ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.10 by jsr166, Mon Jul 20 23:07:43 2009 UTC vs.
Revision 1.131 by jsr166, Tue Aug 14 06:00:55 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 > import java.util.ArrayList;
9 > import java.util.Arrays;
10 > import java.util.Collection;
11 > import java.util.Collections;
12 > import java.util.List;
13 > import java.util.Random;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21 > import java.util.concurrent.atomic.AtomicInteger;
22 > import java.util.concurrent.atomic.AtomicLong;
23 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24 > import java.util.concurrent.locks.Condition;
25  
26   /**
27 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
28 < * ForkJoinPool provides the entry point for submissions from
29 < * non-ForkJoinTasks, as well as management and monitoring operations.
30 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
27 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 > * A {@code ForkJoinPool} provides the entry point for submissions
29 > * from non-{@code ForkJoinTask} clients, as well as management and
30 > * monitoring operations.
31   *
32 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
33 < * that they provide <em>work-stealing</em>: all threads in the pool
34 < * attempt to find and execute subtasks created by other active tasks
35 < * (eventually blocking if none exist). This makes them efficient when
36 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
37 < * as the mixed execution of some plain Runnable- or Callable- based
38 < * activities along with ForkJoinTasks. When setting
39 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
40 < * use with fine-grained tasks that are never joined. Otherwise, other
41 < * ExecutorService implementations are typically more appropriate
42 < * choices.
32 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33 > * ExecutorService} mainly by virtue of employing
34 > * <em>work-stealing</em>: all threads in the pool attempt to find and
35 > * execute tasks submitted to the pool and/or created by other active
36 > * tasks (eventually blocking waiting for work if none exist). This
37 > * enables efficient processing when most tasks spawn other subtasks
38 > * (as do most {@code ForkJoinTask}s), as well as when many small
39 > * tasks are submitted to the pool from external clients.  Especially
40 > * when setting <em>asyncMode</em> to true in constructors, {@code
41 > * ForkJoinPool}s may also be appropriate for use with event-style
42 > * tasks that are never joined.
43   *
44 < * <p>A ForkJoinPool may be constructed with a given parallelism level
45 < * (target pool size), which it attempts to maintain by dynamically
46 < * adding, suspending, or resuming threads, even if some tasks are
47 < * waiting to join others. However, no such adjustments are performed
48 < * in the face of blocked IO or other unmanaged synchronization. The
49 < * nested {@code ManagedBlocker} interface enables extension of
50 < * the kinds of synchronization accommodated.  The target parallelism
51 < * level may also be changed dynamically ({@code setParallelism})
52 < * and thread construction can be limited using methods
45 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
44 > * <p>A {@code ForkJoinPool} is constructed with a given target
45 > * parallelism level; by default, equal to the number of available
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
56 < * {@code getStealCount}) that are intended to aid in developing,
56 > * {@link #getStealCount}) that are intended to aid in developing,
57   * tuning, and monitoring fork/join applications. Also, method
58 < * {@code toString} returns indications of pool state in a
58 > * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following table.
63 + * These are designed to be used primarily by clients not already
64 + * engaged in fork/join computations in the current pool.  The main
65 + * forms of these methods accept instances of {@code ForkJoinTask},
66 + * but overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally instead
69 + * use the within-computation forms listed in the table unless using
70 + * async event-style tasks that are not usually joined, in which case
71 + * there is little difference among choice of methods.
72 + *
73 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
74 + *  <tr>
75 + *    <td></td>
76 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
77 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
78 + *  </tr>
79 + *  <tr>
80 + *    <td> <b>Arrange async execution</td>
81 + *    <td> {@link #execute(ForkJoinTask)}</td>
82 + *    <td> {@link ForkJoinTask#fork}</td>
83 + *  </tr>
84 + *  <tr>
85 + *    <td> <b>Await and obtain result</td>
86 + *    <td> {@link #invoke(ForkJoinTask)}</td>
87 + *    <td> {@link ForkJoinTask#invoke}</td>
88 + *  </tr>
89 + *  <tr>
90 + *    <td> <b>Arrange exec and obtain Future</td>
91 + *    <td> {@link #submit(ForkJoinTask)}</td>
92 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
93 + *  </tr>
94 + * </table>
95 + *
96 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
97 + * used for all parallel task execution in a program or subsystem.
98 + * Otherwise, use would not usually outweigh the construction and
99 + * bookkeeping overhead of creating a large set of threads. For
100 + * example, a common pool could be used for the {@code SortTasks}
101 + * illustrated in {@link RecursiveAction}. Because {@code
102 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
103 + * daemon} mode, there is typically no need to explicitly {@link
104 + * #shutdown} such a pool upon program exit.
105 + *
106 + *  <pre> {@code
107 + * static final ForkJoinPool mainPool = new ForkJoinPool();
108 + * ...
109 + * public void sort(long[] array) {
110 + *   mainPool.invoke(new SortTask(array, 0, array.length));
111 + * }}</pre>
112 + *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
116 < * IllegalArgumentExceptions.
115 > * pools with greater than the maximum number result in
116 > * {@code IllegalArgumentException}.
117 > *
118 > * <p>This implementation rejects submitted tasks (that is, by throwing
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121 > *
122 > * @since 1.7
123 > * @author Doug Lea
124   */
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class and its nested classes provide the main
131 >     * functionality and control for a set of worker threads:
132 >     * Submissions from non-FJ threads enter into submission queues.
133 >     * Workers take these tasks and typically split them into subtasks
134 >     * that may be stolen by other workers.  Preference rules give
135 >     * first priority to processing tasks from their own queues (LIFO
136 >     * or FIFO, depending on mode), then to randomized FIFO steals of
137 >     * tasks in other queues.
138 >     *
139 >     * WorkQueues
140 >     * ==========
141 >     *
142 >     * Most operations occur within work-stealing queues (in nested
143 >     * class WorkQueue).  These are special forms of Deques that
144 >     * support only three of the four possible end-operations -- push,
145 >     * pop, and poll (aka steal), under the further constraints that
146 >     * push and pop are called only from the owning thread (or, as
147 >     * extended here, under a lock), while poll may be called from
148 >     * other threads.  (If you are unfamiliar with them, you probably
149 >     * want to read Herlihy and Shavit's book "The Art of
150 >     * Multiprocessor programming", chapter 16 describing these in
151 >     * more detail before proceeding.)  The main work-stealing queue
152 >     * design is roughly similar to those in the papers "Dynamic
153 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
154 >     * (http://research.sun.com/scalable/pubs/index.html) and
155 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
156 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
157 >     * The main differences ultimately stem from GC requirements that
158 >     * we null out taken slots as soon as we can, to maintain as small
159 >     * a footprint as possible even in programs generating huge
160 >     * numbers of tasks. To accomplish this, we shift the CAS
161 >     * arbitrating pop vs poll (steal) from being on the indices
162 >     * ("base" and "top") to the slots themselves.  So, both a
163 >     * successful pop and poll mainly entail a CAS of a slot from
164 >     * non-null to null.  Because we rely on CASes of references, we
165 >     * do not need tag bits on base or top.  They are simple ints as
166 >     * used in any circular array-based queue (see for example
167 >     * ArrayDeque).  Updates to the indices must still be ordered in a
168 >     * way that guarantees that top == base means the queue is empty,
169 >     * but otherwise may err on the side of possibly making the queue
170 >     * appear nonempty when a push, pop, or poll have not fully
171 >     * committed. Note that this means that the poll operation,
172 >     * considered individually, is not wait-free. One thief cannot
173 >     * successfully continue until another in-progress one (or, if
174 >     * previously empty, a push) completes.  However, in the
175 >     * aggregate, we ensure at least probabilistic non-blockingness.
176 >     * If an attempted steal fails, a thief always chooses a different
177 >     * random victim target to try next. So, in order for one thief to
178 >     * progress, it suffices for any in-progress poll or new push on
179 >     * any empty queue to complete. (This is why we normally use
180 >     * method pollAt and its variants that try once at the apparent
181 >     * base index, else consider alternative actions, rather than
182 >     * method poll.)
183 >     *
184 >     * This approach also enables support of a user mode in which local
185 >     * task processing is in FIFO, not LIFO order, simply by using
186 >     * poll rather than pop.  This can be useful in message-passing
187 >     * frameworks in which tasks are never joined.  However neither
188 >     * mode considers affinities, loads, cache localities, etc, so
189 >     * rarely provide the best possible performance on a given
190 >     * machine, but portably provide good throughput by averaging over
191 >     * these factors.  (Further, even if we did try to use such
192 >     * information, we do not usually have a basis for exploiting it.
193 >     * For example, some sets of tasks profit from cache affinities,
194 >     * but others are harmed by cache pollution effects.)
195 >     *
196 >     * WorkQueues are also used in a similar way for tasks submitted
197 >     * to the pool. We cannot mix these tasks in the same queues used
198 >     * for work-stealing (this would contaminate lifo/fifo
199 >     * processing). Instead, we loosely associate submission queues
200 >     * with submitting threads, using a form of hashing.  The
201 >     * ThreadLocal Submitter class contains a value initially used as
202 >     * a hash code for choosing existing queues, but may be randomly
203 >     * repositioned upon contention with other submitters.  In
204 >     * essence, submitters act like workers except that they never
205 >     * take tasks, and they are multiplexed on to a finite number of
206 >     * shared work queues. However, classes are set up so that future
207 >     * extensions could allow submitters to optionally help perform
208 >     * tasks as well. Insertion of tasks in shared mode requires a
209 >     * lock (mainly to protect in the case of resizing) but we use
210 >     * only a simple spinlock (using bits in field runState), because
211 >     * submitters encountering a busy queue move on to try or create
212 >     * other queues -- they block only when creating and registering
213 >     * new queues.
214 >     *
215 >     * Management
216 >     * ==========
217 >     *
218 >     * The main throughput advantages of work-stealing stem from
219 >     * decentralized control -- workers mostly take tasks from
220 >     * themselves or each other. We cannot negate this in the
221 >     * implementation of other management responsibilities. The main
222 >     * tactic for avoiding bottlenecks is packing nearly all
223 >     * essentially atomic control state into two volatile variables
224 >     * that are by far most often read (not written) as status and
225 >     * consistency checks.
226 >     *
227 >     * Field "ctl" contains 64 bits holding all the information needed
228 >     * to atomically decide to add, inactivate, enqueue (on an event
229 >     * queue), dequeue, and/or re-activate workers.  To enable this
230 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231 >     * far in excess of normal operating range) to allow ids, counts,
232 >     * and their negations (used for thresholding) to fit into 16bit
233 >     * fields.
234 >     *
235 >     * Field "runState" contains 32 bits needed to register and
236 >     * deregister WorkQueues, as well as to enable shutdown. It is
237 >     * only modified under a lock (normally briefly held, but
238 >     * occasionally protecting allocations and resizings) but even
239 >     * when locked remains available to check consistency.
240 >     *
241 >     * Recording WorkQueues.  WorkQueues are recorded in the
242 >     * "workQueues" array that is created upon pool construction and
243 >     * expanded if necessary.  Updates to the array while recording
244 >     * new workers and unrecording terminated ones are protected from
245 >     * each other by a lock but the array is otherwise concurrently
246 >     * readable, and accessed directly.  To simplify index-based
247 >     * operations, the array size is always a power of two, and all
248 >     * readers must tolerate null slots. Shared (submission) queues
249 >     * are at even indices, worker queues at odd indices. Grouping
250 >     * them together in this way simplifies and speeds up task
251 >     * scanning.
252 >     *
253 >     * All worker thread creation is on-demand, triggered by task
254 >     * submissions, replacement of terminated workers, and/or
255 >     * compensation for blocked workers. However, all other support
256 >     * code is set up to work with other policies.  To ensure that we
257 >     * do not hold on to worker references that would prevent GC, ALL
258 >     * accesses to workQueues are via indices into the workQueues
259 >     * array (which is one source of some of the messy code
260 >     * constructions here). In essence, the workQueues array serves as
261 >     * a weak reference mechanism. Thus for example the wait queue
262 >     * field of ctl stores indices, not references.  Access to the
263 >     * workQueues in associated methods (for example signalWork) must
264 >     * both index-check and null-check the IDs. All such accesses
265 >     * ignore bad IDs by returning out early from what they are doing,
266 >     * since this can only be associated with termination, in which
267 >     * case it is OK to give up.  All uses of the workQueues array
268 >     * also check that it is non-null (even if previously
269 >     * non-null). This allows nulling during termination, which is
270 >     * currently not necessary, but remains an option for
271 >     * resource-revocation-based shutdown schemes. It also helps
272 >     * reduce JIT issuance of uncommon-trap code, which tends to
273 >     * unnecessarily complicate control flow in some methods.
274 >     *
275 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
276 >     * let workers spin indefinitely scanning for tasks when none can
277 >     * be found immediately, and we cannot start/resume workers unless
278 >     * there appear to be tasks available.  On the other hand, we must
279 >     * quickly prod them into action when new tasks are submitted or
280 >     * generated. In many usages, ramp-up time to activate workers is
281 >     * the main limiting factor in overall performance (this is
282 >     * compounded at program start-up by JIT compilation and
283 >     * allocation). So we try to streamline this as much as possible.
284 >     * We park/unpark workers after placing in an event wait queue
285 >     * when they cannot find work. This "queue" is actually a simple
286 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
287 >     * counter value (that reflects the number of times a worker has
288 >     * been inactivated) to avoid ABA effects (we need only as many
289 >     * version numbers as worker threads). Successors are held in
290 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
291 >     * races, mainly that a task-producing thread can miss seeing (and
292 >     * signalling) another thread that gave up looking for work but
293 >     * has not yet entered the wait queue. We solve this by requiring
294 >     * a full sweep of all workers (via repeated calls to method
295 >     * scan()) both before and after a newly waiting worker is added
296 >     * to the wait queue. During a rescan, the worker might release
297 >     * some other queued worker rather than itself, which has the same
298 >     * net effect. Because enqueued workers may actually be rescanning
299 >     * rather than waiting, we set and clear the "parker" field of
300 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
301 >     * requires a secondary recheck to avoid missed signals.)  Note
302 >     * the unusual conventions about Thread.interrupts surrounding
303 >     * parking and other blocking: Because interrupts are used solely
304 >     * to alert threads to check termination, which is checked anyway
305 >     * upon blocking, we clear status (using Thread.interrupted)
306 >     * before any call to park, so that park does not immediately
307 >     * return due to status being set via some other unrelated call to
308 >     * interrupt in user code.
309 >     *
310 >     * Signalling.  We create or wake up workers only when there
311 >     * appears to be at least one task they might be able to find and
312 >     * execute.  When a submission is added or another worker adds a
313 >     * task to a queue that previously had fewer than two tasks, they
314 >     * signal waiting workers (or trigger creation of new ones if
315 >     * fewer than the given parallelism level -- see signalWork).
316 >     * These primary signals are buttressed by signals during rescans;
317 >     * together these cover the signals needed in cases when more
318 >     * tasks are pushed but untaken, and improve performance compared
319 >     * to having one thread wake up all workers.
320 >     *
321 >     * Trimming workers. To release resources after periods of lack of
322 >     * use, a worker starting to wait when the pool is quiescent will
323 >     * time out and terminate if the pool has remained quiescent for
324 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
325 >     * terminating all workers after long periods of non-use.
326 >     *
327 >     * Shutdown and Termination. A call to shutdownNow atomically sets
328 >     * a runState bit and then (non-atomically) sets each worker's
329 >     * runState status, cancels all unprocessed tasks, and wakes up
330 >     * all waiting workers.  Detecting whether termination should
331 >     * commence after a non-abrupt shutdown() call requires more work
332 >     * and bookkeeping. We need consensus about quiescence (i.e., that
333 >     * there is no more work). The active count provides a primary
334 >     * indication but non-abrupt shutdown still requires a rechecking
335 >     * scan for any workers that are inactive but not queued.
336 >     *
337 >     * Joining Tasks
338 >     * =============
339 >     *
340 >     * Any of several actions may be taken when one worker is waiting
341 >     * to join a task stolen (or always held) by another.  Because we
342 >     * are multiplexing many tasks on to a pool of workers, we can't
343 >     * just let them block (as in Thread.join).  We also cannot just
344 >     * reassign the joiner's run-time stack with another and replace
345 >     * it later, which would be a form of "continuation", that even if
346 >     * possible is not necessarily a good idea since we sometimes need
347 >     * both an unblocked task and its continuation to progress.
348 >     * Instead we combine two tactics:
349 >     *
350 >     *   Helping: Arranging for the joiner to execute some task that it
351 >     *      would be running if the steal had not occurred.
352 >     *
353 >     *   Compensating: Unless there are already enough live threads,
354 >     *      method tryCompensate() may create or re-activate a spare
355 >     *      thread to compensate for blocked joiners until they unblock.
356 >     *
357 >     * A third form (implemented in tryRemoveAndExec and
358 >     * tryPollForAndExec) amounts to helping a hypothetical
359 >     * compensator: If we can readily tell that a possible action of a
360 >     * compensator is to steal and execute the task being joined, the
361 >     * joining thread can do so directly, without the need for a
362 >     * compensation thread (although at the expense of larger run-time
363 >     * stacks, but the tradeoff is typically worthwhile).
364 >     *
365 >     * The ManagedBlocker extension API can't use helping so relies
366 >     * only on compensation in method awaitBlocker.
367 >     *
368 >     * The algorithm in tryHelpStealer entails a form of "linear"
369 >     * helping: Each worker records (in field currentSteal) the most
370 >     * recent task it stole from some other worker. Plus, it records
371 >     * (in field currentJoin) the task it is currently actively
372 >     * joining. Method tryHelpStealer uses these markers to try to
373 >     * find a worker to help (i.e., steal back a task from and execute
374 >     * it) that could hasten completion of the actively joined task.
375 >     * In essence, the joiner executes a task that would be on its own
376 >     * local deque had the to-be-joined task not been stolen. This may
377 >     * be seen as a conservative variant of the approach in Wagner &
378 >     * Calder "Leapfrogging: a portable technique for implementing
379 >     * efficient futures" SIGPLAN Notices, 1993
380 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
381 >     * that: (1) We only maintain dependency links across workers upon
382 >     * steals, rather than use per-task bookkeeping.  This sometimes
383 >     * requires a linear scan of workQueues array to locate stealers,
384 >     * but often doesn't because stealers leave hints (that may become
385 >     * stale/wrong) of where to locate them.  A stealHint is only a
386 >     * hint because a worker might have had multiple steals and the
387 >     * hint records only one of them (usually the most current).
388 >     * Hinting isolates cost to when it is needed, rather than adding
389 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
390 >     * and potentially cyclic mutual steals.  (3) It is intentionally
391 >     * racy: field currentJoin is updated only while actively joining,
392 >     * which means that we miss links in the chain during long-lived
393 >     * tasks, GC stalls etc (which is OK since blocking in such cases
394 >     * is usually a good idea).  (4) We bound the number of attempts
395 >     * to find work (see MAX_HELP) and fall back to suspending the
396 >     * worker and if necessary replacing it with another.
397 >     *
398 >     * It is impossible to keep exactly the target parallelism number
399 >     * of threads running at any given time.  Determining the
400 >     * existence of conservatively safe helping targets, the
401 >     * availability of already-created spares, and the apparent need
402 >     * to create new spares are all racy, so we rely on multiple
403 >     * retries of each.  Compensation in the apparent absence of
404 >     * helping opportunities is challenging to control on JVMs, where
405 >     * GC and other activities can stall progress of tasks that in
406 >     * turn stall out many other dependent tasks, without us being
407 >     * able to determine whether they will ever require compensation.
408 >     * Even though work-stealing otherwise encounters little
409 >     * degradation in the presence of more threads than cores,
410 >     * aggressively adding new threads in such cases entails risk of
411 >     * unwanted positive feedback control loops in which more threads
412 >     * cause more dependent stalls (as well as delayed progress of
413 >     * unblocked threads to the point that we know they are available)
414 >     * leading to more situations requiring more threads, and so
415 >     * on. This aspect of control can be seen as an (analytically
416 >     * intractable) game with an opponent that may choose the worst
417 >     * (for us) active thread to stall at any time.  We take several
418 >     * precautions to bound losses (and thus bound gains), mainly in
419 >     * methods tryCompensate and awaitJoin: (1) We only try
420 >     * compensation after attempting enough helping steps (measured
421 >     * via counting and timing) that we have already consumed the
422 >     * estimated cost of creating and activating a new thread.  (2) We
423 >     * allow up to 50% of threads to be blocked before initially
424 >     * adding any others, and unless completely saturated, check that
425 >     * some work is available for a new worker before adding. Also, we
426 >     * create up to only 50% more threads until entering a mode that
427 >     * only adds a thread if all others are possibly blocked.  All
428 >     * together, this means that we might be half as fast to react,
429 >     * and create half as many threads as possible in the ideal case,
430 >     * but present vastly fewer anomalies in all other cases compared
431 >     * to both more aggressive and more conservative alternatives.
432 >     *
433 >     * Style notes: There is a lot of representation-level coupling
434 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
435 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
436 >     * managed by ForkJoinPool, so are directly accessed.  There is
437 >     * little point trying to reduce this, since any associated future
438 >     * changes in representations will need to be accompanied by
439 >     * algorithmic changes anyway. Several methods intrinsically
440 >     * sprawl because they must accumulate sets of consistent reads of
441 >     * volatiles held in local variables.  Methods signalWork() and
442 >     * scan() are the main bottlenecks, so are especially heavily
443 >     * micro-optimized/mangled.  There are lots of inline assignments
444 >     * (of form "while ((local = field) != 0)") which are usually the
445 >     * simplest way to ensure the required read orderings (which are
446 >     * sometimes critical). This leads to a "C"-like style of listing
447 >     * declarations of these locals at the heads of methods or blocks.
448 >     * There are several occurrences of the unusual "do {} while
449 >     * (!cas...)"  which is the simplest way to force an update of a
450 >     * CAS'ed variable. There are also other coding oddities that help
451 >     * some methods perform reasonably even when interpreted (not
452 >     * compiled).
453 >     *
454 >     * The order of declarations in this file is:
455 >     * (1) Static utility functions
456 >     * (2) Nested (static) classes
457 >     * (3) Static fields
458 >     * (4) Fields, along with constants used when unpacking some of them
459 >     * (5) Internal control methods
460 >     * (6) Callbacks and other support for ForkJoinTask methods
461 >     * (7) Exported methods
462 >     * (8) Static block initializing statics in minimally dependent order
463       */
464  
465 <    /** Mask for packing and unpacking shorts */
466 <    private static final int  shortMask = 0xffff;
465 >    // Static utilities
466 >
467 >    /**
468 >     * If there is a security manager, makes sure caller has
469 >     * permission to modify threads.
470 >     */
471 >    private static void checkPermission() {
472 >        SecurityManager security = System.getSecurityManager();
473 >        if (security != null)
474 >            security.checkPermission(modifyThreadPermission);
475 >    }
476  
477 <    /** Max pool size -- must be a power of two minus 1 */
71 <    private static final int MAX_THREADS =  0x7FFF;
477 >    // Nested classes
478  
479      /**
480 <     * Factory for creating new ForkJoinWorkerThreads.  A
481 <     * ForkJoinWorkerThreadFactory must be defined and used for
482 <     * ForkJoinWorkerThread subclasses that extend base functionality
483 <     * or initialize threads with different contexts.
480 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
481 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
482 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
483 >     * functionality or initialize threads with different contexts.
484       */
485      public static interface ForkJoinWorkerThreadFactory {
486          /**
487           * Returns a new worker thread operating in the given pool.
488           *
489           * @param pool the pool this thread works in
490 <         * @throws NullPointerException if pool is null;
490 >         * @throws NullPointerException if the pool is null
491           */
492          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
493      }
494  
495      /**
496 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
496 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
497       * new ForkJoinWorkerThread.
498       */
499 <    static class  DefaultForkJoinWorkerThreadFactory
499 >    static class DefaultForkJoinWorkerThreadFactory
500          implements ForkJoinWorkerThreadFactory {
501          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
502 <            try {
97 <                return new ForkJoinWorkerThread(pool);
98 <            } catch (OutOfMemoryError oom)  {
99 <                return null;
100 <            }
502 >            return new ForkJoinWorkerThread(pool);
503          }
504      }
505  
506      /**
507 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
508 <     * overridden in ForkJoinPool constructors.
507 >     * A simple non-reentrant lock used for exclusion when managing
508 >     * queues and workers. We use a custom lock so that we can readily
509 >     * probe lock state in constructions that check among alternative
510 >     * actions. The lock is normally only very briefly held, and
511 >     * sometimes treated as a spinlock, but other usages block to
512 >     * reduce overall contention in those cases where locked code
513 >     * bodies perform allocation/resizing.
514       */
515 <    public static final ForkJoinWorkerThreadFactory
516 <        defaultForkJoinWorkerThreadFactory =
517 <        new DefaultForkJoinWorkerThreadFactory();
518 <
519 <    /**
520 <     * Permission required for callers of methods that may start or
521 <     * kill threads.
515 >    static final class Mutex extends AbstractQueuedSynchronizer {
516 >        public final boolean tryAcquire(int ignore) {
517 >            return compareAndSetState(0, 1);
518 >        }
519 >        public final boolean tryRelease(int ignore) {
520 >            setState(0);
521 >            return true;
522 >        }
523 >        public final void lock() { acquire(0); }
524 >        public final void unlock() { release(0); }
525 >        public final boolean isHeldExclusively() { return getState() == 1; }
526 >        public final Condition newCondition() { return new ConditionObject(); }
527 >    }
528 >
529 >    /**
530 >     * Class for artificial tasks that are used to replace the target
531 >     * of local joins if they are removed from an interior queue slot
532 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
533 >     * actually do anything beyond having a unique identity.
534 >     */
535 >    static final class EmptyTask extends ForkJoinTask<Void> {
536 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
537 >        public final Void getRawResult() { return null; }
538 >        public final void setRawResult(Void x) {}
539 >        public final boolean exec() { return true; }
540 >    }
541 >
542 >    /**
543 >     * Queues supporting work-stealing as well as external task
544 >     * submission. See above for main rationale and algorithms.
545 >     * Implementation relies heavily on "Unsafe" intrinsics
546 >     * and selective use of "volatile":
547 >     *
548 >     * Field "base" is the index (mod array.length) of the least valid
549 >     * queue slot, which is always the next position to steal (poll)
550 >     * from if nonempty. Reads and writes require volatile orderings
551 >     * but not CAS, because updates are only performed after slot
552 >     * CASes.
553 >     *
554 >     * Field "top" is the index (mod array.length) of the next queue
555 >     * slot to push to or pop from. It is written only by owner thread
556 >     * for push, or under lock for trySharedPush, and accessed by
557 >     * other threads only after reading (volatile) base.  Both top and
558 >     * base are allowed to wrap around on overflow, but (top - base)
559 >     * (or more commonly -(base - top) to force volatile read of base
560 >     * before top) still estimates size.
561 >     *
562 >     * The array slots are read and written using the emulation of
563 >     * volatiles/atomics provided by Unsafe. Insertions must in
564 >     * general use putOrderedObject as a form of releasing store to
565 >     * ensure that all writes to the task object are ordered before
566 >     * its publication in the queue. (Although we can avoid one case
567 >     * of this when locked in trySharedPush.) All removals entail a
568 >     * CAS to null.  The array is always a power of two. To ensure
569 >     * safety of Unsafe array operations, all accesses perform
570 >     * explicit null checks and implicit bounds checks via
571 >     * power-of-two masking.
572 >     *
573 >     * In addition to basic queuing support, this class contains
574 >     * fields described elsewhere to control execution. It turns out
575 >     * to work better memory-layout-wise to include them in this
576 >     * class rather than a separate class.
577 >     *
578 >     * Performance on most platforms is very sensitive to placement of
579 >     * instances of both WorkQueues and their arrays -- we absolutely
580 >     * do not want multiple WorkQueue instances or multiple queue
581 >     * arrays sharing cache lines. (It would be best for queue objects
582 >     * and their arrays to share, but there is nothing available to
583 >     * help arrange that).  Unfortunately, because they are recorded
584 >     * in a common array, WorkQueue instances are often moved to be
585 >     * adjacent by garbage collectors. To reduce impact, we use field
586 >     * padding that works OK on common platforms; this effectively
587 >     * trades off slightly slower average field access for the sake of
588 >     * avoiding really bad worst-case access. (Until better JVM
589 >     * support is in place, this padding is dependent on transient
590 >     * properties of JVM field layout rules.)  We also take care in
591 >     * allocating, sizing and resizing the array. Non-shared queue
592 >     * arrays are initialized (via method growArray) by workers before
593 >     * use. Others are allocated on first use.
594       */
595 <    private static final RuntimePermission modifyThreadPermission =
596 <        new RuntimePermission("modifyThread");
595 >    static final class WorkQueue {
596 >        /**
597 >         * Capacity of work-stealing queue array upon initialization.
598 >         * Must be a power of two; at least 4, but should be larger to
599 >         * reduce or eliminate cacheline sharing among queues.
600 >         * Currently, it is much larger, as a partial workaround for
601 >         * the fact that JVMs often place arrays in locations that
602 >         * share GC bookkeeping (especially cardmarks) such that
603 >         * per-write accesses encounter serious memory contention.
604 >         */
605 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
606  
607 <    /**
608 <     * If there is a security manager, makes sure caller has
609 <     * permission to modify threads.
610 <     */
611 <    private static void checkPermission() {
612 <        SecurityManager security = System.getSecurityManager();
613 <        if (security != null)
614 <            security.checkPermission(modifyThreadPermission);
607 >        /**
608 >         * Maximum size for queue arrays. Must be a power of two less
609 >         * than or equal to 1 << (31 - width of array entry) to ensure
610 >         * lack of wraparound of index calculations, but defined to a
611 >         * value a bit less than this to help users trap runaway
612 >         * programs before saturating systems.
613 >         */
614 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
615 >
616 >        volatile long totalSteals; // cumulative number of steals
617 >        int seed;                  // for random scanning; initialize nonzero
618 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
619 >        int nextWait;              // encoded record of next event waiter
620 >        int rescans;               // remaining scans until block
621 >        int nsteals;               // top-level task executions since last idle
622 >        final int mode;            // lifo, fifo, or shared
623 >        int poolIndex;             // index of this queue in pool (or 0)
624 >        int stealHint;             // index of most recent known stealer
625 >        volatile int runState;     // 1: locked, -1: terminate; else 0
626 >        volatile int base;         // index of next slot for poll
627 >        int top;                   // index of next slot for push
628 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
629 >        final ForkJoinPool pool;   // the containing pool (may be null)
630 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
631 >        volatile Thread parker;    // == owner during call to park; else null
632 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
633 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
634 >        // Heuristic padding to ameliorate unfortunate memory placements
635 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
636 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
637 >
638 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
639 >            this.mode = mode;
640 >            this.pool = pool;
641 >            this.owner = owner;
642 >            // Place indices in the center of array (that is not yet allocated)
643 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
644 >        }
645 >
646 >        /**
647 >         * Returns the approximate number of tasks in the queue.
648 >         */
649 >        final int queueSize() {
650 >            int n = base - top;       // non-owner callers must read base first
651 >            return (n >= 0) ? 0 : -n; // ignore transient negative
652 >        }
653 >
654 >        /**
655 >         * Provides a more accurate estimate of whether this queue has
656 >         * any tasks than does queueSize, by checking whether a
657 >         * near-empty queue has at least one unclaimed task.
658 >         */
659 >        final boolean isEmpty() {
660 >            ForkJoinTask<?>[] a; int m, s;
661 >            int n = base - (s = top);
662 >            return (n >= 0 ||
663 >                    (n == -1 &&
664 >                     ((a = array) == null ||
665 >                      (m = a.length - 1) < 0 ||
666 >                      U.getObjectVolatile
667 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
668 >        }
669 >
670 >        /**
671 >         * Pushes a task. Call only by owner in unshared queues.
672 >         *
673 >         * @param task the task. Caller must ensure non-null.
674 >         * @throw RejectedExecutionException if array cannot be resized
675 >         */
676 >        final void push(ForkJoinTask<?> task) {
677 >            ForkJoinTask<?>[] a; ForkJoinPool p;
678 >            int s = top, m, n;
679 >            if ((a = array) != null) {    // ignore if queue removed
680 >                U.putOrderedObject
681 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
682 >                if ((n = (top = s + 1) - base) <= 2) {
683 >                    if ((p = pool) != null)
684 >                        p.signalWork();
685 >                }
686 >                else if (n >= m)
687 >                    growArray(true);
688 >            }
689 >        }
690 >
691 >        /**
692 >         * Pushes a task if lock is free and array is either big
693 >         * enough or can be resized to be big enough.
694 >         *
695 >         * @param task the task. Caller must ensure non-null.
696 >         * @return true if submitted
697 >         */
698 >        final boolean trySharedPush(ForkJoinTask<?> task) {
699 >            boolean submitted = false;
700 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
701 >                ForkJoinTask<?>[] a = array;
702 >                int s = top;
703 >                try {
704 >                    if ((a != null && a.length > s + 1 - base) ||
705 >                        (a = growArray(false)) != null) { // must presize
706 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
707 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
708 >                        top = s + 1;
709 >                        submitted = true;
710 >                    }
711 >                } finally {
712 >                    runState = 0;                         // unlock
713 >                }
714 >            }
715 >            return submitted;
716 >        }
717 >
718 >        /**
719 >         * Takes next task, if one exists, in LIFO order.  Call only
720 >         * by owner in unshared queues. (We do not have a shared
721 >         * version of this method because it is never needed.)
722 >         */
723 >        final ForkJoinTask<?> pop() {
724 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
725 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
726 >                for (int s; (s = top - 1) - base >= 0;) {
727 >                    long j = ((m & s) << ASHIFT) + ABASE;
728 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
729 >                        break;
730 >                    if (U.compareAndSwapObject(a, j, t, null)) {
731 >                        top = s;
732 >                        return t;
733 >                    }
734 >                }
735 >            }
736 >            return null;
737 >        }
738 >
739 >        /**
740 >         * Takes a task in FIFO order if b is base of queue and a task
741 >         * can be claimed without contention. Specialized versions
742 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
743 >         */
744 >        final ForkJoinTask<?> pollAt(int b) {
745 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
746 >            if ((a = array) != null) {
747 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
748 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
749 >                    base == b &&
750 >                    U.compareAndSwapObject(a, j, t, null)) {
751 >                    base = b + 1;
752 >                    return t;
753 >                }
754 >            }
755 >            return null;
756 >        }
757 >
758 >        /**
759 >         * Takes next task, if one exists, in FIFO order.
760 >         */
761 >        final ForkJoinTask<?> poll() {
762 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
763 >            while ((b = base) - top < 0 && (a = array) != null) {
764 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
766 >                if (t != null) {
767 >                    if (base == b &&
768 >                        U.compareAndSwapObject(a, j, t, null)) {
769 >                        base = b + 1;
770 >                        return t;
771 >                    }
772 >                }
773 >                else if (base == b) {
774 >                    if (b + 1 == top)
775 >                        break;
776 >                    Thread.yield(); // wait for lagging update
777 >                }
778 >            }
779 >            return null;
780 >        }
781 >
782 >        /**
783 >         * Takes next task, if one exists, in order specified by mode.
784 >         */
785 >        final ForkJoinTask<?> nextLocalTask() {
786 >            return mode == 0 ? pop() : poll();
787 >        }
788 >
789 >        /**
790 >         * Returns next task, if one exists, in order specified by mode.
791 >         */
792 >        final ForkJoinTask<?> peek() {
793 >            ForkJoinTask<?>[] a = array; int m;
794 >            if (a == null || (m = a.length - 1) < 0)
795 >                return null;
796 >            int i = mode == 0 ? top - 1 : base;
797 >            int j = ((i & m) << ASHIFT) + ABASE;
798 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799 >        }
800 >
801 >        /**
802 >         * Pops the given task only if it is at the current top.
803 >         */
804 >        final boolean tryUnpush(ForkJoinTask<?> t) {
805 >            ForkJoinTask<?>[] a; int s;
806 >            if ((a = array) != null && (s = top) != base &&
807 >                U.compareAndSwapObject
808 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
809 >                top = s;
810 >                return true;
811 >            }
812 >            return false;
813 >        }
814 >
815 >        /**
816 >         * Polls the given task only if it is at the current base.
817 >         */
818 >        final boolean pollFor(ForkJoinTask<?> task) {
819 >            ForkJoinTask<?>[] a; int b;
820 >            if ((b = base) - top < 0 && (a = array) != null) {
821 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822 >                if (U.getObjectVolatile(a, j) == task && base == b &&
823 >                    U.compareAndSwapObject(a, j, task, null)) {
824 >                    base = b + 1;
825 >                    return true;
826 >                }
827 >            }
828 >            return false;
829 >        }
830 >
831 >        /**
832 >         * Initializes or doubles the capacity of array. Call either
833 >         * by owner or with lock held -- it is OK for base, but not
834 >         * top, to move while resizings are in progress.
835 >         *
836 >         * @param rejectOnFailure if true, throw exception if capacity
837 >         * exceeded (relayed ultimately to user); else return null.
838 >         */
839 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
840 >            ForkJoinTask<?>[] oldA = array;
841 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
842 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
843 >                int oldMask, t, b;
844 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
845 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
846 >                    (t = top) - (b = base) > 0) {
847 >                    int mask = size - 1;
848 >                    do {
849 >                        ForkJoinTask<?> x;
850 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
851 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
852 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
853 >                        if (x != null &&
854 >                            U.compareAndSwapObject(oldA, oldj, x, null))
855 >                            U.putObjectVolatile(a, j, x);
856 >                    } while (++b != t);
857 >                }
858 >                return a;
859 >            }
860 >            else if (!rejectOnFailure)
861 >                return null;
862 >            else
863 >                throw new RejectedExecutionException("Queue capacity exceeded");
864 >        }
865 >
866 >        /**
867 >         * Removes and cancels all known tasks, ignoring any exceptions.
868 >         */
869 >        final void cancelAll() {
870 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
871 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
872 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
873 >                ForkJoinTask.cancelIgnoringExceptions(t);
874 >        }
875 >
876 >        /**
877 >         * Computes next value for random probes.  Scans don't require
878 >         * a very high quality generator, but also not a crummy one.
879 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
880 >         * This is manually inlined in its usages in ForkJoinPool to
881 >         * avoid writes inside busy scan loops.
882 >         */
883 >        final int nextSeed() {
884 >            int r = seed;
885 >            r ^= r << 13;
886 >            r ^= r >>> 17;
887 >            return seed = r ^= r << 5;
888 >        }
889 >
890 >        // Execution methods
891 >
892 >        /**
893 >         * Pops and runs tasks until empty.
894 >         */
895 >        private void popAndExecAll() {
896 >            // A bit faster than repeated pop calls
897 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
898 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
899 >                   (s = top - 1) - base >= 0 &&
900 >                   (t = ((ForkJoinTask<?>)
901 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
902 >                   != null) {
903 >                if (U.compareAndSwapObject(a, j, t, null)) {
904 >                    top = s;
905 >                    t.doExec();
906 >                }
907 >            }
908 >        }
909 >
910 >        /**
911 >         * Polls and runs tasks until empty.
912 >         */
913 >        private void pollAndExecAll() {
914 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
915 >                t.doExec();
916 >        }
917 >
918 >        /**
919 >         * If present, removes from queue and executes the given task, or
920 >         * any other cancelled task. Returns (true) immediately on any CAS
921 >         * or consistency check failure so caller can retry.
922 >         *
923 >         * @return 0 if no progress can be made, else positive
924 >         * (this unusual convention simplifies use with tryHelpStealer.)
925 >         */
926 >        final int tryRemoveAndExec(ForkJoinTask<?> task) {
927 >            int stat = 1;
928 >            boolean removed = false, empty = true;
929 >            ForkJoinTask<?>[] a; int m, s, b, n;
930 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
931 >                (n = (s = top) - (b = base)) > 0) {
932 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
933 >                    int j = ((--s & m) << ASHIFT) + ABASE;
934 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
935 >                    if (t == null)                    // inconsistent length
936 >                        break;
937 >                    else if (t == task) {
938 >                        if (s + 1 == top) {           // pop
939 >                            if (!U.compareAndSwapObject(a, j, task, null))
940 >                                break;
941 >                            top = s;
942 >                            removed = true;
943 >                        }
944 >                        else if (base == b)           // replace with proxy
945 >                            removed = U.compareAndSwapObject(a, j, task,
946 >                                                             new EmptyTask());
947 >                        break;
948 >                    }
949 >                    else if (t.status >= 0)
950 >                        empty = false;
951 >                    else if (s + 1 == top) {          // pop and throw away
952 >                        if (U.compareAndSwapObject(a, j, t, null))
953 >                            top = s;
954 >                        break;
955 >                    }
956 >                    if (--n == 0) {
957 >                        if (!empty && base == b)
958 >                            stat = 0;
959 >                        break;
960 >                    }
961 >                }
962 >            }
963 >            if (removed)
964 >                task.doExec();
965 >            return stat;
966 >        }
967 >
968 >        /**
969 >         * Executes a top-level task and any local tasks remaining
970 >         * after execution.
971 >         */
972 >        final void runTask(ForkJoinTask<?> t) {
973 >            if (t != null) {
974 >                currentSteal = t;
975 >                t.doExec();
976 >                if (top != base) {       // process remaining local tasks
977 >                    if (mode == 0)
978 >                        popAndExecAll();
979 >                    else
980 >                        pollAndExecAll();
981 >                }
982 >                ++nsteals;
983 >                currentSteal = null;
984 >            }
985 >        }
986 >
987 >        /**
988 >         * Executes a non-top-level (stolen) task.
989 >         */
990 >        final void runSubtask(ForkJoinTask<?> t) {
991 >            if (t != null) {
992 >                ForkJoinTask<?> ps = currentSteal;
993 >                currentSteal = t;
994 >                t.doExec();
995 >                currentSteal = ps;
996 >            }
997 >        }
998 >
999 >        /**
1000 >         * Returns true if owned and not known to be blocked.
1001 >         */
1002 >        final boolean isApparentlyUnblocked() {
1003 >            Thread wt; Thread.State s;
1004 >            return (eventCount >= 0 &&
1005 >                    (wt = owner) != null &&
1006 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1007 >                    s != Thread.State.WAITING &&
1008 >                    s != Thread.State.TIMED_WAITING);
1009 >        }
1010 >
1011 >        /**
1012 >         * If this owned and is not already interrupted, try to
1013 >         * interrupt and/or unpark, ignoring exceptions.
1014 >         */
1015 >        final void interruptOwner() {
1016 >            Thread wt, p;
1017 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1018 >                try {
1019 >                    wt.interrupt();
1020 >                } catch (SecurityException ignore) {
1021 >                }
1022 >            }
1023 >            if ((p = parker) != null)
1024 >                U.unpark(p);
1025 >        }
1026 >
1027 >        // Unsafe mechanics
1028 >        private static final sun.misc.Unsafe U;
1029 >        private static final long RUNSTATE;
1030 >        private static final int ABASE;
1031 >        private static final int ASHIFT;
1032 >        static {
1033 >            int s;
1034 >            try {
1035 >                U = getUnsafe();
1036 >                Class<?> k = WorkQueue.class;
1037 >                Class<?> ak = ForkJoinTask[].class;
1038 >                RUNSTATE = U.objectFieldOffset
1039 >                    (k.getDeclaredField("runState"));
1040 >                ABASE = U.arrayBaseOffset(ak);
1041 >                s = U.arrayIndexScale(ak);
1042 >            } catch (Exception e) {
1043 >                throw new Error(e);
1044 >            }
1045 >            if ((s & (s-1)) != 0)
1046 >                throw new Error("data type scale not a power of two");
1047 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1048 >        }
1049      }
1050  
1051      /**
1052 <     * Generator for assigning sequence numbers as pool names.
1052 >     * Per-thread records for threads that submit to pools. Currently
1053 >     * holds only pseudo-random seed / index that is used to choose
1054 >     * submission queues in method doSubmit. In the future, this may
1055 >     * also incorporate a means to implement different task rejection
1056 >     * and resubmission policies.
1057 >     *
1058 >     * Seeds for submitters and workers/workQueues work in basically
1059 >     * the same way but are initialized and updated using slightly
1060 >     * different mechanics. Both are initialized using the same
1061 >     * approach as in class ThreadLocal, where successive values are
1062 >     * unlikely to collide with previous values. This is done during
1063 >     * registration for workers, but requires a separate AtomicInteger
1064 >     * for submitters. Seeds are then randomly modified upon
1065 >     * collisions using xorshifts, which requires a non-zero seed.
1066       */
1067 <    private static final AtomicInteger poolNumberGenerator =
1068 <        new AtomicInteger();
1067 >    static final class Submitter {
1068 >        int seed;
1069 >        Submitter() {
1070 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1071 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1072 >        }
1073 >    }
1074  
1075 <    /**
1076 <     * Array holding all worker threads in the pool. Initialized upon
1077 <     * first use. Array size must be a power of two.  Updates and
1078 <     * replacements are protected by workerLock, but it is always kept
139 <     * in a consistent enough state to be randomly accessed without
140 <     * locking by workers performing work-stealing.
141 <     */
142 <    volatile ForkJoinWorkerThread[] workers;
1075 >    /** ThreadLocal class for Submitters */
1076 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1077 >        public Submitter initialValue() { return new Submitter(); }
1078 >    }
1079  
1080 <    /**
145 <     * Lock protecting access to workers.
146 <     */
147 <    private final ReentrantLock workerLock;
1080 >    // static fields (initialized in static initializer below)
1081  
1082      /**
1083 <     * Condition for awaitTermination.
1083 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1084 >     * overridden in ForkJoinPool constructors.
1085       */
1086 <    private final Condition termination;
1086 >    public static final ForkJoinWorkerThreadFactory
1087 >        defaultForkJoinWorkerThreadFactory;
1088  
1089      /**
1090 <     * The uncaught exception handler used when any worker
156 <     * abruptly terminates
1090 >     * Generator for assigning sequence numbers as pool names.
1091       */
1092 <    private Thread.UncaughtExceptionHandler ueh;
1092 >    private static final AtomicInteger poolNumberGenerator;
1093  
1094      /**
1095 <     * Creation factory for worker threads.
1095 >     * Generator for initial hashes/seeds for submitters. Accessed by
1096 >     * Submitter class constructor.
1097       */
1098 <    private final ForkJoinWorkerThreadFactory factory;
1098 >    static final AtomicInteger nextSubmitterSeed;
1099  
1100      /**
1101 <     * Head of stack of threads that were created to maintain
1102 <     * parallelism when other threads blocked, but have since
168 <     * suspended when the parallelism level rose.
1101 >     * Permission required for callers of methods that may start or
1102 >     * kill threads.
1103       */
1104 <    private volatile WaitQueueNode spareStack;
1104 >    private static final RuntimePermission modifyThreadPermission;
1105  
1106      /**
1107 <     * Sum of per-thread steal counts, updated only when threads are
1108 <     * idle or terminating.
1107 >     * Per-thread submission bookkeeping. Shared across all pools
1108 >     * to reduce ThreadLocal pollution and because random motion
1109 >     * to avoid contention in one pool is likely to hold for others.
1110       */
1111 <    private final AtomicLong stealCount;
1111 >    private static final ThreadSubmitter submitters;
1112  
1113 <    /**
179 <     * Queue for external submissions.
180 <     */
181 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1113 >    // static constants
1114  
1115      /**
1116 <     * Head of Treiber stack for barrier sync. See below for explanation
1116 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
1117 >     * task when the pool is quiescent to instead try to shrink the
1118 >     * number of workers.  The exact value does not matter too
1119 >     * much. It must be short enough to release resources during
1120 >     * sustained periods of idleness, but not so short that threads
1121 >     * are continually re-created.
1122       */
1123 <    private volatile WaitQueueNode syncStack;
1123 >    private static final long SHRINK_RATE =
1124 >        4L * 1000L * 1000L * 1000L; // 4 seconds
1125  
1126      /**
1127 <     * The count for event barrier
1127 >     * The timeout value for attempted shrinkage, includes
1128 >     * some slop to cope with system timer imprecision.
1129       */
1130 <    private volatile long eventCount;
1130 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1131  
1132      /**
1133 <     * Pool number, just for assigning useful names to worker threads
1133 >     * The maximum stolen->joining link depth allowed in method
1134 >     * tryHelpStealer.  Must be a power of two. This value also
1135 >     * controls the maximum number of times to try to help join a task
1136 >     * without any apparent progress or change in pool state before
1137 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1138 >     * chains are unbounded, but we use a fixed constant to avoid
1139 >     * (otherwise unchecked) cycles and to bound staleness of
1140 >     * traversal parameters at the expense of sometimes blocking when
1141 >     * we could be helping.
1142       */
1143 <    private final int poolNumber;
1143 >    private static final int MAX_HELP = 64;
1144  
1145      /**
1146 <     * The maximum allowed pool size
1146 >     * Secondary time-based bound (in nanosecs) for helping attempts
1147 >     * before trying compensated blocking in awaitJoin. Used in
1148 >     * conjunction with MAX_HELP to reduce variance due to different
1149 >     * polling rates associated with different helping options. The
1150 >     * value should roughly approximate the time required to create
1151 >     * and/or activate a worker thread.
1152       */
1153 <    private volatile int maxPoolSize;
1153 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1154  
1155      /**
1156 <     * The desired parallelism level, updated only under workerLock.
1156 >     * Increment for seed generators. See class ThreadLocal for
1157 >     * explanation.
1158       */
1159 <    private volatile int parallelism;
1159 >    private static final int SEED_INCREMENT = 0x61c88647;
1160  
1161      /**
1162 <     * True if use local fifo, not default lifo, for local polling
1162 >     * Bits and masks for control variables
1163 >     *
1164 >     * Field ctl is a long packed with:
1165 >     * AC: Number of active running workers minus target parallelism (16 bits)
1166 >     * TC: Number of total workers minus target parallelism (16 bits)
1167 >     * ST: true if pool is terminating (1 bit)
1168 >     * EC: the wait count of top waiting thread (15 bits)
1169 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1170 >     *
1171 >     * When convenient, we can extract the upper 32 bits of counts and
1172 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1173 >     * (int)ctl.  The ec field is never accessed alone, but always
1174 >     * together with id and st. The offsets of counts by the target
1175 >     * parallelism and the positionings of fields makes it possible to
1176 >     * perform the most common checks via sign tests of fields: When
1177 >     * ac is negative, there are not enough active workers, when tc is
1178 >     * negative, there are not enough total workers, and when e is
1179 >     * negative, the pool is terminating.  To deal with these possibly
1180 >     * negative fields, we use casts in and out of "short" and/or
1181 >     * signed shifts to maintain signedness.
1182 >     *
1183 >     * When a thread is queued (inactivated), its eventCount field is
1184 >     * set negative, which is the only way to tell if a worker is
1185 >     * prevented from executing tasks, even though it must continue to
1186 >     * scan for them to avoid queuing races. Note however that
1187 >     * eventCount updates lag releases so usage requires care.
1188 >     *
1189 >     * Field runState is an int packed with:
1190 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1191 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1192 >     * INIT: set true after workQueues array construction (1 bit)
1193 >     *
1194 >     * The sequence number enables simple consistency checks:
1195 >     * Staleness of read-only operations on the workQueues array can
1196 >     * be checked by comparing runState before vs after the reads.
1197       */
211    private volatile boolean locallyFifo;
1198  
1199 <    /**
1200 <     * Holds number of total (i.e., created and not yet terminated)
1201 <     * and running (i.e., not blocked on joins or other managed sync)
1202 <     * threads, packed into one int to ensure consistent snapshot when
1203 <     * making decisions about creating and suspending spare
1204 <     * threads. Updated only by CAS.  Note: CASes in
1205 <     * updateRunningCount and preJoin running active count is in low
1206 <     * word, so need to be modified if this changes
1207 <     */
1208 <    private volatile int workerCounts;
1199 >    // bit positions/shifts for fields
1200 >    private static final int  AC_SHIFT   = 48;
1201 >    private static final int  TC_SHIFT   = 32;
1202 >    private static final int  ST_SHIFT   = 31;
1203 >    private static final int  EC_SHIFT   = 16;
1204 >
1205 >    // bounds
1206 >    private static final int  SMASK      = 0xffff;  // short bits
1207 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1208 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1209 >    private static final int  SHORT_SIGN = 1 << 15;
1210 >    private static final int  INT_SIGN   = 1 << 31;
1211 >
1212 >    // masks
1213 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1214 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1215 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1216 >
1217 >    // units for incrementing and decrementing
1218 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1219 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1220  
1221 <    private static int totalCountOf(int s)           { return s >>> 16;  }
1222 <    private static int runningCountOf(int s)         { return s & shortMask; }
1223 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1221 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1222 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1223 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1224 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1225 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1226 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1227 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1228 >
1229 >    // masks and units for dealing with e = (int)ctl
1230 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1231 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1232 >
1233 >    // runState bits
1234 >    private static final int SHUTDOWN    = 1 << 31;
1235 >
1236 >    // access mode for WorkQueue
1237 >    static final int LIFO_QUEUE          =  0;
1238 >    static final int FIFO_QUEUE          =  1;
1239 >    static final int SHARED_QUEUE        = -1;
1240 >
1241 >    // Instance fields
1242 >
1243 >    /*
1244 >     * Field layout order in this class tends to matter more than one
1245 >     * would like. Runtime layout order is only loosely related to
1246 >     * declaration order and may differ across JVMs, but the following
1247 >     * empirically works OK on current JVMs.
1248 >     */
1249 >
1250 >    volatile long ctl;                         // main pool control
1251 >    final int parallelism;                     // parallelism level
1252 >    final int localMode;                       // per-worker scheduling mode
1253 >    final int submitMask;                      // submit queue index bound
1254 >    int nextSeed;                              // for initializing worker seeds
1255 >    volatile int runState;                     // shutdown status and seq
1256 >    WorkQueue[] workQueues;                    // main registry
1257 >    final Mutex lock;                          // for registration
1258 >    final Condition termination;               // for awaitTermination
1259 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1260 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1261 >    final AtomicLong stealCount;               // collect counts when terminated
1262 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1263 >    final String workerNamePrefix;             // to create worker name string
1264 >
1265 >    //  Creating, registering, and deregistering workers
1266 >
1267 >    /**
1268 >     * Tries to create and start a worker
1269 >     */
1270 >    private void addWorker() {
1271 >        Throwable ex = null;
1272 >        ForkJoinWorkerThread wt = null;
1273 >        try {
1274 >            if ((wt = factory.newThread(this)) != null) {
1275 >                wt.start();
1276 >                return;
1277 >            }
1278 >        } catch (Throwable e) {
1279 >            ex = e;
1280 >        }
1281 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1282 >    }
1283  
1284      /**
1285 <     * Adds delta (which may be negative) to running count.  This must
1286 <     * be called before (with negative arg) and after (with positive)
1287 <     * any managed synchronization (i.e., mainly, joins).
1288 <     * @param delta the number to add
1285 >     * Callback from ForkJoinWorkerThread constructor to assign a
1286 >     * public name. This must be separate from registerWorker because
1287 >     * it is called during the "super" constructor call in
1288 >     * ForkJoinWorkerThread.
1289       */
1290 <    final void updateRunningCount(int delta) {
1291 <        int s;
1292 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1290 >    final String nextWorkerName() {
1291 >        return workerNamePrefix.concat
1292 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1293      }
1294  
1295      /**
1296 <     * Adds delta (which may be negative) to both total and running
1297 <     * count.  This must be called upon creation and termination of
1298 <     * worker threads.
1299 <     * @param delta the number to add
1296 >     * Callback from ForkJoinWorkerThread constructor to establish its
1297 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1298 >     * to packing entries in front of the workQueues array, we treat
1299 >     * the array as a simple power-of-two hash table using per-thread
1300 >     * seed as hash, expanding as needed.
1301 >     *
1302 >     * @param w the worker's queue
1303       */
1304 <    private void updateWorkerCount(int delta) {
1305 <        int d = delta + (delta << 16); // add to both lo and hi parts
1306 <        int s;
1307 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1304 >
1305 >    final void registerWorker(WorkQueue w) {
1306 >        Mutex lock = this.lock;
1307 >        lock.lock();
1308 >        try {
1309 >            WorkQueue[] ws = workQueues;
1310 >            if (w != null && ws != null) {          // skip on shutdown/failure
1311 >                int rs, n =  ws.length, m = n - 1;
1312 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1313 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1314 >                int r = (s << 1) | 1;               // use odd-numbered indices
1315 >                if (ws[r &= m] != null) {           // collision
1316 >                    int probes = 0;                 // step by approx half size
1317 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1318 >                    while (ws[r = (r + step) & m] != null) {
1319 >                        if (++probes >= n) {
1320 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1321 >                            m = n - 1;
1322 >                            probes = 0;
1323 >                        }
1324 >                    }
1325 >                }
1326 >                w.eventCount = w.poolIndex = r;     // establish before recording
1327 >                ws[r] = w;                          // also update seq
1328 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1329 >            }
1330 >        } finally {
1331 >            lock.unlock();
1332 >        }
1333      }
1334  
1335      /**
1336 <     * Lifecycle control. High word contains runState, low word
1337 <     * contains the number of workers that are (probably) executing
1338 <     * tasks. This value is atomically incremented before a worker
1339 <     * gets a task to run, and decremented when worker has no tasks
1340 <     * and cannot find any. These two fields are bundled together to
1341 <     * support correct termination triggering.  Note: activeCount
1342 <     * CAS'es cheat by assuming active count is in low word, so need
1343 <     * to be modified if this changes
1344 <     */
1345 <    private volatile int runControl;
1336 >     * Final callback from terminating worker, as well as upon failure
1337 >     * to construct or start a worker in addWorker.  Removes record of
1338 >     * worker from array, and adjusts counts. If pool is shutting
1339 >     * down, tries to complete termination.
1340 >     *
1341 >     * @param wt the worker thread or null if addWorker failed
1342 >     * @param ex the exception causing failure, or null if none
1343 >     */
1344 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1345 >        Mutex lock = this.lock;
1346 >        WorkQueue w = null;
1347 >        if (wt != null && (w = wt.workQueue) != null) {
1348 >            w.runState = -1;                // ensure runState is set
1349 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1350 >            int idx = w.poolIndex;
1351 >            lock.lock();
1352 >            try {                           // remove record from array
1353 >                WorkQueue[] ws = workQueues;
1354 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1355 >                    ws[idx] = null;
1356 >            } finally {
1357 >                lock.unlock();
1358 >            }
1359 >        }
1360  
1361 <    // RunState values. Order among values matters
1362 <    private static final int RUNNING     = 0;
1363 <    private static final int SHUTDOWN    = 1;
1364 <    private static final int TERMINATING = 2;
1365 <    private static final int TERMINATED  = 3;
1361 >        long c;                             // adjust ctl counts
1362 >        do {} while (!U.compareAndSwapLong
1363 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1364 >                                           ((c - TC_UNIT) & TC_MASK) |
1365 >                                           (c & ~(AC_MASK|TC_MASK)))));
1366 >
1367 >        if (!tryTerminate(false, false) && w != null) {
1368 >            w.cancelAll();                  // cancel remaining tasks
1369 >            if (w.array != null)            // suppress signal if never ran
1370 >                signalWork();               // wake up or create replacement
1371 >            if (ex == null)                 // help clean refs on way out
1372 >                ForkJoinTask.helpExpungeStaleExceptions();
1373 >        }
1374 >
1375 >        if (ex != null)                     // rethrow
1376 >            U.throwException(ex);
1377 >    }
1378  
269    private static int runStateOf(int c)             { return c >>> 16; }
270    private static int activeCountOf(int c)          { return c & shortMask; }
271    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1379  
1380 <    /**
1381 <     * Try incrementing active count; fail on contention. Called by
1382 <     * workers before/during executing tasks.
1383 <     * @return true on success;
1384 <     */
1385 <    final boolean tryIncrementActiveCount() {
1386 <        int c = runControl;
1387 <        return casRunControl(c, c+1);
1380 >    // Submissions
1381 >
1382 >    /**
1383 >     * Unless shutting down, adds the given task to a submission queue
1384 >     * at submitter's current queue index (modulo submission
1385 >     * range). If no queue exists at the index, one is created.  If
1386 >     * the queue is busy, another index is randomly chosen. The
1387 >     * submitMask bounds the effective number of queues to the
1388 >     * (nearest power of two for) parallelism level.
1389 >     *
1390 >     * @param task the task. Caller must ensure non-null.
1391 >     */
1392 >    private void doSubmit(ForkJoinTask<?> task) {
1393 >        Submitter s = submitters.get();
1394 >        for (int r = s.seed, m = submitMask;;) {
1395 >            WorkQueue[] ws; WorkQueue q;
1396 >            int k = r & m & SQMASK;          // use only even indices
1397 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1398 >                throw new RejectedExecutionException(); // shutting down
1399 >            else if ((q = ws[k]) == null) {  // create new queue
1400 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1401 >                Mutex lock = this.lock;      // construct outside lock
1402 >                lock.lock();
1403 >                try {                        // recheck under lock
1404 >                    int rs = runState;       // to update seq
1405 >                    if (ws == workQueues && ws[k] == null) {
1406 >                        ws[k] = nq;
1407 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1408 >                    }
1409 >                } finally {
1410 >                    lock.unlock();
1411 >                }
1412 >            }
1413 >            else if (q.trySharedPush(task)) {
1414 >                signalWork();
1415 >                return;
1416 >            }
1417 >            else if (m > 1) {                // move to a different index
1418 >                r ^= r << 13;                // same xorshift as WorkQueues
1419 >                r ^= r >>> 17;
1420 >                s.seed = r ^= r << 5;
1421 >            }
1422 >            else
1423 >                Thread.yield();              // yield if no alternatives
1424 >        }
1425      }
1426  
1427 +    // Maintaining ctl counts
1428 +
1429      /**
1430 <     * Tries decrementing active count; fails on contention.
285 <     * Possibly triggers termination on success.
286 <     * Called by workers when they can't find tasks.
287 <     * @return true on success
1430 >     * Increments active count; mainly called upon return from blocking.
1431       */
1432 <    final boolean tryDecrementActiveCount() {
1433 <        int c = runControl;
1434 <        int nextc = c - 1;
292 <        if (!casRunControl(c, nextc))
293 <            return false;
294 <        if (canTerminateOnShutdown(nextc))
295 <            terminateOnShutdown();
296 <        return true;
1432 >    final void incrementActiveCount() {
1433 >        long c;
1434 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1435      }
1436  
1437      /**
1438 <     * Returns true if argument represents zero active count and
301 <     * nonzero runstate, which is the triggering condition for
302 <     * terminating on shutdown.
1438 >     * Tries to activate or create a worker if too few are active.
1439       */
1440 <    private static boolean canTerminateOnShutdown(int c) {
1441 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
1440 >    final void signalWork() {
1441 >        long c; int u;
1442 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1443 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1444 >            if ((e = (int)c) > 0) {                     // at least one waiting
1445 >                if (ws != null && (i = e & SMASK) < ws.length &&
1446 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1447 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1448 >                               ((long)(u + UAC_UNIT) << 32));
1449 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1450 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1451 >                        if ((p = w.parker) != null)
1452 >                            U.unpark(p);                // activate and release
1453 >                        break;
1454 >                    }
1455 >                }
1456 >                else
1457 >                    break;
1458 >            }
1459 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1460 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1461 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1462 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1463 >                    addWorker();
1464 >                    break;
1465 >                }
1466 >            }
1467 >            else
1468 >                break;
1469 >        }
1470      }
1471  
1472 +    // Scanning for tasks
1473 +
1474      /**
1475 <     * Transition run state to at least the given state. Return true
310 <     * if not already at least given state.
1475 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1476       */
1477 <    private boolean transitionRunStateTo(int state) {
1478 <        for (;;) {
1479 <            int c = runControl;
1480 <            if (runStateOf(c) >= state)
1481 <                return false;
1482 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1483 <                return true;
1477 >    final void runWorker(WorkQueue w) {
1478 >        w.growArray(false);         // initialize queue array in this thread
1479 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1480 >    }
1481 >
1482 >    /**
1483 >     * Scans for and, if found, returns one task, else possibly
1484 >     * inactivates the worker. This method operates on single reads of
1485 >     * volatile state and is designed to be re-invoked continuously,
1486 >     * in part because it returns upon detecting inconsistencies,
1487 >     * contention, or state changes that indicate possible success on
1488 >     * re-invocation.
1489 >     *
1490 >     * The scan searches for tasks across a random permutation of
1491 >     * queues (starting at a random index and stepping by a random
1492 >     * relative prime, checking each at least once).  The scan
1493 >     * terminates upon either finding a non-empty queue, or completing
1494 >     * the sweep. If the worker is not inactivated, it takes and
1495 >     * returns a task from this queue.  On failure to find a task, we
1496 >     * take one of the following actions, after which the caller will
1497 >     * retry calling this method unless terminated.
1498 >     *
1499 >     * * If pool is terminating, terminate the worker.
1500 >     *
1501 >     * * If not a complete sweep, try to release a waiting worker.  If
1502 >     * the scan terminated because the worker is inactivated, then the
1503 >     * released worker will often be the calling worker, and it can
1504 >     * succeed obtaining a task on the next call. Or maybe it is
1505 >     * another worker, but with same net effect. Releasing in other
1506 >     * cases as well ensures that we have enough workers running.
1507 >     *
1508 >     * * If not already enqueued, try to inactivate and enqueue the
1509 >     * worker on wait queue. Or, if inactivating has caused the pool
1510 >     * to be quiescent, relay to idleAwaitWork to check for
1511 >     * termination and possibly shrink pool.
1512 >     *
1513 >     * * If already inactive, and the caller has run a task since the
1514 >     * last empty scan, return (to allow rescan) unless others are
1515 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1516 >     * scan to ensure eventual inactivation and blocking.
1517 >     *
1518 >     * * If already enqueued and none of the above apply, park
1519 >     * awaiting signal,
1520 >     *
1521 >     * @param w the worker (via its WorkQueue)
1522 >     * @return a task or null of none found
1523 >     */
1524 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1525 >        WorkQueue[] ws;                       // first update random seed
1526 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1527 >        int rs = runState, m;                 // volatile read order matters
1528 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1529 >            int ec = w.eventCount;            // ec is negative if inactive
1530 >            int step = (r >>> 16) | 1;        // relative prime
1531 >            for (int j = (m + 1) << 2; ; r += step) {
1532 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1533 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1534 >                    (a = q.array) != null) {  // probably nonempty
1535 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1536 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1537 >                    if (q.base == b && ec >= 0 && t != null &&
1538 >                        U.compareAndSwapObject(a, i, t, null)) {
1539 >                        if (q.top - (q.base = b + 1) > 1)
1540 >                            signalWork();    // help pushes signal
1541 >                        return t;
1542 >                    }
1543 >                    else if (ec < 0 || j <= m) {
1544 >                        rs = 0;               // mark scan as imcomplete
1545 >                        break;                // caller can retry after release
1546 >                    }
1547 >                }
1548 >                if (--j < 0)
1549 >                    break;
1550 >            }
1551 >
1552 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1553 >            if (e < 0)                        // decode ctl on empty scan
1554 >                w.runState = -1;              // pool is terminating
1555 >            else if (rs == 0 || rs != runState) { // incomplete scan
1556 >                WorkQueue v; Thread p;        // try to release a waiter
1557 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1558 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1559 >                    long nc = ((long)(v.nextWait & E_MASK) |
1560 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1561 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1562 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1563 >                        if ((p = v.parker) != null)
1564 >                            U.unpark(p);
1565 >                    }
1566 >                }
1567 >            }
1568 >            else if (ec >= 0) {               // try to enqueue/inactivate
1569 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1570 >                w.nextWait = e;
1571 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1572 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1573 >                    w.eventCount = ec;        // unmark on CAS failure
1574 >                else {
1575 >                    if ((ns = w.nsteals) != 0) {
1576 >                        w.nsteals = 0;        // set rescans if ran task
1577 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1578 >                        w.totalSteals += ns;
1579 >                    }
1580 >                    if (a == 1 - parallelism) // quiescent
1581 >                        idleAwaitWork(w, nc, c);
1582 >                }
1583 >            }
1584 >            else if (w.eventCount < 0) {      // already queued
1585 >                if ((nr = w.rescans) > 0) {   // continue rescanning
1586 >                    int ac = a + parallelism;
1587 >                    if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1588 >                        Thread.yield();       // yield before block
1589 >                }
1590 >                else {
1591 >                    Thread.interrupted();     // clear status
1592 >                    Thread wt = Thread.currentThread();
1593 >                    U.putObject(wt, PARKBLOCKER, this);
1594 >                    w.parker = wt;            // emulate LockSupport.park
1595 >                    if (w.eventCount < 0)     // recheck
1596 >                        U.park(false, 0L);
1597 >                    w.parker = null;
1598 >                    U.putObject(wt, PARKBLOCKER, null);
1599 >                }
1600 >            }
1601          }
1602 +        return null;
1603      }
1604  
1605      /**
1606 <     * Controls whether to add spares to maintain parallelism
1607 <     */
1608 <    private volatile boolean maintainsParallelism;
1609 <
1610 <    // Constructors
1606 >     * If inactivating worker w has caused the pool to become
1607 >     * quiescent, checks for pool termination, and, so long as this is
1608 >     * not the only worker, waits for event for up to SHRINK_RATE
1609 >     * nanosecs.  On timeout, if ctl has not changed, terminates the
1610 >     * worker, which will in turn wake up another worker to possibly
1611 >     * repeat this process.
1612 >     *
1613 >     * @param w the calling worker
1614 >     * @param currentCtl the ctl value triggering possible quiescence
1615 >     * @param prevCtl the ctl value to restore if thread is terminated
1616 >     */
1617 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1618 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1619 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1620 >            Thread wt = Thread.currentThread();
1621 >            Thread.yield();            // yield before block
1622 >            while (ctl == currentCtl) {
1623 >                long startTime = System.nanoTime();
1624 >                Thread.interrupted();  // timed variant of version in scan()
1625 >                U.putObject(wt, PARKBLOCKER, this);
1626 >                w.parker = wt;
1627 >                if (ctl == currentCtl)
1628 >                    U.park(false, SHRINK_RATE);
1629 >                w.parker = null;
1630 >                U.putObject(wt, PARKBLOCKER, null);
1631 >                if (ctl != currentCtl)
1632 >                    break;
1633 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1634 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1635 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1636 >                    w.runState = -1;   // shrink
1637 >                    break;
1638 >                }
1639 >            }
1640 >        }
1641 >    }
1642  
1643      /**
1644 <     * Creates a ForkJoinPool with a pool size equal to the number of
1645 <     * processors available on the system and using the default
1646 <     * ForkJoinWorkerThreadFactory,
1647 <     * @throws SecurityException if a security manager exists and
1648 <     *         the caller is not permitted to modify threads
1649 <     *         because it does not hold {@link
1650 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1651 <     */
1652 <    public ForkJoinPool() {
1653 <        this(Runtime.getRuntime().availableProcessors(),
1654 <             defaultForkJoinWorkerThreadFactory);
1644 >     * Tries to locate and execute tasks for a stealer of the given
1645 >     * task, or in turn one of its stealers, Traces currentSteal ->
1646 >     * currentJoin links looking for a thread working on a descendant
1647 >     * of the given task and with a non-empty queue to steal back and
1648 >     * execute tasks from. The first call to this method upon a
1649 >     * waiting join will often entail scanning/search, (which is OK
1650 >     * because the joiner has nothing better to do), but this method
1651 >     * leaves hints in workers to speed up subsequent calls. The
1652 >     * implementation is very branchy to cope with potential
1653 >     * inconsistencies or loops encountering chains that are stale,
1654 >     * unknown, or so long that they are likely cyclic.
1655 >     *
1656 >     * @param joiner the joining worker
1657 >     * @param task the task to join
1658 >     * @return 0 if no progress can be made, negative if task
1659 >     * known complete, else positive
1660 >     */
1661 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1662 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1663 >        if (joiner != null && task != null) {       // hoist null checks
1664 >            restart: for (;;) {
1665 >                ForkJoinTask<?> subtask = task;     // current target
1666 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1667 >                    WorkQueue[] ws; int m, s, h;
1668 >                    if ((s = task.status) < 0) {
1669 >                        stat = s;
1670 >                        break restart;
1671 >                    }
1672 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1673 >                        break restart;              // shutting down
1674 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1675 >                        v.currentSteal != subtask) {
1676 >                        for (int origin = h;;) {    // find stealer
1677 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1678 >                                (subtask.status < 0 || j.currentJoin != subtask))
1679 >                                continue restart;   // occasional staleness check
1680 >                            if ((v = ws[h]) != null &&
1681 >                                v.currentSteal == subtask) {
1682 >                                j.stealHint = h;    // save hint
1683 >                                break;
1684 >                            }
1685 >                            if (h == origin)
1686 >                                break restart;      // cannot find stealer
1687 >                        }
1688 >                    }
1689 >                    for (;;) { // help stealer or descend to its stealer
1690 >                        ForkJoinTask[] a;  int b;
1691 >                        if (subtask.status < 0)     // surround probes with
1692 >                            continue restart;       //   consistency checks
1693 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1694 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1695 >                            ForkJoinTask<?> t =
1696 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1697 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1698 >                                v.currentSteal != subtask)
1699 >                                continue restart;   // stale
1700 >                            stat = 1;               // apparent progress
1701 >                            if (t != null && v.base == b &&
1702 >                                U.compareAndSwapObject(a, i, t, null)) {
1703 >                                v.base = b + 1;     // help stealer
1704 >                                joiner.runSubtask(t);
1705 >                            }
1706 >                            else if (v.base == b && ++steps == MAX_HELP)
1707 >                                break restart;      // v apparently stalled
1708 >                        }
1709 >                        else {                      // empty -- try to descend
1710 >                            ForkJoinTask<?> next = v.currentJoin;
1711 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1712 >                                v.currentSteal != subtask)
1713 >                                continue restart;   // stale
1714 >                            else if (next == null || ++steps == MAX_HELP)
1715 >                                break restart;      // dead-end or maybe cyclic
1716 >                            else {
1717 >                                subtask = next;
1718 >                                j = v;
1719 >                                break;
1720 >                            }
1721 >                        }
1722 >                    }
1723 >                }
1724 >            }
1725 >        }
1726 >        return stat;
1727      }
1728  
1729      /**
1730 <     * Creates a ForkJoinPool with the indicated parallelism level
1731 <     * threads, and using the default ForkJoinWorkerThreadFactory,
1732 <     * @param parallelism the number of worker threads
1733 <     * @throws IllegalArgumentException if parallelism less than or
348 <     * equal to zero
349 <     * @throws SecurityException if a security manager exists and
350 <     *         the caller is not permitted to modify threads
351 <     *         because it does not hold {@link
352 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1730 >     * If task is at base of some steal queue, steals and executes it.
1731 >     *
1732 >     * @param joiner the joining worker
1733 >     * @param task the task
1734       */
1735 <    public ForkJoinPool(int parallelism) {
1736 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1735 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1736 >        WorkQueue[] ws;
1737 >        if ((ws = workQueues) != null) {
1738 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1739 >                WorkQueue q = ws[j];
1740 >                if (q != null && q.pollFor(task)) {
1741 >                    joiner.runSubtask(task);
1742 >                    break;
1743 >                }
1744 >            }
1745 >        }
1746      }
1747  
1748      /**
1749 <     * Creates a ForkJoinPool with parallelism equal to the number of
1750 <     * processors available on the system and using the given
1751 <     * ForkJoinWorkerThreadFactory,
1752 <     * @param factory the factory for creating new threads
1753 <     * @throws NullPointerException if factory is null
1754 <     * @throws SecurityException if a security manager exists and
1755 <     *         the caller is not permitted to modify threads
1756 <     *         because it does not hold {@link
1757 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1758 <     */
1759 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1760 <        this(Runtime.getRuntime().availableProcessors(), factory);
1749 >     * Tries to decrement active count (sometimes implicitly) and
1750 >     * possibly release or create a compensating worker in preparation
1751 >     * for blocking. Fails on contention or termination. Otherwise,
1752 >     * adds a new thread if no idle workers are available and either
1753 >     * pool would become completely starved or: (at least half
1754 >     * starved, and fewer than 50% spares exist, and there is at least
1755 >     * one task apparently available). Even though the availability
1756 >     * check requires a full scan, it is worthwhile in reducing false
1757 >     * alarms.
1758 >     *
1759 >     * @param task if non-null, a task being waited for
1760 >     * @param blocker if non-null, a blocker being waited for
1761 >     * @return true if the caller can block, else should recheck and retry
1762 >     */
1763 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1764 >        int pc = parallelism, e;
1765 >        long c = ctl;
1766 >        WorkQueue[] ws = workQueues;
1767 >        if ((e = (int)c) >= 0 && ws != null) {
1768 >            int u, a, ac, hc;
1769 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1770 >            boolean replace = false;
1771 >            if ((a = u >> UAC_SHIFT) <= 0) {
1772 >                if ((ac = a + pc) <= 1)
1773 >                    replace = true;
1774 >                else if ((e > 0 || (task != null &&
1775 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1776 >                    WorkQueue w;
1777 >                    for (int j = 0; j < ws.length; ++j) {
1778 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1779 >                            replace = true;
1780 >                            break;   // in compensation range and tasks available
1781 >                        }
1782 >                    }
1783 >                }
1784 >            }
1785 >            if ((task == null || task.status >= 0) && // recheck need to block
1786 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1787 >                if (!replace) {          // no compensation
1788 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1789 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
1790 >                        return true;
1791 >                }
1792 >                else if (e != 0) {       // release an idle worker
1793 >                    WorkQueue w; Thread p; int i;
1794 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1795 >                        long nc = ((long)(w.nextWait & E_MASK) |
1796 >                                   (c & (AC_MASK|TC_MASK)));
1797 >                        if (w.eventCount == (e | INT_SIGN) &&
1798 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
1799 >                            w.eventCount = (e + E_SEQ) & E_MASK;
1800 >                            if ((p = w.parker) != null)
1801 >                                U.unpark(p);
1802 >                            return true;
1803 >                        }
1804 >                    }
1805 >                }
1806 >                else if (tc < MAX_CAP) { // create replacement
1807 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1808 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1809 >                        addWorker();
1810 >                        return true;
1811 >                    }
1812 >                }
1813 >            }
1814 >        }
1815 >        return false;
1816      }
1817  
1818      /**
1819 <     * Creates a ForkJoinPool with the given parallelism and factory.
1819 >     * Helps and/or blocks until the given task is done.
1820       *
1821 <     * @param parallelism the targeted number of worker threads
1822 <     * @param factory the factory for creating new threads
1823 <     * @throws IllegalArgumentException if parallelism less than or
379 <     * equal to zero, or greater than implementation limit.
380 <     * @throws NullPointerException if factory is null
381 <     * @throws SecurityException if a security manager exists and
382 <     *         the caller is not permitted to modify threads
383 <     *         because it does not hold {@link
384 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1821 >     * @param joiner the joining worker
1822 >     * @param task the task
1823 >     * @return task status on exit
1824       */
1825 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1826 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1827 <            throw new IllegalArgumentException();
1828 <        if (factory == null)
1829 <            throw new NullPointerException();
1830 <        checkPermission();
1831 <        this.factory = factory;
1832 <        this.parallelism = parallelism;
1833 <        this.maxPoolSize = MAX_THREADS;
1834 <        this.maintainsParallelism = true;
1835 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1836 <        this.workerLock = new ReentrantLock();
1837 <        this.termination = workerLock.newCondition();
1838 <        this.stealCount = new AtomicLong();
1839 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1840 <        // worker array and workers are lazily constructed
1825 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1826 >        int s;
1827 >        if ((s = task.status) >= 0) {
1828 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1829 >            joiner.currentJoin = task;
1830 >            long startTime = 0L;
1831 >            for (int k = 0;;) {
1832 >                if ((s = (joiner.isEmpty() ?           // try to help
1833 >                          tryHelpStealer(joiner, task) :
1834 >                          joiner.tryRemoveAndExec(task))) == 0 &&
1835 >                    (s = task.status) >= 0) {
1836 >                    if (k == 0) {
1837 >                        startTime = System.nanoTime();
1838 >                        tryPollForAndExec(joiner, task); // check uncommon case
1839 >                    }
1840 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
1841 >                             System.nanoTime() - startTime >=
1842 >                             COMPENSATION_DELAY &&
1843 >                             tryCompensate(task, null)) {
1844 >                        if (task.trySetSignal()) {
1845 >                            synchronized (task) {
1846 >                                if (task.status >= 0) {
1847 >                                    try {                // see ForkJoinTask
1848 >                                        task.wait();     //  for explanation
1849 >                                    } catch (InterruptedException ie) {
1850 >                                    }
1851 >                                }
1852 >                                else
1853 >                                    task.notifyAll();
1854 >                            }
1855 >                        }
1856 >                        long c;                          // re-activate
1857 >                        do {} while (!U.compareAndSwapLong
1858 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1859 >                    }
1860 >                }
1861 >                if (s < 0 || (s = task.status) < 0) {
1862 >                    joiner.currentJoin = prevJoin;
1863 >                    break;
1864 >                }
1865 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1866 >                    Thread.yield();                     // for politeness
1867 >            }
1868 >        }
1869 >        return s;
1870      }
1871  
1872      /**
1873 <     * Create new worker using factory.
1874 <     * @param index the index to assign worker
1875 <     * @return new worker, or null of factory failed
1873 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1874 >     * to help join only while there is continuous progress. (Caller
1875 >     * will then enter a timed wait.)
1876 >     *
1877 >     * @param joiner the joining worker
1878 >     * @param task the task
1879 >     * @return task status on exit
1880       */
1881 <    private ForkJoinWorkerThread createWorker(int index) {
1882 <        Thread.UncaughtExceptionHandler h = ueh;
1883 <        ForkJoinWorkerThread w = factory.newThread(this);
1884 <        if (w != null) {
1885 <            w.poolIndex = index;
1886 <            w.setDaemon(true);
1887 <            w.setAsyncMode(locallyFifo);
1888 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
417 <            if (h != null)
418 <                w.setUncaughtExceptionHandler(h);
419 <        }
420 <        return w;
1881 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1882 >        int s;
1883 >        while ((s = task.status) >= 0 &&
1884 >               (joiner.isEmpty() ?
1885 >                tryHelpStealer(joiner, task) :
1886 >                joiner.tryRemoveAndExec(task)) != 0)
1887 >            ;
1888 >        return s;
1889      }
1890  
1891      /**
1892 <     * Returns a good size for worker array given pool size.
1893 <     * Currently requires size to be a power of two.
1894 <     */
1895 <    private static int arraySizeFor(int ps) {
1896 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1892 >     * Returns a (probably) non-empty steal queue, if one is found
1893 >     * during a random, then cyclic scan, else null.  This method must
1894 >     * be retried by caller if, by the time it tries to use the queue,
1895 >     * it is empty.
1896 >     */
1897 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1898 >        // Similar to loop in scan(), but ignoring submissions
1899 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1900 >        int step = (r >>> 16) | 1;
1901 >        for (WorkQueue[] ws;;) {
1902 >            int rs = runState, m;
1903 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1904 >                return null;
1905 >            for (int j = (m + 1) << 2; ; r += step) {
1906 >                WorkQueue q = ws[((r << 1) | 1) & m];
1907 >                if (q != null && !q.isEmpty())
1908 >                    return q;
1909 >                else if (--j < 0) {
1910 >                    if (runState == rs)
1911 >                        return null;
1912 >                    break;
1913 >                }
1914 >            }
1915 >        }
1916      }
1917  
1918 +
1919      /**
1920 <     * Creates or resizes array if necessary to hold newLength.
1921 <     * Call only under exclusion or lock.
1922 <     * @return the array
1923 <     */
1924 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1925 <        ForkJoinWorkerThread[] ws = workers;
1926 <        if (ws == null)
1927 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1928 <        else if (newLength > ws.length)
1929 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1930 <        else
1931 <            return ws;
1920 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1921 >     * active count ctl maintenance, but rather than blocking
1922 >     * when tasks cannot be found, we rescan until all others cannot
1923 >     * find tasks either.
1924 >     */
1925 >    final void helpQuiescePool(WorkQueue w) {
1926 >        for (boolean active = true;;) {
1927 >            ForkJoinTask<?> localTask; // exhaust local queue
1928 >            while ((localTask = w.nextLocalTask()) != null)
1929 >                localTask.doExec();
1930 >            WorkQueue q = findNonEmptyStealQueue(w);
1931 >            if (q != null) {
1932 >                ForkJoinTask<?> t; int b;
1933 >                if (!active) {      // re-establish active count
1934 >                    long c;
1935 >                    active = true;
1936 >                    do {} while (!U.compareAndSwapLong
1937 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1938 >                }
1939 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1940 >                    w.runSubtask(t);
1941 >            }
1942 >            else {
1943 >                long c;
1944 >                if (active) {       // decrement active count without queuing
1945 >                    active = false;
1946 >                    do {} while (!U.compareAndSwapLong
1947 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1948 >                }
1949 >                else
1950 >                    c = ctl;        // re-increment on exit
1951 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1952 >                    do {} while (!U.compareAndSwapLong
1953 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1954 >                    break;
1955 >                }
1956 >            }
1957 >        }
1958      }
1959  
1960      /**
1961 <     * Try to shrink workers into smaller array after one or more terminate
1961 >     * Gets and removes a local or stolen task for the given worker.
1962 >     *
1963 >     * @return a task, if available
1964       */
1965 <    private void tryShrinkWorkerArray() {
1966 <        ForkJoinWorkerThread[] ws = workers;
1967 <        if (ws != null) {
1968 <            int len = ws.length;
1969 <            int last = len - 1;
1970 <            while (last >= 0 && ws[last] == null)
1971 <                --last;
1972 <            int newLength = arraySizeFor(last+1);
1973 <            if (newLength < len)
458 <                workers = Arrays.copyOf(ws, newLength);
1965 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1966 >        for (ForkJoinTask<?> t;;) {
1967 >            WorkQueue q; int b;
1968 >            if ((t = w.nextLocalTask()) != null)
1969 >                return t;
1970 >            if ((q = findNonEmptyStealQueue(w)) == null)
1971 >                return null;
1972 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1973 >                return t;
1974          }
1975      }
1976  
1977      /**
1978 <     * Initialize workers if necessary
1979 <     */
1980 <    final void ensureWorkerInitialization() {
1981 <        ForkJoinWorkerThread[] ws = workers;
1982 <        if (ws == null) {
1983 <            final ReentrantLock lock = this.workerLock;
1984 <            lock.lock();
1985 <            try {
1986 <                ws = workers;
1987 <                if (ws == null) {
1988 <                    int ps = parallelism;
1989 <                    ws = ensureWorkerArrayCapacity(ps);
1990 <                    for (int i = 0; i < ps; ++i) {
1991 <                        ForkJoinWorkerThread w = createWorker(i);
1992 <                        if (w != null) {
1993 <                            ws[i] = w;
1994 <                            w.start();
1995 <                            updateWorkerCount(1);
1978 >     * Returns the approximate (non-atomic) number of idle threads per
1979 >     * active thread to offset steal queue size for method
1980 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1981 >     */
1982 >    final int idlePerActive() {
1983 >        // Approximate at powers of two for small values, saturate past 4
1984 >        int p = parallelism;
1985 >        int a = p + (int)(ctl >> AC_SHIFT);
1986 >        return (a > (p >>>= 1) ? 0 :
1987 >                a > (p >>>= 1) ? 1 :
1988 >                a > (p >>>= 1) ? 2 :
1989 >                a > (p >>>= 1) ? 4 :
1990 >                8);
1991 >    }
1992 >
1993 >    //  Termination
1994 >
1995 >    /**
1996 >     * Possibly initiates and/or completes termination.  The caller
1997 >     * triggering termination runs three passes through workQueues:
1998 >     * (0) Setting termination status, followed by wakeups of queued
1999 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2000 >     * threads (likely in external tasks, but possibly also blocked in
2001 >     * joins).  Each pass repeats previous steps because of potential
2002 >     * lagging thread creation.
2003 >     *
2004 >     * @param now if true, unconditionally terminate, else only
2005 >     * if no work and no active workers
2006 >     * @param enable if true, enable shutdown when next possible
2007 >     * @return true if now terminating or terminated
2008 >     */
2009 >    private boolean tryTerminate(boolean now, boolean enable) {
2010 >        Mutex lock = this.lock;
2011 >        for (long c;;) {
2012 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2013 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2014 >                    lock.lock();                    // don't need try/finally
2015 >                    termination.signalAll();        // signal when 0 workers
2016 >                    lock.unlock();
2017 >                }
2018 >                return true;
2019 >            }
2020 >            if (runState >= 0) {                    // not yet enabled
2021 >                if (!enable)
2022 >                    return false;
2023 >                lock.lock();
2024 >                runState |= SHUTDOWN;
2025 >                lock.unlock();
2026 >            }
2027 >            if (!now) {                             // check if idle & no tasks
2028 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2029 >                    hasQueuedSubmissions())
2030 >                    return false;
2031 >                // Check for unqueued inactive workers. One pass suffices.
2032 >                WorkQueue[] ws = workQueues; WorkQueue w;
2033 >                if (ws != null) {
2034 >                    for (int i = 1; i < ws.length; i += 2) {
2035 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2036 >                            return false;
2037 >                    }
2038 >                }
2039 >            }
2040 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2041 >                for (int pass = 0; pass < 3; ++pass) {
2042 >                    WorkQueue[] ws = workQueues;
2043 >                    if (ws != null) {
2044 >                        WorkQueue w;
2045 >                        int n = ws.length;
2046 >                        for (int i = 0; i < n; ++i) {
2047 >                            if ((w = ws[i]) != null) {
2048 >                                w.runState = -1;
2049 >                                if (pass > 0) {
2050 >                                    w.cancelAll();
2051 >                                    if (pass > 1)
2052 >                                        w.interruptOwner();
2053 >                                }
2054 >                            }
2055 >                        }
2056 >                        // Wake up workers parked on event queue
2057 >                        int i, e; long cc; Thread p;
2058 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2059 >                               (i = e & SMASK) < n &&
2060 >                               (w = ws[i]) != null) {
2061 >                            long nc = ((long)(w.nextWait & E_MASK) |
2062 >                                       ((cc + AC_UNIT) & AC_MASK) |
2063 >                                       (cc & (TC_MASK|STOP_BIT)));
2064 >                            if (w.eventCount == (e | INT_SIGN) &&
2065 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2066 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2067 >                                w.runState = -1;
2068 >                                if ((p = w.parker) != null)
2069 >                                    U.unpark(p);
2070 >                            }
2071                          }
2072                      }
2073                  }
484            } finally {
485                lock.unlock();
2074              }
2075          }
2076      }
2077  
2078 +    // Exported methods
2079 +
2080 +    // Constructors
2081 +
2082      /**
2083 <     * Worker creation and startup for threads added via setParallelism.
2083 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2084 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2085 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2086 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2087 >     *
2088 >     * @throws SecurityException if a security manager exists and
2089 >     *         the caller is not permitted to modify threads
2090 >     *         because it does not hold {@link
2091 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2092       */
2093 <    private void createAndStartAddedWorkers() {
2094 <        resumeAllSpares();  // Allow spares to convert to nonspare
2095 <        int ps = parallelism;
496 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
497 <        int len = ws.length;
498 <        // Sweep through slots, to keep lowest indices most populated
499 <        int k = 0;
500 <        while (k < len) {
501 <            if (ws[k] != null) {
502 <                ++k;
503 <                continue;
504 <            }
505 <            int s = workerCounts;
506 <            int tc = totalCountOf(s);
507 <            int rc = runningCountOf(s);
508 <            if (rc >= ps || tc >= ps)
509 <                break;
510 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
511 <                ForkJoinWorkerThread w = createWorker(k);
512 <                if (w != null) {
513 <                    ws[k++] = w;
514 <                    w.start();
515 <                }
516 <                else {
517 <                    updateWorkerCount(-1); // back out on failed creation
518 <                    break;
519 <                }
520 <            }
521 <        }
2093 >    public ForkJoinPool() {
2094 >        this(Runtime.getRuntime().availableProcessors(),
2095 >             defaultForkJoinWorkerThreadFactory, null, false);
2096      }
2097  
2098 <    // Execution methods
2098 >    /**
2099 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
2100 >     * level, the {@linkplain
2101 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2102 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2103 >     *
2104 >     * @param parallelism the parallelism level
2105 >     * @throws IllegalArgumentException if parallelism less than or
2106 >     *         equal to zero, or greater than implementation limit
2107 >     * @throws SecurityException if a security manager exists and
2108 >     *         the caller is not permitted to modify threads
2109 >     *         because it does not hold {@link
2110 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2111 >     */
2112 >    public ForkJoinPool(int parallelism) {
2113 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2114 >    }
2115  
2116      /**
2117 <     * Common code for execute, invoke and submit
2117 >     * Creates a {@code ForkJoinPool} with the given parameters.
2118 >     *
2119 >     * @param parallelism the parallelism level. For default value,
2120 >     * use {@link java.lang.Runtime#availableProcessors}.
2121 >     * @param factory the factory for creating new threads. For default value,
2122 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2123 >     * @param handler the handler for internal worker threads that
2124 >     * terminate due to unrecoverable errors encountered while executing
2125 >     * tasks. For default value, use {@code null}.
2126 >     * @param asyncMode if true,
2127 >     * establishes local first-in-first-out scheduling mode for forked
2128 >     * tasks that are never joined. This mode may be more appropriate
2129 >     * than default locally stack-based mode in applications in which
2130 >     * worker threads only process event-style asynchronous tasks.
2131 >     * For default value, use {@code false}.
2132 >     * @throws IllegalArgumentException if parallelism less than or
2133 >     *         equal to zero, or greater than implementation limit
2134 >     * @throws NullPointerException if the factory is null
2135 >     * @throws SecurityException if a security manager exists and
2136 >     *         the caller is not permitted to modify threads
2137 >     *         because it does not hold {@link
2138 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2139       */
2140 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2141 <        if (isShutdown())
2142 <            throw new RejectedExecutionException();
2143 <        if (workers == null)
2144 <            ensureWorkerInitialization();
2145 <        submissionQueue.offer(task);
2146 <        signalIdleWorkers();
2140 >    public ForkJoinPool(int parallelism,
2141 >                        ForkJoinWorkerThreadFactory factory,
2142 >                        Thread.UncaughtExceptionHandler handler,
2143 >                        boolean asyncMode) {
2144 >        checkPermission();
2145 >        if (factory == null)
2146 >            throw new NullPointerException();
2147 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2148 >            throw new IllegalArgumentException();
2149 >        this.parallelism = parallelism;
2150 >        this.factory = factory;
2151 >        this.ueh = handler;
2152 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2153 >        long np = (long)(-parallelism); // offset ctl counts
2154 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2155 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2156 >        int n = parallelism - 1;
2157 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2158 >        int size = (n + 1) << 1;        // #slots = 2*#workers
2159 >        this.submitMask = size - 1;     // room for max # of submit queues
2160 >        this.workQueues = new WorkQueue[size];
2161 >        this.termination = (this.lock = new Mutex()).newCondition();
2162 >        this.stealCount = new AtomicLong();
2163 >        this.nextWorkerNumber = new AtomicInteger();
2164 >        int pn = poolNumberGenerator.incrementAndGet();
2165 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2166 >        sb.append(Integer.toString(pn));
2167 >        sb.append("-worker-");
2168 >        this.workerNamePrefix = sb.toString();
2169 >        lock.lock();
2170 >        this.runState = 1;              // set init flag
2171 >        lock.unlock();
2172      }
2173  
2174 +    // Execution methods
2175 +
2176      /**
2177 <     * Performs the given task; returning its result upon completion
2177 >     * Performs the given task, returning its result upon completion.
2178 >     * If the computation encounters an unchecked Exception or Error,
2179 >     * it is rethrown as the outcome of this invocation.  Rethrown
2180 >     * exceptions behave in the same way as regular exceptions, but,
2181 >     * when possible, contain stack traces (as displayed for example
2182 >     * using {@code ex.printStackTrace()}) of both the current thread
2183 >     * as well as the thread actually encountering the exception;
2184 >     * minimally only the latter.
2185 >     *
2186       * @param task the task
2187       * @return the task's result
2188 <     * @throws NullPointerException if task is null
2189 <     * @throws RejectedExecutionException if pool is shut down
2188 >     * @throws NullPointerException if the task is null
2189 >     * @throws RejectedExecutionException if the task cannot be
2190 >     *         scheduled for execution
2191       */
2192      public <T> T invoke(ForkJoinTask<T> task) {
2193 +        if (task == null)
2194 +            throw new NullPointerException();
2195          doSubmit(task);
2196          return task.join();
2197      }
2198  
2199      /**
2200       * Arranges for (asynchronous) execution of the given task.
2201 +     *
2202       * @param task the task
2203 <     * @throws NullPointerException if task is null
2204 <     * @throws RejectedExecutionException if pool is shut down
2203 >     * @throws NullPointerException if the task is null
2204 >     * @throws RejectedExecutionException if the task cannot be
2205 >     *         scheduled for execution
2206       */
2207 <    public <T> void execute(ForkJoinTask<T> task) {
2207 >    public void execute(ForkJoinTask<?> task) {
2208 >        if (task == null)
2209 >            throw new NullPointerException();
2210          doSubmit(task);
2211      }
2212  
2213      // AbstractExecutorService methods
2214  
2215 +    /**
2216 +     * @throws NullPointerException if the task is null
2217 +     * @throws RejectedExecutionException if the task cannot be
2218 +     *         scheduled for execution
2219 +     */
2220      public void execute(Runnable task) {
2221 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2221 >        if (task == null)
2222 >            throw new NullPointerException();
2223 >        ForkJoinTask<?> job;
2224 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2225 >            job = (ForkJoinTask<?>) task;
2226 >        else
2227 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2228 >        doSubmit(job);
2229      }
2230  
2231 +    /**
2232 +     * Submits a ForkJoinTask for execution.
2233 +     *
2234 +     * @param task the task to submit
2235 +     * @return the task
2236 +     * @throws NullPointerException if the task is null
2237 +     * @throws RejectedExecutionException if the task cannot be
2238 +     *         scheduled for execution
2239 +     */
2240 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2241 +        if (task == null)
2242 +            throw new NullPointerException();
2243 +        doSubmit(task);
2244 +        return task;
2245 +    }
2246 +
2247 +    /**
2248 +     * @throws NullPointerException if the task is null
2249 +     * @throws RejectedExecutionException if the task cannot be
2250 +     *         scheduled for execution
2251 +     */
2252      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2253 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2253 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2254          doSubmit(job);
2255          return job;
2256      }
2257  
2258 +    /**
2259 +     * @throws NullPointerException if the task is null
2260 +     * @throws RejectedExecutionException if the task cannot be
2261 +     *         scheduled for execution
2262 +     */
2263      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2264 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2264 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2265          doSubmit(job);
2266          return job;
2267      }
2268  
2269 +    /**
2270 +     * @throws NullPointerException if the task is null
2271 +     * @throws RejectedExecutionException if the task cannot be
2272 +     *         scheduled for execution
2273 +     */
2274      public ForkJoinTask<?> submit(Runnable task) {
2275 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2275 >        if (task == null)
2276 >            throw new NullPointerException();
2277 >        ForkJoinTask<?> job;
2278 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2279 >            job = (ForkJoinTask<?>) task;
2280 >        else
2281 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2282          doSubmit(job);
2283          return job;
2284      }
2285  
2286      /**
2287 <     * Adaptor for Runnables. This implements RunnableFuture
2288 <     * to be compliant with AbstractExecutorService constraints
587 <     */
588 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
589 <        implements RunnableFuture<T> {
590 <        final Runnable runnable;
591 <        final T resultOnCompletion;
592 <        T result;
593 <        AdaptedRunnable(Runnable runnable, T result) {
594 <            if (runnable == null) throw new NullPointerException();
595 <            this.runnable = runnable;
596 <            this.resultOnCompletion = result;
597 <        }
598 <        public T getRawResult() { return result; }
599 <        public void setRawResult(T v) { result = v; }
600 <        public boolean exec() {
601 <            runnable.run();
602 <            result = resultOnCompletion;
603 <            return true;
604 <        }
605 <        public void run() { invoke(); }
606 <    }
607 <
608 <    /**
609 <     * Adaptor for Callables
2287 >     * @throws NullPointerException       {@inheritDoc}
2288 >     * @throws RejectedExecutionException {@inheritDoc}
2289       */
611    static final class AdaptedCallable<T> extends ForkJoinTask<T>
612        implements RunnableFuture<T> {
613        final Callable<T> callable;
614        T result;
615        AdaptedCallable(Callable<T> callable) {
616            if (callable == null) throw new NullPointerException();
617            this.callable = callable;
618        }
619        public T getRawResult() { return result; }
620        public void setRawResult(T v) { result = v; }
621        public boolean exec() {
622            try {
623                result = callable.call();
624                return true;
625            } catch (Error err) {
626                throw err;
627            } catch (RuntimeException rex) {
628                throw rex;
629            } catch (Exception ex) {
630                throw new RuntimeException(ex);
631            }
632        }
633        public void run() { invoke(); }
634    }
635
2290      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2291 <        ArrayList<ForkJoinTask<T>> ts =
2292 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2293 <        for (Callable<T> c : tasks)
2294 <            ts.add(new AdaptedCallable<T>(c));
2295 <        invoke(new InvokeAll<T>(ts));
2296 <        return (List<Future<T>>)(List)ts;
2297 <    }
2291 >        // In previous versions of this class, this method constructed
2292 >        // a task to run ForkJoinTask.invokeAll, but now external
2293 >        // invocation of multiple tasks is at least as efficient.
2294 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2295 >        // Workaround needed because method wasn't declared with
2296 >        // wildcards in return type but should have been.
2297 >        @SuppressWarnings({"unchecked", "rawtypes"})
2298 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2299  
2300 <    static final class InvokeAll<T> extends RecursiveAction {
2301 <        final ArrayList<ForkJoinTask<T>> tasks;
2302 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2303 <        public void compute() {
2304 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2300 >        boolean done = false;
2301 >        try {
2302 >            for (Callable<T> t : tasks) {
2303 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2304 >                doSubmit(f);
2305 >                fs.add(f);
2306 >            }
2307 >            for (ForkJoinTask<T> f : fs)
2308 >                f.quietlyJoin();
2309 >            done = true;
2310 >            return futures;
2311 >        } finally {
2312 >            if (!done)
2313 >                for (ForkJoinTask<T> f : fs)
2314 >                    f.cancel(false);
2315          }
2316      }
2317  
653    // Configuration and status settings and queries
654
2318      /**
2319 <     * Returns the factory used for constructing new workers
2319 >     * Returns the factory used for constructing new workers.
2320       *
2321       * @return the factory used for constructing new workers
2322       */
# Line 664 | Line 2327 | public class ForkJoinPool extends Abstra
2327      /**
2328       * Returns the handler for internal worker threads that terminate
2329       * due to unrecoverable errors encountered while executing tasks.
667     * @return the handler, or null if none
668     */
669    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
670        Thread.UncaughtExceptionHandler h;
671        final ReentrantLock lock = this.workerLock;
672        lock.lock();
673        try {
674            h = ueh;
675        } finally {
676            lock.unlock();
677        }
678        return h;
679    }
680
681    /**
682     * Sets the handler for internal worker threads that terminate due
683     * to unrecoverable errors encountered while executing tasks.
684     * Unless set, the current default or ThreadGroup handler is used
685     * as handler.
2330       *
2331 <     * @param h the new handler
688 <     * @return the old handler, or null if none
689 <     * @throws SecurityException if a security manager exists and
690 <     *         the caller is not permitted to modify threads
691 <     *         because it does not hold {@link
692 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2331 >     * @return the handler, or {@code null} if none
2332       */
2333 <    public Thread.UncaughtExceptionHandler
2334 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
696 <        checkPermission();
697 <        Thread.UncaughtExceptionHandler old = null;
698 <        final ReentrantLock lock = this.workerLock;
699 <        lock.lock();
700 <        try {
701 <            old = ueh;
702 <            ueh = h;
703 <            ForkJoinWorkerThread[] ws = workers;
704 <            if (ws != null) {
705 <                for (int i = 0; i < ws.length; ++i) {
706 <                    ForkJoinWorkerThread w = ws[i];
707 <                    if (w != null)
708 <                        w.setUncaughtExceptionHandler(h);
709 <                }
710 <            }
711 <        } finally {
712 <            lock.unlock();
713 <        }
714 <        return old;
715 <    }
716 <
717 <
718 <    /**
719 <     * Sets the target parallelism level of this pool.
720 <     * @param parallelism the target parallelism
721 <     * @throws IllegalArgumentException if parallelism less than or
722 <     * equal to zero or greater than maximum size bounds.
723 <     * @throws SecurityException if a security manager exists and
724 <     *         the caller is not permitted to modify threads
725 <     *         because it does not hold {@link
726 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
727 <     */
728 <    public void setParallelism(int parallelism) {
729 <        checkPermission();
730 <        if (parallelism <= 0 || parallelism > maxPoolSize)
731 <            throw new IllegalArgumentException();
732 <        final ReentrantLock lock = this.workerLock;
733 <        lock.lock();
734 <        try {
735 <            if (!isTerminating()) {
736 <                int p = this.parallelism;
737 <                this.parallelism = parallelism;
738 <                if (parallelism > p)
739 <                    createAndStartAddedWorkers();
740 <                else
741 <                    trimSpares();
742 <            }
743 <        } finally {
744 <            lock.unlock();
745 <        }
746 <        signalIdleWorkers();
2333 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2334 >        return ueh;
2335      }
2336  
2337      /**
2338 <     * Returns the targeted number of worker threads in this pool.
2338 >     * Returns the targeted parallelism level of this pool.
2339       *
2340 <     * @return the targeted number of worker threads in this pool
2340 >     * @return the targeted parallelism level of this pool
2341       */
2342      public int getParallelism() {
2343          return parallelism;
# Line 757 | Line 2345 | public class ForkJoinPool extends Abstra
2345  
2346      /**
2347       * Returns the number of worker threads that have started but not
2348 <     * yet terminated.  This result returned by this method may differ
2349 <     * from {@code getParallelism} when threads are created to
2348 >     * yet terminated.  The result returned by this method may differ
2349 >     * from {@link #getParallelism} when threads are created to
2350       * maintain parallelism when others are cooperatively blocked.
2351       *
2352       * @return the number of worker threads
2353       */
2354      public int getPoolSize() {
2355 <        return totalCountOf(workerCounts);
768 <    }
769 <
770 <    /**
771 <     * Returns the maximum number of threads allowed to exist in the
772 <     * pool, even if there are insufficient unblocked running threads.
773 <     * @return the maximum
774 <     */
775 <    public int getMaximumPoolSize() {
776 <        return maxPoolSize;
777 <    }
778 <
779 <    /**
780 <     * Sets the maximum number of threads allowed to exist in the
781 <     * pool, even if there are insufficient unblocked running threads.
782 <     * Setting this value has no effect on current pool size. It
783 <     * controls construction of new threads.
784 <     * @throws IllegalArgumentException if negative or greater then
785 <     * internal implementation limit.
786 <     */
787 <    public void setMaximumPoolSize(int newMax) {
788 <        if (newMax < 0 || newMax > MAX_THREADS)
789 <            throw new IllegalArgumentException();
790 <        maxPoolSize = newMax;
2355 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2356      }
2357  
793
2358      /**
2359 <     * Returns true if this pool dynamically maintains its target
796 <     * parallelism level. If false, new threads are added only to
797 <     * avoid possible starvation.
798 <     * This setting is by default true;
799 <     * @return true if maintains parallelism
800 <     */
801 <    public boolean getMaintainsParallelism() {
802 <        return maintainsParallelism;
803 <    }
804 <
805 <    /**
806 <     * Sets whether this pool dynamically maintains its target
807 <     * parallelism level. If false, new threads are added only to
808 <     * avoid possible starvation.
809 <     * @param enable true to maintains parallelism
810 <     */
811 <    public void setMaintainsParallelism(boolean enable) {
812 <        maintainsParallelism = enable;
813 <    }
814 <
815 <    /**
816 <     * Establishes local first-in-first-out scheduling mode for forked
817 <     * tasks that are never joined. This mode may be more appropriate
818 <     * than default locally stack-based mode in applications in which
819 <     * worker threads only process asynchronous tasks.  This method is
820 <     * designed to be invoked only when pool is quiescent, and
821 <     * typically only before any tasks are submitted. The effects of
822 <     * invocations at other times may be unpredictable.
823 <     *
824 <     * @param async if true, use locally FIFO scheduling
825 <     * @return the previous mode.
826 <     */
827 <    public boolean setAsyncMode(boolean async) {
828 <        boolean oldMode = locallyFifo;
829 <        locallyFifo = async;
830 <        ForkJoinWorkerThread[] ws = workers;
831 <        if (ws != null) {
832 <            for (int i = 0; i < ws.length; ++i) {
833 <                ForkJoinWorkerThread t = ws[i];
834 <                if (t != null)
835 <                    t.setAsyncMode(async);
836 <            }
837 <        }
838 <        return oldMode;
839 <    }
840 <
841 <    /**
842 <     * Returns true if this pool uses local first-in-first-out
2359 >     * Returns {@code true} if this pool uses local first-in-first-out
2360       * scheduling mode for forked tasks that are never joined.
2361       *
2362 <     * @return true if this pool uses async mode.
2362 >     * @return {@code true} if this pool uses async mode
2363       */
2364      public boolean getAsyncMode() {
2365 <        return locallyFifo;
2365 >        return localMode != 0;
2366      }
2367  
2368      /**
2369       * Returns an estimate of the number of worker threads that are
2370       * not blocked waiting to join tasks or for other managed
2371 <     * synchronization.
2371 >     * synchronization. This method may overestimate the
2372 >     * number of running threads.
2373       *
2374       * @return the number of worker threads
2375       */
2376      public int getRunningThreadCount() {
2377 <        return runningCountOf(workerCounts);
2377 >        int rc = 0;
2378 >        WorkQueue[] ws; WorkQueue w;
2379 >        if ((ws = workQueues) != null) {
2380 >            for (int i = 1; i < ws.length; i += 2) {
2381 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2382 >                    ++rc;
2383 >            }
2384 >        }
2385 >        return rc;
2386      }
2387  
2388      /**
2389       * Returns an estimate of the number of threads that are currently
2390       * stealing or executing tasks. This method may overestimate the
2391       * number of active threads.
2392 <     * @return the number of active threads.
2392 >     *
2393 >     * @return the number of active threads
2394       */
2395      public int getActiveThreadCount() {
2396 <        return activeCountOf(runControl);
2396 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2397 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2398      }
2399  
2400      /**
2401 <     * Returns an estimate of the number of threads that are currently
2402 <     * idle waiting for tasks. This method may underestimate the
2403 <     * number of idle threads.
2404 <     * @return the number of idle threads.
2405 <     */
2406 <    final int getIdleThreadCount() {
2407 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
2408 <        return (c <= 0)? 0 : c;
2409 <    }
882 <
883 <    /**
884 <     * Returns true if all worker threads are currently idle. An idle
885 <     * worker is one that cannot obtain a task to execute because none
886 <     * are available to steal from other threads, and there are no
887 <     * pending submissions to the pool. This method is conservative:
888 <     * It might not return true immediately upon idleness of all
889 <     * threads, but will eventually become true if threads remain
890 <     * inactive.
891 <     * @return true if all threads are currently idle
2401 >     * Returns {@code true} if all worker threads are currently idle.
2402 >     * An idle worker is one that cannot obtain a task to execute
2403 >     * because none are available to steal from other threads, and
2404 >     * there are no pending submissions to the pool. This method is
2405 >     * conservative; it might not return {@code true} immediately upon
2406 >     * idleness of all threads, but will eventually become true if
2407 >     * threads remain inactive.
2408 >     *
2409 >     * @return {@code true} if all threads are currently idle
2410       */
2411      public boolean isQuiescent() {
2412 <        return activeCountOf(runControl) == 0;
2412 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2413      }
2414  
2415      /**
# Line 899 | Line 2417 | public class ForkJoinPool extends Abstra
2417       * one thread's work queue by another. The reported value
2418       * underestimates the actual total number of steals when the pool
2419       * is not quiescent. This value may be useful for monitoring and
2420 <     * tuning fork/join programs: In general, steal counts should be
2420 >     * tuning fork/join programs: in general, steal counts should be
2421       * high enough to keep threads busy, but low enough to avoid
2422       * overhead and contention across threads.
2423 <     * @return the number of steals.
2423 >     *
2424 >     * @return the number of steals
2425       */
2426      public long getStealCount() {
2427 <        return stealCount.get();
2428 <    }
2429 <
2430 <    /**
2431 <     * Accumulate steal count from a worker. Call only
2432 <     * when worker known to be idle.
2433 <     */
2434 <    private void updateStealCount(ForkJoinWorkerThread w) {
2435 <        int sc = w.getAndClearStealCount();
917 <        if (sc != 0)
918 <            stealCount.addAndGet(sc);
2427 >        long count = stealCount.get();
2428 >        WorkQueue[] ws; WorkQueue w;
2429 >        if ((ws = workQueues) != null) {
2430 >            for (int i = 1; i < ws.length; i += 2) {
2431 >                if ((w = ws[i]) != null)
2432 >                    count += w.totalSteals;
2433 >            }
2434 >        }
2435 >        return count;
2436      }
2437  
2438      /**
# Line 925 | Line 2442 | public class ForkJoinPool extends Abstra
2442       * an approximation, obtained by iterating across all threads in
2443       * the pool. This method may be useful for tuning task
2444       * granularities.
2445 <     * @return the number of queued tasks.
2445 >     *
2446 >     * @return the number of queued tasks
2447       */
2448      public long getQueuedTaskCount() {
2449          long count = 0;
2450 <        ForkJoinWorkerThread[] ws = workers;
2451 <        if (ws != null) {
2452 <            for (int i = 0; i < ws.length; ++i) {
2453 <                ForkJoinWorkerThread t = ws[i];
2454 <                if (t != null)
937 <                    count += t.getQueueSize();
2450 >        WorkQueue[] ws; WorkQueue w;
2451 >        if ((ws = workQueues) != null) {
2452 >            for (int i = 1; i < ws.length; i += 2) {
2453 >                if ((w = ws[i]) != null)
2454 >                    count += w.queueSize();
2455              }
2456          }
2457          return count;
2458      }
2459  
2460      /**
2461 <     * Returns an estimate of the number tasks submitted to this pool
2462 <     * that have not yet begun executing. This method takes time
2463 <     * proportional to the number of submissions.
2464 <     * @return the number of queued submissions.
2461 >     * Returns an estimate of the number of tasks submitted to this
2462 >     * pool that have not yet begun executing.  This method may take
2463 >     * time proportional to the number of submissions.
2464 >     *
2465 >     * @return the number of queued submissions
2466       */
2467      public int getQueuedSubmissionCount() {
2468 <        return submissionQueue.size();
2468 >        int count = 0;
2469 >        WorkQueue[] ws; WorkQueue w;
2470 >        if ((ws = workQueues) != null) {
2471 >            for (int i = 0; i < ws.length; i += 2) {
2472 >                if ((w = ws[i]) != null)
2473 >                    count += w.queueSize();
2474 >            }
2475 >        }
2476 >        return count;
2477      }
2478  
2479      /**
2480 <     * Returns true if there are any tasks submitted to this pool
2481 <     * that have not yet begun executing.
2482 <     * @return {@code true} if there are any queued submissions.
2480 >     * Returns {@code true} if there are any tasks submitted to this
2481 >     * pool that have not yet begun executing.
2482 >     *
2483 >     * @return {@code true} if there are any queued submissions
2484       */
2485      public boolean hasQueuedSubmissions() {
2486 <        return !submissionQueue.isEmpty();
2486 >        WorkQueue[] ws; WorkQueue w;
2487 >        if ((ws = workQueues) != null) {
2488 >            for (int i = 0; i < ws.length; i += 2) {
2489 >                if ((w = ws[i]) != null && !w.isEmpty())
2490 >                    return true;
2491 >            }
2492 >        }
2493 >        return false;
2494      }
2495  
2496      /**
2497       * Removes and returns the next unexecuted submission if one is
2498       * available.  This method may be useful in extensions to this
2499       * class that re-assign work in systems with multiple pools.
2500 <     * @return the next submission, or null if none
2500 >     *
2501 >     * @return the next submission, or {@code null} if none
2502       */
2503      protected ForkJoinTask<?> pollSubmission() {
2504 <        return submissionQueue.poll();
2504 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2505 >        if ((ws = workQueues) != null) {
2506 >            for (int i = 0; i < ws.length; i += 2) {
2507 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2508 >                    return t;
2509 >            }
2510 >        }
2511 >        return null;
2512      }
2513  
2514      /**
2515       * Removes all available unexecuted submitted and forked tasks
2516       * from scheduling queues and adds them to the given collection,
2517       * without altering their execution status. These may include
2518 <     * artificially generated or wrapped tasks. This method is designed
2519 <     * to be invoked only when the pool is known to be
2518 >     * artificially generated or wrapped tasks. This method is
2519 >     * designed to be invoked only when the pool is known to be
2520       * quiescent. Invocations at other times may not remove all
2521       * tasks. A failure encountered while attempting to add elements
2522       * to collection {@code c} may result in elements being in
# Line 982 | Line 2524 | public class ForkJoinPool extends Abstra
2524       * exception is thrown.  The behavior of this operation is
2525       * undefined if the specified collection is modified while the
2526       * operation is in progress.
2527 +     *
2528       * @param c the collection to transfer elements into
2529       * @return the number of elements transferred
2530       */
2531 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
2532 <        int n = submissionQueue.drainTo(c);
2533 <        ForkJoinWorkerThread[] ws = workers;
2534 <        if (ws != null) {
2531 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2532 >        int count = 0;
2533 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2534 >        if ((ws = workQueues) != null) {
2535              for (int i = 0; i < ws.length; ++i) {
2536 <                ForkJoinWorkerThread w = ws[i];
2537 <                if (w != null)
2538 <                    n += w.drainTasksTo(c);
2536 >                if ((w = ws[i]) != null) {
2537 >                    while ((t = w.poll()) != null) {
2538 >                        c.add(t);
2539 >                        ++count;
2540 >                    }
2541 >                }
2542              }
2543          }
2544 <        return n;
2544 >        return count;
2545      }
2546  
2547      /**
# Line 1006 | Line 2552 | public class ForkJoinPool extends Abstra
2552       * @return a string identifying this pool, as well as its state
2553       */
2554      public String toString() {
2555 <        int ps = parallelism;
2556 <        int wc = workerCounts;
2557 <        int rc = runControl;
2558 <        long st = getStealCount();
2559 <        long qt = getQueuedTaskCount();
2560 <        long qs = getQueuedSubmissionCount();
2555 >        // Use a single pass through workQueues to collect counts
2556 >        long qt = 0L, qs = 0L; int rc = 0;
2557 >        long st = stealCount.get();
2558 >        long c = ctl;
2559 >        WorkQueue[] ws; WorkQueue w;
2560 >        if ((ws = workQueues) != null) {
2561 >            for (int i = 0; i < ws.length; ++i) {
2562 >                if ((w = ws[i]) != null) {
2563 >                    int size = w.queueSize();
2564 >                    if ((i & 1) == 0)
2565 >                        qs += size;
2566 >                    else {
2567 >                        qt += size;
2568 >                        st += w.totalSteals;
2569 >                        if (w.isApparentlyUnblocked())
2570 >                            ++rc;
2571 >                    }
2572 >                }
2573 >            }
2574 >        }
2575 >        int pc = parallelism;
2576 >        int tc = pc + (short)(c >>> TC_SHIFT);
2577 >        int ac = pc + (int)(c >> AC_SHIFT);
2578 >        if (ac < 0) // ignore transient negative
2579 >            ac = 0;
2580 >        String level;
2581 >        if ((c & STOP_BIT) != 0)
2582 >            level = (tc == 0) ? "Terminated" : "Terminating";
2583 >        else
2584 >            level = runState < 0 ? "Shutting down" : "Running";
2585          return super.toString() +
2586 <            "[" + runStateToString(runStateOf(rc)) +
2587 <            ", parallelism = " + ps +
2588 <            ", size = " + totalCountOf(wc) +
2589 <            ", active = " + activeCountOf(rc) +
2590 <            ", running = " + runningCountOf(wc) +
2586 >            "[" + level +
2587 >            ", parallelism = " + pc +
2588 >            ", size = " + tc +
2589 >            ", active = " + ac +
2590 >            ", running = " + rc +
2591              ", steals = " + st +
2592              ", tasks = " + qt +
2593              ", submissions = " + qs +
2594              "]";
2595      }
2596  
1027    private static String runStateToString(int rs) {
1028        switch(rs) {
1029        case RUNNING: return "Running";
1030        case SHUTDOWN: return "Shutting down";
1031        case TERMINATING: return "Terminating";
1032        case TERMINATED: return "Terminated";
1033        default: throw new Error("Unknown run state");
1034        }
1035    }
1036
1037    // lifecycle control
1038
2597      /**
2598       * Initiates an orderly shutdown in which previously submitted
2599       * tasks are executed, but no new tasks will be accepted.
2600       * Invocation has no additional effect if already shut down.
2601       * Tasks that are in the process of being submitted concurrently
2602       * during the course of this method may or may not be rejected.
2603 +     *
2604       * @throws SecurityException if a security manager exists and
2605       *         the caller is not permitted to modify threads
2606       *         because it does not hold {@link
2607 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2607 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2608       */
2609      public void shutdown() {
2610          checkPermission();
2611 <        transitionRunStateTo(SHUTDOWN);
1053 <        if (canTerminateOnShutdown(runControl))
1054 <            terminateOnShutdown();
2611 >        tryTerminate(false, true);
2612      }
2613  
2614      /**
2615 <     * Attempts to stop all actively executing tasks, and cancels all
2616 <     * waiting tasks.  Tasks that are in the process of being
2617 <     * submitted or executed concurrently during the course of this
2618 <     * method may or may not be rejected. Unlike some other executors,
2619 <     * this method cancels rather than collects non-executed tasks
2620 <     * upon termination, so always returns an empty list. However, you
2621 <     * can use method {@code drainTasksTo} before invoking this
2622 <     * method to transfer unexecuted tasks to another collection.
2615 >     * Attempts to cancel and/or stop all tasks, and reject all
2616 >     * subsequently submitted tasks.  Tasks that are in the process of
2617 >     * being submitted or executed concurrently during the course of
2618 >     * this method may or may not be rejected. This method cancels
2619 >     * both existing and unexecuted tasks, in order to permit
2620 >     * termination in the presence of task dependencies. So the method
2621 >     * always returns an empty list (unlike the case for some other
2622 >     * Executors).
2623 >     *
2624       * @return an empty list
2625       * @throws SecurityException if a security manager exists and
2626       *         the caller is not permitted to modify threads
2627       *         because it does not hold {@link
2628 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2628 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2629       */
2630      public List<Runnable> shutdownNow() {
2631          checkPermission();
2632 <        terminate();
2632 >        tryTerminate(true, true);
2633          return Collections.emptyList();
2634      }
2635  
# Line 1081 | Line 2639 | public class ForkJoinPool extends Abstra
2639       * @return {@code true} if all tasks have completed following shut down
2640       */
2641      public boolean isTerminated() {
2642 <        return runStateOf(runControl) == TERMINATED;
2642 >        long c = ctl;
2643 >        return ((c & STOP_BIT) != 0L &&
2644 >                (short)(c >>> TC_SHIFT) == -parallelism);
2645      }
2646  
2647      /**
2648       * Returns {@code true} if the process of termination has
2649 <     * commenced but possibly not yet completed.
2649 >     * commenced but not yet completed.  This method may be useful for
2650 >     * debugging. A return of {@code true} reported a sufficient
2651 >     * period after shutdown may indicate that submitted tasks have
2652 >     * ignored or suppressed interruption, or are waiting for IO,
2653 >     * causing this executor not to properly terminate. (See the
2654 >     * advisory notes for class {@link ForkJoinTask} stating that
2655 >     * tasks should not normally entail blocking operations.  But if
2656 >     * they do, they must abort them on interrupt.)
2657       *
2658 <     * @return {@code true} if terminating
2658 >     * @return {@code true} if terminating but not yet terminated
2659       */
2660      public boolean isTerminating() {
2661 <        return runStateOf(runControl) >= TERMINATING;
2661 >        long c = ctl;
2662 >        return ((c & STOP_BIT) != 0L &&
2663 >                (short)(c >>> TC_SHIFT) != -parallelism);
2664      }
2665  
2666      /**
# Line 1100 | Line 2669 | public class ForkJoinPool extends Abstra
2669       * @return {@code true} if this pool has been shut down
2670       */
2671      public boolean isShutdown() {
2672 <        return runStateOf(runControl) >= SHUTDOWN;
2672 >        return runState < 0;
2673      }
2674  
2675      /**
# Line 1117 | Line 2686 | public class ForkJoinPool extends Abstra
2686      public boolean awaitTermination(long timeout, TimeUnit unit)
2687          throws InterruptedException {
2688          long nanos = unit.toNanos(timeout);
2689 <        final ReentrantLock lock = this.workerLock;
2689 >        final Mutex lock = this.lock;
2690          lock.lock();
2691          try {
2692              for (;;) {
# Line 1132 | Line 2701 | public class ForkJoinPool extends Abstra
2701          }
2702      }
2703  
1135    // Shutdown and termination support
1136
1137    /**
1138     * Callback from terminating worker. Null out the corresponding
1139     * workers slot, and if terminating, try to terminate, else try to
1140     * shrink workers array.
1141     * @param w the worker
1142     */
1143    final void workerTerminated(ForkJoinWorkerThread w) {
1144        updateStealCount(w);
1145        updateWorkerCount(-1);
1146        final ReentrantLock lock = this.workerLock;
1147        lock.lock();
1148        try {
1149            ForkJoinWorkerThread[] ws = workers;
1150            if (ws != null) {
1151                int idx = w.poolIndex;
1152                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1153                    ws[idx] = null;
1154                if (totalCountOf(workerCounts) == 0) {
1155                    terminate(); // no-op if already terminating
1156                    transitionRunStateTo(TERMINATED);
1157                    termination.signalAll();
1158                }
1159                else if (!isTerminating()) {
1160                    tryShrinkWorkerArray();
1161                    tryResumeSpare(true); // allow replacement
1162                }
1163            }
1164        } finally {
1165            lock.unlock();
1166        }
1167        signalIdleWorkers();
1168    }
1169
1170    /**
1171     * Initiate termination.
1172     */
1173    private void terminate() {
1174        if (transitionRunStateTo(TERMINATING)) {
1175            stopAllWorkers();
1176            resumeAllSpares();
1177            signalIdleWorkers();
1178            cancelQueuedSubmissions();
1179            cancelQueuedWorkerTasks();
1180            interruptUnterminatedWorkers();
1181            signalIdleWorkers(); // resignal after interrupt
1182        }
1183    }
1184
1185    /**
1186     * Possibly terminates when on shutdown state.
1187     */
1188    private void terminateOnShutdown() {
1189        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1190            terminate();
1191    }
1192
1193    /**
1194     * Clears out and cancels submissions.
1195     */
1196    private void cancelQueuedSubmissions() {
1197        ForkJoinTask<?> task;
1198        while ((task = pollSubmission()) != null)
1199            task.cancel(false);
1200    }
1201
1202    /**
1203     * Cleans out worker queues.
1204     */
1205    private void cancelQueuedWorkerTasks() {
1206        final ReentrantLock lock = this.workerLock;
1207        lock.lock();
1208        try {
1209            ForkJoinWorkerThread[] ws = workers;
1210            if (ws != null) {
1211                for (int i = 0; i < ws.length; ++i) {
1212                    ForkJoinWorkerThread t = ws[i];
1213                    if (t != null)
1214                        t.cancelTasks();
1215                }
1216            }
1217        } finally {
1218            lock.unlock();
1219        }
1220    }
1221
1222    /**
1223     * Sets each worker's status to terminating. Requires lock to avoid
1224     * conflicts with add/remove.
1225     */
1226    private void stopAllWorkers() {
1227        final ReentrantLock lock = this.workerLock;
1228        lock.lock();
1229        try {
1230            ForkJoinWorkerThread[] ws = workers;
1231            if (ws != null) {
1232                for (int i = 0; i < ws.length; ++i) {
1233                    ForkJoinWorkerThread t = ws[i];
1234                    if (t != null)
1235                        t.shutdownNow();
1236                }
1237            }
1238        } finally {
1239            lock.unlock();
1240        }
1241    }
1242
2704      /**
2705 <     * Interrupts all unterminated workers.  This is not required for
2706 <     * sake of internal control, but may help unstick user code during
1246 <     * shutdown.
1247 <     */
1248 <    private void interruptUnterminatedWorkers() {
1249 <        final ReentrantLock lock = this.workerLock;
1250 <        lock.lock();
1251 <        try {
1252 <            ForkJoinWorkerThread[] ws = workers;
1253 <            if (ws != null) {
1254 <                for (int i = 0; i < ws.length; ++i) {
1255 <                    ForkJoinWorkerThread t = ws[i];
1256 <                    if (t != null && !t.isTerminated()) {
1257 <                        try {
1258 <                            t.interrupt();
1259 <                        } catch (SecurityException ignore) {
1260 <                        }
1261 <                    }
1262 <                }
1263 <            }
1264 <        } finally {
1265 <            lock.unlock();
1266 <        }
1267 <    }
1268 <
1269 <
1270 <    /*
1271 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1272 <     * are basic Treiber stack nodes, also used for spare stack.
2705 >     * Interface for extending managed parallelism for tasks running
2706 >     * in {@link ForkJoinPool}s.
2707       *
2708 <     * The event barrier has an event count and a wait queue (actually
2709 <     * a Treiber stack).  Workers are enabled to look for work when
2710 <     * the eventCount is incremented. If they fail to find work, they
2711 <     * may wait for next count. Upon release, threads help others wake
2712 <     * up.
2713 <     *
2714 <     * Synchronization events occur only in enough contexts to
2715 <     * maintain overall liveness:
2716 <     *
2717 <     *   - Submission of a new task to the pool
2718 <     *   - Resizes or other changes to the workers array
2719 <     *   - pool termination
2720 <     *   - A worker pushing a task on an empty queue
1287 <     *
1288 <     * The case of pushing a task occurs often enough, and is heavy
1289 <     * enough compared to simple stack pushes, to require special
1290 <     * handling: Method signalWork returns without advancing count if
1291 <     * the queue appears to be empty.  This would ordinarily result in
1292 <     * races causing some queued waiters not to be woken up. To avoid
1293 <     * this, the first worker enqueued in method sync (see
1294 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1295 <     * helps signal if any are found. This works well because the
1296 <     * worker has nothing better to do, and so might as well help
1297 <     * alleviate the overhead and contention on the threads actually
1298 <     * doing work.  Also, since event counts increments on task
1299 <     * availability exist to maintain liveness (rather than to force
1300 <     * refreshes etc), it is OK for callers to exit early if
1301 <     * contending with another signaller.
1302 <     */
1303 <    static final class WaitQueueNode {
1304 <        WaitQueueNode next; // only written before enqueued
1305 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1306 <        final long count; // unused for spare stack
1307 <
1308 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1309 <            count = c;
1310 <            thread = w;
1311 <        }
1312 <
1313 <        /**
1314 <         * Wakes up waiter, returning false if known to already
1315 <         */
1316 <        boolean signal() {
1317 <            ForkJoinWorkerThread t = thread;
1318 <            if (t == null)
1319 <                return false;
1320 <            thread = null;
1321 <            LockSupport.unpark(t);
1322 <            return true;
1323 <        }
1324 <
1325 <        /**
1326 <         * Awaits release on sync.
1327 <         */
1328 <        void awaitSyncRelease(ForkJoinPool p) {
1329 <            while (thread != null && !p.syncIsReleasable(this))
1330 <                LockSupport.park(this);
1331 <        }
1332 <
1333 <        /**
1334 <         * Awaits resumption as spare.
1335 <         */
1336 <        void awaitSpareRelease() {
1337 <            while (thread != null) {
1338 <                if (!Thread.interrupted())
1339 <                    LockSupport.park(this);
1340 <            }
1341 <        }
1342 <    }
1343 <
1344 <    /**
1345 <     * Ensures that no thread is waiting for count to advance from the
1346 <     * current value of eventCount read on entry to this method, by
1347 <     * releasing waiting threads if necessary.
1348 <     * @return the count
1349 <     */
1350 <    final long ensureSync() {
1351 <        long c = eventCount;
1352 <        WaitQueueNode q;
1353 <        while ((q = syncStack) != null && q.count < c) {
1354 <            if (casBarrierStack(q, null)) {
1355 <                do {
1356 <                    q.signal();
1357 <                } while ((q = q.next) != null);
1358 <                break;
1359 <            }
1360 <        }
1361 <        return c;
1362 <    }
1363 <
1364 <    /**
1365 <     * Increments event count and releases waiting threads.
1366 <     */
1367 <    private void signalIdleWorkers() {
1368 <        long c;
1369 <        do;while (!casEventCount(c = eventCount, c+1));
1370 <        ensureSync();
1371 <    }
1372 <
1373 <    /**
1374 <     * Signals threads waiting to poll a task. Because method sync
1375 <     * rechecks availability, it is OK to only proceed if queue
1376 <     * appears to be non-empty, and OK to skip under contention to
1377 <     * increment count (since some other thread succeeded).
1378 <     */
1379 <    final void signalWork() {
1380 <        long c;
1381 <        WaitQueueNode q;
1382 <        if (syncStack != null &&
1383 <            casEventCount(c = eventCount, c+1) &&
1384 <            (((q = syncStack) != null && q.count <= c) &&
1385 <             (!casBarrierStack(q, q.next) || !q.signal())))
1386 <            ensureSync();
1387 <    }
1388 <
1389 <    /**
1390 <     * Waits until event count advances from last value held by
1391 <     * caller, or if excess threads, caller is resumed as spare, or
1392 <     * caller or pool is terminating. Updates caller's event on exit.
1393 <     * @param w the calling worker thread
1394 <     */
1395 <    final void sync(ForkJoinWorkerThread w) {
1396 <        updateStealCount(w); // Transfer w's count while it is idle
1397 <
1398 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1399 <            long prev = w.lastEventCount;
1400 <            WaitQueueNode node = null;
1401 <            WaitQueueNode h;
1402 <            while (eventCount == prev &&
1403 <                   ((h = syncStack) == null || h.count == prev)) {
1404 <                if (node == null)
1405 <                    node = new WaitQueueNode(prev, w);
1406 <                if (casBarrierStack(node.next = h, node)) {
1407 <                    node.awaitSyncRelease(this);
1408 <                    break;
1409 <                }
1410 <            }
1411 <            long ec = ensureSync();
1412 <            if (ec != prev) {
1413 <                w.lastEventCount = ec;
1414 <                break;
1415 <            }
1416 <        }
1417 <    }
1418 <
1419 <    /**
1420 <     * Returns true if worker waiting on sync can proceed:
1421 <     *  - on signal (thread == null)
1422 <     *  - on event count advance (winning race to notify vs signaller)
1423 <     *  - on Interrupt
1424 <     *  - if the first queued node, we find work available
1425 <     * If node was not signalled and event count not advanced on exit,
1426 <     * then we also help advance event count.
1427 <     * @return true if node can be released
1428 <     */
1429 <    final boolean syncIsReleasable(WaitQueueNode node) {
1430 <        long prev = node.count;
1431 <        if (!Thread.interrupted() && node.thread != null &&
1432 <            (node.next != null ||
1433 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1434 <            eventCount == prev)
1435 <            return false;
1436 <        if (node.thread != null) {
1437 <            node.thread = null;
1438 <            long ec = eventCount;
1439 <            if (prev <= ec) // help signal
1440 <                casEventCount(ec, ec+1);
1441 <        }
1442 <        return true;
1443 <    }
1444 <
1445 <    /**
1446 <     * Returns true if a new sync event occurred since last call to
1447 <     * sync or this method, if so, updating caller's count.
1448 <     */
1449 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1450 <        long lc = w.lastEventCount;
1451 <        long ec = ensureSync();
1452 <        if (ec == lc)
1453 <            return false;
1454 <        w.lastEventCount = ec;
1455 <        return true;
1456 <    }
1457 <
1458 <    //  Parallelism maintenance
1459 <
1460 <    /**
1461 <     * Decrements running count; if too low, adds spare.
2708 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
2709 >     * {@code isReleasable} must return {@code true} if blocking is
2710 >     * not necessary. Method {@code block} blocks the current thread
2711 >     * if necessary (perhaps internally invoking {@code isReleasable}
2712 >     * before actually blocking). These actions are performed by any
2713 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2714 >     * unusual methods in this API accommodate synchronizers that may,
2715 >     * but don't usually, block for long periods. Similarly, they
2716 >     * allow more efficient internal handling of cases in which
2717 >     * additional workers may be, but usually are not, needed to
2718 >     * ensure sufficient parallelism.  Toward this end,
2719 >     * implementations of method {@code isReleasable} must be amenable
2720 >     * to repeated invocation.
2721       *
1463     * Conceptually, all we need to do here is add or resume a
1464     * spare thread when one is about to block (and remove or
1465     * suspend it later when unblocked -- see suspendIfSpare).
1466     * However, implementing this idea requires coping with
1467     * several problems: We have imperfect information about the
1468     * states of threads. Some count updates can and usually do
1469     * lag run state changes, despite arrangements to keep them
1470     * accurate (for example, when possible, updating counts
1471     * before signalling or resuming), especially when running on
1472     * dynamic JVMs that don't optimize the infrequent paths that
1473     * update counts. Generating too many threads can make these
1474     * problems become worse, because excess threads are more
1475     * likely to be context-switched with others, slowing them all
1476     * down, especially if there is no work available, so all are
1477     * busy scanning or idling.  Also, excess spare threads can
1478     * only be suspended or removed when they are idle, not
1479     * immediately when they aren't needed. So adding threads will
1480     * raise parallelism level for longer than necessary.  Also,
1481     * FJ applications often encounter highly transient peaks when
1482     * many threads are blocked joining, but for less time than it
1483     * takes to create or resume spares.
1484     *
1485     * @param joinMe if non-null, return early if done
1486     * @param maintainParallelism if true, try to stay within
1487     * target counts, else create only to avoid starvation
1488     * @return true if joinMe known to be done
1489     */
1490    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1491        maintainParallelism &= maintainsParallelism; // overrride
1492        boolean dec = false;  // true when running count decremented
1493        while (spareStack == null || !tryResumeSpare(dec)) {
1494            int counts = workerCounts;
1495            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1496                if (!needSpare(counts, maintainParallelism))
1497                    break;
1498                if (joinMe.status < 0)
1499                    return true;
1500                if (tryAddSpare(counts))
1501                    break;
1502            }
1503        }
1504        return false;
1505    }
1506
1507    /**
1508     * Same idea as preJoin
1509     */
1510    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1511        maintainParallelism &= maintainsParallelism;
1512        boolean dec = false;
1513        while (spareStack == null || !tryResumeSpare(dec)) {
1514            int counts = workerCounts;
1515            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1516                if (!needSpare(counts, maintainParallelism))
1517                    break;
1518                if (blocker.isReleasable())
1519                    return true;
1520                if (tryAddSpare(counts))
1521                    break;
1522            }
1523        }
1524        return false;
1525    }
1526
1527    /**
1528     * Returns true if a spare thread appears to be needed.  If
1529     * maintaining parallelism, returns true when the deficit in
1530     * running threads is more than the surplus of total threads, and
1531     * there is apparently some work to do.  This self-limiting rule
1532     * means that the more threads that have already been added, the
1533     * less parallelism we will tolerate before adding another.
1534     * @param counts current worker counts
1535     * @param maintainParallelism try to maintain parallelism
1536     */
1537    private boolean needSpare(int counts, boolean maintainParallelism) {
1538        int ps = parallelism;
1539        int rc = runningCountOf(counts);
1540        int tc = totalCountOf(counts);
1541        int runningDeficit = ps - rc;
1542        int totalSurplus = tc - ps;
1543        return (tc < maxPoolSize &&
1544                (rc == 0 || totalSurplus < 0 ||
1545                 (maintainParallelism &&
1546                  runningDeficit > totalSurplus &&
1547                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1548    }
1549
1550    /**
1551     * Adds a spare worker if lock available and no more than the
1552     * expected numbers of threads exist.
1553     * @return true if successful
1554     */
1555    private boolean tryAddSpare(int expectedCounts) {
1556        final ReentrantLock lock = this.workerLock;
1557        int expectedRunning = runningCountOf(expectedCounts);
1558        int expectedTotal = totalCountOf(expectedCounts);
1559        boolean success = false;
1560        boolean locked = false;
1561        // confirm counts while locking; CAS after obtaining lock
1562        try {
1563            for (;;) {
1564                int s = workerCounts;
1565                int tc = totalCountOf(s);
1566                int rc = runningCountOf(s);
1567                if (rc > expectedRunning || tc > expectedTotal)
1568                    break;
1569                if (!locked && !(locked = lock.tryLock()))
1570                    break;
1571                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1572                    createAndStartSpare(tc);
1573                    success = true;
1574                    break;
1575                }
1576            }
1577        } finally {
1578            if (locked)
1579                lock.unlock();
1580        }
1581        return success;
1582    }
1583
1584    /**
1585     * Adds the kth spare worker. On entry, pool counts are already
1586     * adjusted to reflect addition.
1587     */
1588    private void createAndStartSpare(int k) {
1589        ForkJoinWorkerThread w = null;
1590        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1591        int len = ws.length;
1592        // Probably, we can place at slot k. If not, find empty slot
1593        if (k < len && ws[k] != null) {
1594            for (k = 0; k < len && ws[k] != null; ++k)
1595                ;
1596        }
1597        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1598            ws[k] = w;
1599            w.start();
1600        }
1601        else
1602            updateWorkerCount(-1); // adjust on failure
1603        signalIdleWorkers();
1604    }
1605
1606    /**
1607     * Suspends calling thread w if there are excess threads.  Called
1608     * only from sync.  Spares are enqueued in a Treiber stack using
1609     * the same WaitQueueNodes as barriers.  They are resumed mainly
1610     * in preJoin, but are also woken on pool events that require all
1611     * threads to check run state.
1612     * @param w the caller
1613     */
1614    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1615        WaitQueueNode node = null;
1616        int s;
1617        while (parallelism < runningCountOf(s = workerCounts)) {
1618            if (node == null)
1619                node = new WaitQueueNode(0, w);
1620            if (casWorkerCounts(s, s-1)) { // representation-dependent
1621                // push onto stack
1622                do;while (!casSpareStack(node.next = spareStack, node));
1623                // block until released by resumeSpare
1624                node.awaitSpareRelease();
1625                return true;
1626            }
1627        }
1628        return false;
1629    }
1630
1631    /**
1632     * Tries to pop and resume a spare thread.
1633     * @param updateCount if true, increment running count on success
1634     * @return true if successful
1635     */
1636    private boolean tryResumeSpare(boolean updateCount) {
1637        WaitQueueNode q;
1638        while ((q = spareStack) != null) {
1639            if (casSpareStack(q, q.next)) {
1640                if (updateCount)
1641                    updateRunningCount(1);
1642                q.signal();
1643                return true;
1644            }
1645        }
1646        return false;
1647    }
1648
1649    /**
1650     * Pops and resumes all spare threads. Same idea as ensureSync.
1651     * @return true if any spares released
1652     */
1653    private boolean resumeAllSpares() {
1654        WaitQueueNode q;
1655        while ( (q = spareStack) != null) {
1656            if (casSpareStack(q, null)) {
1657                do {
1658                    updateRunningCount(1);
1659                    q.signal();
1660                } while ((q = q.next) != null);
1661                return true;
1662            }
1663        }
1664        return false;
1665    }
1666
1667    /**
1668     * Pops and shuts down excessive spare threads. Call only while
1669     * holding lock. This is not guaranteed to eliminate all excess
1670     * threads, only those suspended as spares, which are the ones
1671     * unlikely to be needed in the future.
1672     */
1673    private void trimSpares() {
1674        int surplus = totalCountOf(workerCounts) - parallelism;
1675        WaitQueueNode q;
1676        while (surplus > 0 && (q = spareStack) != null) {
1677            if (casSpareStack(q, null)) {
1678                do {
1679                    updateRunningCount(1);
1680                    ForkJoinWorkerThread w = q.thread;
1681                    if (w != null && surplus > 0 &&
1682                        runningCountOf(workerCounts) > 0 && w.shutdown())
1683                        --surplus;
1684                    q.signal();
1685                } while ((q = q.next) != null);
1686            }
1687        }
1688    }
1689
1690    /**
1691     * Interface for extending managed parallelism for tasks running
1692     * in ForkJoinPools. A ManagedBlocker provides two methods.
1693     * Method {@code isReleasable} must return true if blocking is not
1694     * necessary. Method {@code block} blocks the current thread
1695     * if necessary (perhaps internally invoking isReleasable before
1696     * actually blocking.).
2722       * <p>For example, here is a ManagedBlocker based on a
2723       * ReentrantLock:
2724 <     * <pre>
2725 <     *   class ManagedLocker implements ManagedBlocker {
2726 <     *     final ReentrantLock lock;
2727 <     *     boolean hasLock = false;
2728 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2729 <     *     public boolean block() {
2730 <     *        if (!hasLock)
2731 <     *           lock.lock();
2732 <     *        return true;
2733 <     *     }
2734 <     *     public boolean isReleasable() {
2735 <     *        return hasLock || (hasLock = lock.tryLock());
1711 <     *     }
2724 >     *  <pre> {@code
2725 >     * class ManagedLocker implements ManagedBlocker {
2726 >     *   final ReentrantLock lock;
2727 >     *   boolean hasLock = false;
2728 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2729 >     *   public boolean block() {
2730 >     *     if (!hasLock)
2731 >     *       lock.lock();
2732 >     *     return true;
2733 >     *   }
2734 >     *   public boolean isReleasable() {
2735 >     *     return hasLock || (hasLock = lock.tryLock());
2736       *   }
2737 <     * </pre>
2737 >     * }}</pre>
2738 >     *
2739 >     * <p>Here is a class that possibly blocks waiting for an
2740 >     * item on a given queue:
2741 >     *  <pre> {@code
2742 >     * class QueueTaker<E> implements ManagedBlocker {
2743 >     *   final BlockingQueue<E> queue;
2744 >     *   volatile E item = null;
2745 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2746 >     *   public boolean block() throws InterruptedException {
2747 >     *     if (item == null)
2748 >     *       item = queue.take();
2749 >     *     return true;
2750 >     *   }
2751 >     *   public boolean isReleasable() {
2752 >     *     return item != null || (item = queue.poll()) != null;
2753 >     *   }
2754 >     *   public E getItem() { // call after pool.managedBlock completes
2755 >     *     return item;
2756 >     *   }
2757 >     * }}</pre>
2758       */
2759      public static interface ManagedBlocker {
2760          /**
2761           * Possibly blocks the current thread, for example waiting for
2762           * a lock or condition.
2763 <         * @return true if no additional blocking is necessary (i.e.,
2764 <         * if isReleasable would return true).
2763 >         *
2764 >         * @return {@code true} if no additional blocking is necessary
2765 >         * (i.e., if isReleasable would return true)
2766           * @throws InterruptedException if interrupted while waiting
2767 <         * (the method is not required to do so, but is allowed to).
2767 >         * (the method is not required to do so, but is allowed to)
2768           */
2769          boolean block() throws InterruptedException;
2770  
2771          /**
2772 <         * Returns true if blocking is unnecessary.
2772 >         * Returns {@code true} if blocking is unnecessary.
2773           */
2774          boolean isReleasable();
2775      }
2776  
2777      /**
2778       * Blocks in accord with the given blocker.  If the current thread
2779 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2780 <     * spare thread to be activated if necessary to ensure parallelism
2781 <     * while the current thread is blocked.  If
2782 <     * {@code maintainParallelism} is true and the pool supports
2783 <     * it ({@link #getMaintainsParallelism}), this method attempts to
2784 <     * maintain the pool's nominal parallelism. Otherwise if activates
2785 <     * a thread only if necessary to avoid complete starvation. This
2786 <     * option may be preferable when blockages use timeouts, or are
2787 <     * almost always brief.
2788 <     *
2789 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2790 <     * equivalent to
2791 <     * <pre>
2792 <     *   while (!blocker.isReleasable())
1748 <     *      if (blocker.block())
1749 <     *         return;
1750 <     * </pre>
1751 <     * If the caller is a ForkJoinTask, then the pool may first
1752 <     * be expanded to ensure parallelism, and later adjusted.
2779 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2780 >     * arranges for a spare thread to be activated if necessary to
2781 >     * ensure sufficient parallelism while the current thread is blocked.
2782 >     *
2783 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2784 >     * behaviorally equivalent to
2785 >     *  <pre> {@code
2786 >     * while (!blocker.isReleasable())
2787 >     *   if (blocker.block())
2788 >     *     return;
2789 >     * }</pre>
2790 >     *
2791 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2792 >     * first be expanded to ensure parallelism, and later adjusted.
2793       *
2794       * @param blocker the blocker
2795 <     * @param maintainParallelism if true and supported by this pool,
1756 <     * attempt to maintain the pool's nominal parallelism; otherwise
1757 <     * activate a thread only if necessary to avoid complete
1758 <     * starvation.
1759 <     * @throws InterruptedException if blocker.block did so.
2795 >     * @throws InterruptedException if blocker.block did so
2796       */
2797 <    public static void managedBlock(ManagedBlocker blocker,
1762 <                                    boolean maintainParallelism)
2797 >    public static void managedBlock(ManagedBlocker blocker)
2798          throws InterruptedException {
2799          Thread t = Thread.currentThread();
2800 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
2801 <                             ((ForkJoinWorkerThread)t).pool : null);
2802 <        if (!blocker.isReleasable()) {
2803 <            try {
2804 <                if (pool == null ||
2805 <                    !pool.preBlock(blocker, maintainParallelism))
2806 <                    awaitBlocker(blocker);
2807 <            } finally {
2808 <                if (pool != null)
2809 <                    pool.updateRunningCount(1);
2800 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2801 >                          ((ForkJoinWorkerThread)t).pool : null);
2802 >        while (!blocker.isReleasable()) {
2803 >            if (p == null || p.tryCompensate(null, blocker)) {
2804 >                try {
2805 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2806 >                } finally {
2807 >                    if (p != null)
2808 >                        p.incrementActiveCount();
2809 >                }
2810 >                break;
2811              }
2812          }
2813      }
2814  
2815 <    private static void awaitBlocker(ManagedBlocker blocker)
2816 <        throws InterruptedException {
2817 <        do;while (!blocker.isReleasable() && !blocker.block());
1782 <    }
1783 <
1784 <    // AbstractExecutorService overrides
2815 >    // AbstractExecutorService overrides.  These rely on undocumented
2816 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2817 >    // implement RunnableFuture.
2818  
2819      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2820 <        return new AdaptedRunnable(runnable, value);
2820 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2821      }
2822  
2823      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2824 <        return new AdaptedCallable(callable);
2824 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
2825      }
2826  
2827 +    // Unsafe mechanics
2828 +    private static final sun.misc.Unsafe U;
2829 +    private static final long CTL;
2830 +    private static final long PARKBLOCKER;
2831 +    private static final int ABASE;
2832 +    private static final int ASHIFT;
2833  
2834 <    // Temporary Unsafe mechanics for preliminary release
2835 <    private static Unsafe getUnsafe() throws Throwable {
2834 >    static {
2835 >        poolNumberGenerator = new AtomicInteger();
2836 >        nextSubmitterSeed = new AtomicInteger(0x55555555);
2837 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2838 >        defaultForkJoinWorkerThreadFactory =
2839 >            new DefaultForkJoinWorkerThreadFactory();
2840 >        submitters = new ThreadSubmitter();
2841 >        int s;
2842          try {
2843 <            return Unsafe.getUnsafe();
2843 >            U = getUnsafe();
2844 >            Class<?> k = ForkJoinPool.class;
2845 >            Class<?> ak = ForkJoinTask[].class;
2846 >            CTL = U.objectFieldOffset
2847 >                (k.getDeclaredField("ctl"));
2848 >            Class<?> tk = Thread.class;
2849 >            PARKBLOCKER = U.objectFieldOffset
2850 >                (tk.getDeclaredField("parkBlocker"));
2851 >            ABASE = U.arrayBaseOffset(ak);
2852 >            s = U.arrayIndexScale(ak);
2853 >        } catch (Exception e) {
2854 >            throw new Error(e);
2855 >        }
2856 >        if ((s & (s-1)) != 0)
2857 >            throw new Error("data type scale not a power of two");
2858 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2859 >    }
2860 >
2861 >    /**
2862 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2863 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2864 >     * into a jdk.
2865 >     *
2866 >     * @return a sun.misc.Unsafe
2867 >     */
2868 >    private static sun.misc.Unsafe getUnsafe() {
2869 >        try {
2870 >            return sun.misc.Unsafe.getUnsafe();
2871          } catch (SecurityException se) {
2872              try {
2873                  return java.security.AccessController.doPrivileged
2874 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
2875 <                        public Unsafe run() throws Exception {
2876 <                            return getUnsafePrivileged();
2874 >                    (new java.security
2875 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2876 >                        public sun.misc.Unsafe run() throws Exception {
2877 >                            java.lang.reflect.Field f = sun.misc
2878 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2879 >                            f.setAccessible(true);
2880 >                            return (sun.misc.Unsafe) f.get(null);
2881                          }});
2882              } catch (java.security.PrivilegedActionException e) {
2883 <                throw e.getCause();
2883 >                throw new RuntimeException("Could not initialize intrinsics",
2884 >                                           e.getCause());
2885              }
2886          }
2887      }
2888  
1812    private static Unsafe getUnsafePrivileged()
1813            throws NoSuchFieldException, IllegalAccessException {
1814        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1815        f.setAccessible(true);
1816        return (Unsafe) f.get(null);
1817    }
1818
1819    private static long fieldOffset(String fieldName)
1820            throws NoSuchFieldException {
1821        return _unsafe.objectFieldOffset
1822            (ForkJoinPool.class.getDeclaredField(fieldName));
1823    }
1824
1825    static final Unsafe _unsafe;
1826    static final long eventCountOffset;
1827    static final long workerCountsOffset;
1828    static final long runControlOffset;
1829    static final long syncStackOffset;
1830    static final long spareStackOffset;
1831
1832    static {
1833        try {
1834            _unsafe = getUnsafe();
1835            eventCountOffset = fieldOffset("eventCount");
1836            workerCountsOffset = fieldOffset("workerCounts");
1837            runControlOffset = fieldOffset("runControl");
1838            syncStackOffset = fieldOffset("syncStack");
1839            spareStackOffset = fieldOffset("spareStack");
1840        } catch (Throwable e) {
1841            throw new RuntimeException("Could not initialize intrinsics", e);
1842        }
1843    }
1844
1845    private boolean casEventCount(long cmp, long val) {
1846        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1847    }
1848    private boolean casWorkerCounts(int cmp, int val) {
1849        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1850    }
1851    private boolean casRunControl(int cmp, int val) {
1852        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1853    }
1854    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1855        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1856    }
1857    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1858        return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1859    }
2889   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines