    }
1916 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1917 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1918 <    }
1919 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1920 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
1907 >    /**
1908 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1909 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1910 >     * into a jdk.
1911 >     *
1912 >     * @return a sun.misc.Unsafe
1913 >     */
1914 >    private static sun.misc.Unsafe getUnsafe() {
1915 >        try {
1916 >            return sun.misc.Unsafe.getUnsafe();
1917 >        } catch (SecurityException se) {
1918 >            try {
1919 >                return java.security.AccessController.doPrivileged
1920 >                    (new java.security
1921 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1922 >                        public sun.misc.Unsafe run() throws Exception {
1923 >                            java.lang.reflect.Field f = sun.misc
1924 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1925 >                            f.setAccessible(true);
1926 >                            return (sun.misc.Unsafe) f.get(null);
1927 >                        }});
1928 >            } catch (java.security.PrivilegedActionException e) {
1929 >                throw new RuntimeException("Could not initialize intrinsics",
1930 >                                           e.getCause());
1931 >            }
1932 >        }
1933      }
1934   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines