ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.1 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.71 by jsr166, Mon Sep 6 21:36:43 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 > import java.util.ArrayList;
11 > import java.util.Arrays;
12 > import java.util.Collection;
13 > import java.util.Collections;
14 > import java.util.List;
15 > import java.util.concurrent.locks.LockSupport;
16 > import java.util.concurrent.locks.ReentrantLock;
17 > import java.util.concurrent.atomic.AtomicInteger;
18 > import java.util.concurrent.CountDownLatch;
19  
20   /**
21 < * Host for a group of ForkJoinWorkerThreads.  A ForkJoinPool provides
22 < * the entry point for tasks submitted from non-ForkJoinTasks, as well
23 < * as management and monitoring operations.  Normally a single
24 < * ForkJoinPool is used for a large number of submitted
20 < * tasks. Otherwise, use would not usually outweigh the construction
21 < * and bookkeeping overhead of creating a large set of threads.
22 < *
23 < * <p>ForkJoinPools differ from other kinds of Executor mainly in that
24 < * they provide <em>work-stealing</em>: all threads in the pool
25 < * attempt to find and execute subtasks created by other active tasks
26 < * (eventually blocking if none exist). This makes them efficient when
27 < * most tasks spawn other subtasks (as do most ForkJoinTasks) but
28 < * possibly less so otherwise. It is however fine to combine execution
29 < * of some plain Runnable- or Callable- based activities with that of
30 < * ForkJoinTasks.
21 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
22 > * A {@code ForkJoinPool} provides the entry point for submissions
23 > * from non-{@code ForkJoinTask} clients, as well as management and
24 > * monitoring operations.
25   *
26 < * <p>A ForkJoinPool may be constructed with a given parallelism level
27 < * (target pool size), which it attempts to maintain by dynamically
28 < * adding, suspending, or resuming threads, even if some tasks have
29 < * blocked waiting to join others. However, no such adjustments are
30 < * performed in the face of blocked IO or other unmanaged
31 < * synchronization. The nested ManagedBlocker interface enables
32 < * extension of the kinds of synchronization accommodated.
26 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
27 > * ExecutorService} mainly by virtue of employing
28 > * <em>work-stealing</em>: all threads in the pool attempt to find and
29 > * execute subtasks created by other active tasks (eventually blocking
30 > * waiting for work if none exist). This enables efficient processing
31 > * when most tasks spawn other subtasks (as do most {@code
32 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
33 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
34 > * with event-style tasks that are never joined.
35   *
36 < * <p>The target parallelism level may also be set dynamically. You
37 < * can limit the number of threads dynamically constructed using
38 < * method <tt>setMaximumPoolSize</tt> and/or
39 < * <tt>setMaintainParallelism</tt>.
36 > * <p>A {@code ForkJoinPool} is constructed with a given target
37 > * parallelism level; by default, equal to the number of available
38 > * processors. The pool attempts to maintain enough active (or
39 > * available) threads by dynamically adding, suspending, or resuming
40 > * internal worker threads, even if some tasks are stalled waiting to
41 > * join others. However, no such adjustments are guaranteed in the
42 > * face of blocked IO or other unmanaged synchronization. The nested
43 > * {@link ManagedBlocker} interface enables extension of the kinds of
44 > * synchronization accommodated.
45   *
46   * <p>In addition to execution and lifecycle control methods, this
47   * class provides status check methods (for example
48 < * <tt>getStealCount</tt>) that are intended to aid in developing,
48 > * {@link #getStealCount}) that are intended to aid in developing,
49   * tuning, and monitoring fork/join applications. Also, method
50 < * <tt>toString</tt> returns indications of pool state in a convenient
51 < * form for informal monitoring.
50 > * {@link #toString} returns indications of pool state in a
51 > * convenient form for informal monitoring.
52 > *
53 > * <p> As is the case with other ExecutorServices, there are three
54 > * main task execution methods summarized in the following
55 > * table. These are designed to be used by clients not already engaged
56 > * in fork/join computations in the current pool.  The main forms of
57 > * these methods accept instances of {@code ForkJoinTask}, but
58 > * overloaded forms also allow mixed execution of plain {@code
59 > * Runnable}- or {@code Callable}- based activities as well.  However,
60 > * tasks that are already executing in a pool should normally
61 > * <em>NOT</em> use these pool execution methods, but instead use the
62 > * within-computation forms listed in the table.
63 > *
64 > * <table BORDER CELLPADDING=3 CELLSPACING=1>
65 > *  <tr>
66 > *    <td></td>
67 > *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
68 > *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
69 > *  </tr>
70 > *  <tr>
71 > *    <td> <b>Arrange async execution</td>
72 > *    <td> {@link #execute(ForkJoinTask)}</td>
73 > *    <td> {@link ForkJoinTask#fork}</td>
74 > *  </tr>
75 > *  <tr>
76 > *    <td> <b>Await and obtain result</td>
77 > *    <td> {@link #invoke(ForkJoinTask)}</td>
78 > *    <td> {@link ForkJoinTask#invoke}</td>
79 > *  </tr>
80 > *  <tr>
81 > *    <td> <b>Arrange exec and obtain Future</td>
82 > *    <td> {@link #submit(ForkJoinTask)}</td>
83 > *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
84 > *  </tr>
85 > * </table>
86 > *
87 > * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
88 > * used for all parallel task execution in a program or subsystem.
89 > * Otherwise, use would not usually outweigh the construction and
90 > * bookkeeping overhead of creating a large set of threads. For
91 > * example, a common pool could be used for the {@code SortTasks}
92 > * illustrated in {@link RecursiveAction}. Because {@code
93 > * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
94 > * daemon} mode, there is typically no need to explicitly {@link
95 > * #shutdown} such a pool upon program exit.
96 > *
97 > * <pre>
98 > * static final ForkJoinPool mainPool = new ForkJoinPool();
99 > * ...
100 > * public void sort(long[] array) {
101 > *   mainPool.invoke(new SortTask(array, 0, array.length));
102 > * }
103 > * </pre>
104   *
105   * <p><b>Implementation notes</b>: This implementation restricts the
106 < * maximum parallelism to 32767. Attempts to create pools with greater
107 < * than the maximum result in IllegalArgumentExceptions.
106 > * maximum number of running threads to 32767. Attempts to create
107 > * pools with greater than the maximum number result in
108 > * {@code IllegalArgumentException}.
109 > *
110 > * <p>This implementation rejects submitted tasks (that is, by throwing
111 > * {@link RejectedExecutionException}) only when the pool is shut down
112 > * or internal resources have been exhausted.
113 > *
114 > * @since 1.7
115 > * @author Doug Lea
116   */
117 < public class ForkJoinPool extends AbstractExecutorService
57 <    implements ExecutorService {
117 > public class ForkJoinPool extends AbstractExecutorService {
118  
119      /*
120 <     * See the extended comments interspersed below for design,
121 <     * rationale, and walkthroughs.
120 >     * Implementation Overview
121 >     *
122 >     * This class provides the central bookkeeping and control for a
123 >     * set of worker threads: Submissions from non-FJ threads enter
124 >     * into a submission queue. Workers take these tasks and typically
125 >     * split them into subtasks that may be stolen by other workers.
126 >     * The main work-stealing mechanics implemented in class
127 >     * ForkJoinWorkerThread give first priority to processing tasks
128 >     * from their own queues (LIFO or FIFO, depending on mode), then
129 >     * to randomized FIFO steals of tasks in other worker queues, and
130 >     * lastly to new submissions. These mechanics do not consider
131 >     * affinities, loads, cache localities, etc, so rarely provide the
132 >     * best possible performance on a given machine, but portably
133 >     * provide good throughput by averaging over these factors.
134 >     * (Further, even if we did try to use such information, we do not
135 >     * usually have a basis for exploiting it. For example, some sets
136 >     * of tasks profit from cache affinities, but others are harmed by
137 >     * cache pollution effects.)
138 >     *
139 >     * Beyond work-stealing support and essential bookkeeping, the
140 >     * main responsibility of this framework is to take actions when
141 >     * one worker is waiting to join a task stolen (or always held by)
142 >     * another.  Because we are multiplexing many tasks on to a pool
143 >     * of workers, we can't just let them block (as in Thread.join).
144 >     * We also cannot just reassign the joiner's run-time stack with
145 >     * another and replace it later, which would be a form of
146 >     * "continuation", that even if possible is not necessarily a good
147 >     * idea. Given that the creation costs of most threads on most
148 >     * systems mainly surrounds setting up runtime stacks, thread
149 >     * creation and switching is usually not much more expensive than
150 >     * stack creation and switching, and is more flexible). Instead we
151 >     * combine two tactics:
152 >     *
153 >     *   Helping: Arranging for the joiner to execute some task that it
154 >     *      would be running if the steal had not occurred.  Method
155 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
156 >     *      links to try to find such a task.
157 >     *
158 >     *   Compensating: Unless there are already enough live threads,
159 >     *      method helpMaintainParallelism() may create or
160 >     *      re-activate a spare thread to compensate for blocked
161 >     *      joiners until they unblock.
162 >     *
163 >     * It is impossible to keep exactly the target (parallelism)
164 >     * number of threads running at any given time.  Determining
165 >     * existence of conservatively safe helping targets, the
166 >     * availability of already-created spares, and the apparent need
167 >     * to create new spares are all racy and require heuristic
168 >     * guidance, so we rely on multiple retries of each.  Compensation
169 >     * occurs in slow-motion. It is triggered only upon timeouts of
170 >     * Object.wait used for joins. This reduces poor decisions that
171 >     * would otherwise be made when threads are waiting for others
172 >     * that are stalled because of unrelated activities such as
173 >     * garbage collection.
174 >     *
175 >     * The ManagedBlocker extension API can't use helping so relies
176 >     * only on compensation in method awaitBlocker.
177 >     *
178 >     * The main throughput advantages of work-stealing stem from
179 >     * decentralized control -- workers mostly steal tasks from each
180 >     * other. We do not want to negate this by creating bottlenecks
181 >     * implementing other management responsibilities. So we use a
182 >     * collection of techniques that avoid, reduce, or cope well with
183 >     * contention. These entail several instances of bit-packing into
184 >     * CASable fields to maintain only the minimally required
185 >     * atomicity. To enable such packing, we restrict maximum
186 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
187 >     * unbalanced increments and decrements) to fit into a 16 bit
188 >     * field, which is far in excess of normal operating range.  Even
189 >     * though updates to some of these bookkeeping fields do sometimes
190 >     * contend with each other, they don't normally cache-contend with
191 >     * updates to others enough to warrant memory padding or
192 >     * isolation. So they are all held as fields of ForkJoinPool
193 >     * objects.  The main capabilities are as follows:
194 >     *
195 >     * 1. Creating and removing workers. Workers are recorded in the
196 >     * "workers" array. This is an array as opposed to some other data
197 >     * structure to support index-based random steals by workers.
198 >     * Updates to the array recording new workers and unrecording
199 >     * terminated ones are protected from each other by a lock
200 >     * (workerLock) but the array is otherwise concurrently readable,
201 >     * and accessed directly by workers. To simplify index-based
202 >     * operations, the array size is always a power of two, and all
203 >     * readers must tolerate null slots. Currently, all worker thread
204 >     * creation is on-demand, triggered by task submissions,
205 >     * replacement of terminated workers, and/or compensation for
206 >     * blocked workers. However, all other support code is set up to
207 >     * work with other policies.
208 >     *
209 >     * To ensure that we do not hold on to worker references that
210 >     * would prevent GC, ALL accesses to workers are via indices into
211 >     * the workers array (which is one source of some of the unusual
212 >     * code constructions here). In essence, the workers array serves
213 >     * as a WeakReference mechanism. Thus for example the event queue
214 >     * stores worker indices, not worker references. Access to the
215 >     * workers in associated methods (for example releaseEventWaiters)
216 >     * must both index-check and null-check the IDs. All such accesses
217 >     * ignore bad IDs by returning out early from what they are doing,
218 >     * since this can only be associated with shutdown, in which case
219 >     * it is OK to give up. On termination, we just clobber these
220 >     * data structures without trying to use them.
221 >     *
222 >     * 2. Bookkeeping for dynamically adding and removing workers. We
223 >     * aim to approximately maintain the given level of parallelism.
224 >     * When some workers are known to be blocked (on joins or via
225 >     * ManagedBlocker), we may create or resume others to take their
226 >     * place until they unblock (see below). Implementing this
227 >     * requires counts of the number of "running" threads (i.e., those
228 >     * that are neither blocked nor artificially suspended) as well as
229 >     * the total number.  These two values are packed into one field,
230 >     * "workerCounts" because we need accurate snapshots when deciding
231 >     * to create, resume or suspend.  Note however that the
232 >     * correspondence of these counts to reality is not guaranteed. In
233 >     * particular updates for unblocked threads may lag until they
234 >     * actually wake up.
235 >     *
236 >     * 3. Maintaining global run state. The run state of the pool
237 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
238 >     * those in other Executor implementations, as well as a count of
239 >     * "active" workers -- those that are, or soon will be, or
240 >     * recently were executing tasks. The runLevel and active count
241 >     * are packed together in order to correctly trigger shutdown and
242 >     * termination. Without care, active counts can be subject to very
243 >     * high contention.  We substantially reduce this contention by
244 >     * relaxing update rules.  A worker must claim active status
245 >     * prospectively, by activating if it sees that a submitted or
246 >     * stealable task exists (it may find after activating that the
247 >     * task no longer exists). It stays active while processing this
248 >     * task (if it exists) and any other local subtasks it produces,
249 >     * until it cannot find any other tasks. It then tries
250 >     * inactivating (see method preStep), but upon update contention
251 >     * instead scans for more tasks, later retrying inactivation if it
252 >     * doesn't find any.
253 >     *
254 >     * 4. Managing idle workers waiting for tasks. We cannot let
255 >     * workers spin indefinitely scanning for tasks when none are
256 >     * available. On the other hand, we must quickly prod them into
257 >     * action when new tasks are submitted or generated.  We
258 >     * park/unpark these idle workers using an event-count scheme.
259 >     * Field eventCount is incremented upon events that may enable
260 >     * workers that previously could not find a task to now find one:
261 >     * Submission of a new task to the pool, or another worker pushing
262 >     * a task onto a previously empty queue.  (We also use this
263 >     * mechanism for configuration and termination actions that
264 >     * require wakeups of idle workers).  Each worker maintains its
265 >     * last known event count, and blocks when a scan for work did not
266 >     * find a task AND its lastEventCount matches the current
267 >     * eventCount. Waiting idle workers are recorded in a variant of
268 >     * Treiber stack headed by field eventWaiters which, when nonzero,
269 >     * encodes the thread index and count awaited for by the worker
270 >     * thread most recently calling eventSync. This thread in turn has
271 >     * a record (field nextEventWaiter) for the next waiting worker.
272 >     * In addition to allowing simpler decisions about need for
273 >     * wakeup, the event count bits in eventWaiters serve the role of
274 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
275 >     * released threads also try to release at most two others.  The
276 >     * net effect is a tree-like diffusion of signals, where released
277 >     * threads (and possibly others) help with unparks.  To further
278 >     * reduce contention effects a bit, failed CASes to increment
279 >     * field eventCount are tolerated without retries in signalWork.
280 >     * Conceptually they are merged into the same event, which is OK
281 >     * when their only purpose is to enable workers to scan for work.
282 >     *
283 >     * 5. Managing suspension of extra workers. When a worker notices
284 >     * (usually upon timeout of a wait()) that there are too few
285 >     * running threads, we may create a new thread to maintain
286 >     * parallelism level, or at least avoid starvation. Usually, extra
287 >     * threads are needed for only very short periods, yet join
288 >     * dependencies are such that we sometimes need them in
289 >     * bursts. Rather than create new threads each time this happens,
290 >     * we suspend no-longer-needed extra ones as "spares". For most
291 >     * purposes, we don't distinguish "extra" spare threads from
292 >     * normal "core" threads: On each call to preStep (the only point
293 >     * at which we can do this) a worker checks to see if there are
294 >     * now too many running workers, and if so, suspends itself.
295 >     * Method helpMaintainParallelism looks for suspended threads to
296 >     * resume before considering creating a new replacement. The
297 >     * spares themselves are encoded on another variant of a Treiber
298 >     * Stack, headed at field "spareWaiters".  Note that the use of
299 >     * spares is intrinsically racy.  One thread may become a spare at
300 >     * about the same time as another is needlessly being created. We
301 >     * counteract this and related slop in part by requiring resumed
302 >     * spares to immediately recheck (in preStep) to see whether they
303 >     * they should re-suspend.
304 >     *
305 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
306 >     * shed unused workers: The oldest (first) event queue waiter uses
307 >     * a timed rather than hard wait. When this wait times out without
308 >     * a normal wakeup, it tries to shutdown any one (for convenience
309 >     * the newest) other spare or event waiter via
310 >     * tryShutdownUnusedWorker. This eventually reduces the number of
311 >     * worker threads to a minimum of one after a long enough period
312 >     * without use.
313 >     *
314 >     * 7. Deciding when to create new workers. The main dynamic
315 >     * control in this class is deciding when to create extra threads
316 >     * in method helpMaintainParallelism. We would like to keep
317 >     * exactly #parallelism threads running, which is an impossible
318 >     * task. We always need to create one when the number of running
319 >     * threads would become zero and all workers are busy. Beyond
320 >     * this, we must rely on heuristics that work well in the
321 >     * presence of transient phenomena such as GC stalls, dynamic
322 >     * compilation, and wake-up lags. These transients are extremely
323 >     * common -- we are normally trying to fully saturate the CPUs on
324 >     * a machine, so almost any activity other than running tasks
325 >     * impedes accuracy. Our main defense is to allow parallelism to
326 >     * lapse for a while during joins, and use a timeout to see if,
327 >     * after the resulting settling, there is still a need for
328 >     * additional workers.  This also better copes with the fact that
329 >     * some of the methods in this class tend to never become compiled
330 >     * (but are interpreted), so some components of the entire set of
331 >     * controls might execute 100 times faster than others. And
332 >     * similarly for cases where the apparent lack of work is just due
333 >     * to GC stalls and other transient system activity.
334 >     *
335 >     * Beware that there is a lot of representation-level coupling
336 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
337 >     * ForkJoinTask.  For example, direct access to "workers" array by
338 >     * workers, and direct access to ForkJoinTask.status by both
339 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
340 >     * trying to reduce this, since any associated future changes in
341 >     * representations will need to be accompanied by algorithmic
342 >     * changes anyway.
343 >     *
344 >     * Style notes: There are lots of inline assignments (of form
345 >     * "while ((local = field) != 0)") which are usually the simplest
346 >     * way to ensure the required read orderings (which are sometimes
347 >     * critical). Also several occurrences of the unusual "do {}
348 >     * while (!cas...)" which is the simplest way to force an update of
349 >     * a CAS'ed variable. There are also other coding oddities that
350 >     * help some methods perform reasonably even when interpreted (not
351 >     * compiled), at the expense of some messy constructions that
352 >     * reduce byte code counts.
353 >     *
354 >     * The order of declarations in this file is: (1) statics (2)
355 >     * fields (along with constants used when unpacking some of them)
356 >     * (3) internal control methods (4) callbacks and other support
357 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
358 >     * methods (plus a few little helpers).
359       */
360  
64    /** Mask for packing and unpacking shorts */
65    private static final int  shortMask = 0xffff;
66
67    /** Max pool size -- must be a power of two minus 1 */
68    private static final int MAX_THREADS =  0x7FFF;
69
361      /**
362 <     * Factory for creating new ForkJoinWorkerThreads.  A
363 <     * ForkJoinWorkerThreadFactory must be defined and used for
364 <     * ForkJoinWorkerThread subclasses that extend base functionality
365 <     * or initialize threads with different contexts.
362 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
363 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
364 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
365 >     * functionality or initialize threads with different contexts.
366       */
367      public static interface ForkJoinWorkerThreadFactory {
368          /**
369           * Returns a new worker thread operating in the given pool.
370           *
371           * @param pool the pool this thread works in
372 <         * @throws NullPointerException if pool is null;
372 >         * @throws NullPointerException if the pool is null
373           */
374          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
375      }
376  
377      /**
378 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
378 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
379       * new ForkJoinWorkerThread.
380       */
381 <    public static class  DefaultForkJoinWorkerThreadFactory
381 >    static class DefaultForkJoinWorkerThreadFactory
382          implements ForkJoinWorkerThreadFactory {
383          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
384 <            try {
94 <                return new ForkJoinWorkerThread(pool);
95 <            } catch (OutOfMemoryError oom)  {
96 <                return null;
97 <            }
384 >            return new ForkJoinWorkerThread(pool);
385          }
386      }
387  
388      /**
389 <     * The default ForkJoinWorkerThreadFactory, used unless overridden
390 <     * in ForkJoinPool constructors.
389 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
390 >     * overridden in ForkJoinPool constructors.
391       */
392 <    private static final DefaultForkJoinWorkerThreadFactory
392 >    public static final ForkJoinWorkerThreadFactory
393          defaultForkJoinWorkerThreadFactory =
394          new DefaultForkJoinWorkerThreadFactory();
395  
109
396      /**
397       * Permission required for callers of methods that may start or
398       * kill threads.
# Line 131 | Line 417 | public class ForkJoinPool extends Abstra
417          new AtomicInteger();
418  
419      /**
420 <     * Array holding all worker threads in the pool. Array size must
421 <     * be a power of two.  Updates and replacements are protected by
422 <     * workerLock, but it is always kept in a consistent enough state
423 <     * to be randomly accessed without locking by workers performing
424 <     * work-stealing.
420 >     * The time to block in a join (see awaitJoin) before checking if
421 >     * a new worker should be (re)started to maintain parallelism
422 >     * level. The value should be short enough to maintain global
423 >     * responsiveness and progress but long enough to avoid
424 >     * counterproductive firings during GC stalls or unrelated system
425 >     * activity, and to not bog down systems with continual re-firings
426 >     * on GCs or legitimately long waits.
427       */
428 <    volatile ForkJoinWorkerThread[] workers;
428 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
429  
430      /**
431 <     * Lock protecting access to workers.
431 >     * The wakeup interval (in nanoseconds) for the oldest worker
432 >     * worker waiting for an event invokes tryShutdownUnusedWorker to shrink
433 >     * the number of workers.  The exact value does not matter too
434 >     * much, but should be long enough to slowly release resources
435 >     * during long periods without use without disrupting normal use.
436       */
437 <    private final ReentrantLock workerLock;
437 >    private static final long SHRINK_RATE_NANOS =
438 >        30L * 1000L * 1000L * 1000L; // 2 per minute
439  
440      /**
441 <     * Condition for awaitTermination.
441 >     * Absolute bound for parallelism level. Twice this number plus
442 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
443 >     * word-packing for some counts and indices.
444       */
445 <    private final Condition termination;
445 >    private static final int MAX_WORKERS   = 0x7fff;
446  
447      /**
448 <     * The uncaught exception handler used when any worker
449 <     * abrupty terminates
448 >     * Array holding all worker threads in the pool.  Array size must
449 >     * be a power of two.  Updates and replacements are protected by
450 >     * workerLock, but the array is always kept in a consistent enough
451 >     * state to be randomly accessed without locking by workers
452 >     * performing work-stealing, as well as other traversal-based
453 >     * methods in this class. All readers must tolerate that some
454 >     * array slots may be null.
455       */
456 <    private Thread.UncaughtExceptionHandler ueh;
456 >    volatile ForkJoinWorkerThread[] workers;
457  
458      /**
459 <     * Creation factory for worker threads.
459 >     * Queue for external submissions.
460       */
461 <    private final ForkJoinWorkerThreadFactory factory;
461 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
462  
463      /**
464 <     * Head of stack of threads that were created to maintain
165 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
464 >     * Lock protecting updates to workers array.
465       */
466 <    private volatile WaitQueueNode spareStack;
466 >    private final ReentrantLock workerLock;
467  
468      /**
469 <     * Sum of per-thread steal counts, updated only when threads are
172 <     * idle or terminating.
469 >     * Latch released upon termination.
470       */
471 <    private final AtomicLong stealCount;
471 >    private final Phaser termination;
472  
473      /**
474 <     * Queue for external submissions.
474 >     * Creation factory for worker threads.
475       */
476 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
476 >    private final ForkJoinWorkerThreadFactory factory;
477  
478      /**
479 <     * Head of Treiber stack for barrier sync. See below for explanation
479 >     * Sum of per-thread steal counts, updated only when threads are
480 >     * idle or terminating.
481       */
482 <    private volatile WaitQueueNode barrierStack;
482 >    private volatile long stealCount;
483  
484      /**
485 <     * The count for event barrier
485 >     * Encoded record of top of Treiber stack of threads waiting for
486 >     * events. The top 32 bits contain the count being waited for. The
487 >     * bottom 16 bits contains one plus the pool index of waiting
488 >     * worker thread. (Bits 16-31 are unused.)
489       */
490 <    private volatile long eventCount;
490 >    private volatile long eventWaiters;
491 >
492 >    private static final int  EVENT_COUNT_SHIFT = 32;
493 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
494  
495      /**
496 <     * Pool number, just for assigning useful names to worker threads
496 >     * A counter for events that may wake up worker threads:
497 >     *   - Submission of a new task to the pool
498 >     *   - A worker pushing a task on an empty queue
499 >     *   - termination
500       */
501 <    private final int poolNumber;
501 >    private volatile int eventCount;
502  
503      /**
504 <     * The maximum allowed pool size
504 >     * Encoded record of top of Treiber stack of spare threads waiting
505 >     * for resumption. The top 16 bits contain an arbitrary count to
506 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
507 >     * index of waiting worker thread.
508       */
509 <    private volatile int maxPoolSize;
509 >    private volatile int spareWaiters;
510 >
511 >    private static final int SPARE_COUNT_SHIFT = 16;
512 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
513  
514      /**
515 <     * The desired parallelism level, updated only under workerLock.
516 <     */
517 <    private volatile int parallelism;
515 >     * Lifecycle control. The low word contains the number of workers
516 >     * that are (probably) executing tasks. This value is atomically
517 >     * incremented before a worker gets a task to run, and decremented
518 >     * when worker has no tasks and cannot find any.  Bits 16-18
519 >     * contain runLevel value. When all are zero, the pool is
520 >     * running. Level transitions are monotonic (running -> shutdown
521 >     * -> terminating -> terminated) so each transition adds a bit.
522 >     * These are bundled together to ensure consistent read for
523 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
524 >     * and active threads is zero).
525 >     *
526 >     * Notes: Most direct CASes are dependent on these bitfield
527 >     * positions.  Also, this field is non-private to enable direct
528 >     * performance-sensitive CASes in ForkJoinWorkerThread.
529 >     */
530 >    volatile int runState;
531 >
532 >    // Note: The order among run level values matters.
533 >    private static final int RUNLEVEL_SHIFT     = 16;
534 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
535 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
536 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
537 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
538  
539      /**
540       * Holds number of total (i.e., created and not yet terminated)
541       * and running (i.e., not blocked on joins or other managed sync)
542 <     * threads, packed into one int to ensure consistent snapshot when
542 >     * threads, packed together to ensure consistent snapshot when
543       * making decisions about creating and suspending spare
544 <     * threads. Updated only by CAS.  Note: CASes in
545 <     * updateRunningCount and preJoin running active count is in low
546 <     * word, so need to be modified if this changes
544 >     * threads. Updated only by CAS. Note that adding a new worker
545 >     * requires incrementing both counts, since workers start off in
546 >     * running state.
547       */
548      private volatile int workerCounts;
549  
550 <    private static int totalCountOf(int s)           { return s >>> 16;  }
551 <    private static int runningCountOf(int s)         { return s & shortMask; }
552 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
550 >    private static final int TOTAL_COUNT_SHIFT  = 16;
551 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
552 >    private static final int ONE_RUNNING        = 1;
553 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
554  
555      /**
556 <     * Add delta (which may be negative) to running count.  This must
557 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
225 <     * @param delta the number to add
556 >     * The target parallelism level.
557 >     * Accessed directly by ForkJoinWorkerThreads.
558       */
559 <    final void updateRunningCount(int delta) {
228 <        int s;
229 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
230 <    }
559 >    final int parallelism;
560  
561      /**
562 <     * Add delta (which may be negative) to both total and running
563 <     * count.  This must be called upon creation and termination of
235 <     * worker threads.
236 <     * @param delta the number to add
562 >     * True if use local fifo, not default lifo, for local polling
563 >     * Read by, and replicated by ForkJoinWorkerThreads
564       */
565 <    private void updateWorkerCount(int delta) {
239 <        int d = delta + (delta << 16); // add to both lo and hi parts
240 <        int s;
241 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
242 <    }
565 >    final boolean locallyFifo;
566  
567      /**
568 <     * Lifecycle control. High word contains runState, low word
569 <     * contains the number of workers that are (probably) executing
247 <     * tasks. This value is atomically incremented before a worker
248 <     * gets a task to run, and decremented when worker has no tasks
249 <     * and cannot find any. These two fields are bundled together to
250 <     * support correct termination triggering.  Note: activeCount
251 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
568 >     * The uncaught exception handler used when any worker abruptly
569 >     * terminates.
570       */
571 <    private volatile int runControl;
571 >    private final Thread.UncaughtExceptionHandler ueh;
572  
573 <    // RunState values. Order among values matters
574 <    private static final int RUNNING     = 0;
575 <    private static final int SHUTDOWN    = 1;
576 <    private static final int TERMINATING = 2;
260 <    private static final int TERMINATED  = 3;
573 >    /**
574 >     * Pool number, just for assigning useful names to worker threads
575 >     */
576 >    private final int poolNumber;
577  
578 <    private static int runStateOf(int c)             { return c >>> 16; }
579 <    private static int activeCountOf(int c)          { return c & shortMask; }
264 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
578 >    // Utilities for CASing fields. Note that most of these
579 >    // are usually manually inlined by callers
580  
581      /**
582 <     * Increment active count. Called by workers before/during
268 <     * executing tasks.
582 >     * Increments running count part of workerCounts
583       */
584 <    final void incrementActiveCount() {
584 >    final void incrementRunningCount() {
585          int c;
586 <        do;while (!casRunControl(c = runControl, c+1));
586 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587 >                                               c = workerCounts,
588 >                                               c + ONE_RUNNING));
589 >    }
590 >
591 >    /**
592 >     * Tries to decrement running count unless already zero
593 >     */
594 >    final boolean tryDecrementRunningCount() {
595 >        int wc = workerCounts;
596 >        if ((wc & RUNNING_COUNT_MASK) == 0)
597 >            return false;
598 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
599 >                                        wc, wc - ONE_RUNNING);
600      }
601  
602      /**
603 <     * Decrement active count; possibly trigger termination.
604 <     * Called by workers when they can't find tasks.
603 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
604 >     * (rarely) necessary when other count updates lag.
605 >     *
606 >     * @param dr -- either zero or ONE_RUNNING
607 >     * @param dt == either zero or ONE_TOTAL
608       */
609 <    final void decrementActiveCount() {
610 <        int c, nextc;
611 <        do;while (!casRunControl(c = runControl, nextc = c-1));
612 <        if (canTerminateOnShutdown(nextc))
613 <            terminateOnShutdown();
609 >    private void decrementWorkerCounts(int dr, int dt) {
610 >        for (;;) {
611 >            int wc = workerCounts;
612 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
613 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
614 >                if ((runState & TERMINATED) != 0)
615 >                    return; // lagging termination on a backout
616 >                Thread.yield();
617 >            }
618 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
619 >                                         wc, wc - (dr + dt)))
620 >                return;
621 >        }
622      }
623  
624      /**
625 <     * Return true if argument represents zero active count and
626 <     * nonzero runstate, which is the triggering condition for
289 <     * terminating on shutdown.
625 >     * Tries decrementing active count; fails on contention.
626 >     * Called when workers cannot find tasks to run.
627       */
628 <    private static boolean canTerminateOnShutdown(int c) {
629 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
628 >    final boolean tryDecrementActiveCount() {
629 >        int c;
630 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 >                                        c = runState, c - 1);
632      }
633  
634      /**
635 <     * Transition run state to at least the given state. Return true
636 <     * if not already at least given state.
635 >     * Advances to at least the given level. Returns true if not
636 >     * already in at least the given level.
637       */
638 <    private boolean transitionRunStateTo(int state) {
638 >    private boolean advanceRunLevel(int level) {
639          for (;;) {
640 <            int c = runControl;
641 <            if (runStateOf(c) >= state)
640 >            int s = runState;
641 >            if ((s & level) != 0)
642                  return false;
643 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
643 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
644                  return true;
645          }
646      }
647  
648 +    // workers array maintenance
649 +
650      /**
651 <     * Controls whether to add spares to maintain parallelism
651 >     * Records and returns a workers array index for new worker.
652       */
653 <    private volatile boolean maintainsParallelism;
653 >    private int recordWorker(ForkJoinWorkerThread w) {
654 >        // Try using slot totalCount-1. If not available, scan and/or resize
655 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
656 >        final ReentrantLock lock = this.workerLock;
657 >        lock.lock();
658 >        try {
659 >            ForkJoinWorkerThread[] ws = workers;
660 >            int n = ws.length;
661 >            if (k < 0 || k >= n || ws[k] != null) {
662 >                for (k = 0; k < n && ws[k] != null; ++k)
663 >                    ;
664 >                if (k == n)
665 >                    ws = Arrays.copyOf(ws, n << 1);
666 >            }
667 >            ws[k] = w;
668 >            workers = ws; // volatile array write ensures slot visibility
669 >        } finally {
670 >            lock.unlock();
671 >        }
672 >        return k;
673 >    }
674  
675 <    // Constructors
675 >    /**
676 >     * Nulls out record of worker in workers array.
677 >     */
678 >    private void forgetWorker(ForkJoinWorkerThread w) {
679 >        int idx = w.poolIndex;
680 >        // Locking helps method recordWorker avoid unnecessary expansion
681 >        final ReentrantLock lock = this.workerLock;
682 >        lock.lock();
683 >        try {
684 >            ForkJoinWorkerThread[] ws = workers;
685 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
686 >                ws[idx] = null;
687 >        } finally {
688 >            lock.unlock();
689 >        }
690 >    }
691  
692      /**
693 <     * Creates a ForkJoinPool with a pool size equal to the number of
694 <     * processors available on the system and using the default
695 <     * ForkJoinWorkerThreadFactory,
696 <     * @throws SecurityException if a security manager exists and
697 <     *         the caller is not permitted to modify threads
322 <     *         because it does not hold {@link
323 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
693 >     * Final callback from terminating worker.  Removes record of
694 >     * worker from array, and adjusts counts. If pool is shutting
695 >     * down, tries to complete termination.
696 >     *
697 >     * @param w the worker
698       */
699 <    public ForkJoinPool() {
700 <        this(Runtime.getRuntime().availableProcessors(),
701 <             defaultForkJoinWorkerThreadFactory);
699 >    final void workerTerminated(ForkJoinWorkerThread w) {
700 >        forgetWorker(w);
701 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
702 >        while (w.stealCount != 0) // collect final count
703 >            tryAccumulateStealCount(w);
704 >        tryTerminate(false);
705      }
706  
707 +    // Waiting for and signalling events
708 +
709      /**
710 <     * Creates a ForkJoinPool with the indicated parellelism level
711 <     * threads, and using the default ForkJoinWorkerThreadFactory,
712 <     * @param parallelism the number of worker threads
713 <     * @throws IllegalArgumentException if parallelism less than or
335 <     * equal to zero
336 <     * @throws SecurityException if a security manager exists and
337 <     *         the caller is not permitted to modify threads
338 <     *         because it does not hold {@link
339 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
710 >     * Releases workers blocked on a count not equal to current count.
711 >     * Normally called after precheck that eventWaiters isn't zero to
712 >     * avoid wasted array checks. Gives up upon a change in count or
713 >     * upon releasing two workers, letting others take over.
714       */
715 <    public ForkJoinPool(int parallelism) {
716 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
715 >    private void releaseEventWaiters() {
716 >        ForkJoinWorkerThread[] ws = workers;
717 >        int n = ws.length;
718 >        long h = eventWaiters;
719 >        int ec = eventCount;
720 >        boolean releasedOne = false;
721 >        ForkJoinWorkerThread w; int id;
722 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
723 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
724 >               id < n && (w = ws[id]) != null) {
725 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
726 >                                          h,  w.nextWaiter)) {
727 >                LockSupport.unpark(w);
728 >                if (releasedOne) // exit on second release
729 >                    break;
730 >                releasedOne = true;
731 >            }
732 >            if (eventCount != ec)
733 >                break;
734 >            h = eventWaiters;
735 >        }
736      }
737  
738      /**
739 <     * Creates a ForkJoinPool with a pool size equal to the number of
740 <     * processors available on the system and using the given
348 <     * ForkJoinWorkerThreadFactory,
349 <     * @param factory the factory for creating new threads
350 <     * @throws NullPointerException if factory is null
351 <     * @throws SecurityException if a security manager exists and
352 <     *         the caller is not permitted to modify threads
353 <     *         because it does not hold {@link
354 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
739 >     * Tries to advance eventCount and releases waiters. Called only
740 >     * from workers.
741       */
742 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
743 <        this(Runtime.getRuntime().availableProcessors(), factory);
742 >    final void signalWork() {
743 >        int c; // try to increment event count -- CAS failure OK
744 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
745 >        if (eventWaiters != 0L)
746 >            releaseEventWaiters();
747      }
748  
749      /**
750 <     * Creates a ForkJoinPool with the indicated target number of
751 <     * worker threads and the given factory.
750 >     * Adds the given worker to event queue and blocks until
751 >     * terminating or event count advances from the given value
752       *
753 <     * @param parallelism the targeted number of worker threads
754 <     * @param factory the factory for creating new threads
366 <     * @throws IllegalArgumentException if parallelism less than or
367 <     * equal to zero, or greater than implementation limit.
368 <     * @throws NullPointerException if factory is null
369 <     * @throws SecurityException if a security manager exists and
370 <     *         the caller is not permitted to modify threads
371 <     *         because it does not hold {@link
372 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
753 >     * @param w the calling worker thread
754 >     * @param ec the count
755       */
756 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
757 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
758 <            throw new IllegalArgumentException();
759 <        if (factory == null)
760 <            throw new NullPointerException();
761 <        checkPermission();
762 <        this.factory = factory;
763 <        this.parallelism = parallelism;
764 <        this.maxPoolSize = MAX_THREADS;
765 <        this.maintainsParallelism = true;
766 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
767 <        this.workerLock = new ReentrantLock();
768 <        this.termination = workerLock.newCondition();
387 <        this.stealCount = new AtomicLong();
388 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
389 <        createAndStartInitialWorkers(parallelism);
756 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
757 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
758 >        long h;
759 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
760 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
761 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
762 >               eventCount == ec) {
763 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
764 >                                          w.nextWaiter = h, nh)) {
765 >                awaitEvent(w, ec);
766 >                break;
767 >            }
768 >        }
769      }
770  
771      /**
772 <     * Create new worker using factory.
773 <     * @param index the index to assign worker
774 <     * @return new worker, or null of factory failed
772 >     * Blocks the given worker (that has already been entered as an
773 >     * event waiter) until terminating or event count advances from
774 >     * the given value. The oldest (first) waiter uses a timed wait to
775 >     * occasionally one-by-one shrink the number of workers (to a
776 >     * minimum of one) if the pool has not been used for extended
777 >     * periods.
778 >     *
779 >     * @param w the calling worker thread
780 >     * @param ec the count
781       */
782 <    private ForkJoinWorkerThread createWorker(int index) {
783 <        Thread.UncaughtExceptionHandler h = ueh;
784 <        ForkJoinWorkerThread w = factory.newThread(this);
785 <        if (w != null) {
786 <            w.poolIndex = index;
787 <            w.setDaemon(true);
788 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
789 <            if (h != null)
790 <                w.setUncaughtExceptionHandler(h);
782 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
783 >        while (eventCount == ec) {
784 >            if (tryAccumulateStealCount(w)) { // transfer while idle
785 >                boolean untimed = (w.nextWaiter != 0L ||
786 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
787 >                long startTime = untimed? 0 : System.nanoTime();
788 >                Thread.interrupted();         // clear/ignore interrupt
789 >                if (eventCount != ec || w.runState != 0 ||
790 >                    runState >= TERMINATING)  // recheck after clear
791 >                    break;
792 >                if (untimed)
793 >                    LockSupport.park(w);
794 >                else {
795 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
796 >                    if (eventCount != ec || w.runState != 0 ||
797 >                        runState >= TERMINATING)
798 >                        break;
799 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
800 >                        tryShutdownUnusedWorker(ec);
801 >                }
802 >            }
803          }
407        return w;
804      }
805  
806 +    // Maintaining parallelism
807 +
808      /**
809 <     * Return a good size for worker array given pool size.
412 <     * Currently requires size to be a power of two.
809 >     * Pushes worker onto the spare stack
810       */
811 <    private static int arraySizeFor(int ps) {
812 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
811 >    final void pushSpare(ForkJoinWorkerThread w) {
812 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
813 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814 >                                               w.nextSpare = spareWaiters,ns));
815      }
816  
817      /**
818 <     * Create or resize array if necessary to hold newLength
819 <     * @return the array
818 >     * Tries (once) to resume a spare if the number of running
819 >     * threads is less than target.
820       */
821 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
821 >    private void tryResumeSpare() {
822 >        int sw, id;
823          ForkJoinWorkerThread[] ws = workers;
824 <        if (ws == null)
825 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
826 <        else if (newLength > ws.length)
827 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
828 <        else
829 <            return ws;
824 >        int n = ws.length;
825 >        ForkJoinWorkerThread w;
826 >        if ((sw = spareWaiters) != 0 &&
827 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
828 >            id < n && (w = ws[id]) != null &&
829 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
830 >            spareWaiters == sw &&
831 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
832 >                                     sw, w.nextSpare)) {
833 >            int c; // increment running count before resume
834 >            do {} while (!UNSAFE.compareAndSwapInt
835 >                         (this, workerCountsOffset,
836 >                          c = workerCounts, c + ONE_RUNNING));
837 >            if (w.tryUnsuspend())
838 >                LockSupport.unpark(w);
839 >            else   // back out if w was shutdown
840 >                decrementWorkerCounts(ONE_RUNNING, 0);
841 >        }
842      }
843  
844      /**
845 <     * Try to shrink workers into smaller array after one or more terminate
845 >     * Tries to increase the number of running workers if below target
846 >     * parallelism: If a spare exists tries to resume it via
847 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
848 >     * existing workers are busy, adds a new worker. In all cases also
849 >     * helps wake up releasable workers waiting for work.
850 >     */
851 >    private void helpMaintainParallelism() {
852 >        int pc = parallelism;
853 >        int wc, rs, tc;
854 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
855 >               (rs = runState) < TERMINATING) {
856 >            if (spareWaiters != 0)
857 >                tryResumeSpare();
858 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
859 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
860 >                break;   // enough total
861 >            else if (runState == rs && workerCounts == wc &&
862 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
863 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
864 >                ForkJoinWorkerThread w = null;
865 >                try {
866 >                    w = factory.newThread(this);
867 >                } finally { // adjust on null or exceptional factory return
868 >                    if (w == null) {
869 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
870 >                        tryTerminate(false); // handle failure during shutdown
871 >                    }
872 >                }
873 >                if (w == null)
874 >                    break;
875 >                w.start(recordWorker(w), ueh);
876 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
877 >                    int c; // advance event count
878 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
879 >                                             c = eventCount, c+1);
880 >                    break; // add at most one unless total below target
881 >                }
882 >            }
883 >        }
884 >        if (eventWaiters != 0L)
885 >            releaseEventWaiters();
886 >    }
887 >
888 >    /**
889 >     * Callback from the oldest waiter in awaitEvent waking up after a
890 >     * period of non-use. If all workers are idle, tries (once) to
891 >     * shutdown an event waiter or a spare, if one exists. Note that
892 >     * we don't need CAS or locks here because the method is called
893 >     * only from one thread occasionally waking (and even misfires are
894 >     * OK). Note that until the shutdown worker fully terminates,
895 >     * workerCounts will overestimate total count, which is tolerable.
896 >     *
897 >     * @param ec the event count waited on by caller (to abort
898 >     * attempt if count has since changed).
899       */
900 <    private void tryShrinkWorkerArray() {
901 <        ForkJoinWorkerThread[] ws = workers;
902 <        int len = ws.length;
903 <        int last = len - 1;
904 <        while (last >= 0 && ws[last] == null)
905 <            --last;
906 <        int newLength = arraySizeFor(last+1);
907 <        if (newLength < len)
908 <            workers = Arrays.copyOf(ws, newLength);
900 >    private void tryShutdownUnusedWorker(int ec) {
901 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
902 >            ForkJoinWorkerThread[] ws = workers;
903 >            int n = ws.length;
904 >            ForkJoinWorkerThread w = null;
905 >            boolean shutdown = false;
906 >            int sw;
907 >            long h;
908 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
909 >                int id = (sw & SPARE_ID_MASK) - 1;
910 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
911 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
912 >                                             sw, w.nextSpare))
913 >                    shutdown = true;
914 >            }
915 >            else if ((h = eventWaiters) != 0L) {
916 >                long nh;
917 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
918 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
919 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
920 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
921 >                    shutdown = true;
922 >            }
923 >            if (w != null && shutdown) {
924 >                w.shutdown();
925 >                LockSupport.unpark(w);
926 >            }
927 >        }
928 >        releaseEventWaiters(); // in case of interference
929      }
930  
931      /**
932 <     * Initial worker array and worker creation and startup. (This
933 <     * must be done under lock to avoid interference by some of the
934 <     * newly started threads while creating others.)
932 >     * Callback from workers invoked upon each top-level action (i.e.,
933 >     * stealing a task or taking a submission and running it).
934 >     * Performs one or more of the following:
935 >     *
936 >     * 1. If the worker is active and either did not run a task
937 >     *    or there are too many workers, try to set its active status
938 >     *    to inactive and update activeCount. On contention, we may
939 >     *    try again in this or a subsequent call.
940 >     *
941 >     * 2. If not enough total workers, help create some.
942 >     *
943 >     * 3. If there are too many running workers, suspend this worker
944 >     *    (first forcing inactive if necessary).  If it is not needed,
945 >     *    it may be shutdown while suspended (via
946 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
947 >     *    rechecks running thread count and need for event sync.
948 >     *
949 >     * 4. If worker did not run a task, await the next task event via
950 >     *    eventSync if necessary (first forcing inactivation), upon
951 >     *    which the worker may be shutdown via
952 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
953 >     *    existing event waiters that are now releasable,
954 >     *
955 >     * @param w the worker
956 >     * @param ran true if worker ran a task since last call to this method
957       */
958 <    private void createAndStartInitialWorkers(int ps) {
959 <        final ReentrantLock lock = this.workerLock;
960 <        lock.lock();
961 <        try {
962 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
963 <            for (int i = 0; i < ps; ++i) {
964 <                ForkJoinWorkerThread w = createWorker(i);
965 <                if (w != null) {
966 <                    ws[i] = w;
967 <                    w.start();
968 <                    updateWorkerCount(1);
958 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
959 >        int wec = w.lastEventCount;
960 >        boolean active = w.active;
961 >        boolean inactivate = false;
962 >        int pc = parallelism;
963 >        int rs;
964 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
965 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
966 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
967 >                inactivate = active = w.active = false;
968 >            int wc = workerCounts;
969 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
970 >                if (!(inactivate |= active) && // must inactivate to suspend
971 >                    workerCounts == wc &&      // try to suspend as spare
972 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
973 >                                             wc, wc - ONE_RUNNING))
974 >                    w.suspendAsSpare();
975 >            }
976 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
977 >                helpMaintainParallelism();     // not enough workers
978 >            else if (!ran) {
979 >                long h = eventWaiters;
980 >                int ec = eventCount;
981 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
982 >                    releaseEventWaiters();     // release others before waiting
983 >                else if (ec != wec) {
984 >                    w.lastEventCount = ec;     // no need to wait
985 >                    break;
986                  }
987 +                else if (!(inactivate |= active))
988 +                    eventSync(w, wec);         // must inactivate before sync
989              }
990 <        } finally {
991 <            lock.unlock();
990 >            else
991 >                break;
992          }
993      }
994  
995      /**
996 <     * Worker creation and startup for threads added via setParallelism.
996 >     * Helps and/or blocks awaiting join of the given task.
997 >     * See above for explanation.
998 >     *
999 >     * @param joinMe the task to join
1000 >     * @param worker the current worker thread
1001       */
1002 <    private void createAndStartAddedWorkers() {
1003 <        resumeAllSpares();  // Allow spares to convert to nonspare
1004 <        int ps = parallelism;
1005 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1006 <        int len = ws.length;
1007 <        // Sweep through slots, to keep lowest indices most populated
1008 <        int k = 0;
1009 <        while (k < len) {
1010 <            if (ws[k] != null) {
1011 <                ++k;
1012 <                continue;
1002 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1003 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1004 >        while (joinMe.status >= 0) {
1005 >            int wc;
1006 >            worker.helpJoinTask(joinMe);
1007 >            if (joinMe.status < 0)
1008 >                break;
1009 >            else if (retries > 0)
1010 >                --retries;
1011 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1012 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1013 >                                              wc, wc - ONE_RUNNING)) {
1014 >                int stat, c; long h;
1015 >                while ((stat = joinMe.status) >= 0 &&
1016 >                       (h = eventWaiters) != 0L && // help release others
1017 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1018 >                    releaseEventWaiters();
1019 >                if (stat >= 0 &&
1020 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1021 >                     (stat =
1022 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1023 >                    helpMaintainParallelism(); // timeout or no running workers
1024 >                do {} while (!UNSAFE.compareAndSwapInt
1025 >                             (this, workerCountsOffset,
1026 >                              c = workerCounts, c + ONE_RUNNING));
1027 >                if (stat < 0)
1028 >                    break;   // else restart
1029              }
1030 <            int s = workerCounts;
1031 <            int tc = totalCountOf(s);
1032 <            int rc = runningCountOf(s);
1033 <            if (rc >= ps || tc >= ps)
1030 >        }
1031 >    }
1032 >
1033 >    /**
1034 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1035 >     */
1036 >    final void awaitBlocker(ManagedBlocker blocker)
1037 >        throws InterruptedException {
1038 >        while (!blocker.isReleasable()) {
1039 >            int wc = workerCounts;
1040 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1041 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1042 >                                         wc, wc - ONE_RUNNING)) {
1043 >                try {
1044 >                    while (!blocker.isReleasable()) {
1045 >                        long h = eventWaiters;
1046 >                        if (h != 0L &&
1047 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1048 >                            releaseEventWaiters();
1049 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1050 >                                 runState < TERMINATING)
1051 >                            helpMaintainParallelism();
1052 >                        else if (blocker.block())
1053 >                            break;
1054 >                    }
1055 >                } finally {
1056 >                    int c;
1057 >                    do {} while (!UNSAFE.compareAndSwapInt
1058 >                                 (this, workerCountsOffset,
1059 >                                  c = workerCounts, c + ONE_RUNNING));
1060 >                }
1061                  break;
1062 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1063 <                ForkJoinWorkerThread w = createWorker(k);
1062 >            }
1063 >        }
1064 >    }
1065 >
1066 >    /**
1067 >     * Possibly initiates and/or completes termination.
1068 >     *
1069 >     * @param now if true, unconditionally terminate, else only
1070 >     * if shutdown and empty queue and no active workers
1071 >     * @return true if now terminating or terminated
1072 >     */
1073 >    private boolean tryTerminate(boolean now) {
1074 >        if (now)
1075 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1076 >        else if (runState < SHUTDOWN ||
1077 >                 !submissionQueue.isEmpty() ||
1078 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1079 >            return false;
1080 >
1081 >        if (advanceRunLevel(TERMINATING))
1082 >            startTerminating();
1083 >
1084 >        // Finish now if all threads terminated; else in some subsequent call
1085 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1086 >            advanceRunLevel(TERMINATED);
1087 >            termination.arrive();
1088 >        }
1089 >        return true;
1090 >    }
1091 >
1092 >    /**
1093 >     * Actions on transition to TERMINATING
1094 >     *
1095 >     * Runs up to four passes through workers: (0) shutting down each
1096 >     * (without waking up if parked) to quickly spread notifications
1097 >     * without unnecessary bouncing around event queues etc (1) wake
1098 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1099 >     * interrupted workers
1100 >     */
1101 >    private void startTerminating() {
1102 >        cancelSubmissions();
1103 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1104 >            int c; // advance event count
1105 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1106 >                                     c = eventCount, c+1);
1107 >            eventWaiters = 0L; // clobber lists
1108 >            spareWaiters = 0;
1109 >            for (ForkJoinWorkerThread w : workers) {
1110                  if (w != null) {
1111 <                    ws[k++] = w;
1112 <                    w.start();
1113 <                }
1114 <                else {
1115 <                    updateWorkerCount(-1); // back out on failed creation
1116 <                    break;
1111 >                    w.shutdown();
1112 >                    if (passes > 0 && !w.isTerminated()) {
1113 >                        w.cancelTasks();
1114 >                        LockSupport.unpark(w);
1115 >                        if (passes > 1) {
1116 >                            try {
1117 >                                w.interrupt();
1118 >                            } catch (SecurityException ignore) {
1119 >                            }
1120 >                        }
1121 >                    }
1122                  }
1123              }
1124          }
1125      }
1126  
1127      /**
1128 <     * Sets the handler for internal worker threads that terminate due
1129 <     * to unrecoverable errors encountered while executing tasks.
1130 <     * Unless set, the current default or ThreadGroup handler is used
1131 <     * as handler.
1128 >     * Clear out and cancel submissions, ignoring exceptions
1129 >     */
1130 >    private void cancelSubmissions() {
1131 >        ForkJoinTask<?> task;
1132 >        while ((task = submissionQueue.poll()) != null) {
1133 >            try {
1134 >                task.cancel(false);
1135 >            } catch (Throwable ignore) {
1136 >            }
1137 >        }
1138 >    }
1139 >
1140 >    // misc support for ForkJoinWorkerThread
1141 >
1142 >    /**
1143 >     * Returns pool number
1144 >     */
1145 >    final int getPoolNumber() {
1146 >        return poolNumber;
1147 >    }
1148 >
1149 >    /**
1150 >     * Tries to accumulates steal count from a worker, clearing
1151 >     * the worker's value.
1152 >     *
1153 >     * @return true if worker steal count now zero
1154 >     */
1155 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1156 >        int sc = w.stealCount;
1157 >        long c = stealCount;
1158 >        // CAS even if zero, for fence effects
1159 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1160 >            if (sc != 0)
1161 >                w.stealCount = 0;
1162 >            return true;
1163 >        }
1164 >        return sc == 0;
1165 >    }
1166 >
1167 >    /**
1168 >     * Returns the approximate (non-atomic) number of idle threads per
1169 >     * active thread.
1170 >     */
1171 >    final int idlePerActive() {
1172 >        int pc = parallelism; // use parallelism, not rc
1173 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1174 >        // Use exact results for small values, saturate past 4
1175 >        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1176 >    }
1177 >
1178 >    // Public and protected methods
1179 >
1180 >    // Constructors
1181 >
1182 >    /**
1183 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1184 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1185 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1186 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1187       *
509     * @param h the new handler
510     * @return the old handler, or null if none
1188       * @throws SecurityException if a security manager exists and
1189       *         the caller is not permitted to modify threads
1190       *         because it does not hold {@link
1191 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1191 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1192       */
1193 <    public Thread.UncaughtExceptionHandler
1194 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1193 >    public ForkJoinPool() {
1194 >        this(Runtime.getRuntime().availableProcessors(),
1195 >             defaultForkJoinWorkerThreadFactory, null, false);
1196 >    }
1197 >
1198 >    /**
1199 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1200 >     * level, the {@linkplain
1201 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1202 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1203 >     *
1204 >     * @param parallelism the parallelism level
1205 >     * @throws IllegalArgumentException if parallelism less than or
1206 >     *         equal to zero, or greater than implementation limit
1207 >     * @throws SecurityException if a security manager exists and
1208 >     *         the caller is not permitted to modify threads
1209 >     *         because it does not hold {@link
1210 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1211 >     */
1212 >    public ForkJoinPool(int parallelism) {
1213 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1214 >    }
1215 >
1216 >    /**
1217 >     * Creates a {@code ForkJoinPool} with the given parameters.
1218 >     *
1219 >     * @param parallelism the parallelism level. For default value,
1220 >     * use {@link java.lang.Runtime#availableProcessors}.
1221 >     * @param factory the factory for creating new threads. For default value,
1222 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1223 >     * @param handler the handler for internal worker threads that
1224 >     * terminate due to unrecoverable errors encountered while executing
1225 >     * tasks. For default value, use <code>null</code>.
1226 >     * @param asyncMode if true,
1227 >     * establishes local first-in-first-out scheduling mode for forked
1228 >     * tasks that are never joined. This mode may be more appropriate
1229 >     * than default locally stack-based mode in applications in which
1230 >     * worker threads only process event-style asynchronous tasks.
1231 >     * For default value, use <code>false</code>.
1232 >     * @throws IllegalArgumentException if parallelism less than or
1233 >     *         equal to zero, or greater than implementation limit
1234 >     * @throws NullPointerException if the factory is null
1235 >     * @throws SecurityException if a security manager exists and
1236 >     *         the caller is not permitted to modify threads
1237 >     *         because it does not hold {@link
1238 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1239 >     */
1240 >    public ForkJoinPool(int parallelism,
1241 >                        ForkJoinWorkerThreadFactory factory,
1242 >                        Thread.UncaughtExceptionHandler handler,
1243 >                        boolean asyncMode) {
1244          checkPermission();
1245 <        Thread.UncaughtExceptionHandler old = null;
1246 <        final ReentrantLock lock = this.workerLock;
1247 <        lock.lock();
1248 <        try {
1249 <            old = ueh;
1250 <            ueh = h;
1251 <            ForkJoinWorkerThread[] ws = workers;
1252 <            for (int i = 0; i < ws.length; ++i) {
1253 <                ForkJoinWorkerThread w = ws[i];
1254 <                if (w != null)
1255 <                    w.setUncaughtExceptionHandler(h);
1256 <            }
1257 <        } finally {
1258 <            lock.unlock();
533 <        }
534 <        return old;
1245 >        if (factory == null)
1246 >            throw new NullPointerException();
1247 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1248 >            throw new IllegalArgumentException();
1249 >        this.parallelism = parallelism;
1250 >        this.factory = factory;
1251 >        this.ueh = handler;
1252 >        this.locallyFifo = asyncMode;
1253 >        int arraySize = initialArraySizeFor(parallelism);
1254 >        this.workers = new ForkJoinWorkerThread[arraySize];
1255 >        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1256 >        this.workerLock = new ReentrantLock();
1257 >        this.termination = new Phaser(1);
1258 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1259      }
1260  
1261      /**
1262 <     * Returns the handler for internal worker threads that terminate
1263 <     * due to unrecoverable errors encountered while executing tasks.
540 <     * @return the handler, or null if none
1262 >     * Returns initial power of two size for workers array.
1263 >     * @param pc the initial parallelism level
1264       */
1265 <    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1266 <        Thread.UncaughtExceptionHandler h;
1267 <        final ReentrantLock lock = this.workerLock;
1268 <        lock.lock();
1269 <        try {
1270 <            h = ueh;
1271 <        } finally {
1272 <            lock.unlock();
1273 <        }
551 <        return h;
1265 >    private static int initialArraySizeFor(int pc) {
1266 >        // If possible, initially allocate enough space for one spare
1267 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1268 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1269 >        size |= size >>> 1;
1270 >        size |= size >>> 2;
1271 >        size |= size >>> 4;
1272 >        size |= size >>> 8;
1273 >        return size + 1;
1274      }
1275  
1276      // Execution methods
# Line 557 | Line 1279 | public class ForkJoinPool extends Abstra
1279       * Common code for execute, invoke and submit
1280       */
1281      private <T> void doSubmit(ForkJoinTask<T> task) {
1282 <        if (isShutdown())
1282 >        if (task == null)
1283 >            throw new NullPointerException();
1284 >        if (runState >= SHUTDOWN)
1285              throw new RejectedExecutionException();
1286          submissionQueue.offer(task);
1287 <        signalIdleWorkers(true);
1287 >        int c; // try to increment event count -- CAS failure OK
1288 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1289 >        helpMaintainParallelism(); // create, start, or resume some workers
1290      }
1291  
1292      /**
1293 <     * Performs the given task; returning its result upon completion
1293 >     * Performs the given task, returning its result upon completion.
1294 >     *
1295       * @param task the task
1296       * @return the task's result
1297 <     * @throws NullPointerException if task is null
1298 <     * @throws RejectedExecutionException if pool is shut down
1297 >     * @throws NullPointerException if the task is null
1298 >     * @throws RejectedExecutionException if the task cannot be
1299 >     *         scheduled for execution
1300       */
1301      public <T> T invoke(ForkJoinTask<T> task) {
1302          doSubmit(task);
# Line 577 | Line 1305 | public class ForkJoinPool extends Abstra
1305  
1306      /**
1307       * Arranges for (asynchronous) execution of the given task.
1308 +     *
1309       * @param task the task
1310 <     * @throws NullPointerException if task is null
1311 <     * @throws RejectedExecutionException if pool is shut down
1310 >     * @throws NullPointerException if the task is null
1311 >     * @throws RejectedExecutionException if the task cannot be
1312 >     *         scheduled for execution
1313       */
1314 <    public <T> void execute(ForkJoinTask<T> task) {
1314 >    public void execute(ForkJoinTask<?> task) {
1315          doSubmit(task);
1316      }
1317  
1318      // AbstractExecutorService methods
1319  
1320 +    /**
1321 +     * @throws NullPointerException if the task is null
1322 +     * @throws RejectedExecutionException if the task cannot be
1323 +     *         scheduled for execution
1324 +     */
1325      public void execute(Runnable task) {
1326 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1326 >        ForkJoinTask<?> job;
1327 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1328 >            job = (ForkJoinTask<?>) task;
1329 >        else
1330 >            job = ForkJoinTask.adapt(task, null);
1331 >        doSubmit(job);
1332      }
1333  
1334 +    /**
1335 +     * Submits a ForkJoinTask for execution.
1336 +     *
1337 +     * @param task the task to submit
1338 +     * @return the task
1339 +     * @throws NullPointerException if the task is null
1340 +     * @throws RejectedExecutionException if the task cannot be
1341 +     *         scheduled for execution
1342 +     */
1343 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1344 +        doSubmit(task);
1345 +        return task;
1346 +    }
1347 +
1348 +    /**
1349 +     * @throws NullPointerException if the task is null
1350 +     * @throws RejectedExecutionException if the task cannot be
1351 +     *         scheduled for execution
1352 +     */
1353      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1354 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1354 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1355          doSubmit(job);
1356          return job;
1357      }
1358  
1359 +    /**
1360 +     * @throws NullPointerException if the task is null
1361 +     * @throws RejectedExecutionException if the task cannot be
1362 +     *         scheduled for execution
1363 +     */
1364      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1365 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1365 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1366          doSubmit(job);
1367          return job;
1368      }
1369  
1370 +    /**
1371 +     * @throws NullPointerException if the task is null
1372 +     * @throws RejectedExecutionException if the task cannot be
1373 +     *         scheduled for execution
1374 +     */
1375      public ForkJoinTask<?> submit(Runnable task) {
1376 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1376 >        ForkJoinTask<?> job;
1377 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1378 >            job = (ForkJoinTask<?>) task;
1379 >        else
1380 >            job = ForkJoinTask.adapt(task, null);
1381          doSubmit(job);
1382          return job;
1383      }
1384  
612    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
613        return new AdaptedRunnable(runnable, value);
614    }
615
616    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
617        return new AdaptedCallable(callable);
618    }
619
620    /**
621     * Adaptor for Runnables. This implements RunnableFuture
622     * to be compliant with AbstractExecutorService constraints
623     */
624    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
625        implements RunnableFuture<T> {
626        final Runnable runnable;
627        final T resultOnCompletion;
628        T result;
629        AdaptedRunnable(Runnable runnable, T result) {
630            if (runnable == null) throw new NullPointerException();
631            this.runnable = runnable;
632            this.resultOnCompletion = result;
633        }
634        public T getRawResult() { return result; }
635        public void setRawResult(T v) { result = v; }
636        public boolean exec() {
637            runnable.run();
638            result = resultOnCompletion;
639            return true;
640        }
641        public void run() { invoke(); }
642    }
643
1385      /**
1386 <     * Adaptor for Callables
1386 >     * @throws NullPointerException       {@inheritDoc}
1387 >     * @throws RejectedExecutionException {@inheritDoc}
1388       */
647    static final class AdaptedCallable<T> extends ForkJoinTask<T>
648        implements RunnableFuture<T> {
649        final Callable<T> callable;
650        T result;
651        AdaptedCallable(Callable<T> callable) {
652            if (callable == null) throw new NullPointerException();
653            this.callable = callable;
654        }
655        public T getRawResult() { return result; }
656        public void setRawResult(T v) { result = v; }
657        public boolean exec() {
658            try {
659                result = callable.call();
660                return true;
661            } catch (Error err) {
662                throw err;
663            } catch (RuntimeException rex) {
664                throw rex;
665            } catch (Exception ex) {
666                throw new RuntimeException(ex);
667            }
668        }
669        public void run() { invoke(); }
670    }
671
1389      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1390 <        ArrayList<ForkJoinTask<T>> ts =
1390 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1391              new ArrayList<ForkJoinTask<T>>(tasks.size());
1392 <        for (Callable<T> c : tasks)
1393 <            ts.add(new AdaptedCallable<T>(c));
1394 <        invoke(new InvokeAll<T>(ts));
1395 <        return (List<Future<T>>)(List)ts;
1392 >        for (Callable<T> task : tasks)
1393 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1394 >        invoke(new InvokeAll<T>(forkJoinTasks));
1395 >
1396 >        @SuppressWarnings({"unchecked", "rawtypes"})
1397 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1398 >        return futures;
1399      }
1400  
1401      static final class InvokeAll<T> extends RecursiveAction {
1402          final ArrayList<ForkJoinTask<T>> tasks;
1403          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1404          public void compute() {
1405 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1405 >            try { invokeAll(tasks); }
1406 >            catch (Exception ignore) {}
1407          }
1408 +        private static final long serialVersionUID = -7914297376763021607L;
1409      }
1410  
689    // Configuration and status settings and queries
690
1411      /**
1412 <     * Returns the factory used for constructing new workers
1412 >     * Returns the factory used for constructing new workers.
1413       *
1414       * @return the factory used for constructing new workers
1415       */
# Line 698 | Line 1418 | public class ForkJoinPool extends Abstra
1418      }
1419  
1420      /**
1421 <     * Sets the target paralleism level of this pool.
1422 <     * @param parallelism the target parallelism
1423 <     * @throws IllegalArgumentException if parallelism less than or
1424 <     * equal to zero or greater than maximum size bounds.
705 <     * @throws SecurityException if a security manager exists and
706 <     *         the caller is not permitted to modify threads
707 <     *         because it does not hold {@link
708 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1421 >     * Returns the handler for internal worker threads that terminate
1422 >     * due to unrecoverable errors encountered while executing tasks.
1423 >     *
1424 >     * @return the handler, or {@code null} if none
1425       */
1426 <    public void setParallelism(int parallelism) {
1427 <        checkPermission();
712 <        if (parallelism <= 0 || parallelism > maxPoolSize)
713 <            throw new IllegalArgumentException();
714 <        final ReentrantLock lock = this.workerLock;
715 <        lock.lock();
716 <        try {
717 <            if (!isTerminating()) {
718 <                int p = this.parallelism;
719 <                this.parallelism = parallelism;
720 <                if (parallelism > p)
721 <                    createAndStartAddedWorkers();
722 <                else
723 <                    trimSpares();
724 <            }
725 <        } finally {
726 <            lock.unlock();
727 <        }
728 <        signalIdleWorkers(false);
1426 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1427 >        return ueh;
1428      }
1429  
1430      /**
1431 <     * Returns the targeted number of worker threads in this pool.
733 <     * This value does not necessarily reflect transient changes as
734 <     * threads are added, removed, or abruptly terminate.
1431 >     * Returns the targeted parallelism level of this pool.
1432       *
1433 <     * @return the targeted number of worker threads in this pool
1433 >     * @return the targeted parallelism level of this pool
1434       */
1435      public int getParallelism() {
1436          return parallelism;
# Line 742 | Line 1439 | public class ForkJoinPool extends Abstra
1439      /**
1440       * Returns the number of worker threads that have started but not
1441       * yet terminated.  This result returned by this method may differ
1442 <     * from <tt>getParallelism</tt> when threads are created to
1442 >     * from {@link #getParallelism} when threads are created to
1443       * maintain parallelism when others are cooperatively blocked.
1444       *
1445       * @return the number of worker threads
1446       */
1447      public int getPoolSize() {
1448 <        return totalCountOf(workerCounts);
1448 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1449      }
1450  
1451      /**
1452 <     * Returns the maximum number of threads allowed to exist in the
1453 <     * pool, even if there are insufficient unblocked running threads.
1454 <     * @return the maximum
1455 <     */
759 <    public int getMaximumPoolSize() {
760 <        return maxPoolSize;
761 <    }
762 <
763 <    /**
764 <     * Sets the maximum number of threads allowed to exist in the
765 <     * pool, even if there are insufficient unblocked running threads.
766 <     * Setting this value has no effect on current pool size. It
767 <     * controls construction of new threads.
768 <     * @throws IllegalArgumentException if negative or greater then
769 <     * internal implementation limit.
770 <     */
771 <    public void setMaximumPoolSize(int newMax) {
772 <        if (newMax < 0 || newMax > MAX_THREADS)
773 <            throw new IllegalArgumentException();
774 <        maxPoolSize = newMax;
775 <    }
776 <
777 <
778 <    /**
779 <     * Returns true if this pool dynamically maintains its target
780 <     * parallelism level. If false, new threads are added only to
781 <     * avoid possible starvation.
782 <     * This setting is by default true;
783 <     * @return true if maintains parallelism
784 <     */
785 <    public boolean getMaintainsParallelism() {
786 <        return maintainsParallelism;
787 <    }
788 <
789 <    /**
790 <     * Sets whether this pool dynamically maintains its target
791 <     * parallelism level. If false, new threads are added only to
792 <     * avoid possible starvation.
793 <     * @param enable true to maintains parallelism
1452 >     * Returns {@code true} if this pool uses local first-in-first-out
1453 >     * scheduling mode for forked tasks that are never joined.
1454 >     *
1455 >     * @return {@code true} if this pool uses async mode
1456       */
1457 <    public void setMaintainsParallelism(boolean enable) {
1458 <        maintainsParallelism = enable;
1457 >    public boolean getAsyncMode() {
1458 >        return locallyFifo;
1459      }
1460  
1461      /**
1462 <     * Returns the approximate number of worker threads that are not
1463 <     * blocked waiting to join tasks or for other managed
1464 <     * synchronization.
1462 >     * Returns an estimate of the number of worker threads that are
1463 >     * not blocked waiting to join tasks or for other managed
1464 >     * synchronization. This method may overestimate the
1465 >     * number of running threads.
1466       *
1467       * @return the number of worker threads
1468       */
1469      public int getRunningThreadCount() {
1470 <        return runningCountOf(workerCounts);
1470 >        return workerCounts & RUNNING_COUNT_MASK;
1471      }
1472  
1473      /**
1474 <     * Returns the approximate number of threads that are currently
1474 >     * Returns an estimate of the number of threads that are currently
1475       * stealing or executing tasks. This method may overestimate the
1476       * number of active threads.
1477 <     * @return the number of active threads.
1477 >     *
1478 >     * @return the number of active threads
1479       */
1480      public int getActiveThreadCount() {
1481 <        return activeCountOf(runControl);
1481 >        return runState & ACTIVE_COUNT_MASK;
1482      }
1483  
1484      /**
1485 <     * Returns the approximate number of threads that are currently
1486 <     * idle waiting for tasks. This method may underestimate the
1487 <     * number of idle threads.
1488 <     * @return the number of idle threads.
1489 <     */
1490 <    final int getIdleThreadCount() {
1491 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
1492 <        return (c <= 0)? 0 : c;
1493 <    }
830 <
831 <    /**
832 <     * Returns true if all worker threads are currently idle. An idle
833 <     * worker is one that cannot obtain a task to execute because none
834 <     * are available to steal from other threads, and there are no
835 <     * pending submissions to the pool. This method is conservative:
836 <     * It might not return true immediately upon idleness of all
837 <     * threads, but will eventually become true if threads remain
838 <     * inactive.
839 <     * @return true if all threads are currently idle
1485 >     * Returns {@code true} if all worker threads are currently idle.
1486 >     * An idle worker is one that cannot obtain a task to execute
1487 >     * because none are available to steal from other threads, and
1488 >     * there are no pending submissions to the pool. This method is
1489 >     * conservative; it might not return {@code true} immediately upon
1490 >     * idleness of all threads, but will eventually become true if
1491 >     * threads remain inactive.
1492 >     *
1493 >     * @return {@code true} if all threads are currently idle
1494       */
1495      public boolean isQuiescent() {
1496 <        return activeCountOf(runControl) == 0;
1496 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1497      }
1498  
1499      /**
# Line 847 | Line 1501 | public class ForkJoinPool extends Abstra
1501       * one thread's work queue by another. The reported value
1502       * underestimates the actual total number of steals when the pool
1503       * is not quiescent. This value may be useful for monitoring and
1504 <     * tuning fork/join programs: In general, steal counts should be
1504 >     * tuning fork/join programs: in general, steal counts should be
1505       * high enough to keep threads busy, but low enough to avoid
1506       * overhead and contention across threads.
1507 <     * @return the number of steals.
1507 >     *
1508 >     * @return the number of steals
1509       */
1510      public long getStealCount() {
1511 <        return stealCount.get();
1511 >        return stealCount;
1512      }
1513  
1514      /**
1515 <     * Accumulate steal count from a worker. Call only
1516 <     * when worker known to be idle.
1517 <     */
1518 <    private void updateStealCount(ForkJoinWorkerThread w) {
1519 <        int sc = w.getAndClearStealCount();
1520 <        if (sc != 0)
1521 <            stealCount.addAndGet(sc);
1522 <    }
868 <
869 <    /**
870 <     * Returns the total number of tasks currently held in queues by
871 <     * worker threads (but not including tasks submitted to the pool
872 <     * that have not begun executing). This value is only an
873 <     * approximation, obtained by iterating across all threads in the
874 <     * pool. This method may be useful for tuning task granularities.
875 <     * @return the number of queued tasks.
1515 >     * Returns an estimate of the total number of tasks currently held
1516 >     * in queues by worker threads (but not including tasks submitted
1517 >     * to the pool that have not begun executing). This value is only
1518 >     * an approximation, obtained by iterating across all threads in
1519 >     * the pool. This method may be useful for tuning task
1520 >     * granularities.
1521 >     *
1522 >     * @return the number of queued tasks
1523       */
1524      public long getQueuedTaskCount() {
1525          long count = 0;
1526 <        ForkJoinWorkerThread[] ws = workers;
1527 <        for (int i = 0; i < ws.length; ++i) {
1528 <            ForkJoinWorkerThread t = ws[i];
882 <            if (t != null)
883 <                count += t.getQueueSize();
884 <        }
1526 >        for (ForkJoinWorkerThread w : workers)
1527 >            if (w != null)
1528 >                count += w.getQueueSize();
1529          return count;
1530      }
1531  
1532      /**
1533 <     * Returns the approximate number tasks submitted to this pool
1534 <     * that have not yet begun executing. This method takes time
1533 >     * Returns an estimate of the number of tasks submitted to this
1534 >     * pool that have not yet begun executing.  This method takes time
1535       * proportional to the number of submissions.
1536 <     * @return the number of queued submissions.
1536 >     *
1537 >     * @return the number of queued submissions
1538       */
1539      public int getQueuedSubmissionCount() {
1540          return submissionQueue.size();
1541      }
1542  
1543      /**
1544 <     * Returns true if there are any tasks submitted to this pool
1545 <     * that have not yet begun executing.
1546 <     * @return <tt>true</tt> if there are any queued submissions.
1544 >     * Returns {@code true} if there are any tasks submitted to this
1545 >     * pool that have not yet begun executing.
1546 >     *
1547 >     * @return {@code true} if there are any queued submissions
1548       */
1549      public boolean hasQueuedSubmissions() {
1550          return !submissionQueue.isEmpty();
# Line 908 | Line 1554 | public class ForkJoinPool extends Abstra
1554       * Removes and returns the next unexecuted submission if one is
1555       * available.  This method may be useful in extensions to this
1556       * class that re-assign work in systems with multiple pools.
1557 <     * @return the next submission, or null if none
1557 >     *
1558 >     * @return the next submission, or {@code null} if none
1559       */
1560      protected ForkJoinTask<?> pollSubmission() {
1561          return submissionQueue.poll();
1562      }
1563  
1564      /**
1565 +     * Removes all available unexecuted submitted and forked tasks
1566 +     * from scheduling queues and adds them to the given collection,
1567 +     * without altering their execution status. These may include
1568 +     * artificially generated or wrapped tasks. This method is
1569 +     * designed to be invoked only when the pool is known to be
1570 +     * quiescent. Invocations at other times may not remove all
1571 +     * tasks. A failure encountered while attempting to add elements
1572 +     * to collection {@code c} may result in elements being in
1573 +     * neither, either or both collections when the associated
1574 +     * exception is thrown.  The behavior of this operation is
1575 +     * undefined if the specified collection is modified while the
1576 +     * operation is in progress.
1577 +     *
1578 +     * @param c the collection to transfer elements into
1579 +     * @return the number of elements transferred
1580 +     */
1581 +    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1582 +        int count = submissionQueue.drainTo(c);
1583 +        for (ForkJoinWorkerThread w : workers)
1584 +            if (w != null)
1585 +                count += w.drainTasksTo(c);
1586 +        return count;
1587 +    }
1588 +
1589 +    /**
1590       * Returns a string identifying this pool, as well as its state,
1591       * including indications of run state, parallelism level, and
1592       * worker and task counts.
# Line 922 | Line 1594 | public class ForkJoinPool extends Abstra
1594       * @return a string identifying this pool, as well as its state
1595       */
1596      public String toString() {
925        int ps = parallelism;
926        int wc = workerCounts;
927        int rc = runControl;
1597          long st = getStealCount();
1598          long qt = getQueuedTaskCount();
1599          long qs = getQueuedSubmissionCount();
1600 +        int wc = workerCounts;
1601 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1602 +        int rc = wc & RUNNING_COUNT_MASK;
1603 +        int pc = parallelism;
1604 +        int rs = runState;
1605 +        int ac = rs & ACTIVE_COUNT_MASK;
1606          return super.toString() +
1607 <            "[" + runStateToString(runStateOf(rc)) +
1608 <            ", parallelism = " + ps +
1609 <            ", size = " + totalCountOf(wc) +
1610 <            ", active = " + activeCountOf(rc) +
1611 <            ", running = " + runningCountOf(wc) +
1607 >            "[" + runLevelToString(rs) +
1608 >            ", parallelism = " + pc +
1609 >            ", size = " + tc +
1610 >            ", active = " + ac +
1611 >            ", running = " + rc +
1612              ", steals = " + st +
1613              ", tasks = " + qt +
1614              ", submissions = " + qs +
1615              "]";
1616      }
1617  
1618 <    private static String runStateToString(int rs) {
1619 <        switch(rs) {
1620 <        case RUNNING: return "Running";
1621 <        case SHUTDOWN: return "Shutting down";
1622 <        case TERMINATING: return "Terminating";
948 <        case TERMINATED: return "Terminated";
949 <        default: throw new Error("Unknown run state");
950 <        }
1618 >    private static String runLevelToString(int s) {
1619 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1620 >                ((s & TERMINATING) != 0 ? "Terminating" :
1621 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1622 >                  "Running")));
1623      }
1624  
953    // lifecycle control
954
1625      /**
1626       * Initiates an orderly shutdown in which previously submitted
1627       * tasks are executed, but no new tasks will be accepted.
1628       * Invocation has no additional effect if already shut down.
1629       * Tasks that are in the process of being submitted concurrently
1630       * during the course of this method may or may not be rejected.
1631 +     *
1632       * @throws SecurityException if a security manager exists and
1633       *         the caller is not permitted to modify threads
1634       *         because it does not hold {@link
1635 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1635 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1636       */
1637      public void shutdown() {
1638          checkPermission();
1639 <        transitionRunStateTo(SHUTDOWN);
1640 <        if (canTerminateOnShutdown(runControl))
970 <            terminateOnShutdown();
1639 >        advanceRunLevel(SHUTDOWN);
1640 >        tryTerminate(false);
1641      }
1642  
1643      /**
1644 <     * Attempts to stop all actively executing tasks, and cancels all
1645 <     * waiting tasks.  Tasks that are in the process of being
1646 <     * submitted or executed concurrently during the course of this
1647 <     * method may or may not be rejected. Unlike some other executors,
1648 <     * this method cancels rather than collects non-executed tasks,
1649 <     * so always returns an empty list.
1644 >     * Attempts to cancel and/or stop all tasks, and reject all
1645 >     * subsequently submitted tasks.  Tasks that are in the process of
1646 >     * being submitted or executed concurrently during the course of
1647 >     * this method may or may not be rejected. This method cancels
1648 >     * both existing and unexecuted tasks, in order to permit
1649 >     * termination in the presence of task dependencies. So the method
1650 >     * always returns an empty list (unlike the case for some other
1651 >     * Executors).
1652 >     *
1653       * @return an empty list
1654       * @throws SecurityException if a security manager exists and
1655       *         the caller is not permitted to modify threads
1656       *         because it does not hold {@link
1657 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1657 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1658       */
1659      public List<Runnable> shutdownNow() {
1660          checkPermission();
1661 <        terminate();
1661 >        tryTerminate(true);
1662          return Collections.emptyList();
1663      }
1664  
1665      /**
1666 <     * Returns <tt>true</tt> if all tasks have completed following shut down.
1666 >     * Returns {@code true} if all tasks have completed following shut down.
1667       *
1668 <     * @return <tt>true</tt> if all tasks have completed following shut down
1668 >     * @return {@code true} if all tasks have completed following shut down
1669       */
1670      public boolean isTerminated() {
1671 <        return runStateOf(runControl) == TERMINATED;
1671 >        return runState >= TERMINATED;
1672      }
1673  
1674      /**
1675 <     * Returns <tt>true</tt> if the process of termination has
1676 <     * commenced but possibly not yet completed.
1675 >     * Returns {@code true} if the process of termination has
1676 >     * commenced but not yet completed.  This method may be useful for
1677 >     * debugging. A return of {@code true} reported a sufficient
1678 >     * period after shutdown may indicate that submitted tasks have
1679 >     * ignored or suppressed interruption, causing this executor not
1680 >     * to properly terminate.
1681       *
1682 <     * @return <tt>true</tt> if terminating
1682 >     * @return {@code true} if terminating but not yet terminated
1683       */
1684      public boolean isTerminating() {
1685 <        return runStateOf(runControl) >= TERMINATING;
1685 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1686      }
1687  
1688      /**
1689 <     * Returns <tt>true</tt> if this pool has been shut down.
1689 >     * Returns {@code true} if this pool has been shut down.
1690       *
1691 <     * @return <tt>true</tt> if this pool has been shut down
1691 >     * @return {@code true} if this pool has been shut down
1692       */
1693      public boolean isShutdown() {
1694 <        return runStateOf(runControl) >= SHUTDOWN;
1694 >        return runState >= SHUTDOWN;
1695      }
1696  
1697      /**
# Line 1024 | Line 1701 | public class ForkJoinPool extends Abstra
1701       *
1702       * @param timeout the maximum time to wait
1703       * @param unit the time unit of the timeout argument
1704 <     * @return <tt>true</tt> if this executor terminated and
1705 <     *         <tt>false</tt> if the timeout elapsed before termination
1704 >     * @return {@code true} if this executor terminated and
1705 >     *         {@code false} if the timeout elapsed before termination
1706       * @throws InterruptedException if interrupted while waiting
1707       */
1708      public boolean awaitTermination(long timeout, TimeUnit unit)
1709          throws InterruptedException {
1033        long nanos = unit.toNanos(timeout);
1034        final ReentrantLock lock = this.workerLock;
1035        lock.lock();
1710          try {
1711 <            for (;;) {
1712 <                if (isTerminated())
1039 <                    return true;
1040 <                if (nanos <= 0)
1041 <                    return false;
1042 <                nanos = termination.awaitNanos(nanos);
1043 <            }
1044 <        } finally {
1045 <            lock.unlock();
1046 <        }
1047 <    }
1048 <
1049 <    // Shutdown and termination support
1050 <
1051 <    /**
1052 <     * Callback from terminating worker. Null out the corresponding
1053 <     * workers slot, and if terminating, try to terminate, else try to
1054 <     * shrink workers array.
1055 <     * @param w the worker
1056 <     */
1057 <    final void workerTerminated(ForkJoinWorkerThread w) {
1058 <        updateStealCount(w);
1059 <        updateWorkerCount(-1);
1060 <        final ReentrantLock lock = this.workerLock;
1061 <        lock.lock();
1062 <        try {
1063 <            ForkJoinWorkerThread[] ws = workers;
1064 <            int idx = w.poolIndex;
1065 <            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1066 <                ws[idx] = null;
1067 <            if (totalCountOf(workerCounts) == 0) {
1068 <                terminate(); // no-op if already terminating
1069 <                transitionRunStateTo(TERMINATED);
1070 <                termination.signalAll();
1071 <            }
1072 <            else if (!isTerminating()) {
1073 <                tryShrinkWorkerArray();
1074 <                tryResumeSpare(true); // allow replacement
1075 <            }
1076 <        } finally {
1077 <            lock.unlock();
1078 <        }
1079 <        signalIdleWorkers(false);
1080 <    }
1081 <
1082 <    /**
1083 <     * Initiate termination.
1084 <     */
1085 <    private void terminate() {
1086 <        if (transitionRunStateTo(TERMINATING)) {
1087 <            stopAllWorkers();
1088 <            resumeAllSpares();
1089 <            signalIdleWorkers(true);
1090 <            cancelQueuedSubmissions();
1091 <            cancelQueuedWorkerTasks();
1092 <            interruptUnterminatedWorkers();
1093 <            signalIdleWorkers(true); // resignal after interrupt
1094 <        }
1095 <    }
1096 <
1097 <    /**
1098 <     * Possibly terminate when on shutdown state
1099 <     */
1100 <    private void terminateOnShutdown() {
1101 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1102 <            terminate();
1103 <    }
1104 <
1105 <    /**
1106 <     * Clear out and cancel submissions
1107 <     */
1108 <    private void cancelQueuedSubmissions() {
1109 <        ForkJoinTask<?> task;
1110 <        while ((task = pollSubmission()) != null)
1111 <            task.cancel(false);
1112 <    }
1113 <
1114 <    /**
1115 <     * Clean out worker queues.
1116 <     */
1117 <    private void cancelQueuedWorkerTasks() {
1118 <        final ReentrantLock lock = this.workerLock;
1119 <        lock.lock();
1120 <        try {
1121 <            ForkJoinWorkerThread[] ws = workers;
1122 <            for (int i = 0; i < ws.length; ++i) {
1123 <                ForkJoinWorkerThread t = ws[i];
1124 <                if (t != null)
1125 <                    t.cancelTasks();
1126 <            }
1127 <        } finally {
1128 <            lock.unlock();
1129 <        }
1130 <    }
1131 <
1132 <    /**
1133 <     * Set each worker's status to terminating. Requires lock to avoid
1134 <     * conflicts with add/remove
1135 <     */
1136 <    private void stopAllWorkers() {
1137 <        final ReentrantLock lock = this.workerLock;
1138 <        lock.lock();
1139 <        try {
1140 <            ForkJoinWorkerThread[] ws = workers;
1141 <            for (int i = 0; i < ws.length; ++i) {
1142 <                ForkJoinWorkerThread t = ws[i];
1143 <                if (t != null)
1144 <                    t.shutdownNow();
1145 <            }
1146 <        } finally {
1147 <            lock.unlock();
1148 <        }
1149 <    }
1150 <
1151 <    /**
1152 <     * Interrupt all unterminated workers.  This is not required for
1153 <     * sake of internal control, but may help unstick user code during
1154 <     * shutdown.
1155 <     */
1156 <    private void interruptUnterminatedWorkers() {
1157 <        final ReentrantLock lock = this.workerLock;
1158 <        lock.lock();
1159 <        try {
1160 <            ForkJoinWorkerThread[] ws = workers;
1161 <            for (int i = 0; i < ws.length; ++i) {
1162 <                ForkJoinWorkerThread t = ws[i];
1163 <                if (t != null && !t.isTerminated()) {
1164 <                    try {
1165 <                        t.interrupt();
1166 <                    } catch (SecurityException ignore) {
1167 <                    }
1168 <                }
1169 <            }
1170 <        } finally {
1171 <            lock.unlock();
1172 <        }
1173 <    }
1174 <
1175 <
1176 <    /*
1177 <     * Nodes for event barrier to manage idle threads.
1178 <     *
1179 <     * The event barrier has an event count and a wait queue (actually
1180 <     * a Treiber stack).  Workers are enabled to look for work when
1181 <     * the eventCount is incremented. If they fail to find some,
1182 <     * they may wait for next count. Synchronization events occur only
1183 <     * in enough contexts to maintain overall liveness:
1184 <     *
1185 <     *   - Submission of a new task to the pool
1186 <     *   - Creation or termination of a worker
1187 <     *   - pool termination
1188 <     *   - A worker pushing a task on an empty queue
1189 <     *
1190 <     * The last case (pushing a task) occurs often enough, and is
1191 <     * heavy enough compared to simple stack pushes to require some
1192 <     * special handling: Method signalNonEmptyWorkerQueue returns
1193 <     * without advancing count if the queue appears to be empty.  This
1194 <     * would ordinarily result in races causing some queued waiters
1195 <     * not to be woken up. To avoid this, a worker in sync
1196 <     * rescans for tasks after being enqueued if it was the first to
1197 <     * enqueue, and aborts the wait if finding one, also helping to
1198 <     * signal others. This works well because the worker has nothing
1199 <     * better to do anyway, and so might as well help alleviate the
1200 <     * overhead and contention on the threads actually doing work.
1201 <     *
1202 <     * Queue nodes are basic Treiber stack nodes, also used for spare
1203 <     * stack.
1204 <     */
1205 <    static final class WaitQueueNode {
1206 <        WaitQueueNode next; // only written before enqueued
1207 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1208 <        final long count; // unused for spare stack
1209 <        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1210 <            count = c;
1211 <            thread = w;
1212 <        }
1213 <        final boolean signal() {
1214 <            ForkJoinWorkerThread t = thread;
1215 <            thread = null;
1216 <            if (t != null) {
1217 <                LockSupport.unpark(t);
1218 <                return true;
1219 <            }
1711 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1712 >        } catch (TimeoutException ex) {
1713              return false;
1714          }
1715      }
1716  
1717      /**
1225     * Release at least one thread waiting for event count to advance,
1226     * if one exists. If initial attempt fails, release all threads.
1227     * @param all if false, at first try to only release one thread
1228     * @return current event
1229     */
1230    private long releaseIdleWorkers(boolean all) {
1231        long c;
1232        for (;;) {
1233            WaitQueueNode q = barrierStack;
1234            c = eventCount;
1235            long qc;
1236            if (q == null || (qc = q.count) >= c)
1237                break;
1238            if (!all) {
1239                if (casBarrierStack(q, q.next) && q.signal())
1240                    break;
1241                all = true;
1242            }
1243            else if (casBarrierStack(q, null)) {
1244                do {
1245                 q.signal();
1246                } while ((q = q.next) != null);
1247                break;
1248            }
1249        }
1250        return c;
1251    }
1252
1253    /**
1254     * Returns current barrier event count
1255     * @return current barrier event count
1256     */
1257    final long getEventCount() {
1258        long ec = eventCount;
1259        releaseIdleWorkers(true); // release to ensure accurate result
1260        return ec;
1261    }
1262
1263    /**
1264     * Increment event count and release at least one waiting thread,
1265     * if one exists (released threads will in turn wake up others).
1266     * @param all if true, try to wake up all
1267     */
1268    final void signalIdleWorkers(boolean all) {
1269        long c;
1270        do;while (!casEventCount(c = eventCount, c+1));
1271        releaseIdleWorkers(all);
1272    }
1273
1274    /**
1275     * Wake up threads waiting to steal a task. Because method
1276     * sync rechecks availability, it is OK to only proceed if
1277     * queue appears to be non-empty.
1278     */
1279    final void signalNonEmptyWorkerQueue() {
1280        // If CAS fails another signaller must have succeeded
1281        long c;
1282        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1283            releaseIdleWorkers(false);
1284    }
1285
1286    /**
1287     * Waits until event count advances from count, or some thread is
1288     * waiting on a previous count, or there is stealable work
1289     * available. Help wake up others on release.
1290     * @param w the calling worker thread
1291     * @param prev previous value returned by sync (or 0)
1292     * @return current event count
1293     */
1294    final long sync(ForkJoinWorkerThread w, long prev) {
1295        updateStealCount(w);
1296
1297        while (!w.isShutdown() && !isTerminating() &&
1298               (parallelism >= runningCountOf(workerCounts) ||
1299                !suspendIfSpare(w))) { // prefer suspend to waiting here
1300            WaitQueueNode node = null;
1301            boolean queued = false;
1302            for (;;) {
1303                if (!queued) {
1304                    if (eventCount != prev)
1305                        break;
1306                    WaitQueueNode h = barrierStack;
1307                    if (h != null && h.count != prev)
1308                        break; // release below and maybe retry
1309                    if (node == null)
1310                        node = new WaitQueueNode(w, prev);
1311                    queued = casBarrierStack(node.next = h, node);
1312                }
1313                else if (Thread.interrupted() ||
1314                         node.thread == null ||
1315                         (node.next == null && w.prescan()) ||
1316                         eventCount != prev) {
1317                    node.thread = null;
1318                    if (eventCount == prev) // help trigger
1319                        casEventCount(prev, prev+1);
1320                    break;
1321                }
1322                else
1323                    LockSupport.park(this);
1324            }
1325            long ec = eventCount;
1326            if (releaseIdleWorkers(false) != prev)
1327                return ec;
1328        }
1329        return prev; // return old count if aborted
1330    }
1331
1332    //  Parallelism maintenance
1333
1334    /**
1335     * Decrement running count; if too low, add spare.
1336     *
1337     * Conceptually, all we need to do here is add or resume a
1338     * spare thread when one is about to block (and remove or
1339     * suspend it later when unblocked -- see suspendIfSpare).
1340     * However, implementing this idea requires coping with
1341     * several problems: We have imperfect information about the
1342     * states of threads. Some count updates can and usually do
1343     * lag run state changes, despite arrangements to keep them
1344     * accurate (for example, when possible, updating counts
1345     * before signalling or resuming), especially when running on
1346     * dynamic JVMs that don't optimize the infrequent paths that
1347     * update counts. Generating too many threads can make these
1348     * problems become worse, because excess threads are more
1349     * likely to be context-switched with others, slowing them all
1350     * down, especially if there is no work available, so all are
1351     * busy scanning or idling.  Also, excess spare threads can
1352     * only be suspended or removed when they are idle, not
1353     * immediately when they aren't needed. So adding threads will
1354     * raise parallelism level for longer than necessary.  Also,
1355     * FJ applications often enounter highly transient peaks when
1356     * many threads are blocked joining, but for less time than it
1357     * takes to create or resume spares.
1358     *
1359     * @param joinMe if non-null, return early if done
1360     * @param maintainParallelism if true, try to stay within
1361     * target counts, else create only to avoid starvation
1362     * @return true if joinMe known to be done
1363     */
1364    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1365        maintainParallelism &= maintainsParallelism; // overrride
1366        boolean dec = false;  // true when running count decremented
1367        while (spareStack == null || !tryResumeSpare(dec)) {
1368            int counts = workerCounts;
1369            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1370                if (!needSpare(counts, maintainParallelism))
1371                    break;
1372                if (joinMe.status < 0)
1373                    return true;
1374                if (tryAddSpare(counts))
1375                    break;
1376            }
1377        }
1378        return false;
1379    }
1380
1381    /**
1382     * Same idea as preJoin
1383     */
1384    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1385        maintainParallelism &= maintainsParallelism;
1386        boolean dec = false;
1387        while (spareStack == null || !tryResumeSpare(dec)) {
1388            int counts = workerCounts;
1389            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1390                if (!needSpare(counts, maintainParallelism))
1391                    break;
1392                if (blocker.isReleasable())
1393                    return true;
1394                if (tryAddSpare(counts))
1395                    break;
1396            }
1397        }
1398        return false;
1399    }
1400
1401    /**
1402     * Returns true if a spare thread appears to be needed.  If
1403     * maintaining parallelism, returns true when the deficit in
1404     * running threads is more than the surplus of total threads, and
1405     * there is apparently some work to do.  This self-limiting rule
1406     * means that the more threads that have already been added, the
1407     * less parallelism we will tolerate before adding another.
1408     * @param counts current worker counts
1409     * @param maintainParallelism try to maintain parallelism
1410     */
1411    private boolean needSpare(int counts, boolean maintainParallelism) {
1412        int ps = parallelism;
1413        int rc = runningCountOf(counts);
1414        int tc = totalCountOf(counts);
1415        int runningDeficit = ps - rc;
1416        int totalSurplus = tc - ps;
1417        return (tc < maxPoolSize &&
1418                (rc == 0 || totalSurplus < 0 ||
1419                 (maintainParallelism &&
1420                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1421    }
1422
1423    /**
1424     * Returns true if at least one worker queue appears to be
1425     * nonempty. This is expensive but not often called. It is not
1426     * critical that this be accurate, but if not, more or fewer
1427     * running threads than desired might be maintained.
1428     */
1429    private boolean mayHaveQueuedWork() {
1430        ForkJoinWorkerThread[] ws = workers;
1431        int len = ws.length;
1432        ForkJoinWorkerThread v;
1433        for (int i = 0; i < len; ++i) {
1434            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1435                releaseIdleWorkers(false); // help wake up stragglers
1436                return true;
1437            }
1438        }
1439        return false;
1440    }
1441
1442    /**
1443     * Add a spare worker if lock available and no more than the
1444     * expected numbers of threads exist
1445     * @return true if successful
1446     */
1447    private boolean tryAddSpare(int expectedCounts) {
1448        final ReentrantLock lock = this.workerLock;
1449        int expectedRunning = runningCountOf(expectedCounts);
1450        int expectedTotal = totalCountOf(expectedCounts);
1451        boolean success = false;
1452        boolean locked = false;
1453        // confirm counts while locking; CAS after obtaining lock
1454        try {
1455            for (;;) {
1456                int s = workerCounts;
1457                int tc = totalCountOf(s);
1458                int rc = runningCountOf(s);
1459                if (rc > expectedRunning || tc > expectedTotal)
1460                    break;
1461                if (!locked && !(locked = lock.tryLock()))
1462                    break;
1463                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1464                    createAndStartSpare(tc);
1465                    success = true;
1466                    break;
1467                }
1468            }
1469        } finally {
1470            if (locked)
1471                lock.unlock();
1472        }
1473        return success;
1474    }
1475
1476    /**
1477     * Add the kth spare worker. On entry, pool coounts are already
1478     * adjusted to reflect addition.
1479     */
1480    private void createAndStartSpare(int k) {
1481        ForkJoinWorkerThread w = null;
1482        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1483        int len = ws.length;
1484        // Probably, we can place at slot k. If not, find empty slot
1485        if (k < len && ws[k] != null) {
1486            for (k = 0; k < len && ws[k] != null; ++k)
1487                ;
1488        }
1489        if (k < len && (w = createWorker(k)) != null) {
1490            ws[k] = w;
1491            w.start();
1492        }
1493        else
1494            updateWorkerCount(-1); // adjust on failure
1495        signalIdleWorkers(false);
1496    }
1497
1498    /**
1499     * Suspend calling thread w if there are excess threads.  Called
1500     * only from sync.  Spares are enqueued in a Treiber stack
1501     * using the same WaitQueueNodes as barriers.  They are resumed
1502     * mainly in preJoin, but are also woken on pool events that
1503     * require all threads to check run state.
1504     * @param w the caller
1505     */
1506    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1507        WaitQueueNode node = null;
1508        int s;
1509        while (parallelism < runningCountOf(s = workerCounts)) {
1510            if (node == null)
1511                node = new WaitQueueNode(w, 0);
1512            if (casWorkerCounts(s, s-1)) { // representation-dependent
1513                // push onto stack
1514                do;while (!casSpareStack(node.next = spareStack, node));
1515
1516                // block until released by resumeSpare
1517                while (node.thread != null) {
1518                    if (!Thread.interrupted())
1519                        LockSupport.park(this);
1520                }
1521                w.activate(); // help warm up
1522                return true;
1523            }
1524        }
1525        return false;
1526    }
1527
1528    /**
1529     * Try to pop and resume a spare thread.
1530     * @param updateCount if true, increment running count on success
1531     * @return true if successful
1532     */
1533    private boolean tryResumeSpare(boolean updateCount) {
1534        WaitQueueNode q;
1535        while ((q = spareStack) != null) {
1536            if (casSpareStack(q, q.next)) {
1537                if (updateCount)
1538                    updateRunningCount(1);
1539                q.signal();
1540                return true;
1541            }
1542        }
1543        return false;
1544    }
1545
1546    /**
1547     * Pop and resume all spare threads. Same idea as
1548     * releaseIdleWorkers.
1549     * @return true if any spares released
1550     */
1551    private boolean resumeAllSpares() {
1552        WaitQueueNode q;
1553        while ( (q = spareStack) != null) {
1554            if (casSpareStack(q, null)) {
1555                do {
1556                    updateRunningCount(1);
1557                    q.signal();
1558                } while ((q = q.next) != null);
1559                return true;
1560            }
1561        }
1562        return false;
1563    }
1564
1565    /**
1566     * Pop and shutdown excessive spare threads. Call only while
1567     * holding lock. This is not guaranteed to eliminate all excess
1568     * threads, only those suspended as spares, which are the ones
1569     * unlikely to be needed in the future.
1570     */
1571    private void trimSpares() {
1572        int surplus = totalCountOf(workerCounts) - parallelism;
1573        WaitQueueNode q;
1574        while (surplus > 0 && (q = spareStack) != null) {
1575            if (casSpareStack(q, null)) {
1576                do {
1577                    updateRunningCount(1);
1578                    ForkJoinWorkerThread w = q.thread;
1579                    if (w != null && surplus > 0 &&
1580                        runningCountOf(workerCounts) > 0 && w.shutdown())
1581                        --surplus;
1582                    q.signal();
1583                } while ((q = q.next) != null);
1584            }
1585        }
1586    }
1587
1588    /**
1589     * Returns approximate number of spares, just for diagnostics.
1590     */
1591    private int countSpares() {
1592        int sum = 0;
1593        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1594            ++sum;
1595        return sum;
1596    }
1597
1598    /**
1718       * Interface for extending managed parallelism for tasks running
1719 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1720 <     * Method <tt>isReleasable</tt> must return true if blocking is not
1721 <     * necessary. Method <tt>block</tt> blocks the current thread
1722 <     * if necessary (perhaps internally invoking isReleasable before
1723 <     * actually blocking.).
1719 >     * in {@link ForkJoinPool}s.
1720 >     *
1721 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1722 >     * {@code isReleasable} must return {@code true} if blocking is
1723 >     * not necessary. Method {@code block} blocks the current thread
1724 >     * if necessary (perhaps internally invoking {@code isReleasable}
1725 >     * before actually blocking). The unusual methods in this API
1726 >     * accommodate synchronizers that may, but don't usually, block
1727 >     * for long periods. Similarly, they allow more efficient internal
1728 >     * handling of cases in which additional workers may be, but
1729 >     * usually are not, needed to ensure sufficient parallelism.
1730 >     * Toward this end, implementations of method {@code isReleasable}
1731 >     * must be amenable to repeated invocation.
1732 >     *
1733       * <p>For example, here is a ManagedBlocker based on a
1734       * ReentrantLock:
1735 <     * <pre>
1736 <     *   class ManagedLocker implements ManagedBlocker {
1737 <     *     final ReentrantLock lock;
1738 <     *     boolean hasLock = false;
1739 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1740 <     *     public boolean block() {
1741 <     *        if (!hasLock)
1742 <     *           lock.lock();
1743 <     *        return true;
1744 <     *     }
1745 <     *     public boolean isReleasable() {
1746 <     *        return hasLock || (hasLock = lock.tryLock());
1619 <     *     }
1735 >     *  <pre> {@code
1736 >     * class ManagedLocker implements ManagedBlocker {
1737 >     *   final ReentrantLock lock;
1738 >     *   boolean hasLock = false;
1739 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1740 >     *   public boolean block() {
1741 >     *     if (!hasLock)
1742 >     *       lock.lock();
1743 >     *     return true;
1744 >     *   }
1745 >     *   public boolean isReleasable() {
1746 >     *     return hasLock || (hasLock = lock.tryLock());
1747       *   }
1748 <     * </pre>
1748 >     * }}</pre>
1749 >     *
1750 >     * <p>Here is a class that possibly blocks waiting for an
1751 >     * item on a given queue:
1752 >     *  <pre> {@code
1753 >     * class QueueTaker<E> implements ManagedBlocker {
1754 >     *   final BlockingQueue<E> queue;
1755 >     *   volatile E item = null;
1756 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1757 >     *   public boolean block() throws InterruptedException {
1758 >     *     if (item == null)
1759 >     *       item = queue.take();
1760 >     *     return true;
1761 >     *   }
1762 >     *   public boolean isReleasable() {
1763 >     *     return item != null || (item = queue.poll()) != null;
1764 >     *   }
1765 >     *   public E getItem() { // call after pool.managedBlock completes
1766 >     *     return item;
1767 >     *   }
1768 >     * }}</pre>
1769       */
1770      public static interface ManagedBlocker {
1771          /**
1772           * Possibly blocks the current thread, for example waiting for
1773           * a lock or condition.
1774 <         * @return true if no additional blocking is necessary (i.e.,
1775 <         * if isReleasable would return true).
1774 >         *
1775 >         * @return {@code true} if no additional blocking is necessary
1776 >         * (i.e., if isReleasable would return true)
1777           * @throws InterruptedException if interrupted while waiting
1778 <         * (the method is not required to do so, but is allowe to).
1778 >         * (the method is not required to do so, but is allowed to)
1779           */
1780          boolean block() throws InterruptedException;
1781  
1782          /**
1783 <         * Returns true if blocking is unnecessary.
1783 >         * Returns {@code true} if blocking is unnecessary.
1784           */
1785          boolean isReleasable();
1786      }
1787  
1788      /**
1789       * Blocks in accord with the given blocker.  If the current thread
1790 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1791 <     * spare thread to be activated if necessary to ensure parallelism
1792 <     * while the current thread is blocked.  If
1793 <     * <tt>maintainParallelism</tt> is true and the pool supports it
1794 <     * (see <tt>getMaintainsParallelism</tt>), this method attempts to
1795 <     * maintain the pool's nominal parallelism. Otherwise if activates
1796 <     * a thread only if necessary to avoid complete starvation. This
1797 <     * option may be preferable when blockages use timeouts, or are
1798 <     * almost always brief.
1799 <     *
1800 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1801 <     * equivalent to
1802 <     * <pre>
1803 <     *   while (!blocker.isReleasable())
1656 <     *      if (blocker.block())
1657 <     *         return;
1658 <     * </pre>
1659 <     * If the caller is a ForkJoinTask, then the pool may first
1660 <     * be expanded to ensure parallelism, and later adjusted.
1790 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1791 >     * arranges for a spare thread to be activated if necessary to
1792 >     * ensure sufficient parallelism while the current thread is blocked.
1793 >     *
1794 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1795 >     * behaviorally equivalent to
1796 >     *  <pre> {@code
1797 >     * while (!blocker.isReleasable())
1798 >     *   if (blocker.block())
1799 >     *     return;
1800 >     * }</pre>
1801 >     *
1802 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1803 >     * first be expanded to ensure parallelism, and later adjusted.
1804       *
1805       * @param blocker the blocker
1806 <     * @param maintainParallelism if true and supported by this pool,
1664 <     * attempt to maintain the pool's nominal parallelism; otherwise
1665 <     * activate a thread only if necessary to avoid complete
1666 <     * starvation.
1667 <     * @throws InterruptedException if blocker.block did so.
1806 >     * @throws InterruptedException if blocker.block did so
1807       */
1808 <    public static void managedBlock(ManagedBlocker blocker,
1670 <                                    boolean maintainParallelism)
1808 >    public static void managedBlock(ManagedBlocker blocker)
1809          throws InterruptedException {
1810          Thread t = Thread.currentThread();
1811 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1812 <                             ((ForkJoinWorkerThread)t).pool : null);
1813 <        if (!blocker.isReleasable()) {
1814 <            try {
1815 <                if (pool == null ||
1816 <                    !pool.preBlock(blocker, maintainParallelism))
1679 <                    awaitBlocker(blocker);
1680 <            } finally {
1681 <                if (pool != null)
1682 <                    pool.updateRunningCount(1);
1683 <            }
1811 >        if (t instanceof ForkJoinWorkerThread) {
1812 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1813 >            w.pool.awaitBlocker(blocker);
1814 >        }
1815 >        else {
1816 >            do {} while (!blocker.isReleasable() && !blocker.block());
1817          }
1818      }
1819  
1820 <    private static void awaitBlocker(ManagedBlocker blocker)
1821 <        throws InterruptedException {
1822 <        do;while (!blocker.isReleasable() && !blocker.block());
1820 >    // AbstractExecutorService overrides.  These rely on undocumented
1821 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1822 >    // implement RunnableFuture.
1823 >
1824 >    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1825 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1826      }
1827  
1828 +    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1829 +        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1830 +    }
1831  
1832 <    // Temporary Unsafe mechanics for preliminary release
1832 >    // Unsafe mechanics
1833  
1834 <    static final Unsafe _unsafe;
1835 <    static final long eventCountOffset;
1836 <    static final long workerCountsOffset;
1837 <    static final long runControlOffset;
1838 <    static final long barrierStackOffset;
1839 <    static final long spareStackOffset;
1834 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1835 >    private static final long workerCountsOffset =
1836 >        objectFieldOffset("workerCounts", ForkJoinPool.class);
1837 >    private static final long runStateOffset =
1838 >        objectFieldOffset("runState", ForkJoinPool.class);
1839 >    private static final long eventCountOffset =
1840 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1841 >    private static final long eventWaitersOffset =
1842 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1843 >    private static final long stealCountOffset =
1844 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1845 >    private static final long spareWaitersOffset =
1846 >        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1847  
1848 <    static {
1848 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1849          try {
1850 <            if (ForkJoinPool.class.getClassLoader() != null) {
1851 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1852 <                f.setAccessible(true);
1853 <                _unsafe = (Unsafe)f.get(null);
1854 <            }
1855 <            else
1710 <                _unsafe = Unsafe.getUnsafe();
1711 <            eventCountOffset = _unsafe.objectFieldOffset
1712 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
1713 <            workerCountsOffset = _unsafe.objectFieldOffset
1714 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
1715 <            runControlOffset = _unsafe.objectFieldOffset
1716 <                (ForkJoinPool.class.getDeclaredField("runControl"));
1717 <            barrierStackOffset = _unsafe.objectFieldOffset
1718 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
1719 <            spareStackOffset = _unsafe.objectFieldOffset
1720 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
1721 <        } catch (Exception e) {
1722 <            throw new RuntimeException("Could not initialize intrinsics", e);
1850 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1851 >        } catch (NoSuchFieldException e) {
1852 >            // Convert Exception to corresponding Error
1853 >            NoSuchFieldError error = new NoSuchFieldError(field);
1854 >            error.initCause(e);
1855 >            throw error;
1856          }
1857      }
1858  
1859 <    private boolean casEventCount(long cmp, long val) {
1860 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1861 <    }
1862 <    private boolean casWorkerCounts(int cmp, int val) {
1863 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1864 <    }
1865 <    private boolean casRunControl(int cmp, int val) {
1866 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1867 <    }
1868 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1869 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1870 <    }
1871 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1872 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
1859 >    /**
1860 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1861 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1862 >     * into a jdk.
1863 >     *
1864 >     * @return a sun.misc.Unsafe
1865 >     */
1866 >    private static sun.misc.Unsafe getUnsafe() {
1867 >        try {
1868 >            return sun.misc.Unsafe.getUnsafe();
1869 >        } catch (SecurityException se) {
1870 >            try {
1871 >                return java.security.AccessController.doPrivileged
1872 >                    (new java.security
1873 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1874 >                        public sun.misc.Unsafe run() throws Exception {
1875 >                            java.lang.reflect.Field f = sun.misc
1876 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1877 >                            f.setAccessible(true);
1878 >                            return (sun.misc.Unsafe) f.get(null);
1879 >                        }});
1880 >            } catch (java.security.PrivilegedActionException e) {
1881 >                throw new RuntimeException("Could not initialize intrinsics",
1882 >                                           e.getCause());
1883 >            }
1884 >        }
1885      }
1886   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines