ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.100 by dl, Fri Apr 1 20:20:37 2011 UTC vs.
Revision 1.164 by dl, Tue Dec 18 21:46:16 2012 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.TimeoutException;
23 import java.util.concurrent.atomic.AtomicInteger;
24 import java.util.concurrent.locks.LockSupport;
25 import java.util.concurrent.locks.ReentrantLock;
26 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 34 | Line 28 | import java.util.concurrent.locks.Condit
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 58 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 92 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
105 < * <pre>
106 < * static final ForkJoinPool mainPool = new ForkJoinPool();
107 < * ...
108 < * public void sort(long[] array) {
109 < *   mainPool.invoke(new SortTask(array, 0, array.length));
110 < * }
111 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 127 | Line 125 | public class ForkJoinPool extends Abstra
125      /*
126       * Implementation Overview
127       *
128 <     * This class provides the central bookkeeping and control for a
129 <     * set of worker threads: Submissions from non-FJ threads enter
130 <     * into a submission queue. Workers take these tasks and typically
131 <     * split them into subtasks that may be stolen by other workers.
132 <     * Preference rules give first priority to processing tasks from
133 <     * their own queues (LIFO or FIFO, depending on mode), then to
134 <     * randomized FIFO steals of tasks in other worker queues, and
135 <     * lastly to new submissions.
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
220       * decentralized control -- workers mostly take tasks from
221       * themselves or each other. We cannot negate this in the
222       * implementation of other management responsibilities. The main
223       * tactic for avoiding bottlenecks is packing nearly all
224 <     * essentially atomic control state into a single 64bit volatile
225 <     * variable ("ctl"). This variable is read on the order of 10-100
226 <     * times as often as it is modified (always via CAS). (There is
227 <     * some additional control state, for example variable "shutdown"
228 <     * for which we can cope with uncoordinated updates.)  This
229 <     * streamlines synchronization and control at the expense of messy
230 <     * constructions needed to repack status bits upon updates.
231 <     * Updates tend not to contend with each other except during
232 <     * bursts while submitted tasks begin or end.  In some cases when
233 <     * they do contend, threads can instead do something else
234 <     * (usually, scan for tasks) until contention subsides.
235 <     *
236 <     * To enable packing, we restrict maximum parallelism to (1<<15)-1
237 <     * (which is far in excess of normal operating range) to allow
238 <     * ids, counts, and their negations (used for thresholding) to fit
239 <     * into 16bit fields.
240 <     *
241 <     * Recording Workers.  Workers are recorded in the "workers" array
242 <     * that is created upon pool construction and expanded if (rarely)
243 <     * necessary.  This is an array as opposed to some other data
244 <     * structure to support index-based random steals by workers.
245 <     * Updates to the array recording new workers and unrecording
246 <     * terminated ones are protected from each other by a seqLock
247 <     * (scanGuard) but the array is otherwise concurrently readable,
248 <     * and accessed directly by workers. To simplify index-based
249 <     * operations, the array size is always a power of two, and all
250 <     * readers must tolerate null slots. To avoid flailing during
251 <     * start-up, the array is presized to hold twice #parallelism
252 <     * workers (which is unlikely to need further resizing during
253 <     * execution). But to avoid dealing with so many null slots,
254 <     * variable scanGuard includes a mask for the nearest power of two
255 <     * that contains all current workers.  All worker thread creation
256 <     * is on-demand, triggered by task submissions, replacement of
257 <     * terminated workers, and/or compensation for blocked
258 <     * workers. However, all other support code is set up to work with
259 <     * other policies.  To ensure that we do not hold on to worker
260 <     * references that would prevent GC, ALL accesses to workers are
261 <     * via indices into the workers array (which is one source of some
262 <     * of the messy code constructions here). In essence, the workers
263 <     * array serves as a weak reference mechanism. Thus for example
264 <     * the wait queue field of ctl stores worker indices, not worker
265 <     * references.  Access to the workers in associated methods (for
266 <     * example signalWork) must both index-check and null-check the
267 <     * IDs. All such accesses ignore bad IDs by returning out early
268 <     * from what they are doing, since this can only be associated
269 <     * with termination, in which case it is OK to give up.
270 <     *
271 <     * All uses of the workers array, as well as queue arrays, check
272 <     * that the array is non-null (even if previously non-null). This
273 <     * allows nulling during termination, which is currently not
274 <     * necessary, but remains an option for resource-revocation-based
275 <     * shutdown schemes.
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278       *
279 <     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280       * let workers spin indefinitely scanning for tasks when none can
281       * be found immediately, and we cannot start/resume workers unless
282       * there appear to be tasks available.  On the other hand, we must
283       * quickly prod them into action when new tasks are submitted or
284 <     * generated.  We park/unpark workers after placing in an event
285 <     * wait queue when they cannot find work. This "queue" is actually
286 <     * a simple Treiber stack, headed by the "id" field of ctl, plus a
287 <     * 15bit counter value to both wake up waiters (by advancing their
288 <     * count) and avoid ABA effects. Successors are held in worker
289 <     * field "nextWait".  Queuing deals with several intrinsic races,
290 <     * mainly that a task-producing thread can miss seeing (and
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296       * signalling) another thread that gave up looking for work but
297       * has not yet entered the wait queue. We solve this by requiring
298 <     * a full sweep of all workers both before (in scan()) and after
299 <     * (in tryAwaitWork()) a newly waiting worker is added to the wait
300 <     * queue. During a rescan, the worker might release some other
301 <     * queued worker rather than itself, which has the same net
302 <     * effect. Because enqueued workers may actually be rescanning
303 <     * rather than waiting, we set and clear the "parked" field of
304 <     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
305 <     * (Use of the parked field requires a secondary recheck to avoid
306 <     * missed signals.)
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had two or fewer tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans
321 <     * as well as those performed when a worker steals a task and
322 <     * notices that there are more tasks too; together these cover the
323 <     * signals needed in cases when more than two tasks are pushed
324 <     * but untaken.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331       *
332       * Trimming workers. To release resources after periods of lack of
333       * use, a worker starting to wait when the pool is quiescent will
334 <     * time out and terminate if the pool has remained quiescent for
335 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
336 <     * terminating all workers after long periods of non-use.
337 <     *
338 <     * Submissions. External submissions are maintained in an
339 <     * array-based queue that is structured identically to
340 <     * ForkJoinWorkerThread queues except for the use of
341 <     * submissionLock in method addSubmission. Unlike the case for
342 <     * worker queues, multiple external threads can add new
343 <     * submissions, so adding requires a lock.
344 <     *
345 <     * Compensation. Beyond work-stealing support and lifecycle
346 <     * control, the main responsibility of this framework is to take
347 <     * actions when one worker is waiting to join a task stolen (or
348 <     * always held by) another.  Because we are multiplexing many
349 <     * tasks on to a pool of workers, we can't just let them block (as
350 <     * in Thread.join).  We also cannot just reassign the joiner's
351 <     * run-time stack with another and replace it later, which would
352 <     * be a form of "continuation", that even if possible is not
353 <     * necessarily a good idea since we sometimes need both an
354 <     * unblocked task and its continuation to progress. Instead we
355 <     * combine two tactics:
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339 >     *
340 >     * Shutdown and Termination. A call to shutdownNow atomically sets
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343 >     * all waiting workers.  Detecting whether termination should
344 >     * commence after a non-abrupt shutdown() call requires more work
345 >     * and bookkeeping. We need consensus about quiescence (i.e., that
346 >     * there is no more work). The active count provides a primary
347 >     * indication but non-abrupt shutdown still requires a rechecking
348 >     * scan for any workers that are inactive but not queued.
349 >     *
350 >     * Joining Tasks
351 >     * =============
352 >     *
353 >     * Any of several actions may be taken when one worker is waiting
354 >     * to join a task stolen (or always held) by another.  Because we
355 >     * are multiplexing many tasks on to a pool of workers, we can't
356 >     * just let them block (as in Thread.join).  We also cannot just
357 >     * reassign the joiner's run-time stack with another and replace
358 >     * it later, which would be a form of "continuation", that even if
359 >     * possible is not necessarily a good idea since we sometimes need
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362       *
363       *   Helping: Arranging for the joiner to execute some task that it
364 <     *      would be running if the steal had not occurred.  Method
260 <     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 <     *      links to try to find such a task.
364 >     *      would be running if the steal had not occurred.
365       *
366       *   Compensating: Unless there are already enough live threads,
367 <     *      method tryPreBlock() may create or re-activate a spare
368 <     *      thread to compensate for blocked joiners until they
369 <     *      unblock.
367 >     *      method tryCompensate() may create or re-activate a spare
368 >     *      thread to compensate for blocked joiners until they unblock.
369 >     *
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377       *
378       * The ManagedBlocker extension API can't use helping so relies
379       * only on compensation in method awaitBlocker.
380       *
381 +     * The algorithm in tryHelpStealer entails a form of "linear"
382 +     * helping: Each worker records (in field currentSteal) the most
383 +     * recent task it stole from some other worker. Plus, it records
384 +     * (in field currentJoin) the task it is currently actively
385 +     * joining. Method tryHelpStealer uses these markers to try to
386 +     * find a worker to help (i.e., steal back a task from and execute
387 +     * it) that could hasten completion of the actively joined task.
388 +     * In essence, the joiner executes a task that would be on its own
389 +     * local deque had the to-be-joined task not been stolen. This may
390 +     * be seen as a conservative variant of the approach in Wagner &
391 +     * Calder "Leapfrogging: a portable technique for implementing
392 +     * efficient futures" SIGPLAN Notices, 1993
393 +     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 +     * that: (1) We only maintain dependency links across workers upon
395 +     * steals, rather than use per-task bookkeeping.  This sometimes
396 +     * requires a linear scan of workQueues array to locate stealers,
397 +     * but often doesn't because stealers leave hints (that may become
398 +     * stale/wrong) of where to locate them.  It is only a hint
399 +     * because a worker might have had multiple steals and the hint
400 +     * records only one of them (usually the most current).  Hinting
401 +     * isolates cost to when it is needed, rather than adding to
402 +     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 +     * potentially cyclic mutual steals.  (3) It is intentionally
404 +     * racy: field currentJoin is updated only while actively joining,
405 +     * which means that we miss links in the chain during long-lived
406 +     * tasks, GC stalls etc (which is OK since blocking in such cases
407 +     * is usually a good idea).  (4) We bound the number of attempts
408 +     * to find work (see MAX_HELP) and fall back to suspending the
409 +     * worker and if necessary replacing it with another.
410 +     *
411 +     * Helping actions for CountedCompleters are much simpler: Method
412 +     * helpComplete can take and execute any task with the same root
413 +     * as the task being waited on. However, this still entails some
414 +     * traversal of completer chains, so is less efficient than using
415 +     * CountedCompleters without explicit joins.
416 +     *
417       * It is impossible to keep exactly the target parallelism number
418       * of threads running at any given time.  Determining the
419       * existence of conservatively safe helping targets, the
420       * availability of already-created spares, and the apparent need
421 <     * to create new spares are all racy and require heuristic
422 <     * guidance, so we rely on multiple retries of each.  Currently,
423 <     * in keeping with on-demand signalling policy, we compensate only
424 <     * if blocking would leave less than one active (non-waiting,
425 <     * non-blocked) worker. Additionally, to avoid some false alarms
426 <     * due to GC, lagging counters, system activity, etc, compensated
427 <     * blocking for joins is only attempted after rechecks stabilize
428 <     * (retries are interspersed with Thread.yield, for good
429 <     * citizenship).  The variable blockedCount, incremented before
430 <     * blocking and decremented after, is sometimes needed to
431 <     * distinguish cases of waiting for work vs blocking on joins or
432 <     * other managed sync. Both cases are equivalent for most pool
433 <     * control, so we can update non-atomically. (Additionally,
434 <     * contention on blockedCount alleviates some contention on ctl).
435 <     *
436 <     * Shutdown and Termination. A call to shutdownNow atomically sets
437 <     * the ctl stop bit and then (non-atomically) sets each workers
438 <     * "terminate" status, cancels all unprocessed tasks, and wakes up
439 <     * all waiting workers.  Detecting whether termination should
440 <     * commence after a non-abrupt shutdown() call requires more work
441 <     * and bookkeeping. We need consensus about quiesence (i.e., that
442 <     * there is no more work) which is reflected in active counts so
443 <     * long as there are no current blockers, as well as possible
444 <     * re-evaluations during independent changes in blocking or
445 <     * quiescing workers.
446 <     *
447 <     * Style notes: There is a lot of representation-level coupling
448 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
449 <     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
450 <     * data structures managed by ForkJoinPool, so are directly
451 <     * accessed.  Conversely we allow access to "workers" array by
452 <     * workers, and direct access to ForkJoinTask.status by both
453 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
421 >     * to create new spares are all racy, so we rely on multiple
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static commonPool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467       * trying to reduce this, since any associated future changes in
468       * representations will need to be accompanied by algorithmic
469 <     * changes anyway. All together, these low-level implementation
470 <     * choices produce as much as a factor of 4 performance
471 <     * improvement compared to naive implementations, and enable the
472 <     * processing of billions of tasks per second, at the expense of
473 <     * some ugliness.
474 <     *
475 <     * Methods signalWork() and scan() are the main bottlenecks so are
476 <     * especially heavily micro-optimized/mangled.  There are lots of
477 <     * inline assignments (of form "while ((local = field) != 0)")
478 <     * which are usually the simplest way to ensure the required read
479 <     * orderings (which are sometimes critical). This leads to a
480 <     * "C"-like style of listing declarations of these locals at the
481 <     * heads of methods or blocks.  There are several occurrences of
482 <     * the unusual "do {} while (!cas...)"  which is the simplest way
483 <     * to force an update of a CAS'ed variable. There are also other
484 <     * coding oddities that help some methods perform reasonably even
485 <     * when interpreted (not compiled).
486 <     *
487 <     * The order of declarations in this file is: (1) declarations of
488 <     * statics (2) fields (along with constants used when unpacking
489 <     * some of them), listed in an order that tends to reduce
490 <     * contention among them a bit under most JVMs.  (3) internal
491 <     * control methods (4) callbacks and other support for
492 <     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
493 <     * methods (plus a few little helpers). (6) static block
335 <     * initializing all statics in a minimally dependent order.
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494       */
495  
496 +    // Static utilities
497 +
498 +    /**
499 +     * If there is a security manager, makes sure caller has
500 +     * permission to modify threads.
501 +     */
502 +    private static void checkPermission() {
503 +        SecurityManager security = System.getSecurityManager();
504 +        if (security != null)
505 +            security.checkPermission(modifyThreadPermission);
506 +    }
507 +
508 +    // Nested classes
509 +
510      /**
511       * Factory for creating new {@link ForkJoinWorkerThread}s.
512       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 355 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
539 <     * overridden in ForkJoinPool constructors.
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555 >    }
556 >
557 >    /**
558 >     * Class for artificial tasks that are used to replace the target
559 >     * of local joins if they are removed from an interior queue slot
560 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 >     * actually do anything beyond having a unique identity.
562 >     */
563 >    static final class EmptyTask extends ForkJoinTask<Void> {
564 >        private static final long serialVersionUID = -7721805057305804111L;
565 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 >        public final Void getRawResult() { return null; }
567 >        public final void setRawResult(Void x) {}
568 >        public final boolean exec() { return true; }
569 >    }
570 >
571 >    /**
572 >     * Queues supporting work-stealing as well as external task
573 >     * submission. See above for main rationale and algorithms.
574 >     * Implementation relies heavily on "Unsafe" intrinsics
575 >     * and selective use of "volatile":
576 >     *
577 >     * Field "base" is the index (mod array.length) of the least valid
578 >     * queue slot, which is always the next position to steal (poll)
579 >     * from if nonempty. Reads and writes require volatile orderings
580 >     * but not CAS, because updates are only performed after slot
581 >     * CASes.
582 >     *
583 >     * Field "top" is the index (mod array.length) of the next queue
584 >     * slot to push to or pop from. It is written only by owner thread
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596 >     *
597 >     * The array slots are read and written using the emulation of
598 >     * volatiles/atomics provided by Unsafe. Insertions must in
599 >     * general use putOrderedObject as a form of releasing store to
600 >     * ensure that all writes to the task object are ordered before
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605 >     *
606 >     * In addition to basic queuing support, this class contains
607 >     * fields described elsewhere to control execution. It turns out
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610 >     *
611 >     * Performance on most platforms is very sensitive to placement of
612 >     * instances of both WorkQueues and their arrays -- we absolutely
613 >     * do not want multiple WorkQueue instances or multiple queue
614 >     * arrays sharing cache lines. (It would be best for queue objects
615 >     * and their arrays to share, but there is nothing available to
616 >     * help arrange that).  Unfortunately, because they are recorded
617 >     * in a common array, WorkQueue instances are often moved to be
618 >     * adjacent by garbage collectors. To reduce impact, we use field
619 >     * padding that works OK on common platforms; this effectively
620 >     * trades off slightly slower average field access for the sake of
621 >     * avoiding really bad worst-case access. (Until better JVM
622 >     * support is in place, this padding is dependent on transient
623 >     * properties of JVM field layout rules.) We also take care in
624 >     * allocating, sizing and resizing the array. Non-shared queue
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627       */
628 <    public static final ForkJoinWorkerThreadFactory
629 <        defaultForkJoinWorkerThreadFactory;
628 >    static final class WorkQueue {
629 >        /**
630 >         * Capacity of work-stealing queue array upon initialization.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637 >         */
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639  
640 <    /**
641 <     * Permission required for callers of methods that may start or
642 <     * kill threads.
643 <     */
644 <    private static final RuntimePermission modifyThreadPermission;
640 >        /**
641 >         * Maximum size for queue arrays. Must be a power of two less
642 >         * than or equal to 1 << (31 - width of array entry) to ensure
643 >         * lack of wraparound of index calculations, but defined to a
644 >         * value a bit less than this to help users trap runaway
645 >         * programs before saturating systems.
646 >         */
647 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648  
649 <    /**
650 <     * If there is a security manager, makes sure caller has
651 <     * permission to modify threads.
652 <     */
653 <    private static void checkPermission() {
654 <        SecurityManager security = System.getSecurityManager();
655 <        if (security != null)
656 <            security.checkPermission(modifyThreadPermission);
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652 >        int seed;                  // for random scanning; initialize nonzero
653 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654 >        int nextWait;              // encoded record of next event waiter
655 >        int hint;                  // steal or signal hint (index)
656 >        int poolIndex;             // index of this queue in pool (or 0)
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660 >        volatile int base;         // index of next slot for poll
661 >        int top;                   // index of next slot for push
662 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 >        final ForkJoinPool pool;   // the containing pool (may be null)
664 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
665 >        volatile Thread parker;    // == owner during call to park; else null
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
668 >
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675 >            this.owner = owner;
676 >            this.mode = mode;
677 >            this.seed = seed;
678 >            // Place indices in the center of array (that is not yet allocated)
679 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 >        }
681 >
682 >        /**
683 >         * Returns the approximate number of tasks in the queue.
684 >         */
685 >        final int queueSize() {
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689 >
690 >       /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 >        }
705 >
706 >        /**
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709 >         *
710 >         * @param task the task. Caller must ensure non-null.
711 >         * @throw RejectedExecutionException if array cannot be resized
712 >         */
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715 >            int s = top, m, n;
716 >            if ((a = array) != null) {    // ignore if queue removed
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719 >                if ((n = (top = s + 1) - base) <= 2) {
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722 >                }
723 >                else if (n >= m)
724 >                    growArray();
725 >            }
726 >        }
727 >
728 >       /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752 >            }
753 >            return a;
754 >        }
755 >
756 >        /**
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759 >         */
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770 >                    }
771 >                }
772 >            }
773 >            return null;
774 >        }
775 >
776 >        /**
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780 >         */
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 >                    base == b &&
787 >                    U.compareAndSwapObject(a, j, t, null)) {
788 >                    base = b + 1;
789 >                    return t;
790 >                }
791 >            }
792 >            return null;
793 >        }
794 >
795 >        /**
796 >         * Takes next task, if one exists, in FIFO order.
797 >         */
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807 >                        return t;
808 >                    }
809 >                }
810 >                else if (base == b) {
811 >                    if (b + 1 == top)
812 >                        break;
813 >                    Thread.yield(); // wait for lagging update (very rare)
814 >                }
815 >            }
816 >            return null;
817 >        }
818 >
819 >        /**
820 >         * Takes next task, if one exists, in order specified by mode.
821 >         */
822 >        final ForkJoinTask<?> nextLocalTask() {
823 >            return mode == 0 ? pop() : poll();
824 >        }
825 >
826 >        /**
827 >         * Returns next task, if one exists, in order specified by mode.
828 >         */
829 >        final ForkJoinTask<?> peek() {
830 >            ForkJoinTask<?>[] a = array; int m;
831 >            if (a == null || (m = a.length - 1) < 0)
832 >                return null;
833 >            int i = mode == 0 ? top - 1 : base;
834 >            int j = ((i & m) << ASHIFT) + ABASE;
835 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 >        }
837 >
838 >        /**
839 >         * Pops the given task only if it is at the current top.
840 >         * (A shared version is available only via FJP.tryExternalUnpush)
841 >         */
842 >        final boolean tryUnpush(ForkJoinTask<?> t) {
843 >            ForkJoinTask<?>[] a; int s;
844 >            if ((a = array) != null && (s = top) != base &&
845 >                U.compareAndSwapObject
846 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 >                top = s;
848 >                return true;
849 >            }
850 >            return false;
851 >        }
852 >
853 >        /**
854 >         * Removes and cancels all known tasks, ignoring any exceptions.
855 >         */
856 >        final void cancelAll() {
857 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 >                ForkJoinTask.cancelIgnoringExceptions(t);
861 >        }
862 >
863 >        /**
864 >         * Computes next value for random probes.  Scans don't require
865 >         * a very high quality generator, but also not a crummy one.
866 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 >         * This is manually inlined in its usages in ForkJoinPool to
868 >         * avoid writes inside busy scan loops.
869 >         */
870 >        final int nextSeed() {
871 >            int r = seed;
872 >            r ^= r << 13;
873 >            r ^= r >>> 17;
874 >            return seed = r ^= r << 5;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893 >                }
894 >            }
895 >        }
896 >
897 >        /**
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908 >         * or consistency check failure so caller can retry.
909 >         *
910 >         * @return false if no progress can be made, else true;
911 >         */
912 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 >            boolean stat = true, removed = false, empty = true;
914 >            ForkJoinTask<?>[] a; int m, s, b, n;
915 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 >                (n = (s = top) - (b = base)) > 0) {
917 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 >                    int j = ((--s & m) << ASHIFT) + ABASE;
919 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 >                    if (t == null)                    // inconsistent length
921 >                        break;
922 >                    else if (t == task) {
923 >                        if (s + 1 == top) {           // pop
924 >                            if (!U.compareAndSwapObject(a, j, task, null))
925 >                                break;
926 >                            top = s;
927 >                            removed = true;
928 >                        }
929 >                        else if (base == b)           // replace with proxy
930 >                            removed = U.compareAndSwapObject(a, j, task,
931 >                                                             new EmptyTask());
932 >                        break;
933 >                    }
934 >                    else if (t.status >= 0)
935 >                        empty = false;
936 >                    else if (s + 1 == top) {          // pop and throw away
937 >                        if (U.compareAndSwapObject(a, j, t, null))
938 >                            top = s;
939 >                        break;
940 >                    }
941 >                    if (--n == 0) {
942 >                        if (!empty && base == b)
943 >                            stat = false;
944 >                        break;
945 >                    }
946 >                }
947 >            }
948 >            if (removed)
949 >                task.doExec();
950 >            return stat;
951 >        }
952 >
953 >        /**
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation
956 >         */
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971 >                        }
972 >                        else
973 >                            break; // restart
974 >                    }
975 >                    if ((r = r.completer) == null)
976 >                        break outer; // not part of root computation
977 >                }
978 >            }
979 >            return false;
980 >        }
981 >
982 >        /**
983 >         * Executes a top-level task and any local tasks remaining
984 >         * after execution.
985 >         */
986 >        final void runTask(ForkJoinTask<?> t) {
987 >            if (t != null) {
988 >                (currentSteal = t).doExec();
989 >                currentSteal = null;
990 >                ++nsteals;
991 >                if (base - top < 0) {       // process remaining local tasks
992 >                    if (mode == 0)
993 >                        popAndExecAll();
994 >                    else
995 >                        pollAndExecAll();
996 >                }
997 >            }
998 >        }
999 >
1000 >        /**
1001 >         * Executes a non-top-level (stolen) task.
1002 >         */
1003 >        final void runSubtask(ForkJoinTask<?> t) {
1004 >            if (t != null) {
1005 >                ForkJoinTask<?> ps = currentSteal;
1006 >                (currentSteal = t).doExec();
1007 >                currentSteal = ps;
1008 >            }
1009 >        }
1010 >
1011 >        /**
1012 >         * Returns true if owned and not known to be blocked.
1013 >         */
1014 >        final boolean isApparentlyUnblocked() {
1015 >            Thread wt; Thread.State s;
1016 >            return (eventCount >= 0 &&
1017 >                    (wt = owner) != null &&
1018 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1019 >                    s != Thread.State.WAITING &&
1020 >                    s != Thread.State.TIMED_WAITING);
1021 >        }
1022 >
1023 >        // Unsafe mechanics
1024 >        private static final sun.misc.Unsafe U;
1025 >        private static final long QLOCK;
1026 >        private static final int ABASE;
1027 >        private static final int ASHIFT;
1028 >        static {
1029 >            int s;
1030 >            try {
1031 >                U = getUnsafe();
1032 >                Class<?> k = WorkQueue.class;
1033 >                Class<?> ak = ForkJoinTask[].class;
1034 >                QLOCK = U.objectFieldOffset
1035 >                    (k.getDeclaredField("qlock"));
1036 >                ABASE = U.arrayBaseOffset(ak);
1037 >                s = U.arrayIndexScale(ak);
1038 >            } catch (Exception e) {
1039 >                throw new Error(e);
1040 >            }
1041 >            if ((s & (s-1)) != 0)
1042 >                throw new Error("data type scale not a power of two");
1043 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044 >        }
1045      }
1046  
1047 +    // static fields (initialized in static initializer below)
1048 +
1049      /**
1050 <     * Generator for assigning sequence numbers as pool names.
1050 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1051 >     * overridden in ForkJoinPool constructors.
1052       */
1053 <    private static final AtomicInteger poolNumberGenerator;
1053 >    public static final ForkJoinWorkerThreadFactory
1054 >        defaultForkJoinWorkerThreadFactory;
1055  
1056      /**
1057 <     * Generator for initial random seeds for worker victim
1058 <     * selection. This is used only to create initial seeds. Random
1059 <     * steals use a cheaper xorshift generator per steal attempt. We
1060 <     * don't expect much contention on seedGenerator, so just use a
1061 <     * plain Random.
1057 >     * Per-thread submission bookkeeping. Shared across all pools
1058 >     * to reduce ThreadLocal pollution and because random motion
1059 >     * to avoid contention in one pool is likely to hold for others.
1060 >     * Lazily initialized on first submission (but null-checked
1061 >     * in other contexts to avoid unnecessary initialization).
1062       */
1063 <    static final Random workerSeedGenerator;
1063 >    static final ThreadLocal<Submitter> submitters;
1064  
1065      /**
1066 <     * Array holding all worker threads in the pool.  Initialized upon
1067 <     * construction. Array size must be a power of two.  Updates and
405 <     * replacements are protected by scanGuard, but the array is
406 <     * always kept in a consistent enough state to be randomly
407 <     * accessed without locking by workers performing work-stealing,
408 <     * as well as other traversal-based methods in this class, so long
409 <     * as reads memory-acquire by first reading ctl. All readers must
410 <     * tolerate that some array slots may be null.
1066 >     * Permission required for callers of methods that may start or
1067 >     * kill threads.
1068       */
1069 <    ForkJoinWorkerThread[] workers;
1069 >    private static final RuntimePermission modifyThreadPermission;
1070  
1071      /**
1072 <     * Initial size for submission queue array. Must be a power of
1073 <     * two.  In many applications, these always stay small so we use a
1074 <     * small initial cap.
1072 >     * Common (static) pool. Non-null for public use unless a static
1073 >     * construction exception, but internal usages null-check on use
1074 >     * to paranoically avoid potential initialization circularities
1075 >     * as well as to simplify generated code.
1076       */
1077 <    private static final int INITIAL_QUEUE_CAPACITY = 8;
1077 >    static final ForkJoinPool commonPool;
1078  
1079      /**
1080 <     * Maximum size for submission queue array. Must be a power of two
423 <     * less than or equal to 1 << (31 - width of array entry) to
424 <     * ensure lack of index wraparound, but is capped at a lower
425 <     * value to help users trap runaway computations.
1080 >     * Common pool parallelism. Must equal commonPool.parallelism.
1081       */
1082 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
1082 >    static final int commonPoolParallelism;
1083  
1084      /**
1085 <     * Array serving as submission queue. Initialized upon construction.
1085 >     * Sequence number for creating workerNamePrefix.
1086       */
1087 <    private ForkJoinTask<?>[] submissionQueue;
1087 >    private static int poolNumberSequence;
1088  
1089      /**
1090 <     * Lock protecting submissions array for addSubmission
1090 >     * Return the next sequence number. We don't expect this to
1091 >     * ever contend so use simple builtin sync.
1092       */
1093 <    private final ReentrantLock submissionLock;
1093 >    private static final synchronized int nextPoolId() {
1094 >        return ++poolNumberSequence;
1095 >    }
1096 >
1097 >    // static constants
1098  
1099      /**
1100 <     * Condition for awaitTermination, using submissionLock for
1101 <     * convenience.
1100 >     * Initial timeout value (in nanoseconds) for the thread
1101 >     * triggering quiescence to park waiting for new work. On timeout,
1102 >     * the thread will instead try to shrink the number of
1103 >     * workers. The value should be large enough to avoid overly
1104 >     * aggressive shrinkage during most transient stalls (long GCs
1105 >     * etc).
1106       */
1107 <    private final Condition termination;
1107 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1108  
1109      /**
1110 <     * Creation factory for worker threads.
1110 >     * Timeout value when there are more threads than parallelism level
1111       */
1112 <    private final ForkJoinWorkerThreadFactory factory;
1112 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1113  
1114      /**
1115 <     * The uncaught exception handler used when any worker abruptly
452 <     * terminates.
1115 >     * Tolerance for idle timeouts, to cope with timer undershoots
1116       */
1117 <    final Thread.UncaughtExceptionHandler ueh;
1117 >    private static final long TIMEOUT_SLOP = 2000000L;
1118  
1119      /**
1120 <     * Prefix for assigning names to worker threads
1120 >     * The maximum stolen->joining link depth allowed in method
1121 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1122 >     * chains are unbounded, but we use a fixed constant to avoid
1123 >     * (otherwise unchecked) cycles and to bound staleness of
1124 >     * traversal parameters at the expense of sometimes blocking when
1125 >     * we could be helping.
1126       */
1127 <    private final String workerNamePrefix;
1127 >    private static final int MAX_HELP = 64;
1128  
1129      /**
1130 <     * Sum of per-thread steal counts, updated only when threads are
1131 <     * idle or terminating.
1130 >     * Increment for seed generators. See class ThreadLocal for
1131 >     * explanation.
1132       */
1133 <    private volatile long stealCount;
1133 >    private static final int SEED_INCREMENT = 0x61c88647;
1134  
1135      /**
1136 <     * Main pool control -- a long packed with:
1136 >     * Bits and masks for control variables
1137 >     *
1138 >     * Field ctl is a long packed with:
1139       * AC: Number of active running workers minus target parallelism (16 bits)
1140 <     * TC: Number of total workers minus target parallelism (16bits)
1140 >     * TC: Number of total workers minus target parallelism (16 bits)
1141       * ST: true if pool is terminating (1 bit)
1142       * EC: the wait count of top waiting thread (15 bits)
1143 <     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
1143 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144       *
1145       * When convenient, we can extract the upper 32 bits of counts and
1146       * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
# Line 479 | Line 1149 | public class ForkJoinPool extends Abstra
1149       * parallelism and the positionings of fields makes it possible to
1150       * perform the most common checks via sign tests of fields: When
1151       * ac is negative, there are not enough active workers, when tc is
1152 <     * negative, there are not enough total workers, when id is
483 <     * negative, there is at least one waiting worker, and when e is
1152 >     * negative, there are not enough total workers, and when e is
1153       * negative, the pool is terminating.  To deal with these possibly
1154       * negative fields, we use casts in and out of "short" and/or
1155       * signed shifts to maintain signedness.
1156 +     *
1157 +     * When a thread is queued (inactivated), its eventCount field is
1158 +     * set negative, which is the only way to tell if a worker is
1159 +     * prevented from executing tasks, even though it must continue to
1160 +     * scan for them to avoid queuing races. Note however that
1161 +     * eventCount updates lag releases so usage requires care.
1162 +     *
1163 +     * Field plock is an int packed with:
1164 +     * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 +     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166 +     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 +     *
1168 +     * The sequence number enables simple consistency checks:
1169 +     * Staleness of read-only operations on the workQueues array can
1170 +     * be checked by comparing plock before vs after the reads.
1171       */
488    volatile long ctl;
1172  
1173      // bit positions/shifts for fields
1174      private static final int  AC_SHIFT   = 48;
# Line 494 | Line 1177 | public class ForkJoinPool extends Abstra
1177      private static final int  EC_SHIFT   = 16;
1178  
1179      // bounds
1180 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
1181 <    private static final int  SMASK      = 0xffff;  // mask short bits
1180 >    private static final int  SMASK      = 0xffff;  // short bits
1181 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1182 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1183 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1184      private static final int  SHORT_SIGN = 1 << 15;
1185      private static final int  INT_SIGN   = 1 << 31;
1186  
# Line 517 | Line 1202 | public class ForkJoinPool extends Abstra
1202      private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1203  
1204      // masks and units for dealing with e = (int)ctl
1205 <    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
1206 <    private static final int  EC_UNIT    = 1 << EC_SHIFT;
1205 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1206 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1207  
1208 <    /**
1209 <     * The target parallelism level.
1210 <     */
1211 <    final int parallelism;
1208 >    // plock bits
1209 >    private static final int SHUTDOWN    = 1 << 31;
1210 >    private static final int PL_LOCK     = 2;
1211 >    private static final int PL_SIGNAL   = 1;
1212 >    private static final int PL_SPINS    = 1 << 8;
1213 >
1214 >    // access mode for WorkQueue
1215 >    static final int LIFO_QUEUE          =  0;
1216 >    static final int FIFO_QUEUE          =  1;
1217 >    static final int SHARED_QUEUE        = -1;
1218 >
1219 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1220 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1221 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1222  
1223 <    /**
529 <     * Index (mod submission queue length) of next element to take
530 <     * from submission queue. Usage is identical to that for
531 <     * per-worker queues -- see ForkJoinWorkerThread internal
532 <     * documentation.
533 <     */
534 <    volatile int queueBase;
1223 >    // Instance fields
1224  
1225 <    /**
1226 <     * Index (mod submission queue length) of next element to add
1227 <     * in submission queue. Usage is identical to that for
1228 <     * per-worker queues -- see ForkJoinWorkerThread internal
1229 <     * documentation.
1230 <     */
1231 <    int queueTop;
1225 >    /*
1226 >     * Field layout of this class tends to matter more than one would
1227 >     * like. Runtime layout order is only loosely related to
1228 >     * declaration order and may differ across JVMs, but the following
1229 >     * empirically works OK on current JVMs.
1230 >     */
1231 >
1232 >    // Heuristic padding to ameliorate unfortunate memory placements
1233 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234 >
1235 >    volatile long stealCount;                  // collects worker counts
1236 >    volatile long ctl;                         // main pool control
1237 >    volatile int plock;                        // shutdown status and seqLock
1238 >    volatile int indexSeed;                    // worker/submitter index seed
1239 >    final int config;                          // mode and parallelism level
1240 >    WorkQueue[] workQueues;                    // main registry
1241 >    final ForkJoinWorkerThreadFactory factory;
1242 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 >    final String workerNamePrefix;             // to create worker name string
1244  
1245 <    /**
1246 <     * True when shutdown() has been called.
546 <     */
547 <    volatile boolean shutdown;
1245 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246 >    volatile Object pad18, pad19, pad1a, pad1b;
1247  
1248 <    /**
1249 <     * True if use local fifo, not default lifo, for local polling
1250 <     * Read by, and replicated by ForkJoinWorkerThreads
1251 <     */
1252 <    final boolean locallyFifo;
1248 >    /*
1249 >     * Acquires the plock lock to protect worker array and related
1250 >     * updates. This method is called only if an initial CAS on plock
1251 >     * fails. This acts as a spinLock for normal cases, but falls back
1252 >     * to builtin monitor to block when (rarely) needed. This would be
1253 >     * a terrible idea for a highly contended lock, but works fine as
1254 >     * a more conservative alternative to a pure spinlock.
1255 >     */
1256 >    private int acquirePlock() {
1257 >        int spins = PL_SPINS, r = 0, ps, nps;
1258 >        for (;;) {
1259 >            if (((ps = plock) & PL_LOCK) == 0 &&
1260 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261 >                return nps;
1262 >            else if (r == 0) { // randomize spins if possible
1263 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264 >                if ((t instanceof ForkJoinWorkerThread) &&
1265 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266 >                    r = w.seed;
1267 >                else if ((z = submitters.get()) != null)
1268 >                    r = z.seed;
1269 >                else
1270 >                    r = 1;
1271 >            }
1272 >            else if (spins >= 0) {
1273 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274 >                if (r >= 0)
1275 >                    --spins;
1276 >            }
1277 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 >                synchronized (this) {
1279 >                    if ((plock & PL_SIGNAL) != 0) {
1280 >                        try {
1281 >                            wait();
1282 >                        } catch (InterruptedException ie) {
1283 >                            try {
1284 >                                Thread.currentThread().interrupt();
1285 >                            } catch (SecurityException ignore) {
1286 >                            }
1287 >                        }
1288 >                    }
1289 >                    else
1290 >                        notifyAll();
1291 >                }
1292 >            }
1293 >        }
1294 >    }
1295  
1296      /**
1297 <     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
1298 <     * When non-zero, suppresses automatic shutdown when active
558 <     * counts become zero.
1297 >     * Unlocks and signals any thread waiting for plock. Called only
1298 >     * when CAS of seq value for unlock fails.
1299       */
1300 <    volatile int quiescerCount;
1300 >    private void releasePlock(int ps) {
1301 >        plock = ps;
1302 >        synchronized (this) { notifyAll(); }
1303 >    }
1304  
1305      /**
1306 <     * The number of threads blocked in join.
1307 <     */
1308 <    volatile int blockedCount;
1306 >     * Performs secondary initialization, called when plock is zero.
1307 >     * Creates workQueue array and sets plock to a valid value.  The
1308 >     * lock body must be exception-free (so no try/finally) so we
1309 >     * optimistically allocate new array outside the lock and throw
1310 >     * away if (very rarely) not needed. (A similar tactic is used in
1311 >     * fullExternalPush.)  Because the plock seq value can eventually
1312 >     * wrap around zero, this method harmlessly fails to reinitialize
1313 >     * if workQueues exists, while still advancing plock.
1314 >     *
1315 >     * Additionally tries to create the first worker.
1316 >     */
1317 >    private void initWorkers() {
1318 >        WorkQueue[] ws, nws; int ps;
1319 >        int p = config & SMASK;        // find power of two table size
1320 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1321 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1322 >        n = (n + 1) << 1;
1323 >        if ((ws = workQueues) == null || ws.length == 0)
1324 >            nws = new WorkQueue[n];
1325 >        else
1326 >            nws = null;
1327 >        if (((ps = plock) & PL_LOCK) != 0 ||
1328 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1329 >            ps = acquirePlock();
1330 >        if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1331 >            workQueues = nws;
1332 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1333 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1334 >            releasePlock(nps);
1335 >        tryAddWorker();
1336 >    }
1337  
1338      /**
1339 <     * Counter for worker Thread names (unrelated to their poolIndex)
1340 <     */
1341 <    private volatile int nextWorkerNumber;
1339 >     * Tries to create and start one worker if fewer than target
1340 >     * parallelism level exist. Adjusts counts etc on failure.
1341 >     */
1342 >    private void tryAddWorker() {
1343 >        long c; int u;
1344 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1345 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1346 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1347 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1348 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1349 >                ForkJoinWorkerThreadFactory fac;
1350 >                Throwable ex = null;
1351 >                ForkJoinWorkerThread wt = null;
1352 >                try {
1353 >                    if ((fac = factory) != null &&
1354 >                        (wt = fac.newThread(this)) != null) {
1355 >                        wt.start();
1356 >                        break;
1357 >                    }
1358 >                } catch (Throwable e) {
1359 >                    ex = e;
1360 >                }
1361 >                deregisterWorker(wt, ex);
1362 >                break;
1363 >            }
1364 >        }
1365 >    }
1366  
1367 <    /**
573 <     * The index for the next created worker. Accessed under scanGuard.
574 <     */
575 <    private int nextWorkerIndex;
1367 >    //  Registering and deregistering workers
1368  
1369      /**
1370 <     * SeqLock and index masking for updates to workers array.  Locked
1371 <     * when SG_UNIT is set. Unlocking clears bit by adding
1372 <     * SG_UNIT. Staleness of read-only operations can be checked by
1373 <     * comparing scanGuard to value before the reads. The low 16 bits
1374 <     * (i.e, anding with SMASK) hold (the smallest power of two
1375 <     * covering all worker indices, minus one, and is used to avoid
1376 <     * dealing with large numbers of null slots when the workers array
1377 <     * is overallocated.
1378 <     */
1379 <    volatile int scanGuard;
1380 <
1381 <    private static final int SG_UNIT = 1 << 16;
1370 >     * Callback from ForkJoinWorkerThread to establish and record its
1371 >     * WorkQueue. To avoid scanning bias due to packing entries in
1372 >     * front of the workQueues array, we treat the array as a simple
1373 >     * power-of-two hash table using per-thread seed as hash,
1374 >     * expanding as needed.
1375 >     *
1376 >     * @param wt the worker thread
1377 >     * @return the worker's queue
1378 >     */
1379 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1380 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1381 >        wt.setDaemon(true);
1382 >        if ((handler = ueh) != null)
1383 >            wt.setUncaughtExceptionHandler(handler);
1384 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1385 >                                          s += SEED_INCREMENT) ||
1386 >                     s == 0); // skip 0
1387 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1388 >        if (((ps = plock) & PL_LOCK) != 0 ||
1389 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1390 >            ps = acquirePlock();
1391 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1392 >        try {
1393 >            if ((ws = workQueues) != null) {    // skip if shutting down
1394 >                int n = ws.length, m = n - 1;
1395 >                int r = (s << 1) | 1;           // use odd-numbered indices
1396 >                if (ws[r &= m] != null) {       // collision
1397 >                    int probes = 0;             // step by approx half size
1398 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1399 >                    while (ws[r = (r + step) & m] != null) {
1400 >                        if (++probes >= n) {
1401 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1402 >                            m = n - 1;
1403 >                            probes = 0;
1404 >                        }
1405 >                    }
1406 >                }
1407 >                w.eventCount = w.poolIndex = r; // volatile write orders
1408 >                ws[r] = w;
1409 >            }
1410 >        } finally {
1411 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1412 >                releasePlock(nps);
1413 >        }
1414 >        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1415 >        return w;
1416 >    }
1417  
1418      /**
1419 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1420 <     * task when the pool is quiescent to instead try to shrink the
1421 <     * number of workers.  The exact value does not matter too
1422 <     * much. It must be short enough to release resources during
1423 <     * sustained periods of idleness, but not so short that threads
1424 <     * are continually re-created.
1425 <     */
1426 <    private static final long SHRINK_RATE =
1427 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1419 >     * Final callback from terminating worker, as well as upon failure
1420 >     * to construct or start a worker.  Removes record of worker from
1421 >     * array, and adjusts counts. If pool is shutting down, tries to
1422 >     * complete termination.
1423 >     *
1424 >     * @param wt the worker thread or null if construction failed
1425 >     * @param ex the exception causing failure, or null if none
1426 >     */
1427 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1428 >        WorkQueue w = null;
1429 >        if (wt != null && (w = wt.workQueue) != null) {
1430 >            int ps;
1431 >            w.qlock = -1;                // ensure set
1432 >            long ns = w.nsteals, sc;     // collect steal count
1433 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1434 >                                               sc = stealCount, sc + ns));
1435 >            if (((ps = plock) & PL_LOCK) != 0 ||
1436 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1437 >                ps = acquirePlock();
1438 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1439 >            try {
1440 >                int idx = w.poolIndex;
1441 >                WorkQueue[] ws = workQueues;
1442 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1443 >                    ws[idx] = null;
1444 >            } finally {
1445 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1446 >                    releasePlock(nps);
1447 >            }
1448 >        }
1449  
1450 <    /**
1451 <     * Top-level loop for worker threads: On each step: if the
1452 <     * previous step swept through all queues and found no tasks, or
1453 <     * there are excess threads, then possibly blocks. Otherwise,
1454 <     * scans for and, if found, executes a task. Returns when pool
1455 <     * and/or worker terminate.
1456 <     *
1457 <     * @param w the worker
1458 <     */
1459 <    final void work(ForkJoinWorkerThread w) {
1460 <        boolean swept = false;                // true on empty scans
1461 <        long c;
1462 <        while (!w.terminate && (int)(c = ctl) >= 0) {
1463 <            int a;                            // active count
1464 <            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
1465 <                swept = scan(w, a);
1466 <            else if (tryAwaitWork(w, c))
1467 <                swept = false;
1450 >        long c;                          // adjust ctl counts
1451 >        do {} while (!U.compareAndSwapLong
1452 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1453 >                                           ((c - TC_UNIT) & TC_MASK) |
1454 >                                           (c & ~(AC_MASK|TC_MASK)))));
1455 >
1456 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1457 >            w.cancelAll();               // cancel remaining tasks
1458 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1459 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1460 >                if (e > 0) {             // activate or create replacement
1461 >                    if ((ws = workQueues) == null ||
1462 >                        (i = e & SMASK) >= ws.length ||
1463 >                        (v = ws[i]) == null)
1464 >                        break;
1465 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1466 >                               ((long)(u + UAC_UNIT) << 32));
1467 >                    if (v.eventCount != (e | INT_SIGN))
1468 >                        break;
1469 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1470 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1471 >                        if ((p = v.parker) != null)
1472 >                            U.unpark(p);
1473 >                        break;
1474 >                    }
1475 >                }
1476 >                else {
1477 >                    if ((short)u < 0)
1478 >                        tryAddWorker();
1479 >                    break;
1480 >                }
1481 >            }
1482          }
1483 +        if (ex == null)                     // help clean refs on way out
1484 +            ForkJoinTask.helpExpungeStaleExceptions();
1485 +        else                                // rethrow
1486 +            ForkJoinTask.rethrow(ex);
1487      }
1488  
1489 <    // Signalling
1489 >    // Submissions
1490  
1491      /**
1492 <     * Wakes up or creates a worker.
1493 <     */
1494 <    final void signalWork() {
1495 <        /*
1496 <         * The while condition is true if: (there is are too few total
1497 <         * workers OR there is at least one waiter) AND (there are too
1498 <         * few active workers OR the pool is terminating).  The value
1499 <         * of e distinguishes the remaining cases: zero (no waiters)
1500 <         * for create, negative if terminating (in which case do
1501 <         * nothing), else release a waiter. The secondary checks for
1502 <         * release (non-null array etc) can fail if the pool begins
1503 <         * terminating after the test, and don't impose any added cost
1504 <         * because JVMs must perform null and bounds checks anyway.
1505 <         */
1506 <        long c; int e, u;
1507 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1508 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
1509 <            if (e > 0) {                         // release a waiting worker
1510 <                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
1511 <                if ((ws = workers) == null ||
1512 <                    (i = ~e & SMASK) >= ws.length ||
1513 <                    (w = ws[i]) == null)
1514 <                    break;
1515 <                long nc = (((long)(w.nextWait & E_MASK)) |
1516 <                           ((long)(u + UAC_UNIT) << 32));
1517 <                if (w.eventCount == e &&
1518 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1519 <                    w.eventCount = (e + EC_UNIT) & E_MASK;
1520 <                    if (w.parked)
1521 <                        UNSAFE.unpark(w);
1522 <                    break;
1492 >     * Unless shutting down, adds the given task to a submission queue
1493 >     * at submitter's current queue index (modulo submission
1494 >     * range). Only the most common path is directly handled in this
1495 >     * method. All others are relayed to fullExternalPush.
1496 >     *
1497 >     * @param task the task. Caller must ensure non-null.
1498 >     */
1499 >    final void externalPush(ForkJoinTask<?> task) {
1500 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1501 >        if ((z = submitters.get()) != null && plock > 0 &&
1502 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1503 >            (q = ws[m & z.seed & SQMASK]) != null &&
1504 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1505 >            int b = q.base, s = q.top, n, an;
1506 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1507 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1508 >                U.putOrderedObject(a, j, task);
1509 >                q.top = s + 1;                     // push on to deque
1510 >                q.qlock = 0;
1511 >                if (n <= 2)
1512 >                    signalWork(q);
1513 >                return;
1514 >            }
1515 >            q.qlock = 0;
1516 >        }
1517 >        fullExternalPush(task);
1518 >    }
1519 >
1520 >    /**
1521 >     * Full version of externalPush. This method is called, among
1522 >     * other times, upon the first submission of the first task to the
1523 >     * pool, so must perform secondary initialization (via
1524 >     * initWorkers). It also detects first submission by an external
1525 >     * thread by looking up its ThreadLocal, and creates a new shared
1526 >     * queue if the one at index if empty or contended. The plock lock
1527 >     * body must be exception-free (so no try/finally) so we
1528 >     * optimistically allocate new queues outside the lock and throw
1529 >     * them away if (very rarely) not needed.
1530 >     */
1531 >    private void fullExternalPush(ForkJoinTask<?> task) {
1532 >        int r = 0; // random index seed
1533 >        for (Submitter z = submitters.get();;) {
1534 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1535 >            if (z == null) {
1536 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1537 >                                        r += SEED_INCREMENT) && r != 0)
1538 >                    submitters.set(z = new Submitter(r));
1539 >            }
1540 >            else if (r == 0) {               // move to a different index
1541 >                r = z.seed;
1542 >                r ^= r << 13;                // same xorshift as WorkQueues
1543 >                r ^= r >>> 17;
1544 >                z.seed = r ^ (r << 5);
1545 >            }
1546 >            else if ((ps = plock) < 0)
1547 >                throw new RejectedExecutionException();
1548 >            else if (ps == 0 || (ws = workQueues) == null ||
1549 >                     (m = ws.length - 1) < 0)
1550 >                initWorkers();
1551 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1552 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1553 >                    ForkJoinTask<?>[] a = q.array;
1554 >                    int s = q.top;
1555 >                    boolean submitted = false;
1556 >                    try {                      // locked version of push
1557 >                        if ((a != null && a.length > s + 1 - q.base) ||
1558 >                            (a = q.growArray()) != null) {   // must presize
1559 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1560 >                            U.putOrderedObject(a, j, task);
1561 >                            q.top = s + 1;
1562 >                            submitted = true;
1563 >                        }
1564 >                    } finally {
1565 >                        q.qlock = 0;  // unlock
1566 >                    }
1567 >                    if (submitted) {
1568 >                        signalWork(q);
1569 >                        return;
1570 >                    }
1571                  }
1572 +                r = 0; // move on failure
1573              }
1574 <            else if (UNSAFE.compareAndSwapLong
1575 <                     (this, ctlOffset, c,
1576 <                      (long)(((u + UTC_UNIT) & UTC_MASK) |
1577 <                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1578 <                addWorker();
1579 <                break;
1574 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1575 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1576 >                if (((ps = plock) & PL_LOCK) != 0 ||
1577 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1578 >                    ps = acquirePlock();
1579 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1580 >                    ws[k] = q;
1581 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1582 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1583 >                    releasePlock(nps);
1584              }
1585 +            else
1586 +                r = 0; // try elsewhere while lock held
1587          }
1588      }
1589  
1590 +    // Maintaining ctl counts
1591 +
1592      /**
1593 <     * Variant of signalWork to help release waiters on rescans.
671 <     * Tries once to release a waiter if active count < 0.
672 <     *
673 <     * @return false if failed due to contention, else true
1593 >     * Increments active count; mainly called upon return from blocking.
1594       */
1595 <    private boolean tryReleaseWaiter() {
1596 <        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
1597 <        if ((e = (int)(c = ctl)) > 0 &&
678 <            (int)(c >> AC_SHIFT) < 0 &&
679 <            (ws = workers) != null &&
680 <            (i = ~e & SMASK) < ws.length &&
681 <            (w = ws[i]) != null) {
682 <            long nc = ((long)(w.nextWait & E_MASK) |
683 <                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 <            if (w.eventCount != e ||
685 <                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 <                return false;
687 <            w.eventCount = (e + EC_UNIT) & E_MASK;
688 <            if (w.parked)
689 <                UNSAFE.unpark(w);
690 <        }
691 <        return true;
1595 >    final void incrementActiveCount() {
1596 >        long c;
1597 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1598      }
1599  
694    // Scanning for tasks
695
1600      /**
1601 <     * Scans for and, if found, executes one task. Scans start at a
1602 <     * random index of workers array, and randomly select the first
1603 <     * (2*#workers)-1 probes, and then, if all empty, resort to 2
1604 <     * circular sweeps, which is necessary to check quiescence. and
1605 <     * taking a submission only if no stealable tasks were found.  The
1606 <     * steal code inside the loop is a specialized form of
1607 <     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
1608 <     * helpJoinTask and signal propagation. The code for submission
1609 <     * queues is almost identical. On each steal, the worker completes
1610 <     * not only the task, but also all local tasks that this task may
1611 <     * have generated. On detecting staleness or contention when
1612 <     * trying to take a task, this method returns without finishing
1613 <     * sweep, which allows global state rechecks before retry.
1614 <     *
1615 <     * @param w the worker
1616 <     * @param a the number of active workers
1617 <     * @return true if swept all queues without finding a task
1618 <     */
1619 <    private boolean scan(ForkJoinWorkerThread w, int a) {
1620 <        int g = scanGuard; // mask 0 avoids useless scans if only one active
1621 <        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
1622 <        ForkJoinWorkerThread[] ws = workers;
719 <        if (ws == null || ws.length <= m)         // staleness check
720 <            return false;
721 <        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 <            ForkJoinWorkerThread v = ws[k & m];
724 <            if (v != null && (b = v.queueBase) != v.queueTop &&
725 <                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 <                long u = (i << ASHIFT) + ABASE;
727 <                if ((t = q[i]) != null && v.queueBase == b &&
728 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 <                    int d = (v.queueBase = b + 1) - v.queueTop;
730 <                    v.stealHint = w.poolIndex;
731 <                    if (d != 0)
732 <                        signalWork();             // propagate if nonempty
733 <                    w.execTask(t);
1601 >     * Tries to create or activate a worker if too few are active.
1602 >     *
1603 >     * @param q the (non-null) queue holding tasks to be signalled
1604 >     */
1605 >    final void signalWork(WorkQueue q) {
1606 >        int hint = q.poolIndex;
1607 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1608 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1609 >            if ((e = (int)c) > 0) {
1610 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1611 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1612 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1613 >                               ((long)(u + UAC_UNIT) << 32));
1614 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1615 >                        w.hint = hint;
1616 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1617 >                        if ((p = w.parker) != null)
1618 >                            U.unpark(p);
1619 >                        break;
1620 >                    }
1621 >                    if (q.top - q.base <= 0)
1622 >                        break;
1623                  }
1624 <                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
1625 <                return false;                     // store next seed
1624 >                else
1625 >                    break;
1626              }
1627 <            else if (j < 0) {                     // xorshift
1628 <                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1627 >            else {
1628 >                if ((short)u < 0)
1629 >                    tryAddWorker();
1630 >                break;
1631              }
741            else
742                ++k;
743        }
744        if (scanGuard != g)                       // staleness check
745            return false;
746        else {                                    // try to take submission
747            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748            if ((b = queueBase) != queueTop &&
749                (q = submissionQueue) != null &&
750                (i = (q.length - 1) & b) >= 0) {
751                long u = (i << ASHIFT) + ABASE;
752                if ((t = q[i]) != null && queueBase == b &&
753                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754                    queueBase = b + 1;
755                    w.execTask(t);
756                }
757                return false;
758            }
759            return true;                         // all queues empty
1632          }
1633      }
1634  
1635 +    // Scanning for tasks
1636 +
1637      /**
1638 <     * Tries to enqueue worker w in wait queue and await change in
765 <     * worker's eventCount.  If the pool is quiescent and there is
766 <     * more than one worker, possibly terminates worker upon exit.
767 <     * Otherwise, before blocking, rescans queues to avoid missed
768 <     * signals.  Upon finding work, releases at least one worker
769 <     * (which may be the current worker). Rescans restart upon
770 <     * detected staleness or failure to release due to
771 <     * contention. Note the unusual conventions about Thread.interrupt
772 <     * here and elsewhere: Because interrupts are used solely to alert
773 <     * threads to check termination, which is checked here anyway, we
774 <     * clear status (using Thread.interrupted) before any call to
775 <     * park, so that park does not immediately return due to status
776 <     * being set via some other unrelated call to interrupt in user
777 <     * code.
778 <     *
779 <     * @param w the calling worker
780 <     * @param c the ctl value on entry
781 <     * @return true if waited or another thread was released upon enq
1638 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1639       */
1640 <    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
1641 <        int v = w.eventCount;
1642 <        w.nextWait = (int)c;                      // w's successor record
1643 <        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1644 <        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1645 <            long d = ctl; // return true if lost to a deq, to force scan
1646 <            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
1647 <        }
1648 <        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
1649 <            long s = stealCount;
1650 <            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
1651 <                sc = w.stealCount = 0;
1652 <            else if (w.eventCount != v)
1653 <                return true;                      // update next time
1654 <        }
1655 <        if ((int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
1656 <            blockedCount == 0 && quiescerCount == 0)
1657 <            idleAwaitWork(w, nc, c, v);           // quiescent
1658 <        for (boolean rescanned = false;;) {
1659 <            if (w.eventCount != v)
1660 <                return true;
1661 <            if (!rescanned) {
1662 <                int g = scanGuard, m = g & SMASK;
1663 <                ForkJoinWorkerThread[] ws = workers;
1664 <                if (ws != null && m < ws.length) {
1665 <                    rescanned = true;
1666 <                    for (int i = 0; i <= m; ++i) {
1667 <                        ForkJoinWorkerThread u = ws[i];
1668 <                        if (u != null) {
1669 <                            if (u.queueBase != u.queueTop &&
1670 <                                !tryReleaseWaiter())
1671 <                                rescanned = false; // contended
1672 <                            if (w.eventCount != v)
1673 <                                return true;
1674 <                        }
1640 >    final void runWorker(WorkQueue w) {
1641 >        w.growArray(); // allocate queue
1642 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1643 >    }
1644 >
1645 >    /**
1646 >     * Scans for and, if found, returns one task, else possibly
1647 >     * inactivates the worker. This method operates on single reads of
1648 >     * volatile state and is designed to be re-invoked continuously,
1649 >     * in part because it returns upon detecting inconsistencies,
1650 >     * contention, or state changes that indicate possible success on
1651 >     * re-invocation.
1652 >     *
1653 >     * The scan searches for tasks across queues (starting at a random
1654 >     * index, and relying on registerWorker to irregularly scatter
1655 >     * them within array to avoid bias), checking each at least twice.
1656 >     * The scan terminates upon either finding a non-empty queue, or
1657 >     * completing the sweep. If the worker is not inactivated, it
1658 >     * takes and returns a task from this queue. Otherwise, if not
1659 >     * activated, it signals workers (that may include itself) and
1660 >     * returns so caller can retry. Also returns for true if the
1661 >     * worker array may have changed during an empty scan.  On failure
1662 >     * to find a task, we take one of the following actions, after
1663 >     * which the caller will retry calling this method unless
1664 >     * terminated.
1665 >     *
1666 >     * * If pool is terminating, terminate the worker.
1667 >     *
1668 >     * * If not already enqueued, try to inactivate and enqueue the
1669 >     * worker on wait queue. Or, if inactivating has caused the pool
1670 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1671 >     * pool.
1672 >     *
1673 >     * * If already enqueued and none of the above apply, possibly
1674 >     * park awaiting signal, else lingering to help scan and signal.
1675 >     *
1676 >     * * If a non-empty queue discovered or left as a hint,
1677 >     * help wake up other workers before return
1678 >     *
1679 >     * @param w the worker (via its WorkQueue)
1680 >     * @return a task or null if none found
1681 >     */
1682 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1683 >        WorkQueue[] ws; int m;
1684 >        int ps = plock;                          // read plock before ws
1685 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1686 >            int ec = w.eventCount;               // ec is negative if inactive
1687 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1688 >            w.hint = -1;                         // update seed and clear hint
1689 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1690 >            do {
1691 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1692 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1693 >                    (a = q.array) != null) {     // probably nonempty
1694 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1695 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1696 >                        U.getObjectVolatile(a, i);
1697 >                    if (q.base == b && ec >= 0 && t != null &&
1698 >                        U.compareAndSwapObject(a, i, t, null)) {
1699 >                        if ((q.base = b + 1) - q.top < 0)
1700 >                            signalWork(q);
1701 >                        return t;                // taken
1702 >                    }
1703 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1704 >                        w.hint = (r + j) & m;    // help signal below
1705 >                        break;                   // cannot take
1706                      }
1707                  }
1708 <                if (scanGuard != g ||              // stale
1709 <                    (queueBase != queueTop && !tryReleaseWaiter()))
1710 <                    rescanned = false;
1711 <                if (!rescanned)
1712 <                    Thread.yield();                // reduce contention
1713 <                else
1714 <                    Thread.interrupted();          // clear before park
1715 <            }
1708 >            } while (--j >= 0);
1709 >
1710 >            int h, e, ns; long c, sc; WorkQueue q;
1711 >            if ((ns = w.nsteals) != 0) {
1712 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1713 >                                         sc = stealCount, sc + ns))
1714 >                    w.nsteals = 0;               // collect steals and rescan
1715 >            }
1716 >            else if (plock != ps)                // consistency check
1717 >                ;                                // skip
1718 >            else if ((e = (int)(c = ctl)) < 0)
1719 >                w.qlock = -1;                    // pool is terminating
1720              else {
1721 <                w.parked = true;                   // must recheck
1722 <                if (w.eventCount != v) {
1723 <                    w.parked = false;
1724 <                    return true;
1721 >                if ((h = w.hint) < 0) {
1722 >                    if (ec >= 0) {               // try to enqueue/inactivate
1723 >                        long nc = (((long)ec |
1724 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1725 >                        w.nextWait = e;          // link and mark inactive
1726 >                        w.eventCount = ec | INT_SIGN;
1727 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1728 >                            w.eventCount = ec;   // unmark on CAS failure
1729 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1730 >                            idleAwaitWork(w, nc, c);
1731 >                    }
1732 >                    else if (w.eventCount < 0 && !tryTerminate(false, false) &&
1733 >                             ctl == c) {         // block
1734 >                        Thread wt = Thread.currentThread();
1735 >                        Thread.interrupted();    // clear status
1736 >                        U.putObject(wt, PARKBLOCKER, this);
1737 >                        w.parker = wt;           // emulate LockSupport.park
1738 >                        if (w.eventCount < 0)    // recheck
1739 >                            U.park(false, 0L);
1740 >                        w.parker = null;
1741 >                        U.putObject(wt, PARKBLOCKER, null);
1742 >                    }
1743 >                }
1744 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1745 >                    (ws = workQueues) != null && h < ws.length &&
1746 >                    (q = ws[h]) != null) {      // signal others before retry
1747 >                    WorkQueue v; Thread p; int u, i, s;
1748 >                    for (int n = (config & SMASK) >>> 1;;) {
1749 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1750 >                        if (((s = idleCount - q.base + q.top) <= n &&
1751 >                             (n = s) <= 0) ||
1752 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1753 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1754 >                            (v = ws[i]) == null)
1755 >                            break;
1756 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1757 >                                   ((long)(u + UAC_UNIT) << 32));
1758 >                        if (v.eventCount != (e | INT_SIGN) ||
1759 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1760 >                            break;
1761 >                        v.hint = h;
1762 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1763 >                        if ((p = v.parker) != null)
1764 >                            U.unpark(p);
1765 >                        if (--n <= 0)
1766 >                            break;
1767 >                    }
1768                  }
834                LockSupport.park(this);
835                rescanned = w.parked = false;
1769              }
1770          }
1771 +        return null;
1772      }
1773  
1774      /**
1775 <     * If inactivating worker w has caused pool to become
1776 <     * quiescent, check for pool termination, and wait for event
1777 <     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
1778 <     * this case because quiescence reflects consensus about lack
1779 <     * of work). On timeout, if ctl has not changed, terminate the
1780 <     * worker. Upon its termination (see deregisterWorker), it may
847 <     * wake up another worker to possibly repeat this process.
1775 >     * If inactivating worker w has caused the pool to become
1776 >     * quiescent, checks for pool termination, and, so long as this is
1777 >     * not the only worker, waits for event for up to a given
1778 >     * duration.  On timeout, if ctl has not changed, terminates the
1779 >     * worker, which will in turn wake up another worker to possibly
1780 >     * repeat this process.
1781       *
1782       * @param w the calling worker
1783 <     * @param currentCtl the ctl value after enqueuing w
1784 <     * @param prevCtl the ctl value if w terminated
1785 <     * @param v the eventCount w awaits change
1786 <     */
1787 <    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
1788 <                               long prevCtl, int v) {
1789 <        if (w.eventCount == v) {
1790 <            if (shutdown)
1791 <                tryTerminate(false);
1792 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
1783 >     * @param currentCtl the ctl value triggering possible quiescence
1784 >     * @param prevCtl the ctl value to restore if thread is terminated
1785 >     */
1786 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1787 >        if (w != null && w.eventCount < 0 &&
1788 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1789 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1790 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1791 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1792 >            Thread wt = Thread.currentThread();
1793              while (ctl == currentCtl) {
1794 <                long startTime = System.nanoTime();
1795 <                w.parked = true;
1796 <                if (w.eventCount == v)             // must recheck
1797 <                    LockSupport.parkNanos(this, SHRINK_RATE);
1798 <                w.parked = false;
1799 <                if (w.eventCount != v)
1794 >                Thread.interrupted();  // timed variant of version in scan()
1795 >                U.putObject(wt, PARKBLOCKER, this);
1796 >                w.parker = wt;
1797 >                if (ctl == currentCtl)
1798 >                    U.park(false, parkTime);
1799 >                w.parker = null;
1800 >                U.putObject(wt, PARKBLOCKER, null);
1801 >                if (ctl != currentCtl)
1802                      break;
1803 <                else if (System.nanoTime() - startTime <
1804 <                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
1805 <                    Thread.interrupted();          // spurious wakeup
1806 <                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
872 <                                                   currentCtl, prevCtl)) {
873 <                    w.terminate = true;            // restore previous
874 <                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
1803 >                if (deadline - System.nanoTime() <= 0L &&
1804 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1805 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1806 >                    w.qlock = -1;   // shrink
1807                      break;
1808                  }
1809              }
1810          }
1811      }
1812  
881    // Submissions
882
1813      /**
1814 <     * Enqueues the given task in the submissionQueue.  Same idea as
1815 <     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
1816 <     *
1817 <     * @param t the task
1818 <     */
1819 <    private void addSubmission(ForkJoinTask<?> t) {
1820 <        final ReentrantLock lock = this.submissionLock;
1821 <        lock.lock();
1822 <        try {
1823 <            ForkJoinTask<?>[] q; int s, m;
1824 <            if ((q = submissionQueue) != null) {    // ignore if queue removed
1825 <                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
1826 <                UNSAFE.putOrderedObject(q, u, t);
1827 <                queueTop = s + 1;
1828 <                if (s - queueBase == m)
1829 <                    growSubmissionQueue();
1814 >     * Scans through queues looking for work while joining a task; if
1815 >     * any present, signals. May return early if more signalling is
1816 >     * detectably unneeded.
1817 >     *
1818 >     * @param task return early if done
1819 >     * @param origin an index to start scan
1820 >     */
1821 >    private void helpSignal(ForkJoinTask<?> task, int origin) {
1822 >        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1823 >        if (task != null && task.status >= 0 &&
1824 >            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1825 >            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1826 >            outer: for (int k = origin, j = m; j >= 0; --j) {
1827 >                WorkQueue q = ws[k++ & m];
1828 >                for (int n = m;;) { // limit to at most m signals
1829 >                    if (task.status < 0)
1830 >                        break outer;
1831 >                    if (q == null ||
1832 >                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1833 >                        break;
1834 >                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1835 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1836 >                        (w = ws[i]) == null)
1837 >                        break outer;
1838 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1839 >                               ((long)(u + UAC_UNIT) << 32));
1840 >                    if (w.eventCount != (e | INT_SIGN))
1841 >                        break outer;
1842 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1843 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1844 >                        if ((p = w.parker) != null)
1845 >                            U.unpark(p);
1846 >                        if (--n <= 0)
1847 >                            break;
1848 >                    }
1849 >                }
1850              }
901        } finally {
902            lock.unlock();
1851          }
904        signalWork();
1852      }
1853  
907    //  (pollSubmission is defined below with exported methods)
908
1854      /**
1855 <     * Creates or doubles submissionQueue array.
1856 <     * Basically identical to ForkJoinWorkerThread version.
1857 <     */
1858 <    private void growSubmissionQueue() {
1859 <        ForkJoinTask<?>[] oldQ = submissionQueue;
1860 <        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
1861 <        if (size > MAXIMUM_QUEUE_CAPACITY)
1862 <            throw new RejectedExecutionException("Queue capacity exceeded");
1863 <        if (size < INITIAL_QUEUE_CAPACITY)
1864 <            size = INITIAL_QUEUE_CAPACITY;
1865 <        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
1866 <        int mask = size - 1;
1867 <        int top = queueTop;
1868 <        int oldMask;
1869 <        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
1870 <            for (int b = queueBase; b != top; ++b) {
1871 <                long u = ((b & oldMask) << ASHIFT) + ABASE;
1872 <                Object x = UNSAFE.getObjectVolatile(oldQ, u);
1873 <                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
1874 <                    UNSAFE.putObjectVolatile
1875 <                        (q, ((b & mask) << ASHIFT) + ABASE, x);
1855 >     * Tries to locate and execute tasks for a stealer of the given
1856 >     * task, or in turn one of its stealers, Traces currentSteal ->
1857 >     * currentJoin links looking for a thread working on a descendant
1858 >     * of the given task and with a non-empty queue to steal back and
1859 >     * execute tasks from. The first call to this method upon a
1860 >     * waiting join will often entail scanning/search, (which is OK
1861 >     * because the joiner has nothing better to do), but this method
1862 >     * leaves hints in workers to speed up subsequent calls. The
1863 >     * implementation is very branchy to cope with potential
1864 >     * inconsistencies or loops encountering chains that are stale,
1865 >     * unknown, or so long that they are likely cyclic.
1866 >     *
1867 >     * @param joiner the joining worker
1868 >     * @param task the task to join
1869 >     * @return 0 if no progress can be made, negative if task
1870 >     * known complete, else positive
1871 >     */
1872 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1873 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1874 >        if (joiner != null && task != null) {       // hoist null checks
1875 >            restart: for (;;) {
1876 >                ForkJoinTask<?> subtask = task;     // current target
1877 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1878 >                    WorkQueue[] ws; int m, s, h;
1879 >                    if ((s = task.status) < 0) {
1880 >                        stat = s;
1881 >                        break restart;
1882 >                    }
1883 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1884 >                        break restart;              // shutting down
1885 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1886 >                        v.currentSteal != subtask) {
1887 >                        for (int origin = h;;) {    // find stealer
1888 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1889 >                                (subtask.status < 0 || j.currentJoin != subtask))
1890 >                                continue restart;   // occasional staleness check
1891 >                            if ((v = ws[h]) != null &&
1892 >                                v.currentSteal == subtask) {
1893 >                                j.hint = h;        // save hint
1894 >                                break;
1895 >                            }
1896 >                            if (h == origin)
1897 >                                break restart;      // cannot find stealer
1898 >                        }
1899 >                    }
1900 >                    for (;;) { // help stealer or descend to its stealer
1901 >                        ForkJoinTask[] a;  int b;
1902 >                        if (subtask.status < 0)     // surround probes with
1903 >                            continue restart;       //   consistency checks
1904 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1905 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1906 >                            ForkJoinTask<?> t =
1907 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1908 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1909 >                                v.currentSteal != subtask)
1910 >                                continue restart;   // stale
1911 >                            stat = 1;               // apparent progress
1912 >                            if (t != null && v.base == b &&
1913 >                                U.compareAndSwapObject(a, i, t, null)) {
1914 >                                v.base = b + 1;     // help stealer
1915 >                                joiner.runSubtask(t);
1916 >                            }
1917 >                            else if (v.base == b && ++steps == MAX_HELP)
1918 >                                break restart;      // v apparently stalled
1919 >                        }
1920 >                        else {                      // empty -- try to descend
1921 >                            ForkJoinTask<?> next = v.currentJoin;
1922 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1923 >                                v.currentSteal != subtask)
1924 >                                continue restart;   // stale
1925 >                            else if (next == null || ++steps == MAX_HELP)
1926 >                                break restart;      // dead-end or maybe cyclic
1927 >                            else {
1928 >                                subtask = next;
1929 >                                j = v;
1930 >                                break;
1931 >                            }
1932 >                        }
1933 >                    }
1934 >                }
1935              }
1936          }
1937 +        return stat;
1938      }
1939  
935    // Blocking support
936
1940      /**
1941 <     * Tries to increment blockedCount, decrement active count
1942 <     * (sometimes implicitly) and possibly release or create a
940 <     * compensating worker in preparation for blocking. Fails
941 <     * on contention or termination.
1941 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1942 >     * and run tasks within the target's computation.
1943       *
1944 <     * @return true if the caller can block, else should recheck and retry
1945 <     */
1946 <    private boolean tryPreBlock() {
946 <        int b = blockedCount;
947 <        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
948 <            int pc = parallelism;
949 <            do {
950 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
951 <                int e, ac, tc, rc, i;
952 <                long c = ctl;
953 <                int u = (int)(c >>> 32);
954 <                if ((e = (int)c) < 0) {
955 <                                                 // skip -- terminating
956 <                }
957 <                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
958 <                         (ws = workers) != null &&
959 <                         (i = ~e & SMASK) < ws.length &&
960 <                         (w = ws[i]) != null) {
961 <                    long nc = ((long)(w.nextWait & E_MASK) |
962 <                               (c & (AC_MASK|TC_MASK)));
963 <                    if (w.eventCount == e &&
964 <                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
965 <                        w.eventCount = (e + EC_UNIT) & E_MASK;
966 <                        if (w.parked)
967 <                            UNSAFE.unpark(w);
968 <                        return true;             // release an idle worker
969 <                    }
970 <                }
971 <                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
972 <                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
973 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
974 <                        return true;             // no compensation needed
975 <                }
976 <                else if (tc + pc < MAX_ID) {
977 <                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
978 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
979 <                        addWorker();
980 <                        return true;            // create a replacement
981 <                    }
982 <                }
983 <                // try to back out on any failure and let caller retry
984 <            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
985 <                                               b = blockedCount, b - 1));
986 <        }
987 <        return false;
988 <    }
989 <
990 <    /**
991 <     * Decrements blockedCount and increments active count
992 <     */
993 <    private void postBlock() {
994 <        long c;
995 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
996 <                                                c = ctl, c + AC_UNIT));
997 <        int b;
998 <        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
999 <                                              b = blockedCount, b - 1));
1000 <    }
1001 <
1002 <    /**
1003 <     * Possibly blocks waiting for the given task to complete, or
1004 <     * cancels the task if terminating.  Fails to wait if contended.
1944 >     * @param task the task to join
1945 >     * @param mode if shared, exit upon completing any task
1946 >     * if all workers are active
1947       *
1006     * @param joinMe the task
1948       */
1949 <    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1950 <        int s;
1951 <        Thread.interrupted(); // clear interrupts before checking termination
1952 <        if (joinMe.status >= 0) {
1953 <            if (tryPreBlock()) {
1954 <                joinMe.tryAwaitDone(0L);
1955 <                postBlock();
1949 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1950 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1951 >        if (task != null && (ws = workQueues) != null &&
1952 >            (m = ws.length - 1) >= 0) {
1953 >            for (int j = 1, origin = j;;) {
1954 >                if ((s = task.status) < 0)
1955 >                    return s;
1956 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1957 >                    origin = j;
1958 >                    if (mode == SHARED_QUEUE &&
1959 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1960 >                        break;
1961 >                }
1962 >                else if ((j = (j + 2) & m) == origin)
1963 >                    break;
1964              }
1016            else if ((ctl & STOP_BIT) != 0L)
1017                joinMe.cancelIgnoringExceptions();
1965          }
1966 +        return 0;
1967      }
1968  
1969      /**
1970 <     * Possibly blocks the given worker waiting for joinMe to
1971 <     * complete or timeout
1972 <     *
1973 <     * @param joinMe the task
1974 <     * @param millis the wait time for underlying Object.wait
1975 <     */
1976 <    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1977 <        while (joinMe.status >= 0) {
1978 <            Thread.interrupted();
1979 <            if ((ctl & STOP_BIT) != 0L) {
1980 <                joinMe.cancelIgnoringExceptions();
1981 <                break;
1970 >     * Tries to decrement active count (sometimes implicitly) and
1971 >     * possibly release or create a compensating worker in preparation
1972 >     * for blocking. Fails on contention or termination. Otherwise,
1973 >     * adds a new thread if no idle workers are available and pool
1974 >     * may become starved.
1975 >     */
1976 >    final boolean tryCompensate() {
1977 >        int pc = config & SMASK, e, i, tc; long c;
1978 >        WorkQueue[] ws; WorkQueue w; Thread p;
1979 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1980 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1981 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1982 >                long nc = ((long)(w.nextWait & E_MASK) |
1983 >                           (c & (AC_MASK|TC_MASK)));
1984 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1985 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1986 >                    if ((p = w.parker) != null)
1987 >                        U.unpark(p);
1988 >                    return true;   // replace with idle worker
1989 >                }
1990              }
1991 <            if (tryPreBlock()) {
1992 <                long last = System.nanoTime();
1993 <                while (joinMe.status >= 0) {
1994 <                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1995 <                    if (millis <= 0)
1996 <                        break;
1997 <                    joinMe.tryAwaitDone(millis);
1998 <                    if (joinMe.status < 0)
1999 <                        break;
2000 <                    if ((ctl & STOP_BIT) != 0L) {
2001 <                        joinMe.cancelIgnoringExceptions();
2002 <                        break;
1991 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1992 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1993 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1994 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1995 >                    return true;   // no compensation
1996 >            }
1997 >            else if (tc + pc < MAX_CAP) {
1998 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1999 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
2000 >                    ForkJoinWorkerThreadFactory fac;
2001 >                    Throwable ex = null;
2002 >                    ForkJoinWorkerThread wt = null;
2003 >                    try {
2004 >                        if ((fac = factory) != null &&
2005 >                            (wt = fac.newThread(this)) != null) {
2006 >                            wt.start();
2007 >                            return true;
2008 >                        }
2009 >                    } catch (Throwable rex) {
2010 >                        ex = rex;
2011                      }
2012 <                    long now = System.nanoTime();
1049 <                    nanos -= now - last;
1050 <                    last = now;
2012 >                    deregisterWorker(wt, ex); // clean up and return false
2013                  }
1052                postBlock();
1053                break;
2014              }
2015          }
2016 +        return false;
2017      }
2018  
2019      /**
2020 <     * If necessary, compensates for blocker, and blocks
2020 >     * Helps and/or blocks until the given task is done.
2021 >     *
2022 >     * @param joiner the joining worker
2023 >     * @param task the task
2024 >     * @return task status on exit
2025       */
2026 <    private void awaitBlocker(ManagedBlocker blocker)
2027 <        throws InterruptedException {
2028 <        while (!blocker.isReleasable()) {
2029 <            if (tryPreBlock()) {
2030 <                try {
2031 <                    do {} while (!blocker.isReleasable() && !blocker.block());
2032 <                } finally {
2033 <                    postBlock();
2026 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2027 >        int s = 0;
2028 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2029 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2030 >            joiner.currentJoin = task;
2031 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2032 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2033 >            if (s >= 0 && (s = task.status) >= 0) {
2034 >                helpSignal(task, joiner.poolIndex);
2035 >                if ((s = task.status) >= 0 &&
2036 >                    (task instanceof CountedCompleter))
2037 >                    s = helpComplete(task, LIFO_QUEUE);
2038 >            }
2039 >            while (s >= 0 && (s = task.status) >= 0) {
2040 >                if ((!joiner.isEmpty() ||           // try helping
2041 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2042 >                    (s = task.status) >= 0) {
2043 >                    helpSignal(task, joiner.poolIndex);
2044 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2045 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2046 >                            synchronized (task) {
2047 >                                if (task.status >= 0) {
2048 >                                    try {                // see ForkJoinTask
2049 >                                        task.wait();     //  for explanation
2050 >                                    } catch (InterruptedException ie) {
2051 >                                    }
2052 >                                }
2053 >                                else
2054 >                                    task.notifyAll();
2055 >                            }
2056 >                        }
2057 >                        long c;                          // re-activate
2058 >                        do {} while (!U.compareAndSwapLong
2059 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2060 >                    }
2061                  }
1070                break;
2062              }
2063 +            joiner.currentJoin = prevJoin;
2064          }
2065 +        return s;
2066      }
2067  
1075    // Creating, registering and deregistring workers
1076
2068      /**
2069 <     * Tries to create and start a worker; minimally rolls back counts
2070 <     * on failure.
2069 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2070 >     * to help join only while there is continuous progress. (Caller
2071 >     * will then enter a timed wait.)
2072 >     *
2073 >     * @param joiner the joining worker
2074 >     * @param task the task
2075       */
2076 <    private void addWorker() {
2077 <        Throwable ex = null;
2078 <        ForkJoinWorkerThread t = null;
2079 <        try {
2080 <            t = factory.newThread(this);
2081 <        } catch (Throwable e) {
2082 <            ex = e;
2083 <        }
2084 <        if (t == null) {  // null or exceptional factory return
2085 <            long c;       // adjust counts
2086 <            do {} while (!UNSAFE.compareAndSwapLong
2087 <                         (this, ctlOffset, c = ctl,
2088 <                          (((c - AC_UNIT) & AC_MASK) |
2089 <                           ((c - TC_UNIT) & TC_MASK) |
2090 <                           (c & ~(AC_MASK|TC_MASK)))));
2091 <            // Propagate exception if originating from an external caller
2092 <            if (!tryTerminate(false) && ex != null &&
2093 <                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1099 <                UNSAFE.throwException(ex);
2076 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2077 >        int s;
2078 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2079 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2080 >            joiner.currentJoin = task;
2081 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2082 >                         joiner.tryRemoveAndExec(task));
2083 >            if (s >= 0 && (s = task.status) >= 0) {
2084 >                helpSignal(task, joiner.poolIndex);
2085 >                if ((s = task.status) >= 0 &&
2086 >                    (task instanceof CountedCompleter))
2087 >                    s = helpComplete(task, LIFO_QUEUE);
2088 >            }
2089 >            if (s >= 0 && joiner.isEmpty()) {
2090 >                do {} while (task.status >= 0 &&
2091 >                             tryHelpStealer(joiner, task) > 0);
2092 >            }
2093 >            joiner.currentJoin = prevJoin;
2094          }
1101        else
1102            t.start();
2095      }
2096  
2097      /**
2098 <     * Callback from ForkJoinWorkerThread constructor to assign a
2099 <     * public name
2100 <     */
2101 <    final String nextWorkerName() {
2102 <        for (int n;;) {
2103 <            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
2104 <                                         n = nextWorkerNumber, ++n))
2105 <                return workerNamePrefix + n;
2098 >     * Returns a (probably) non-empty steal queue, if one is found
2099 >     * during a random, then cyclic scan, else null.  This method must
2100 >     * be retried by caller if, by the time it tries to use the queue,
2101 >     * it is empty.
2102 >     * @param r a (random) seed for scanning
2103 >     */
2104 >    private WorkQueue findNonEmptyStealQueue(int r) {
2105 >        for (WorkQueue[] ws;;) {
2106 >            int ps = plock, m;
2107 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2108 >                return null;
2109 >            for (int j = (m + 1) << 2; ;) {
2110 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2111 >                if (q != null && q.base - q.top < 0)
2112 >                    return q;
2113 >                else if (--j < 0) {
2114 >                    if (plock == ps)
2115 >                        return null;
2116 >                    break;
2117 >                }
2118 >            }
2119          }
2120      }
2121  
2122      /**
2123 <     * Callback from ForkJoinWorkerThread constructor to
2124 <     * determine its poolIndex and record in workers array.
2125 <     *
2126 <     * @param w the worker
2127 <     * @return the worker's pool index
2128 <     */
2129 <    final int registerWorker(ForkJoinWorkerThread w) {
2130 <        /*
2131 <         * In the typical case, a new worker acquires the lock, uses
2132 <         * next available index and returns quickly.  Since we should
2133 <         * not block callers (ultimately from signalWork or
2134 <         * tryPreBlock) waiting for the lock needed to do this, we
2135 <         * instead help release other workers while waiting for the
2136 <         * lock.
2137 <         */
2138 <        for (int g;;) {
2139 <            ForkJoinWorkerThread[] ws;
2140 <            if (((g = scanGuard) & SG_UNIT) == 0 &&
2141 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
2142 <                                         g, g | SG_UNIT)) {
2143 <                int k = nextWorkerIndex;
2144 <                try {
2145 <                    if ((ws = workers) != null) { // ignore on shutdown
2146 <                        int n = ws.length;
2147 <                        if (k < 0 || k >= n || ws[k] != null) {
2148 <                            for (k = 0; k < n && ws[k] != null; ++k)
2149 <                                ;
2150 <                            if (k == n)
2151 <                                ws = workers = Arrays.copyOf(ws, n << 1);
2152 <                        }
2153 <                        ws[k] = w;
2154 <                        nextWorkerIndex = k + 1;
2155 <                        int m = g & SMASK;
2156 <                        g = k > m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
2157 <                    }
2158 <                } finally {
2159 <                    scanGuard = g;
2160 <                }
2161 <                return k;
1157 <            }
1158 <            else if ((ws = workers) != null) { // help release others
1159 <                for (ForkJoinWorkerThread u : ws) {
1160 <                    if (u != null && u.queueBase != u.queueTop) {
1161 <                        if (tryReleaseWaiter())
1162 <                            break;
1163 <                    }
2123 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2124 >     * active count ctl maintenance, but rather than blocking
2125 >     * when tasks cannot be found, we rescan until all others cannot
2126 >     * find tasks either.
2127 >     */
2128 >    final void helpQuiescePool(WorkQueue w) {
2129 >        for (boolean active = true;;) {
2130 >            ForkJoinTask<?> localTask; // exhaust local queue
2131 >            while ((localTask = w.nextLocalTask()) != null)
2132 >                localTask.doExec();
2133 >            // Similar to loop in scan(), but ignoring submissions
2134 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2135 >            if (q != null) {
2136 >                ForkJoinTask<?> t; int b;
2137 >                if (!active) {      // re-establish active count
2138 >                    long c;
2139 >                    active = true;
2140 >                    do {} while (!U.compareAndSwapLong
2141 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2142 >                }
2143 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2144 >                    if (q.base - q.top < 0)
2145 >                        signalWork(q);
2146 >                    w.runSubtask(t);
2147 >                }
2148 >            }
2149 >            else {
2150 >                long c;
2151 >                if (active) {       // decrement active count without queuing
2152 >                    active = false;
2153 >                    do {} while (!U.compareAndSwapLong
2154 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2155 >                }
2156 >                else
2157 >                    c = ctl;        // re-increment on exit
2158 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2159 >                    do {} while (!U.compareAndSwapLong
2160 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2161 >                    break;
2162                  }
2163              }
2164          }
2165      }
2166  
2167      /**
2168 <     * Final callback from terminating worker.  Removes record of
2169 <     * worker from array, and adjusts counts. If pool is shutting
2170 <     * down, tries to complete termination.
2171 <     *
2172 <     * @param w the worker
2173 <     */
2174 <    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
2175 <        int idx = w.poolIndex;
2176 <        int sc = w.stealCount;
2177 <        int steps = 0;
2178 <        // Remove from array, adjust worker counts and collect steal count.
2179 <        // We can intermix failed removes or adjusts with steal updates
2180 <        do {
2181 <            long s, c;
2182 <            int g;
2183 <            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1186 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1187 <                                         g, g |= SG_UNIT)) {
1188 <                ForkJoinWorkerThread[] ws = workers;
1189 <                if (ws != null && idx >= 0 &&
1190 <                    idx < ws.length && ws[idx] == w)
1191 <                    ws[idx] = null;    // verify
1192 <                nextWorkerIndex = idx;
1193 <                scanGuard = g + SG_UNIT;
1194 <                steps = 1;
1195 <            }
1196 <            if (steps == 1 &&
1197 <                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1198 <                                          (((c - AC_UNIT) & AC_MASK) |
1199 <                                           ((c - TC_UNIT) & TC_MASK) |
1200 <                                           (c & ~(AC_MASK|TC_MASK)))))
1201 <                steps = 2;
1202 <            if (sc != 0 &&
1203 <                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1204 <                                          s = stealCount, s + sc))
1205 <                sc = 0;
1206 <        } while (steps != 2 || sc != 0);
1207 <        if (!tryTerminate(false)) {
1208 <            if (ex != null)   // possibly replace if died abnormally
1209 <                signalWork();
1210 <            else
1211 <                tryReleaseWaiter();
2168 >     * Gets and removes a local or stolen task for the given worker.
2169 >     *
2170 >     * @return a task, if available
2171 >     */
2172 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2173 >        for (ForkJoinTask<?> t;;) {
2174 >            WorkQueue q; int b;
2175 >            if ((t = w.nextLocalTask()) != null)
2176 >                return t;
2177 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2178 >                return null;
2179 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2180 >                if (q.base - q.top < 0)
2181 >                    signalWork(q);
2182 >                return t;
2183 >            }
2184          }
2185      }
2186  
1215    // Shutdown and termination
1216
2187      /**
2188 <     * Possibly initiates and/or completes termination.
2188 >     * Returns a cheap heuristic guide for task partitioning when
2189 >     * programmers, frameworks, tools, or languages have little or no
2190 >     * idea about task granularity.  In essence by offering this
2191 >     * method, we ask users only about tradeoffs in overhead vs
2192 >     * expected throughput and its variance, rather than how finely to
2193 >     * partition tasks.
2194 >     *
2195 >     * In a steady state strict (tree-structured) computation, each
2196 >     * thread makes available for stealing enough tasks for other
2197 >     * threads to remain active. Inductively, if all threads play by
2198 >     * the same rules, each thread should make available only a
2199 >     * constant number of tasks.
2200 >     *
2201 >     * The minimum useful constant is just 1. But using a value of 1
2202 >     * would require immediate replenishment upon each steal to
2203 >     * maintain enough tasks, which is infeasible.  Further,
2204 >     * partitionings/granularities of offered tasks should minimize
2205 >     * steal rates, which in general means that threads nearer the top
2206 >     * of computation tree should generate more than those nearer the
2207 >     * bottom. In perfect steady state, each thread is at
2208 >     * approximately the same level of computation tree. However,
2209 >     * producing extra tasks amortizes the uncertainty of progress and
2210 >     * diffusion assumptions.
2211 >     *
2212 >     * So, users will want to use values larger, but not much larger
2213 >     * than 1 to both smooth over transient shortages and hedge
2214 >     * against uneven progress; as traded off against the cost of
2215 >     * extra task overhead. We leave the user to pick a threshold
2216 >     * value to compare with the results of this call to guide
2217 >     * decisions, but recommend values such as 3.
2218 >     *
2219 >     * When all threads are active, it is on average OK to estimate
2220 >     * surplus strictly locally. In steady-state, if one thread is
2221 >     * maintaining say 2 surplus tasks, then so are others. So we can
2222 >     * just use estimated queue length.  However, this strategy alone
2223 >     * leads to serious mis-estimates in some non-steady-state
2224 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2225 >     * many of these by further considering the number of "idle"
2226 >     * threads, that are known to have zero queued tasks, so
2227 >     * compensate by a factor of (#idle/#active) threads.
2228 >     *
2229 >     * Note: The approximation of #busy workers as #active workers is
2230 >     * not very good under current signalling scheme, and should be
2231 >     * improved.
2232 >     */
2233 >    static int getSurplusQueuedTaskCount() {
2234 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2235 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2236 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2237 >            int n = (q = wt.workQueue).top - q.base;
2238 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2239 >            return n - (a > (p >>>= 1) ? 0 :
2240 >                        a > (p >>>= 1) ? 1 :
2241 >                        a > (p >>>= 1) ? 2 :
2242 >                        a > (p >>>= 1) ? 4 :
2243 >                        8);
2244 >        }
2245 >        return 0;
2246 >    }
2247 >
2248 >    //  Termination
2249 >
2250 >    /**
2251 >     * Possibly initiates and/or completes termination.  The caller
2252 >     * triggering termination runs three passes through workQueues:
2253 >     * (0) Setting termination status, followed by wakeups of queued
2254 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2255 >     * threads (likely in external tasks, but possibly also blocked in
2256 >     * joins).  Each pass repeats previous steps because of potential
2257 >     * lagging thread creation.
2258       *
2259       * @param now if true, unconditionally terminate, else only
2260 <     * if shutdown and empty queue and no active workers
2260 >     * if no work and no active workers
2261 >     * @param enable if true, enable shutdown when next possible
2262       * @return true if now terminating or terminated
2263       */
2264 <    private boolean tryTerminate(boolean now) {
2265 <        long c;
2266 <        while (((c = ctl) & STOP_BIT) == 0) {
2267 <            if (!now) {
2268 <                if ((int)(c >> AC_SHIFT) != -parallelism)
2269 <                    return false;
2270 <                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
2271 <                    queueBase != queueTop) {
2272 <                    if (ctl == c) // staleness check
1233 <                        return false;
1234 <                    continue;
2264 >    private boolean tryTerminate(boolean now, boolean enable) {
2265 >        if (this == commonPool)                     // cannot shut down
2266 >            return false;
2267 >        for (long c;;) {
2268 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2269 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2270 >                    synchronized (this) {
2271 >                        notifyAll();                // signal when 0 workers
2272 >                    }
2273                  }
2274 +                return true;
2275              }
2276 <            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
2277 <                startTerminating();
2278 <        }
2279 <        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
2280 <            final ReentrantLock lock = this.submissionLock;
2281 <            lock.lock();
2282 <            try {
2283 <                termination.signalAll();
2284 <            } finally {
2285 <                lock.unlock();
2276 >            if (plock >= 0) {                       // not yet enabled
2277 >                int ps;
2278 >                if (!enable)
2279 >                    return false;
2280 >                if (((ps = plock) & PL_LOCK) != 0 ||
2281 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2282 >                    ps = acquirePlock();
2283 >                if (!U.compareAndSwapInt(this, PLOCK, ps, SHUTDOWN))
2284 >                    releasePlock(SHUTDOWN);
2285 >            }
2286 >            if (!now) {                             // check if idle & no tasks
2287 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2288 >                    hasQueuedSubmissions())
2289 >                    return false;
2290 >                // Check for unqueued inactive workers. One pass suffices.
2291 >                WorkQueue[] ws = workQueues; WorkQueue w;
2292 >                if (ws != null) {
2293 >                    for (int i = 1; i < ws.length; i += 2) {
2294 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2295 >                            return false;
2296 >                    }
2297 >                }
2298              }
2299 <        }
2300 <        return true;
2301 <    }
2302 <
2303 <    /**
2304 <     * Runs up to three passes through workers: (0) Setting
2305 <     * termination status for each worker, followed by wakeups up to
2306 <     * queued workers; (1) helping cancel tasks; (2) interrupting
2307 <     * lagging threads (likely in external tasks, but possibly also
2308 <     * blocked in joins).  Each pass repeats previous steps because of
2309 <     * potential lagging thread creation.
2310 <     */
2311 <    private void startTerminating() {
2312 <        cancelSubmissions();
2313 <        for (int pass = 0; pass < 3; ++pass) {
2314 <            ForkJoinWorkerThread[] ws = workers;
2315 <            if (ws != null) {
2316 <                for (ForkJoinWorkerThread w : ws) {
2317 <                    if (w != null) {
2318 <                        w.terminate = true;
1268 <                        if (pass > 0) {
1269 <                            w.cancelTasks();
1270 <                            if (pass > 1 && !w.isInterrupted()) {
1271 <                                try {
1272 <                                    w.interrupt();
1273 <                                } catch (SecurityException ignore) {
2299 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2300 >                for (int pass = 0; pass < 3; ++pass) {
2301 >                    WorkQueue[] ws = workQueues;
2302 >                    if (ws != null) {
2303 >                        WorkQueue w; Thread wt;
2304 >                        int n = ws.length;
2305 >                        for (int i = 0; i < n; ++i) {
2306 >                            if ((w = ws[i]) != null) {
2307 >                                w.qlock = -1;
2308 >                                if (pass > 0) {
2309 >                                    w.cancelAll();
2310 >                                    if (pass > 1 && (wt = w.owner) != null) {
2311 >                                        if (!wt.isInterrupted()) {
2312 >                                            try {
2313 >                                                wt.interrupt();
2314 >                                            } catch (SecurityException ignore) {
2315 >                                            }
2316 >                                        }
2317 >                                        U.unpark(wt);
2318 >                                    }
2319                                  }
2320                              }
2321                          }
2322 +                        // Wake up workers parked on event queue
2323 +                        int i, e; long cc; Thread p;
2324 +                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2325 +                               (i = e & SMASK) < n &&
2326 +                               (w = ws[i]) != null) {
2327 +                            long nc = ((long)(w.nextWait & E_MASK) |
2328 +                                       ((cc + AC_UNIT) & AC_MASK) |
2329 +                                       (cc & (TC_MASK|STOP_BIT)));
2330 +                            if (w.eventCount == (e | INT_SIGN) &&
2331 +                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2332 +                                w.eventCount = (e + E_SEQ) & E_MASK;
2333 +                                w.qlock = -1;
2334 +                                if ((p = w.parker) != null)
2335 +                                    U.unpark(p);
2336 +                            }
2337 +                        }
2338                      }
2339                  }
1279                terminateWaiters();
2340              }
2341          }
2342      }
2343  
2344 +    // external operations on common pool
2345 +
2346      /**
2347 <     * Polls and cancels all submissions. Called only during termination.
2347 >     * Returns common pool queue for a thread that has submitted at
2348 >     * least one task.
2349       */
2350 <    private void cancelSubmissions() {
2351 <        while (queueBase != queueTop) {
2352 <            ForkJoinTask<?> task = pollSubmission();
2353 <            if (task != null) {
2354 <                try {
2355 <                    task.cancel(false);
2356 <                } catch (Throwable ignore) {
2350 >    static WorkQueue commonSubmitterQueue() {
2351 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2352 >        return ((z = submitters.get()) != null &&
2353 >                (p = commonPool) != null &&
2354 >                (ws = p.workQueues) != null &&
2355 >                (m = ws.length - 1) >= 0) ?
2356 >            ws[m & z.seed & SQMASK] : null;
2357 >    }
2358 >
2359 >    /**
2360 >     * Tries to pop the given task from submitter's queue in common pool.
2361 >     */
2362 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2363 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2364 >        ForkJoinTask<?>[] a;  int m, s;
2365 >        if (t != null &&
2366 >            (z = submitters.get()) != null &&
2367 >            (p = commonPool) != null &&
2368 >            (ws = p.workQueues) != null &&
2369 >            (m = ws.length - 1) >= 0 &&
2370 >            (q = ws[m & z.seed & SQMASK]) != null &&
2371 >            (s = q.top) != q.base &&
2372 >            (a = q.array) != null) {
2373 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2374 >            if (U.getObject(a, j) == t &&
2375 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2376 >                if (q.array == a && q.top == s && // recheck
2377 >                    U.compareAndSwapObject(a, j, t, null)) {
2378 >                    q.top = s - 1;
2379 >                    q.qlock = 0;
2380 >                    return true;
2381                  }
2382 +                q.qlock = 0;
2383              }
2384          }
2385 +        return false;
2386      }
2387  
2388      /**
2389 <     * Tries to set the termination status of waiting workers, and
2390 <     * then wakes them up (after which they will terminate).
2391 <     */
2392 <    private void terminateWaiters() {
2393 <        ForkJoinWorkerThread[] ws = workers;
2394 <        if (ws != null) {
2395 <            ForkJoinWorkerThread w; long c; int i, e;
2396 <            int n = ws.length;
2397 <            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
2398 <                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
2399 <                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
2400 <                                              (long)(w.nextWait & E_MASK) |
2401 <                                              ((c + AC_UNIT) & AC_MASK) |
2402 <                                              (c & (TC_MASK|STOP_BIT)))) {
2403 <                    w.terminate = true;
2404 <                    w.eventCount = e + EC_UNIT;
2405 <                    if (w.parked)
2406 <                        UNSAFE.unpark(w);
2389 >     * Tries to pop and run local tasks within the same computation
2390 >     * as the given root. On failure, tries to help complete from
2391 >     * other queues via helpComplete.
2392 >     */
2393 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2394 >        ForkJoinTask<?>[] a; int m;
2395 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2396 >            root != null && root.status >= 0) {
2397 >            for (;;) {
2398 >                int s, u; Object o; CountedCompleter<?> task = null;
2399 >                if ((s = q.top) - q.base > 0) {
2400 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2401 >                    if ((o = U.getObject(a, j)) != null &&
2402 >                        (o instanceof CountedCompleter)) {
2403 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2404 >                        do {
2405 >                            if (r == root) {
2406 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2407 >                                    if (q.array == a && q.top == s &&
2408 >                                        U.compareAndSwapObject(a, j, t, null)) {
2409 >                                        q.top = s - 1;
2410 >                                        task = t;
2411 >                                    }
2412 >                                    q.qlock = 0;
2413 >                                }
2414 >                                break;
2415 >                            }
2416 >                        } while ((r = r.completer) != null);
2417 >                    }
2418 >                }
2419 >                if (task != null)
2420 >                    task.doExec();
2421 >                if (root.status < 0 ||
2422 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2423 >                    break;
2424 >                if (task == null) {
2425 >                    helpSignal(root, q.poolIndex);
2426 >                    if (root.status >= 0)
2427 >                        helpComplete(root, SHARED_QUEUE);
2428 >                    break;
2429                  }
2430              }
2431          }
2432      }
2433  
1323    // misc ForkJoinWorkerThread support
1324
2434      /**
2435 <     * Increment or decrement quiescerCount. Needed only to prevent
2436 <     * triggering shutdown if a worker is transiently inactive while
1328 <     * checking quiescence.
1329 <     *
1330 <     * @param delta 1 for increment, -1 for decrement
2435 >     * Tries to help execute or signal availability of the given task
2436 >     * from submitter's queue in common pool.
2437       */
2438 <    final void addQuiescerCount(int delta) {
2439 <        int c;
2440 <        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
2441 <                                              c = quiescerCount, c + delta));
2438 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2439 >        // Some hard-to-avoid overlap with tryExternalUnpush
2440 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2441 >        ForkJoinTask<?>[] a;  int m, s, n;
2442 >        if (t != null &&
2443 >            (z = submitters.get()) != null &&
2444 >            (p = commonPool) != null &&
2445 >            (ws = p.workQueues) != null &&
2446 >            (m = ws.length - 1) >= 0 &&
2447 >            (q = ws[m & z.seed & SQMASK]) != null &&
2448 >            (a = q.array) != null) {
2449 >            int am = a.length - 1;
2450 >            if ((s = q.top) != q.base) {
2451 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2452 >                if (U.getObject(a, j) == t &&
2453 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2454 >                    if (q.array == a && q.top == s &&
2455 >                        U.compareAndSwapObject(a, j, t, null)) {
2456 >                        q.top = s - 1;
2457 >                        q.qlock = 0;
2458 >                        t.doExec();
2459 >                    }
2460 >                    else
2461 >                        q.qlock = 0;
2462 >                }
2463 >            }
2464 >            if (t.status >= 0) {
2465 >                if (t instanceof CountedCompleter)
2466 >                    p.externalHelpComplete(q, t);
2467 >                else
2468 >                    p.helpSignal(t, q.poolIndex);
2469 >            }
2470 >        }
2471      }
2472  
2473      /**
2474 <     * Directly increment or decrement active count without
1340 <     * queuing. This method is used to transiently assert inactivation
1341 <     * while checking quiescence.
1342 <     *
1343 <     * @param delta 1 for increment, -1 for decrement
2474 >     * Restricted version of helpQuiescePool for external callers
2475       */
2476 <    final void addActiveCount(int delta) {
2477 <        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
2478 <        long c;
2479 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
2480 <                                                ((c + d) & AC_MASK) |
2481 <                                                (c & ~AC_MASK)));
2482 <    }
2483 <
2484 <    /**
2485 <     * Returns the approximate (non-atomic) number of idle threads per
1355 <     * active thread.
1356 <     */
1357 <    final int idlePerActive() {
1358 <        // Approximate at powers of two for small values, saturate past 4
1359 <        int p = parallelism;
1360 <        int a = p + (int)(ctl >> AC_SHIFT);
1361 <        return (a > (p >>>= 1) ? 0 :
1362 <                a > (p >>>= 1) ? 1 :
1363 <                a > (p >>>= 1) ? 2 :
1364 <                a > (p >>>= 1) ? 4 :
1365 <                8);
2476 >    static void externalHelpQuiescePool() {
2477 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2478 >        if ((p = commonPool) != null &&
2479 >            (q = p.findNonEmptyStealQueue(1)) != null &&
2480 >            (b = q.base) - q.top < 0 &&
2481 >            (t = q.pollAt(b)) != null) {
2482 >            if (q.base - q.top < 0)
2483 >                p.signalWork(q);
2484 >            t.doExec();
2485 >        }
2486      }
2487  
2488      // Exported methods
# Line 1434 | Line 2554 | public class ForkJoinPool extends Abstra
2554          checkPermission();
2555          if (factory == null)
2556              throw new NullPointerException();
2557 <        if (parallelism <= 0 || parallelism > MAX_ID)
2557 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2558              throw new IllegalArgumentException();
1439        this.parallelism = parallelism;
2559          this.factory = factory;
2560          this.ueh = handler;
2561 <        this.locallyFifo = asyncMode;
2561 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2562          long np = (long)(-parallelism); // offset ctl counts
2563          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2564 <        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1446 <        // initialize workers array with room for 2*parallelism if possible
1447 <        int n = parallelism << 1;
1448 <        if (n >= MAX_ID)
1449 <            n = MAX_ID;
1450 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1451 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1452 <        }
1453 <        workers = new ForkJoinWorkerThread[n + 1];
1454 <        this.submissionLock = new ReentrantLock();
1455 <        this.termination = submissionLock.newCondition();
2564 >        int pn = nextPoolId();
2565          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2566 <        sb.append(poolNumberGenerator.incrementAndGet());
2566 >        sb.append(Integer.toString(pn));
2567          sb.append("-worker-");
2568          this.workerNamePrefix = sb.toString();
2569      }
2570  
2571 +    /**
2572 +     * Constructor for common pool, suitable only for static initialization.
2573 +     * Basically the same as above, but uses smallest possible initial footprint.
2574 +     */
2575 +    ForkJoinPool(int parallelism, long ctl,
2576 +                 ForkJoinWorkerThreadFactory factory,
2577 +                 Thread.UncaughtExceptionHandler handler) {
2578 +        this.config = parallelism;
2579 +        this.ctl = ctl;
2580 +        this.factory = factory;
2581 +        this.ueh = handler;
2582 +        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2583 +    }
2584 +
2585 +    /**
2586 +     * Returns the common pool instance. This pool is statically
2587 +     * constructed; its run state is unaffected by attempts to
2588 +     * {@link #shutdown} or {@link #shutdownNow}.
2589 +     *
2590 +     * @return the common pool instance
2591 +     */
2592 +    public static ForkJoinPool commonPool() {
2593 +        // assert commonPool != null : "static init error";
2594 +        return commonPool;
2595 +    }
2596 +
2597      // Execution methods
2598  
2599      /**
# Line 1478 | Line 2613 | public class ForkJoinPool extends Abstra
2613       *         scheduled for execution
2614       */
2615      public <T> T invoke(ForkJoinTask<T> task) {
1481        Thread t = Thread.currentThread();
2616          if (task == null)
2617              throw new NullPointerException();
2618 <        if (shutdown)
2619 <            throw new RejectedExecutionException();
1486 <        if ((t instanceof ForkJoinWorkerThread) &&
1487 <            ((ForkJoinWorkerThread)t).pool == this)
1488 <            return task.invoke();  // bypass submit if in same pool
1489 <        else {
1490 <            addSubmission(task);
1491 <            return task.join();
1492 <        }
1493 <    }
1494 <
1495 <    /**
1496 <     * Unless terminating, forks task if within an ongoing FJ
1497 <     * computation in the current pool, else submits as external task.
1498 <     */
1499 <    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1500 <        ForkJoinWorkerThread w;
1501 <        Thread t = Thread.currentThread();
1502 <        if (shutdown)
1503 <            throw new RejectedExecutionException();
1504 <        if ((t instanceof ForkJoinWorkerThread) &&
1505 <            (w = (ForkJoinWorkerThread)t).pool == this)
1506 <            w.pushTask(task);
1507 <        else
1508 <            addSubmission(task);
2618 >        externalPush(task);
2619 >        return task.join();
2620      }
2621  
2622      /**
# Line 1519 | Line 2630 | public class ForkJoinPool extends Abstra
2630      public void execute(ForkJoinTask<?> task) {
2631          if (task == null)
2632              throw new NullPointerException();
2633 <        forkOrSubmit(task);
2633 >        externalPush(task);
2634      }
2635  
2636      // AbstractExecutorService methods
# Line 1536 | Line 2647 | public class ForkJoinPool extends Abstra
2647          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2648              job = (ForkJoinTask<?>) task;
2649          else
2650 <            job = ForkJoinTask.adapt(task, null);
2651 <        forkOrSubmit(job);
2650 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2651 >        externalPush(job);
2652      }
2653  
2654      /**
# Line 1552 | Line 2663 | public class ForkJoinPool extends Abstra
2663      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2664          if (task == null)
2665              throw new NullPointerException();
2666 <        forkOrSubmit(task);
2666 >        externalPush(task);
2667          return task;
2668      }
2669  
# Line 1562 | Line 2673 | public class ForkJoinPool extends Abstra
2673       *         scheduled for execution
2674       */
2675      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2676 <        if (task == null)
2677 <            throw new NullPointerException();
1567 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1568 <        forkOrSubmit(job);
2676 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2677 >        externalPush(job);
2678          return job;
2679      }
2680  
# Line 1575 | Line 2684 | public class ForkJoinPool extends Abstra
2684       *         scheduled for execution
2685       */
2686      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2687 <        if (task == null)
2688 <            throw new NullPointerException();
1580 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1581 <        forkOrSubmit(job);
2687 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2688 >        externalPush(job);
2689          return job;
2690      }
2691  
# Line 1594 | Line 2701 | public class ForkJoinPool extends Abstra
2701          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2702              job = (ForkJoinTask<?>) task;
2703          else
2704 <            job = ForkJoinTask.adapt(task, null);
2705 <        forkOrSubmit(job);
2704 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2705 >        externalPush(job);
2706          return job;
2707      }
2708  
# Line 1604 | Line 2711 | public class ForkJoinPool extends Abstra
2711       * @throws RejectedExecutionException {@inheritDoc}
2712       */
2713      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2714 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2715 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2716 <        for (Callable<T> task : tasks)
2717 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2718 <        invoke(new InvokeAll<T>(forkJoinTasks));
2719 <
2714 >        // In previous versions of this class, this method constructed
2715 >        // a task to run ForkJoinTask.invokeAll, but now external
2716 >        // invocation of multiple tasks is at least as efficient.
2717 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2718 >        // Workaround needed because method wasn't declared with
2719 >        // wildcards in return type but should have been.
2720          @SuppressWarnings({"unchecked", "rawtypes"})
2721 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1615 <        return futures;
1616 <    }
2721 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2722  
2723 <    static final class InvokeAll<T> extends RecursiveAction {
2724 <        final ArrayList<ForkJoinTask<T>> tasks;
2725 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2726 <        public void compute() {
2727 <            try { invokeAll(tasks); }
2728 <            catch (Exception ignore) {}
2723 >        boolean done = false;
2724 >        try {
2725 >            for (Callable<T> t : tasks) {
2726 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2727 >                externalPush(f);
2728 >                fs.add(f);
2729 >            }
2730 >            for (ForkJoinTask<T> f : fs)
2731 >                f.quietlyJoin();
2732 >            done = true;
2733 >            return futures;
2734 >        } finally {
2735 >            if (!done)
2736 >                for (ForkJoinTask<T> f : fs)
2737 >                    f.cancel(false);
2738          }
1625        private static final long serialVersionUID = -7914297376763021607L;
2739      }
2740  
2741      /**
# Line 1650 | Line 2763 | public class ForkJoinPool extends Abstra
2763       * @return the targeted parallelism level of this pool
2764       */
2765      public int getParallelism() {
2766 <        return parallelism;
2766 >        return config & SMASK;
2767 >    }
2768 >
2769 >    /**
2770 >     * Returns the targeted parallelism level of the common pool.
2771 >     *
2772 >     * @return the targeted parallelism level of the common pool
2773 >     */
2774 >    public static int getCommonPoolParallelism() {
2775 >        return commonPoolParallelism;
2776      }
2777  
2778      /**
# Line 1662 | Line 2784 | public class ForkJoinPool extends Abstra
2784       * @return the number of worker threads
2785       */
2786      public int getPoolSize() {
2787 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2787 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2788      }
2789  
2790      /**
# Line 1672 | Line 2794 | public class ForkJoinPool extends Abstra
2794       * @return {@code true} if this pool uses async mode
2795       */
2796      public boolean getAsyncMode() {
2797 <        return locallyFifo;
2797 >        return (config >>> 16) == FIFO_QUEUE;
2798      }
2799  
2800      /**
# Line 1684 | Line 2806 | public class ForkJoinPool extends Abstra
2806       * @return the number of worker threads
2807       */
2808      public int getRunningThreadCount() {
2809 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2810 <        return r <= 0? 0 : r; // suppress momentarily negative values
2809 >        int rc = 0;
2810 >        WorkQueue[] ws; WorkQueue w;
2811 >        if ((ws = workQueues) != null) {
2812 >            for (int i = 1; i < ws.length; i += 2) {
2813 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2814 >                    ++rc;
2815 >            }
2816 >        }
2817 >        return rc;
2818      }
2819  
2820      /**
# Line 1696 | Line 2825 | public class ForkJoinPool extends Abstra
2825       * @return the number of active threads
2826       */
2827      public int getActiveThreadCount() {
2828 <        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
2829 <        return r <= 0? 0 : r; // suppress momentarily negative values
2828 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2829 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2830      }
2831  
2832      /**
# Line 1712 | Line 2841 | public class ForkJoinPool extends Abstra
2841       * @return {@code true} if all threads are currently idle
2842       */
2843      public boolean isQuiescent() {
2844 <        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
2844 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2845      }
2846  
2847      /**
# Line 1727 | Line 2856 | public class ForkJoinPool extends Abstra
2856       * @return the number of steals
2857       */
2858      public long getStealCount() {
2859 <        return stealCount;
2859 >        long count = stealCount;
2860 >        WorkQueue[] ws; WorkQueue w;
2861 >        if ((ws = workQueues) != null) {
2862 >            for (int i = 1; i < ws.length; i += 2) {
2863 >                if ((w = ws[i]) != null)
2864 >                    count += w.nsteals;
2865 >            }
2866 >        }
2867 >        return count;
2868      }
2869  
2870      /**
# Line 1742 | Line 2879 | public class ForkJoinPool extends Abstra
2879       */
2880      public long getQueuedTaskCount() {
2881          long count = 0;
2882 <        ForkJoinWorkerThread[] ws;
2883 <        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
2884 <            (ws = workers) != null) {
2885 <            for (ForkJoinWorkerThread w : ws)
2886 <                if (w != null)
2887 <                    count -= w.queueBase - w.queueTop; // must read base first
2882 >        WorkQueue[] ws; WorkQueue w;
2883 >        if ((ws = workQueues) != null) {
2884 >            for (int i = 1; i < ws.length; i += 2) {
2885 >                if ((w = ws[i]) != null)
2886 >                    count += w.queueSize();
2887 >            }
2888          }
2889          return count;
2890      }
# Line 1760 | Line 2897 | public class ForkJoinPool extends Abstra
2897       * @return the number of queued submissions
2898       */
2899      public int getQueuedSubmissionCount() {
2900 <        return -queueBase + queueTop;
2900 >        int count = 0;
2901 >        WorkQueue[] ws; WorkQueue w;
2902 >        if ((ws = workQueues) != null) {
2903 >            for (int i = 0; i < ws.length; i += 2) {
2904 >                if ((w = ws[i]) != null)
2905 >                    count += w.queueSize();
2906 >            }
2907 >        }
2908 >        return count;
2909      }
2910  
2911      /**
# Line 1770 | Line 2915 | public class ForkJoinPool extends Abstra
2915       * @return {@code true} if there are any queued submissions
2916       */
2917      public boolean hasQueuedSubmissions() {
2918 <        return queueBase != queueTop;
2918 >        WorkQueue[] ws; WorkQueue w;
2919 >        if ((ws = workQueues) != null) {
2920 >            for (int i = 0; i < ws.length; i += 2) {
2921 >                if ((w = ws[i]) != null && !w.isEmpty())
2922 >                    return true;
2923 >            }
2924 >        }
2925 >        return false;
2926      }
2927  
2928      /**
# Line 1781 | Line 2933 | public class ForkJoinPool extends Abstra
2933       * @return the next submission, or {@code null} if none
2934       */
2935      protected ForkJoinTask<?> pollSubmission() {
2936 <        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
2937 <        while ((b = queueBase) != queueTop &&
2938 <               (q = submissionQueue) != null &&
2939 <               (i = (q.length - 1) & b) >= 0) {
2940 <            long u = (i << ASHIFT) + ABASE;
1789 <            if ((t = q[i]) != null &&
1790 <                queueBase == b &&
1791 <                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1792 <                queueBase = b + 1;
1793 <                return t;
2936 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2937 >        if ((ws = workQueues) != null) {
2938 >            for (int i = 0; i < ws.length; i += 2) {
2939 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2940 >                    return t;
2941              }
2942          }
2943          return null;
# Line 1815 | Line 2962 | public class ForkJoinPool extends Abstra
2962       */
2963      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2964          int count = 0;
2965 <        while (queueBase != queueTop) {
2966 <            ForkJoinTask<?> t = pollSubmission();
2967 <            if (t != null) {
2968 <                c.add(t);
2969 <                ++count;
2965 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2966 >        if ((ws = workQueues) != null) {
2967 >            for (int i = 0; i < ws.length; ++i) {
2968 >                if ((w = ws[i]) != null) {
2969 >                    while ((t = w.poll()) != null) {
2970 >                        c.add(t);
2971 >                        ++count;
2972 >                    }
2973 >                }
2974              }
2975          }
1825        ForkJoinWorkerThread[] ws;
1826        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1827            (ws = workers) != null) {
1828            for (ForkJoinWorkerThread w : ws)
1829                if (w != null)
1830                    count += w.drainTasksTo(c);
1831        }
2976          return count;
2977      }
2978  
# Line 1840 | Line 2984 | public class ForkJoinPool extends Abstra
2984       * @return a string identifying this pool, as well as its state
2985       */
2986      public String toString() {
2987 <        long st = getStealCount();
2988 <        long qt = getQueuedTaskCount();
2989 <        long qs = getQueuedSubmissionCount();
1846 <        int pc = parallelism;
2987 >        // Use a single pass through workQueues to collect counts
2988 >        long qt = 0L, qs = 0L; int rc = 0;
2989 >        long st = stealCount;
2990          long c = ctl;
2991 +        WorkQueue[] ws; WorkQueue w;
2992 +        if ((ws = workQueues) != null) {
2993 +            for (int i = 0; i < ws.length; ++i) {
2994 +                if ((w = ws[i]) != null) {
2995 +                    int size = w.queueSize();
2996 +                    if ((i & 1) == 0)
2997 +                        qs += size;
2998 +                    else {
2999 +                        qt += size;
3000 +                        st += w.nsteals;
3001 +                        if (w.isApparentlyUnblocked())
3002 +                            ++rc;
3003 +                    }
3004 +                }
3005 +            }
3006 +        }
3007 +        int pc = (config & SMASK);
3008          int tc = pc + (short)(c >>> TC_SHIFT);
3009 <        int rc = pc + (int)(c >> AC_SHIFT);
3010 <        if (rc < 0) // ignore transient negative
3011 <            rc = 0;
1852 <        int ac = rc + blockedCount;
3009 >        int ac = pc + (int)(c >> AC_SHIFT);
3010 >        if (ac < 0) // ignore transient negative
3011 >            ac = 0;
3012          String level;
3013          if ((c & STOP_BIT) != 0)
3014 <            level = (tc == 0)? "Terminated" : "Terminating";
3014 >            level = (tc == 0) ? "Terminated" : "Terminating";
3015          else
3016 <            level = shutdown? "Shutting down" : "Running";
3016 >            level = plock < 0 ? "Shutting down" : "Running";
3017          return super.toString() +
3018              "[" + level +
3019              ", parallelism = " + pc +
# Line 1868 | Line 3027 | public class ForkJoinPool extends Abstra
3027      }
3028  
3029      /**
3030 <     * Initiates an orderly shutdown in which previously submitted
3031 <     * tasks are executed, but no new tasks will be accepted.
3032 <     * Invocation has no additional effect if already shut down.
3033 <     * Tasks that are in the process of being submitted concurrently
3034 <     * during the course of this method may or may not be rejected.
3030 >     * Possibly initiates an orderly shutdown in which previously
3031 >     * submitted tasks are executed, but no new tasks will be
3032 >     * accepted. Invocation has no effect on execution state if this
3033 >     * is the {@link #commonPool}, and no additional effect if
3034 >     * already shut down.  Tasks that are in the process of being
3035 >     * submitted concurrently during the course of this method may or
3036 >     * may not be rejected.
3037       *
3038       * @throws SecurityException if a security manager exists and
3039       *         the caller is not permitted to modify threads
# Line 1881 | Line 3042 | public class ForkJoinPool extends Abstra
3042       */
3043      public void shutdown() {
3044          checkPermission();
3045 <        shutdown = true;
1885 <        tryTerminate(false);
3045 >        tryTerminate(false, true);
3046      }
3047  
3048      /**
3049 <     * Attempts to cancel and/or stop all tasks, and reject all
3050 <     * subsequently submitted tasks.  Tasks that are in the process of
3051 <     * being submitted or executed concurrently during the course of
3052 <     * this method may or may not be rejected. This method cancels
3053 <     * both existing and unexecuted tasks, in order to permit
3054 <     * termination in the presence of task dependencies. So the method
3055 <     * always returns an empty list (unlike the case for some other
3056 <     * Executors).
3049 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3050 >     * all subsequently submitted tasks.  Invocation has no effect on
3051 >     * execution state if this is the {@link #commonPool}, and no
3052 >     * additional effect if already shut down. Otherwise, tasks that
3053 >     * are in the process of being submitted or executed concurrently
3054 >     * during the course of this method may or may not be
3055 >     * rejected. This method cancels both existing and unexecuted
3056 >     * tasks, in order to permit termination in the presence of task
3057 >     * dependencies. So the method always returns an empty list
3058 >     * (unlike the case for some other Executors).
3059       *
3060       * @return an empty list
3061       * @throws SecurityException if a security manager exists and
# Line 1903 | Line 3065 | public class ForkJoinPool extends Abstra
3065       */
3066      public List<Runnable> shutdownNow() {
3067          checkPermission();
3068 <        shutdown = true;
1907 <        tryTerminate(true);
3068 >        tryTerminate(true, true);
3069          return Collections.emptyList();
3070      }
3071  
# Line 1916 | Line 3077 | public class ForkJoinPool extends Abstra
3077      public boolean isTerminated() {
3078          long c = ctl;
3079          return ((c & STOP_BIT) != 0L &&
3080 <                (short)(c >>> TC_SHIFT) == -parallelism);
3080 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3081      }
3082  
3083      /**
# Line 1924 | Line 3085 | public class ForkJoinPool extends Abstra
3085       * commenced but not yet completed.  This method may be useful for
3086       * debugging. A return of {@code true} reported a sufficient
3087       * period after shutdown may indicate that submitted tasks have
3088 <     * ignored or suppressed interruption, or are waiting for IO,
3088 >     * ignored or suppressed interruption, or are waiting for I/O,
3089       * causing this executor not to properly terminate. (See the
3090       * advisory notes for class {@link ForkJoinTask} stating that
3091       * tasks should not normally entail blocking operations.  But if
# Line 1935 | Line 3096 | public class ForkJoinPool extends Abstra
3096      public boolean isTerminating() {
3097          long c = ctl;
3098          return ((c & STOP_BIT) != 0L &&
3099 <                (short)(c >>> TC_SHIFT) != -parallelism);
1939 <    }
1940 <
1941 <    /**
1942 <     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1943 <     */
1944 <    final boolean isAtLeastTerminating() {
1945 <        return (ctl & STOP_BIT) != 0L;
3099 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3100      }
3101  
3102      /**
# Line 1951 | Line 3105 | public class ForkJoinPool extends Abstra
3105       * @return {@code true} if this pool has been shut down
3106       */
3107      public boolean isShutdown() {
3108 <        return shutdown;
3108 >        return plock < 0;
3109      }
3110  
3111      /**
3112 <     * Blocks until all tasks have completed execution after a shutdown
3113 <     * request, or the timeout occurs, or the current thread is
3114 <     * interrupted, whichever happens first.
3112 >     * Blocks until all tasks have completed execution after a
3113 >     * shutdown request, or the timeout occurs, or the current thread
3114 >     * is interrupted, whichever happens first. Note that the {@link
3115 >     * #commonPool()} never terminates until program shutdown so
3116 >     * this method will always time out.
3117       *
3118       * @param timeout the maximum time to wait
3119       * @param unit the time unit of the timeout argument
# Line 1968 | Line 3124 | public class ForkJoinPool extends Abstra
3124      public boolean awaitTermination(long timeout, TimeUnit unit)
3125          throws InterruptedException {
3126          long nanos = unit.toNanos(timeout);
3127 <        final ReentrantLock lock = this.submissionLock;
3128 <        lock.lock();
3129 <        try {
3130 <            for (;;) {
3131 <                if (isTerminated())
3132 <                    return true;
3133 <                if (nanos <= 0)
3134 <                    return false;
3135 <                nanos = termination.awaitNanos(nanos);
3127 >        if (isTerminated())
3128 >            return true;
3129 >        long startTime = System.nanoTime();
3130 >        boolean terminated = false;
3131 >        synchronized (this) {
3132 >            for (long waitTime = nanos, millis = 0L;;) {
3133 >                if (terminated = isTerminated() ||
3134 >                    waitTime <= 0L ||
3135 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3136 >                    break;
3137 >                wait(millis);
3138 >                waitTime = nanos - (System.nanoTime() - startTime);
3139              }
1981        } finally {
1982            lock.unlock();
3140          }
3141 +        return terminated;
3142      }
3143  
3144      /**
# Line 2080 | Line 3238 | public class ForkJoinPool extends Abstra
3238          throws InterruptedException {
3239          Thread t = Thread.currentThread();
3240          if (t instanceof ForkJoinWorkerThread) {
3241 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
3242 <            w.pool.awaitBlocker(blocker);
3241 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3242 >            while (!blocker.isReleasable()) { // variant of helpSignal
3243 >                WorkQueue[] ws; WorkQueue q; int m, u;
3244 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3245 >                    for (int i = 0; i <= m; ++i) {
3246 >                        if (blocker.isReleasable())
3247 >                            return;
3248 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3249 >                            p.signalWork(q);
3250 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3251 >                                (u >> UAC_SHIFT) >= 0)
3252 >                                break;
3253 >                        }
3254 >                    }
3255 >                }
3256 >                if (p.tryCompensate()) {
3257 >                    try {
3258 >                        do {} while (!blocker.isReleasable() &&
3259 >                                     !blocker.block());
3260 >                    } finally {
3261 >                        p.incrementActiveCount();
3262 >                    }
3263 >                    break;
3264 >                }
3265 >            }
3266          }
3267          else {
3268 <            do {} while (!blocker.isReleasable() && !blocker.block());
3268 >            do {} while (!blocker.isReleasable() &&
3269 >                         !blocker.block());
3270          }
3271      }
3272  
# Line 2093 | Line 3275 | public class ForkJoinPool extends Abstra
3275      // implement RunnableFuture.
3276  
3277      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3278 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3278 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3279      }
3280  
3281      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3282 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3282 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3283      }
3284  
3285      // Unsafe mechanics
3286 <    private static final sun.misc.Unsafe UNSAFE;
3287 <    private static final long ctlOffset;
3288 <    private static final long stealCountOffset;
3289 <    private static final long blockedCountOffset;
2108 <    private static final long quiescerCountOffset;
2109 <    private static final long scanGuardOffset;
2110 <    private static final long nextWorkerNumberOffset;
2111 <    private static final long ABASE;
3286 >    private static final sun.misc.Unsafe U;
3287 >    private static final long CTL;
3288 >    private static final long PARKBLOCKER;
3289 >    private static final int ABASE;
3290      private static final int ASHIFT;
3291 +    private static final long STEALCOUNT;
3292 +    private static final long PLOCK;
3293 +    private static final long INDEXSEED;
3294 +    private static final long QLOCK;
3295  
3296      static {
3297 <        poolNumberGenerator = new AtomicInteger();
2116 <        workerSeedGenerator = new Random();
2117 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2118 <        defaultForkJoinWorkerThreadFactory =
2119 <            new DefaultForkJoinWorkerThreadFactory();
2120 <        int s;
3297 >        int s; // initialize field offsets for CAS etc
3298          try {
3299 <            UNSAFE = getUnsafe();
3300 <            Class k = ForkJoinPool.class;
3301 <            ctlOffset = UNSAFE.objectFieldOffset
3299 >            U = getUnsafe();
3300 >            Class<?> k = ForkJoinPool.class;
3301 >            CTL = U.objectFieldOffset
3302                  (k.getDeclaredField("ctl"));
3303 <            stealCountOffset = UNSAFE.objectFieldOffset
3303 >            STEALCOUNT = U.objectFieldOffset
3304                  (k.getDeclaredField("stealCount"));
3305 <            blockedCountOffset = UNSAFE.objectFieldOffset
3306 <                (k.getDeclaredField("blockedCount"));
3307 <            quiescerCountOffset = UNSAFE.objectFieldOffset
3308 <                (k.getDeclaredField("quiescerCount"));
3309 <            scanGuardOffset = UNSAFE.objectFieldOffset
3310 <                (k.getDeclaredField("scanGuard"));
3311 <            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
3312 <                (k.getDeclaredField("nextWorkerNumber"));
3313 <            Class a = ForkJoinTask[].class;
3314 <            ABASE = UNSAFE.arrayBaseOffset(a);
3315 <            s = UNSAFE.arrayIndexScale(a);
3305 >            PLOCK = U.objectFieldOffset
3306 >                (k.getDeclaredField("plock"));
3307 >            INDEXSEED = U.objectFieldOffset
3308 >                (k.getDeclaredField("indexSeed"));
3309 >            Class<?> tk = Thread.class;
3310 >            PARKBLOCKER = U.objectFieldOffset
3311 >                (tk.getDeclaredField("parkBlocker"));
3312 >            Class<?> wk = WorkQueue.class;
3313 >            QLOCK = U.objectFieldOffset
3314 >                (wk.getDeclaredField("qlock"));
3315 >            Class<?> ak = ForkJoinTask[].class;
3316 >            ABASE = U.arrayBaseOffset(ak);
3317 >            s = U.arrayIndexScale(ak);
3318 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3319          } catch (Exception e) {
3320              throw new Error(e);
3321          }
3322          if ((s & (s-1)) != 0)
3323              throw new Error("data type scale not a power of two");
3324 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3324 >
3325 >        submitters = new ThreadLocal<Submitter>();
3326 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3327 >            new DefaultForkJoinWorkerThreadFactory();
3328 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3329 >
3330 >        /*
3331 >         * Establish common pool parameters.  For extra caution,
3332 >         * computations to set up common pool state are here; the
3333 >         * constructor just assigns these values to fields.
3334 >         */
3335 >
3336 >        int par = 0;
3337 >        Thread.UncaughtExceptionHandler handler = null;
3338 >        try {  // TBD: limit or report ignored exceptions?
3339 >            String pp = System.getProperty
3340 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3341 >            String hp = System.getProperty
3342 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3343 >            String fp = System.getProperty
3344 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3345 >            if (fp != null)
3346 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3347 >                       getSystemClassLoader().loadClass(fp).newInstance());
3348 >            if (hp != null)
3349 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3350 >                           getSystemClassLoader().loadClass(hp).newInstance());
3351 >            if (pp != null)
3352 >                par = Integer.parseInt(pp);
3353 >        } catch (Exception ignore) {
3354 >        }
3355 >
3356 >        if (par <= 0)
3357 >            par = Runtime.getRuntime().availableProcessors();
3358 >        if (par > MAX_CAP)
3359 >            par = MAX_CAP;
3360 >        commonPoolParallelism = par;
3361 >        long np = (long)(-par); // precompute initial ctl value
3362 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3363 >
3364 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3365      }
3366  
3367      /**
# Line 2171 | Line 3391 | public class ForkJoinPool extends Abstra
3391              }
3392          }
3393      }
3394 +
3395   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines