ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.1 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.57 by dl, Wed Jul 7 19:52:31 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.ArrayList;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Collections;
15 > import java.util.List;
16 > import java.util.concurrent.locks.LockSupport;
17 > import java.util.concurrent.locks.ReentrantLock;
18 > import java.util.concurrent.atomic.AtomicInteger;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22 < * Host for a group of ForkJoinWorkerThreads.  A ForkJoinPool provides
23 < * the entry point for tasks submitted from non-ForkJoinTasks, as well
24 < * as management and monitoring operations.  Normally a single
25 < * ForkJoinPool is used for a large number of submitted
20 < * tasks. Otherwise, use would not usually outweigh the construction
21 < * and bookkeeping overhead of creating a large set of threads.
22 < *
23 < * <p>ForkJoinPools differ from other kinds of Executor mainly in that
24 < * they provide <em>work-stealing</em>: all threads in the pool
25 < * attempt to find and execute subtasks created by other active tasks
26 < * (eventually blocking if none exist). This makes them efficient when
27 < * most tasks spawn other subtasks (as do most ForkJoinTasks) but
28 < * possibly less so otherwise. It is however fine to combine execution
29 < * of some plain Runnable- or Callable- based activities with that of
30 < * ForkJoinTasks.
22 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 > * A {@code ForkJoinPool} provides the entry point for submissions
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>A ForkJoinPool may be constructed with a given parallelism level
28 < * (target pool size), which it attempts to maintain by dynamically
29 < * adding, suspending, or resuming threads, even if some tasks have
30 < * blocked waiting to join others. However, no such adjustments are
31 < * performed in the face of blocked IO or other unmanaged
32 < * synchronization. The nested ManagedBlocker interface enables
33 < * extension of the kinds of synchronization accommodated.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>The target parallelism level may also be set dynamically. You
38 < * can limit the number of threads dynamically constructed using
39 < * method <tt>setMaximumPoolSize</tt> and/or
40 < * <tt>setMaintainParallelism</tt>.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
49 < * <tt>getStealCount</tt>) that are intended to aid in developing,
49 > * {@link #getStealCount}) that are intended to aid in developing,
50   * tuning, and monitoring fork/join applications. Also, method
51 < * <tt>toString</tt> returns indications of pool state in a convenient
52 < * form for informal monitoring.
51 > * {@link #toString} returns indications of pool state in a
52 > * convenient form for informal monitoring.
53 > *
54 > * <p> As is the case with other ExecutorServices, there are three
55 > * main task execution methods summarized in the follwoing
56 > * table. These are designed to be used by clients not already engaged
57 > * in fork/join computations in the current pool.  The main forms of
58 > * these methods accept instances of {@code ForkJoinTask}, but
59 > * overloaded forms also allow mixed execution of plain {@code
60 > * Runnable}- or {@code Callable}- based activities as well.  However,
61 > * tasks that are already executing in a pool should normally
62 > * <em>NOT</em> use these pool execution methods, but instead use the
63 > * within-computation forms listed in the table. To avoid inadvertant
64 > * cyclic task dependencies and to improve performance, task
65 > * submissions to the current pool by an ongoing fork/join
66 > * computations may be implicitly translated to the corresponding
67 > * ForkJoinTask forms.
68 > *
69 > * <table BORDER CELLPADDING=3 CELLSPACING=1>
70 > *  <tr>
71 > *    <td></td>
72 > *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
73 > *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
74 > *  </tr>
75 > *  <tr>
76 > *    <td> <b>Arange async execution</td>
77 > *    <td> {@link #execute(ForkJoinTask)}</td>
78 > *    <td> {@link ForkJoinTask#fork}</td>
79 > *  </tr>
80 > *  <tr>
81 > *    <td> <b>Await and obtain result</td>
82 > *    <td> {@link #invoke(ForkJoinTask)}</td>
83 > *    <td> {@link ForkJoinTask#invoke}</td>
84 > *  </tr>
85 > *  <tr>
86 > *    <td> <b>Arrange exec and obtain Future</td>
87 > *    <td> {@link #submit(ForkJoinTask)}</td>
88 > *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
89 > *  </tr>
90 > * </table>
91 > *
92 > * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
93 > * used for all parallel task execution in a program or subsystem.
94 > * Otherwise, use would not usually outweigh the construction and
95 > * bookkeeping overhead of creating a large set of threads. For
96 > * example, a common pool could be used for the {@code SortTasks}
97 > * illustrated in {@link RecursiveAction}. Because {@code
98 > * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
99 > * daemon} mode, there is typically no need to explicitly {@link
100 > * #shutdown} such a pool upon program exit.
101 > *
102 > * <pre>
103 > * static final ForkJoinPool mainPool = new ForkJoinPool();
104 > * ...
105 > * public void sort(long[] array) {
106 > *   mainPool.invoke(new SortTask(array, 0, array.length));
107 > * }
108 > * </pre>
109   *
110   * <p><b>Implementation notes</b>: This implementation restricts the
111 < * maximum parallelism to 32767. Attempts to create pools with greater
112 < * than the maximum result in IllegalArgumentExceptions.
111 > * maximum number of running threads to 32767. Attempts to create
112 > * pools with greater than the maximum number result in
113 > * {@code IllegalArgumentException}.
114 > *
115 > * <p>This implementation rejects submitted tasks (that is, by throwing
116 > * {@link RejectedExecutionException}) only when the pool is shut down.
117 > *
118 > * @since 1.7
119 > * @author Doug Lea
120   */
121 < public class ForkJoinPool extends AbstractExecutorService
57 <    implements ExecutorService {
121 > public class ForkJoinPool extends AbstractExecutorService {
122  
123      /*
124 <     * See the extended comments interspersed below for design,
125 <     * rationale, and walkthroughs.
124 >     * Implementation Overview
125 >     *
126 >     * This class provides the central bookkeeping and control for a
127 >     * set of worker threads: Submissions from non-FJ threads enter
128 >     * into a submission queue. Workers take these tasks and typically
129 >     * split them into subtasks that may be stolen by other workers.
130 >     * The main work-stealing mechanics implemented in class
131 >     * ForkJoinWorkerThread give first priority to processing tasks
132 >     * from their own queues (LIFO or FIFO, depending on mode), then
133 >     * to randomized FIFO steals of tasks in other worker queues, and
134 >     * lastly to new submissions. These mechanics do not consider
135 >     * affinities, loads, cache localities, etc, so rarely provide the
136 >     * best possible performance on a given machine, but portably
137 >     * provide good throughput by averaging over these factors.
138 >     * (Further, even if we did try to use such information, we do not
139 >     * usually have a basis for exploiting it. For example, some sets
140 >     * of tasks profit from cache affinities, but others are harmed by
141 >     * cache pollution effects.)
142 >     *
143 >     * The main throughput advantages of work-stealing stem from
144 >     * decentralized control -- workers mostly steal tasks from each
145 >     * other. We do not want to negate this by creating bottlenecks
146 >     * implementing the management responsibilities of this class. So
147 >     * we use a collection of techniques that avoid, reduce, or cope
148 >     * well with contention. These entail several instances of
149 >     * bit-packing into CASable fields to maintain only the minimally
150 >     * required atomicity. To enable such packing, we restrict maximum
151 >     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
152 >     * bit field), which is far in excess of normal operating range.
153 >     * Even though updates to some of these bookkeeping fields do
154 >     * sometimes contend with each other, they don't normally
155 >     * cache-contend with updates to others enough to warrant memory
156 >     * padding or isolation. So they are all held as fields of
157 >     * ForkJoinPool objects.  The main capabilities are as follows:
158 >     *
159 >     * 1. Creating and removing workers. Workers are recorded in the
160 >     * "workers" array. This is an array as opposed to some other data
161 >     * structure to support index-based random steals by workers.
162 >     * Updates to the array recording new workers and unrecording
163 >     * terminated ones are protected from each other by a lock
164 >     * (workerLock) but the array is otherwise concurrently readable,
165 >     * and accessed directly by workers. To simplify index-based
166 >     * operations, the array size is always a power of two, and all
167 >     * readers must tolerate null slots. Currently, all worker thread
168 >     * creation is on-demand, triggered by task submissions,
169 >     * replacement of terminated workers, and/or compensation for
170 >     * blocked workers. However, all other support code is set up to
171 >     * work with other policies.
172 >     *
173 >     * 2. Bookkeeping for dynamically adding and removing workers. We
174 >     * aim to approximately maintain the given level of parallelism.
175 >     * When some workers are known to be blocked (on joins or via
176 >     * ManagedBlocker), we may create or resume others to take their
177 >     * place until they unblock (see below). Implementing this
178 >     * requires counts of the number of "running" threads (i.e., those
179 >     * that are neither blocked nor artifically suspended) as well as
180 >     * the total number.  These two values are packed into one field,
181 >     * "workerCounts" because we need accurate snapshots when deciding
182 >     * to create, resume or suspend.  To support these decisions,
183 >     * updates to spare counts must be prospective (not
184 >     * retrospective).  For example, the running count is decremented
185 >     * before blocking by a thread about to block as a spare, but
186 >     * incremented by the thread about to unblock it. Updates upon
187 >     * resumption ofr threads blocking in awaitJoin or awaitBlocker
188 >     * cannot usually be prospective, so the running count is in
189 >     * general an upper bound of the number of productively running
190 >     * threads Updates to the workerCounts field sometimes transiently
191 >     * encounter a fair amount of contention when join dependencies
192 >     * are such that many threads block or unblock at about the same
193 >     * time. We alleviate this by sometimes performing an alternative
194 >     * action on contention like releasing waiters or locating spares.
195 >     *
196 >     * 3. Maintaining global run state. The run state of the pool
197 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
198 >     * those in other Executor implementations, as well as a count of
199 >     * "active" workers -- those that are, or soon will be, or
200 >     * recently were executing tasks. The runLevel and active count
201 >     * are packed together in order to correctly trigger shutdown and
202 >     * termination. Without care, active counts can be subject to very
203 >     * high contention.  We substantially reduce this contention by
204 >     * relaxing update rules.  A worker must claim active status
205 >     * prospectively, by activating if it sees that a submitted or
206 >     * stealable task exists (it may find after activating that the
207 >     * task no longer exists). It stays active while processing this
208 >     * task (if it exists) and any other local subtasks it produces,
209 >     * until it cannot find any other tasks. It then tries
210 >     * inactivating (see method preStep), but upon update contention
211 >     * instead scans for more tasks, later retrying inactivation if it
212 >     * doesn't find any.
213 >     *
214 >     * 4. Managing idle workers waiting for tasks. We cannot let
215 >     * workers spin indefinitely scanning for tasks when none are
216 >     * available. On the other hand, we must quickly prod them into
217 >     * action when new tasks are submitted or generated.  We
218 >     * park/unpark these idle workers using an event-count scheme.
219 >     * Field eventCount is incremented upon events that may enable
220 >     * workers that previously could not find a task to now find one:
221 >     * Submission of a new task to the pool, or another worker pushing
222 >     * a task onto a previously empty queue.  (We also use this
223 >     * mechanism for termination and reconfiguration actions that
224 >     * require wakeups of idle workers).  Each worker maintains its
225 >     * last known event count, and blocks when a scan for work did not
226 >     * find a task AND its lastEventCount matches the current
227 >     * eventCount. Waiting idle workers are recorded in a variant of
228 >     * Treiber stack headed by field eventWaiters which, when nonzero,
229 >     * encodes the thread index and count awaited for by the worker
230 >     * thread most recently calling eventSync. This thread in turn has
231 >     * a record (field nextEventWaiter) for the next waiting worker.
232 >     * In addition to allowing simpler decisions about need for
233 >     * wakeup, the event count bits in eventWaiters serve the role of
234 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
235 >     * in task diffusion, workers not otherwise occupied may invoke
236 >     * method releaseWaiters, that removes and signals (unparks)
237 >     * workers not waiting on current count. To minimize task
238 >     * production stalls associate with signalling, any worker pushing
239 >     * a task on an empty queue invokes the weaker method signalWork,
240 >     * that only releases idle workers until it detects interference
241 >     * by other threads trying to release, and lets them take
242 >     * over. The net effect is a tree-like diffusion of signals, where
243 >     * released threads (and possibly others) help with unparks.  To
244 >     * further reduce contention effects a bit, failed CASes to
245 >     * increment field eventCount are tolerated without retries.
246 >     * Conceptually they are merged into the same event, which is OK
247 >     * when their only purpose is to enable workers to scan for work.
248 >     *
249 >     * 5. Managing suspension of extra workers. When a worker is about
250 >     * to block waiting for a join (or via ManagedBlockers), we may
251 >     * create a new thread to maintain parallelism level, or at least
252 >     * avoid starvation (see below). Usually, extra threads are needed
253 >     * for only very short periods, yet join dependencies are such
254 >     * that we sometimes need them in bursts. Rather than create new
255 >     * threads each time this happens, we suspend no-longer-needed
256 >     * extra ones as "spares". For most purposes, we don't distinguish
257 >     * "extra" spare threads from normal "core" threads: On each call
258 >     * to preStep (the only point at which we can do this) a worker
259 >     * checks to see if there are now too many running workers, and if
260 >     * so, suspends itself.  Methods awaitJoin and awaitBlocker look
261 >     * for suspended threads to resume before considering creating a
262 >     * new replacement. We don't need a special data structure to
263 >     * maintain spares; simply scanning the workers array looking for
264 >     * worker.isSuspended() is fine because the calling thread is
265 >     * otherwise not doing anything useful anyway; we are at least as
266 >     * happy if after locating a spare, the caller doesn't actually
267 >     * block because the join is ready before we try to adjust and
268 >     * compensate.  Note that this is intrinsically racy.  One thread
269 >     * may become a spare at about the same time as another is
270 >     * needlessly being created. We counteract this and related slop
271 >     * in part by requiring resumed spares to immediately recheck (in
272 >     * preStep) to see whether they they should re-suspend. The only
273 >     * effective difference between "extra" and "core" threads is that
274 >     * we allow the "extra" ones to time out and die if they are not
275 >     * resumed within a keep-alive interval of a few seconds. This is
276 >     * implemented mainly within ForkJoinWorkerThread, but requires
277 >     * some coordination (isTrimmed() -- meaning killed while
278 >     * suspended) to correctly maintain pool counts.
279 >     *
280 >     * 6. Deciding when to create new workers. The main dynamic
281 >     * control in this class is deciding when to create extra threads,
282 >     * in methods awaitJoin and awaitBlocker. We always need to create
283 >     * one when the number of running threads becomes zero. But
284 >     * because blocked joins are typically dependent, we don't
285 >     * necessarily need or want one-to-one replacement. Instead, we
286 >     * use a combination of heuristics that adds threads only when the
287 >     * pool appears to be approaching starvation.  These effectively
288 >     * reduce churn at the price of systematically undershooting
289 >     * target parallelism when many threads are blocked.  However,
290 >     * biasing toward undeshooting partially compensates for the above
291 >     * mechanics to suspend extra threads, that normally lead to
292 >     * overshoot because we can only suspend workers in-between
293 >     * top-level actions. It also better copes with the fact that some
294 >     * of the methods in this class tend to never become compiled (but
295 >     * are interpreted), so some components of the entire set of
296 >     * controls might execute many times faster than others. And
297 >     * similarly for cases where the apparent lack of work is just due
298 >     * to GC stalls and other transient system activity.
299 >     *
300 >     * Beware that there is a lot of representation-level coupling
301 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
302 >     * ForkJoinTask.  For example, direct access to "workers" array by
303 >     * workers, and direct access to ForkJoinTask.status by both
304 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
305 >     * trying to reduce this, since any associated future changes in
306 >     * representations will need to be accompanied by algorithmic
307 >     * changes anyway.
308 >     *
309 >     * Style notes: There are lots of inline assignments (of form
310 >     * "while ((local = field) != 0)") which are usually the simplest
311 >     * way to ensure read orderings. Also several occurrences of the
312 >     * unusual "do {} while(!cas...)" which is the simplest way to
313 >     * force an update of a CAS'ed variable. There are also a few
314 >     * other coding oddities that help some methods perform reasonably
315 >     * even when interpreted (not compiled).
316 >     *
317 >     * The order of declarations in this file is: (1) statics (2)
318 >     * fields (along with constants used when unpacking some of them)
319 >     * (3) internal control methods (4) callbacks and other support
320 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
321 >     * methods (plus a few little helpers).
322       */
323  
64    /** Mask for packing and unpacking shorts */
65    private static final int  shortMask = 0xffff;
66
67    /** Max pool size -- must be a power of two minus 1 */
68    private static final int MAX_THREADS =  0x7FFF;
69
324      /**
325 <     * Factory for creating new ForkJoinWorkerThreads.  A
326 <     * ForkJoinWorkerThreadFactory must be defined and used for
327 <     * ForkJoinWorkerThread subclasses that extend base functionality
328 <     * or initialize threads with different contexts.
325 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
326 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
327 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
328 >     * functionality or initialize threads with different contexts.
329       */
330      public static interface ForkJoinWorkerThreadFactory {
331          /**
332           * Returns a new worker thread operating in the given pool.
333           *
334           * @param pool the pool this thread works in
335 <         * @throws NullPointerException if pool is null;
335 >         * @throws NullPointerException if the pool is null
336           */
337          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
338      }
339  
340      /**
341 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
341 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
342       * new ForkJoinWorkerThread.
343       */
344 <    public static class  DefaultForkJoinWorkerThreadFactory
344 >    static class DefaultForkJoinWorkerThreadFactory
345          implements ForkJoinWorkerThreadFactory {
346          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
347 <            try {
94 <                return new ForkJoinWorkerThread(pool);
95 <            } catch (OutOfMemoryError oom)  {
96 <                return null;
97 <            }
347 >            return new ForkJoinWorkerThread(pool);
348          }
349      }
350  
351      /**
352 <     * The default ForkJoinWorkerThreadFactory, used unless overridden
353 <     * in ForkJoinPool constructors.
352 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
353 >     * overridden in ForkJoinPool constructors.
354       */
355 <    private static final DefaultForkJoinWorkerThreadFactory
355 >    public static final ForkJoinWorkerThreadFactory
356          defaultForkJoinWorkerThreadFactory =
357          new DefaultForkJoinWorkerThreadFactory();
358  
109
359      /**
360       * Permission required for callers of methods that may start or
361       * kill threads.
# Line 131 | Line 380 | public class ForkJoinPool extends Abstra
380          new AtomicInteger();
381  
382      /**
383 <     * Array holding all worker threads in the pool. Array size must
383 >     * Absolute bound for parallelism level. Twice this number must
384 >     * fit into a 16bit field to enable word-packing for some counts.
385 >     */
386 >    private static final int MAX_THREADS = 0x7fff;
387 >
388 >    /**
389 >     * Array holding all worker threads in the pool.  Array size must
390       * be a power of two.  Updates and replacements are protected by
391 <     * workerLock, but it is always kept in a consistent enough state
392 <     * to be randomly accessed without locking by workers performing
393 <     * work-stealing.
391 >     * workerLock, but the array is always kept in a consistent enough
392 >     * state to be randomly accessed without locking by workers
393 >     * performing work-stealing, as well as other traversal-based
394 >     * methods in this class. All readers must tolerate that some
395 >     * array slots may be null.
396       */
397      volatile ForkJoinWorkerThread[] workers;
398  
399      /**
400 <     * Lock protecting access to workers.
400 >     * Queue for external submissions.
401       */
402 <    private final ReentrantLock workerLock;
402 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
403  
404      /**
405 <     * Condition for awaitTermination.
405 >     * Lock protecting updates to workers array.
406       */
407 <    private final Condition termination;
407 >    private final ReentrantLock workerLock;
408  
409      /**
410 <     * The uncaught exception handler used when any worker
154 <     * abrupty terminates
410 >     * Latch released upon termination.
411       */
412 <    private Thread.UncaughtExceptionHandler ueh;
412 >    private final Phaser termination;
413  
414      /**
415       * Creation factory for worker threads.
# Line 161 | Line 417 | public class ForkJoinPool extends Abstra
417      private final ForkJoinWorkerThreadFactory factory;
418  
419      /**
164     * Head of stack of threads that were created to maintain
165     * parallelism when other threads blocked, but have since
166     * suspended when the parallelism level rose.
167     */
168    private volatile WaitQueueNode spareStack;
169
170    /**
420       * Sum of per-thread steal counts, updated only when threads are
421       * idle or terminating.
422       */
423 <    private final AtomicLong stealCount;
423 >    private volatile long stealCount;
424  
425      /**
426 <     * Queue for external submissions.
426 >     * Encoded record of top of treiber stack of threads waiting for
427 >     * events. The top 32 bits contain the count being waited for. The
428 >     * bottom word contains one plus the pool index of waiting worker
429 >     * thread.
430       */
431 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
431 >    private volatile long eventWaiters;
432 >
433 >    private static final int  EVENT_COUNT_SHIFT = 32;
434 >    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
435  
436      /**
437 <     * Head of Treiber stack for barrier sync. See below for explanation
437 >     * A counter for events that may wake up worker threads:
438 >     *   - Submission of a new task to the pool
439 >     *   - A worker pushing a task on an empty queue
440 >     *   - termination and reconfiguration
441       */
442 <    private volatile WaitQueueNode barrierStack;
442 >    private volatile int eventCount;
443  
444      /**
445 <     * The count for event barrier
445 >     * Lifecycle control. The low word contains the number of workers
446 >     * that are (probably) executing tasks. This value is atomically
447 >     * incremented before a worker gets a task to run, and decremented
448 >     * when worker has no tasks and cannot find any.  Bits 16-18
449 >     * contain runLevel value. When all are zero, the pool is
450 >     * running. Level transitions are monotonic (running -> shutdown
451 >     * -> terminating -> terminated) so each transition adds a bit.
452 >     * These are bundled together to ensure consistent read for
453 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
454 >     * and active threads is zero).
455 >     */
456 >    private volatile int runState;
457 >
458 >    // Note: The order among run level values matters.
459 >    private static final int RUNLEVEL_SHIFT     = 16;
460 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
461 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
462 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
463 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
464 >    private static final int ONE_ACTIVE         = 1; // active update delta
465 >
466 >    /**
467 >     * Holds number of total (i.e., created and not yet terminated)
468 >     * and running (i.e., not blocked on joins or other managed sync)
469 >     * threads, packed together to ensure consistent snapshot when
470 >     * making decisions about creating and suspending spare
471 >     * threads. Updated only by CAS. Note that adding a new worker
472 >     * requires incrementing both counts, since workers start off in
473 >     * running state.  This field is also used for memory-fencing
474 >     * configuration parameters.
475       */
476 <    private volatile long eventCount;
476 >    private volatile int workerCounts;
477 >
478 >    private static final int TOTAL_COUNT_SHIFT  = 16;
479 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
480 >    private static final int ONE_RUNNING        = 1;
481 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
482  
483      /**
484 <     * Pool number, just for assigning useful names to worker threads
484 >     * The target parallelism level.
485 >     * Accessed directly by ForkJoinWorkerThreads.
486       */
487 <    private final int poolNumber;
487 >    final int parallelism;
488  
489      /**
490 <     * The maximum allowed pool size
490 >     * True if use local fifo, not default lifo, for local polling
491 >     * Read by, and replicated by ForkJoinWorkerThreads
492       */
493 <    private volatile int maxPoolSize;
493 >    final boolean locallyFifo;
494  
495      /**
496 <     * The desired parallelism level, updated only under workerLock.
496 >     * The uncaught exception handler used when any worker abruptly
497 >     * terminates.
498       */
499 <    private volatile int parallelism;
499 >    private final Thread.UncaughtExceptionHandler ueh;
500  
501      /**
502 <     * Holds number of total (i.e., created and not yet terminated)
208 <     * and running (i.e., not blocked on joins or other managed sync)
209 <     * threads, packed into one int to ensure consistent snapshot when
210 <     * making decisions about creating and suspending spare
211 <     * threads. Updated only by CAS.  Note: CASes in
212 <     * updateRunningCount and preJoin running active count is in low
213 <     * word, so need to be modified if this changes
502 >     * Pool number, just for assigning useful names to worker threads
503       */
504 <    private volatile int workerCounts;
504 >    private final int poolNumber;
505  
506 <    private static int totalCountOf(int s)           { return s >>> 16;  }
218 <    private static int runningCountOf(int s)         { return s & shortMask; }
219 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
506 >    // utilities for updating fields
507  
508      /**
509 <     * Add delta (which may be negative) to running count.  This must
223 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
225 <     * @param delta the number to add
509 >     * Increments running count.  Also used by ForkJoinTask.
510       */
511 <    final void updateRunningCount(int delta) {
512 <        int s;
513 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
511 >    final void incrementRunningCount() {
512 >        int c;
513 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
514 >                                               c = workerCounts,
515 >                                               c + ONE_RUNNING));
516 >    }
517 >    
518 >    /**
519 >     * Tries to decrement running count unless already zero
520 >     */
521 >    final boolean tryDecrementRunningCount() {
522 >        int wc = workerCounts;
523 >        if ((wc & RUNNING_COUNT_MASK) == 0)
524 >            return false;
525 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
526 >                                        wc, wc - ONE_RUNNING);
527      }
528  
529      /**
530 <     * Add delta (which may be negative) to both total and running
531 <     * count.  This must be called upon creation and termination of
532 <     * worker threads.
533 <     * @param delta the number to add
530 >     * Tries incrementing active count; fails on contention.
531 >     * Called by workers before executing tasks.
532 >     *
533 >     * @return true on success
534       */
535 <    private void updateWorkerCount(int delta) {
536 <        int d = delta + (delta << 16); // add to both lo and hi parts
537 <        int s;
538 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
535 >    final boolean tryIncrementActiveCount() {
536 >        int c;
537 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
538 >                                        c = runState, c + ONE_ACTIVE);
539      }
540  
541      /**
542 <     * Lifecycle control. High word contains runState, low word
543 <     * contains the number of workers that are (probably) executing
247 <     * tasks. This value is atomically incremented before a worker
248 <     * gets a task to run, and decremented when worker has no tasks
249 <     * and cannot find any. These two fields are bundled together to
250 <     * support correct termination triggering.  Note: activeCount
251 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
542 >     * Tries decrementing active count; fails on contention.
543 >     * Called when workers cannot find tasks to run.
544       */
545 <    private volatile int runControl;
545 >    final boolean tryDecrementActiveCount() {
546 >        int c;
547 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
548 >                                        c = runState, c - ONE_ACTIVE);
549 >    }
550  
551 <    // RunState values. Order among values matters
552 <    private static final int RUNNING     = 0;
553 <    private static final int SHUTDOWN    = 1;
554 <    private static final int TERMINATING = 2;
555 <    private static final int TERMINATED  = 3;
551 >    /**
552 >     * Advances to at least the given level. Returns true if not
553 >     * already in at least the given level.
554 >     */
555 >    private boolean advanceRunLevel(int level) {
556 >        for (;;) {
557 >            int s = runState;
558 >            if ((s & level) != 0)
559 >                return false;
560 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
561 >                return true;
562 >        }
563 >    }
564  
565 <    private static int runStateOf(int c)             { return c >>> 16; }
263 <    private static int activeCountOf(int c)          { return c & shortMask; }
264 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
565 >    // workers array maintenance
566  
567      /**
568 <     * Increment active count. Called by workers before/during
268 <     * executing tasks.
568 >     * Records and returns a workers array index for new worker.
569       */
570 <    final void incrementActiveCount() {
571 <        int c;
572 <        do;while (!casRunControl(c = runControl, c+1));
570 >    private int recordWorker(ForkJoinWorkerThread w) {
571 >        // Try using slot totalCount-1. If not available, scan and/or resize
572 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
573 >        final ReentrantLock lock = this.workerLock;
574 >        lock.lock();
575 >        try {
576 >            ForkJoinWorkerThread[] ws = workers;
577 >            int nws = ws.length;
578 >            if (k < 0 || k >= nws || ws[k] != null) {
579 >                for (k = 0; k < nws && ws[k] != null; ++k)
580 >                    ;
581 >                if (k == nws)
582 >                    ws = Arrays.copyOf(ws, nws << 1);
583 >            }
584 >            ws[k] = w;
585 >            workers = ws; // volatile array write ensures slot visibility
586 >        } finally {
587 >            lock.unlock();
588 >        }
589 >        return k;
590      }
591  
592      /**
593 <     * Decrement active count; possibly trigger termination.
277 <     * Called by workers when they can't find tasks.
593 >     * Nulls out record of worker in workers array
594       */
595 <    final void decrementActiveCount() {
596 <        int c, nextc;
597 <        do;while (!casRunControl(c = runControl, nextc = c-1));
598 <        if (canTerminateOnShutdown(nextc))
599 <            terminateOnShutdown();
595 >    private void forgetWorker(ForkJoinWorkerThread w) {
596 >        int idx = w.poolIndex;
597 >        // Locking helps method recordWorker avoid unecessary expansion
598 >        final ReentrantLock lock = this.workerLock;
599 >        lock.lock();
600 >        try {
601 >            ForkJoinWorkerThread[] ws = workers;
602 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
603 >                ws[idx] = null;
604 >        } finally {
605 >            lock.unlock();
606 >        }
607      }
608  
609 +    // adding and removing workers
610 +
611      /**
612 <     * Return true if argument represents zero active count and
613 <     * nonzero runstate, which is the triggering condition for
614 <     * terminating on shutdown.
612 >     * Tries to create and add new worker. Assumes that worker counts
613 >     * are already updated to accommodate the worker, so adjusts on
614 >     * failure.
615 >     *
616 >     * @return new worker or null if creation failed
617       */
618 <    private static boolean canTerminateOnShutdown(int c) {
619 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
618 >    private ForkJoinWorkerThread addWorker() {
619 >        ForkJoinWorkerThread w = null;
620 >        try {
621 >            w = factory.newThread(this);
622 >        } finally { // Adjust on either null or exceptional factory return
623 >            if (w == null) {
624 >                onWorkerCreationFailure();
625 >                return null;
626 >            }
627 >        }
628 >        w.start(recordWorker(w), ueh);
629 >        return w;
630      }
631  
632      /**
633 <     * Transition run state to at least the given state. Return true
297 <     * if not already at least given state.
633 >     * Adjusts counts upon failure to create worker
634       */
635 <    private boolean transitionRunStateTo(int state) {
635 >    private void onWorkerCreationFailure() {
636          for (;;) {
637 <            int c = runControl;
638 <            if (runStateOf(c) >= state)
639 <                return false;
640 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
641 <                return true;
637 >            int wc = workerCounts;
638 >            if ((wc >>> TOTAL_COUNT_SHIFT) > 0 &&
639 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
640 >                                         wc, wc - (ONE_RUNNING|ONE_TOTAL)))
641 >                break;
642          }
643 +        tryTerminate(false); // in case of failure during shutdown
644      }
645  
646      /**
647 <     * Controls whether to add spares to maintain parallelism
647 >     * Create enough total workers to establish target parallelism,
648 >     * giving up if terminating or addWorker fails
649       */
650 <    private volatile boolean maintainsParallelism;
650 >    private void ensureEnoughTotalWorkers() {
651 >        int wc;
652 >        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
653 >               runState < TERMINATING) {
654 >            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
655 >                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
656 >                 addWorker() == null))
657 >                break;
658 >        }
659 >    }
660  
661 <    // Constructors
661 >    /**
662 >     * Final callback from terminating worker.  Removes record of
663 >     * worker from array, and adjusts counts. If pool is shutting
664 >     * down, tries to complete terminatation, else possibly replaces
665 >     * the worker.
666 >     *
667 >     * @param w the worker
668 >     */
669 >    final void workerTerminated(ForkJoinWorkerThread w) {
670 >        if (w.active) { // force inactive
671 >            w.active = false;
672 >            do {} while (!tryDecrementActiveCount());
673 >        }
674 >        forgetWorker(w);
675 >
676 >        // Decrement total count, and if was running, running count
677 >        // Spin (waiting for other updates) if either would be negative
678 >        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
679 >        int unit = ONE_TOTAL + nr;
680 >        for (;;) {
681 >            int wc = workerCounts;
682 >            int rc = wc & RUNNING_COUNT_MASK;
683 >            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
684 >                Thread.yield(); // back off if waiting for other updates
685 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
686 >                                              wc, wc - unit))
687 >                break;
688 >        }
689 >
690 >        accumulateStealCount(w); // collect final count
691 >        if (!tryTerminate(false))
692 >            ensureEnoughTotalWorkers();
693 >    }
694 >
695 >    // Waiting for and signalling events
696  
697      /**
698 <     * Creates a ForkJoinPool with a pool size equal to the number of
318 <     * processors available on the system and using the default
319 <     * ForkJoinWorkerThreadFactory,
320 <     * @throws SecurityException if a security manager exists and
321 <     *         the caller is not permitted to modify threads
322 <     *         because it does not hold {@link
323 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
698 >     * Releases workers blocked on a count not equal to current count.
699       */
700 <    public ForkJoinPool() {
701 <        this(Runtime.getRuntime().availableProcessors(),
702 <             defaultForkJoinWorkerThreadFactory);
700 >    private void releaseWaiters() {
701 >        long top;
702 >        int id;
703 >        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
704 >               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
705 >            ForkJoinWorkerThread[] ws = workers;
706 >            ForkJoinWorkerThread w;
707 >            if (ws.length >= id && (w = ws[id - 1]) != null &&
708 >                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
709 >                                          top, w.nextWaiter))
710 >                LockSupport.unpark(w);
711 >        }
712      }
713  
714      /**
715 <     * Creates a ForkJoinPool with the indicated parellelism level
716 <     * threads, and using the default ForkJoinWorkerThreadFactory,
333 <     * @param parallelism the number of worker threads
334 <     * @throws IllegalArgumentException if parallelism less than or
335 <     * equal to zero
336 <     * @throws SecurityException if a security manager exists and
337 <     *         the caller is not permitted to modify threads
338 <     *         because it does not hold {@link
339 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
715 >     * Ensures eventCount on exit is different (mod 2^32) than on
716 >     * entry and wakes up all waiters
717       */
718 <    public ForkJoinPool(int parallelism) {
719 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
718 >    private void signalEvent() {
719 >        int c;
720 >        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
721 >                                               c = eventCount, c+1));
722 >        releaseWaiters();
723      }
724  
725      /**
726 <     * Creates a ForkJoinPool with a pool size equal to the number of
727 <     * processors available on the system and using the given
728 <     * ForkJoinWorkerThreadFactory,
729 <     * @param factory the factory for creating new threads
730 <     * @throws NullPointerException if factory is null
731 <     * @throws SecurityException if a security manager exists and
732 <     *         the caller is not permitted to modify threads
733 <     *         because it does not hold {@link
734 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
726 >     * Advances eventCount and releases waiters until interference by
727 >     * other releasing threads is detected.
728 >     */
729 >    final void signalWork() {
730 >        // EventCount CAS failures are OK -- any change in count suffices.
731 >        int ec;
732 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
733 >        outer:for (;;) {
734 >            long top = eventWaiters;
735 >            ec = eventCount;
736 >            for (;;) {
737 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
738 >                int id = (int)(top & WAITER_INDEX_MASK);
739 >                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
740 >                    return;
741 >                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
742 >                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
743 >                                               top, top = w.nextWaiter))
744 >                    continue outer;      // possibly stale; reread
745 >                LockSupport.unpark(w);
746 >                if (top != eventWaiters) // let someone else take over
747 >                    return;
748 >            }
749 >        }
750 >    }
751 >
752 >    /**
753 >     * If worker is inactive, blocks until terminating or event count
754 >     * advances from last value held by worker; in any case helps
755 >     * release others.
756 >     *
757 >     * @param w the calling worker thread
758       */
759 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
760 <        this(Runtime.getRuntime().availableProcessors(), factory);
759 >    private void eventSync(ForkJoinWorkerThread w) {
760 >        if (!w.active) {
761 >            int prev = w.lastEventCount;
762 >            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
763 >                            ((long)(w.poolIndex + 1)));
764 >            long top;
765 >            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
766 >                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
767 >                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
768 >                   eventCount == prev) {
769 >                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
770 >                                              w.nextWaiter = top, nextTop)) {
771 >                    accumulateStealCount(w); // transfer steals while idle
772 >                    Thread.interrupted();    // clear/ignore interrupt
773 >                    while (eventCount == prev)
774 >                        w.doPark();
775 >                    break;
776 >                }
777 >            }
778 >            w.lastEventCount = eventCount;
779 >        }
780 >        releaseWaiters();
781      }
782  
783      /**
784 <     * Creates a ForkJoinPool with the indicated target number of
785 <     * worker threads and the given factory.
784 >     * Callback from workers invoked upon each top-level action (i.e.,
785 >     * stealing a task or taking a submission and running
786 >     * it). Performs one or both of the following:
787       *
788 <     * @param parallelism the targeted number of worker threads
789 <     * @param factory the factory for creating new threads
790 <     * @throws IllegalArgumentException if parallelism less than or
791 <     * equal to zero, or greater than implementation limit.
792 <     * @throws NullPointerException if factory is null
793 <     * @throws SecurityException if a security manager exists and
794 <     *         the caller is not permitted to modify threads
795 <     *         because it does not hold {@link
796 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
788 >     * * If the worker cannot find work, updates its active status to
789 >     * inactive and updates activeCount unless there is contention, in
790 >     * which case it may try again (either in this or a subsequent
791 >     * call).  Additionally, awaits the next task event and/or helps
792 >     * wake up other releasable waiters.
793 >     *
794 >     * * If there are too many running threads, suspends this worker
795 >     * (first forcing inactivation if necessary).  If it is not
796 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
797 >     * -- killed while suspended within suspendAsSpare. Otherwise,
798 >     * upon resume it rechecks to make sure that it is still needed.
799 >     *
800 >     * @param w the worker
801 >     * @param worked false if the worker scanned for work but didn't
802 >     * find any (in which case it may block waiting for work).
803       */
804 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
805 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
806 <            throw new IllegalArgumentException();
807 <        if (factory == null)
808 <            throw new NullPointerException();
809 <        checkPermission();
810 <        this.factory = factory;
811 <        this.parallelism = parallelism;
812 <        this.maxPoolSize = MAX_THREADS;
813 <        this.maintainsParallelism = true;
814 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
815 <        this.workerLock = new ReentrantLock();
816 <        this.termination = workerLock.newCondition();
817 <        this.stealCount = new AtomicLong();
818 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
819 <        createAndStartInitialWorkers(parallelism);
804 >    final void preStep(ForkJoinWorkerThread w, boolean worked) {
805 >        boolean active = w.active;
806 >        boolean inactivate = !worked & active;
807 >        for (;;) {
808 >            if (inactivate) {
809 >                int rs = runState;
810 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
811 >                                             rs, rs - ONE_ACTIVE))
812 >                    inactivate = active = w.active = false;
813 >            }
814 >            int wc = workerCounts;
815 >            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
816 >                if (!worked)
817 >                    eventSync(w);
818 >                return;
819 >            }
820 >            if (!(inactivate |= active) &&  // must inactivate to suspend
821 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
822 >                                         wc, wc - ONE_RUNNING) &&
823 >                !w.suspendAsSpare())        // false if trimmed
824 >                return;
825 >        }
826      }
827  
828      /**
829 <     * Create new worker using factory.
830 <     * @param index the index to assign worker
831 <     * @return new worker, or null of factory failed
832 <     */
833 <    private ForkJoinWorkerThread createWorker(int index) {
834 <        Thread.UncaughtExceptionHandler h = ueh;
835 <        ForkJoinWorkerThread w = factory.newThread(this);
836 <        if (w != null) {
837 <            w.poolIndex = index;
838 <            w.setDaemon(true);
839 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
840 <            if (h != null)
841 <                w.setUncaughtExceptionHandler(h);
829 >     * Tries to decrement running count, and if so, possibly creates
830 >     * or resumes compensating threads before blocking on task joinMe.
831 >     * This code is sprawled out with manual inlining to evade some
832 >     * JIT oddities.
833 >     *
834 >     * @param joinMe the task to join
835 >     * @return task status on exit
836 >     */
837 >    final int tryAwaitJoin(ForkJoinTask<?> joinMe) {
838 >        int cw = workerCounts; // read now to spoil CAS if counts change as ...
839 >        releaseWaiters();      // ... a byproduct of releaseWaiters
840 >        int stat = joinMe.status;
841 >        if (stat >= 0 && // inline variant of tryDecrementRunningCount
842 >            (cw & RUNNING_COUNT_MASK) > 0 &&
843 >            UNSAFE.compareAndSwapInt(this, workerCountsOffset,
844 >                                     cw, cw - ONE_RUNNING)) {
845 >            int pc = parallelism;
846 >            int scans = 0;  // to require confirming passes to add threads
847 >            outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
848 >                if ((stat = joinMe.status) < 0)
849 >                    break;
850 >                ForkJoinWorkerThread spare = null;
851 >                ForkJoinWorkerThread[] ws = workers;
852 >                int nws = ws.length;
853 >                for (int i = 0; i < nws; ++i) {
854 >                    ForkJoinWorkerThread w = ws[i];
855 >                    if (w != null && w.isSuspended()) {
856 >                        spare = w;
857 >                        break;
858 >                    }
859 >                }
860 >                if ((stat = joinMe.status) < 0) // recheck to narrow race
861 >                    break;
862 >                int wc = workerCounts;
863 >                int rc = wc & RUNNING_COUNT_MASK;
864 >                if (rc >= pc)
865 >                    break;
866 >                if (spare != null) {
867 >                    if (spare.tryUnsuspend()) {
868 >                        int c; // inline incrementRunningCount
869 >                        do {} while (!UNSAFE.compareAndSwapInt
870 >                                     (this, workerCountsOffset,
871 >                                      c = workerCounts, c + ONE_RUNNING));
872 >                        LockSupport.unpark(spare);
873 >                        break;
874 >                    }
875 >                    continue;
876 >                }
877 >                int tc = wc >>> TOTAL_COUNT_SHIFT;
878 >                int sc = tc - pc;
879 >                if (rc > 0) {
880 >                    int p = pc;
881 >                    int s = sc;
882 >                    while (s-- >= 0) { // try keeping 3/4 live
883 >                        if (rc > (p -= (p >>> 2) + 1))
884 >                            break outer;
885 >                    }
886 >                }
887 >                if (scans++ > sc && tc < MAX_THREADS &&
888 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
889 >                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
890 >                    addWorker();
891 >                    break;
892 >                }
893 >            }
894 >            if (stat >= 0)
895 >                stat = joinMe.internalAwaitDone();
896 >            int c; // inline incrementRunningCount
897 >            do {} while (!UNSAFE.compareAndSwapInt
898 >                         (this, workerCountsOffset,
899 >                          c = workerCounts, c + ONE_RUNNING));
900          }
901 <        return w;
901 >        return stat;
902      }
903  
904      /**
905 <     * Return a good size for worker array given pool size.
906 <     * Currently requires size to be a power of two.
905 >     * Same idea as (and mostly pasted from) tryAwaitJoin, but
906 >     * self-contained
907       */
908 <    private static int arraySizeFor(int ps) {
909 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
908 >    final void awaitBlocker(ManagedBlocker blocker)
909 >        throws InterruptedException {
910 >        for (;;) {
911 >            if (blocker.isReleasable())
912 >                return;
913 >            int cw = workerCounts;
914 >            releaseWaiters();
915 >            if ((cw & RUNNING_COUNT_MASK) > 0 &&
916 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
917 >                                         cw, cw - ONE_RUNNING))
918 >                break;
919 >        }
920 >        boolean done = false;
921 >        int pc = parallelism;
922 >        int scans = 0;
923 >        outer: while ((workerCounts & RUNNING_COUNT_MASK) < pc) {
924 >            if (done = blocker.isReleasable())
925 >                break;
926 >            ForkJoinWorkerThread spare = null;
927 >            ForkJoinWorkerThread[] ws = workers;
928 >            int nws = ws.length;
929 >            for (int i = 0; i < nws; ++i) {
930 >                ForkJoinWorkerThread w = ws[i];
931 >                if (w != null && w.isSuspended()) {
932 >                    spare = w;
933 >                    break;
934 >                }
935 >            }
936 >            if (done = blocker.isReleasable())
937 >                break;
938 >            int wc = workerCounts;
939 >            int rc = wc & RUNNING_COUNT_MASK;
940 >            if (rc >= pc)
941 >                break;
942 >            if (spare != null) {
943 >                if (spare.tryUnsuspend()) {
944 >                    int c;
945 >                    do {} while (!UNSAFE.compareAndSwapInt
946 >                                 (this, workerCountsOffset,
947 >                                  c = workerCounts, c + ONE_RUNNING));
948 >                    LockSupport.unpark(spare);
949 >                    break;
950 >                }
951 >                continue;
952 >            }
953 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
954 >            int sc = tc - pc;
955 >            if (rc > 0) {
956 >                int p = pc;
957 >                int s = sc;
958 >                while (s-- >= 0) {
959 >                    if (rc > (p -= (p >>> 2) + 1))
960 >                        break outer;
961 >                }
962 >            }
963 >            if (scans++ > sc && tc < MAX_THREADS &&
964 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
965 >                                         wc + (ONE_RUNNING|ONE_TOTAL))) {
966 >                addWorker();
967 >                break;
968 >            }
969 >        }
970 >        try {
971 >            if (!done)
972 >                do {} while (!blocker.isReleasable() &&
973 >                             !blocker.block());
974 >        } finally {
975 >            int c;
976 >            do {} while (!UNSAFE.compareAndSwapInt
977 >                         (this, workerCountsOffset,
978 >                          c = workerCounts, c + ONE_RUNNING));
979 >        }
980 >    }  
981 >
982 >    /**
983 >     * Possibly initiates and/or completes termination.
984 >     *
985 >     * @param now if true, unconditionally terminate, else only
986 >     * if shutdown and empty queue and no active workers
987 >     * @return true if now terminating or terminated
988 >     */
989 >    private boolean tryTerminate(boolean now) {
990 >        if (now)
991 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
992 >        else if (runState < SHUTDOWN ||
993 >                 !submissionQueue.isEmpty() ||
994 >                 (runState & ACTIVE_COUNT_MASK) != 0)
995 >            return false;
996 >
997 >        if (advanceRunLevel(TERMINATING))
998 >            startTerminating();
999 >
1000 >        // Finish now if all threads terminated; else in some subsequent call
1001 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1002 >            advanceRunLevel(TERMINATED);
1003 >            termination.arrive();
1004 >        }
1005 >        return true;
1006 >    }
1007 >
1008 >    /**
1009 >     * Actions on transition to TERMINATING
1010 >     */
1011 >    private void startTerminating() {
1012 >        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1013 >            cancelSubmissions();
1014 >            shutdownWorkers();
1015 >            cancelWorkerTasks();
1016 >            signalEvent();
1017 >            interruptWorkers();
1018 >        }
1019      }
1020  
1021      /**
1022 <     * Create or resize array if necessary to hold newLength
420 <     * @return the array
1022 >     * Clear out and cancel submissions, ignoring exceptions
1023       */
1024 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1024 >    private void cancelSubmissions() {
1025 >        ForkJoinTask<?> task;
1026 >        while ((task = submissionQueue.poll()) != null) {
1027 >            try {
1028 >                task.cancel(false);
1029 >            } catch (Throwable ignore) {
1030 >            }
1031 >        }
1032 >    }
1033 >
1034 >    /**
1035 >     * Sets all worker run states to at least shutdown,
1036 >     * also resuming suspended workers
1037 >     */
1038 >    private void shutdownWorkers() {
1039          ForkJoinWorkerThread[] ws = workers;
1040 <        if (ws == null)
1041 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1042 <        else if (newLength > ws.length)
1043 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1044 <        else
1045 <            return ws;
1040 >        int nws = ws.length;
1041 >        for (int i = 0; i < nws; ++i) {
1042 >            ForkJoinWorkerThread w = ws[i];
1043 >            if (w != null)
1044 >                w.shutdown();
1045 >        }
1046      }
1047  
1048      /**
1049 <     * Try to shrink workers into smaller array after one or more terminate
1049 >     * Clears out and cancels all locally queued tasks
1050       */
1051 <    private void tryShrinkWorkerArray() {
1051 >    private void cancelWorkerTasks() {
1052          ForkJoinWorkerThread[] ws = workers;
1053 <        int len = ws.length;
1054 <        int last = len - 1;
1055 <        while (last >= 0 && ws[last] == null)
1056 <            --last;
1057 <        int newLength = arraySizeFor(last+1);
1058 <        if (newLength < len)
443 <            workers = Arrays.copyOf(ws, newLength);
1053 >        int nws = ws.length;
1054 >        for (int i = 0; i < nws; ++i) {
1055 >            ForkJoinWorkerThread w = ws[i];
1056 >            if (w != null)
1057 >                w.cancelTasks();
1058 >        }
1059      }
1060  
1061      /**
1062 <     * Initial worker array and worker creation and startup. (This
448 <     * must be done under lock to avoid interference by some of the
449 <     * newly started threads while creating others.)
1062 >     * Unsticks all workers blocked on joins etc
1063       */
1064 <    private void createAndStartInitialWorkers(int ps) {
1065 <        final ReentrantLock lock = this.workerLock;
1066 <        lock.lock();
1067 <        try {
1068 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1069 <            for (int i = 0; i < ps; ++i) {
1070 <                ForkJoinWorkerThread w = createWorker(i);
1071 <                if (w != null) {
1072 <                    ws[i] = w;
460 <                    w.start();
461 <                    updateWorkerCount(1);
1064 >    private void interruptWorkers() {
1065 >        ForkJoinWorkerThread[] ws = workers;
1066 >        int nws = ws.length;
1067 >        for (int i = 0; i < nws; ++i) {
1068 >            ForkJoinWorkerThread w = ws[i];
1069 >            if (w != null && !w.isTerminated()) {
1070 >                try {
1071 >                    w.interrupt();
1072 >                } catch (SecurityException ignore) {
1073                  }
1074              }
464        } finally {
465            lock.unlock();
1075          }
1076      }
1077  
1078 +    // misc support for ForkJoinWorkerThread
1079 +
1080      /**
1081 <     * Worker creation and startup for threads added via setParallelism.
1081 >     * Returns pool number
1082       */
1083 <    private void createAndStartAddedWorkers() {
1084 <        resumeAllSpares();  // Allow spares to convert to nonspare
1085 <        int ps = parallelism;
1086 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1087 <        int len = ws.length;
1088 <        // Sweep through slots, to keep lowest indices most populated
1089 <        int k = 0;
1090 <        while (k < len) {
1091 <            if (ws[k] != null) {
1092 <                ++k;
1093 <                continue;
1094 <            }
1095 <            int s = workerCounts;
1096 <            int tc = totalCountOf(s);
1097 <            int rc = runningCountOf(s);
487 <            if (rc >= ps || tc >= ps)
488 <                break;
489 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
490 <                ForkJoinWorkerThread w = createWorker(k);
491 <                if (w != null) {
492 <                    ws[k++] = w;
493 <                    w.start();
494 <                }
495 <                else {
496 <                    updateWorkerCount(-1); // back out on failed creation
497 <                    break;
498 <                }
499 <            }
1083 >    final int getPoolNumber() {
1084 >        return poolNumber;
1085 >    }
1086 >
1087 >    /**
1088 >     * Accumulates steal count from a worker, clearing
1089 >     * the worker's value
1090 >     */
1091 >    final void accumulateStealCount(ForkJoinWorkerThread w) {
1092 >        int sc = w.stealCount;
1093 >        if (sc != 0) {
1094 >            long c;
1095 >            w.stealCount = 0;
1096 >            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1097 >                                                    c = stealCount, c + sc));
1098          }
1099      }
1100  
1101      /**
1102 <     * Sets the handler for internal worker threads that terminate due
1103 <     * to unrecoverable errors encountered while executing tasks.
1104 <     * Unless set, the current default or ThreadGroup handler is used
1105 <     * as handler.
1102 >     * Returns the approximate (non-atomic) number of idle threads per
1103 >     * active thread.
1104 >     */
1105 >    final int idlePerActive() {
1106 >        int pc = parallelism; // use targeted parallelism, not rc
1107 >        int ac = runState;    // no mask -- artifically boosts during shutdown
1108 >        // Use exact results for small values, saturate past 4
1109 >        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1110 >    }
1111 >
1112 >    // Public and protected methods
1113 >
1114 >    // Constructors
1115 >
1116 >    /**
1117 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1118 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1119 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1120 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1121       *
509     * @param h the new handler
510     * @return the old handler, or null if none
1122       * @throws SecurityException if a security manager exists and
1123       *         the caller is not permitted to modify threads
1124       *         because it does not hold {@link
1125 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1125 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1126       */
1127 <    public Thread.UncaughtExceptionHandler
1128 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1127 >    public ForkJoinPool() {
1128 >        this(Runtime.getRuntime().availableProcessors(),
1129 >             defaultForkJoinWorkerThreadFactory, null, false);
1130 >    }
1131 >
1132 >    /**
1133 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1134 >     * level, the {@linkplain
1135 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1136 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1137 >     *
1138 >     * @param parallelism the parallelism level
1139 >     * @throws IllegalArgumentException if parallelism less than or
1140 >     *         equal to zero, or greater than implementation limit
1141 >     * @throws SecurityException if a security manager exists and
1142 >     *         the caller is not permitted to modify threads
1143 >     *         because it does not hold {@link
1144 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1145 >     */
1146 >    public ForkJoinPool(int parallelism) {
1147 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1148 >    }
1149 >
1150 >    /**
1151 >     * Creates a {@code ForkJoinPool} with the given parameters.
1152 >     *
1153 >     * @param parallelism the parallelism level. For default value,
1154 >     * use {@link java.lang.Runtime#availableProcessors}.
1155 >     * @param factory the factory for creating new threads. For default value,
1156 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1157 >     * @param handler the handler for internal worker threads that
1158 >     * terminate due to unrecoverable errors encountered while executing
1159 >     * tasks. For default value, use <code>null</code>.
1160 >     * @param asyncMode if true,
1161 >     * establishes local first-in-first-out scheduling mode for forked
1162 >     * tasks that are never joined. This mode may be more appropriate
1163 >     * than default locally stack-based mode in applications in which
1164 >     * worker threads only process event-style asynchronous tasks.
1165 >     * For default value, use <code>false</code>.
1166 >     * @throws IllegalArgumentException if parallelism less than or
1167 >     *         equal to zero, or greater than implementation limit
1168 >     * @throws NullPointerException if the factory is null
1169 >     * @throws SecurityException if a security manager exists and
1170 >     *         the caller is not permitted to modify threads
1171 >     *         because it does not hold {@link
1172 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1173 >     */
1174 >    public ForkJoinPool(int parallelism,
1175 >                        ForkJoinWorkerThreadFactory factory,
1176 >                        Thread.UncaughtExceptionHandler handler,
1177 >                        boolean asyncMode) {
1178          checkPermission();
1179 <        Thread.UncaughtExceptionHandler old = null;
1180 <        final ReentrantLock lock = this.workerLock;
1181 <        lock.lock();
1182 <        try {
1183 <            old = ueh;
1184 <            ueh = h;
1185 <            ForkJoinWorkerThread[] ws = workers;
1186 <            for (int i = 0; i < ws.length; ++i) {
1187 <                ForkJoinWorkerThread w = ws[i];
1188 <                if (w != null)
1189 <                    w.setUncaughtExceptionHandler(h);
1190 <            }
1191 <        } finally {
1192 <            lock.unlock();
533 <        }
534 <        return old;
1179 >        if (factory == null)
1180 >            throw new NullPointerException();
1181 >        if (parallelism <= 0 || parallelism > MAX_THREADS)
1182 >            throw new IllegalArgumentException();
1183 >        this.parallelism = parallelism;
1184 >        this.factory = factory;
1185 >        this.ueh = handler;
1186 >        this.locallyFifo = asyncMode;
1187 >        int arraySize = initialArraySizeFor(parallelism);
1188 >        this.workers = new ForkJoinWorkerThread[arraySize];
1189 >        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1190 >        this.workerLock = new ReentrantLock();
1191 >        this.termination = new Phaser(1);
1192 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1193      }
1194  
1195      /**
1196 <     * Returns the handler for internal worker threads that terminate
1197 <     * due to unrecoverable errors encountered while executing tasks.
540 <     * @return the handler, or null if none
1196 >     * Returns initial power of two size for workers array.
1197 >     * @param pc the initial parallelism level
1198       */
1199 <    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1200 <        Thread.UncaughtExceptionHandler h;
1201 <        final ReentrantLock lock = this.workerLock;
1202 <        lock.lock();
1203 <        try {
1204 <            h = ueh;
1205 <        } finally {
1206 <            lock.unlock();
550 <        }
551 <        return h;
1199 >    private static int initialArraySizeFor(int pc) {
1200 >        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1201 >        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1202 >        size |= size >>> 1;
1203 >        size |= size >>> 2;
1204 >        size |= size >>> 4;
1205 >        size |= size >>> 8;
1206 >        return size + 1;
1207      }
1208  
1209      // Execution methods
# Line 557 | Line 1212 | public class ForkJoinPool extends Abstra
1212       * Common code for execute, invoke and submit
1213       */
1214      private <T> void doSubmit(ForkJoinTask<T> task) {
1215 <        if (isShutdown())
1215 >        if (task == null)
1216 >            throw new NullPointerException();
1217 >        if (runState >= SHUTDOWN)
1218              throw new RejectedExecutionException();
1219 <        submissionQueue.offer(task);
1220 <        signalIdleWorkers(true);
1219 >        // Convert submissions to current pool into forks
1220 >        Thread t = Thread.currentThread();
1221 >        ForkJoinWorkerThread w;
1222 >        if ((t instanceof ForkJoinWorkerThread) &&
1223 >            (w = (ForkJoinWorkerThread) t).pool == this)
1224 >            w.pushTask(task);
1225 >        else {
1226 >            submissionQueue.offer(task);
1227 >            signalEvent();
1228 >            ensureEnoughTotalWorkers();
1229 >        }
1230      }
1231  
1232      /**
1233 <     * Performs the given task; returning its result upon completion
1233 >     * Performs the given task, returning its result upon completion.
1234 >     * If the caller is already engaged in a fork/join computation in
1235 >     * the current pool, this method is equivalent in effect to
1236 >     * {@link ForkJoinTask#invoke}.
1237 >     *
1238       * @param task the task
1239       * @return the task's result
1240 <     * @throws NullPointerException if task is null
1241 <     * @throws RejectedExecutionException if pool is shut down
1240 >     * @throws NullPointerException if the task is null
1241 >     * @throws RejectedExecutionException if the task cannot be
1242 >     *         scheduled for execution
1243       */
1244      public <T> T invoke(ForkJoinTask<T> task) {
1245          doSubmit(task);
# Line 577 | Line 1248 | public class ForkJoinPool extends Abstra
1248  
1249      /**
1250       * Arranges for (asynchronous) execution of the given task.
1251 +     * If the caller is already engaged in a fork/join computation in
1252 +     * the current pool, this method is equivalent in effect to
1253 +     * {@link ForkJoinTask#fork}.
1254 +     *
1255       * @param task the task
1256 <     * @throws NullPointerException if task is null
1257 <     * @throws RejectedExecutionException if pool is shut down
1256 >     * @throws NullPointerException if the task is null
1257 >     * @throws RejectedExecutionException if the task cannot be
1258 >     *         scheduled for execution
1259       */
1260 <    public <T> void execute(ForkJoinTask<T> task) {
1260 >    public void execute(ForkJoinTask<?> task) {
1261          doSubmit(task);
1262      }
1263  
1264      // AbstractExecutorService methods
1265  
1266 +    /**
1267 +     * @throws NullPointerException if the task is null
1268 +     * @throws RejectedExecutionException if the task cannot be
1269 +     *         scheduled for execution
1270 +     */
1271      public void execute(Runnable task) {
1272 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1272 >        ForkJoinTask<?> job;
1273 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1274 >            job = (ForkJoinTask<?>) task;
1275 >        else
1276 >            job = ForkJoinTask.adapt(task, null);
1277 >        doSubmit(job);
1278 >    }
1279 >
1280 >    /**
1281 >     * Submits a ForkJoinTask for execution.
1282 >     * If the caller is already engaged in a fork/join computation in
1283 >     * the current pool, this method is equivalent in effect to
1284 >     * {@link ForkJoinTask#fork}.
1285 >     *
1286 >     * @param task the task to submit
1287 >     * @return the task
1288 >     * @throws NullPointerException if the task is null
1289 >     * @throws RejectedExecutionException if the task cannot be
1290 >     *         scheduled for execution
1291 >     */
1292 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1293 >        doSubmit(task);
1294 >        return task;
1295      }
1296  
1297 +    /**
1298 +     * @throws NullPointerException if the task is null
1299 +     * @throws RejectedExecutionException if the task cannot be
1300 +     *         scheduled for execution
1301 +     */
1302      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1303 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1303 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1304          doSubmit(job);
1305          return job;
1306      }
1307  
1308 +    /**
1309 +     * @throws NullPointerException if the task is null
1310 +     * @throws RejectedExecutionException if the task cannot be
1311 +     *         scheduled for execution
1312 +     */
1313      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1314 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1314 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1315          doSubmit(job);
1316          return job;
1317      }
1318  
1319 +    /**
1320 +     * @throws NullPointerException if the task is null
1321 +     * @throws RejectedExecutionException if the task cannot be
1322 +     *         scheduled for execution
1323 +     */
1324      public ForkJoinTask<?> submit(Runnable task) {
1325 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1325 >        ForkJoinTask<?> job;
1326 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1327 >            job = (ForkJoinTask<?>) task;
1328 >        else
1329 >            job = ForkJoinTask.adapt(task, null);
1330          doSubmit(job);
1331          return job;
1332      }
1333  
612    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
613        return new AdaptedRunnable(runnable, value);
614    }
615
616    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
617        return new AdaptedCallable(callable);
618    }
619
620    /**
621     * Adaptor for Runnables. This implements RunnableFuture
622     * to be compliant with AbstractExecutorService constraints
623     */
624    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
625        implements RunnableFuture<T> {
626        final Runnable runnable;
627        final T resultOnCompletion;
628        T result;
629        AdaptedRunnable(Runnable runnable, T result) {
630            if (runnable == null) throw new NullPointerException();
631            this.runnable = runnable;
632            this.resultOnCompletion = result;
633        }
634        public T getRawResult() { return result; }
635        public void setRawResult(T v) { result = v; }
636        public boolean exec() {
637            runnable.run();
638            result = resultOnCompletion;
639            return true;
640        }
641        public void run() { invoke(); }
642    }
643
1334      /**
1335 <     * Adaptor for Callables
1335 >     * @throws NullPointerException       {@inheritDoc}
1336 >     * @throws RejectedExecutionException {@inheritDoc}
1337       */
647    static final class AdaptedCallable<T> extends ForkJoinTask<T>
648        implements RunnableFuture<T> {
649        final Callable<T> callable;
650        T result;
651        AdaptedCallable(Callable<T> callable) {
652            if (callable == null) throw new NullPointerException();
653            this.callable = callable;
654        }
655        public T getRawResult() { return result; }
656        public void setRawResult(T v) { result = v; }
657        public boolean exec() {
658            try {
659                result = callable.call();
660                return true;
661            } catch (Error err) {
662                throw err;
663            } catch (RuntimeException rex) {
664                throw rex;
665            } catch (Exception ex) {
666                throw new RuntimeException(ex);
667            }
668        }
669        public void run() { invoke(); }
670    }
671
1338      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1339 <        ArrayList<ForkJoinTask<T>> ts =
1339 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1340              new ArrayList<ForkJoinTask<T>>(tasks.size());
1341 <        for (Callable<T> c : tasks)
1342 <            ts.add(new AdaptedCallable<T>(c));
1343 <        invoke(new InvokeAll<T>(ts));
1344 <        return (List<Future<T>>)(List)ts;
1341 >        for (Callable<T> task : tasks)
1342 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1343 >        invoke(new InvokeAll<T>(forkJoinTasks));
1344 >
1345 >        @SuppressWarnings({"unchecked", "rawtypes"})
1346 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1347 >        return futures;
1348      }
1349  
1350      static final class InvokeAll<T> extends RecursiveAction {
1351          final ArrayList<ForkJoinTask<T>> tasks;
1352          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1353          public void compute() {
1354 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1354 >            try { invokeAll(tasks); }
1355 >            catch (Exception ignore) {}
1356          }
1357 +        private static final long serialVersionUID = -7914297376763021607L;
1358      }
1359  
689    // Configuration and status settings and queries
690
1360      /**
1361 <     * Returns the factory used for constructing new workers
1361 >     * Returns the factory used for constructing new workers.
1362       *
1363       * @return the factory used for constructing new workers
1364       */
# Line 698 | Line 1367 | public class ForkJoinPool extends Abstra
1367      }
1368  
1369      /**
1370 <     * Sets the target paralleism level of this pool.
1371 <     * @param parallelism the target parallelism
1372 <     * @throws IllegalArgumentException if parallelism less than or
1373 <     * equal to zero or greater than maximum size bounds.
705 <     * @throws SecurityException if a security manager exists and
706 <     *         the caller is not permitted to modify threads
707 <     *         because it does not hold {@link
708 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1370 >     * Returns the handler for internal worker threads that terminate
1371 >     * due to unrecoverable errors encountered while executing tasks.
1372 >     *
1373 >     * @return the handler, or {@code null} if none
1374       */
1375 <    public void setParallelism(int parallelism) {
1376 <        checkPermission();
712 <        if (parallelism <= 0 || parallelism > maxPoolSize)
713 <            throw new IllegalArgumentException();
714 <        final ReentrantLock lock = this.workerLock;
715 <        lock.lock();
716 <        try {
717 <            if (!isTerminating()) {
718 <                int p = this.parallelism;
719 <                this.parallelism = parallelism;
720 <                if (parallelism > p)
721 <                    createAndStartAddedWorkers();
722 <                else
723 <                    trimSpares();
724 <            }
725 <        } finally {
726 <            lock.unlock();
727 <        }
728 <        signalIdleWorkers(false);
1375 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1376 >        return ueh;
1377      }
1378  
1379      /**
1380 <     * Returns the targeted number of worker threads in this pool.
733 <     * This value does not necessarily reflect transient changes as
734 <     * threads are added, removed, or abruptly terminate.
1380 >     * Returns the targeted parallelism level of this pool.
1381       *
1382 <     * @return the targeted number of worker threads in this pool
1382 >     * @return the targeted parallelism level of this pool
1383       */
1384      public int getParallelism() {
1385          return parallelism;
# Line 742 | Line 1388 | public class ForkJoinPool extends Abstra
1388      /**
1389       * Returns the number of worker threads that have started but not
1390       * yet terminated.  This result returned by this method may differ
1391 <     * from <tt>getParallelism</tt> when threads are created to
1391 >     * from {@link #getParallelism} when threads are created to
1392       * maintain parallelism when others are cooperatively blocked.
1393       *
1394       * @return the number of worker threads
1395       */
1396      public int getPoolSize() {
1397 <        return totalCountOf(workerCounts);
752 <    }
753 <
754 <    /**
755 <     * Returns the maximum number of threads allowed to exist in the
756 <     * pool, even if there are insufficient unblocked running threads.
757 <     * @return the maximum
758 <     */
759 <    public int getMaximumPoolSize() {
760 <        return maxPoolSize;
761 <    }
762 <
763 <    /**
764 <     * Sets the maximum number of threads allowed to exist in the
765 <     * pool, even if there are insufficient unblocked running threads.
766 <     * Setting this value has no effect on current pool size. It
767 <     * controls construction of new threads.
768 <     * @throws IllegalArgumentException if negative or greater then
769 <     * internal implementation limit.
770 <     */
771 <    public void setMaximumPoolSize(int newMax) {
772 <        if (newMax < 0 || newMax > MAX_THREADS)
773 <            throw new IllegalArgumentException();
774 <        maxPoolSize = newMax;
775 <    }
776 <
777 <
778 <    /**
779 <     * Returns true if this pool dynamically maintains its target
780 <     * parallelism level. If false, new threads are added only to
781 <     * avoid possible starvation.
782 <     * This setting is by default true;
783 <     * @return true if maintains parallelism
784 <     */
785 <    public boolean getMaintainsParallelism() {
786 <        return maintainsParallelism;
1397 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1398      }
1399  
1400      /**
1401 <     * Sets whether this pool dynamically maintains its target
1402 <     * parallelism level. If false, new threads are added only to
1403 <     * avoid possible starvation.
1404 <     * @param enable true to maintains parallelism
1401 >     * Returns {@code true} if this pool uses local first-in-first-out
1402 >     * scheduling mode for forked tasks that are never joined.
1403 >     *
1404 >     * @return {@code true} if this pool uses async mode
1405       */
1406 <    public void setMaintainsParallelism(boolean enable) {
1407 <        maintainsParallelism = enable;
1406 >    public boolean getAsyncMode() {
1407 >        return locallyFifo;
1408      }
1409  
1410      /**
1411 <     * Returns the approximate number of worker threads that are not
1412 <     * blocked waiting to join tasks or for other managed
1413 <     * synchronization.
1411 >     * Returns an estimate of the number of worker threads that are
1412 >     * not blocked waiting to join tasks or for other managed
1413 >     * synchronization. This method may overestimate the
1414 >     * number of running threads.
1415       *
1416       * @return the number of worker threads
1417       */
1418      public int getRunningThreadCount() {
1419 <        return runningCountOf(workerCounts);
1419 >        return workerCounts & RUNNING_COUNT_MASK;
1420      }
1421  
1422      /**
1423 <     * Returns the approximate number of threads that are currently
1423 >     * Returns an estimate of the number of threads that are currently
1424       * stealing or executing tasks. This method may overestimate the
1425       * number of active threads.
1426 <     * @return the number of active threads.
1426 >     *
1427 >     * @return the number of active threads
1428       */
1429      public int getActiveThreadCount() {
1430 <        return activeCountOf(runControl);
1430 >        return runState & ACTIVE_COUNT_MASK;
1431      }
1432  
1433      /**
1434 <     * Returns the approximate number of threads that are currently
1435 <     * idle waiting for tasks. This method may underestimate the
1436 <     * number of idle threads.
1437 <     * @return the number of idle threads.
1438 <     */
1439 <    final int getIdleThreadCount() {
1440 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
1441 <        return (c <= 0)? 0 : c;
1442 <    }
830 <
831 <    /**
832 <     * Returns true if all worker threads are currently idle. An idle
833 <     * worker is one that cannot obtain a task to execute because none
834 <     * are available to steal from other threads, and there are no
835 <     * pending submissions to the pool. This method is conservative:
836 <     * It might not return true immediately upon idleness of all
837 <     * threads, but will eventually become true if threads remain
838 <     * inactive.
839 <     * @return true if all threads are currently idle
1434 >     * Returns {@code true} if all worker threads are currently idle.
1435 >     * An idle worker is one that cannot obtain a task to execute
1436 >     * because none are available to steal from other threads, and
1437 >     * there are no pending submissions to the pool. This method is
1438 >     * conservative; it might not return {@code true} immediately upon
1439 >     * idleness of all threads, but will eventually become true if
1440 >     * threads remain inactive.
1441 >     *
1442 >     * @return {@code true} if all threads are currently idle
1443       */
1444      public boolean isQuiescent() {
1445 <        return activeCountOf(runControl) == 0;
1445 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1446      }
1447  
1448      /**
# Line 847 | Line 1450 | public class ForkJoinPool extends Abstra
1450       * one thread's work queue by another. The reported value
1451       * underestimates the actual total number of steals when the pool
1452       * is not quiescent. This value may be useful for monitoring and
1453 <     * tuning fork/join programs: In general, steal counts should be
1453 >     * tuning fork/join programs: in general, steal counts should be
1454       * high enough to keep threads busy, but low enough to avoid
1455       * overhead and contention across threads.
1456 <     * @return the number of steals.
1456 >     *
1457 >     * @return the number of steals
1458       */
1459      public long getStealCount() {
1460 <        return stealCount.get();
857 <    }
858 <
859 <    /**
860 <     * Accumulate steal count from a worker. Call only
861 <     * when worker known to be idle.
862 <     */
863 <    private void updateStealCount(ForkJoinWorkerThread w) {
864 <        int sc = w.getAndClearStealCount();
865 <        if (sc != 0)
866 <            stealCount.addAndGet(sc);
1460 >        return stealCount;
1461      }
1462  
1463      /**
1464 <     * Returns the total number of tasks currently held in queues by
1465 <     * worker threads (but not including tasks submitted to the pool
1466 <     * that have not begun executing). This value is only an
1467 <     * approximation, obtained by iterating across all threads in the
1468 <     * pool. This method may be useful for tuning task granularities.
1469 <     * @return the number of queued tasks.
1464 >     * Returns an estimate of the total number of tasks currently held
1465 >     * in queues by worker threads (but not including tasks submitted
1466 >     * to the pool that have not begun executing). This value is only
1467 >     * an approximation, obtained by iterating across all threads in
1468 >     * the pool. This method may be useful for tuning task
1469 >     * granularities.
1470 >     *
1471 >     * @return the number of queued tasks
1472       */
1473      public long getQueuedTaskCount() {
1474          long count = 0;
1475          ForkJoinWorkerThread[] ws = workers;
1476 <        for (int i = 0; i < ws.length; ++i) {
1477 <            ForkJoinWorkerThread t = ws[i];
1478 <            if (t != null)
1479 <                count += t.getQueueSize();
1476 >        int nws = ws.length;
1477 >        for (int i = 0; i < nws; ++i) {
1478 >            ForkJoinWorkerThread w = ws[i];
1479 >            if (w != null)
1480 >                count += w.getQueueSize();
1481          }
1482          return count;
1483      }
1484  
1485      /**
1486 <     * Returns the approximate number tasks submitted to this pool
1487 <     * that have not yet begun executing. This method takes time
1486 >     * Returns an estimate of the number of tasks submitted to this
1487 >     * pool that have not yet begun executing.  This method takes time
1488       * proportional to the number of submissions.
1489 <     * @return the number of queued submissions.
1489 >     *
1490 >     * @return the number of queued submissions
1491       */
1492      public int getQueuedSubmissionCount() {
1493          return submissionQueue.size();
1494      }
1495  
1496      /**
1497 <     * Returns true if there are any tasks submitted to this pool
1498 <     * that have not yet begun executing.
1499 <     * @return <tt>true</tt> if there are any queued submissions.
1497 >     * Returns {@code true} if there are any tasks submitted to this
1498 >     * pool that have not yet begun executing.
1499 >     *
1500 >     * @return {@code true} if there are any queued submissions
1501       */
1502      public boolean hasQueuedSubmissions() {
1503          return !submissionQueue.isEmpty();
# Line 908 | Line 1507 | public class ForkJoinPool extends Abstra
1507       * Removes and returns the next unexecuted submission if one is
1508       * available.  This method may be useful in extensions to this
1509       * class that re-assign work in systems with multiple pools.
1510 <     * @return the next submission, or null if none
1510 >     *
1511 >     * @return the next submission, or {@code null} if none
1512       */
1513      protected ForkJoinTask<?> pollSubmission() {
1514          return submissionQueue.poll();
1515      }
1516  
1517      /**
1518 +     * Removes all available unexecuted submitted and forked tasks
1519 +     * from scheduling queues and adds them to the given collection,
1520 +     * without altering their execution status. These may include
1521 +     * artificially generated or wrapped tasks. This method is
1522 +     * designed to be invoked only when the pool is known to be
1523 +     * quiescent. Invocations at other times may not remove all
1524 +     * tasks. A failure encountered while attempting to add elements
1525 +     * to collection {@code c} may result in elements being in
1526 +     * neither, either or both collections when the associated
1527 +     * exception is thrown.  The behavior of this operation is
1528 +     * undefined if the specified collection is modified while the
1529 +     * operation is in progress.
1530 +     *
1531 +     * @param c the collection to transfer elements into
1532 +     * @return the number of elements transferred
1533 +     */
1534 +    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1535 +        int n = submissionQueue.drainTo(c);
1536 +        ForkJoinWorkerThread[] ws = workers;
1537 +        int nws = ws.length;
1538 +        for (int i = 0; i < nws; ++i) {
1539 +            ForkJoinWorkerThread w = ws[i];
1540 +            if (w != null)
1541 +                n += w.drainTasksTo(c);
1542 +        }
1543 +        return n;
1544 +    }
1545 +
1546 +    /**
1547 +     * Returns count of total parks by existing workers.
1548 +     * Used during development only since not meaningful to users.
1549 +     */
1550 +    private int collectParkCount() {
1551 +        int count = 0;
1552 +        ForkJoinWorkerThread[] ws = workers;
1553 +        int nws = ws.length;
1554 +        for (int i = 0; i < nws; ++i) {
1555 +            ForkJoinWorkerThread w = ws[i];
1556 +            if (w != null)
1557 +                count += w.parkCount;
1558 +        }
1559 +        return count;
1560 +    }
1561 +
1562 +    /**
1563       * Returns a string identifying this pool, as well as its state,
1564       * including indications of run state, parallelism level, and
1565       * worker and task counts.
# Line 922 | Line 1567 | public class ForkJoinPool extends Abstra
1567       * @return a string identifying this pool, as well as its state
1568       */
1569      public String toString() {
925        int ps = parallelism;
926        int wc = workerCounts;
927        int rc = runControl;
1570          long st = getStealCount();
1571          long qt = getQueuedTaskCount();
1572          long qs = getQueuedSubmissionCount();
1573 +        int wc = workerCounts;
1574 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1575 +        int rc = wc & RUNNING_COUNT_MASK;
1576 +        int pc = parallelism;
1577 +        int rs = runState;
1578 +        int ac = rs & ACTIVE_COUNT_MASK;
1579 +        //        int pk = collectParkCount();
1580          return super.toString() +
1581 <            "[" + runStateToString(runStateOf(rc)) +
1582 <            ", parallelism = " + ps +
1583 <            ", size = " + totalCountOf(wc) +
1584 <            ", active = " + activeCountOf(rc) +
1585 <            ", running = " + runningCountOf(wc) +
1581 >            "[" + runLevelToString(rs) +
1582 >            ", parallelism = " + pc +
1583 >            ", size = " + tc +
1584 >            ", active = " + ac +
1585 >            ", running = " + rc +
1586              ", steals = " + st +
1587              ", tasks = " + qt +
1588              ", submissions = " + qs +
1589 +            //            ", parks = " + pk +
1590              "]";
1591      }
1592  
1593 <    private static String runStateToString(int rs) {
1594 <        switch(rs) {
1595 <        case RUNNING: return "Running";
1596 <        case SHUTDOWN: return "Shutting down";
1597 <        case TERMINATING: return "Terminating";
948 <        case TERMINATED: return "Terminated";
949 <        default: throw new Error("Unknown run state");
950 <        }
1593 >    private static String runLevelToString(int s) {
1594 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1595 >                ((s & TERMINATING) != 0 ? "Terminating" :
1596 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1597 >                  "Running")));
1598      }
1599  
953    // lifecycle control
954
1600      /**
1601       * Initiates an orderly shutdown in which previously submitted
1602       * tasks are executed, but no new tasks will be accepted.
1603       * Invocation has no additional effect if already shut down.
1604       * Tasks that are in the process of being submitted concurrently
1605       * during the course of this method may or may not be rejected.
1606 +     *
1607       * @throws SecurityException if a security manager exists and
1608       *         the caller is not permitted to modify threads
1609       *         because it does not hold {@link
1610 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1610 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1611       */
1612      public void shutdown() {
1613          checkPermission();
1614 <        transitionRunStateTo(SHUTDOWN);
1615 <        if (canTerminateOnShutdown(runControl))
970 <            terminateOnShutdown();
1614 >        advanceRunLevel(SHUTDOWN);
1615 >        tryTerminate(false);
1616      }
1617  
1618      /**
1619 <     * Attempts to stop all actively executing tasks, and cancels all
1620 <     * waiting tasks.  Tasks that are in the process of being
1621 <     * submitted or executed concurrently during the course of this
1622 <     * method may or may not be rejected. Unlike some other executors,
1623 <     * this method cancels rather than collects non-executed tasks,
1624 <     * so always returns an empty list.
1619 >     * Attempts to cancel and/or stop all tasks, and reject all
1620 >     * subsequently submitted tasks.  Tasks that are in the process of
1621 >     * being submitted or executed concurrently during the course of
1622 >     * this method may or may not be rejected. This method cancels
1623 >     * both existing and unexecuted tasks, in order to permit
1624 >     * termination in the presence of task dependencies. So the method
1625 >     * always returns an empty list (unlike the case for some other
1626 >     * Executors).
1627 >     *
1628       * @return an empty list
1629       * @throws SecurityException if a security manager exists and
1630       *         the caller is not permitted to modify threads
1631       *         because it does not hold {@link
1632 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1632 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1633       */
1634      public List<Runnable> shutdownNow() {
1635          checkPermission();
1636 <        terminate();
1636 >        tryTerminate(true);
1637          return Collections.emptyList();
1638      }
1639  
1640      /**
1641 <     * Returns <tt>true</tt> if all tasks have completed following shut down.
1641 >     * Returns {@code true} if all tasks have completed following shut down.
1642       *
1643 <     * @return <tt>true</tt> if all tasks have completed following shut down
1643 >     * @return {@code true} if all tasks have completed following shut down
1644       */
1645      public boolean isTerminated() {
1646 <        return runStateOf(runControl) == TERMINATED;
1646 >        return runState >= TERMINATED;
1647      }
1648  
1649      /**
1650 <     * Returns <tt>true</tt> if the process of termination has
1651 <     * commenced but possibly not yet completed.
1650 >     * Returns {@code true} if the process of termination has
1651 >     * commenced but not yet completed.  This method may be useful for
1652 >     * debugging. A return of {@code true} reported a sufficient
1653 >     * period after shutdown may indicate that submitted tasks have
1654 >     * ignored or suppressed interruption, causing this executor not
1655 >     * to properly terminate.
1656       *
1657 <     * @return <tt>true</tt> if terminating
1657 >     * @return {@code true} if terminating but not yet terminated
1658       */
1659      public boolean isTerminating() {
1660 <        return runStateOf(runControl) >= TERMINATING;
1660 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1661      }
1662  
1663      /**
1664 <     * Returns <tt>true</tt> if this pool has been shut down.
1664 >     * Returns {@code true} if this pool has been shut down.
1665       *
1666 <     * @return <tt>true</tt> if this pool has been shut down
1666 >     * @return {@code true} if this pool has been shut down
1667       */
1668      public boolean isShutdown() {
1669 <        return runStateOf(runControl) >= SHUTDOWN;
1669 >        return runState >= SHUTDOWN;
1670      }
1671  
1672      /**
# Line 1024 | Line 1676 | public class ForkJoinPool extends Abstra
1676       *
1677       * @param timeout the maximum time to wait
1678       * @param unit the time unit of the timeout argument
1679 <     * @return <tt>true</tt> if this executor terminated and
1680 <     *         <tt>false</tt> if the timeout elapsed before termination
1679 >     * @return {@code true} if this executor terminated and
1680 >     *         {@code false} if the timeout elapsed before termination
1681       * @throws InterruptedException if interrupted while waiting
1682       */
1683      public boolean awaitTermination(long timeout, TimeUnit unit)
1684          throws InterruptedException {
1033        long nanos = unit.toNanos(timeout);
1034        final ReentrantLock lock = this.workerLock;
1035        lock.lock();
1036        try {
1037            for (;;) {
1038                if (isTerminated())
1039                    return true;
1040                if (nanos <= 0)
1041                    return false;
1042                nanos = termination.awaitNanos(nanos);
1043            }
1044        } finally {
1045            lock.unlock();
1046        }
1047    }
1048
1049    // Shutdown and termination support
1050
1051    /**
1052     * Callback from terminating worker. Null out the corresponding
1053     * workers slot, and if terminating, try to terminate, else try to
1054     * shrink workers array.
1055     * @param w the worker
1056     */
1057    final void workerTerminated(ForkJoinWorkerThread w) {
1058        updateStealCount(w);
1059        updateWorkerCount(-1);
1060        final ReentrantLock lock = this.workerLock;
1061        lock.lock();
1685          try {
1686 <            ForkJoinWorkerThread[] ws = workers;
1687 <            int idx = w.poolIndex;
1065 <            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1066 <                ws[idx] = null;
1067 <            if (totalCountOf(workerCounts) == 0) {
1068 <                terminate(); // no-op if already terminating
1069 <                transitionRunStateTo(TERMINATED);
1070 <                termination.signalAll();
1071 <            }
1072 <            else if (!isTerminating()) {
1073 <                tryShrinkWorkerArray();
1074 <                tryResumeSpare(true); // allow replacement
1075 <            }
1076 <        } finally {
1077 <            lock.unlock();
1078 <        }
1079 <        signalIdleWorkers(false);
1080 <    }
1081 <
1082 <    /**
1083 <     * Initiate termination.
1084 <     */
1085 <    private void terminate() {
1086 <        if (transitionRunStateTo(TERMINATING)) {
1087 <            stopAllWorkers();
1088 <            resumeAllSpares();
1089 <            signalIdleWorkers(true);
1090 <            cancelQueuedSubmissions();
1091 <            cancelQueuedWorkerTasks();
1092 <            interruptUnterminatedWorkers();
1093 <            signalIdleWorkers(true); // resignal after interrupt
1094 <        }
1095 <    }
1096 <
1097 <    /**
1098 <     * Possibly terminate when on shutdown state
1099 <     */
1100 <    private void terminateOnShutdown() {
1101 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1102 <            terminate();
1103 <    }
1104 <
1105 <    /**
1106 <     * Clear out and cancel submissions
1107 <     */
1108 <    private void cancelQueuedSubmissions() {
1109 <        ForkJoinTask<?> task;
1110 <        while ((task = pollSubmission()) != null)
1111 <            task.cancel(false);
1112 <    }
1113 <
1114 <    /**
1115 <     * Clean out worker queues.
1116 <     */
1117 <    private void cancelQueuedWorkerTasks() {
1118 <        final ReentrantLock lock = this.workerLock;
1119 <        lock.lock();
1120 <        try {
1121 <            ForkJoinWorkerThread[] ws = workers;
1122 <            for (int i = 0; i < ws.length; ++i) {
1123 <                ForkJoinWorkerThread t = ws[i];
1124 <                if (t != null)
1125 <                    t.cancelTasks();
1126 <            }
1127 <        } finally {
1128 <            lock.unlock();
1129 <        }
1130 <    }
1131 <
1132 <    /**
1133 <     * Set each worker's status to terminating. Requires lock to avoid
1134 <     * conflicts with add/remove
1135 <     */
1136 <    private void stopAllWorkers() {
1137 <        final ReentrantLock lock = this.workerLock;
1138 <        lock.lock();
1139 <        try {
1140 <            ForkJoinWorkerThread[] ws = workers;
1141 <            for (int i = 0; i < ws.length; ++i) {
1142 <                ForkJoinWorkerThread t = ws[i];
1143 <                if (t != null)
1144 <                    t.shutdownNow();
1145 <            }
1146 <        } finally {
1147 <            lock.unlock();
1148 <        }
1149 <    }
1150 <
1151 <    /**
1152 <     * Interrupt all unterminated workers.  This is not required for
1153 <     * sake of internal control, but may help unstick user code during
1154 <     * shutdown.
1155 <     */
1156 <    private void interruptUnterminatedWorkers() {
1157 <        final ReentrantLock lock = this.workerLock;
1158 <        lock.lock();
1159 <        try {
1160 <            ForkJoinWorkerThread[] ws = workers;
1161 <            for (int i = 0; i < ws.length; ++i) {
1162 <                ForkJoinWorkerThread t = ws[i];
1163 <                if (t != null && !t.isTerminated()) {
1164 <                    try {
1165 <                        t.interrupt();
1166 <                    } catch (SecurityException ignore) {
1167 <                    }
1168 <                }
1169 <            }
1170 <        } finally {
1171 <            lock.unlock();
1172 <        }
1173 <    }
1174 <
1175 <
1176 <    /*
1177 <     * Nodes for event barrier to manage idle threads.
1178 <     *
1179 <     * The event barrier has an event count and a wait queue (actually
1180 <     * a Treiber stack).  Workers are enabled to look for work when
1181 <     * the eventCount is incremented. If they fail to find some,
1182 <     * they may wait for next count. Synchronization events occur only
1183 <     * in enough contexts to maintain overall liveness:
1184 <     *
1185 <     *   - Submission of a new task to the pool
1186 <     *   - Creation or termination of a worker
1187 <     *   - pool termination
1188 <     *   - A worker pushing a task on an empty queue
1189 <     *
1190 <     * The last case (pushing a task) occurs often enough, and is
1191 <     * heavy enough compared to simple stack pushes to require some
1192 <     * special handling: Method signalNonEmptyWorkerQueue returns
1193 <     * without advancing count if the queue appears to be empty.  This
1194 <     * would ordinarily result in races causing some queued waiters
1195 <     * not to be woken up. To avoid this, a worker in sync
1196 <     * rescans for tasks after being enqueued if it was the first to
1197 <     * enqueue, and aborts the wait if finding one, also helping to
1198 <     * signal others. This works well because the worker has nothing
1199 <     * better to do anyway, and so might as well help alleviate the
1200 <     * overhead and contention on the threads actually doing work.
1201 <     *
1202 <     * Queue nodes are basic Treiber stack nodes, also used for spare
1203 <     * stack.
1204 <     */
1205 <    static final class WaitQueueNode {
1206 <        WaitQueueNode next; // only written before enqueued
1207 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1208 <        final long count; // unused for spare stack
1209 <        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1210 <            count = c;
1211 <            thread = w;
1212 <        }
1213 <        final boolean signal() {
1214 <            ForkJoinWorkerThread t = thread;
1215 <            thread = null;
1216 <            if (t != null) {
1217 <                LockSupport.unpark(t);
1218 <                return true;
1219 <            }
1686 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1687 >        } catch(TimeoutException ex) {
1688              return false;
1689          }
1690      }
1691  
1692      /**
1225     * Release at least one thread waiting for event count to advance,
1226     * if one exists. If initial attempt fails, release all threads.
1227     * @param all if false, at first try to only release one thread
1228     * @return current event
1229     */
1230    private long releaseIdleWorkers(boolean all) {
1231        long c;
1232        for (;;) {
1233            WaitQueueNode q = barrierStack;
1234            c = eventCount;
1235            long qc;
1236            if (q == null || (qc = q.count) >= c)
1237                break;
1238            if (!all) {
1239                if (casBarrierStack(q, q.next) && q.signal())
1240                    break;
1241                all = true;
1242            }
1243            else if (casBarrierStack(q, null)) {
1244                do {
1245                 q.signal();
1246                } while ((q = q.next) != null);
1247                break;
1248            }
1249        }
1250        return c;
1251    }
1252
1253    /**
1254     * Returns current barrier event count
1255     * @return current barrier event count
1256     */
1257    final long getEventCount() {
1258        long ec = eventCount;
1259        releaseIdleWorkers(true); // release to ensure accurate result
1260        return ec;
1261    }
1262
1263    /**
1264     * Increment event count and release at least one waiting thread,
1265     * if one exists (released threads will in turn wake up others).
1266     * @param all if true, try to wake up all
1267     */
1268    final void signalIdleWorkers(boolean all) {
1269        long c;
1270        do;while (!casEventCount(c = eventCount, c+1));
1271        releaseIdleWorkers(all);
1272    }
1273
1274    /**
1275     * Wake up threads waiting to steal a task. Because method
1276     * sync rechecks availability, it is OK to only proceed if
1277     * queue appears to be non-empty.
1278     */
1279    final void signalNonEmptyWorkerQueue() {
1280        // If CAS fails another signaller must have succeeded
1281        long c;
1282        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1283            releaseIdleWorkers(false);
1284    }
1285
1286    /**
1287     * Waits until event count advances from count, or some thread is
1288     * waiting on a previous count, or there is stealable work
1289     * available. Help wake up others on release.
1290     * @param w the calling worker thread
1291     * @param prev previous value returned by sync (or 0)
1292     * @return current event count
1293     */
1294    final long sync(ForkJoinWorkerThread w, long prev) {
1295        updateStealCount(w);
1296
1297        while (!w.isShutdown() && !isTerminating() &&
1298               (parallelism >= runningCountOf(workerCounts) ||
1299                !suspendIfSpare(w))) { // prefer suspend to waiting here
1300            WaitQueueNode node = null;
1301            boolean queued = false;
1302            for (;;) {
1303                if (!queued) {
1304                    if (eventCount != prev)
1305                        break;
1306                    WaitQueueNode h = barrierStack;
1307                    if (h != null && h.count != prev)
1308                        break; // release below and maybe retry
1309                    if (node == null)
1310                        node = new WaitQueueNode(w, prev);
1311                    queued = casBarrierStack(node.next = h, node);
1312                }
1313                else if (Thread.interrupted() ||
1314                         node.thread == null ||
1315                         (node.next == null && w.prescan()) ||
1316                         eventCount != prev) {
1317                    node.thread = null;
1318                    if (eventCount == prev) // help trigger
1319                        casEventCount(prev, prev+1);
1320                    break;
1321                }
1322                else
1323                    LockSupport.park(this);
1324            }
1325            long ec = eventCount;
1326            if (releaseIdleWorkers(false) != prev)
1327                return ec;
1328        }
1329        return prev; // return old count if aborted
1330    }
1331
1332    //  Parallelism maintenance
1333
1334    /**
1335     * Decrement running count; if too low, add spare.
1336     *
1337     * Conceptually, all we need to do here is add or resume a
1338     * spare thread when one is about to block (and remove or
1339     * suspend it later when unblocked -- see suspendIfSpare).
1340     * However, implementing this idea requires coping with
1341     * several problems: We have imperfect information about the
1342     * states of threads. Some count updates can and usually do
1343     * lag run state changes, despite arrangements to keep them
1344     * accurate (for example, when possible, updating counts
1345     * before signalling or resuming), especially when running on
1346     * dynamic JVMs that don't optimize the infrequent paths that
1347     * update counts. Generating too many threads can make these
1348     * problems become worse, because excess threads are more
1349     * likely to be context-switched with others, slowing them all
1350     * down, especially if there is no work available, so all are
1351     * busy scanning or idling.  Also, excess spare threads can
1352     * only be suspended or removed when they are idle, not
1353     * immediately when they aren't needed. So adding threads will
1354     * raise parallelism level for longer than necessary.  Also,
1355     * FJ applications often enounter highly transient peaks when
1356     * many threads are blocked joining, but for less time than it
1357     * takes to create or resume spares.
1358     *
1359     * @param joinMe if non-null, return early if done
1360     * @param maintainParallelism if true, try to stay within
1361     * target counts, else create only to avoid starvation
1362     * @return true if joinMe known to be done
1363     */
1364    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1365        maintainParallelism &= maintainsParallelism; // overrride
1366        boolean dec = false;  // true when running count decremented
1367        while (spareStack == null || !tryResumeSpare(dec)) {
1368            int counts = workerCounts;
1369            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1370                if (!needSpare(counts, maintainParallelism))
1371                    break;
1372                if (joinMe.status < 0)
1373                    return true;
1374                if (tryAddSpare(counts))
1375                    break;
1376            }
1377        }
1378        return false;
1379    }
1380
1381    /**
1382     * Same idea as preJoin
1383     */
1384    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1385        maintainParallelism &= maintainsParallelism;
1386        boolean dec = false;
1387        while (spareStack == null || !tryResumeSpare(dec)) {
1388            int counts = workerCounts;
1389            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1390                if (!needSpare(counts, maintainParallelism))
1391                    break;
1392                if (blocker.isReleasable())
1393                    return true;
1394                if (tryAddSpare(counts))
1395                    break;
1396            }
1397        }
1398        return false;
1399    }
1400
1401    /**
1402     * Returns true if a spare thread appears to be needed.  If
1403     * maintaining parallelism, returns true when the deficit in
1404     * running threads is more than the surplus of total threads, and
1405     * there is apparently some work to do.  This self-limiting rule
1406     * means that the more threads that have already been added, the
1407     * less parallelism we will tolerate before adding another.
1408     * @param counts current worker counts
1409     * @param maintainParallelism try to maintain parallelism
1410     */
1411    private boolean needSpare(int counts, boolean maintainParallelism) {
1412        int ps = parallelism;
1413        int rc = runningCountOf(counts);
1414        int tc = totalCountOf(counts);
1415        int runningDeficit = ps - rc;
1416        int totalSurplus = tc - ps;
1417        return (tc < maxPoolSize &&
1418                (rc == 0 || totalSurplus < 0 ||
1419                 (maintainParallelism &&
1420                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1421    }
1422
1423    /**
1424     * Returns true if at least one worker queue appears to be
1425     * nonempty. This is expensive but not often called. It is not
1426     * critical that this be accurate, but if not, more or fewer
1427     * running threads than desired might be maintained.
1428     */
1429    private boolean mayHaveQueuedWork() {
1430        ForkJoinWorkerThread[] ws = workers;
1431        int len = ws.length;
1432        ForkJoinWorkerThread v;
1433        for (int i = 0; i < len; ++i) {
1434            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1435                releaseIdleWorkers(false); // help wake up stragglers
1436                return true;
1437            }
1438        }
1439        return false;
1440    }
1441
1442    /**
1443     * Add a spare worker if lock available and no more than the
1444     * expected numbers of threads exist
1445     * @return true if successful
1446     */
1447    private boolean tryAddSpare(int expectedCounts) {
1448        final ReentrantLock lock = this.workerLock;
1449        int expectedRunning = runningCountOf(expectedCounts);
1450        int expectedTotal = totalCountOf(expectedCounts);
1451        boolean success = false;
1452        boolean locked = false;
1453        // confirm counts while locking; CAS after obtaining lock
1454        try {
1455            for (;;) {
1456                int s = workerCounts;
1457                int tc = totalCountOf(s);
1458                int rc = runningCountOf(s);
1459                if (rc > expectedRunning || tc > expectedTotal)
1460                    break;
1461                if (!locked && !(locked = lock.tryLock()))
1462                    break;
1463                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1464                    createAndStartSpare(tc);
1465                    success = true;
1466                    break;
1467                }
1468            }
1469        } finally {
1470            if (locked)
1471                lock.unlock();
1472        }
1473        return success;
1474    }
1475
1476    /**
1477     * Add the kth spare worker. On entry, pool coounts are already
1478     * adjusted to reflect addition.
1479     */
1480    private void createAndStartSpare(int k) {
1481        ForkJoinWorkerThread w = null;
1482        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1483        int len = ws.length;
1484        // Probably, we can place at slot k. If not, find empty slot
1485        if (k < len && ws[k] != null) {
1486            for (k = 0; k < len && ws[k] != null; ++k)
1487                ;
1488        }
1489        if (k < len && (w = createWorker(k)) != null) {
1490            ws[k] = w;
1491            w.start();
1492        }
1493        else
1494            updateWorkerCount(-1); // adjust on failure
1495        signalIdleWorkers(false);
1496    }
1497
1498    /**
1499     * Suspend calling thread w if there are excess threads.  Called
1500     * only from sync.  Spares are enqueued in a Treiber stack
1501     * using the same WaitQueueNodes as barriers.  They are resumed
1502     * mainly in preJoin, but are also woken on pool events that
1503     * require all threads to check run state.
1504     * @param w the caller
1505     */
1506    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1507        WaitQueueNode node = null;
1508        int s;
1509        while (parallelism < runningCountOf(s = workerCounts)) {
1510            if (node == null)
1511                node = new WaitQueueNode(w, 0);
1512            if (casWorkerCounts(s, s-1)) { // representation-dependent
1513                // push onto stack
1514                do;while (!casSpareStack(node.next = spareStack, node));
1515
1516                // block until released by resumeSpare
1517                while (node.thread != null) {
1518                    if (!Thread.interrupted())
1519                        LockSupport.park(this);
1520                }
1521                w.activate(); // help warm up
1522                return true;
1523            }
1524        }
1525        return false;
1526    }
1527
1528    /**
1529     * Try to pop and resume a spare thread.
1530     * @param updateCount if true, increment running count on success
1531     * @return true if successful
1532     */
1533    private boolean tryResumeSpare(boolean updateCount) {
1534        WaitQueueNode q;
1535        while ((q = spareStack) != null) {
1536            if (casSpareStack(q, q.next)) {
1537                if (updateCount)
1538                    updateRunningCount(1);
1539                q.signal();
1540                return true;
1541            }
1542        }
1543        return false;
1544    }
1545
1546    /**
1547     * Pop and resume all spare threads. Same idea as
1548     * releaseIdleWorkers.
1549     * @return true if any spares released
1550     */
1551    private boolean resumeAllSpares() {
1552        WaitQueueNode q;
1553        while ( (q = spareStack) != null) {
1554            if (casSpareStack(q, null)) {
1555                do {
1556                    updateRunningCount(1);
1557                    q.signal();
1558                } while ((q = q.next) != null);
1559                return true;
1560            }
1561        }
1562        return false;
1563    }
1564
1565    /**
1566     * Pop and shutdown excessive spare threads. Call only while
1567     * holding lock. This is not guaranteed to eliminate all excess
1568     * threads, only those suspended as spares, which are the ones
1569     * unlikely to be needed in the future.
1570     */
1571    private void trimSpares() {
1572        int surplus = totalCountOf(workerCounts) - parallelism;
1573        WaitQueueNode q;
1574        while (surplus > 0 && (q = spareStack) != null) {
1575            if (casSpareStack(q, null)) {
1576                do {
1577                    updateRunningCount(1);
1578                    ForkJoinWorkerThread w = q.thread;
1579                    if (w != null && surplus > 0 &&
1580                        runningCountOf(workerCounts) > 0 && w.shutdown())
1581                        --surplus;
1582                    q.signal();
1583                } while ((q = q.next) != null);
1584            }
1585        }
1586    }
1587
1588    /**
1589     * Returns approximate number of spares, just for diagnostics.
1590     */
1591    private int countSpares() {
1592        int sum = 0;
1593        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1594            ++sum;
1595        return sum;
1596    }
1597
1598    /**
1693       * Interface for extending managed parallelism for tasks running
1694 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1695 <     * Method <tt>isReleasable</tt> must return true if blocking is not
1696 <     * necessary. Method <tt>block</tt> blocks the current thread
1697 <     * if necessary (perhaps internally invoking isReleasable before
1698 <     * actually blocking.).
1694 >     * in {@link ForkJoinPool}s.
1695 >     *
1696 >     * <p>A {@code ManagedBlocker} provides two methods.
1697 >     * Method {@code isReleasable} must return {@code true} if
1698 >     * blocking is not necessary. Method {@code block} blocks the
1699 >     * current thread if necessary (perhaps internally invoking
1700 >     * {@code isReleasable} before actually blocking).
1701 >     *
1702       * <p>For example, here is a ManagedBlocker based on a
1703       * ReentrantLock:
1704 <     * <pre>
1705 <     *   class ManagedLocker implements ManagedBlocker {
1706 <     *     final ReentrantLock lock;
1707 <     *     boolean hasLock = false;
1708 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1709 <     *     public boolean block() {
1710 <     *        if (!hasLock)
1711 <     *           lock.lock();
1712 <     *        return true;
1713 <     *     }
1714 <     *     public boolean isReleasable() {
1715 <     *        return hasLock || (hasLock = lock.tryLock());
1619 <     *     }
1704 >     *  <pre> {@code
1705 >     * class ManagedLocker implements ManagedBlocker {
1706 >     *   final ReentrantLock lock;
1707 >     *   boolean hasLock = false;
1708 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1709 >     *   public boolean block() {
1710 >     *     if (!hasLock)
1711 >     *       lock.lock();
1712 >     *     return true;
1713 >     *   }
1714 >     *   public boolean isReleasable() {
1715 >     *     return hasLock || (hasLock = lock.tryLock());
1716       *   }
1717 <     * </pre>
1717 >     * }}</pre>
1718       */
1719      public static interface ManagedBlocker {
1720          /**
1721           * Possibly blocks the current thread, for example waiting for
1722           * a lock or condition.
1723 <         * @return true if no additional blocking is necessary (i.e.,
1724 <         * if isReleasable would return true).
1723 >         *
1724 >         * @return {@code true} if no additional blocking is necessary
1725 >         * (i.e., if isReleasable would return true)
1726           * @throws InterruptedException if interrupted while waiting
1727 <         * (the method is not required to do so, but is allowe to).
1727 >         * (the method is not required to do so, but is allowed to)
1728           */
1729          boolean block() throws InterruptedException;
1730  
1731          /**
1732 <         * Returns true if blocking is unnecessary.
1732 >         * Returns {@code true} if blocking is unnecessary.
1733           */
1734          boolean isReleasable();
1735      }
1736  
1737      /**
1738       * Blocks in accord with the given blocker.  If the current thread
1739 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1740 <     * spare thread to be activated if necessary to ensure parallelism
1741 <     * while the current thread is blocked.  If
1742 <     * <tt>maintainParallelism</tt> is true and the pool supports it
1743 <     * (see <tt>getMaintainsParallelism</tt>), this method attempts to
1744 <     * maintain the pool's nominal parallelism. Otherwise if activates
1745 <     * a thread only if necessary to avoid complete starvation. This
1746 <     * option may be preferable when blockages use timeouts, or are
1747 <     * almost always brief.
1748 <     *
1749 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1750 <     * equivalent to
1751 <     * <pre>
1752 <     *   while (!blocker.isReleasable())
1656 <     *      if (blocker.block())
1657 <     *         return;
1658 <     * </pre>
1659 <     * If the caller is a ForkJoinTask, then the pool may first
1660 <     * be expanded to ensure parallelism, and later adjusted.
1739 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1740 >     * arranges for a spare thread to be activated if necessary to
1741 >     * ensure sufficient parallelism while the current thread is blocked.
1742 >     *
1743 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1744 >     * behaviorally equivalent to
1745 >     *  <pre> {@code
1746 >     * while (!blocker.isReleasable())
1747 >     *   if (blocker.block())
1748 >     *     return;
1749 >     * }</pre>
1750 >     *
1751 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1752 >     * first be expanded to ensure parallelism, and later adjusted.
1753       *
1754       * @param blocker the blocker
1755 <     * @param maintainParallelism if true and supported by this pool,
1664 <     * attempt to maintain the pool's nominal parallelism; otherwise
1665 <     * activate a thread only if necessary to avoid complete
1666 <     * starvation.
1667 <     * @throws InterruptedException if blocker.block did so.
1755 >     * @throws InterruptedException if blocker.block did so
1756       */
1757 <    public static void managedBlock(ManagedBlocker blocker,
1670 <                                    boolean maintainParallelism)
1757 >    public static void managedBlock(ManagedBlocker blocker)
1758          throws InterruptedException {
1759          Thread t = Thread.currentThread();
1760 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1761 <                             ((ForkJoinWorkerThread)t).pool : null);
1762 <        if (!blocker.isReleasable()) {
1763 <            try {
1677 <                if (pool == null ||
1678 <                    !pool.preBlock(blocker, maintainParallelism))
1679 <                    awaitBlocker(blocker);
1680 <            } finally {
1681 <                if (pool != null)
1682 <                    pool.updateRunningCount(1);
1683 <            }
1760 >        if (t instanceof ForkJoinWorkerThread)
1761 >            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1762 >        else {
1763 >            do {} while (!blocker.isReleasable() && !blocker.block());
1764          }
1765      }
1766  
1767 <    private static void awaitBlocker(ManagedBlocker blocker)
1768 <        throws InterruptedException {
1769 <        do;while (!blocker.isReleasable() && !blocker.block());
1767 >    // AbstractExecutorService overrides.  These rely on undocumented
1768 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1769 >    // implement RunnableFuture.
1770 >
1771 >    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1772 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1773      }
1774  
1775 +    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1776 +        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1777 +    }
1778  
1779 <    // Temporary Unsafe mechanics for preliminary release
1779 >    // Unsafe mechanics
1780  
1781 <    static final Unsafe _unsafe;
1782 <    static final long eventCountOffset;
1783 <    static final long workerCountsOffset;
1784 <    static final long runControlOffset;
1785 <    static final long barrierStackOffset;
1786 <    static final long spareStackOffset;
1781 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1782 >    private static final long workerCountsOffset =
1783 >        objectFieldOffset("workerCounts", ForkJoinPool.class);
1784 >    private static final long runStateOffset =
1785 >        objectFieldOffset("runState", ForkJoinPool.class);
1786 >    private static final long eventCountOffset =
1787 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1788 >    private static final long eventWaitersOffset =
1789 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1790 >    private static final long stealCountOffset =
1791 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1792  
1793 <    static {
1793 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1794          try {
1795 <            if (ForkJoinPool.class.getClassLoader() != null) {
1796 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1797 <                f.setAccessible(true);
1798 <                _unsafe = (Unsafe)f.get(null);
1799 <            }
1800 <            else
1710 <                _unsafe = Unsafe.getUnsafe();
1711 <            eventCountOffset = _unsafe.objectFieldOffset
1712 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
1713 <            workerCountsOffset = _unsafe.objectFieldOffset
1714 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
1715 <            runControlOffset = _unsafe.objectFieldOffset
1716 <                (ForkJoinPool.class.getDeclaredField("runControl"));
1717 <            barrierStackOffset = _unsafe.objectFieldOffset
1718 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
1719 <            spareStackOffset = _unsafe.objectFieldOffset
1720 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
1721 <        } catch (Exception e) {
1722 <            throw new RuntimeException("Could not initialize intrinsics", e);
1795 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1796 >        } catch (NoSuchFieldException e) {
1797 >            // Convert Exception to corresponding Error
1798 >            NoSuchFieldError error = new NoSuchFieldError(field);
1799 >            error.initCause(e);
1800 >            throw error;
1801          }
1802      }
1803  
1804 <    private boolean casEventCount(long cmp, long val) {
1805 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1806 <    }
1807 <    private boolean casWorkerCounts(int cmp, int val) {
1808 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1809 <    }
1810 <    private boolean casRunControl(int cmp, int val) {
1811 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1812 <    }
1813 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1814 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1815 <    }
1816 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1817 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
1804 >    /**
1805 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1806 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1807 >     * into a jdk.
1808 >     *
1809 >     * @return a sun.misc.Unsafe
1810 >     */
1811 >    private static sun.misc.Unsafe getUnsafe() {
1812 >        try {
1813 >            return sun.misc.Unsafe.getUnsafe();
1814 >        } catch (SecurityException se) {
1815 >            try {
1816 >                return java.security.AccessController.doPrivileged
1817 >                    (new java.security
1818 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1819 >                        public sun.misc.Unsafe run() throws Exception {
1820 >                            java.lang.reflect.Field f = sun.misc
1821 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1822 >                            f.setAccessible(true);
1823 >                            return (sun.misc.Unsafe) f.get(null);
1824 >                        }});
1825 >            } catch (java.security.PrivilegedActionException e) {
1826 >                throw new RuntimeException("Could not initialize intrinsics",
1827 >                                           e.getCause());
1828 >            }
1829 >        }
1830      }
1831   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines