ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.1 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.58 by dl, Fri Jul 23 13:07:43 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.ArrayList;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Collections;
15 > import java.util.List;
16 > import java.util.concurrent.locks.LockSupport;
17 > import java.util.concurrent.locks.ReentrantLock;
18 > import java.util.concurrent.atomic.AtomicInteger;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22 < * Host for a group of ForkJoinWorkerThreads.  A ForkJoinPool provides
23 < * the entry point for tasks submitted from non-ForkJoinTasks, as well
24 < * as management and monitoring operations.  Normally a single
25 < * ForkJoinPool is used for a large number of submitted
20 < * tasks. Otherwise, use would not usually outweigh the construction
21 < * and bookkeeping overhead of creating a large set of threads.
22 < *
23 < * <p>ForkJoinPools differ from other kinds of Executor mainly in that
24 < * they provide <em>work-stealing</em>: all threads in the pool
25 < * attempt to find and execute subtasks created by other active tasks
26 < * (eventually blocking if none exist). This makes them efficient when
27 < * most tasks spawn other subtasks (as do most ForkJoinTasks) but
28 < * possibly less so otherwise. It is however fine to combine execution
29 < * of some plain Runnable- or Callable- based activities with that of
30 < * ForkJoinTasks.
22 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 > * A {@code ForkJoinPool} provides the entry point for submissions
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>A ForkJoinPool may be constructed with a given parallelism level
28 < * (target pool size), which it attempts to maintain by dynamically
29 < * adding, suspending, or resuming threads, even if some tasks have
30 < * blocked waiting to join others. However, no such adjustments are
31 < * performed in the face of blocked IO or other unmanaged
32 < * synchronization. The nested ManagedBlocker interface enables
33 < * extension of the kinds of synchronization accommodated.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>The target parallelism level may also be set dynamically. You
38 < * can limit the number of threads dynamically constructed using
39 < * method <tt>setMaximumPoolSize</tt> and/or
40 < * <tt>setMaintainParallelism</tt>.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
49 < * <tt>getStealCount</tt>) that are intended to aid in developing,
49 > * {@link #getStealCount}) that are intended to aid in developing,
50   * tuning, and monitoring fork/join applications. Also, method
51 < * <tt>toString</tt> returns indications of pool state in a convenient
52 < * form for informal monitoring.
51 > * {@link #toString} returns indications of pool state in a
52 > * convenient form for informal monitoring.
53 > *
54 > * <p> As is the case with other ExecutorServices, there are three
55 > * main task execution methods summarized in the follwoing
56 > * table. These are designed to be used by clients not already engaged
57 > * in fork/join computations in the current pool.  The main forms of
58 > * these methods accept instances of {@code ForkJoinTask}, but
59 > * overloaded forms also allow mixed execution of plain {@code
60 > * Runnable}- or {@code Callable}- based activities as well.  However,
61 > * tasks that are already executing in a pool should normally
62 > * <em>NOT</em> use these pool execution methods, but instead use the
63 > * within-computation forms listed in the table.
64 > *
65 > * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 > *  <tr>
67 > *    <td></td>
68 > *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 > *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 > *  </tr>
71 > *  <tr>
72 > *    <td> <b>Arange async execution</td>
73 > *    <td> {@link #execute(ForkJoinTask)}</td>
74 > *    <td> {@link ForkJoinTask#fork}</td>
75 > *  </tr>
76 > *  <tr>
77 > *    <td> <b>Await and obtain result</td>
78 > *    <td> {@link #invoke(ForkJoinTask)}</td>
79 > *    <td> {@link ForkJoinTask#invoke}</td>
80 > *  </tr>
81 > *  <tr>
82 > *    <td> <b>Arrange exec and obtain Future</td>
83 > *    <td> {@link #submit(ForkJoinTask)}</td>
84 > *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 > *  </tr>
86 > * </table>
87 > *
88 > * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 > * used for all parallel task execution in a program or subsystem.
90 > * Otherwise, use would not usually outweigh the construction and
91 > * bookkeeping overhead of creating a large set of threads. For
92 > * example, a common pool could be used for the {@code SortTasks}
93 > * illustrated in {@link RecursiveAction}. Because {@code
94 > * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 > * daemon} mode, there is typically no need to explicitly {@link
96 > * #shutdown} such a pool upon program exit.
97 > *
98 > * <pre>
99 > * static final ForkJoinPool mainPool = new ForkJoinPool();
100 > * ...
101 > * public void sort(long[] array) {
102 > *   mainPool.invoke(new SortTask(array, 0, array.length));
103 > * }
104 > * </pre>
105   *
106   * <p><b>Implementation notes</b>: This implementation restricts the
107 < * maximum parallelism to 32767. Attempts to create pools with greater
108 < * than the maximum result in IllegalArgumentExceptions.
107 > * maximum number of running threads to 32767. Attempts to create
108 > * pools with greater than the maximum number result in
109 > * {@code IllegalArgumentException}.
110 > *
111 > * <p>This implementation rejects submitted tasks (that is, by throwing
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhuasted.
114 > *
115 > * @since 1.7
116 > * @author Doug Lea
117   */
118 < public class ForkJoinPool extends AbstractExecutorService
57 <    implements ExecutorService {
118 > public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to arrange tactics for
142 >     * when one worker is waiting to join a task stolen (or always
143 >     * held by) another.  Becauae we are multiplexing many tasks on to
144 >     * a pool of workers, we can't just let them block (as in
145 >     * Thread.join).  We also cannot just reassign the joiner's
146 >     * run-time stack with another and replace it later, which would
147 >     * be a form of "continuation", that even if possible is not
148 >     * necessarily a good idea. Given that the creation costs of most
149 >     * threads on most systems mainly surrounds setting up runtime
150 >     * stacks, thread creation and switching is usually not much more
151 >     * expensive than stack creation and switching, and is more
152 >     * flexible). Instead we combine two tactics:
153 >     *
154 >     *   1. Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   2. Unless there are already enough live threads, creating or
160 >     *      or re-activating a spare thread to compensate for the
161 >     *      (blocked) joiner until it unblocks.  Spares then suspend
162 >     *      at their next opportunity or eventually die if unused for
163 >     *      too long.  See below and the internal documentation
164 >     *      for tryAwaitJoin for more details about compensation
165 >     *      rules.
166 >     *
167 >     * Because the determining existence of conservatively safe
168 >     * helping targets, the availability of already-created spares,
169 >     * and the apparent need to create new spares are all racy and
170 >     * require heuristic guidance, joins (in
171 >     * ForkJoinWorkerThread.joinTask) interleave these options until
172 >     * successful.  Creating a new spare always succeeds, but also
173 >     * increases application footprint, so we try to avoid it, within
174 >     * reason.
175 >     *
176 >     * The ManagedBlocker extension API can't use option (1) so uses a
177 >     * special version of (2) in method awaitBlocker.
178 >     *
179 >     * The main throughput advantages of work-stealing stem from
180 >     * decentralized control -- workers mostly steal tasks from each
181 >     * other. We do not want to negate this by creating bottlenecks
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195 >     *
196 >     * 1. Creating and removing workers. Workers are recorded in the
197 >     * "workers" array. This is an array as opposed to some other data
198 >     * structure to support index-based random steals by workers.
199 >     * Updates to the array recording new workers and unrecording
200 >     * terminated ones are protected from each other by a lock
201 >     * (workerLock) but the array is otherwise concurrently readable,
202 >     * and accessed directly by workers. To simplify index-based
203 >     * operations, the array size is always a power of two, and all
204 >     * readers must tolerate null slots. Currently, all worker thread
205 >     * creation is on-demand, triggered by task submissions,
206 >     * replacement of terminated workers, and/or compensation for
207 >     * blocked workers. However, all other support code is set up to
208 >     * work with other policies.
209 >     *
210 >     * 2. Bookkeeping for dynamically adding and removing workers. We
211 >     * aim to approximately maintain the given level of parallelism.
212 >     * When some workers are known to be blocked (on joins or via
213 >     * ManagedBlocker), we may create or resume others to take their
214 >     * place until they unblock (see below). Implementing this
215 >     * requires counts of the number of "running" threads (i.e., those
216 >     * that are neither blocked nor artifically suspended) as well as
217 >     * the total number.  These two values are packed into one field,
218 >     * "workerCounts" because we need accurate snapshots when deciding
219 >     * to create, resume or suspend.  Note however that the
220 >     * correspondance of these counts to reality is not guaranteed. In
221 >     * particular updates for unblocked threads may lag until they
222 >     * actually wake up.
223 >     *
224 >     * 3. Maintaining global run state. The run state of the pool
225 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
226 >     * those in other Executor implementations, as well as a count of
227 >     * "active" workers -- those that are, or soon will be, or
228 >     * recently were executing tasks. The runLevel and active count
229 >     * are packed together in order to correctly trigger shutdown and
230 >     * termination. Without care, active counts can be subject to very
231 >     * high contention.  We substantially reduce this contention by
232 >     * relaxing update rules.  A worker must claim active status
233 >     * prospectively, by activating if it sees that a submitted or
234 >     * stealable task exists (it may find after activating that the
235 >     * task no longer exists). It stays active while processing this
236 >     * task (if it exists) and any other local subtasks it produces,
237 >     * until it cannot find any other tasks. It then tries
238 >     * inactivating (see method preStep), but upon update contention
239 >     * instead scans for more tasks, later retrying inactivation if it
240 >     * doesn't find any.
241 >     *
242 >     * 4. Managing idle workers waiting for tasks. We cannot let
243 >     * workers spin indefinitely scanning for tasks when none are
244 >     * available. On the other hand, we must quickly prod them into
245 >     * action when new tasks are submitted or generated.  We
246 >     * park/unpark these idle workers using an event-count scheme.
247 >     * Field eventCount is incremented upon events that may enable
248 >     * workers that previously could not find a task to now find one:
249 >     * Submission of a new task to the pool, or another worker pushing
250 >     * a task onto a previously empty queue.  (We also use this
251 >     * mechanism for termination and reconfiguration actions that
252 >     * require wakeups of idle workers).  Each worker maintains its
253 >     * last known event count, and blocks when a scan for work did not
254 >     * find a task AND its lastEventCount matches the current
255 >     * eventCount. Waiting idle workers are recorded in a variant of
256 >     * Treiber stack headed by field eventWaiters which, when nonzero,
257 >     * encodes the thread index and count awaited for by the worker
258 >     * thread most recently calling eventSync. This thread in turn has
259 >     * a record (field nextEventWaiter) for the next waiting worker.
260 >     * In addition to allowing simpler decisions about need for
261 >     * wakeup, the event count bits in eventWaiters serve the role of
262 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
263 >     * in task diffusion, workers not otherwise occupied may invoke
264 >     * method releaseWaiters, that removes and signals (unparks)
265 >     * workers not waiting on current count. To minimize task
266 >     * production stalls associate with signalling, any worker pushing
267 >     * a task on an empty queue invokes the weaker method signalWork,
268 >     * that only releases idle workers until it detects interference
269 >     * by other threads trying to release, and lets them take
270 >     * over. The net effect is a tree-like diffusion of signals, where
271 >     * released threads (and possibly others) help with unparks.  To
272 >     * further reduce contention effects a bit, failed CASes to
273 >     * increment field eventCount are tolerated without retries.
274 >     * Conceptually they are merged into the same event, which is OK
275 >     * when their only purpose is to enable workers to scan for work.
276 >     *
277 >     * 5. Managing suspension of extra workers. When a worker is about
278 >     * to block waiting for a join (or via ManagedBlockers), we may
279 >     * create a new thread to maintain parallelism level, or at least
280 >     * avoid starvation. Usually, extra threads are needed for only
281 >     * very short periods, yet join dependencies are such that we
282 >     * sometimes need them in bursts. Rather than create new threads
283 >     * each time this happens, we suspend no-longer-needed extra ones
284 >     * as "spares". For most purposes, we don't distinguish "extra"
285 >     * spare threads from normal "core" threads: On each call to
286 >     * preStep (the only point at which we can do this) a worker
287 >     * checks to see if there are now too many running workers, and if
288 >     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
289 >     * look for suspended threads to resume before considering
290 >     * creating a new replacement. We don't need a special data
291 >     * structure to maintain spares; simply scanning the workers array
292 >     * looking for worker.isSuspended() is fine because the calling
293 >     * thread is otherwise not doing anything useful anyway; we are at
294 >     * least as happy if after locating a spare, the caller doesn't
295 >     * actually block because the join is ready before we try to
296 >     * adjust and compensate.  Note that this is intrinsically racy.
297 >     * One thread may become a spare at about the same time as another
298 >     * is needlessly being created. We counteract this and related
299 >     * slop in part by requiring resumed spares to immediately recheck
300 >     * (in preStep) to see whether they they should re-suspend. The
301 >     * only effective difference between "extra" and "core" threads is
302 >     * that we allow the "extra" ones to time out and die if they are
303 >     * not resumed within a keep-alive interval of a few seconds. This
304 >     * is implemented mainly within ForkJoinWorkerThread, but requires
305 >     * some coordination (isTrimmed() -- meaning killed while
306 >     * suspended) to correctly maintain pool counts.
307 >     *
308 >     * 6. Deciding when to create new workers. The main dynamic
309 >     * control in this class is deciding when to create extra threads,
310 >     * in methods awaitJoin and awaitBlocker. We always need to create
311 >     * one when the number of running threads would become zero and
312 >     * all workers are busy. However, this is not easy to detect
313 >     * reliably in the presence of transients so we use retries and
314 >     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
315 >     * effectively reduce churn at the price of systematically
316 >     * undershooting target parallelism when many threads are blocked.
317 >     * However, biasing toward undeshooting partially compensates for
318 >     * the above mechanics to suspend extra threads, that normally
319 >     * lead to overshoot because we can only suspend workers
320 >     * in-between top-level actions. It also better copes with the
321 >     * fact that some of the methods in this class tend to never
322 >     * become compiled (but are interpreted), so some components of
323 >     * the entire set of controls might execute many times faster than
324 >     * others. And similarly for cases where the apparent lack of work
325 >     * is just due to GC stalls and other transient system activity.
326 >     *
327 >     * Beware that there is a lot of representation-level coupling
328 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
329 >     * ForkJoinTask.  For example, direct access to "workers" array by
330 >     * workers, and direct access to ForkJoinTask.status by both
331 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
332 >     * trying to reduce this, since any associated future changes in
333 >     * representations will need to be accompanied by algorithmic
334 >     * changes anyway.
335 >     *
336 >     * Style notes: There are lots of inline assignments (of form
337 >     * "while ((local = field) != 0)") which are usually the simplest
338 >     * way to ensure read orderings. Also several occurrences of the
339 >     * unusual "do {} while(!cas...)" which is the simplest way to
340 >     * force an update of a CAS'ed variable. There are also other
341 >     * coding oddities that help some methods perform reasonably even
342 >     * when interpreted (not compiled), at the expense of messiness.
343 >     *
344 >     * The order of declarations in this file is: (1) statics (2)
345 >     * fields (along with constants used when unpacking some of them)
346 >     * (3) internal control methods (4) callbacks and other support
347 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
348 >     * methods (plus a few little helpers).
349       */
350  
64    /** Mask for packing and unpacking shorts */
65    private static final int  shortMask = 0xffff;
66
67    /** Max pool size -- must be a power of two minus 1 */
68    private static final int MAX_THREADS =  0x7FFF;
69
351      /**
352 <     * Factory for creating new ForkJoinWorkerThreads.  A
353 <     * ForkJoinWorkerThreadFactory must be defined and used for
354 <     * ForkJoinWorkerThread subclasses that extend base functionality
355 <     * or initialize threads with different contexts.
352 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
353 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
354 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
355 >     * functionality or initialize threads with different contexts.
356       */
357      public static interface ForkJoinWorkerThreadFactory {
358          /**
359           * Returns a new worker thread operating in the given pool.
360           *
361           * @param pool the pool this thread works in
362 <         * @throws NullPointerException if pool is null;
362 >         * @throws NullPointerException if the pool is null
363           */
364          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
365      }
366  
367      /**
368 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
368 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
369       * new ForkJoinWorkerThread.
370       */
371 <    public static class  DefaultForkJoinWorkerThreadFactory
371 >    static class DefaultForkJoinWorkerThreadFactory
372          implements ForkJoinWorkerThreadFactory {
373          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
374 <            try {
94 <                return new ForkJoinWorkerThread(pool);
95 <            } catch (OutOfMemoryError oom)  {
96 <                return null;
97 <            }
374 >            return new ForkJoinWorkerThread(pool);
375          }
376      }
377  
378      /**
379 <     * The default ForkJoinWorkerThreadFactory, used unless overridden
380 <     * in ForkJoinPool constructors.
379 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
380 >     * overridden in ForkJoinPool constructors.
381       */
382 <    private static final DefaultForkJoinWorkerThreadFactory
382 >    public static final ForkJoinWorkerThreadFactory
383          defaultForkJoinWorkerThreadFactory =
384          new DefaultForkJoinWorkerThreadFactory();
385  
109
386      /**
387       * Permission required for callers of methods that may start or
388       * kill threads.
# Line 131 | Line 407 | public class ForkJoinPool extends Abstra
407          new AtomicInteger();
408  
409      /**
410 <     * Array holding all worker threads in the pool. Array size must
410 >     * Absolute bound for parallelism level. Twice this number must
411 >     * fit into a 16bit field to enable word-packing for some counts.
412 >     */
413 >    private static final int MAX_THREADS = 0x7fff;
414 >
415 >    /**
416 >     * Array holding all worker threads in the pool.  Array size must
417       * be a power of two.  Updates and replacements are protected by
418 <     * workerLock, but it is always kept in a consistent enough state
419 <     * to be randomly accessed without locking by workers performing
420 <     * work-stealing.
418 >     * workerLock, but the array is always kept in a consistent enough
419 >     * state to be randomly accessed without locking by workers
420 >     * performing work-stealing, as well as other traversal-based
421 >     * methods in this class. All readers must tolerate that some
422 >     * array slots may be null.
423       */
424      volatile ForkJoinWorkerThread[] workers;
425  
426      /**
427 <     * Lock protecting access to workers.
427 >     * Queue for external submissions.
428       */
429 <    private final ReentrantLock workerLock;
429 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
430  
431      /**
432 <     * Condition for awaitTermination.
432 >     * Lock protecting updates to workers array.
433       */
434 <    private final Condition termination;
434 >    private final ReentrantLock workerLock;
435  
436      /**
437 <     * The uncaught exception handler used when any worker
154 <     * abrupty terminates
437 >     * Latch released upon termination.
438       */
439 <    private Thread.UncaughtExceptionHandler ueh;
439 >    private final Phaser termination;
440  
441      /**
442       * Creation factory for worker threads.
# Line 161 | Line 444 | public class ForkJoinPool extends Abstra
444      private final ForkJoinWorkerThreadFactory factory;
445  
446      /**
447 <     * Head of stack of threads that were created to maintain
448 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
447 >     * Sum of per-thread steal counts, updated only when threads are
448 >     * idle or terminating.
449       */
450 <    private volatile WaitQueueNode spareStack;
450 >    private volatile long stealCount;
451  
452      /**
453 <     * Sum of per-thread steal counts, updated only when threads are
454 <     * idle or terminating.
453 >     * Encoded record of top of treiber stack of threads waiting for
454 >     * events. The top 32 bits contain the count being waited for. The
455 >     * bottom word contains one plus the pool index of waiting worker
456 >     * thread.
457       */
458 <    private final AtomicLong stealCount;
458 >    private volatile long eventWaiters;
459 >
460 >    private static final int  EVENT_COUNT_SHIFT = 32;
461 >    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
462  
463      /**
464 <     * Queue for external submissions.
464 >     * A counter for events that may wake up worker threads:
465 >     *   - Submission of a new task to the pool
466 >     *   - A worker pushing a task on an empty queue
467 >     *   - termination and reconfiguration
468       */
469 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469 >    private volatile int eventCount;
470 >
471 >    /**
472 >     * Lifecycle control. The low word contains the number of workers
473 >     * that are (probably) executing tasks. This value is atomically
474 >     * incremented before a worker gets a task to run, and decremented
475 >     * when worker has no tasks and cannot find any.  Bits 16-18
476 >     * contain runLevel value. When all are zero, the pool is
477 >     * running. Level transitions are monotonic (running -> shutdown
478 >     * -> terminating -> terminated) so each transition adds a bit.
479 >     * These are bundled together to ensure consistent read for
480 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
481 >     * and active threads is zero).
482 >     */
483 >    private volatile int runState;
484 >
485 >    // Note: The order among run level values matters.
486 >    private static final int RUNLEVEL_SHIFT     = 16;
487 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
488 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
489 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
490 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491 >    private static final int ONE_ACTIVE         = 1; // active update delta
492  
493      /**
494 <     * Head of Treiber stack for barrier sync. See below for explanation
494 >     * Holds number of total (i.e., created and not yet terminated)
495 >     * and running (i.e., not blocked on joins or other managed sync)
496 >     * threads, packed together to ensure consistent snapshot when
497 >     * making decisions about creating and suspending spare
498 >     * threads. Updated only by CAS. Note that adding a new worker
499 >     * requires incrementing both counts, since workers start off in
500 >     * running state.  This field is also used for memory-fencing
501 >     * configuration parameters.
502       */
503 <    private volatile WaitQueueNode barrierStack;
503 >    private volatile int workerCounts;
504 >
505 >    private static final int TOTAL_COUNT_SHIFT  = 16;
506 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
507 >    private static final int ONE_RUNNING        = 1;
508 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
509  
510      /**
511 <     * The count for event barrier
511 >     * The target parallelism level.
512 >     * Accessed directly by ForkJoinWorkerThreads.
513       */
514 <    private volatile long eventCount;
514 >    final int parallelism;
515 >
516 >    /**
517 >     * True if use local fifo, not default lifo, for local polling
518 >     * Read by, and replicated by ForkJoinWorkerThreads
519 >     */
520 >    final boolean locallyFifo;
521 >
522 >    /**
523 >     * The uncaught exception handler used when any worker abruptly
524 >     * terminates.
525 >     */
526 >    private final Thread.UncaughtExceptionHandler ueh;
527  
528      /**
529       * Pool number, just for assigning useful names to worker threads
530       */
531      private final int poolNumber;
532  
533 +    // Utilities for CASing fields. Note that several of these
534 +    // are manually inlined by callers
535 +
536      /**
537 <     * The maximum allowed pool size
537 >     * Increments running count.  Also used by ForkJoinTask.
538       */
539 <    private volatile int maxPoolSize;
539 >    final void incrementRunningCount() {
540 >        int c;
541 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
542 >                                               c = workerCounts,
543 >                                               c + ONE_RUNNING));
544 >    }
545  
546      /**
547 <     * The desired parallelism level, updated only under workerLock.
547 >     * Tries to decrement running count unless already zero
548       */
549 <    private volatile int parallelism;
549 >    final boolean tryDecrementRunningCount() {
550 >        int wc = workerCounts;
551 >        if ((wc & RUNNING_COUNT_MASK) == 0)
552 >            return false;
553 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
554 >                                        wc, wc - ONE_RUNNING);
555 >    }
556  
557      /**
558 <     * Holds number of total (i.e., created and not yet terminated)
208 <     * and running (i.e., not blocked on joins or other managed sync)
209 <     * threads, packed into one int to ensure consistent snapshot when
210 <     * making decisions about creating and suspending spare
211 <     * threads. Updated only by CAS.  Note: CASes in
212 <     * updateRunningCount and preJoin running active count is in low
213 <     * word, so need to be modified if this changes
558 >     * Tries to increment running count
559       */
560 <    private volatile int workerCounts;
560 >    final boolean tryIncrementRunningCount() {
561 >        int wc;
562 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
563 >                                        wc = workerCounts, wc + ONE_RUNNING);
564 >    }
565  
566 <    private static int totalCountOf(int s)           { return s >>> 16;  }
567 <    private static int runningCountOf(int s)         { return s & shortMask; }
568 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
566 >    /**
567 >     * Tries incrementing active count; fails on contention.
568 >     * Called by workers before executing tasks.
569 >     *
570 >     * @return true on success
571 >     */
572 >    final boolean tryIncrementActiveCount() {
573 >        int c;
574 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
575 >                                        c = runState, c + ONE_ACTIVE);
576 >    }
577  
578      /**
579 <     * Add delta (which may be negative) to running count.  This must
580 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
225 <     * @param delta the number to add
579 >     * Tries decrementing active count; fails on contention.
580 >     * Called when workers cannot find tasks to run.
581       */
582 <    final void updateRunningCount(int delta) {
583 <        int s;
584 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
582 >    final boolean tryDecrementActiveCount() {
583 >        int c;
584 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
585 >                                        c = runState, c - ONE_ACTIVE);
586      }
587  
588      /**
589 <     * Add delta (which may be negative) to both total and running
590 <     * count.  This must be called upon creation and termination of
235 <     * worker threads.
236 <     * @param delta the number to add
589 >     * Advances to at least the given level. Returns true if not
590 >     * already in at least the given level.
591       */
592 <    private void updateWorkerCount(int delta) {
593 <        int d = delta + (delta << 16); // add to both lo and hi parts
594 <        int s;
595 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
592 >    private boolean advanceRunLevel(int level) {
593 >        for (;;) {
594 >            int s = runState;
595 >            if ((s & level) != 0)
596 >                return false;
597 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
598 >                return true;
599 >        }
600      }
601  
602 +    // workers array maintenance
603 +
604      /**
605 <     * Lifecycle control. High word contains runState, low word
246 <     * contains the number of workers that are (probably) executing
247 <     * tasks. This value is atomically incremented before a worker
248 <     * gets a task to run, and decremented when worker has no tasks
249 <     * and cannot find any. These two fields are bundled together to
250 <     * support correct termination triggering.  Note: activeCount
251 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
605 >     * Records and returns a workers array index for new worker.
606       */
607 <    private volatile int runControl;
607 >    private int recordWorker(ForkJoinWorkerThread w) {
608 >        // Try using slot totalCount-1. If not available, scan and/or resize
609 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
610 >        final ReentrantLock lock = this.workerLock;
611 >        lock.lock();
612 >        try {
613 >            ForkJoinWorkerThread[] ws = workers;
614 >            int nws = ws.length;
615 >            if (k < 0 || k >= nws || ws[k] != null) {
616 >                for (k = 0; k < nws && ws[k] != null; ++k)
617 >                    ;
618 >                if (k == nws)
619 >                    ws = Arrays.copyOf(ws, nws << 1);
620 >            }
621 >            ws[k] = w;
622 >            workers = ws; // volatile array write ensures slot visibility
623 >        } finally {
624 >            lock.unlock();
625 >        }
626 >        return k;
627 >    }
628  
629 <    // RunState values. Order among values matters
630 <    private static final int RUNNING     = 0;
631 <    private static final int SHUTDOWN    = 1;
632 <    private static final int TERMINATING = 2;
633 <    private static final int TERMINATED  = 3;
629 >    /**
630 >     * Nulls out record of worker in workers array
631 >     */
632 >    private void forgetWorker(ForkJoinWorkerThread w) {
633 >        int idx = w.poolIndex;
634 >        // Locking helps method recordWorker avoid unecessary expansion
635 >        final ReentrantLock lock = this.workerLock;
636 >        lock.lock();
637 >        try {
638 >            ForkJoinWorkerThread[] ws = workers;
639 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
640 >                ws[idx] = null;
641 >        } finally {
642 >            lock.unlock();
643 >        }
644 >    }
645  
646 <    private static int runStateOf(int c)             { return c >>> 16; }
263 <    private static int activeCountOf(int c)          { return c & shortMask; }
264 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
646 >    // adding and removing workers
647  
648      /**
649 <     * Increment active count. Called by workers before/during
650 <     * executing tasks.
649 >     * Tries to create and add new worker. Assumes that worker counts
650 >     * are already updated to accommodate the worker, so adjusts on
651 >     * failure.
652 >     *
653 >     * @return new worker or null if creation failed
654       */
655 <    final void incrementActiveCount() {
656 <        int c;
657 <        do;while (!casRunControl(c = runControl, c+1));
655 >    private ForkJoinWorkerThread addWorker() {
656 >        ForkJoinWorkerThread w = null;
657 >        try {
658 >            w = factory.newThread(this);
659 >        } finally { // Adjust on either null or exceptional factory return
660 >            if (w == null) {
661 >                onWorkerCreationFailure();
662 >                return null;
663 >            }
664 >        }
665 >        w.start(recordWorker(w), ueh);
666 >        return w;
667      }
668  
669      /**
670 <     * Decrement active count; possibly trigger termination.
277 <     * Called by workers when they can't find tasks.
670 >     * Adjusts counts upon failure to create worker
671       */
672 <    final void decrementActiveCount() {
673 <        int c, nextc;
674 <        do;while (!casRunControl(c = runControl, nextc = c-1));
675 <        if (canTerminateOnShutdown(nextc))
676 <            terminateOnShutdown();
672 >    private void onWorkerCreationFailure() {
673 >        for (;;) {
674 >            int wc = workerCounts;
675 >            if ((wc >>> TOTAL_COUNT_SHIFT) == 0)
676 >                Thread.yield(); // wait for other counts to settle
677 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
678 >                                              wc - (ONE_RUNNING|ONE_TOTAL)))
679 >                break;
680 >        }
681 >        tryTerminate(false); // in case of failure during shutdown
682      }
683  
684      /**
685 <     * Return true if argument represents zero active count and
686 <     * nonzero runstate, which is the triggering condition for
687 <     * terminating on shutdown.
685 >     * Creates and/or resumes enough workers to establish target
686 >     * parallelism, giving up if terminating or addWorker fails
687 >     *
688 >     * TODO: recast this to support lazier creation and automated
689 >     * parallelism maintenance
690       */
691 <    private static boolean canTerminateOnShutdown(int c) {
692 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
691 >    private void ensureEnoughWorkers() {
692 >        for (;;) {
693 >            int pc = parallelism;
694 >            int wc = workerCounts;
695 >            int rc = wc & RUNNING_COUNT_MASK;
696 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
697 >            if (tc < pc) {
698 >                if (runState == TERMINATING ||
699 >                    (UNSAFE.compareAndSwapInt
700 >                     (this, workerCountsOffset,
701 >                      wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
702 >                     addWorker() == null))
703 >                    break;
704 >            }
705 >            else if (tc > pc && rc < pc &&
706 >                     tc > (runState & ACTIVE_COUNT_MASK)) {
707 >                ForkJoinWorkerThread spare = null;
708 >                ForkJoinWorkerThread[] ws = workers;
709 >                int nws = ws.length;
710 >                for (int i = 0; i < nws; ++i) {
711 >                    ForkJoinWorkerThread w = ws[i];
712 >                    if (w != null && w.isSuspended()) {
713 >                        if ((workerCounts & RUNNING_COUNT_MASK) > pc ||
714 >                            runState == TERMINATING)
715 >                            return;
716 >                        if (w.tryResumeSpare())
717 >                            incrementRunningCount();
718 >                        break;
719 >                    }
720 >                }
721 >            }
722 >            else
723 >                break;
724 >        }
725      }
726  
727      /**
728 <     * Transition run state to at least the given state. Return true
729 <     * if not already at least given state.
728 >     * Final callback from terminating worker.  Removes record of
729 >     * worker from array, and adjusts counts. If pool is shutting
730 >     * down, tries to complete terminatation, else possibly replaces
731 >     * the worker.
732 >     *
733 >     * @param w the worker
734       */
735 <    private boolean transitionRunStateTo(int state) {
735 >    final void workerTerminated(ForkJoinWorkerThread w) {
736 >        if (w.active) { // force inactive
737 >            w.active = false;
738 >            do {} while (!tryDecrementActiveCount());
739 >        }
740 >        forgetWorker(w);
741 >
742 >        // Decrement total count, and if was running, running count
743 >        // Spin (waiting for other updates) if either would be negative
744 >        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
745 >        int unit = ONE_TOTAL + nr;
746          for (;;) {
747 <            int c = runControl;
748 <            if (runStateOf(c) >= state)
749 <                return false;
750 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
751 <                return true;
747 >            int wc = workerCounts;
748 >            int rc = wc & RUNNING_COUNT_MASK;
749 >            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
750 >                Thread.yield(); // back off if waiting for other updates
751 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
752 >                                              wc, wc - unit))
753 >                break;
754          }
755 +
756 +        accumulateStealCount(w); // collect final count
757 +        if (!tryTerminate(false))
758 +            ensureEnoughWorkers();
759      }
760  
761 +    // Waiting for and signalling events
762 +
763      /**
764 <     * Controls whether to add spares to maintain parallelism
764 >     * Releases workers blocked on a count not equal to current count.
765 >     * @return true if any released
766       */
767 <    private volatile boolean maintainsParallelism;
767 >    private void releaseWaiters() {
768 >        long top;
769 >        while ((top = eventWaiters) != 0L) {
770 >            ForkJoinWorkerThread[] ws = workers;
771 >            int n = ws.length;
772 >            for (;;) {
773 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
774 >                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == eventCount)
775 >                    return;
776 >                ForkJoinWorkerThread w;
777 >                if (i < n && (w = ws[i]) != null &&
778 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
779 >                                              top, w.nextWaiter)) {
780 >                    LockSupport.unpark(w);
781 >                    top = eventWaiters;
782 >                }
783 >                else
784 >                    break;      // possibly stale; reread
785 >            }
786 >        }
787 >    }
788  
789 <    // Constructors
789 >    /**
790 >     * Ensures eventCount on exit is different (mod 2^32) than on
791 >     * entry and wakes up all waiters
792 >     */
793 >    private void signalEvent() {
794 >        int c;
795 >        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
796 >                                               c = eventCount, c+1));
797 >        releaseWaiters();
798 >    }
799  
800      /**
801 <     * Creates a ForkJoinPool with a pool size equal to the number of
802 <     * processors available on the system and using the default
319 <     * ForkJoinWorkerThreadFactory,
320 <     * @throws SecurityException if a security manager exists and
321 <     *         the caller is not permitted to modify threads
322 <     *         because it does not hold {@link
323 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
801 >     * Advances eventCount and releases waiters until interference by
802 >     * other releasing threads is detected.
803       */
804 <    public ForkJoinPool() {
805 <        this(Runtime.getRuntime().availableProcessors(),
806 <             defaultForkJoinWorkerThreadFactory);
804 >    final void signalWork() {
805 >        int c;
806 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
807 >        long top;
808 >        while ((top = eventWaiters) != 0L) {
809 >            int ec = eventCount;
810 >            ForkJoinWorkerThread[] ws = workers;
811 >            int n = ws.length;
812 >            for (;;) {
813 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
814 >                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
815 >                    return;
816 >                ForkJoinWorkerThread w;
817 >                if (i < n && (w = ws[i]) != null &&
818 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
819 >                                              top, top = w.nextWaiter)) {
820 >                    LockSupport.unpark(w);
821 >                    if (top != eventWaiters) // let someone else take over
822 >                        return;
823 >                }
824 >                else
825 >                    break;      // possibly stale; reread
826 >            }
827 >        }
828      }
829  
830      /**
831 <     * Creates a ForkJoinPool with the indicated parellelism level
832 <     * threads, and using the default ForkJoinWorkerThreadFactory,
833 <     * @param parallelism the number of worker threads
834 <     * @throws IllegalArgumentException if parallelism less than or
835 <     * equal to zero
836 <     * @throws SecurityException if a security manager exists and
837 <     *         the caller is not permitted to modify threads
338 <     *         because it does not hold {@link
339 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
831 >     * If worker is inactive, blocks until terminating or event count
832 >     * advances from last value held by worker; in any case helps
833 >     * release others.
834 >     *
835 >     * @param w the calling worker thread
836 >     * @param retries the number of scans by caller failing to find work
837 >     * @return false if now too many threads running
838       */
839 <    public ForkJoinPool(int parallelism) {
840 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
839 >    private boolean eventSync(ForkJoinWorkerThread w, int retries) {
840 >        int wec = w.lastEventCount;
841 >        if (retries > 1) { // can only block after 2nd miss
842 >            long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
843 >                            ((long)(w.poolIndex + 1)));
844 >            long top;
845 >            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
846 >                   (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
847 >                    (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
848 >                   eventCount == wec) {
849 >                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
850 >                                              w.nextWaiter = top, nextTop)) {
851 >                    accumulateStealCount(w); // transfer steals while idle
852 >                    Thread.interrupted();    // clear/ignore interrupt
853 >                    while (eventCount == wec)
854 >                        w.doPark();
855 >                    break;
856 >                }
857 >            }
858 >            wec = eventCount;
859 >        }
860 >        releaseWaiters();
861 >        int wc = workerCounts;
862 >        if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
863 >            w.lastEventCount = wec;
864 >            return true;
865 >        }
866 >        if (wec != w.lastEventCount) // back up if may re-wait
867 >            w.lastEventCount = wec - (wc >>> TOTAL_COUNT_SHIFT);
868 >        return false;
869      }
870  
871      /**
872 <     * Creates a ForkJoinPool with a pool size equal to the number of
873 <     * processors available on the system and using the given
874 <     * ForkJoinWorkerThreadFactory,
875 <     * @param factory the factory for creating new threads
876 <     * @throws NullPointerException if factory is null
877 <     * @throws SecurityException if a security manager exists and
878 <     *         the caller is not permitted to modify threads
879 <     *         because it does not hold {@link
880 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
872 >     * Callback from workers invoked upon each top-level action (i.e.,
873 >     * stealing a task or taking a submission and running
874 >     * it). Performs one or both of the following:
875 >     *
876 >     * * If the worker cannot find work, updates its active status to
877 >     * inactive and updates activeCount unless there is contention, in
878 >     * which case it may try again (either in this or a subsequent
879 >     * call).  Additionally, awaits the next task event and/or helps
880 >     * wake up other releasable waiters.
881 >     *
882 >     * * If there are too many running threads, suspends this worker
883 >     * (first forcing inactivation if necessary).  If it is not
884 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
885 >     * -- killed while suspended within suspendAsSpare. Otherwise,
886 >     * upon resume it rechecks to make sure that it is still needed.
887 >     *
888 >     * @param w the worker
889 >     * @param retries the number of scans by caller failing to find work
890 >     * find any (in which case it may block waiting for work).
891       */
892 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
893 <        this(Runtime.getRuntime().availableProcessors(), factory);
892 >    final void preStep(ForkJoinWorkerThread w, int retries) {
893 >        boolean active = w.active;
894 >        boolean inactivate = active && retries != 0;
895 >        for (;;) {
896 >            int rs, wc;
897 >            if (inactivate &&
898 >                UNSAFE.compareAndSwapInt(this, runStateOffset,
899 >                                         rs = runState, rs - ONE_ACTIVE))
900 >                inactivate = active = w.active = false;
901 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
902 >                if (active || eventSync(w, retries))
903 >                    break;
904 >            }
905 >            else if (!(inactivate |= active) &&  // must inactivate to suspend
906 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
907 >                                         wc, wc - ONE_RUNNING) &&
908 >                !w.suspendAsSpare())             // false if trimmed
909 >                break;
910 >        }
911      }
912  
913      /**
914 <     * Creates a ForkJoinPool with the indicated target number of
915 <     * worker threads and the given factory.
914 >     * Awaits join of the given task if enough threads, or can resume
915 >     * or create a spare. Fails (in which case the given task might
916 >     * not be done) upon contention or lack of decision about
917 >     * blocking. Returns void because caller must check
918 >     * task status on return anyway.
919       *
920 <     * @param parallelism the targeted number of worker threads
921 <     * @param factory the factory for creating new threads
922 <     * @throws IllegalArgumentException if parallelism less than or
923 <     * equal to zero, or greater than implementation limit.
924 <     * @throws NullPointerException if factory is null
925 <     * @throws SecurityException if a security manager exists and
926 <     *         the caller is not permitted to modify threads
927 <     *         because it does not hold {@link
928 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
920 >     * We allow blocking if:
921 >     *
922 >     * 1. There would still be at least as many running threads as
923 >     *    parallelism level if this thread blocks.
924 >     *
925 >     * 2. A spare is resumed to replace this worker. We tolerate
926 >     *    slop in the decision to replace if a spare is found without
927 >     *    first decrementing run count.  This may release too many,
928 >     *    but if so, the superfluous ones will re-suspend via
929 >     *    preStep().
930 >     *
931 >     * 3. After #spares repeated checks, there are no fewer than #spare
932 >     *    threads not running. We allow this slack to avoid hysteresis
933 >     *    and as a hedge against lag/uncertainty of running count
934 >     *    estimates when signalling or unblocking stalls.
935 >     *
936 >     * 4. All existing workers are busy (as rechecked via repeated
937 >     *    retries by caller) and a new spare is created.
938 >     *
939 >     * If none of the above hold, we try to escape out by
940 >     * re-incrementing count and returning to caller, which can retry
941 >     * later.
942 >     *
943 >     * @param joinMe the task to join
944 >     * @param retries if negative, then serve only as a precheck
945 >     *   that the thread can be replaced by a spare. Otherwise,
946 >     *   the number of repeated calls to this method returning busy
947 >     * @return true if the call must be retried because there
948 >     *   none of the blocking checks hold
949       */
950 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
951 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
952 <            throw new IllegalArgumentException();
953 <        if (factory == null)
954 <            throw new NullPointerException();
955 <        checkPermission();
956 <        this.factory = factory;
957 <        this.parallelism = parallelism;
958 <        this.maxPoolSize = MAX_THREADS;
959 <        this.maintainsParallelism = true;
960 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
961 <        this.workerLock = new ReentrantLock();
962 <        this.termination = workerLock.newCondition();
963 <        this.stealCount = new AtomicLong();
964 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
965 <        createAndStartInitialWorkers(parallelism);
950 >    final boolean tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
951 >        if (joinMe.status < 0) // precheck to prime loop
952 >            return false;
953 >        int pc = parallelism;
954 >        boolean running = true; // false when running count decremented
955 >        outer:for (;;) {
956 >            int wc = workerCounts;
957 >            int rc = wc & RUNNING_COUNT_MASK;
958 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
959 >            if (running) { // replace with spare or decrement count
960 >                if (rc <= pc && tc > pc &&
961 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
962 >                    ForkJoinWorkerThread[] ws = workers;
963 >                    int nws = ws.length;
964 >                    for (int i = 0; i < nws; ++i) { // search for spare
965 >                        ForkJoinWorkerThread w = ws[i];
966 >                        if (w != null) {
967 >                            if (joinMe.status < 0)
968 >                                return false;
969 >                            if (w.isSuspended()) {
970 >                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
971 >                                    w.tryResumeSpare()) {
972 >                                    running = false;
973 >                                    break outer;
974 >                                }
975 >                                continue outer; // rescan
976 >                            }
977 >                        }
978 >                    }
979 >                }
980 >                if (retries < 0 || // < 0 means replacement check only
981 >                    rc == 0 || joinMe.status < 0 || workerCounts != wc ||
982 >                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
983 >                                              wc, wc - ONE_RUNNING))
984 >                    return false; // done or inconsistent or contended
985 >                running = false;
986 >                if (rc > pc)
987 >                    break;
988 >            }
989 >            else { // allow blocking if enough threads
990 >                if (rc >= pc || joinMe.status < 0)
991 >                    break;
992 >                int sc = tc - pc + 1; // = spare threads, plus the one to add
993 >                if (retries > sc) {
994 >                    if (rc > 0 && rc >= pc - sc) // allow slack
995 >                        break;
996 >                    if (tc < MAX_THREADS &&
997 >                        tc == (runState & ACTIVE_COUNT_MASK) &&
998 >                        workerCounts == wc &&
999 >                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1000 >                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1001 >                        addWorker();
1002 >                        break;
1003 >                    }
1004 >                }
1005 >                if (workerCounts == wc &&        // back out to allow rescan
1006 >                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1007 >                                              wc, wc + ONE_RUNNING)) {
1008 >                    releaseWaiters();            // help others progress
1009 >                    return true;                 // let caller retry
1010 >                }
1011 >            }
1012 >        }
1013 >        // arrive here if can block
1014 >        joinMe.internalAwaitDone();
1015 >        int c;                      // to inline incrementRunningCount
1016 >        do {} while (!UNSAFE.compareAndSwapInt
1017 >                     (this, workerCountsOffset,
1018 >                      c = workerCounts, c + ONE_RUNNING));
1019 >        return false;
1020      }
1021  
1022      /**
1023 <     * Create new worker using factory.
1024 <     * @param index the index to assign worker
1025 <     * @return new worker, or null of factory failed
1026 <     */
1027 <    private ForkJoinWorkerThread createWorker(int index) {
1028 <        Thread.UncaughtExceptionHandler h = ueh;
1029 <        ForkJoinWorkerThread w = factory.newThread(this);
1030 <        if (w != null) {
1031 <            w.poolIndex = index;
1032 <            w.setDaemon(true);
1033 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1034 <            if (h != null)
1035 <                w.setUncaughtExceptionHandler(h);
1023 >     * Same idea as (and shares many code snippets with) tryAwaitJoin,
1024 >     * but self-contained because there are no caller retries.
1025 >     * TODO: Rework to use simpler API.
1026 >     */
1027 >    final void awaitBlocker(ManagedBlocker blocker)
1028 >        throws InterruptedException {
1029 >        boolean done;
1030 >        if (done = blocker.isReleasable())
1031 >            return;
1032 >        int pc = parallelism;
1033 >        int retries = 0;
1034 >        boolean running = true; // false when running count decremented
1035 >        outer:for (;;) {
1036 >            int wc = workerCounts;
1037 >            int rc = wc & RUNNING_COUNT_MASK;
1038 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
1039 >            if (running) {
1040 >                if (rc <= pc && tc > pc &&
1041 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1042 >                    ForkJoinWorkerThread[] ws = workers;
1043 >                    int nws = ws.length;
1044 >                    for (int i = 0; i < nws; ++i) {
1045 >                        ForkJoinWorkerThread w = ws[i];
1046 >                        if (w != null) {
1047 >                            if (done = blocker.isReleasable())
1048 >                                return;
1049 >                            if (w.isSuspended()) {
1050 >                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1051 >                                    w.tryResumeSpare()) {
1052 >                                    running = false;
1053 >                                    break outer;
1054 >                                }
1055 >                                continue outer; // rescan
1056 >                            }
1057 >                        }
1058 >                    }
1059 >                }
1060 >                if (done = blocker.isReleasable())
1061 >                    return;
1062 >                if (rc == 0 || workerCounts != wc ||
1063 >                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1064 >                                              wc, wc - ONE_RUNNING))
1065 >                    continue;
1066 >                running = false;
1067 >                if (rc > pc)
1068 >                    break;
1069 >            }
1070 >            else {
1071 >                if (rc >= pc || (done = blocker.isReleasable()))
1072 >                    break;
1073 >                int sc = tc - pc + 1;
1074 >                if (retries++ > sc) {
1075 >                    if (rc > 0 && rc >= pc - sc)
1076 >                        break;
1077 >                    if (tc < MAX_THREADS &&
1078 >                        tc == (runState & ACTIVE_COUNT_MASK) &&
1079 >                        workerCounts == wc &&
1080 >                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1081 >                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1082 >                        addWorker();
1083 >                        break;
1084 >                    }
1085 >                }
1086 >                Thread.yield();
1087 >            }
1088          }
1089 <        return w;
1089 >        
1090 >        try {
1091 >            if (!done)
1092 >                do {} while (!blocker.isReleasable() && !blocker.block());
1093 >        } finally {
1094 >            if (!running) {
1095 >                int c;
1096 >                do {} while (!UNSAFE.compareAndSwapInt
1097 >                             (this, workerCountsOffset,
1098 >                              c = workerCounts, c + ONE_RUNNING));
1099 >            }
1100 >        }
1101 >    }  
1102 >
1103 >    /**
1104 >     * Possibly initiates and/or completes termination.
1105 >     *
1106 >     * @param now if true, unconditionally terminate, else only
1107 >     * if shutdown and empty queue and no active workers
1108 >     * @return true if now terminating or terminated
1109 >     */
1110 >    private boolean tryTerminate(boolean now) {
1111 >        if (now)
1112 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1113 >        else if (runState < SHUTDOWN ||
1114 >                 !submissionQueue.isEmpty() ||
1115 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1116 >            return false;
1117 >
1118 >        if (advanceRunLevel(TERMINATING))
1119 >            startTerminating();
1120 >
1121 >        // Finish now if all threads terminated; else in some subsequent call
1122 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1123 >            advanceRunLevel(TERMINATED);
1124 >            termination.arrive();
1125 >        }
1126 >        return true;
1127      }
1128  
1129      /**
1130 <     * Return a good size for worker array given pool size.
412 <     * Currently requires size to be a power of two.
1130 >     * Actions on transition to TERMINATING
1131       */
1132 <    private static int arraySizeFor(int ps) {
1133 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1132 >    private void startTerminating() {
1133 >        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1134 >            cancelSubmissions();
1135 >            shutdownWorkers();
1136 >            cancelWorkerTasks();
1137 >            signalEvent();
1138 >            interruptWorkers();
1139 >        }
1140      }
1141  
1142      /**
1143 <     * Create or resize array if necessary to hold newLength
420 <     * @return the array
1143 >     * Clear out and cancel submissions, ignoring exceptions
1144       */
1145 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1145 >    private void cancelSubmissions() {
1146 >        ForkJoinTask<?> task;
1147 >        while ((task = submissionQueue.poll()) != null) {
1148 >            try {
1149 >                task.cancel(false);
1150 >            } catch (Throwable ignore) {
1151 >            }
1152 >        }
1153 >    }
1154 >
1155 >    /**
1156 >     * Sets all worker run states to at least shutdown,
1157 >     * also resuming suspended workers
1158 >     */
1159 >    private void shutdownWorkers() {
1160          ForkJoinWorkerThread[] ws = workers;
1161 <        if (ws == null)
1162 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1163 <        else if (newLength > ws.length)
1164 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1165 <        else
1166 <            return ws;
1161 >        int nws = ws.length;
1162 >        for (int i = 0; i < nws; ++i) {
1163 >            ForkJoinWorkerThread w = ws[i];
1164 >            if (w != null)
1165 >                w.shutdown();
1166 >        }
1167      }
1168  
1169      /**
1170 <     * Try to shrink workers into smaller array after one or more terminate
1170 >     * Clears out and cancels all locally queued tasks
1171       */
1172 <    private void tryShrinkWorkerArray() {
1172 >    private void cancelWorkerTasks() {
1173          ForkJoinWorkerThread[] ws = workers;
1174 <        int len = ws.length;
1175 <        int last = len - 1;
1176 <        while (last >= 0 && ws[last] == null)
1177 <            --last;
1178 <        int newLength = arraySizeFor(last+1);
1179 <        if (newLength < len)
443 <            workers = Arrays.copyOf(ws, newLength);
1174 >        int nws = ws.length;
1175 >        for (int i = 0; i < nws; ++i) {
1176 >            ForkJoinWorkerThread w = ws[i];
1177 >            if (w != null)
1178 >                w.cancelTasks();
1179 >        }
1180      }
1181  
1182      /**
1183 <     * Initial worker array and worker creation and startup. (This
448 <     * must be done under lock to avoid interference by some of the
449 <     * newly started threads while creating others.)
1183 >     * Unsticks all workers blocked on joins etc
1184       */
1185 <    private void createAndStartInitialWorkers(int ps) {
1186 <        final ReentrantLock lock = this.workerLock;
1187 <        lock.lock();
1188 <        try {
1189 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1190 <            for (int i = 0; i < ps; ++i) {
1191 <                ForkJoinWorkerThread w = createWorker(i);
1192 <                if (w != null) {
1193 <                    ws[i] = w;
460 <                    w.start();
461 <                    updateWorkerCount(1);
1185 >    private void interruptWorkers() {
1186 >        ForkJoinWorkerThread[] ws = workers;
1187 >        int nws = ws.length;
1188 >        for (int i = 0; i < nws; ++i) {
1189 >            ForkJoinWorkerThread w = ws[i];
1190 >            if (w != null && !w.isTerminated()) {
1191 >                try {
1192 >                    w.interrupt();
1193 >                } catch (SecurityException ignore) {
1194                  }
1195              }
464        } finally {
465            lock.unlock();
1196          }
1197      }
1198  
1199 +    // misc support for ForkJoinWorkerThread
1200 +
1201      /**
1202 <     * Worker creation and startup for threads added via setParallelism.
1202 >     * Returns pool number
1203       */
1204 <    private void createAndStartAddedWorkers() {
1205 <        resumeAllSpares();  // Allow spares to convert to nonspare
1206 <        int ps = parallelism;
1207 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1208 <        int len = ws.length;
1209 <        // Sweep through slots, to keep lowest indices most populated
1210 <        int k = 0;
1211 <        while (k < len) {
1212 <            if (ws[k] != null) {
1213 <                ++k;
1214 <                continue;
1215 <            }
1216 <            int s = workerCounts;
1217 <            int tc = totalCountOf(s);
1218 <            int rc = runningCountOf(s);
487 <            if (rc >= ps || tc >= ps)
488 <                break;
489 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
490 <                ForkJoinWorkerThread w = createWorker(k);
491 <                if (w != null) {
492 <                    ws[k++] = w;
493 <                    w.start();
494 <                }
495 <                else {
496 <                    updateWorkerCount(-1); // back out on failed creation
497 <                    break;
498 <                }
499 <            }
1204 >    final int getPoolNumber() {
1205 >        return poolNumber;
1206 >    }
1207 >
1208 >    /**
1209 >     * Accumulates steal count from a worker, clearing
1210 >     * the worker's value
1211 >     */
1212 >    final void accumulateStealCount(ForkJoinWorkerThread w) {
1213 >        int sc = w.stealCount;
1214 >        if (sc != 0) {
1215 >            long c;
1216 >            w.stealCount = 0;
1217 >            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1218 >                                                    c = stealCount, c + sc));
1219          }
1220      }
1221  
1222      /**
1223 <     * Sets the handler for internal worker threads that terminate due
1224 <     * to unrecoverable errors encountered while executing tasks.
1225 <     * Unless set, the current default or ThreadGroup handler is used
1226 <     * as handler.
1223 >     * Returns the approximate (non-atomic) number of idle threads per
1224 >     * active thread.
1225 >     */
1226 >    final int idlePerActive() {
1227 >        int pc = parallelism; // use parallelism, not rc
1228 >        int ac = runState;    // no mask -- artifically boosts during shutdown
1229 >        // Use exact results for small values, saturate past 4
1230 >        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1231 >    }
1232 >
1233 >    // Public and protected methods
1234 >
1235 >    // Constructors
1236 >
1237 >    /**
1238 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1239 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1240 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1241 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1242 >     *
1243 >     * @throws SecurityException if a security manager exists and
1244 >     *         the caller is not permitted to modify threads
1245 >     *         because it does not hold {@link
1246 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1247 >     */
1248 >    public ForkJoinPool() {
1249 >        this(Runtime.getRuntime().availableProcessors(),
1250 >             defaultForkJoinWorkerThreadFactory, null, false);
1251 >    }
1252 >
1253 >    /**
1254 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1255 >     * level, the {@linkplain
1256 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1257 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1258 >     *
1259 >     * @param parallelism the parallelism level
1260 >     * @throws IllegalArgumentException if parallelism less than or
1261 >     *         equal to zero, or greater than implementation limit
1262 >     * @throws SecurityException if a security manager exists and
1263 >     *         the caller is not permitted to modify threads
1264 >     *         because it does not hold {@link
1265 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1266 >     */
1267 >    public ForkJoinPool(int parallelism) {
1268 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1269 >    }
1270 >
1271 >    /**
1272 >     * Creates a {@code ForkJoinPool} with the given parameters.
1273       *
1274 <     * @param h the new handler
1275 <     * @return the old handler, or null if none
1274 >     * @param parallelism the parallelism level. For default value,
1275 >     * use {@link java.lang.Runtime#availableProcessors}.
1276 >     * @param factory the factory for creating new threads. For default value,
1277 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1278 >     * @param handler the handler for internal worker threads that
1279 >     * terminate due to unrecoverable errors encountered while executing
1280 >     * tasks. For default value, use <code>null</code>.
1281 >     * @param asyncMode if true,
1282 >     * establishes local first-in-first-out scheduling mode for forked
1283 >     * tasks that are never joined. This mode may be more appropriate
1284 >     * than default locally stack-based mode in applications in which
1285 >     * worker threads only process event-style asynchronous tasks.
1286 >     * For default value, use <code>false</code>.
1287 >     * @throws IllegalArgumentException if parallelism less than or
1288 >     *         equal to zero, or greater than implementation limit
1289 >     * @throws NullPointerException if the factory is null
1290       * @throws SecurityException if a security manager exists and
1291       *         the caller is not permitted to modify threads
1292       *         because it does not hold {@link
1293 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1293 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1294       */
1295 <    public Thread.UncaughtExceptionHandler
1296 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1295 >    public ForkJoinPool(int parallelism,
1296 >                        ForkJoinWorkerThreadFactory factory,
1297 >                        Thread.UncaughtExceptionHandler handler,
1298 >                        boolean asyncMode) {
1299          checkPermission();
1300 <        Thread.UncaughtExceptionHandler old = null;
1301 <        final ReentrantLock lock = this.workerLock;
1302 <        lock.lock();
1303 <        try {
1304 <            old = ueh;
1305 <            ueh = h;
1306 <            ForkJoinWorkerThread[] ws = workers;
1307 <            for (int i = 0; i < ws.length; ++i) {
1308 <                ForkJoinWorkerThread w = ws[i];
1309 <                if (w != null)
1310 <                    w.setUncaughtExceptionHandler(h);
1311 <            }
1312 <        } finally {
1313 <            lock.unlock();
533 <        }
534 <        return old;
1300 >        if (factory == null)
1301 >            throw new NullPointerException();
1302 >        if (parallelism <= 0 || parallelism > MAX_THREADS)
1303 >            throw new IllegalArgumentException();
1304 >        this.parallelism = parallelism;
1305 >        this.factory = factory;
1306 >        this.ueh = handler;
1307 >        this.locallyFifo = asyncMode;
1308 >        int arraySize = initialArraySizeFor(parallelism);
1309 >        this.workers = new ForkJoinWorkerThread[arraySize];
1310 >        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1311 >        this.workerLock = new ReentrantLock();
1312 >        this.termination = new Phaser(1);
1313 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1314      }
1315  
1316      /**
1317 <     * Returns the handler for internal worker threads that terminate
1318 <     * due to unrecoverable errors encountered while executing tasks.
540 <     * @return the handler, or null if none
1317 >     * Returns initial power of two size for workers array.
1318 >     * @param pc the initial parallelism level
1319       */
1320 <    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1321 <        Thread.UncaughtExceptionHandler h;
1322 <        final ReentrantLock lock = this.workerLock;
1323 <        lock.lock();
1324 <        try {
1325 <            h = ueh;
1326 <        } finally {
1327 <            lock.unlock();
550 <        }
551 <        return h;
1320 >    private static int initialArraySizeFor(int pc) {
1321 >        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1322 >        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1323 >        size |= size >>> 1;
1324 >        size |= size >>> 2;
1325 >        size |= size >>> 4;
1326 >        size |= size >>> 8;
1327 >        return size + 1;
1328      }
1329  
1330      // Execution methods
# Line 557 | Line 1333 | public class ForkJoinPool extends Abstra
1333       * Common code for execute, invoke and submit
1334       */
1335      private <T> void doSubmit(ForkJoinTask<T> task) {
1336 <        if (isShutdown())
1336 >        if (task == null)
1337 >            throw new NullPointerException();
1338 >        if (runState >= SHUTDOWN)
1339              throw new RejectedExecutionException();
1340          submissionQueue.offer(task);
1341 <        signalIdleWorkers(true);
1341 >        signalEvent();
1342 >        ensureEnoughWorkers();
1343      }
1344  
1345      /**
1346 <     * Performs the given task; returning its result upon completion
1346 >     * Performs the given task, returning its result upon completion.
1347 >     * If the caller is already engaged in a fork/join computation in
1348 >     * the current pool, this method is equivalent in effect to
1349 >     * {@link ForkJoinTask#invoke}.
1350 >     *
1351       * @param task the task
1352       * @return the task's result
1353 <     * @throws NullPointerException if task is null
1354 <     * @throws RejectedExecutionException if pool is shut down
1353 >     * @throws NullPointerException if the task is null
1354 >     * @throws RejectedExecutionException if the task cannot be
1355 >     *         scheduled for execution
1356       */
1357      public <T> T invoke(ForkJoinTask<T> task) {
1358          doSubmit(task);
# Line 577 | Line 1361 | public class ForkJoinPool extends Abstra
1361  
1362      /**
1363       * Arranges for (asynchronous) execution of the given task.
1364 +     * If the caller is already engaged in a fork/join computation in
1365 +     * the current pool, this method is equivalent in effect to
1366 +     * {@link ForkJoinTask#fork}.
1367 +     *
1368       * @param task the task
1369 <     * @throws NullPointerException if task is null
1370 <     * @throws RejectedExecutionException if pool is shut down
1369 >     * @throws NullPointerException if the task is null
1370 >     * @throws RejectedExecutionException if the task cannot be
1371 >     *         scheduled for execution
1372       */
1373 <    public <T> void execute(ForkJoinTask<T> task) {
1373 >    public void execute(ForkJoinTask<?> task) {
1374          doSubmit(task);
1375      }
1376  
1377      // AbstractExecutorService methods
1378  
1379 +    /**
1380 +     * @throws NullPointerException if the task is null
1381 +     * @throws RejectedExecutionException if the task cannot be
1382 +     *         scheduled for execution
1383 +     */
1384      public void execute(Runnable task) {
1385 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1385 >        ForkJoinTask<?> job;
1386 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1387 >            job = (ForkJoinTask<?>) task;
1388 >        else
1389 >            job = ForkJoinTask.adapt(task, null);
1390 >        doSubmit(job);
1391      }
1392  
1393 +    /**
1394 +     * Submits a ForkJoinTask for execution.
1395 +     * If the caller is already engaged in a fork/join computation in
1396 +     * the current pool, this method is equivalent in effect to
1397 +     * {@link ForkJoinTask#fork}.
1398 +     *
1399 +     * @param task the task to submit
1400 +     * @return the task
1401 +     * @throws NullPointerException if the task is null
1402 +     * @throws RejectedExecutionException if the task cannot be
1403 +     *         scheduled for execution
1404 +     */
1405 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1406 +        doSubmit(task);
1407 +        return task;
1408 +    }
1409 +
1410 +    /**
1411 +     * @throws NullPointerException if the task is null
1412 +     * @throws RejectedExecutionException if the task cannot be
1413 +     *         scheduled for execution
1414 +     */
1415      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1416 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1416 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1417          doSubmit(job);
1418          return job;
1419      }
1420  
1421 +    /**
1422 +     * @throws NullPointerException if the task is null
1423 +     * @throws RejectedExecutionException if the task cannot be
1424 +     *         scheduled for execution
1425 +     */
1426      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1427 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1427 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1428          doSubmit(job);
1429          return job;
1430      }
1431  
1432 +    /**
1433 +     * @throws NullPointerException if the task is null
1434 +     * @throws RejectedExecutionException if the task cannot be
1435 +     *         scheduled for execution
1436 +     */
1437      public ForkJoinTask<?> submit(Runnable task) {
1438 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1438 >        ForkJoinTask<?> job;
1439 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1440 >            job = (ForkJoinTask<?>) task;
1441 >        else
1442 >            job = ForkJoinTask.adapt(task, null);
1443          doSubmit(job);
1444          return job;
1445      }
1446  
612    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
613        return new AdaptedRunnable(runnable, value);
614    }
615
616    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
617        return new AdaptedCallable(callable);
618    }
619
620    /**
621     * Adaptor for Runnables. This implements RunnableFuture
622     * to be compliant with AbstractExecutorService constraints
623     */
624    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
625        implements RunnableFuture<T> {
626        final Runnable runnable;
627        final T resultOnCompletion;
628        T result;
629        AdaptedRunnable(Runnable runnable, T result) {
630            if (runnable == null) throw new NullPointerException();
631            this.runnable = runnable;
632            this.resultOnCompletion = result;
633        }
634        public T getRawResult() { return result; }
635        public void setRawResult(T v) { result = v; }
636        public boolean exec() {
637            runnable.run();
638            result = resultOnCompletion;
639            return true;
640        }
641        public void run() { invoke(); }
642    }
643
1447      /**
1448 <     * Adaptor for Callables
1448 >     * @throws NullPointerException       {@inheritDoc}
1449 >     * @throws RejectedExecutionException {@inheritDoc}
1450       */
647    static final class AdaptedCallable<T> extends ForkJoinTask<T>
648        implements RunnableFuture<T> {
649        final Callable<T> callable;
650        T result;
651        AdaptedCallable(Callable<T> callable) {
652            if (callable == null) throw new NullPointerException();
653            this.callable = callable;
654        }
655        public T getRawResult() { return result; }
656        public void setRawResult(T v) { result = v; }
657        public boolean exec() {
658            try {
659                result = callable.call();
660                return true;
661            } catch (Error err) {
662                throw err;
663            } catch (RuntimeException rex) {
664                throw rex;
665            } catch (Exception ex) {
666                throw new RuntimeException(ex);
667            }
668        }
669        public void run() { invoke(); }
670    }
671
1451      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1452 <        ArrayList<ForkJoinTask<T>> ts =
1452 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1453              new ArrayList<ForkJoinTask<T>>(tasks.size());
1454 <        for (Callable<T> c : tasks)
1455 <            ts.add(new AdaptedCallable<T>(c));
1456 <        invoke(new InvokeAll<T>(ts));
1457 <        return (List<Future<T>>)(List)ts;
1454 >        for (Callable<T> task : tasks)
1455 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1456 >        invoke(new InvokeAll<T>(forkJoinTasks));
1457 >
1458 >        @SuppressWarnings({"unchecked", "rawtypes"})
1459 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1460 >        return futures;
1461      }
1462  
1463      static final class InvokeAll<T> extends RecursiveAction {
1464          final ArrayList<ForkJoinTask<T>> tasks;
1465          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1466          public void compute() {
1467 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1467 >            try { invokeAll(tasks); }
1468 >            catch (Exception ignore) {}
1469          }
1470 +        private static final long serialVersionUID = -7914297376763021607L;
1471      }
1472  
689    // Configuration and status settings and queries
690
1473      /**
1474 <     * Returns the factory used for constructing new workers
1474 >     * Returns the factory used for constructing new workers.
1475       *
1476       * @return the factory used for constructing new workers
1477       */
# Line 698 | Line 1480 | public class ForkJoinPool extends Abstra
1480      }
1481  
1482      /**
1483 <     * Sets the target paralleism level of this pool.
1484 <     * @param parallelism the target parallelism
1485 <     * @throws IllegalArgumentException if parallelism less than or
1486 <     * equal to zero or greater than maximum size bounds.
705 <     * @throws SecurityException if a security manager exists and
706 <     *         the caller is not permitted to modify threads
707 <     *         because it does not hold {@link
708 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1483 >     * Returns the handler for internal worker threads that terminate
1484 >     * due to unrecoverable errors encountered while executing tasks.
1485 >     *
1486 >     * @return the handler, or {@code null} if none
1487       */
1488 <    public void setParallelism(int parallelism) {
1489 <        checkPermission();
712 <        if (parallelism <= 0 || parallelism > maxPoolSize)
713 <            throw new IllegalArgumentException();
714 <        final ReentrantLock lock = this.workerLock;
715 <        lock.lock();
716 <        try {
717 <            if (!isTerminating()) {
718 <                int p = this.parallelism;
719 <                this.parallelism = parallelism;
720 <                if (parallelism > p)
721 <                    createAndStartAddedWorkers();
722 <                else
723 <                    trimSpares();
724 <            }
725 <        } finally {
726 <            lock.unlock();
727 <        }
728 <        signalIdleWorkers(false);
1488 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1489 >        return ueh;
1490      }
1491  
1492      /**
1493 <     * Returns the targeted number of worker threads in this pool.
733 <     * This value does not necessarily reflect transient changes as
734 <     * threads are added, removed, or abruptly terminate.
1493 >     * Returns the targeted parallelism level of this pool.
1494       *
1495 <     * @return the targeted number of worker threads in this pool
1495 >     * @return the targeted parallelism level of this pool
1496       */
1497      public int getParallelism() {
1498          return parallelism;
# Line 742 | Line 1501 | public class ForkJoinPool extends Abstra
1501      /**
1502       * Returns the number of worker threads that have started but not
1503       * yet terminated.  This result returned by this method may differ
1504 <     * from <tt>getParallelism</tt> when threads are created to
1504 >     * from {@link #getParallelism} when threads are created to
1505       * maintain parallelism when others are cooperatively blocked.
1506       *
1507       * @return the number of worker threads
1508       */
1509      public int getPoolSize() {
1510 <        return totalCountOf(workerCounts);
1510 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1511      }
1512  
1513      /**
1514 <     * Returns the maximum number of threads allowed to exist in the
1515 <     * pool, even if there are insufficient unblocked running threads.
1516 <     * @return the maximum
1517 <     */
759 <    public int getMaximumPoolSize() {
760 <        return maxPoolSize;
761 <    }
762 <
763 <    /**
764 <     * Sets the maximum number of threads allowed to exist in the
765 <     * pool, even if there are insufficient unblocked running threads.
766 <     * Setting this value has no effect on current pool size. It
767 <     * controls construction of new threads.
768 <     * @throws IllegalArgumentException if negative or greater then
769 <     * internal implementation limit.
770 <     */
771 <    public void setMaximumPoolSize(int newMax) {
772 <        if (newMax < 0 || newMax > MAX_THREADS)
773 <            throw new IllegalArgumentException();
774 <        maxPoolSize = newMax;
775 <    }
776 <
777 <
778 <    /**
779 <     * Returns true if this pool dynamically maintains its target
780 <     * parallelism level. If false, new threads are added only to
781 <     * avoid possible starvation.
782 <     * This setting is by default true;
783 <     * @return true if maintains parallelism
784 <     */
785 <    public boolean getMaintainsParallelism() {
786 <        return maintainsParallelism;
787 <    }
788 <
789 <    /**
790 <     * Sets whether this pool dynamically maintains its target
791 <     * parallelism level. If false, new threads are added only to
792 <     * avoid possible starvation.
793 <     * @param enable true to maintains parallelism
1514 >     * Returns {@code true} if this pool uses local first-in-first-out
1515 >     * scheduling mode for forked tasks that are never joined.
1516 >     *
1517 >     * @return {@code true} if this pool uses async mode
1518       */
1519 <    public void setMaintainsParallelism(boolean enable) {
1520 <        maintainsParallelism = enable;
1519 >    public boolean getAsyncMode() {
1520 >        return locallyFifo;
1521      }
1522  
1523      /**
1524 <     * Returns the approximate number of worker threads that are not
1525 <     * blocked waiting to join tasks or for other managed
1526 <     * synchronization.
1524 >     * Returns an estimate of the number of worker threads that are
1525 >     * not blocked waiting to join tasks or for other managed
1526 >     * synchronization. This method may overestimate the
1527 >     * number of running threads.
1528       *
1529       * @return the number of worker threads
1530       */
1531      public int getRunningThreadCount() {
1532 <        return runningCountOf(workerCounts);
1532 >        return workerCounts & RUNNING_COUNT_MASK;
1533      }
1534  
1535      /**
1536 <     * Returns the approximate number of threads that are currently
1536 >     * Returns an estimate of the number of threads that are currently
1537       * stealing or executing tasks. This method may overestimate the
1538       * number of active threads.
1539 <     * @return the number of active threads.
1539 >     *
1540 >     * @return the number of active threads
1541       */
1542      public int getActiveThreadCount() {
1543 <        return activeCountOf(runControl);
818 <    }
819 <
820 <    /**
821 <     * Returns the approximate number of threads that are currently
822 <     * idle waiting for tasks. This method may underestimate the
823 <     * number of idle threads.
824 <     * @return the number of idle threads.
825 <     */
826 <    final int getIdleThreadCount() {
827 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
828 <        return (c <= 0)? 0 : c;
1543 >        return runState & ACTIVE_COUNT_MASK;
1544      }
1545  
1546      /**
1547 <     * Returns true if all worker threads are currently idle. An idle
1548 <     * worker is one that cannot obtain a task to execute because none
1549 <     * are available to steal from other threads, and there are no
1550 <     * pending submissions to the pool. This method is conservative:
1551 <     * It might not return true immediately upon idleness of all
1552 <     * threads, but will eventually become true if threads remain
1553 <     * inactive.
1554 <     * @return true if all threads are currently idle
1547 >     * Returns {@code true} if all worker threads are currently idle.
1548 >     * An idle worker is one that cannot obtain a task to execute
1549 >     * because none are available to steal from other threads, and
1550 >     * there are no pending submissions to the pool. This method is
1551 >     * conservative; it might not return {@code true} immediately upon
1552 >     * idleness of all threads, but will eventually become true if
1553 >     * threads remain inactive.
1554 >     *
1555 >     * @return {@code true} if all threads are currently idle
1556       */
1557      public boolean isQuiescent() {
1558 <        return activeCountOf(runControl) == 0;
1558 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1559      }
1560  
1561      /**
# Line 847 | Line 1563 | public class ForkJoinPool extends Abstra
1563       * one thread's work queue by another. The reported value
1564       * underestimates the actual total number of steals when the pool
1565       * is not quiescent. This value may be useful for monitoring and
1566 <     * tuning fork/join programs: In general, steal counts should be
1566 >     * tuning fork/join programs: in general, steal counts should be
1567       * high enough to keep threads busy, but low enough to avoid
1568       * overhead and contention across threads.
1569 <     * @return the number of steals.
1569 >     *
1570 >     * @return the number of steals
1571       */
1572      public long getStealCount() {
1573 <        return stealCount.get();
1573 >        return stealCount;
1574      }
1575  
1576      /**
1577 <     * Accumulate steal count from a worker. Call only
1578 <     * when worker known to be idle.
1579 <     */
1580 <    private void updateStealCount(ForkJoinWorkerThread w) {
1581 <        int sc = w.getAndClearStealCount();
1582 <        if (sc != 0)
1583 <            stealCount.addAndGet(sc);
1584 <    }
868 <
869 <    /**
870 <     * Returns the total number of tasks currently held in queues by
871 <     * worker threads (but not including tasks submitted to the pool
872 <     * that have not begun executing). This value is only an
873 <     * approximation, obtained by iterating across all threads in the
874 <     * pool. This method may be useful for tuning task granularities.
875 <     * @return the number of queued tasks.
1577 >     * Returns an estimate of the total number of tasks currently held
1578 >     * in queues by worker threads (but not including tasks submitted
1579 >     * to the pool that have not begun executing). This value is only
1580 >     * an approximation, obtained by iterating across all threads in
1581 >     * the pool. This method may be useful for tuning task
1582 >     * granularities.
1583 >     *
1584 >     * @return the number of queued tasks
1585       */
1586      public long getQueuedTaskCount() {
1587          long count = 0;
1588          ForkJoinWorkerThread[] ws = workers;
1589 <        for (int i = 0; i < ws.length; ++i) {
1590 <            ForkJoinWorkerThread t = ws[i];
1591 <            if (t != null)
1592 <                count += t.getQueueSize();
1589 >        int nws = ws.length;
1590 >        for (int i = 0; i < nws; ++i) {
1591 >            ForkJoinWorkerThread w = ws[i];
1592 >            if (w != null)
1593 >                count += w.getQueueSize();
1594          }
1595          return count;
1596      }
1597  
1598      /**
1599 <     * Returns the approximate number tasks submitted to this pool
1600 <     * that have not yet begun executing. This method takes time
1599 >     * Returns an estimate of the number of tasks submitted to this
1600 >     * pool that have not yet begun executing.  This method takes time
1601       * proportional to the number of submissions.
1602 <     * @return the number of queued submissions.
1602 >     *
1603 >     * @return the number of queued submissions
1604       */
1605      public int getQueuedSubmissionCount() {
1606          return submissionQueue.size();
1607      }
1608  
1609      /**
1610 <     * Returns true if there are any tasks submitted to this pool
1611 <     * that have not yet begun executing.
1612 <     * @return <tt>true</tt> if there are any queued submissions.
1610 >     * Returns {@code true} if there are any tasks submitted to this
1611 >     * pool that have not yet begun executing.
1612 >     *
1613 >     * @return {@code true} if there are any queued submissions
1614       */
1615      public boolean hasQueuedSubmissions() {
1616          return !submissionQueue.isEmpty();
# Line 908 | Line 1620 | public class ForkJoinPool extends Abstra
1620       * Removes and returns the next unexecuted submission if one is
1621       * available.  This method may be useful in extensions to this
1622       * class that re-assign work in systems with multiple pools.
1623 <     * @return the next submission, or null if none
1623 >     *
1624 >     * @return the next submission, or {@code null} if none
1625       */
1626      protected ForkJoinTask<?> pollSubmission() {
1627          return submissionQueue.poll();
1628      }
1629  
1630      /**
1631 +     * Removes all available unexecuted submitted and forked tasks
1632 +     * from scheduling queues and adds them to the given collection,
1633 +     * without altering their execution status. These may include
1634 +     * artificially generated or wrapped tasks. This method is
1635 +     * designed to be invoked only when the pool is known to be
1636 +     * quiescent. Invocations at other times may not remove all
1637 +     * tasks. A failure encountered while attempting to add elements
1638 +     * to collection {@code c} may result in elements being in
1639 +     * neither, either or both collections when the associated
1640 +     * exception is thrown.  The behavior of this operation is
1641 +     * undefined if the specified collection is modified while the
1642 +     * operation is in progress.
1643 +     *
1644 +     * @param c the collection to transfer elements into
1645 +     * @return the number of elements transferred
1646 +     */
1647 +    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1648 +        int n = submissionQueue.drainTo(c);
1649 +        ForkJoinWorkerThread[] ws = workers;
1650 +        int nws = ws.length;
1651 +        for (int i = 0; i < nws; ++i) {
1652 +            ForkJoinWorkerThread w = ws[i];
1653 +            if (w != null)
1654 +                n += w.drainTasksTo(c);
1655 +        }
1656 +        return n;
1657 +    }
1658 +
1659 +    /**
1660 +     * Returns count of total parks by existing workers.
1661 +     * Used during development only since not meaningful to users.
1662 +     */
1663 +    private int collectParkCount() {
1664 +        int count = 0;
1665 +        ForkJoinWorkerThread[] ws = workers;
1666 +        int nws = ws.length;
1667 +        for (int i = 0; i < nws; ++i) {
1668 +            ForkJoinWorkerThread w = ws[i];
1669 +            if (w != null)
1670 +                count += w.parkCount;
1671 +        }
1672 +        return count;
1673 +    }
1674 +
1675 +    /**
1676       * Returns a string identifying this pool, as well as its state,
1677       * including indications of run state, parallelism level, and
1678       * worker and task counts.
# Line 922 | Line 1680 | public class ForkJoinPool extends Abstra
1680       * @return a string identifying this pool, as well as its state
1681       */
1682      public String toString() {
925        int ps = parallelism;
926        int wc = workerCounts;
927        int rc = runControl;
1683          long st = getStealCount();
1684          long qt = getQueuedTaskCount();
1685          long qs = getQueuedSubmissionCount();
1686 +        int wc = workerCounts;
1687 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1688 +        int rc = wc & RUNNING_COUNT_MASK;
1689 +        int pc = parallelism;
1690 +        int rs = runState;
1691 +        int ac = rs & ACTIVE_COUNT_MASK;
1692 +        //        int pk = collectParkCount();
1693          return super.toString() +
1694 <            "[" + runStateToString(runStateOf(rc)) +
1695 <            ", parallelism = " + ps +
1696 <            ", size = " + totalCountOf(wc) +
1697 <            ", active = " + activeCountOf(rc) +
1698 <            ", running = " + runningCountOf(wc) +
1694 >            "[" + runLevelToString(rs) +
1695 >            ", parallelism = " + pc +
1696 >            ", size = " + tc +
1697 >            ", active = " + ac +
1698 >            ", running = " + rc +
1699              ", steals = " + st +
1700              ", tasks = " + qt +
1701              ", submissions = " + qs +
1702 +            //            ", parks = " + pk +
1703              "]";
1704      }
1705  
1706 <    private static String runStateToString(int rs) {
1707 <        switch(rs) {
1708 <        case RUNNING: return "Running";
1709 <        case SHUTDOWN: return "Shutting down";
1710 <        case TERMINATING: return "Terminating";
948 <        case TERMINATED: return "Terminated";
949 <        default: throw new Error("Unknown run state");
950 <        }
1706 >    private static String runLevelToString(int s) {
1707 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1708 >                ((s & TERMINATING) != 0 ? "Terminating" :
1709 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1710 >                  "Running")));
1711      }
1712  
953    // lifecycle control
954
1713      /**
1714       * Initiates an orderly shutdown in which previously submitted
1715       * tasks are executed, but no new tasks will be accepted.
1716       * Invocation has no additional effect if already shut down.
1717       * Tasks that are in the process of being submitted concurrently
1718       * during the course of this method may or may not be rejected.
1719 +     *
1720       * @throws SecurityException if a security manager exists and
1721       *         the caller is not permitted to modify threads
1722       *         because it does not hold {@link
1723 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1723 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1724       */
1725      public void shutdown() {
1726          checkPermission();
1727 <        transitionRunStateTo(SHUTDOWN);
1728 <        if (canTerminateOnShutdown(runControl))
970 <            terminateOnShutdown();
1727 >        advanceRunLevel(SHUTDOWN);
1728 >        tryTerminate(false);
1729      }
1730  
1731      /**
1732 <     * Attempts to stop all actively executing tasks, and cancels all
1733 <     * waiting tasks.  Tasks that are in the process of being
1734 <     * submitted or executed concurrently during the course of this
1735 <     * method may or may not be rejected. Unlike some other executors,
1736 <     * this method cancels rather than collects non-executed tasks,
1737 <     * so always returns an empty list.
1732 >     * Attempts to cancel and/or stop all tasks, and reject all
1733 >     * subsequently submitted tasks.  Tasks that are in the process of
1734 >     * being submitted or executed concurrently during the course of
1735 >     * this method may or may not be rejected. This method cancels
1736 >     * both existing and unexecuted tasks, in order to permit
1737 >     * termination in the presence of task dependencies. So the method
1738 >     * always returns an empty list (unlike the case for some other
1739 >     * Executors).
1740 >     *
1741       * @return an empty list
1742       * @throws SecurityException if a security manager exists and
1743       *         the caller is not permitted to modify threads
1744       *         because it does not hold {@link
1745 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1745 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1746       */
1747      public List<Runnable> shutdownNow() {
1748          checkPermission();
1749 <        terminate();
1749 >        tryTerminate(true);
1750          return Collections.emptyList();
1751      }
1752  
1753      /**
1754 <     * Returns <tt>true</tt> if all tasks have completed following shut down.
1754 >     * Returns {@code true} if all tasks have completed following shut down.
1755       *
1756 <     * @return <tt>true</tt> if all tasks have completed following shut down
1756 >     * @return {@code true} if all tasks have completed following shut down
1757       */
1758      public boolean isTerminated() {
1759 <        return runStateOf(runControl) == TERMINATED;
1759 >        return runState >= TERMINATED;
1760      }
1761  
1762      /**
1763 <     * Returns <tt>true</tt> if the process of termination has
1764 <     * commenced but possibly not yet completed.
1763 >     * Returns {@code true} if the process of termination has
1764 >     * commenced but not yet completed.  This method may be useful for
1765 >     * debugging. A return of {@code true} reported a sufficient
1766 >     * period after shutdown may indicate that submitted tasks have
1767 >     * ignored or suppressed interruption, causing this executor not
1768 >     * to properly terminate.
1769       *
1770 <     * @return <tt>true</tt> if terminating
1770 >     * @return {@code true} if terminating but not yet terminated
1771       */
1772      public boolean isTerminating() {
1773 <        return runStateOf(runControl) >= TERMINATING;
1773 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1774      }
1775  
1776      /**
1777 <     * Returns <tt>true</tt> if this pool has been shut down.
1777 >     * Returns {@code true} if this pool has been shut down.
1778       *
1779 <     * @return <tt>true</tt> if this pool has been shut down
1779 >     * @return {@code true} if this pool has been shut down
1780       */
1781      public boolean isShutdown() {
1782 <        return runStateOf(runControl) >= SHUTDOWN;
1782 >        return runState >= SHUTDOWN;
1783      }
1784  
1785      /**
# Line 1024 | Line 1789 | public class ForkJoinPool extends Abstra
1789       *
1790       * @param timeout the maximum time to wait
1791       * @param unit the time unit of the timeout argument
1792 <     * @return <tt>true</tt> if this executor terminated and
1793 <     *         <tt>false</tt> if the timeout elapsed before termination
1792 >     * @return {@code true} if this executor terminated and
1793 >     *         {@code false} if the timeout elapsed before termination
1794       * @throws InterruptedException if interrupted while waiting
1795       */
1796      public boolean awaitTermination(long timeout, TimeUnit unit)
1797          throws InterruptedException {
1033        long nanos = unit.toNanos(timeout);
1034        final ReentrantLock lock = this.workerLock;
1035        lock.lock();
1036        try {
1037            for (;;) {
1038                if (isTerminated())
1039                    return true;
1040                if (nanos <= 0)
1041                    return false;
1042                nanos = termination.awaitNanos(nanos);
1043            }
1044        } finally {
1045            lock.unlock();
1046        }
1047    }
1048
1049    // Shutdown and termination support
1050
1051    /**
1052     * Callback from terminating worker. Null out the corresponding
1053     * workers slot, and if terminating, try to terminate, else try to
1054     * shrink workers array.
1055     * @param w the worker
1056     */
1057    final void workerTerminated(ForkJoinWorkerThread w) {
1058        updateStealCount(w);
1059        updateWorkerCount(-1);
1060        final ReentrantLock lock = this.workerLock;
1061        lock.lock();
1062        try {
1063            ForkJoinWorkerThread[] ws = workers;
1064            int idx = w.poolIndex;
1065            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1066                ws[idx] = null;
1067            if (totalCountOf(workerCounts) == 0) {
1068                terminate(); // no-op if already terminating
1069                transitionRunStateTo(TERMINATED);
1070                termination.signalAll();
1071            }
1072            else if (!isTerminating()) {
1073                tryShrinkWorkerArray();
1074                tryResumeSpare(true); // allow replacement
1075            }
1076        } finally {
1077            lock.unlock();
1078        }
1079        signalIdleWorkers(false);
1080    }
1081
1082    /**
1083     * Initiate termination.
1084     */
1085    private void terminate() {
1086        if (transitionRunStateTo(TERMINATING)) {
1087            stopAllWorkers();
1088            resumeAllSpares();
1089            signalIdleWorkers(true);
1090            cancelQueuedSubmissions();
1091            cancelQueuedWorkerTasks();
1092            interruptUnterminatedWorkers();
1093            signalIdleWorkers(true); // resignal after interrupt
1094        }
1095    }
1096
1097    /**
1098     * Possibly terminate when on shutdown state
1099     */
1100    private void terminateOnShutdown() {
1101        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1102            terminate();
1103    }
1104
1105    /**
1106     * Clear out and cancel submissions
1107     */
1108    private void cancelQueuedSubmissions() {
1109        ForkJoinTask<?> task;
1110        while ((task = pollSubmission()) != null)
1111            task.cancel(false);
1112    }
1113
1114    /**
1115     * Clean out worker queues.
1116     */
1117    private void cancelQueuedWorkerTasks() {
1118        final ReentrantLock lock = this.workerLock;
1119        lock.lock();
1120        try {
1121            ForkJoinWorkerThread[] ws = workers;
1122            for (int i = 0; i < ws.length; ++i) {
1123                ForkJoinWorkerThread t = ws[i];
1124                if (t != null)
1125                    t.cancelTasks();
1126            }
1127        } finally {
1128            lock.unlock();
1129        }
1130    }
1131
1132    /**
1133     * Set each worker's status to terminating. Requires lock to avoid
1134     * conflicts with add/remove
1135     */
1136    private void stopAllWorkers() {
1137        final ReentrantLock lock = this.workerLock;
1138        lock.lock();
1798          try {
1799 <            ForkJoinWorkerThread[] ws = workers;
1800 <            for (int i = 0; i < ws.length; ++i) {
1142 <                ForkJoinWorkerThread t = ws[i];
1143 <                if (t != null)
1144 <                    t.shutdownNow();
1145 <            }
1146 <        } finally {
1147 <            lock.unlock();
1148 <        }
1149 <    }
1150 <
1151 <    /**
1152 <     * Interrupt all unterminated workers.  This is not required for
1153 <     * sake of internal control, but may help unstick user code during
1154 <     * shutdown.
1155 <     */
1156 <    private void interruptUnterminatedWorkers() {
1157 <        final ReentrantLock lock = this.workerLock;
1158 <        lock.lock();
1159 <        try {
1160 <            ForkJoinWorkerThread[] ws = workers;
1161 <            for (int i = 0; i < ws.length; ++i) {
1162 <                ForkJoinWorkerThread t = ws[i];
1163 <                if (t != null && !t.isTerminated()) {
1164 <                    try {
1165 <                        t.interrupt();
1166 <                    } catch (SecurityException ignore) {
1167 <                    }
1168 <                }
1169 <            }
1170 <        } finally {
1171 <            lock.unlock();
1172 <        }
1173 <    }
1174 <
1175 <
1176 <    /*
1177 <     * Nodes for event barrier to manage idle threads.
1178 <     *
1179 <     * The event barrier has an event count and a wait queue (actually
1180 <     * a Treiber stack).  Workers are enabled to look for work when
1181 <     * the eventCount is incremented. If they fail to find some,
1182 <     * they may wait for next count. Synchronization events occur only
1183 <     * in enough contexts to maintain overall liveness:
1184 <     *
1185 <     *   - Submission of a new task to the pool
1186 <     *   - Creation or termination of a worker
1187 <     *   - pool termination
1188 <     *   - A worker pushing a task on an empty queue
1189 <     *
1190 <     * The last case (pushing a task) occurs often enough, and is
1191 <     * heavy enough compared to simple stack pushes to require some
1192 <     * special handling: Method signalNonEmptyWorkerQueue returns
1193 <     * without advancing count if the queue appears to be empty.  This
1194 <     * would ordinarily result in races causing some queued waiters
1195 <     * not to be woken up. To avoid this, a worker in sync
1196 <     * rescans for tasks after being enqueued if it was the first to
1197 <     * enqueue, and aborts the wait if finding one, also helping to
1198 <     * signal others. This works well because the worker has nothing
1199 <     * better to do anyway, and so might as well help alleviate the
1200 <     * overhead and contention on the threads actually doing work.
1201 <     *
1202 <     * Queue nodes are basic Treiber stack nodes, also used for spare
1203 <     * stack.
1204 <     */
1205 <    static final class WaitQueueNode {
1206 <        WaitQueueNode next; // only written before enqueued
1207 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1208 <        final long count; // unused for spare stack
1209 <        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1210 <            count = c;
1211 <            thread = w;
1212 <        }
1213 <        final boolean signal() {
1214 <            ForkJoinWorkerThread t = thread;
1215 <            thread = null;
1216 <            if (t != null) {
1217 <                LockSupport.unpark(t);
1218 <                return true;
1219 <            }
1799 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1800 >        } catch(TimeoutException ex) {
1801              return false;
1802          }
1803      }
1804  
1805      /**
1225     * Release at least one thread waiting for event count to advance,
1226     * if one exists. If initial attempt fails, release all threads.
1227     * @param all if false, at first try to only release one thread
1228     * @return current event
1229     */
1230    private long releaseIdleWorkers(boolean all) {
1231        long c;
1232        for (;;) {
1233            WaitQueueNode q = barrierStack;
1234            c = eventCount;
1235            long qc;
1236            if (q == null || (qc = q.count) >= c)
1237                break;
1238            if (!all) {
1239                if (casBarrierStack(q, q.next) && q.signal())
1240                    break;
1241                all = true;
1242            }
1243            else if (casBarrierStack(q, null)) {
1244                do {
1245                 q.signal();
1246                } while ((q = q.next) != null);
1247                break;
1248            }
1249        }
1250        return c;
1251    }
1252
1253    /**
1254     * Returns current barrier event count
1255     * @return current barrier event count
1256     */
1257    final long getEventCount() {
1258        long ec = eventCount;
1259        releaseIdleWorkers(true); // release to ensure accurate result
1260        return ec;
1261    }
1262
1263    /**
1264     * Increment event count and release at least one waiting thread,
1265     * if one exists (released threads will in turn wake up others).
1266     * @param all if true, try to wake up all
1267     */
1268    final void signalIdleWorkers(boolean all) {
1269        long c;
1270        do;while (!casEventCount(c = eventCount, c+1));
1271        releaseIdleWorkers(all);
1272    }
1273
1274    /**
1275     * Wake up threads waiting to steal a task. Because method
1276     * sync rechecks availability, it is OK to only proceed if
1277     * queue appears to be non-empty.
1278     */
1279    final void signalNonEmptyWorkerQueue() {
1280        // If CAS fails another signaller must have succeeded
1281        long c;
1282        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1283            releaseIdleWorkers(false);
1284    }
1285
1286    /**
1287     * Waits until event count advances from count, or some thread is
1288     * waiting on a previous count, or there is stealable work
1289     * available. Help wake up others on release.
1290     * @param w the calling worker thread
1291     * @param prev previous value returned by sync (or 0)
1292     * @return current event count
1293     */
1294    final long sync(ForkJoinWorkerThread w, long prev) {
1295        updateStealCount(w);
1296
1297        while (!w.isShutdown() && !isTerminating() &&
1298               (parallelism >= runningCountOf(workerCounts) ||
1299                !suspendIfSpare(w))) { // prefer suspend to waiting here
1300            WaitQueueNode node = null;
1301            boolean queued = false;
1302            for (;;) {
1303                if (!queued) {
1304                    if (eventCount != prev)
1305                        break;
1306                    WaitQueueNode h = barrierStack;
1307                    if (h != null && h.count != prev)
1308                        break; // release below and maybe retry
1309                    if (node == null)
1310                        node = new WaitQueueNode(w, prev);
1311                    queued = casBarrierStack(node.next = h, node);
1312                }
1313                else if (Thread.interrupted() ||
1314                         node.thread == null ||
1315                         (node.next == null && w.prescan()) ||
1316                         eventCount != prev) {
1317                    node.thread = null;
1318                    if (eventCount == prev) // help trigger
1319                        casEventCount(prev, prev+1);
1320                    break;
1321                }
1322                else
1323                    LockSupport.park(this);
1324            }
1325            long ec = eventCount;
1326            if (releaseIdleWorkers(false) != prev)
1327                return ec;
1328        }
1329        return prev; // return old count if aborted
1330    }
1331
1332    //  Parallelism maintenance
1333
1334    /**
1335     * Decrement running count; if too low, add spare.
1336     *
1337     * Conceptually, all we need to do here is add or resume a
1338     * spare thread when one is about to block (and remove or
1339     * suspend it later when unblocked -- see suspendIfSpare).
1340     * However, implementing this idea requires coping with
1341     * several problems: We have imperfect information about the
1342     * states of threads. Some count updates can and usually do
1343     * lag run state changes, despite arrangements to keep them
1344     * accurate (for example, when possible, updating counts
1345     * before signalling or resuming), especially when running on
1346     * dynamic JVMs that don't optimize the infrequent paths that
1347     * update counts. Generating too many threads can make these
1348     * problems become worse, because excess threads are more
1349     * likely to be context-switched with others, slowing them all
1350     * down, especially if there is no work available, so all are
1351     * busy scanning or idling.  Also, excess spare threads can
1352     * only be suspended or removed when they are idle, not
1353     * immediately when they aren't needed. So adding threads will
1354     * raise parallelism level for longer than necessary.  Also,
1355     * FJ applications often enounter highly transient peaks when
1356     * many threads are blocked joining, but for less time than it
1357     * takes to create or resume spares.
1358     *
1359     * @param joinMe if non-null, return early if done
1360     * @param maintainParallelism if true, try to stay within
1361     * target counts, else create only to avoid starvation
1362     * @return true if joinMe known to be done
1363     */
1364    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1365        maintainParallelism &= maintainsParallelism; // overrride
1366        boolean dec = false;  // true when running count decremented
1367        while (spareStack == null || !tryResumeSpare(dec)) {
1368            int counts = workerCounts;
1369            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1370                if (!needSpare(counts, maintainParallelism))
1371                    break;
1372                if (joinMe.status < 0)
1373                    return true;
1374                if (tryAddSpare(counts))
1375                    break;
1376            }
1377        }
1378        return false;
1379    }
1380
1381    /**
1382     * Same idea as preJoin
1383     */
1384    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1385        maintainParallelism &= maintainsParallelism;
1386        boolean dec = false;
1387        while (spareStack == null || !tryResumeSpare(dec)) {
1388            int counts = workerCounts;
1389            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1390                if (!needSpare(counts, maintainParallelism))
1391                    break;
1392                if (blocker.isReleasable())
1393                    return true;
1394                if (tryAddSpare(counts))
1395                    break;
1396            }
1397        }
1398        return false;
1399    }
1400
1401    /**
1402     * Returns true if a spare thread appears to be needed.  If
1403     * maintaining parallelism, returns true when the deficit in
1404     * running threads is more than the surplus of total threads, and
1405     * there is apparently some work to do.  This self-limiting rule
1406     * means that the more threads that have already been added, the
1407     * less parallelism we will tolerate before adding another.
1408     * @param counts current worker counts
1409     * @param maintainParallelism try to maintain parallelism
1410     */
1411    private boolean needSpare(int counts, boolean maintainParallelism) {
1412        int ps = parallelism;
1413        int rc = runningCountOf(counts);
1414        int tc = totalCountOf(counts);
1415        int runningDeficit = ps - rc;
1416        int totalSurplus = tc - ps;
1417        return (tc < maxPoolSize &&
1418                (rc == 0 || totalSurplus < 0 ||
1419                 (maintainParallelism &&
1420                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1421    }
1422
1423    /**
1424     * Returns true if at least one worker queue appears to be
1425     * nonempty. This is expensive but not often called. It is not
1426     * critical that this be accurate, but if not, more or fewer
1427     * running threads than desired might be maintained.
1428     */
1429    private boolean mayHaveQueuedWork() {
1430        ForkJoinWorkerThread[] ws = workers;
1431        int len = ws.length;
1432        ForkJoinWorkerThread v;
1433        for (int i = 0; i < len; ++i) {
1434            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1435                releaseIdleWorkers(false); // help wake up stragglers
1436                return true;
1437            }
1438        }
1439        return false;
1440    }
1441
1442    /**
1443     * Add a spare worker if lock available and no more than the
1444     * expected numbers of threads exist
1445     * @return true if successful
1446     */
1447    private boolean tryAddSpare(int expectedCounts) {
1448        final ReentrantLock lock = this.workerLock;
1449        int expectedRunning = runningCountOf(expectedCounts);
1450        int expectedTotal = totalCountOf(expectedCounts);
1451        boolean success = false;
1452        boolean locked = false;
1453        // confirm counts while locking; CAS after obtaining lock
1454        try {
1455            for (;;) {
1456                int s = workerCounts;
1457                int tc = totalCountOf(s);
1458                int rc = runningCountOf(s);
1459                if (rc > expectedRunning || tc > expectedTotal)
1460                    break;
1461                if (!locked && !(locked = lock.tryLock()))
1462                    break;
1463                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1464                    createAndStartSpare(tc);
1465                    success = true;
1466                    break;
1467                }
1468            }
1469        } finally {
1470            if (locked)
1471                lock.unlock();
1472        }
1473        return success;
1474    }
1475
1476    /**
1477     * Add the kth spare worker. On entry, pool coounts are already
1478     * adjusted to reflect addition.
1479     */
1480    private void createAndStartSpare(int k) {
1481        ForkJoinWorkerThread w = null;
1482        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1483        int len = ws.length;
1484        // Probably, we can place at slot k. If not, find empty slot
1485        if (k < len && ws[k] != null) {
1486            for (k = 0; k < len && ws[k] != null; ++k)
1487                ;
1488        }
1489        if (k < len && (w = createWorker(k)) != null) {
1490            ws[k] = w;
1491            w.start();
1492        }
1493        else
1494            updateWorkerCount(-1); // adjust on failure
1495        signalIdleWorkers(false);
1496    }
1497
1498    /**
1499     * Suspend calling thread w if there are excess threads.  Called
1500     * only from sync.  Spares are enqueued in a Treiber stack
1501     * using the same WaitQueueNodes as barriers.  They are resumed
1502     * mainly in preJoin, but are also woken on pool events that
1503     * require all threads to check run state.
1504     * @param w the caller
1505     */
1506    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1507        WaitQueueNode node = null;
1508        int s;
1509        while (parallelism < runningCountOf(s = workerCounts)) {
1510            if (node == null)
1511                node = new WaitQueueNode(w, 0);
1512            if (casWorkerCounts(s, s-1)) { // representation-dependent
1513                // push onto stack
1514                do;while (!casSpareStack(node.next = spareStack, node));
1515
1516                // block until released by resumeSpare
1517                while (node.thread != null) {
1518                    if (!Thread.interrupted())
1519                        LockSupport.park(this);
1520                }
1521                w.activate(); // help warm up
1522                return true;
1523            }
1524        }
1525        return false;
1526    }
1527
1528    /**
1529     * Try to pop and resume a spare thread.
1530     * @param updateCount if true, increment running count on success
1531     * @return true if successful
1532     */
1533    private boolean tryResumeSpare(boolean updateCount) {
1534        WaitQueueNode q;
1535        while ((q = spareStack) != null) {
1536            if (casSpareStack(q, q.next)) {
1537                if (updateCount)
1538                    updateRunningCount(1);
1539                q.signal();
1540                return true;
1541            }
1542        }
1543        return false;
1544    }
1545
1546    /**
1547     * Pop and resume all spare threads. Same idea as
1548     * releaseIdleWorkers.
1549     * @return true if any spares released
1550     */
1551    private boolean resumeAllSpares() {
1552        WaitQueueNode q;
1553        while ( (q = spareStack) != null) {
1554            if (casSpareStack(q, null)) {
1555                do {
1556                    updateRunningCount(1);
1557                    q.signal();
1558                } while ((q = q.next) != null);
1559                return true;
1560            }
1561        }
1562        return false;
1563    }
1564
1565    /**
1566     * Pop and shutdown excessive spare threads. Call only while
1567     * holding lock. This is not guaranteed to eliminate all excess
1568     * threads, only those suspended as spares, which are the ones
1569     * unlikely to be needed in the future.
1570     */
1571    private void trimSpares() {
1572        int surplus = totalCountOf(workerCounts) - parallelism;
1573        WaitQueueNode q;
1574        while (surplus > 0 && (q = spareStack) != null) {
1575            if (casSpareStack(q, null)) {
1576                do {
1577                    updateRunningCount(1);
1578                    ForkJoinWorkerThread w = q.thread;
1579                    if (w != null && surplus > 0 &&
1580                        runningCountOf(workerCounts) > 0 && w.shutdown())
1581                        --surplus;
1582                    q.signal();
1583                } while ((q = q.next) != null);
1584            }
1585        }
1586    }
1587
1588    /**
1589     * Returns approximate number of spares, just for diagnostics.
1590     */
1591    private int countSpares() {
1592        int sum = 0;
1593        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1594            ++sum;
1595        return sum;
1596    }
1597
1598    /**
1806       * Interface for extending managed parallelism for tasks running
1807 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1808 <     * Method <tt>isReleasable</tt> must return true if blocking is not
1809 <     * necessary. Method <tt>block</tt> blocks the current thread
1810 <     * if necessary (perhaps internally invoking isReleasable before
1811 <     * actually blocking.).
1807 >     * in {@link ForkJoinPool}s.
1808 >     *
1809 >     * <p>A {@code ManagedBlocker} provides two methods.
1810 >     * Method {@code isReleasable} must return {@code true} if
1811 >     * blocking is not necessary. Method {@code block} blocks the
1812 >     * current thread if necessary (perhaps internally invoking
1813 >     * {@code isReleasable} before actually blocking).
1814 >     *
1815       * <p>For example, here is a ManagedBlocker based on a
1816       * ReentrantLock:
1817 <     * <pre>
1818 <     *   class ManagedLocker implements ManagedBlocker {
1819 <     *     final ReentrantLock lock;
1820 <     *     boolean hasLock = false;
1821 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1822 <     *     public boolean block() {
1823 <     *        if (!hasLock)
1824 <     *           lock.lock();
1825 <     *        return true;
1826 <     *     }
1827 <     *     public boolean isReleasable() {
1828 <     *        return hasLock || (hasLock = lock.tryLock());
1619 <     *     }
1817 >     *  <pre> {@code
1818 >     * class ManagedLocker implements ManagedBlocker {
1819 >     *   final ReentrantLock lock;
1820 >     *   boolean hasLock = false;
1821 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1822 >     *   public boolean block() {
1823 >     *     if (!hasLock)
1824 >     *       lock.lock();
1825 >     *     return true;
1826 >     *   }
1827 >     *   public boolean isReleasable() {
1828 >     *     return hasLock || (hasLock = lock.tryLock());
1829       *   }
1830 <     * </pre>
1830 >     * }}</pre>
1831       */
1832      public static interface ManagedBlocker {
1833          /**
1834           * Possibly blocks the current thread, for example waiting for
1835           * a lock or condition.
1836 <         * @return true if no additional blocking is necessary (i.e.,
1837 <         * if isReleasable would return true).
1836 >         *
1837 >         * @return {@code true} if no additional blocking is necessary
1838 >         * (i.e., if isReleasable would return true)
1839           * @throws InterruptedException if interrupted while waiting
1840 <         * (the method is not required to do so, but is allowe to).
1840 >         * (the method is not required to do so, but is allowed to)
1841           */
1842          boolean block() throws InterruptedException;
1843  
1844          /**
1845 <         * Returns true if blocking is unnecessary.
1845 >         * Returns {@code true} if blocking is unnecessary.
1846           */
1847          boolean isReleasable();
1848      }
1849  
1850      /**
1851       * Blocks in accord with the given blocker.  If the current thread
1852 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1853 <     * spare thread to be activated if necessary to ensure parallelism
1854 <     * while the current thread is blocked.  If
1855 <     * <tt>maintainParallelism</tt> is true and the pool supports it
1856 <     * (see <tt>getMaintainsParallelism</tt>), this method attempts to
1857 <     * maintain the pool's nominal parallelism. Otherwise if activates
1858 <     * a thread only if necessary to avoid complete starvation. This
1859 <     * option may be preferable when blockages use timeouts, or are
1860 <     * almost always brief.
1861 <     *
1862 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1863 <     * equivalent to
1864 <     * <pre>
1865 <     *   while (!blocker.isReleasable())
1656 <     *      if (blocker.block())
1657 <     *         return;
1658 <     * </pre>
1659 <     * If the caller is a ForkJoinTask, then the pool may first
1660 <     * be expanded to ensure parallelism, and later adjusted.
1852 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1853 >     * arranges for a spare thread to be activated if necessary to
1854 >     * ensure sufficient parallelism while the current thread is blocked.
1855 >     *
1856 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1857 >     * behaviorally equivalent to
1858 >     *  <pre> {@code
1859 >     * while (!blocker.isReleasable())
1860 >     *   if (blocker.block())
1861 >     *     return;
1862 >     * }</pre>
1863 >     *
1864 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1865 >     * first be expanded to ensure parallelism, and later adjusted.
1866       *
1867       * @param blocker the blocker
1868 <     * @param maintainParallelism if true and supported by this pool,
1664 <     * attempt to maintain the pool's nominal parallelism; otherwise
1665 <     * activate a thread only if necessary to avoid complete
1666 <     * starvation.
1667 <     * @throws InterruptedException if blocker.block did so.
1868 >     * @throws InterruptedException if blocker.block did so
1869       */
1870 <    public static void managedBlock(ManagedBlocker blocker,
1670 <                                    boolean maintainParallelism)
1870 >    public static void managedBlock(ManagedBlocker blocker)
1871          throws InterruptedException {
1872          Thread t = Thread.currentThread();
1873 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1874 <                             ((ForkJoinWorkerThread)t).pool : null);
1875 <        if (!blocker.isReleasable()) {
1876 <            try {
1677 <                if (pool == null ||
1678 <                    !pool.preBlock(blocker, maintainParallelism))
1679 <                    awaitBlocker(blocker);
1680 <            } finally {
1681 <                if (pool != null)
1682 <                    pool.updateRunningCount(1);
1683 <            }
1873 >        if (t instanceof ForkJoinWorkerThread)
1874 >            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1875 >        else {
1876 >            do {} while (!blocker.isReleasable() && !blocker.block());
1877          }
1878      }
1879  
1880 <    private static void awaitBlocker(ManagedBlocker blocker)
1881 <        throws InterruptedException {
1882 <        do;while (!blocker.isReleasable() && !blocker.block());
1880 >    // AbstractExecutorService overrides.  These rely on undocumented
1881 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1882 >    // implement RunnableFuture.
1883 >
1884 >    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1885 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1886      }
1887  
1888 +    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1889 +        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1890 +    }
1891  
1892 <    // Temporary Unsafe mechanics for preliminary release
1892 >    // Unsafe mechanics
1893  
1894 <    static final Unsafe _unsafe;
1895 <    static final long eventCountOffset;
1896 <    static final long workerCountsOffset;
1897 <    static final long runControlOffset;
1898 <    static final long barrierStackOffset;
1899 <    static final long spareStackOffset;
1894 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1895 >    private static final long workerCountsOffset =
1896 >        objectFieldOffset("workerCounts", ForkJoinPool.class);
1897 >    private static final long runStateOffset =
1898 >        objectFieldOffset("runState", ForkJoinPool.class);
1899 >    private static final long eventCountOffset =
1900 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1901 >    private static final long eventWaitersOffset =
1902 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1903 >    private static final long stealCountOffset =
1904 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1905  
1906 <    static {
1906 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1907          try {
1908 <            if (ForkJoinPool.class.getClassLoader() != null) {
1909 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1910 <                f.setAccessible(true);
1911 <                _unsafe = (Unsafe)f.get(null);
1912 <            }
1913 <            else
1710 <                _unsafe = Unsafe.getUnsafe();
1711 <            eventCountOffset = _unsafe.objectFieldOffset
1712 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
1713 <            workerCountsOffset = _unsafe.objectFieldOffset
1714 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
1715 <            runControlOffset = _unsafe.objectFieldOffset
1716 <                (ForkJoinPool.class.getDeclaredField("runControl"));
1717 <            barrierStackOffset = _unsafe.objectFieldOffset
1718 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
1719 <            spareStackOffset = _unsafe.objectFieldOffset
1720 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
1721 <        } catch (Exception e) {
1722 <            throw new RuntimeException("Could not initialize intrinsics", e);
1908 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1909 >        } catch (NoSuchFieldException e) {
1910 >            // Convert Exception to corresponding Error
1911 >            NoSuchFieldError error = new NoSuchFieldError(field);
1912 >            error.initCause(e);
1913 >            throw error;
1914          }
1915      }
1916  
1917 <    private boolean casEventCount(long cmp, long val) {
1918 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1919 <    }
1920 <    private boolean casWorkerCounts(int cmp, int val) {
1921 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1922 <    }
1923 <    private boolean casRunControl(int cmp, int val) {
1924 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1925 <    }
1926 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1927 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1928 <    }
1929 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1930 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
1917 >    /**
1918 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1919 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1920 >     * into a jdk.
1921 >     *
1922 >     * @return a sun.misc.Unsafe
1923 >     */
1924 >    private static sun.misc.Unsafe getUnsafe() {
1925 >        try {
1926 >            return sun.misc.Unsafe.getUnsafe();
1927 >        } catch (SecurityException se) {
1928 >            try {
1929 >                return java.security.AccessController.doPrivileged
1930 >                    (new java.security
1931 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1932 >                        public sun.misc.Unsafe run() throws Exception {
1933 >                            java.lang.reflect.Field f = sun.misc
1934 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1935 >                            f.setAccessible(true);
1936 >                            return (sun.misc.Unsafe) f.get(null);
1937 >                        }});
1938 >            } catch (java.security.PrivilegedActionException e) {
1939 >                throw new RuntimeException("Could not initialize intrinsics",
1940 >                                           e.getCause());
1941 >            }
1942 >        }
1943      }
1944   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines