ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.20 by jsr166, Fri Jul 24 22:05:22 2009 UTC vs.
Revision 1.103 by jsr166, Wed Jun 1 21:04:30 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24 > import java.util.concurrent.locks.LockSupport;
25 > import java.util.concurrent.locks.ReentrantLock;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
30 < * ForkJoinPool provides the entry point for submissions from
31 < * non-ForkJoinTasks, as well as management and monitoring operations.
32 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
29 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 > * A {@code ForkJoinPool} provides the entry point for submissions
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32 > * monitoring operations.
33   *
34 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
35 < * that they provide <em>work-stealing</em>: all threads in the pool
36 < * attempt to find and execute subtasks created by other active tasks
37 < * (eventually blocking if none exist). This makes them efficient when
38 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
39 < * as the mixed execution of some plain Runnable- or Callable- based
40 < * activities along with ForkJoinTasks. When setting
41 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
42 < * use with fine-grained tasks that are never joined. Otherwise, other
33 < * ExecutorService implementations are typically more appropriate
34 < * choices.
34 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35 > * ExecutorService} mainly by virtue of employing
36 > * <em>work-stealing</em>: all threads in the pool attempt to find and
37 > * execute subtasks created by other active tasks (eventually blocking
38 > * waiting for work if none exist). This enables efficient processing
39 > * when most tasks spawn other subtasks (as do most {@code
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44 < * <p>A ForkJoinPool may be constructed with a given parallelism level
45 < * (target pool size), which it attempts to maintain by dynamically
46 < * adding, suspending, or resuming threads, even if some tasks are
47 < * waiting to join others. However, no such adjustments are performed
48 < * in the face of blocked IO or other unmanaged synchronization. The
49 < * nested {@code ManagedBlocker} interface enables extension of
50 < * the kinds of synchronization accommodated.  The target parallelism
51 < * level may also be changed dynamically ({@code setParallelism})
52 < * and thread construction can be limited using methods
45 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
44 > * <p>A {@code ForkJoinPool} is constructed with a given target
45 > * parallelism level; by default, equal to the number of available
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
56 < * {@code getStealCount}) that are intended to aid in developing,
56 > * {@link #getStealCount}) that are intended to aid in developing,
57   * tuning, and monitoring fork/join applications. Also, method
58 < * {@code toString} returns indications of pool state in a
58 > * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96 + * used for all parallel task execution in a program or subsystem.
97 + * Otherwise, use would not usually outweigh the construction and
98 + * bookkeeping overhead of creating a large set of threads. For
99 + * example, a common pool could be used for the {@code SortTasks}
100 + * illustrated in {@link RecursiveAction}. Because {@code
101 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 + * daemon} mode, there is typically no need to explicitly {@link
103 + * #shutdown} such a pool upon program exit.
104 + *
105 + * <pre>
106 + * static final ForkJoinPool mainPool = new ForkJoinPool();
107 + * ...
108 + * public void sort(long[] array) {
109 + *   mainPool.invoke(new SortTask(array, 0, array.length));
110 + * }
111 + * </pre>
112 + *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
116 < * IllegalArgumentExceptions.
115 > * pools with greater than the maximum number result in
116 > * {@code IllegalArgumentException}.
117 > *
118 > * <p>This implementation rejects submitted tasks (that is, by throwing
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121   *
122   * @since 1.7
123   * @author Doug Lea
# Line 63 | Line 125 | import java.lang.reflect.*;
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
130 <     */
131 <
132 <    /** Mask for packing and unpacking shorts */
133 <    private static final int  shortMask = 0xffff;
134 <
135 <    /** Max pool size -- must be a power of two minus 1 */
136 <    private static final int MAX_THREADS =  0x7FFF;
137 <
138 <    /**
139 <     * Factory for creating new ForkJoinWorkerThreads.  A
140 <     * ForkJoinWorkerThreadFactory must be defined and used for
141 <     * ForkJoinWorkerThread subclasses that extend base functionality
142 <     * or initialize threads with different contexts.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tasks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none can
199 >     * be found immediately, and we cannot start/resume workers unless
200 >     * there appear to be tasks available.  On the other hand, we must
201 >     * quickly prod them into action when new tasks are submitted or
202 >     * generated.  We park/unpark workers after placing in an event
203 >     * wait queue when they cannot find work. This "queue" is actually
204 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205 >     * 15bit counter value to both wake up waiters (by advancing their
206 >     * count) and avoid ABA effects. Successors are held in worker
207 >     * field "nextWait".  Queuing deals with several intrinsic races,
208 >     * mainly that a task-producing thread can miss seeing (and
209 >     * signalling) another thread that gave up looking for work but
210 >     * has not yet entered the wait queue. We solve this by requiring
211 >     * a full sweep of all workers both before (in scan()) and after
212 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213 >     * queue. During a rescan, the worker might release some other
214 >     * queued worker rather than itself, which has the same net
215 >     * effect. Because enqueued workers may actually be rescanning
216 >     * rather than waiting, we set and clear the "parked" field of
217 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218 >     * (Use of the parked field requires a secondary recheck to avoid
219 >     * missed signals.)
220 >     *
221 >     * Signalling.  We create or wake up workers only when there
222 >     * appears to be at least one task they might be able to find and
223 >     * execute.  When a submission is added or another worker adds a
224 >     * task to a queue that previously had two or fewer tasks, they
225 >     * signal waiting workers (or trigger creation of new ones if
226 >     * fewer than the given parallelism level -- see signalWork).
227 >     * These primary signals are buttressed by signals during rescans
228 >     * as well as those performed when a worker steals a task and
229 >     * notices that there are more tasks too; together these cover the
230 >     * signals needed in cases when more than two tasks are pushed
231 >     * but untaken.
232 >     *
233 >     * Trimming workers. To release resources after periods of lack of
234 >     * use, a worker starting to wait when the pool is quiescent will
235 >     * time out and terminate if the pool has remained quiescent for
236 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237 >     * terminating all workers after long periods of non-use.
238 >     *
239 >     * Submissions. External submissions are maintained in an
240 >     * array-based queue that is structured identically to
241 >     * ForkJoinWorkerThread queues except for the use of
242 >     * submissionLock in method addSubmission. Unlike the case for
243 >     * worker queues, multiple external threads can add new
244 >     * submissions, so adding requires a lock.
245 >     *
246 >     * Compensation. Beyond work-stealing support and lifecycle
247 >     * control, the main responsibility of this framework is to take
248 >     * actions when one worker is waiting to join a task stolen (or
249 >     * always held by) another.  Because we are multiplexing many
250 >     * tasks on to a pool of workers, we can't just let them block (as
251 >     * in Thread.join).  We also cannot just reassign the joiner's
252 >     * run-time stack with another and replace it later, which would
253 >     * be a form of "continuation", that even if possible is not
254 >     * necessarily a good idea since we sometimes need both an
255 >     * unblocked task and its continuation to progress. Instead we
256 >     * combine two tactics:
257 >     *
258 >     *   Helping: Arranging for the joiner to execute some task that it
259 >     *      would be running if the steal had not occurred.  Method
260 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 >     *      links to try to find such a task.
262 >     *
263 >     *   Compensating: Unless there are already enough live threads,
264 >     *      method tryPreBlock() may create or re-activate a spare
265 >     *      thread to compensate for blocked joiners until they
266 >     *      unblock.
267 >     *
268 >     * The ManagedBlocker extension API can't use helping so relies
269 >     * only on compensation in method awaitBlocker.
270 >     *
271 >     * It is impossible to keep exactly the target parallelism number
272 >     * of threads running at any given time.  Determining the
273 >     * existence of conservatively safe helping targets, the
274 >     * availability of already-created spares, and the apparent need
275 >     * to create new spares are all racy and require heuristic
276 >     * guidance, so we rely on multiple retries of each.  Currently,
277 >     * in keeping with on-demand signalling policy, we compensate only
278 >     * if blocking would leave less than one active (non-waiting,
279 >     * non-blocked) worker. Additionally, to avoid some false alarms
280 >     * due to GC, lagging counters, system activity, etc, compensated
281 >     * blocking for joins is only attempted after rechecks stabilize
282 >     * (retries are interspersed with Thread.yield, for good
283 >     * citizenship).  The variable blockedCount, incremented before
284 >     * blocking and decremented after, is sometimes needed to
285 >     * distinguish cases of waiting for work vs blocking on joins or
286 >     * other managed sync. Both cases are equivalent for most pool
287 >     * control, so we can update non-atomically. (Additionally,
288 >     * contention on blockedCount alleviates some contention on ctl).
289 >     *
290 >     * Shutdown and Termination. A call to shutdownNow atomically sets
291 >     * the ctl stop bit and then (non-atomically) sets each workers
292 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 >     * all waiting workers.  Detecting whether termination should
294 >     * commence after a non-abrupt shutdown() call requires more work
295 >     * and bookkeeping. We need consensus about quiesence (i.e., that
296 >     * there is no more work) which is reflected in active counts so
297 >     * long as there are no current blockers, as well as possible
298 >     * re-evaluations during independent changes in blocking or
299 >     * quiescing workers.
300 >     *
301 >     * Style notes: There is a lot of representation-level coupling
302 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
304 >     * data structures managed by ForkJoinPool, so are directly
305 >     * accessed.  Conversely we allow access to "workers" array by
306 >     * workers, and direct access to ForkJoinTask.status by both
307 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
308 >     * trying to reduce this, since any associated future changes in
309 >     * representations will need to be accompanied by algorithmic
310 >     * changes anyway. All together, these low-level implementation
311 >     * choices produce as much as a factor of 4 performance
312 >     * improvement compared to naive implementations, and enable the
313 >     * processing of billions of tasks per second, at the expense of
314 >     * some ugliness.
315 >     *
316 >     * Methods signalWork() and scan() are the main bottlenecks so are
317 >     * especially heavily micro-optimized/mangled.  There are lots of
318 >     * inline assignments (of form "while ((local = field) != 0)")
319 >     * which are usually the simplest way to ensure the required read
320 >     * orderings (which are sometimes critical). This leads to a
321 >     * "C"-like style of listing declarations of these locals at the
322 >     * heads of methods or blocks.  There are several occurrences of
323 >     * the unusual "do {} while (!cas...)"  which is the simplest way
324 >     * to force an update of a CAS'ed variable. There are also other
325 >     * coding oddities that help some methods perform reasonably even
326 >     * when interpreted (not compiled).
327 >     *
328 >     * The order of declarations in this file is: (1) declarations of
329 >     * statics (2) fields (along with constants used when unpacking
330 >     * some of them), listed in an order that tends to reduce
331 >     * contention among them a bit under most JVMs.  (3) internal
332 >     * control methods (4) callbacks and other support for
333 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334 >     * methods (plus a few little helpers). (6) static block
335 >     * initializing all statics in a minimally dependent order.
336 >     */
337 >
338 >    /**
339 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
340 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
341 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
342 >     * functionality or initialize threads with different contexts.
343       */
344      public static interface ForkJoinWorkerThreadFactory {
345          /**
346           * Returns a new worker thread operating in the given pool.
347           *
348           * @param pool the pool this thread works in
349 <         * @throws NullPointerException if pool is null
349 >         * @throws NullPointerException if the pool is null
350           */
351          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
352      }
# Line 93 | Line 355 | public class ForkJoinPool extends Abstra
355       * Default ForkJoinWorkerThreadFactory implementation; creates a
356       * new ForkJoinWorkerThread.
357       */
358 <    static class  DefaultForkJoinWorkerThreadFactory
358 >    static class DefaultForkJoinWorkerThreadFactory
359          implements ForkJoinWorkerThreadFactory {
360          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361 <            try {
100 <                return new ForkJoinWorkerThread(pool);
101 <            } catch (OutOfMemoryError oom)  {
102 <                return null;
103 <            }
361 >            return new ForkJoinWorkerThread(pool);
362          }
363      }
364  
# Line 109 | Line 367 | public class ForkJoinPool extends Abstra
367       * overridden in ForkJoinPool constructors.
368       */
369      public static final ForkJoinWorkerThreadFactory
370 <        defaultForkJoinWorkerThreadFactory =
113 <        new DefaultForkJoinWorkerThreadFactory();
370 >        defaultForkJoinWorkerThreadFactory;
371  
372      /**
373       * Permission required for callers of methods that may start or
374       * kill threads.
375       */
376 <    private static final RuntimePermission modifyThreadPermission =
120 <        new RuntimePermission("modifyThread");
376 >    private static final RuntimePermission modifyThreadPermission;
377  
378      /**
379       * If there is a security manager, makes sure caller has
# Line 132 | Line 388 | public class ForkJoinPool extends Abstra
388      /**
389       * Generator for assigning sequence numbers as pool names.
390       */
391 <    private static final AtomicInteger poolNumberGenerator =
136 <        new AtomicInteger();
391 >    private static final AtomicInteger poolNumberGenerator;
392  
393      /**
394 <     * Array holding all worker threads in the pool. Initialized upon
395 <     * first use. Array size must be a power of two.  Updates and
396 <     * replacements are protected by workerLock, but it is always kept
397 <     * in a consistent enough state to be randomly accessed without
398 <     * locking by workers performing work-stealing.
394 >     * Generator for initial random seeds for worker victim
395 >     * selection. This is used only to create initial seeds. Random
396 >     * steals use a cheaper xorshift generator per steal attempt. We
397 >     * don't expect much contention on seedGenerator, so just use a
398 >     * plain Random.
399       */
400 <    volatile ForkJoinWorkerThread[] workers;
400 >    static final Random workerSeedGenerator;
401  
402      /**
403 <     * Lock protecting access to workers.
403 >     * Array holding all worker threads in the pool.  Initialized upon
404 >     * construction. Array size must be a power of two.  Updates and
405 >     * replacements are protected by scanGuard, but the array is
406 >     * always kept in a consistent enough state to be randomly
407 >     * accessed without locking by workers performing work-stealing,
408 >     * as well as other traversal-based methods in this class, so long
409 >     * as reads memory-acquire by first reading ctl. All readers must
410 >     * tolerate that some array slots may be null.
411       */
412 <    private final ReentrantLock workerLock;
412 >    ForkJoinWorkerThread[] workers;
413  
414      /**
415 <     * Condition for awaitTermination.
415 >     * Initial size for submission queue array. Must be a power of
416 >     * two.  In many applications, these always stay small so we use a
417 >     * small initial cap.
418       */
419 <    private final Condition termination;
419 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
420 >
421 >    /**
422 >     * Maximum size for submission queue array. Must be a power of two
423 >     * less than or equal to 1 << (31 - width of array entry) to
424 >     * ensure lack of index wraparound, but is capped at a lower
425 >     * value to help users trap runaway computations.
426 >     */
427 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428 >
429 >    /**
430 >     * Array serving as submission queue. Initialized upon construction.
431 >     */
432 >    private ForkJoinTask<?>[] submissionQueue;
433  
434      /**
435 <     * The uncaught exception handler used when any worker
159 <     * abruptly terminates
435 >     * Lock protecting submissions array for addSubmission
436       */
437 <    private Thread.UncaughtExceptionHandler ueh;
437 >    private final ReentrantLock submissionLock;
438 >
439 >    /**
440 >     * Condition for awaitTermination, using submissionLock for
441 >     * convenience.
442 >     */
443 >    private final Condition termination;
444  
445      /**
446       * Creation factory for worker threads.
# Line 166 | Line 448 | public class ForkJoinPool extends Abstra
448      private final ForkJoinWorkerThreadFactory factory;
449  
450      /**
451 <     * Head of stack of threads that were created to maintain
452 <     * parallelism when other threads blocked, but have since
171 <     * suspended when the parallelism level rose.
451 >     * The uncaught exception handler used when any worker abruptly
452 >     * terminates.
453       */
454 <    private volatile WaitQueueNode spareStack;
454 >    final Thread.UncaughtExceptionHandler ueh;
455  
456      /**
457 <     * Sum of per-thread steal counts, updated only when threads are
177 <     * idle or terminating.
457 >     * Prefix for assigning names to worker threads
458       */
459 <    private final AtomicLong stealCount;
459 >    private final String workerNamePrefix;
460  
461      /**
462 <     * Queue for external submissions.
462 >     * Sum of per-thread steal counts, updated only when threads are
463 >     * idle or terminating.
464       */
465 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
465 >    private volatile long stealCount;
466  
467      /**
468 <     * Head of Treiber stack for barrier sync. See below for explanation.
468 >     * Main pool control -- a long packed with:
469 >     * AC: Number of active running workers minus target parallelism (16 bits)
470 >     * TC: Number of total workers minus target parallelism (16bits)
471 >     * ST: true if pool is terminating (1 bit)
472 >     * EC: the wait count of top waiting thread (15 bits)
473 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474 >     *
475 >     * When convenient, we can extract the upper 32 bits of counts and
476 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477 >     * (int)ctl.  The ec field is never accessed alone, but always
478 >     * together with id and st. The offsets of counts by the target
479 >     * parallelism and the positionings of fields makes it possible to
480 >     * perform the most common checks via sign tests of fields: When
481 >     * ac is negative, there are not enough active workers, when tc is
482 >     * negative, there are not enough total workers, when id is
483 >     * negative, there is at least one waiting worker, and when e is
484 >     * negative, the pool is terminating.  To deal with these possibly
485 >     * negative fields, we use casts in and out of "short" and/or
486 >     * signed shifts to maintain signedness.
487       */
488 <    private volatile WaitQueueNode syncStack;
488 >    volatile long ctl;
489 >
490 >    // bit positions/shifts for fields
491 >    private static final int  AC_SHIFT   = 48;
492 >    private static final int  TC_SHIFT   = 32;
493 >    private static final int  ST_SHIFT   = 31;
494 >    private static final int  EC_SHIFT   = 16;
495 >
496 >    // bounds
497 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
498 >    private static final int  SMASK      = 0xffff;  // mask short bits
499 >    private static final int  SHORT_SIGN = 1 << 15;
500 >    private static final int  INT_SIGN   = 1 << 31;
501 >
502 >    // masks
503 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
504 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
505 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
506 >
507 >    // units for incrementing and decrementing
508 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
509 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
510 >
511 >    // masks and units for dealing with u = (int)(ctl >>> 32)
512 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
513 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
514 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
515 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
516 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
517 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
518 >
519 >    // masks and units for dealing with e = (int)ctl
520 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
521 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
522  
523      /**
524 <     * The count for event barrier
524 >     * The target parallelism level.
525       */
526 <    private volatile long eventCount;
526 >    final int parallelism;
527  
528      /**
529 <     * Pool number, just for assigning useful names to worker threads
529 >     * Index (mod submission queue length) of next element to take
530 >     * from submission queue. Usage is identical to that for
531 >     * per-worker queues -- see ForkJoinWorkerThread internal
532 >     * documentation.
533       */
534 <    private final int poolNumber;
534 >    volatile int queueBase;
535  
536      /**
537 <     * The maximum allowed pool size
537 >     * Index (mod submission queue length) of next element to add
538 >     * in submission queue. Usage is identical to that for
539 >     * per-worker queues -- see ForkJoinWorkerThread internal
540 >     * documentation.
541       */
542 <    private volatile int maxPoolSize;
542 >    int queueTop;
543  
544      /**
545 <     * The desired parallelism level, updated only under workerLock.
545 >     * True when shutdown() has been called.
546       */
547 <    private volatile int parallelism;
547 >    volatile boolean shutdown;
548  
549      /**
550       * True if use local fifo, not default lifo, for local polling
551 +     * Read by, and replicated by ForkJoinWorkerThreads
552       */
553 <    private volatile boolean locallyFifo;
553 >    final boolean locallyFifo;
554  
555      /**
556 <     * Holds number of total (i.e., created and not yet terminated)
557 <     * and running (i.e., not blocked on joins or other managed sync)
558 <     * threads, packed into one int to ensure consistent snapshot when
220 <     * making decisions about creating and suspending spare
221 <     * threads. Updated only by CAS.  Note: CASes in
222 <     * updateRunningCount and preJoin assume that running active count
223 <     * is in low word, so need to be modified if this changes.
556 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557 >     * When non-zero, suppresses automatic shutdown when active
558 >     * counts become zero.
559       */
560 <    private volatile int workerCounts;
560 >    volatile int quiescerCount;
561  
562 <    private static int totalCountOf(int s)           { return s >>> 16;  }
563 <    private static int runningCountOf(int s)         { return s & shortMask; }
564 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
562 >    /**
563 >     * The number of threads blocked in join.
564 >     */
565 >    volatile int blockedCount;
566  
567      /**
568 <     * Adds delta (which may be negative) to running count.  This must
233 <     * be called before (with negative arg) and after (with positive)
234 <     * any managed synchronization (i.e., mainly, joins).
235 <     *
236 <     * @param delta the number to add
568 >     * Counter for worker Thread names (unrelated to their poolIndex)
569       */
570 <    final void updateRunningCount(int delta) {
239 <        int s;
240 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
241 <    }
570 >    private volatile int nextWorkerNumber;
571  
572      /**
573 <     * Adds delta (which may be negative) to both total and running
245 <     * count.  This must be called upon creation and termination of
246 <     * worker threads.
247 <     *
248 <     * @param delta the number to add
573 >     * The index for the next created worker. Accessed under scanGuard.
574       */
575 <    private void updateWorkerCount(int delta) {
251 <        int d = delta + (delta << 16); // add to both lo and hi parts
252 <        int s;
253 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
254 <    }
575 >    private int nextWorkerIndex;
576  
577      /**
578 <     * Lifecycle control. High word contains runState, low word
579 <     * contains the number of workers that are (probably) executing
580 <     * tasks. This value is atomically incremented before a worker
581 <     * gets a task to run, and decremented when worker has no tasks
582 <     * and cannot find any. These two fields are bundled together to
583 <     * support correct termination triggering.  Note: activeCount
584 <     * CAS'es cheat by assuming active count is in low word, so need
585 <     * to be modified if this changes
578 >     * SeqLock and index masking for updates to workers array.  Locked
579 >     * when SG_UNIT is set. Unlocking clears bit by adding
580 >     * SG_UNIT. Staleness of read-only operations can be checked by
581 >     * comparing scanGuard to value before the reads. The low 16 bits
582 >     * (i.e, anding with SMASK) hold (the smallest power of two
583 >     * covering all worker indices, minus one, and is used to avoid
584 >     * dealing with large numbers of null slots when the workers array
585 >     * is overallocated.
586       */
587 <    private volatile int runControl;
587 >    volatile int scanGuard;
588  
589 <    // RunState values. Order among values matters
269 <    private static final int RUNNING     = 0;
270 <    private static final int SHUTDOWN    = 1;
271 <    private static final int TERMINATING = 2;
272 <    private static final int TERMINATED  = 3;
589 >    private static final int SG_UNIT = 1 << 16;
590  
591 <    private static int runStateOf(int c)             { return c >>> 16; }
592 <    private static int activeCountOf(int c)          { return c & shortMask; }
593 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
591 >    /**
592 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 >     * task when the pool is quiescent to instead try to shrink the
594 >     * number of workers.  The exact value does not matter too
595 >     * much. It must be short enough to release resources during
596 >     * sustained periods of idleness, but not so short that threads
597 >     * are continually re-created.
598 >     */
599 >    private static final long SHRINK_RATE =
600 >        4L * 1000L * 1000L * 1000L; // 4 seconds
601  
602      /**
603 <     * Tries incrementing active count; fails on contention.
604 <     * Called by workers before/during executing tasks.
603 >     * Top-level loop for worker threads: On each step: if the
604 >     * previous step swept through all queues and found no tasks, or
605 >     * there are excess threads, then possibly blocks. Otherwise,
606 >     * scans for and, if found, executes a task. Returns when pool
607 >     * and/or worker terminate.
608       *
609 <     * @return true on success
609 >     * @param w the worker
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c = runControl;
613 <        return casRunControl(c, c+1);
611 >    final void work(ForkJoinWorkerThread w) {
612 >        boolean swept = false;                // true on empty scans
613 >        long c;
614 >        while (!w.terminate && (int)(c = ctl) >= 0) {
615 >            int a;                            // active count
616 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 >                swept = scan(w, a);
618 >            else if (tryAwaitWork(w, c))
619 >                swept = false;
620 >        }
621      }
622  
623 +    // Signalling
624 +
625      /**
626 <     * Tries decrementing active count; fails on contention.
291 <     * Possibly triggers termination on success.
292 <     * Called by workers when they can't find tasks.
293 <     *
294 <     * @return true on success
626 >     * Wakes up or creates a worker.
627       */
628 <    final boolean tryDecrementActiveCount() {
629 <        int c = runControl;
630 <        int nextc = c - 1;
631 <        if (!casRunControl(c, nextc))
632 <            return false;
633 <        if (canTerminateOnShutdown(nextc))
634 <            terminateOnShutdown();
635 <        return true;
628 >    final void signalWork() {
629 >        /*
630 >         * The while condition is true if: (there is are too few total
631 >         * workers OR there is at least one waiter) AND (there are too
632 >         * few active workers OR the pool is terminating).  The value
633 >         * of e distinguishes the remaining cases: zero (no waiters)
634 >         * for create, negative if terminating (in which case do
635 >         * nothing), else release a waiter. The secondary checks for
636 >         * release (non-null array etc) can fail if the pool begins
637 >         * terminating after the test, and don't impose any added cost
638 >         * because JVMs must perform null and bounds checks anyway.
639 >         */
640 >        long c; int e, u;
641 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643 >            if (e > 0) {                         // release a waiting worker
644 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 >                if ((ws = workers) == null ||
646 >                    (i = ~e & SMASK) >= ws.length ||
647 >                    (w = ws[i]) == null)
648 >                    break;
649 >                long nc = (((long)(w.nextWait & E_MASK)) |
650 >                           ((long)(u + UAC_UNIT) << 32));
651 >                if (w.eventCount == e &&
652 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
654 >                    if (w.parked)
655 >                        UNSAFE.unpark(w);
656 >                    break;
657 >                }
658 >            }
659 >            else if (UNSAFE.compareAndSwapLong
660 >                     (this, ctlOffset, c,
661 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 >                addWorker();
664 >                break;
665 >            }
666 >        }
667      }
668  
669      /**
670 <     * Returns true if argument represents zero active count and
671 <     * nonzero runstate, which is the triggering condition for
672 <     * terminating on shutdown.
670 >     * Variant of signalWork to help release waiters on rescans.
671 >     * Tries once to release a waiter if active count < 0.
672 >     *
673 >     * @return false if failed due to contention, else true
674       */
675 <    private static boolean canTerminateOnShutdown(int c) {
676 <        // i.e. least bit is nonzero runState bit
677 <        return ((c & -c) >>> 16) != 0;
675 >    private boolean tryReleaseWaiter() {
676 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677 >        if ((e = (int)(c = ctl)) > 0 &&
678 >            (int)(c >> AC_SHIFT) < 0 &&
679 >            (ws = workers) != null &&
680 >            (i = ~e & SMASK) < ws.length &&
681 >            (w = ws[i]) != null) {
682 >            long nc = ((long)(w.nextWait & E_MASK) |
683 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 >            if (w.eventCount != e ||
685 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 >                return false;
687 >            w.eventCount = (e + EC_UNIT) & E_MASK;
688 >            if (w.parked)
689 >                UNSAFE.unpark(w);
690 >        }
691 >        return true;
692      }
693  
694 +    // Scanning for tasks
695 +
696      /**
697 <     * Transition run state to at least the given state. Return true
698 <     * if not already at least given state.
697 >     * Scans for and, if found, executes one task. Scans start at a
698 >     * random index of workers array, and randomly select the first
699 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700 >     * circular sweeps, which is necessary to check quiescence. and
701 >     * taking a submission only if no stealable tasks were found.  The
702 >     * steal code inside the loop is a specialized form of
703 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704 >     * helpJoinTask and signal propagation. The code for submission
705 >     * queues is almost identical. On each steal, the worker completes
706 >     * not only the task, but also all local tasks that this task may
707 >     * have generated. On detecting staleness or contention when
708 >     * trying to take a task, this method returns without finishing
709 >     * sweep, which allows global state rechecks before retry.
710 >     *
711 >     * @param w the worker
712 >     * @param a the number of active workers
713 >     * @return true if swept all queues without finding a task
714       */
715 <    private boolean transitionRunStateTo(int state) {
716 <        for (;;) {
717 <            int c = runControl;
718 <            if (runStateOf(c) >= state)
715 >    private boolean scan(ForkJoinWorkerThread w, int a) {
716 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 >        ForkJoinWorkerThread[] ws = workers;
719 >        if (ws == null || ws.length <= m)         // staleness check
720 >            return false;
721 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 >            ForkJoinWorkerThread v = ws[k & m];
724 >            if (v != null && (b = v.queueBase) != v.queueTop &&
725 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 >                long u = (i << ASHIFT) + ABASE;
727 >                if ((t = q[i]) != null && v.queueBase == b &&
728 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 >                    int d = (v.queueBase = b + 1) - v.queueTop;
730 >                    v.stealHint = w.poolIndex;
731 >                    if (d != 0)
732 >                        signalWork();             // propagate if nonempty
733 >                    w.execTask(t);
734 >                }
735 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736 >                return false;                     // store next seed
737 >            }
738 >            else if (j < 0) {                     // xorshift
739 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740 >            }
741 >            else
742 >                ++k;
743 >        }
744 >        if (scanGuard != g)                       // staleness check
745 >            return false;
746 >        else {                                    // try to take submission
747 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748 >            if ((b = queueBase) != queueTop &&
749 >                (q = submissionQueue) != null &&
750 >                (i = (q.length - 1) & b) >= 0) {
751 >                long u = (i << ASHIFT) + ABASE;
752 >                if ((t = q[i]) != null && queueBase == b &&
753 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754 >                    queueBase = b + 1;
755 >                    w.execTask(t);
756 >                }
757                  return false;
758 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
758 >            }
759 >            return true;                         // all queues empty
760 >        }
761 >    }
762 >
763 >    /**
764 >     * Tries to enqueue worker w in wait queue and await change in
765 >     * worker's eventCount.  If the pool is quiescent and there is
766 >     * more than one worker, possibly terminates worker upon exit.
767 >     * Otherwise, before blocking, rescans queues to avoid missed
768 >     * signals.  Upon finding work, releases at least one worker
769 >     * (which may be the current worker). Rescans restart upon
770 >     * detected staleness or failure to release due to
771 >     * contention. Note the unusual conventions about Thread.interrupt
772 >     * here and elsewhere: Because interrupts are used solely to alert
773 >     * threads to check termination, which is checked here anyway, we
774 >     * clear status (using Thread.interrupted) before any call to
775 >     * park, so that park does not immediately return due to status
776 >     * being set via some other unrelated call to interrupt in user
777 >     * code.
778 >     *
779 >     * @param w the calling worker
780 >     * @param c the ctl value on entry
781 >     * @return true if waited or another thread was released upon enq
782 >     */
783 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
784 >        int v = w.eventCount;
785 >        w.nextWait = (int)c;                      // w's successor record
786 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
787 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
788 >            long d = ctl; // return true if lost to a deq, to force scan
789 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
790 >        }
791 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
792 >            long s = stealCount;
793 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
794 >                sc = w.stealCount = 0;
795 >            else if (w.eventCount != v)
796 >                return true;                      // update next time
797 >        }
798 >        if ((!shutdown || !tryTerminate(false)) &&
799 >            (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
800 >            blockedCount == 0 && quiescerCount == 0)
801 >            idleAwaitWork(w, nc, c, v);           // quiescent
802 >        for (boolean rescanned = false;;) {
803 >            if (w.eventCount != v)
804                  return true;
805 +            if (!rescanned) {
806 +                int g = scanGuard, m = g & SMASK;
807 +                ForkJoinWorkerThread[] ws = workers;
808 +                if (ws != null && m < ws.length) {
809 +                    rescanned = true;
810 +                    for (int i = 0; i <= m; ++i) {
811 +                        ForkJoinWorkerThread u = ws[i];
812 +                        if (u != null) {
813 +                            if (u.queueBase != u.queueTop &&
814 +                                !tryReleaseWaiter())
815 +                                rescanned = false; // contended
816 +                            if (w.eventCount != v)
817 +                                return true;
818 +                        }
819 +                    }
820 +                }
821 +                if (scanGuard != g ||              // stale
822 +                    (queueBase != queueTop && !tryReleaseWaiter()))
823 +                    rescanned = false;
824 +                if (!rescanned)
825 +                    Thread.yield();                // reduce contention
826 +                else
827 +                    Thread.interrupted();          // clear before park
828 +            }
829 +            else {
830 +                w.parked = true;                   // must recheck
831 +                if (w.eventCount != v) {
832 +                    w.parked = false;
833 +                    return true;
834 +                }
835 +                LockSupport.park(this);
836 +                rescanned = w.parked = false;
837 +            }
838          }
839      }
840  
841      /**
842 <     * Controls whether to add spares to maintain parallelism
843 <     */
844 <    private volatile boolean maintainsParallelism;
842 >     * If inactivating worker w has caused pool to become
843 >     * quiescent, check for pool termination, and wait for event
844 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
845 >     * this case because quiescence reflects consensus about lack
846 >     * of work). On timeout, if ctl has not changed, terminate the
847 >     * worker. Upon its termination (see deregisterWorker), it may
848 >     * wake up another worker to possibly repeat this process.
849 >     *
850 >     * @param w the calling worker
851 >     * @param currentCtl the ctl value after enqueuing w
852 >     * @param prevCtl the ctl value if w terminated
853 >     * @param v the eventCount w awaits change
854 >     */
855 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
856 >                               long prevCtl, int v) {
857 >        if (w.eventCount == v) {
858 >            if (shutdown)
859 >                tryTerminate(false);
860 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
861 >            while (ctl == currentCtl) {
862 >                long startTime = System.nanoTime();
863 >                w.parked = true;
864 >                if (w.eventCount == v)             // must recheck
865 >                    LockSupport.parkNanos(this, SHRINK_RATE);
866 >                w.parked = false;
867 >                if (w.eventCount != v)
868 >                    break;
869 >                else if (System.nanoTime() - startTime <
870 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
871 >                    Thread.interrupted();          // spurious wakeup
872 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
873 >                                                   currentCtl, prevCtl)) {
874 >                    w.terminate = true;            // restore previous
875 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
876 >                    break;
877 >                }
878 >            }
879 >        }
880 >    }
881  
882 <    // Constructors
882 >    // Submissions
883  
884      /**
885 <     * Creates a ForkJoinPool with a pool size equal to the number of
886 <     * processors available on the system, using the default
340 <     * ForkJoinWorkerThreadFactory.
885 >     * Enqueues the given task in the submissionQueue.  Same idea as
886 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
887       *
888 <     * @throws SecurityException if a security manager exists and
343 <     *         the caller is not permitted to modify threads
344 <     *         because it does not hold {@link
345 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
888 >     * @param t the task
889       */
890 <    public ForkJoinPool() {
891 <        this(Runtime.getRuntime().availableProcessors(),
892 <             defaultForkJoinWorkerThreadFactory);
890 >    private void addSubmission(ForkJoinTask<?> t) {
891 >        final ReentrantLock lock = this.submissionLock;
892 >        lock.lock();
893 >        try {
894 >            ForkJoinTask<?>[] q; int s, m;
895 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
896 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
897 >                UNSAFE.putOrderedObject(q, u, t);
898 >                queueTop = s + 1;
899 >                if (s - queueBase == m)
900 >                    growSubmissionQueue();
901 >            }
902 >        } finally {
903 >            lock.unlock();
904 >        }
905 >        signalWork();
906      }
907  
908 +    //  (pollSubmission is defined below with exported methods)
909 +
910      /**
911 <     * Creates a ForkJoinPool with the indicated parallelism level
912 <     * threads and using the default ForkJoinWorkerThreadFactory.
355 <     *
356 <     * @param parallelism the number of worker threads
357 <     * @throws IllegalArgumentException if parallelism less than or
358 <     * equal to zero
359 <     * @throws SecurityException if a security manager exists and
360 <     *         the caller is not permitted to modify threads
361 <     *         because it does not hold {@link
362 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
911 >     * Creates or doubles submissionQueue array.
912 >     * Basically identical to ForkJoinWorkerThread version.
913       */
914 <    public ForkJoinPool(int parallelism) {
915 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
914 >    private void growSubmissionQueue() {
915 >        ForkJoinTask<?>[] oldQ = submissionQueue;
916 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
917 >        if (size > MAXIMUM_QUEUE_CAPACITY)
918 >            throw new RejectedExecutionException("Queue capacity exceeded");
919 >        if (size < INITIAL_QUEUE_CAPACITY)
920 >            size = INITIAL_QUEUE_CAPACITY;
921 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
922 >        int mask = size - 1;
923 >        int top = queueTop;
924 >        int oldMask;
925 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
926 >            for (int b = queueBase; b != top; ++b) {
927 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
928 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
929 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
930 >                    UNSAFE.putObjectVolatile
931 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
932 >            }
933 >        }
934 >    }
935 >
936 >    // Blocking support
937 >
938 >    /**
939 >     * Tries to increment blockedCount, decrement active count
940 >     * (sometimes implicitly) and possibly release or create a
941 >     * compensating worker in preparation for blocking. Fails
942 >     * on contention or termination.
943 >     *
944 >     * @return true if the caller can block, else should recheck and retry
945 >     */
946 >    private boolean tryPreBlock() {
947 >        int b = blockedCount;
948 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
949 >            int pc = parallelism;
950 >            do {
951 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
952 >                int e, ac, tc, rc, i;
953 >                long c = ctl;
954 >                int u = (int)(c >>> 32);
955 >                if ((e = (int)c) < 0) {
956 >                                                 // skip -- terminating
957 >                }
958 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
959 >                         (ws = workers) != null &&
960 >                         (i = ~e & SMASK) < ws.length &&
961 >                         (w = ws[i]) != null) {
962 >                    long nc = ((long)(w.nextWait & E_MASK) |
963 >                               (c & (AC_MASK|TC_MASK)));
964 >                    if (w.eventCount == e &&
965 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
966 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
967 >                        if (w.parked)
968 >                            UNSAFE.unpark(w);
969 >                        return true;             // release an idle worker
970 >                    }
971 >                }
972 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
973 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
974 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
975 >                        return true;             // no compensation needed
976 >                }
977 >                else if (tc + pc < MAX_ID) {
978 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
979 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
980 >                        addWorker();
981 >                        return true;            // create a replacement
982 >                    }
983 >                }
984 >                // try to back out on any failure and let caller retry
985 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
986 >                                               b = blockedCount, b - 1));
987 >        }
988 >        return false;
989      }
990  
991      /**
992 <     * Creates a ForkJoinPool with parallelism equal to the number of
370 <     * processors available on the system and using the given
371 <     * ForkJoinWorkerThreadFactory.
372 <     *
373 <     * @param factory the factory for creating new threads
374 <     * @throws NullPointerException if factory is null
375 <     * @throws SecurityException if a security manager exists and
376 <     *         the caller is not permitted to modify threads
377 <     *         because it does not hold {@link
378 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
992 >     * Decrements blockedCount and increments active count
993       */
994 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
995 <        this(Runtime.getRuntime().availableProcessors(), factory);
994 >    private void postBlock() {
995 >        long c;
996 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
997 >                                                c = ctl, c + AC_UNIT));
998 >        int b;
999 >        do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
1000 >                                               b = blockedCount, b - 1));
1001      }
1002  
1003      /**
1004 <     * Creates a ForkJoinPool with the given parallelism and factory.
1004 >     * Possibly blocks waiting for the given task to complete, or
1005 >     * cancels the task if terminating.  Fails to wait if contended.
1006       *
1007 <     * @param parallelism the targeted number of worker threads
388 <     * @param factory the factory for creating new threads
389 <     * @throws IllegalArgumentException if parallelism less than or
390 <     * equal to zero, or greater than implementation limit
391 <     * @throws NullPointerException if factory is null
392 <     * @throws SecurityException if a security manager exists and
393 <     *         the caller is not permitted to modify threads
394 <     *         because it does not hold {@link
395 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1007 >     * @param joinMe the task
1008       */
1009 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1010 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1011 <            throw new IllegalArgumentException();
1012 <        if (factory == null)
1013 <            throw new NullPointerException();
1014 <        checkPermission();
1015 <        this.factory = factory;
1016 <        this.parallelism = parallelism;
1017 <        this.maxPoolSize = MAX_THREADS;
1018 <        this.maintainsParallelism = true;
1019 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
408 <        this.workerLock = new ReentrantLock();
409 <        this.termination = workerLock.newCondition();
410 <        this.stealCount = new AtomicLong();
411 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
412 <        // worker array and workers are lazily constructed
1009 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1010 >        int s;
1011 >        Thread.interrupted(); // clear interrupts before checking termination
1012 >        if (joinMe.status >= 0) {
1013 >            if (tryPreBlock()) {
1014 >                joinMe.tryAwaitDone(0L);
1015 >                postBlock();
1016 >            }
1017 >            else if ((ctl & STOP_BIT) != 0L)
1018 >                joinMe.cancelIgnoringExceptions();
1019 >        }
1020      }
1021  
1022      /**
1023 <     * Creates a new worker thread using factory.
1023 >     * Possibly blocks the given worker waiting for joinMe to
1024 >     * complete or timeout
1025       *
1026 <     * @param index the index to assign worker
1027 <     * @return new worker, or null of factory failed
1026 >     * @param joinMe the task
1027 >     * @param millis the wait time for underlying Object.wait
1028       */
1029 <    private ForkJoinWorkerThread createWorker(int index) {
1030 <        Thread.UncaughtExceptionHandler h = ueh;
1031 <        ForkJoinWorkerThread w = factory.newThread(this);
1032 <        if (w != null) {
1033 <            w.poolIndex = index;
1034 <            w.setDaemon(true);
1035 <            w.setAsyncMode(locallyFifo);
1036 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1037 <            if (h != null)
1038 <                w.setUncaughtExceptionHandler(h);
1029 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1030 >        while (joinMe.status >= 0) {
1031 >            Thread.interrupted();
1032 >            if ((ctl & STOP_BIT) != 0L) {
1033 >                joinMe.cancelIgnoringExceptions();
1034 >                break;
1035 >            }
1036 >            if (tryPreBlock()) {
1037 >                long last = System.nanoTime();
1038 >                while (joinMe.status >= 0) {
1039 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1040 >                    if (millis <= 0)
1041 >                        break;
1042 >                    joinMe.tryAwaitDone(millis);
1043 >                    if (joinMe.status < 0)
1044 >                        break;
1045 >                    if ((ctl & STOP_BIT) != 0L) {
1046 >                        joinMe.cancelIgnoringExceptions();
1047 >                        break;
1048 >                    }
1049 >                    long now = System.nanoTime();
1050 >                    nanos -= now - last;
1051 >                    last = now;
1052 >                }
1053 >                postBlock();
1054 >                break;
1055 >            }
1056          }
432        return w;
1057      }
1058  
1059      /**
1060 <     * Returns a good size for worker array given pool size.
437 <     * Currently requires size to be a power of two.
1060 >     * If necessary, compensates for blocker, and blocks
1061       */
1062 <    private static int arraySizeFor(int poolSize) {
1063 <        return (poolSize <= 1) ? 1 :
1064 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
1062 >    private void awaitBlocker(ManagedBlocker blocker)
1063 >        throws InterruptedException {
1064 >        while (!blocker.isReleasable()) {
1065 >            if (tryPreBlock()) {
1066 >                try {
1067 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1068 >                } finally {
1069 >                    postBlock();
1070 >                }
1071 >                break;
1072 >            }
1073 >        }
1074      }
1075  
1076 +    // Creating, registering and deregistring workers
1077 +
1078      /**
1079 <     * Creates or resizes array if necessary to hold newLength.
1080 <     * Call only under exclusion.
447 <     *
448 <     * @return the array
1079 >     * Tries to create and start a worker; minimally rolls back counts
1080 >     * on failure.
1081       */
1082 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1083 <        ForkJoinWorkerThread[] ws = workers;
1084 <        if (ws == null)
1085 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1086 <        else if (newLength > ws.length)
1087 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1082 >    private void addWorker() {
1083 >        Throwable ex = null;
1084 >        ForkJoinWorkerThread t = null;
1085 >        try {
1086 >            t = factory.newThread(this);
1087 >        } catch (Throwable e) {
1088 >            ex = e;
1089 >        }
1090 >        if (t == null) {  // null or exceptional factory return
1091 >            long c;       // adjust counts
1092 >            do {} while (!UNSAFE.compareAndSwapLong
1093 >                         (this, ctlOffset, c = ctl,
1094 >                          (((c - AC_UNIT) & AC_MASK) |
1095 >                           ((c - TC_UNIT) & TC_MASK) |
1096 >                           (c & ~(AC_MASK|TC_MASK)))));
1097 >            // Propagate exception if originating from an external caller
1098 >            if (!tryTerminate(false) && ex != null &&
1099 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1100 >                UNSAFE.throwException(ex);
1101 >        }
1102          else
1103 <            return ws;
1103 >            t.start();
1104      }
1105  
1106      /**
1107 <     * Tries to shrink workers into smaller array after one or more terminate.
1107 >     * Callback from ForkJoinWorkerThread constructor to assign a
1108 >     * public name
1109       */
1110 <    private void tryShrinkWorkerArray() {
1111 <        ForkJoinWorkerThread[] ws = workers;
1112 <        if (ws != null) {
1113 <            int len = ws.length;
1114 <            int last = len - 1;
468 <            while (last >= 0 && ws[last] == null)
469 <                --last;
470 <            int newLength = arraySizeFor(last+1);
471 <            if (newLength < len)
472 <                workers = Arrays.copyOf(ws, newLength);
1110 >    final String nextWorkerName() {
1111 >        for (int n;;) {
1112 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1113 >                                         n = nextWorkerNumber, ++n))
1114 >                return workerNamePrefix + n;
1115          }
1116      }
1117  
1118      /**
1119 <     * Initializes workers if necessary.
1119 >     * Callback from ForkJoinWorkerThread constructor to
1120 >     * determine its poolIndex and record in workers array.
1121 >     *
1122 >     * @param w the worker
1123 >     * @return the worker's pool index
1124       */
1125 <    final void ensureWorkerInitialization() {
1126 <        ForkJoinWorkerThread[] ws = workers;
1127 <        if (ws == null) {
1128 <            final ReentrantLock lock = this.workerLock;
1129 <            lock.lock();
1130 <            try {
1131 <                ws = workers;
1132 <                if (ws == null) {
1133 <                    int ps = parallelism;
1134 <                    ws = ensureWorkerArrayCapacity(ps);
1135 <                    for (int i = 0; i < ps; ++i) {
1136 <                        ForkJoinWorkerThread w = createWorker(i);
1137 <                        if (w != null) {
1138 <                            ws[i] = w;
1139 <                            w.start();
1140 <                            updateWorkerCount(1);
1125 >    final int registerWorker(ForkJoinWorkerThread w) {
1126 >        /*
1127 >         * In the typical case, a new worker acquires the lock, uses
1128 >         * next available index and returns quickly.  Since we should
1129 >         * not block callers (ultimately from signalWork or
1130 >         * tryPreBlock) waiting for the lock needed to do this, we
1131 >         * instead help release other workers while waiting for the
1132 >         * lock.
1133 >         */
1134 >        for (int g;;) {
1135 >            ForkJoinWorkerThread[] ws;
1136 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1137 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1138 >                                         g, g | SG_UNIT)) {
1139 >                int k = nextWorkerIndex;
1140 >                try {
1141 >                    if ((ws = workers) != null) { // ignore on shutdown
1142 >                        int n = ws.length;
1143 >                        if (k < 0 || k >= n || ws[k] != null) {
1144 >                            for (k = 0; k < n && ws[k] != null; ++k)
1145 >                                ;
1146 >                            if (k == n)
1147 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1148                          }
1149 +                        ws[k] = w;
1150 +                        nextWorkerIndex = k + 1;
1151 +                        int m = g & SMASK;
1152 +                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1153 +                    }
1154 +                } finally {
1155 +                    scanGuard = g;
1156 +                }
1157 +                return k;
1158 +            }
1159 +            else if ((ws = workers) != null) { // help release others
1160 +                for (ForkJoinWorkerThread u : ws) {
1161 +                    if (u != null && u.queueBase != u.queueTop) {
1162 +                        if (tryReleaseWaiter())
1163 +                            break;
1164                      }
1165                  }
1166 +            }
1167 +        }
1168 +    }
1169 +
1170 +    /**
1171 +     * Final callback from terminating worker.  Removes record of
1172 +     * worker from array, and adjusts counts. If pool is shutting
1173 +     * down, tries to complete termination.
1174 +     *
1175 +     * @param w the worker
1176 +     */
1177 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1178 +        int idx = w.poolIndex;
1179 +        int sc = w.stealCount;
1180 +        int steps = 0;
1181 +        // Remove from array, adjust worker counts and collect steal count.
1182 +        // We can intermix failed removes or adjusts with steal updates
1183 +        do {
1184 +            long s, c;
1185 +            int g;
1186 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1187 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1188 +                                         g, g |= SG_UNIT)) {
1189 +                ForkJoinWorkerThread[] ws = workers;
1190 +                if (ws != null && idx >= 0 &&
1191 +                    idx < ws.length && ws[idx] == w)
1192 +                    ws[idx] = null;    // verify
1193 +                nextWorkerIndex = idx;
1194 +                scanGuard = g + SG_UNIT;
1195 +                steps = 1;
1196 +            }
1197 +            if (steps == 1 &&
1198 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1199 +                                          (((c - AC_UNIT) & AC_MASK) |
1200 +                                           ((c - TC_UNIT) & TC_MASK) |
1201 +                                           (c & ~(AC_MASK|TC_MASK)))))
1202 +                steps = 2;
1203 +            if (sc != 0 &&
1204 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1205 +                                          s = stealCount, s + sc))
1206 +                sc = 0;
1207 +        } while (steps != 2 || sc != 0);
1208 +        if (!tryTerminate(false)) {
1209 +            if (ex != null)   // possibly replace if died abnormally
1210 +                signalWork();
1211 +            else
1212 +                tryReleaseWaiter();
1213 +        }
1214 +    }
1215 +
1216 +    // Shutdown and termination
1217 +
1218 +    /**
1219 +     * Possibly initiates and/or completes termination.
1220 +     *
1221 +     * @param now if true, unconditionally terminate, else only
1222 +     * if shutdown and empty queue and no active workers
1223 +     * @return true if now terminating or terminated
1224 +     */
1225 +    private boolean tryTerminate(boolean now) {
1226 +        long c;
1227 +        while (((c = ctl) & STOP_BIT) == 0) {
1228 +            if (!now) {
1229 +                if ((int)(c >> AC_SHIFT) != -parallelism)
1230 +                    return false;
1231 +                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1232 +                    queueBase != queueTop) {
1233 +                    if (ctl == c) // staleness check
1234 +                        return false;
1235 +                    continue;
1236 +                }
1237 +            }
1238 +            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1239 +                startTerminating();
1240 +        }
1241 +        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1242 +            final ReentrantLock lock = this.submissionLock;
1243 +            lock.lock();
1244 +            try {
1245 +                termination.signalAll();
1246              } finally {
1247                  lock.unlock();
1248              }
1249          }
1250 +        return true;
1251      }
1252  
1253      /**
1254 <     * Worker creation and startup for threads added via setParallelism.
1255 <     */
1256 <    private void createAndStartAddedWorkers() {
1257 <        resumeAllSpares();  // Allow spares to convert to nonspare
1258 <        int ps = parallelism;
1259 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1260 <        int len = ws.length;
1261 <        // Sweep through slots, to keep lowest indices most populated
1262 <        int k = 0;
1263 <        while (k < len) {
1264 <            if (ws[k] != null) {
1265 <                ++k;
1266 <                continue;
1254 >     * Runs up to three passes through workers: (0) Setting
1255 >     * termination status for each worker, followed by wakeups up to
1256 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1257 >     * lagging threads (likely in external tasks, but possibly also
1258 >     * blocked in joins).  Each pass repeats previous steps because of
1259 >     * potential lagging thread creation.
1260 >     */
1261 >    private void startTerminating() {
1262 >        cancelSubmissions();
1263 >        for (int pass = 0; pass < 3; ++pass) {
1264 >            ForkJoinWorkerThread[] ws = workers;
1265 >            if (ws != null) {
1266 >                for (ForkJoinWorkerThread w : ws) {
1267 >                    if (w != null) {
1268 >                        w.terminate = true;
1269 >                        if (pass > 0) {
1270 >                            w.cancelTasks();
1271 >                            if (pass > 1 && !w.isInterrupted()) {
1272 >                                try {
1273 >                                    w.interrupt();
1274 >                                } catch (SecurityException ignore) {
1275 >                                }
1276 >                            }
1277 >                        }
1278 >                    }
1279 >                }
1280 >                terminateWaiters();
1281              }
1282 <            int s = workerCounts;
1283 <            int tc = totalCountOf(s);
1284 <            int rc = runningCountOf(s);
1285 <            if (rc >= ps || tc >= ps)
1286 <                break;
1287 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1288 <                ForkJoinWorkerThread w = createWorker(k);
1289 <                if (w != null) {
1290 <                    ws[k++] = w;
1291 <                    w.start();
1282 >        }
1283 >    }
1284 >
1285 >    /**
1286 >     * Polls and cancels all submissions. Called only during termination.
1287 >     */
1288 >    private void cancelSubmissions() {
1289 >        while (queueBase != queueTop) {
1290 >            ForkJoinTask<?> task = pollSubmission();
1291 >            if (task != null) {
1292 >                try {
1293 >                    task.cancel(false);
1294 >                } catch (Throwable ignore) {
1295                  }
1296 <                else {
1297 <                    updateWorkerCount(-1); // back out on failed creation
1298 <                    break;
1296 >            }
1297 >        }
1298 >    }
1299 >
1300 >    /**
1301 >     * Tries to set the termination status of waiting workers, and
1302 >     * then wakes them up (after which they will terminate).
1303 >     */
1304 >    private void terminateWaiters() {
1305 >        ForkJoinWorkerThread[] ws = workers;
1306 >        if (ws != null) {
1307 >            ForkJoinWorkerThread w; long c; int i, e;
1308 >            int n = ws.length;
1309 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1310 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1311 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1312 >                                              (long)(w.nextWait & E_MASK) |
1313 >                                              ((c + AC_UNIT) & AC_MASK) |
1314 >                                              (c & (TC_MASK|STOP_BIT)))) {
1315 >                    w.terminate = true;
1316 >                    w.eventCount = e + EC_UNIT;
1317 >                    if (w.parked)
1318 >                        UNSAFE.unpark(w);
1319                  }
1320              }
1321          }
1322      }
1323  
1324 <    // Execution methods
1324 >    // misc ForkJoinWorkerThread support
1325  
1326      /**
1327 <     * Common code for execute, invoke and submit
1327 >     * Increment or decrement quiescerCount. Needed only to prevent
1328 >     * triggering shutdown if a worker is transiently inactive while
1329 >     * checking quiescence.
1330 >     *
1331 >     * @param delta 1 for increment, -1 for decrement
1332       */
1333 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1334 <        if (isShutdown())
1335 <            throw new RejectedExecutionException();
1336 <        if (workers == null)
547 <            ensureWorkerInitialization();
548 <        submissionQueue.offer(task);
549 <        signalIdleWorkers();
1333 >    final void addQuiescerCount(int delta) {
1334 >        int c;
1335 >        do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1336 >                                               c = quiescerCount, c + delta));
1337      }
1338  
1339      /**
1340 +     * Directly increment or decrement active count without
1341 +     * queuing. This method is used to transiently assert inactivation
1342 +     * while checking quiescence.
1343 +     *
1344 +     * @param delta 1 for increment, -1 for decrement
1345 +     */
1346 +    final void addActiveCount(int delta) {
1347 +        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1348 +        long c;
1349 +        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1350 +                                                ((c + d) & AC_MASK) |
1351 +                                                (c & ~AC_MASK)));
1352 +    }
1353 +
1354 +    /**
1355 +     * Returns the approximate (non-atomic) number of idle threads per
1356 +     * active thread.
1357 +     */
1358 +    final int idlePerActive() {
1359 +        // Approximate at powers of two for small values, saturate past 4
1360 +        int p = parallelism;
1361 +        int a = p + (int)(ctl >> AC_SHIFT);
1362 +        return (a > (p >>>= 1) ? 0 :
1363 +                a > (p >>>= 1) ? 1 :
1364 +                a > (p >>>= 1) ? 2 :
1365 +                a > (p >>>= 1) ? 4 :
1366 +                8);
1367 +    }
1368 +
1369 +    // Exported methods
1370 +
1371 +    // Constructors
1372 +
1373 +    /**
1374 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1375 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1376 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1377 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1378 +     *
1379 +     * @throws SecurityException if a security manager exists and
1380 +     *         the caller is not permitted to modify threads
1381 +     *         because it does not hold {@link
1382 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1383 +     */
1384 +    public ForkJoinPool() {
1385 +        this(Runtime.getRuntime().availableProcessors(),
1386 +             defaultForkJoinWorkerThreadFactory, null, false);
1387 +    }
1388 +
1389 +    /**
1390 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1391 +     * level, the {@linkplain
1392 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1393 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1394 +     *
1395 +     * @param parallelism the parallelism level
1396 +     * @throws IllegalArgumentException if parallelism less than or
1397 +     *         equal to zero, or greater than implementation limit
1398 +     * @throws SecurityException if a security manager exists and
1399 +     *         the caller is not permitted to modify threads
1400 +     *         because it does not hold {@link
1401 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1402 +     */
1403 +    public ForkJoinPool(int parallelism) {
1404 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1405 +    }
1406 +
1407 +    /**
1408 +     * Creates a {@code ForkJoinPool} with the given parameters.
1409 +     *
1410 +     * @param parallelism the parallelism level. For default value,
1411 +     * use {@link java.lang.Runtime#availableProcessors}.
1412 +     * @param factory the factory for creating new threads. For default value,
1413 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1414 +     * @param handler the handler for internal worker threads that
1415 +     * terminate due to unrecoverable errors encountered while executing
1416 +     * tasks. For default value, use {@code null}.
1417 +     * @param asyncMode if true,
1418 +     * establishes local first-in-first-out scheduling mode for forked
1419 +     * tasks that are never joined. This mode may be more appropriate
1420 +     * than default locally stack-based mode in applications in which
1421 +     * worker threads only process event-style asynchronous tasks.
1422 +     * For default value, use {@code false}.
1423 +     * @throws IllegalArgumentException if parallelism less than or
1424 +     *         equal to zero, or greater than implementation limit
1425 +     * @throws NullPointerException if the factory is null
1426 +     * @throws SecurityException if a security manager exists and
1427 +     *         the caller is not permitted to modify threads
1428 +     *         because it does not hold {@link
1429 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1430 +     */
1431 +    public ForkJoinPool(int parallelism,
1432 +                        ForkJoinWorkerThreadFactory factory,
1433 +                        Thread.UncaughtExceptionHandler handler,
1434 +                        boolean asyncMode) {
1435 +        checkPermission();
1436 +        if (factory == null)
1437 +            throw new NullPointerException();
1438 +        if (parallelism <= 0 || parallelism > MAX_ID)
1439 +            throw new IllegalArgumentException();
1440 +        this.parallelism = parallelism;
1441 +        this.factory = factory;
1442 +        this.ueh = handler;
1443 +        this.locallyFifo = asyncMode;
1444 +        long np = (long)(-parallelism); // offset ctl counts
1445 +        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1446 +        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1447 +        // initialize workers array with room for 2*parallelism if possible
1448 +        int n = parallelism << 1;
1449 +        if (n >= MAX_ID)
1450 +            n = MAX_ID;
1451 +        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1452 +            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1453 +        }
1454 +        workers = new ForkJoinWorkerThread[n + 1];
1455 +        this.submissionLock = new ReentrantLock();
1456 +        this.termination = submissionLock.newCondition();
1457 +        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1458 +        sb.append(poolNumberGenerator.incrementAndGet());
1459 +        sb.append("-worker-");
1460 +        this.workerNamePrefix = sb.toString();
1461 +    }
1462 +
1463 +    // Execution methods
1464 +
1465 +    /**
1466       * Performs the given task, returning its result upon completion.
1467 +     * If the computation encounters an unchecked Exception or Error,
1468 +     * it is rethrown as the outcome of this invocation.  Rethrown
1469 +     * exceptions behave in the same way as regular exceptions, but,
1470 +     * when possible, contain stack traces (as displayed for example
1471 +     * using {@code ex.printStackTrace()}) of both the current thread
1472 +     * as well as the thread actually encountering the exception;
1473 +     * minimally only the latter.
1474       *
1475       * @param task the task
1476       * @return the task's result
1477 <     * @throws NullPointerException if task is null
1478 <     * @throws RejectedExecutionException if pool is shut down
1477 >     * @throws NullPointerException if the task is null
1478 >     * @throws RejectedExecutionException if the task cannot be
1479 >     *         scheduled for execution
1480       */
1481      public <T> T invoke(ForkJoinTask<T> task) {
1482 <        doSubmit(task);
1483 <        return task.join();
1482 >        Thread t = Thread.currentThread();
1483 >        if (task == null)
1484 >            throw new NullPointerException();
1485 >        if (shutdown)
1486 >            throw new RejectedExecutionException();
1487 >        if ((t instanceof ForkJoinWorkerThread) &&
1488 >            ((ForkJoinWorkerThread)t).pool == this)
1489 >            return task.invoke();  // bypass submit if in same pool
1490 >        else {
1491 >            addSubmission(task);
1492 >            return task.join();
1493 >        }
1494 >    }
1495 >
1496 >    /**
1497 >     * Unless terminating, forks task if within an ongoing FJ
1498 >     * computation in the current pool, else submits as external task.
1499 >     */
1500 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1501 >        ForkJoinWorkerThread w;
1502 >        Thread t = Thread.currentThread();
1503 >        if (shutdown)
1504 >            throw new RejectedExecutionException();
1505 >        if ((t instanceof ForkJoinWorkerThread) &&
1506 >            (w = (ForkJoinWorkerThread)t).pool == this)
1507 >            w.pushTask(task);
1508 >        else
1509 >            addSubmission(task);
1510      }
1511  
1512      /**
1513       * Arranges for (asynchronous) execution of the given task.
1514       *
1515       * @param task the task
1516 <     * @throws NullPointerException if task is null
1517 <     * @throws RejectedExecutionException if pool is shut down
1516 >     * @throws NullPointerException if the task is null
1517 >     * @throws RejectedExecutionException if the task cannot be
1518 >     *         scheduled for execution
1519       */
1520 <    public <T> void execute(ForkJoinTask<T> task) {
1521 <        doSubmit(task);
1520 >    public void execute(ForkJoinTask<?> task) {
1521 >        if (task == null)
1522 >            throw new NullPointerException();
1523 >        forkOrSubmit(task);
1524      }
1525  
1526      // AbstractExecutorService methods
1527  
1528 +    /**
1529 +     * @throws NullPointerException if the task is null
1530 +     * @throws RejectedExecutionException if the task cannot be
1531 +     *         scheduled for execution
1532 +     */
1533      public void execute(Runnable task) {
1534 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1534 >        if (task == null)
1535 >            throw new NullPointerException();
1536 >        ForkJoinTask<?> job;
1537 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1538 >            job = (ForkJoinTask<?>) task;
1539 >        else
1540 >            job = ForkJoinTask.adapt(task, null);
1541 >        forkOrSubmit(job);
1542      }
1543  
1544 +    /**
1545 +     * Submits a ForkJoinTask for execution.
1546 +     *
1547 +     * @param task the task to submit
1548 +     * @return the task
1549 +     * @throws NullPointerException if the task is null
1550 +     * @throws RejectedExecutionException if the task cannot be
1551 +     *         scheduled for execution
1552 +     */
1553 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1554 +        if (task == null)
1555 +            throw new NullPointerException();
1556 +        forkOrSubmit(task);
1557 +        return task;
1558 +    }
1559 +
1560 +    /**
1561 +     * @throws NullPointerException if the task is null
1562 +     * @throws RejectedExecutionException if the task cannot be
1563 +     *         scheduled for execution
1564 +     */
1565      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1566 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1567 <        doSubmit(job);
1566 >        if (task == null)
1567 >            throw new NullPointerException();
1568 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1569 >        forkOrSubmit(job);
1570          return job;
1571      }
1572  
1573 +    /**
1574 +     * @throws NullPointerException if the task is null
1575 +     * @throws RejectedExecutionException if the task cannot be
1576 +     *         scheduled for execution
1577 +     */
1578      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1579 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1580 <        doSubmit(job);
1579 >        if (task == null)
1580 >            throw new NullPointerException();
1581 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1582 >        forkOrSubmit(job);
1583          return job;
1584      }
1585  
1586 +    /**
1587 +     * @throws NullPointerException if the task is null
1588 +     * @throws RejectedExecutionException if the task cannot be
1589 +     *         scheduled for execution
1590 +     */
1591      public ForkJoinTask<?> submit(Runnable task) {
1592 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1593 <        doSubmit(job);
1592 >        if (task == null)
1593 >            throw new NullPointerException();
1594 >        ForkJoinTask<?> job;
1595 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1596 >            job = (ForkJoinTask<?>) task;
1597 >        else
1598 >            job = ForkJoinTask.adapt(task, null);
1599 >        forkOrSubmit(job);
1600          return job;
1601      }
1602  
1603      /**
1604 <     * Adaptor for Runnables. This implements RunnableFuture
1605 <     * to be compliant with AbstractExecutorService constraints.
1604 >     * @throws NullPointerException       {@inheritDoc}
1605 >     * @throws RejectedExecutionException {@inheritDoc}
1606       */
604    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
605        implements RunnableFuture<T> {
606        final Runnable runnable;
607        final T resultOnCompletion;
608        T result;
609        AdaptedRunnable(Runnable runnable, T result) {
610            if (runnable == null) throw new NullPointerException();
611            this.runnable = runnable;
612            this.resultOnCompletion = result;
613        }
614        public T getRawResult() { return result; }
615        public void setRawResult(T v) { result = v; }
616        public boolean exec() {
617            runnable.run();
618            result = resultOnCompletion;
619            return true;
620        }
621        public void run() { invoke(); }
622        private static final long serialVersionUID = 5232453952276885070L;
623    }
624
625    /**
626     * Adaptor for Callables
627     */
628    static final class AdaptedCallable<T> extends ForkJoinTask<T>
629        implements RunnableFuture<T> {
630        final Callable<T> callable;
631        T result;
632        AdaptedCallable(Callable<T> callable) {
633            if (callable == null) throw new NullPointerException();
634            this.callable = callable;
635        }
636        public T getRawResult() { return result; }
637        public void setRawResult(T v) { result = v; }
638        public boolean exec() {
639            try {
640                result = callable.call();
641                return true;
642            } catch (Error err) {
643                throw err;
644            } catch (RuntimeException rex) {
645                throw rex;
646            } catch (Exception ex) {
647                throw new RuntimeException(ex);
648            }
649        }
650        public void run() { invoke(); }
651        private static final long serialVersionUID = 2838392045355241008L;
652    }
653
1607      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1608          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1609              new ArrayList<ForkJoinTask<T>>(tasks.size());
1610          for (Callable<T> task : tasks)
1611 <            forkJoinTasks.add(new AdaptedCallable<T>(task));
1611 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1612          invoke(new InvokeAll<T>(forkJoinTasks));
1613  
1614          @SuppressWarnings({"unchecked", "rawtypes"})
1615 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1615 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1616          return futures;
1617      }
1618  
# Line 673 | Line 1626 | public class ForkJoinPool extends Abstra
1626          private static final long serialVersionUID = -7914297376763021607L;
1627      }
1628  
676    // Configuration and status settings and queries
677
1629      /**
1630       * Returns the factory used for constructing new workers.
1631       *
# Line 688 | Line 1639 | public class ForkJoinPool extends Abstra
1639       * Returns the handler for internal worker threads that terminate
1640       * due to unrecoverable errors encountered while executing tasks.
1641       *
1642 <     * @return the handler, or null if none
1642 >     * @return the handler, or {@code null} if none
1643       */
1644      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1645 <        Thread.UncaughtExceptionHandler h;
695 <        final ReentrantLock lock = this.workerLock;
696 <        lock.lock();
697 <        try {
698 <            h = ueh;
699 <        } finally {
700 <            lock.unlock();
701 <        }
702 <        return h;
703 <    }
704 <
705 <    /**
706 <     * Sets the handler for internal worker threads that terminate due
707 <     * to unrecoverable errors encountered while executing tasks.
708 <     * Unless set, the current default or ThreadGroup handler is used
709 <     * as handler.
710 <     *
711 <     * @param h the new handler
712 <     * @return the old handler, or null if none
713 <     * @throws SecurityException if a security manager exists and
714 <     *         the caller is not permitted to modify threads
715 <     *         because it does not hold {@link
716 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
717 <     */
718 <    public Thread.UncaughtExceptionHandler
719 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
720 <        checkPermission();
721 <        Thread.UncaughtExceptionHandler old = null;
722 <        final ReentrantLock lock = this.workerLock;
723 <        lock.lock();
724 <        try {
725 <            old = ueh;
726 <            ueh = h;
727 <            ForkJoinWorkerThread[] ws = workers;
728 <            if (ws != null) {
729 <                for (int i = 0; i < ws.length; ++i) {
730 <                    ForkJoinWorkerThread w = ws[i];
731 <                    if (w != null)
732 <                        w.setUncaughtExceptionHandler(h);
733 <                }
734 <            }
735 <        } finally {
736 <            lock.unlock();
737 <        }
738 <        return old;
1645 >        return ueh;
1646      }
1647  
741
1648      /**
1649 <     * Sets the target parallelism level of this pool.
1649 >     * Returns the targeted parallelism level of this pool.
1650       *
1651 <     * @param parallelism the target parallelism
746 <     * @throws IllegalArgumentException if parallelism less than or
747 <     * equal to zero or greater than maximum size bounds
748 <     * @throws SecurityException if a security manager exists and
749 <     *         the caller is not permitted to modify threads
750 <     *         because it does not hold {@link
751 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
752 <     */
753 <    public void setParallelism(int parallelism) {
754 <        checkPermission();
755 <        if (parallelism <= 0 || parallelism > maxPoolSize)
756 <            throw new IllegalArgumentException();
757 <        final ReentrantLock lock = this.workerLock;
758 <        lock.lock();
759 <        try {
760 <            if (!isTerminating()) {
761 <                int p = this.parallelism;
762 <                this.parallelism = parallelism;
763 <                if (parallelism > p)
764 <                    createAndStartAddedWorkers();
765 <                else
766 <                    trimSpares();
767 <            }
768 <        } finally {
769 <            lock.unlock();
770 <        }
771 <        signalIdleWorkers();
772 <    }
773 <
774 <    /**
775 <     * Returns the targeted number of worker threads in this pool.
776 <     *
777 <     * @return the targeted number of worker threads in this pool
1651 >     * @return the targeted parallelism level of this pool
1652       */
1653      public int getParallelism() {
1654          return parallelism;
# Line 782 | Line 1656 | public class ForkJoinPool extends Abstra
1656  
1657      /**
1658       * Returns the number of worker threads that have started but not
1659 <     * yet terminated.  This result returned by this method may differ
1660 <     * from {@code getParallelism} when threads are created to
1659 >     * yet terminated.  The result returned by this method may differ
1660 >     * from {@link #getParallelism} when threads are created to
1661       * maintain parallelism when others are cooperatively blocked.
1662       *
1663       * @return the number of worker threads
1664       */
1665      public int getPoolSize() {
1666 <        return totalCountOf(workerCounts);
793 <    }
794 <
795 <    /**
796 <     * Returns the maximum number of threads allowed to exist in the
797 <     * pool, even if there are insufficient unblocked running threads.
798 <     *
799 <     * @return the maximum
800 <     */
801 <    public int getMaximumPoolSize() {
802 <        return maxPoolSize;
803 <    }
804 <
805 <    /**
806 <     * Sets the maximum number of threads allowed to exist in the
807 <     * pool, even if there are insufficient unblocked running threads.
808 <     * Setting this value has no effect on current pool size. It
809 <     * controls construction of new threads.
810 <     *
811 <     * @throws IllegalArgumentException if negative or greater then
812 <     * internal implementation limit
813 <     */
814 <    public void setMaximumPoolSize(int newMax) {
815 <        if (newMax < 0 || newMax > MAX_THREADS)
816 <            throw new IllegalArgumentException();
817 <        maxPoolSize = newMax;
818 <    }
819 <
820 <
821 <    /**
822 <     * Returns true if this pool dynamically maintains its target
823 <     * parallelism level. If false, new threads are added only to
824 <     * avoid possible starvation.
825 <     * This setting is by default true.
826 <     *
827 <     * @return true if maintains parallelism
828 <     */
829 <    public boolean getMaintainsParallelism() {
830 <        return maintainsParallelism;
1666 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1667      }
1668  
1669      /**
1670 <     * Sets whether this pool dynamically maintains its target
835 <     * parallelism level. If false, new threads are added only to
836 <     * avoid possible starvation.
837 <     *
838 <     * @param enable true to maintains parallelism
839 <     */
840 <    public void setMaintainsParallelism(boolean enable) {
841 <        maintainsParallelism = enable;
842 <    }
843 <
844 <    /**
845 <     * Establishes local first-in-first-out scheduling mode for forked
846 <     * tasks that are never joined. This mode may be more appropriate
847 <     * than default locally stack-based mode in applications in which
848 <     * worker threads only process asynchronous tasks.  This method is
849 <     * designed to be invoked only when pool is quiescent, and
850 <     * typically only before any tasks are submitted. The effects of
851 <     * invocations at other times may be unpredictable.
852 <     *
853 <     * @param async if true, use locally FIFO scheduling
854 <     * @return the previous mode
855 <     */
856 <    public boolean setAsyncMode(boolean async) {
857 <        boolean oldMode = locallyFifo;
858 <        locallyFifo = async;
859 <        ForkJoinWorkerThread[] ws = workers;
860 <        if (ws != null) {
861 <            for (int i = 0; i < ws.length; ++i) {
862 <                ForkJoinWorkerThread t = ws[i];
863 <                if (t != null)
864 <                    t.setAsyncMode(async);
865 <            }
866 <        }
867 <        return oldMode;
868 <    }
869 <
870 <    /**
871 <     * Returns true if this pool uses local first-in-first-out
1670 >     * Returns {@code true} if this pool uses local first-in-first-out
1671       * scheduling mode for forked tasks that are never joined.
1672       *
1673 <     * @return true if this pool uses async mode
1673 >     * @return {@code true} if this pool uses async mode
1674       */
1675      public boolean getAsyncMode() {
1676          return locallyFifo;
# Line 880 | Line 1679 | public class ForkJoinPool extends Abstra
1679      /**
1680       * Returns an estimate of the number of worker threads that are
1681       * not blocked waiting to join tasks or for other managed
1682 <     * synchronization.
1682 >     * synchronization. This method may overestimate the
1683 >     * number of running threads.
1684       *
1685       * @return the number of worker threads
1686       */
1687      public int getRunningThreadCount() {
1688 <        return runningCountOf(workerCounts);
1688 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1689 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1690      }
1691  
1692      /**
# Line 896 | Line 1697 | public class ForkJoinPool extends Abstra
1697       * @return the number of active threads
1698       */
1699      public int getActiveThreadCount() {
1700 <        return activeCountOf(runControl);
1700 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1701 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1702      }
1703  
1704      /**
1705 <     * Returns an estimate of the number of threads that are currently
1706 <     * idle waiting for tasks. This method may underestimate the
1707 <     * number of idle threads.
1705 >     * Returns {@code true} if all worker threads are currently idle.
1706 >     * An idle worker is one that cannot obtain a task to execute
1707 >     * because none are available to steal from other threads, and
1708 >     * there are no pending submissions to the pool. This method is
1709 >     * conservative; it might not return {@code true} immediately upon
1710 >     * idleness of all threads, but will eventually become true if
1711 >     * threads remain inactive.
1712       *
1713 <     * @return the number of idle threads
908 <     */
909 <    final int getIdleThreadCount() {
910 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
911 <        return (c <= 0) ? 0 : c;
912 <    }
913 <
914 <    /**
915 <     * Returns true if all worker threads are currently idle. An idle
916 <     * worker is one that cannot obtain a task to execute because none
917 <     * are available to steal from other threads, and there are no
918 <     * pending submissions to the pool. This method is conservative;
919 <     * it might not return true immediately upon idleness of all
920 <     * threads, but will eventually become true if threads remain
921 <     * inactive.
922 <     *
923 <     * @return true if all threads are currently idle
1713 >     * @return {@code true} if all threads are currently idle
1714       */
1715      public boolean isQuiescent() {
1716 <        return activeCountOf(runControl) == 0;
1716 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1717      }
1718  
1719      /**
# Line 938 | Line 1728 | public class ForkJoinPool extends Abstra
1728       * @return the number of steals
1729       */
1730      public long getStealCount() {
1731 <        return stealCount.get();
942 <    }
943 <
944 <    /**
945 <     * Accumulates steal count from a worker.
946 <     * Call only when worker known to be idle.
947 <     */
948 <    private void updateStealCount(ForkJoinWorkerThread w) {
949 <        int sc = w.getAndClearStealCount();
950 <        if (sc != 0)
951 <            stealCount.addAndGet(sc);
1731 >        return stealCount;
1732      }
1733  
1734      /**
# Line 963 | Line 1743 | public class ForkJoinPool extends Abstra
1743       */
1744      public long getQueuedTaskCount() {
1745          long count = 0;
1746 <        ForkJoinWorkerThread[] ws = workers;
1747 <        if (ws != null) {
1748 <            for (int i = 0; i < ws.length; ++i) {
1749 <                ForkJoinWorkerThread t = ws[i];
1750 <                if (t != null)
1751 <                    count += t.getQueueSize();
972 <            }
1746 >        ForkJoinWorkerThread[] ws;
1747 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1748 >            (ws = workers) != null) {
1749 >            for (ForkJoinWorkerThread w : ws)
1750 >                if (w != null)
1751 >                    count -= w.queueBase - w.queueTop; // must read base first
1752          }
1753          return count;
1754      }
1755  
1756      /**
1757 <     * Returns an estimate of the number tasks submitted to this pool
1758 <     * that have not yet begun executing. This method takes time
1759 <     * proportional to the number of submissions.
1757 >     * Returns an estimate of the number of tasks submitted to this
1758 >     * pool that have not yet begun executing.  This method may take
1759 >     * time proportional to the number of submissions.
1760       *
1761       * @return the number of queued submissions
1762       */
1763      public int getQueuedSubmissionCount() {
1764 <        return submissionQueue.size();
1764 >        return -queueBase + queueTop;
1765      }
1766  
1767      /**
1768 <     * Returns true if there are any tasks submitted to this pool
1769 <     * that have not yet begun executing.
1768 >     * Returns {@code true} if there are any tasks submitted to this
1769 >     * pool that have not yet begun executing.
1770       *
1771       * @return {@code true} if there are any queued submissions
1772       */
1773      public boolean hasQueuedSubmissions() {
1774 <        return !submissionQueue.isEmpty();
1774 >        return queueBase != queueTop;
1775      }
1776  
1777      /**
# Line 1000 | Line 1779 | public class ForkJoinPool extends Abstra
1779       * available.  This method may be useful in extensions to this
1780       * class that re-assign work in systems with multiple pools.
1781       *
1782 <     * @return the next submission, or null if none
1782 >     * @return the next submission, or {@code null} if none
1783       */
1784      protected ForkJoinTask<?> pollSubmission() {
1785 <        return submissionQueue.poll();
1785 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1786 >        while ((b = queueBase) != queueTop &&
1787 >               (q = submissionQueue) != null &&
1788 >               (i = (q.length - 1) & b) >= 0) {
1789 >            long u = (i << ASHIFT) + ABASE;
1790 >            if ((t = q[i]) != null &&
1791 >                queueBase == b &&
1792 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1793 >                queueBase = b + 1;
1794 >                return t;
1795 >            }
1796 >        }
1797 >        return null;
1798      }
1799  
1800      /**
1801       * Removes all available unexecuted submitted and forked tasks
1802       * from scheduling queues and adds them to the given collection,
1803       * without altering their execution status. These may include
1804 <     * artificially generated or wrapped tasks. This method is designed
1805 <     * to be invoked only when the pool is known to be
1804 >     * artificially generated or wrapped tasks. This method is
1805 >     * designed to be invoked only when the pool is known to be
1806       * quiescent. Invocations at other times may not remove all
1807       * tasks. A failure encountered while attempting to add elements
1808       * to collection {@code c} may result in elements being in
# Line 1023 | Line 1814 | public class ForkJoinPool extends Abstra
1814       * @param c the collection to transfer elements into
1815       * @return the number of elements transferred
1816       */
1817 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1818 <        int n = submissionQueue.drainTo(c);
1819 <        ForkJoinWorkerThread[] ws = workers;
1820 <        if (ws != null) {
1821 <            for (int i = 0; i < ws.length; ++i) {
1822 <                ForkJoinWorkerThread w = ws[i];
1823 <                if (w != null)
1033 <                    n += w.drainTasksTo(c);
1817 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1818 >        int count = 0;
1819 >        while (queueBase != queueTop) {
1820 >            ForkJoinTask<?> t = pollSubmission();
1821 >            if (t != null) {
1822 >                c.add(t);
1823 >                ++count;
1824              }
1825          }
1826 <        return n;
1826 >        ForkJoinWorkerThread[] ws;
1827 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1828 >            (ws = workers) != null) {
1829 >            for (ForkJoinWorkerThread w : ws)
1830 >                if (w != null)
1831 >                    count += w.drainTasksTo(c);
1832 >        }
1833 >        return count;
1834      }
1835  
1836      /**
# Line 1044 | Line 1841 | public class ForkJoinPool extends Abstra
1841       * @return a string identifying this pool, as well as its state
1842       */
1843      public String toString() {
1047        int ps = parallelism;
1048        int wc = workerCounts;
1049        int rc = runControl;
1844          long st = getStealCount();
1845          long qt = getQueuedTaskCount();
1846          long qs = getQueuedSubmissionCount();
1847 +        int pc = parallelism;
1848 +        long c = ctl;
1849 +        int tc = pc + (short)(c >>> TC_SHIFT);
1850 +        int rc = pc + (int)(c >> AC_SHIFT);
1851 +        if (rc < 0) // ignore transient negative
1852 +            rc = 0;
1853 +        int ac = rc + blockedCount;
1854 +        String level;
1855 +        if ((c & STOP_BIT) != 0)
1856 +            level = (tc == 0) ? "Terminated" : "Terminating";
1857 +        else
1858 +            level = shutdown ? "Shutting down" : "Running";
1859          return super.toString() +
1860 <            "[" + runStateToString(runStateOf(rc)) +
1861 <            ", parallelism = " + ps +
1862 <            ", size = " + totalCountOf(wc) +
1863 <            ", active = " + activeCountOf(rc) +
1864 <            ", running = " + runningCountOf(wc) +
1860 >            "[" + level +
1861 >            ", parallelism = " + pc +
1862 >            ", size = " + tc +
1863 >            ", active = " + ac +
1864 >            ", running = " + rc +
1865              ", steals = " + st +
1866              ", tasks = " + qt +
1867              ", submissions = " + qs +
1868              "]";
1869      }
1870  
1065    private static String runStateToString(int rs) {
1066        switch(rs) {
1067        case RUNNING: return "Running";
1068        case SHUTDOWN: return "Shutting down";
1069        case TERMINATING: return "Terminating";
1070        case TERMINATED: return "Terminated";
1071        default: throw new Error("Unknown run state");
1072        }
1073    }
1074
1075    // lifecycle control
1076
1871      /**
1872       * Initiates an orderly shutdown in which previously submitted
1873       * tasks are executed, but no new tasks will be accepted.
# Line 1088 | Line 1882 | public class ForkJoinPool extends Abstra
1882       */
1883      public void shutdown() {
1884          checkPermission();
1885 <        transitionRunStateTo(SHUTDOWN);
1886 <        if (canTerminateOnShutdown(runControl))
1093 <            terminateOnShutdown();
1885 >        shutdown = true;
1886 >        tryTerminate(false);
1887      }
1888  
1889      /**
1890 <     * Attempts to stop all actively executing tasks, and cancels all
1891 <     * waiting tasks.  Tasks that are in the process of being
1892 <     * submitted or executed concurrently during the course of this
1893 <     * method may or may not be rejected. Unlike some other executors,
1894 <     * this method cancels rather than collects non-executed tasks
1895 <     * upon termination, so always returns an empty list. However, you
1896 <     * can use method {@code drainTasksTo} before invoking this
1897 <     * method to transfer unexecuted tasks to another collection.
1890 >     * Attempts to cancel and/or stop all tasks, and reject all
1891 >     * subsequently submitted tasks.  Tasks that are in the process of
1892 >     * being submitted or executed concurrently during the course of
1893 >     * this method may or may not be rejected. This method cancels
1894 >     * both existing and unexecuted tasks, in order to permit
1895 >     * termination in the presence of task dependencies. So the method
1896 >     * always returns an empty list (unlike the case for some other
1897 >     * Executors).
1898       *
1899       * @return an empty list
1900       * @throws SecurityException if a security manager exists and
# Line 1111 | Line 1904 | public class ForkJoinPool extends Abstra
1904       */
1905      public List<Runnable> shutdownNow() {
1906          checkPermission();
1907 <        terminate();
1907 >        shutdown = true;
1908 >        tryTerminate(true);
1909          return Collections.emptyList();
1910      }
1911  
# Line 1121 | Line 1915 | public class ForkJoinPool extends Abstra
1915       * @return {@code true} if all tasks have completed following shut down
1916       */
1917      public boolean isTerminated() {
1918 <        return runStateOf(runControl) == TERMINATED;
1918 >        long c = ctl;
1919 >        return ((c & STOP_BIT) != 0L &&
1920 >                (short)(c >>> TC_SHIFT) == -parallelism);
1921      }
1922  
1923      /**
1924       * Returns {@code true} if the process of termination has
1925 <     * commenced but possibly not yet completed.
1925 >     * commenced but not yet completed.  This method may be useful for
1926 >     * debugging. A return of {@code true} reported a sufficient
1927 >     * period after shutdown may indicate that submitted tasks have
1928 >     * ignored or suppressed interruption, or are waiting for IO,
1929 >     * causing this executor not to properly terminate. (See the
1930 >     * advisory notes for class {@link ForkJoinTask} stating that
1931 >     * tasks should not normally entail blocking operations.  But if
1932 >     * they do, they must abort them on interrupt.)
1933       *
1934 <     * @return {@code true} if terminating
1934 >     * @return {@code true} if terminating but not yet terminated
1935       */
1936      public boolean isTerminating() {
1937 <        return runStateOf(runControl) >= TERMINATING;
1937 >        long c = ctl;
1938 >        return ((c & STOP_BIT) != 0L &&
1939 >                (short)(c >>> TC_SHIFT) != -parallelism);
1940 >    }
1941 >
1942 >    /**
1943 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1944 >     */
1945 >    final boolean isAtLeastTerminating() {
1946 >        return (ctl & STOP_BIT) != 0L;
1947      }
1948  
1949      /**
# Line 1140 | Line 1952 | public class ForkJoinPool extends Abstra
1952       * @return {@code true} if this pool has been shut down
1953       */
1954      public boolean isShutdown() {
1955 <        return runStateOf(runControl) >= SHUTDOWN;
1955 >        return shutdown;
1956      }
1957  
1958      /**
# Line 1157 | Line 1969 | public class ForkJoinPool extends Abstra
1969      public boolean awaitTermination(long timeout, TimeUnit unit)
1970          throws InterruptedException {
1971          long nanos = unit.toNanos(timeout);
1972 <        final ReentrantLock lock = this.workerLock;
1972 >        final ReentrantLock lock = this.submissionLock;
1973          lock.lock();
1974          try {
1975              for (;;) {
# Line 1172 | Line 1984 | public class ForkJoinPool extends Abstra
1984          }
1985      }
1986  
1175    // Shutdown and termination support
1176
1177    /**
1178     * Callback from terminating worker. Nulls out the corresponding
1179     * workers slot, and if terminating, tries to terminate; else
1180     * tries to shrink workers array.
1181     *
1182     * @param w the worker
1183     */
1184    final void workerTerminated(ForkJoinWorkerThread w) {
1185        updateStealCount(w);
1186        updateWorkerCount(-1);
1187        final ReentrantLock lock = this.workerLock;
1188        lock.lock();
1189        try {
1190            ForkJoinWorkerThread[] ws = workers;
1191            if (ws != null) {
1192                int idx = w.poolIndex;
1193                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1194                    ws[idx] = null;
1195                if (totalCountOf(workerCounts) == 0) {
1196                    terminate(); // no-op if already terminating
1197                    transitionRunStateTo(TERMINATED);
1198                    termination.signalAll();
1199                }
1200                else if (!isTerminating()) {
1201                    tryShrinkWorkerArray();
1202                    tryResumeSpare(true); // allow replacement
1203                }
1204            }
1205        } finally {
1206            lock.unlock();
1207        }
1208        signalIdleWorkers();
1209    }
1210
1211    /**
1212     * Initiates termination.
1213     */
1214    private void terminate() {
1215        if (transitionRunStateTo(TERMINATING)) {
1216            stopAllWorkers();
1217            resumeAllSpares();
1218            signalIdleWorkers();
1219            cancelQueuedSubmissions();
1220            cancelQueuedWorkerTasks();
1221            interruptUnterminatedWorkers();
1222            signalIdleWorkers(); // resignal after interrupt
1223        }
1224    }
1225
1226    /**
1227     * Possibly terminates when on shutdown state.
1228     */
1229    private void terminateOnShutdown() {
1230        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1231            terminate();
1232    }
1233
1234    /**
1235     * Clears out and cancels submissions.
1236     */
1237    private void cancelQueuedSubmissions() {
1238        ForkJoinTask<?> task;
1239        while ((task = pollSubmission()) != null)
1240            task.cancel(false);
1241    }
1242
1243    /**
1244     * Cleans out worker queues.
1245     */
1246    private void cancelQueuedWorkerTasks() {
1247        final ReentrantLock lock = this.workerLock;
1248        lock.lock();
1249        try {
1250            ForkJoinWorkerThread[] ws = workers;
1251            if (ws != null) {
1252                for (int i = 0; i < ws.length; ++i) {
1253                    ForkJoinWorkerThread t = ws[i];
1254                    if (t != null)
1255                        t.cancelTasks();
1256                }
1257            }
1258        } finally {
1259            lock.unlock();
1260        }
1261    }
1262
1263    /**
1264     * Sets each worker's status to terminating. Requires lock to avoid
1265     * conflicts with add/remove.
1266     */
1267    private void stopAllWorkers() {
1268        final ReentrantLock lock = this.workerLock;
1269        lock.lock();
1270        try {
1271            ForkJoinWorkerThread[] ws = workers;
1272            if (ws != null) {
1273                for (int i = 0; i < ws.length; ++i) {
1274                    ForkJoinWorkerThread t = ws[i];
1275                    if (t != null)
1276                        t.shutdownNow();
1277                }
1278            }
1279        } finally {
1280            lock.unlock();
1281        }
1282    }
1283
1284    /**
1285     * Interrupts all unterminated workers.  This is not required for
1286     * sake of internal control, but may help unstick user code during
1287     * shutdown.
1288     */
1289    private void interruptUnterminatedWorkers() {
1290        final ReentrantLock lock = this.workerLock;
1291        lock.lock();
1292        try {
1293            ForkJoinWorkerThread[] ws = workers;
1294            if (ws != null) {
1295                for (int i = 0; i < ws.length; ++i) {
1296                    ForkJoinWorkerThread t = ws[i];
1297                    if (t != null && !t.isTerminated()) {
1298                        try {
1299                            t.interrupt();
1300                        } catch (SecurityException ignore) {
1301                        }
1302                    }
1303                }
1304            }
1305        } finally {
1306            lock.unlock();
1307        }
1308    }
1309
1310
1311    /*
1312     * Nodes for event barrier to manage idle threads.  Queue nodes
1313     * are basic Treiber stack nodes, also used for spare stack.
1314     *
1315     * The event barrier has an event count and a wait queue (actually
1316     * a Treiber stack).  Workers are enabled to look for work when
1317     * the eventCount is incremented. If they fail to find work, they
1318     * may wait for next count. Upon release, threads help others wake
1319     * up.
1320     *
1321     * Synchronization events occur only in enough contexts to
1322     * maintain overall liveness:
1323     *
1324     *   - Submission of a new task to the pool
1325     *   - Resizes or other changes to the workers array
1326     *   - pool termination
1327     *   - A worker pushing a task on an empty queue
1328     *
1329     * The case of pushing a task occurs often enough, and is heavy
1330     * enough compared to simple stack pushes, to require special
1331     * handling: Method signalWork returns without advancing count if
1332     * the queue appears to be empty.  This would ordinarily result in
1333     * races causing some queued waiters not to be woken up. To avoid
1334     * this, the first worker enqueued in method sync (see
1335     * syncIsReleasable) rescans for tasks after being enqueued, and
1336     * helps signal if any are found. This works well because the
1337     * worker has nothing better to do, and so might as well help
1338     * alleviate the overhead and contention on the threads actually
1339     * doing work.  Also, since event counts increments on task
1340     * availability exist to maintain liveness (rather than to force
1341     * refreshes etc), it is OK for callers to exit early if
1342     * contending with another signaller.
1343     */
1344    static final class WaitQueueNode {
1345        WaitQueueNode next; // only written before enqueued
1346        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1347        final long count; // unused for spare stack
1348
1349        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1350            count = c;
1351            thread = w;
1352        }
1353
1354        /**
1355         * Wakes up waiter, returning false if known to already
1356         */
1357        boolean signal() {
1358            ForkJoinWorkerThread t = thread;
1359            if (t == null)
1360                return false;
1361            thread = null;
1362            LockSupport.unpark(t);
1363            return true;
1364        }
1365
1366        /**
1367         * Awaits release on sync.
1368         */
1369        void awaitSyncRelease(ForkJoinPool p) {
1370            while (thread != null && !p.syncIsReleasable(this))
1371                LockSupport.park(this);
1372        }
1373
1374        /**
1375         * Awaits resumption as spare.
1376         */
1377        void awaitSpareRelease() {
1378            while (thread != null) {
1379                if (!Thread.interrupted())
1380                    LockSupport.park(this);
1381            }
1382        }
1383    }
1384
1385    /**
1386     * Ensures that no thread is waiting for count to advance from the
1387     * current value of eventCount read on entry to this method, by
1388     * releasing waiting threads if necessary.
1389     *
1390     * @return the count
1391     */
1392    final long ensureSync() {
1393        long c = eventCount;
1394        WaitQueueNode q;
1395        while ((q = syncStack) != null && q.count < c) {
1396            if (casBarrierStack(q, null)) {
1397                do {
1398                    q.signal();
1399                } while ((q = q.next) != null);
1400                break;
1401            }
1402        }
1403        return c;
1404    }
1405
1406    /**
1407     * Increments event count and releases waiting threads.
1408     */
1409    private void signalIdleWorkers() {
1410        long c;
1411        do {} while (!casEventCount(c = eventCount, c+1));
1412        ensureSync();
1413    }
1414
1415    /**
1416     * Signals threads waiting to poll a task. Because method sync
1417     * rechecks availability, it is OK to only proceed if queue
1418     * appears to be non-empty, and OK to skip under contention to
1419     * increment count (since some other thread succeeded).
1420     */
1421    final void signalWork() {
1422        long c;
1423        WaitQueueNode q;
1424        if (syncStack != null &&
1425            casEventCount(c = eventCount, c+1) &&
1426            (((q = syncStack) != null && q.count <= c) &&
1427             (!casBarrierStack(q, q.next) || !q.signal())))
1428            ensureSync();
1429    }
1430
1431    /**
1432     * Waits until event count advances from last value held by
1433     * caller, or if excess threads, caller is resumed as spare, or
1434     * caller or pool is terminating. Updates caller's event on exit.
1435     *
1436     * @param w the calling worker thread
1437     */
1438    final void sync(ForkJoinWorkerThread w) {
1439        updateStealCount(w); // Transfer w's count while it is idle
1440
1441        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1442            long prev = w.lastEventCount;
1443            WaitQueueNode node = null;
1444            WaitQueueNode h;
1445            while (eventCount == prev &&
1446                   ((h = syncStack) == null || h.count == prev)) {
1447                if (node == null)
1448                    node = new WaitQueueNode(prev, w);
1449                if (casBarrierStack(node.next = h, node)) {
1450                    node.awaitSyncRelease(this);
1451                    break;
1452                }
1453            }
1454            long ec = ensureSync();
1455            if (ec != prev) {
1456                w.lastEventCount = ec;
1457                break;
1458            }
1459        }
1460    }
1461
1462    /**
1463     * Returns true if worker waiting on sync can proceed:
1464     *  - on signal (thread == null)
1465     *  - on event count advance (winning race to notify vs signaller)
1466     *  - on interrupt
1467     *  - if the first queued node, we find work available
1468     * If node was not signalled and event count not advanced on exit,
1469     * then we also help advance event count.
1470     *
1471     * @return true if node can be released
1472     */
1473    final boolean syncIsReleasable(WaitQueueNode node) {
1474        long prev = node.count;
1475        if (!Thread.interrupted() && node.thread != null &&
1476            (node.next != null ||
1477             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1478            eventCount == prev)
1479            return false;
1480        if (node.thread != null) {
1481            node.thread = null;
1482            long ec = eventCount;
1483            if (prev <= ec) // help signal
1484                casEventCount(ec, ec+1);
1485        }
1486        return true;
1487    }
1488
1489    /**
1490     * Returns true if a new sync event occurred since last call to
1491     * sync or this method, if so, updating caller's count.
1492     */
1493    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1494        long lc = w.lastEventCount;
1495        long ec = ensureSync();
1496        if (ec == lc)
1497            return false;
1498        w.lastEventCount = ec;
1499        return true;
1500    }
1501
1502    //  Parallelism maintenance
1503
1504    /**
1505     * Decrements running count; if too low, adds spare.
1506     *
1507     * Conceptually, all we need to do here is add or resume a
1508     * spare thread when one is about to block (and remove or
1509     * suspend it later when unblocked -- see suspendIfSpare).
1510     * However, implementing this idea requires coping with
1511     * several problems: we have imperfect information about the
1512     * states of threads. Some count updates can and usually do
1513     * lag run state changes, despite arrangements to keep them
1514     * accurate (for example, when possible, updating counts
1515     * before signalling or resuming), especially when running on
1516     * dynamic JVMs that don't optimize the infrequent paths that
1517     * update counts. Generating too many threads can make these
1518     * problems become worse, because excess threads are more
1519     * likely to be context-switched with others, slowing them all
1520     * down, especially if there is no work available, so all are
1521     * busy scanning or idling.  Also, excess spare threads can
1522     * only be suspended or removed when they are idle, not
1523     * immediately when they aren't needed. So adding threads will
1524     * raise parallelism level for longer than necessary.  Also,
1525     * FJ applications often encounter highly transient peaks when
1526     * many threads are blocked joining, but for less time than it
1527     * takes to create or resume spares.
1528     *
1529     * @param joinMe if non-null, return early if done
1530     * @param maintainParallelism if true, try to stay within
1531     * target counts, else create only to avoid starvation
1532     * @return true if joinMe known to be done
1533     */
1534    final boolean preJoin(ForkJoinTask<?> joinMe,
1535                          boolean maintainParallelism) {
1536        maintainParallelism &= maintainsParallelism; // overrride
1537        boolean dec = false;  // true when running count decremented
1538        while (spareStack == null || !tryResumeSpare(dec)) {
1539            int counts = workerCounts;
1540            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1541                // CAS cheat
1542                if (!needSpare(counts, maintainParallelism))
1543                    break;
1544                if (joinMe.status < 0)
1545                    return true;
1546                if (tryAddSpare(counts))
1547                    break;
1548            }
1549        }
1550        return false;
1551    }
1552
1553    /**
1554     * Same idea as preJoin
1555     */
1556    final boolean preBlock(ManagedBlocker blocker,
1557                           boolean maintainParallelism) {
1558        maintainParallelism &= maintainsParallelism;
1559        boolean dec = false;
1560        while (spareStack == null || !tryResumeSpare(dec)) {
1561            int counts = workerCounts;
1562            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1563                if (!needSpare(counts, maintainParallelism))
1564                    break;
1565                if (blocker.isReleasable())
1566                    return true;
1567                if (tryAddSpare(counts))
1568                    break;
1569            }
1570        }
1571        return false;
1572    }
1573
1574    /**
1575     * Returns true if a spare thread appears to be needed.  If
1576     * maintaining parallelism, returns true when the deficit in
1577     * running threads is more than the surplus of total threads, and
1578     * there is apparently some work to do.  This self-limiting rule
1579     * means that the more threads that have already been added, the
1580     * less parallelism we will tolerate before adding another.
1581     *
1582     * @param counts current worker counts
1583     * @param maintainParallelism try to maintain parallelism
1584     */
1585    private boolean needSpare(int counts, boolean maintainParallelism) {
1586        int ps = parallelism;
1587        int rc = runningCountOf(counts);
1588        int tc = totalCountOf(counts);
1589        int runningDeficit = ps - rc;
1590        int totalSurplus = tc - ps;
1591        return (tc < maxPoolSize &&
1592                (rc == 0 || totalSurplus < 0 ||
1593                 (maintainParallelism &&
1594                  runningDeficit > totalSurplus &&
1595                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1596    }
1597
1598    /**
1599     * Adds a spare worker if lock available and no more than the
1600     * expected numbers of threads exist.
1601     *
1602     * @return true if successful
1603     */
1604    private boolean tryAddSpare(int expectedCounts) {
1605        final ReentrantLock lock = this.workerLock;
1606        int expectedRunning = runningCountOf(expectedCounts);
1607        int expectedTotal = totalCountOf(expectedCounts);
1608        boolean success = false;
1609        boolean locked = false;
1610        // confirm counts while locking; CAS after obtaining lock
1611        try {
1612            for (;;) {
1613                int s = workerCounts;
1614                int tc = totalCountOf(s);
1615                int rc = runningCountOf(s);
1616                if (rc > expectedRunning || tc > expectedTotal)
1617                    break;
1618                if (!locked && !(locked = lock.tryLock()))
1619                    break;
1620                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1621                    createAndStartSpare(tc);
1622                    success = true;
1623                    break;
1624                }
1625            }
1626        } finally {
1627            if (locked)
1628                lock.unlock();
1629        }
1630        return success;
1631    }
1632
1633    /**
1634     * Adds the kth spare worker. On entry, pool counts are already
1635     * adjusted to reflect addition.
1636     */
1637    private void createAndStartSpare(int k) {
1638        ForkJoinWorkerThread w = null;
1639        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1640        int len = ws.length;
1641        // Probably, we can place at slot k. If not, find empty slot
1642        if (k < len && ws[k] != null) {
1643            for (k = 0; k < len && ws[k] != null; ++k)
1644                ;
1645        }
1646        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1647            ws[k] = w;
1648            w.start();
1649        }
1650        else
1651            updateWorkerCount(-1); // adjust on failure
1652        signalIdleWorkers();
1653    }
1654
1655    /**
1656     * Suspends calling thread w if there are excess threads.  Called
1657     * only from sync.  Spares are enqueued in a Treiber stack using
1658     * the same WaitQueueNodes as barriers.  They are resumed mainly
1659     * in preJoin, but are also woken on pool events that require all
1660     * threads to check run state.
1661     *
1662     * @param w the caller
1663     */
1664    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1665        WaitQueueNode node = null;
1666        int s;
1667        while (parallelism < runningCountOf(s = workerCounts)) {
1668            if (node == null)
1669                node = new WaitQueueNode(0, w);
1670            if (casWorkerCounts(s, s-1)) { // representation-dependent
1671                // push onto stack
1672                do {} while (!casSpareStack(node.next = spareStack, node));
1673                // block until released by resumeSpare
1674                node.awaitSpareRelease();
1675                return true;
1676            }
1677        }
1678        return false;
1679    }
1680
1681    /**
1682     * Tries to pop and resume a spare thread.
1683     *
1684     * @param updateCount if true, increment running count on success
1685     * @return true if successful
1686     */
1687    private boolean tryResumeSpare(boolean updateCount) {
1688        WaitQueueNode q;
1689        while ((q = spareStack) != null) {
1690            if (casSpareStack(q, q.next)) {
1691                if (updateCount)
1692                    updateRunningCount(1);
1693                q.signal();
1694                return true;
1695            }
1696        }
1697        return false;
1698    }
1699
1700    /**
1701     * Pops and resumes all spare threads. Same idea as ensureSync.
1702     *
1703     * @return true if any spares released
1704     */
1705    private boolean resumeAllSpares() {
1706        WaitQueueNode q;
1707        while ( (q = spareStack) != null) {
1708            if (casSpareStack(q, null)) {
1709                do {
1710                    updateRunningCount(1);
1711                    q.signal();
1712                } while ((q = q.next) != null);
1713                return true;
1714            }
1715        }
1716        return false;
1717    }
1718
1719    /**
1720     * Pops and shuts down excessive spare threads. Call only while
1721     * holding lock. This is not guaranteed to eliminate all excess
1722     * threads, only those suspended as spares, which are the ones
1723     * unlikely to be needed in the future.
1724     */
1725    private void trimSpares() {
1726        int surplus = totalCountOf(workerCounts) - parallelism;
1727        WaitQueueNode q;
1728        while (surplus > 0 && (q = spareStack) != null) {
1729            if (casSpareStack(q, null)) {
1730                do {
1731                    updateRunningCount(1);
1732                    ForkJoinWorkerThread w = q.thread;
1733                    if (w != null && surplus > 0 &&
1734                        runningCountOf(workerCounts) > 0 && w.shutdown())
1735                        --surplus;
1736                    q.signal();
1737                } while ((q = q.next) != null);
1738            }
1739        }
1740    }
1741
1987      /**
1988       * Interface for extending managed parallelism for tasks running
1989 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1990 <     * Method {@code isReleasable} must return true if blocking is not
1991 <     * necessary. Method {@code block} blocks the current thread if
1992 <     * necessary (perhaps internally invoking {@code isReleasable}
1993 <     * before actually blocking.).
1989 >     * in {@link ForkJoinPool}s.
1990 >     *
1991 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1992 >     * {@code isReleasable} must return {@code true} if blocking is
1993 >     * not necessary. Method {@code block} blocks the current thread
1994 >     * if necessary (perhaps internally invoking {@code isReleasable}
1995 >     * before actually blocking). These actions are performed by any
1996 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1997 >     * unusual methods in this API accommodate synchronizers that may,
1998 >     * but don't usually, block for long periods. Similarly, they
1999 >     * allow more efficient internal handling of cases in which
2000 >     * additional workers may be, but usually are not, needed to
2001 >     * ensure sufficient parallelism.  Toward this end,
2002 >     * implementations of method {@code isReleasable} must be amenable
2003 >     * to repeated invocation.
2004       *
2005       * <p>For example, here is a ManagedBlocker based on a
2006       * ReentrantLock:
# Line 1763 | Line 2018 | public class ForkJoinPool extends Abstra
2018       *     return hasLock || (hasLock = lock.tryLock());
2019       *   }
2020       * }}</pre>
2021 +     *
2022 +     * <p>Here is a class that possibly blocks waiting for an
2023 +     * item on a given queue:
2024 +     *  <pre> {@code
2025 +     * class QueueTaker<E> implements ManagedBlocker {
2026 +     *   final BlockingQueue<E> queue;
2027 +     *   volatile E item = null;
2028 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2029 +     *   public boolean block() throws InterruptedException {
2030 +     *     if (item == null)
2031 +     *       item = queue.take();
2032 +     *     return true;
2033 +     *   }
2034 +     *   public boolean isReleasable() {
2035 +     *     return item != null || (item = queue.poll()) != null;
2036 +     *   }
2037 +     *   public E getItem() { // call after pool.managedBlock completes
2038 +     *     return item;
2039 +     *   }
2040 +     * }}</pre>
2041       */
2042      public static interface ManagedBlocker {
2043          /**
2044           * Possibly blocks the current thread, for example waiting for
2045           * a lock or condition.
2046           *
2047 <         * @return true if no additional blocking is necessary (i.e.,
2048 <         * if isReleasable would return true)
2047 >         * @return {@code true} if no additional blocking is necessary
2048 >         * (i.e., if isReleasable would return true)
2049           * @throws InterruptedException if interrupted while waiting
2050           * (the method is not required to do so, but is allowed to)
2051           */
2052          boolean block() throws InterruptedException;
2053  
2054          /**
2055 <         * Returns true if blocking is unnecessary.
2055 >         * Returns {@code true} if blocking is unnecessary.
2056           */
2057          boolean isReleasable();
2058      }
2059  
2060      /**
2061       * Blocks in accord with the given blocker.  If the current thread
2062 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2063 <     * spare thread to be activated if necessary to ensure parallelism
2064 <     * while the current thread is blocked.  If
1790 <     * {@code maintainParallelism} is true and the pool supports
1791 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1792 <     * maintain the pool's nominal parallelism. Otherwise it activates
1793 <     * a thread only if necessary to avoid complete starvation. This
1794 <     * option may be preferable when blockages use timeouts, or are
1795 <     * almost always brief.
2062 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2063 >     * arranges for a spare thread to be activated if necessary to
2064 >     * ensure sufficient parallelism while the current thread is blocked.
2065       *
2066 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2067 <     * equivalent to
2066 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2067 >     * behaviorally equivalent to
2068       *  <pre> {@code
2069       * while (!blocker.isReleasable())
2070       *   if (blocker.block())
2071       *     return;
2072       * }</pre>
2073 <     * If the caller is a ForkJoinTask, then the pool may first
2074 <     * be expanded to ensure parallelism, and later adjusted.
2073 >     *
2074 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2075 >     * first be expanded to ensure parallelism, and later adjusted.
2076       *
2077       * @param blocker the blocker
1808     * @param maintainParallelism if true and supported by this pool,
1809     * attempt to maintain the pool's nominal parallelism; otherwise
1810     * activate a thread only if necessary to avoid complete
1811     * starvation.
2078       * @throws InterruptedException if blocker.block did so
2079       */
2080 <    public static void managedBlock(ManagedBlocker blocker,
1815 <                                    boolean maintainParallelism)
2080 >    public static void managedBlock(ManagedBlocker blocker)
2081          throws InterruptedException {
2082          Thread t = Thread.currentThread();
2083 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
2084 <                             ((ForkJoinWorkerThread) t).pool : null);
2085 <        if (!blocker.isReleasable()) {
2086 <            try {
2087 <                if (pool == null ||
2088 <                    !pool.preBlock(blocker, maintainParallelism))
1824 <                    awaitBlocker(blocker);
1825 <            } finally {
1826 <                if (pool != null)
1827 <                    pool.updateRunningCount(1);
1828 <            }
2083 >        if (t instanceof ForkJoinWorkerThread) {
2084 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2085 >            w.pool.awaitBlocker(blocker);
2086 >        }
2087 >        else {
2088 >            do {} while (!blocker.isReleasable() && !blocker.block());
2089          }
2090      }
2091  
2092 <    private static void awaitBlocker(ManagedBlocker blocker)
2093 <        throws InterruptedException {
2094 <        do {} while (!blocker.isReleasable() && !blocker.block());
1835 <    }
1836 <
1837 <    // AbstractExecutorService overrides
2092 >    // AbstractExecutorService overrides.  These rely on undocumented
2093 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2094 >    // implement RunnableFuture.
2095  
2096      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2097 <        return new AdaptedRunnable<T>(runnable, value);
2097 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2098      }
2099  
2100      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2101 <        return new AdaptedCallable<T>(callable);
2101 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2102      }
2103  
2104 +    // Unsafe mechanics
2105 +    private static final sun.misc.Unsafe UNSAFE;
2106 +    private static final long ctlOffset;
2107 +    private static final long stealCountOffset;
2108 +    private static final long blockedCountOffset;
2109 +    private static final long quiescerCountOffset;
2110 +    private static final long scanGuardOffset;
2111 +    private static final long nextWorkerNumberOffset;
2112 +    private static final long ABASE;
2113 +    private static final int ASHIFT;
2114 +
2115 +    static {
2116 +        poolNumberGenerator = new AtomicInteger();
2117 +        workerSeedGenerator = new Random();
2118 +        modifyThreadPermission = new RuntimePermission("modifyThread");
2119 +        defaultForkJoinWorkerThreadFactory =
2120 +            new DefaultForkJoinWorkerThreadFactory();
2121 +        int s;
2122 +        try {
2123 +            UNSAFE = getUnsafe();
2124 +            Class<?> k = ForkJoinPool.class;
2125 +            ctlOffset = UNSAFE.objectFieldOffset
2126 +                (k.getDeclaredField("ctl"));
2127 +            stealCountOffset = UNSAFE.objectFieldOffset
2128 +                (k.getDeclaredField("stealCount"));
2129 +            blockedCountOffset = UNSAFE.objectFieldOffset
2130 +                (k.getDeclaredField("blockedCount"));
2131 +            quiescerCountOffset = UNSAFE.objectFieldOffset
2132 +                (k.getDeclaredField("quiescerCount"));
2133 +            scanGuardOffset = UNSAFE.objectFieldOffset
2134 +                (k.getDeclaredField("scanGuard"));
2135 +            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2136 +                (k.getDeclaredField("nextWorkerNumber"));
2137 +            Class<?> a = ForkJoinTask[].class;
2138 +            ABASE = UNSAFE.arrayBaseOffset(a);
2139 +            s = UNSAFE.arrayIndexScale(a);
2140 +        } catch (Exception e) {
2141 +            throw new Error(e);
2142 +        }
2143 +        if ((s & (s-1)) != 0)
2144 +            throw new Error("data type scale not a power of two");
2145 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2146 +    }
2147  
2148 <    // Temporary Unsafe mechanics for preliminary release
2149 <    private static Unsafe getUnsafe() throws Throwable {
2148 >    /**
2149 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2150 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2151 >     * into a jdk.
2152 >     *
2153 >     * @return a sun.misc.Unsafe
2154 >     */
2155 >    private static sun.misc.Unsafe getUnsafe() {
2156          try {
2157 <            return Unsafe.getUnsafe();
2157 >            return sun.misc.Unsafe.getUnsafe();
2158          } catch (SecurityException se) {
2159              try {
2160                  return java.security.AccessController.doPrivileged
2161 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
2162 <                        public Unsafe run() throws Exception {
2163 <                            return getUnsafePrivileged();
2161 >                    (new java.security
2162 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2163 >                        public sun.misc.Unsafe run() throws Exception {
2164 >                            java.lang.reflect.Field f = sun.misc
2165 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2166 >                            f.setAccessible(true);
2167 >                            return (sun.misc.Unsafe) f.get(null);
2168                          }});
2169              } catch (java.security.PrivilegedActionException e) {
2170 <                throw e.getCause();
2170 >                throw new RuntimeException("Could not initialize intrinsics",
2171 >                                           e.getCause());
2172              }
2173          }
2174      }
1864
1865    private static Unsafe getUnsafePrivileged()
1866            throws NoSuchFieldException, IllegalAccessException {
1867        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1868        f.setAccessible(true);
1869        return (Unsafe) f.get(null);
1870    }
1871
1872    private static long fieldOffset(String fieldName)
1873            throws NoSuchFieldException {
1874        return UNSAFE.objectFieldOffset
1875            (ForkJoinPool.class.getDeclaredField(fieldName));
1876    }
1877
1878    static final Unsafe UNSAFE;
1879    static final long eventCountOffset;
1880    static final long workerCountsOffset;
1881    static final long runControlOffset;
1882    static final long syncStackOffset;
1883    static final long spareStackOffset;
1884
1885    static {
1886        try {
1887            UNSAFE = getUnsafe();
1888            eventCountOffset = fieldOffset("eventCount");
1889            workerCountsOffset = fieldOffset("workerCounts");
1890            runControlOffset = fieldOffset("runControl");
1891            syncStackOffset = fieldOffset("syncStack");
1892            spareStackOffset = fieldOffset("spareStack");
1893        } catch (Throwable e) {
1894            throw new RuntimeException("Could not initialize intrinsics", e);
1895        }
1896    }
1897
1898    private boolean casEventCount(long cmp, long val) {
1899        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1900    }
1901    private boolean casWorkerCounts(int cmp, int val) {
1902        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1903    }
1904    private boolean casRunControl(int cmp, int val) {
1905        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1906    }
1907    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1908        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1909    }
1910    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1911        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1912    }
2175   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines