ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.90 by jsr166, Mon Nov 29 20:58:06 2010 UTC vs.
Revision 1.104 by jsr166, Wed Jun 8 05:12:25 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 + import java.util.Random;
15   import java.util.concurrent.AbstractExecutorService;
16   import java.util.concurrent.Callable;
17   import java.util.concurrent.ExecutorService;
# Line 22 | Line 23 | import java.util.concurrent.TimeoutExcep
23   import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 + import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 129 | Line 131 | public class ForkJoinPool extends Abstra
131       * set of worker threads: Submissions from non-FJ threads enter
132       * into a submission queue. Workers take these tasks and typically
133       * split them into subtasks that may be stolen by other workers.
134 <     * The main work-stealing mechanics implemented in class
135 <     * ForkJoinWorkerThread give first priority to processing tasks
136 <     * from their own queues (LIFO or FIFO, depending on mode), then
137 <     * to randomized FIFO steals of tasks in other worker queues, and
138 <     * lastly to new submissions. These mechanics do not consider
139 <     * affinities, loads, cache localities, etc, so rarely provide the
140 <     * best possible performance on a given machine, but portably
141 <     * provide good throughput by averaging over these factors.
142 <     * (Further, even if we did try to use such information, we do not
143 <     * usually have a basis for exploiting it. For example, some sets
144 <     * of tasks profit from cache affinities, but others are harmed by
145 <     * cache pollution effects.)
146 <     *
147 <     * Beyond work-stealing support and essential bookkeeping, the
148 <     * main responsibility of this framework is to take actions when
149 <     * one worker is waiting to join a task stolen (or always held by)
150 <     * another.  Because we are multiplexing many tasks on to a pool
151 <     * of workers, we can't just let them block (as in Thread.join).
152 <     * We also cannot just reassign the joiner's run-time stack with
153 <     * another and replace it later, which would be a form of
154 <     * "continuation", that even if possible is not necessarily a good
155 <     * idea. Given that the creation costs of most threads on most
156 <     * systems mainly surrounds setting up runtime stacks, thread
157 <     * creation and switching is usually not much more expensive than
158 <     * stack creation and switching, and is more flexible). Instead we
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tasks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none can
199 >     * be found immediately, and we cannot start/resume workers unless
200 >     * there appear to be tasks available.  On the other hand, we must
201 >     * quickly prod them into action when new tasks are submitted or
202 >     * generated.  We park/unpark workers after placing in an event
203 >     * wait queue when they cannot find work. This "queue" is actually
204 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205 >     * 15bit counter value to both wake up waiters (by advancing their
206 >     * count) and avoid ABA effects. Successors are held in worker
207 >     * field "nextWait".  Queuing deals with several intrinsic races,
208 >     * mainly that a task-producing thread can miss seeing (and
209 >     * signalling) another thread that gave up looking for work but
210 >     * has not yet entered the wait queue. We solve this by requiring
211 >     * a full sweep of all workers both before (in scan()) and after
212 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213 >     * queue. During a rescan, the worker might release some other
214 >     * queued worker rather than itself, which has the same net
215 >     * effect. Because enqueued workers may actually be rescanning
216 >     * rather than waiting, we set and clear the "parked" field of
217 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218 >     * (Use of the parked field requires a secondary recheck to avoid
219 >     * missed signals.)
220 >     *
221 >     * Signalling.  We create or wake up workers only when there
222 >     * appears to be at least one task they might be able to find and
223 >     * execute.  When a submission is added or another worker adds a
224 >     * task to a queue that previously had two or fewer tasks, they
225 >     * signal waiting workers (or trigger creation of new ones if
226 >     * fewer than the given parallelism level -- see signalWork).
227 >     * These primary signals are buttressed by signals during rescans
228 >     * as well as those performed when a worker steals a task and
229 >     * notices that there are more tasks too; together these cover the
230 >     * signals needed in cases when more than two tasks are pushed
231 >     * but untaken.
232 >     *
233 >     * Trimming workers. To release resources after periods of lack of
234 >     * use, a worker starting to wait when the pool is quiescent will
235 >     * time out and terminate if the pool has remained quiescent for
236 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237 >     * terminating all workers after long periods of non-use.
238 >     *
239 >     * Submissions. External submissions are maintained in an
240 >     * array-based queue that is structured identically to
241 >     * ForkJoinWorkerThread queues except for the use of
242 >     * submissionLock in method addSubmission. Unlike the case for
243 >     * worker queues, multiple external threads can add new
244 >     * submissions, so adding requires a lock.
245 >     *
246 >     * Compensation. Beyond work-stealing support and lifecycle
247 >     * control, the main responsibility of this framework is to take
248 >     * actions when one worker is waiting to join a task stolen (or
249 >     * always held by) another.  Because we are multiplexing many
250 >     * tasks on to a pool of workers, we can't just let them block (as
251 >     * in Thread.join).  We also cannot just reassign the joiner's
252 >     * run-time stack with another and replace it later, which would
253 >     * be a form of "continuation", that even if possible is not
254 >     * necessarily a good idea since we sometimes need both an
255 >     * unblocked task and its continuation to progress. Instead we
256       * combine two tactics:
257       *
258       *   Helping: Arranging for the joiner to execute some task that it
259       *      would be running if the steal had not occurred.  Method
260 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
260 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261       *      links to try to find such a task.
262       *
263       *   Compensating: Unless there are already enough live threads,
264 <     *      method helpMaintainParallelism() may create or
265 <     *      re-activate a spare thread to compensate for blocked
266 <     *      joiners until they unblock.
168 <     *
169 <     * It is impossible to keep exactly the target (parallelism)
170 <     * number of threads running at any given time.  Determining
171 <     * existence of conservatively safe helping targets, the
172 <     * availability of already-created spares, and the apparent need
173 <     * to create new spares are all racy and require heuristic
174 <     * guidance, so we rely on multiple retries of each.  Compensation
175 <     * occurs in slow-motion. It is triggered only upon timeouts of
176 <     * Object.wait used for joins. This reduces poor decisions that
177 <     * would otherwise be made when threads are waiting for others
178 <     * that are stalled because of unrelated activities such as
179 <     * garbage collection.
264 >     *      method tryPreBlock() may create or re-activate a spare
265 >     *      thread to compensate for blocked joiners until they
266 >     *      unblock.
267       *
268       * The ManagedBlocker extension API can't use helping so relies
269       * only on compensation in method awaitBlocker.
270       *
271 <     * The main throughput advantages of work-stealing stem from
272 <     * decentralized control -- workers mostly steal tasks from each
273 <     * other. We do not want to negate this by creating bottlenecks
274 <     * implementing other management responsibilities. So we use a
275 <     * collection of techniques that avoid, reduce, or cope well with
276 <     * contention. These entail several instances of bit-packing into
277 <     * CASable fields to maintain only the minimally required
278 <     * atomicity. To enable such packing, we restrict maximum
279 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
280 <     * unbalanced increments and decrements) to fit into a 16 bit
281 <     * field, which is far in excess of normal operating range.  Even
282 <     * though updates to some of these bookkeeping fields do sometimes
283 <     * contend with each other, they don't normally cache-contend with
284 <     * updates to others enough to warrant memory padding or
285 <     * isolation. So they are all held as fields of ForkJoinPool
286 <     * objects.  The main capabilities are as follows:
287 <     *
288 <     * 1. Creating and removing workers. Workers are recorded in the
289 <     * "workers" array. This is an array as opposed to some other data
290 <     * structure to support index-based random steals by workers.
291 <     * Updates to the array recording new workers and unrecording
292 <     * terminated ones are protected from each other by a lock
293 <     * (workerLock) but the array is otherwise concurrently readable,
294 <     * and accessed directly by workers. To simplify index-based
295 <     * operations, the array size is always a power of two, and all
296 <     * readers must tolerate null slots. Currently, all worker thread
297 <     * creation is on-demand, triggered by task submissions,
298 <     * replacement of terminated workers, and/or compensation for
299 <     * blocked workers. However, all other support code is set up to
213 <     * work with other policies.
214 <     *
215 <     * To ensure that we do not hold on to worker references that
216 <     * would prevent GC, ALL accesses to workers are via indices into
217 <     * the workers array (which is one source of some of the unusual
218 <     * code constructions here). In essence, the workers array serves
219 <     * as a WeakReference mechanism. Thus for example the event queue
220 <     * stores worker indices, not worker references. Access to the
221 <     * workers in associated methods (for example releaseEventWaiters)
222 <     * must both index-check and null-check the IDs. All such accesses
223 <     * ignore bad IDs by returning out early from what they are doing,
224 <     * since this can only be associated with shutdown, in which case
225 <     * it is OK to give up. On termination, we just clobber these
226 <     * data structures without trying to use them.
227 <     *
228 <     * 2. Bookkeeping for dynamically adding and removing workers. We
229 <     * aim to approximately maintain the given level of parallelism.
230 <     * When some workers are known to be blocked (on joins or via
231 <     * ManagedBlocker), we may create or resume others to take their
232 <     * place until they unblock (see below). Implementing this
233 <     * requires counts of the number of "running" threads (i.e., those
234 <     * that are neither blocked nor artificially suspended) as well as
235 <     * the total number.  These two values are packed into one field,
236 <     * "workerCounts" because we need accurate snapshots when deciding
237 <     * to create, resume or suspend.  Note however that the
238 <     * correspondence of these counts to reality is not guaranteed. In
239 <     * particular updates for unblocked threads may lag until they
240 <     * actually wake up.
241 <     *
242 <     * 3. Maintaining global run state. The run state of the pool
243 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244 <     * those in other Executor implementations, as well as a count of
245 <     * "active" workers -- those that are, or soon will be, or
246 <     * recently were executing tasks. The runLevel and active count
247 <     * are packed together in order to correctly trigger shutdown and
248 <     * termination. Without care, active counts can be subject to very
249 <     * high contention.  We substantially reduce this contention by
250 <     * relaxing update rules.  A worker must claim active status
251 <     * prospectively, by activating if it sees that a submitted or
252 <     * stealable task exists (it may find after activating that the
253 <     * task no longer exists). It stays active while processing this
254 <     * task (if it exists) and any other local subtasks it produces,
255 <     * until it cannot find any other tasks. It then tries
256 <     * inactivating (see method preStep), but upon update contention
257 <     * instead scans for more tasks, later retrying inactivation if it
258 <     * doesn't find any.
259 <     *
260 <     * 4. Managing idle workers waiting for tasks. We cannot let
261 <     * workers spin indefinitely scanning for tasks when none are
262 <     * available. On the other hand, we must quickly prod them into
263 <     * action when new tasks are submitted or generated.  We
264 <     * park/unpark these idle workers using an event-count scheme.
265 <     * Field eventCount is incremented upon events that may enable
266 <     * workers that previously could not find a task to now find one:
267 <     * Submission of a new task to the pool, or another worker pushing
268 <     * a task onto a previously empty queue.  (We also use this
269 <     * mechanism for configuration and termination actions that
270 <     * require wakeups of idle workers).  Each worker maintains its
271 <     * last known event count, and blocks when a scan for work did not
272 <     * find a task AND its lastEventCount matches the current
273 <     * eventCount. Waiting idle workers are recorded in a variant of
274 <     * Treiber stack headed by field eventWaiters which, when nonzero,
275 <     * encodes the thread index and count awaited for by the worker
276 <     * thread most recently calling eventSync. This thread in turn has
277 <     * a record (field nextEventWaiter) for the next waiting worker.
278 <     * In addition to allowing simpler decisions about need for
279 <     * wakeup, the event count bits in eventWaiters serve the role of
280 <     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 <     * released threads also try to release at most two others.  The
282 <     * net effect is a tree-like diffusion of signals, where released
283 <     * threads (and possibly others) help with unparks.  To further
284 <     * reduce contention effects a bit, failed CASes to increment
285 <     * field eventCount are tolerated without retries in signalWork.
286 <     * Conceptually they are merged into the same event, which is OK
287 <     * when their only purpose is to enable workers to scan for work.
288 <     *
289 <     * 5. Managing suspension of extra workers. When a worker notices
290 <     * (usually upon timeout of a wait()) that there are too few
291 <     * running threads, we may create a new thread to maintain
292 <     * parallelism level, or at least avoid starvation. Usually, extra
293 <     * threads are needed for only very short periods, yet join
294 <     * dependencies are such that we sometimes need them in
295 <     * bursts. Rather than create new threads each time this happens,
296 <     * we suspend no-longer-needed extra ones as "spares". For most
297 <     * purposes, we don't distinguish "extra" spare threads from
298 <     * normal "core" threads: On each call to preStep (the only point
299 <     * at which we can do this) a worker checks to see if there are
300 <     * now too many running workers, and if so, suspends itself.
301 <     * Method helpMaintainParallelism looks for suspended threads to
302 <     * resume before considering creating a new replacement. The
303 <     * spares themselves are encoded on another variant of a Treiber
304 <     * Stack, headed at field "spareWaiters".  Note that the use of
305 <     * spares is intrinsically racy.  One thread may become a spare at
306 <     * about the same time as another is needlessly being created. We
307 <     * counteract this and related slop in part by requiring resumed
308 <     * spares to immediately recheck (in preStep) to see whether they
309 <     * should re-suspend.
310 <     *
311 <     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 <     * shed unused workers: The oldest (first) event queue waiter uses
313 <     * a timed rather than hard wait. When this wait times out without
314 <     * a normal wakeup, it tries to shutdown any one (for convenience
315 <     * the newest) other spare or event waiter via
316 <     * tryShutdownUnusedWorker. This eventually reduces the number of
317 <     * worker threads to a minimum of one after a long enough period
318 <     * without use.
319 <     *
320 <     * 7. Deciding when to create new workers. The main dynamic
321 <     * control in this class is deciding when to create extra threads
322 <     * in method helpMaintainParallelism. We would like to keep
323 <     * exactly #parallelism threads running, which is an impossible
324 <     * task. We always need to create one when the number of running
325 <     * threads would become zero and all workers are busy. Beyond
326 <     * this, we must rely on heuristics that work well in the
327 <     * presence of transient phenomena such as GC stalls, dynamic
328 <     * compilation, and wake-up lags. These transients are extremely
329 <     * common -- we are normally trying to fully saturate the CPUs on
330 <     * a machine, so almost any activity other than running tasks
331 <     * impedes accuracy. Our main defense is to allow parallelism to
332 <     * lapse for a while during joins, and use a timeout to see if,
333 <     * after the resulting settling, there is still a need for
334 <     * additional workers.  This also better copes with the fact that
335 <     * some of the methods in this class tend to never become compiled
336 <     * (but are interpreted), so some components of the entire set of
337 <     * controls might execute 100 times faster than others. And
338 <     * similarly for cases where the apparent lack of work is just due
339 <     * to GC stalls and other transient system activity.
271 >     * It is impossible to keep exactly the target parallelism number
272 >     * of threads running at any given time.  Determining the
273 >     * existence of conservatively safe helping targets, the
274 >     * availability of already-created spares, and the apparent need
275 >     * to create new spares are all racy and require heuristic
276 >     * guidance, so we rely on multiple retries of each.  Currently,
277 >     * in keeping with on-demand signalling policy, we compensate only
278 >     * if blocking would leave less than one active (non-waiting,
279 >     * non-blocked) worker. Additionally, to avoid some false alarms
280 >     * due to GC, lagging counters, system activity, etc, compensated
281 >     * blocking for joins is only attempted after rechecks stabilize
282 >     * (retries are interspersed with Thread.yield, for good
283 >     * citizenship).  The variable blockedCount, incremented before
284 >     * blocking and decremented after, is sometimes needed to
285 >     * distinguish cases of waiting for work vs blocking on joins or
286 >     * other managed sync. Both cases are equivalent for most pool
287 >     * control, so we can update non-atomically. (Additionally,
288 >     * contention on blockedCount alleviates some contention on ctl).
289 >     *
290 >     * Shutdown and Termination. A call to shutdownNow atomically sets
291 >     * the ctl stop bit and then (non-atomically) sets each workers
292 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 >     * all waiting workers.  Detecting whether termination should
294 >     * commence after a non-abrupt shutdown() call requires more work
295 >     * and bookkeeping. We need consensus about quiescence (i.e., that
296 >     * there is no more work) which is reflected in active counts so
297 >     * long as there are no current blockers, as well as possible
298 >     * re-evaluations during independent changes in blocking or
299 >     * quiescing workers.
300       *
301 <     * Beware that there is a lot of representation-level coupling
301 >     * Style notes: There is a lot of representation-level coupling
302       * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 <     * ForkJoinTask.  For example, direct access to "workers" array by
303 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
304 >     * data structures managed by ForkJoinPool, so are directly
305 >     * accessed.  Conversely we allow access to "workers" array by
306       * workers, and direct access to ForkJoinTask.status by both
307       * ForkJoinPool and ForkJoinWorkerThread.  There is little point
308       * trying to reduce this, since any associated future changes in
309       * representations will need to be accompanied by algorithmic
310 <     * changes anyway.
311 <     *
312 <     * Style notes: There are lots of inline assignments (of form
313 <     * "while ((local = field) != 0)") which are usually the simplest
314 <     * way to ensure the required read orderings (which are sometimes
315 <     * critical). Also several occurrences of the unusual "do {}
316 <     * while (!cas...)" which is the simplest way to force an update of
317 <     * a CAS'ed variable. There are also other coding oddities that
318 <     * help some methods perform reasonably even when interpreted (not
319 <     * compiled), at the expense of some messy constructions that
320 <     * reduce byte code counts.
321 <     *
322 <     * The order of declarations in this file is: (1) statics (2)
323 <     * fields (along with constants used when unpacking some of them)
324 <     * (3) internal control methods (4) callbacks and other support
325 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
326 <     * methods (plus a few little helpers).
310 >     * changes anyway. All together, these low-level implementation
311 >     * choices produce as much as a factor of 4 performance
312 >     * improvement compared to naive implementations, and enable the
313 >     * processing of billions of tasks per second, at the expense of
314 >     * some ugliness.
315 >     *
316 >     * Methods signalWork() and scan() are the main bottlenecks so are
317 >     * especially heavily micro-optimized/mangled.  There are lots of
318 >     * inline assignments (of form "while ((local = field) != 0)")
319 >     * which are usually the simplest way to ensure the required read
320 >     * orderings (which are sometimes critical). This leads to a
321 >     * "C"-like style of listing declarations of these locals at the
322 >     * heads of methods or blocks.  There are several occurrences of
323 >     * the unusual "do {} while (!cas...)"  which is the simplest way
324 >     * to force an update of a CAS'ed variable. There are also other
325 >     * coding oddities that help some methods perform reasonably even
326 >     * when interpreted (not compiled).
327 >     *
328 >     * The order of declarations in this file is: (1) declarations of
329 >     * statics (2) fields (along with constants used when unpacking
330 >     * some of them), listed in an order that tends to reduce
331 >     * contention among them a bit under most JVMs.  (3) internal
332 >     * control methods (4) callbacks and other support for
333 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334 >     * methods (plus a few little helpers). (6) static block
335 >     * initializing all statics in a minimally dependent order.
336       */
337  
338      /**
# Line 396 | Line 367 | public class ForkJoinPool extends Abstra
367       * overridden in ForkJoinPool constructors.
368       */
369      public static final ForkJoinWorkerThreadFactory
370 <        defaultForkJoinWorkerThreadFactory =
400 <        new DefaultForkJoinWorkerThreadFactory();
370 >        defaultForkJoinWorkerThreadFactory;
371  
372      /**
373       * Permission required for callers of methods that may start or
374       * kill threads.
375       */
376 <    private static final RuntimePermission modifyThreadPermission =
407 <        new RuntimePermission("modifyThread");
376 >    private static final RuntimePermission modifyThreadPermission;
377  
378      /**
379       * If there is a security manager, makes sure caller has
# Line 419 | Line 388 | public class ForkJoinPool extends Abstra
388      /**
389       * Generator for assigning sequence numbers as pool names.
390       */
391 <    private static final AtomicInteger poolNumberGenerator =
423 <        new AtomicInteger();
391 >    private static final AtomicInteger poolNumberGenerator;
392  
393      /**
394 <     * The time to block in a join (see awaitJoin) before checking if
395 <     * a new worker should be (re)started to maintain parallelism
396 <     * level. The value should be short enough to maintain global
397 <     * responsiveness and progress but long enough to avoid
398 <     * counterproductive firings during GC stalls or unrelated system
431 <     * activity, and to not bog down systems with continual re-firings
432 <     * on GCs or legitimately long waits.
394 >     * Generator for initial random seeds for worker victim
395 >     * selection. This is used only to create initial seeds. Random
396 >     * steals use a cheaper xorshift generator per steal attempt. We
397 >     * don't expect much contention on seedGenerator, so just use a
398 >     * plain Random.
399       */
400 <    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
400 >    static final Random workerSeedGenerator;
401  
402      /**
403 <     * The wakeup interval (in nanoseconds) for the oldest worker
404 <     * waiting for an event to invoke tryShutdownUnusedWorker to
405 <     * shrink the number of workers.  The exact value does not matter
406 <     * too much. It must be short enough to release resources during
407 <     * sustained periods of idleness, but not so short that threads
408 <     * are continually re-created.
403 >     * Array holding all worker threads in the pool.  Initialized upon
404 >     * construction. Array size must be a power of two.  Updates and
405 >     * replacements are protected by scanGuard, but the array is
406 >     * always kept in a consistent enough state to be randomly
407 >     * accessed without locking by workers performing work-stealing,
408 >     * as well as other traversal-based methods in this class, so long
409 >     * as reads memory-acquire by first reading ctl. All readers must
410 >     * tolerate that some array slots may be null.
411       */
412 <    private static final long SHRINK_RATE_NANOS =
445 <        30L * 1000L * 1000L * 1000L; // 2 per minute
412 >    ForkJoinWorkerThread[] workers;
413  
414      /**
415 <     * Absolute bound for parallelism level. Twice this number plus
416 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
417 <     * word-packing for some counts and indices.
415 >     * Initial size for submission queue array. Must be a power of
416 >     * two.  In many applications, these always stay small so we use a
417 >     * small initial cap.
418       */
419 <    private static final int MAX_WORKERS   = 0x7fff;
419 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
420  
421      /**
422 <     * Array holding all worker threads in the pool.  Array size must
423 <     * be a power of two.  Updates and replacements are protected by
424 <     * workerLock, but the array is always kept in a consistent enough
425 <     * state to be randomly accessed without locking by workers
459 <     * performing work-stealing, as well as other traversal-based
460 <     * methods in this class. All readers must tolerate that some
461 <     * array slots may be null.
422 >     * Maximum size for submission queue array. Must be a power of two
423 >     * less than or equal to 1 << (31 - width of array entry) to
424 >     * ensure lack of index wraparound, but is capped at a lower
425 >     * value to help users trap runaway computations.
426       */
427 <    volatile ForkJoinWorkerThread[] workers;
427 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428  
429      /**
430 <     * Queue for external submissions.
430 >     * Array serving as submission queue. Initialized upon construction.
431       */
432 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
432 >    private ForkJoinTask<?>[] submissionQueue;
433  
434      /**
435 <     * Lock protecting updates to workers array.
435 >     * Lock protecting submissions array for addSubmission
436       */
437 <    private final ReentrantLock workerLock;
437 >    private final ReentrantLock submissionLock;
438  
439      /**
440 <     * Latch released upon termination.
440 >     * Condition for awaitTermination, using submissionLock for
441 >     * convenience.
442       */
443 <    private final Phaser termination;
443 >    private final Condition termination;
444  
445      /**
446       * Creation factory for worker threads.
# Line 483 | Line 448 | public class ForkJoinPool extends Abstra
448      private final ForkJoinWorkerThreadFactory factory;
449  
450      /**
451 <     * Sum of per-thread steal counts, updated only when threads are
452 <     * idle or terminating.
451 >     * The uncaught exception handler used when any worker abruptly
452 >     * terminates.
453       */
454 <    private volatile long stealCount;
454 >    final Thread.UncaughtExceptionHandler ueh;
455  
456      /**
457 <     * Encoded record of top of Treiber stack of threads waiting for
493 <     * events. The top 32 bits contain the count being waited for. The
494 <     * bottom 16 bits contains one plus the pool index of waiting
495 <     * worker thread. (Bits 16-31 are unused.)
457 >     * Prefix for assigning names to worker threads
458       */
459 <    private volatile long eventWaiters;
498 <
499 <    private static final int EVENT_COUNT_SHIFT = 32;
500 <    private static final int WAITER_ID_MASK    = (1 << 16) - 1;
459 >    private final String workerNamePrefix;
460  
461      /**
462 <     * A counter for events that may wake up worker threads:
463 <     *   - Submission of a new task to the pool
505 <     *   - A worker pushing a task on an empty queue
506 <     *   - termination
462 >     * Sum of per-thread steal counts, updated only when threads are
463 >     * idle or terminating.
464       */
465 <    private volatile int eventCount;
465 >    private volatile long stealCount;
466  
467      /**
468 <     * Encoded record of top of Treiber stack of spare threads waiting
469 <     * for resumption. The top 16 bits contain an arbitrary count to
470 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
471 <     * index of waiting worker thread.
472 <     */
473 <    private volatile int spareWaiters;
474 <
475 <    private static final int SPARE_COUNT_SHIFT = 16;
476 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
468 >     * Main pool control -- a long packed with:
469 >     * AC: Number of active running workers minus target parallelism (16 bits)
470 >     * TC: Number of total workers minus target parallelism (16bits)
471 >     * ST: true if pool is terminating (1 bit)
472 >     * EC: the wait count of top waiting thread (15 bits)
473 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474 >     *
475 >     * When convenient, we can extract the upper 32 bits of counts and
476 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477 >     * (int)ctl.  The ec field is never accessed alone, but always
478 >     * together with id and st. The offsets of counts by the target
479 >     * parallelism and the positionings of fields makes it possible to
480 >     * perform the most common checks via sign tests of fields: When
481 >     * ac is negative, there are not enough active workers, when tc is
482 >     * negative, there are not enough total workers, when id is
483 >     * negative, there is at least one waiting worker, and when e is
484 >     * negative, the pool is terminating.  To deal with these possibly
485 >     * negative fields, we use casts in and out of "short" and/or
486 >     * signed shifts to maintain signedness.
487 >     */
488 >    volatile long ctl;
489 >
490 >    // bit positions/shifts for fields
491 >    private static final int  AC_SHIFT   = 48;
492 >    private static final int  TC_SHIFT   = 32;
493 >    private static final int  ST_SHIFT   = 31;
494 >    private static final int  EC_SHIFT   = 16;
495 >
496 >    // bounds
497 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
498 >    private static final int  SMASK      = 0xffff;  // mask short bits
499 >    private static final int  SHORT_SIGN = 1 << 15;
500 >    private static final int  INT_SIGN   = 1 << 31;
501 >
502 >    // masks
503 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
504 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
505 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
506 >
507 >    // units for incrementing and decrementing
508 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
509 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
510 >
511 >    // masks and units for dealing with u = (int)(ctl >>> 32)
512 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
513 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
514 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
515 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
516 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
517 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
518 >
519 >    // masks and units for dealing with e = (int)ctl
520 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
521 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
522  
523      /**
524 <     * Lifecycle control. The low word contains the number of workers
523 <     * that are (probably) executing tasks. This value is atomically
524 <     * incremented before a worker gets a task to run, and decremented
525 <     * when a worker has no tasks and cannot find any.  Bits 16-18
526 <     * contain runLevel value. When all are zero, the pool is
527 <     * running. Level transitions are monotonic (running -> shutdown
528 <     * -> terminating -> terminated) so each transition adds a bit.
529 <     * These are bundled together to ensure consistent read for
530 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
531 <     * and active threads is zero).
532 <     *
533 <     * Notes: Most direct CASes are dependent on these bitfield
534 <     * positions.  Also, this field is non-private to enable direct
535 <     * performance-sensitive CASes in ForkJoinWorkerThread.
524 >     * The target parallelism level.
525       */
526 <    volatile int runState;
538 <
539 <    // Note: The order among run level values matters.
540 <    private static final int RUNLEVEL_SHIFT     = 16;
541 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
542 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
526 >    final int parallelism;
527  
528      /**
529 <     * Holds number of total (i.e., created and not yet terminated)
530 <     * and running (i.e., not blocked on joins or other managed sync)
531 <     * threads, packed together to ensure consistent snapshot when
532 <     * making decisions about creating and suspending spare
551 <     * threads. Updated only by CAS. Note that adding a new worker
552 <     * requires incrementing both counts, since workers start off in
553 <     * running state.
529 >     * Index (mod submission queue length) of next element to take
530 >     * from submission queue. Usage is identical to that for
531 >     * per-worker queues -- see ForkJoinWorkerThread internal
532 >     * documentation.
533       */
534 <    private volatile int workerCounts;
534 >    volatile int queueBase;
535  
536 <    private static final int TOTAL_COUNT_SHIFT  = 16;
537 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
538 <    private static final int ONE_RUNNING        = 1;
539 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
536 >    /**
537 >     * Index (mod submission queue length) of next element to add
538 >     * in submission queue. Usage is identical to that for
539 >     * per-worker queues -- see ForkJoinWorkerThread internal
540 >     * documentation.
541 >     */
542 >    int queueTop;
543  
544      /**
545 <     * The target parallelism level.
564 <     * Accessed directly by ForkJoinWorkerThreads.
545 >     * True when shutdown() has been called.
546       */
547 <    final int parallelism;
547 >    volatile boolean shutdown;
548  
549      /**
550       * True if use local fifo, not default lifo, for local polling
# Line 572 | Line 553 | public class ForkJoinPool extends Abstra
553      final boolean locallyFifo;
554  
555      /**
556 <     * The uncaught exception handler used when any worker abruptly
557 <     * terminates.
556 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557 >     * When non-zero, suppresses automatic shutdown when active
558 >     * counts become zero.
559       */
560 <    private final Thread.UncaughtExceptionHandler ueh;
560 >    volatile int quiescerCount;
561  
562      /**
563 <     * Pool number, just for assigning useful names to worker threads
563 >     * The number of threads blocked in join.
564       */
565 <    private final int poolNumber;
584 <
585 <    // Utilities for CASing fields. Note that most of these
586 <    // are usually manually inlined by callers
565 >    volatile int blockedCount;
566  
567      /**
568 <     * Increments running count part of workerCounts.
568 >     * Counter for worker Thread names (unrelated to their poolIndex)
569       */
570 <    final void incrementRunningCount() {
592 <        int c;
593 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 <                                               c = workerCounts,
595 <                                               c + ONE_RUNNING));
596 <    }
570 >    private volatile int nextWorkerNumber;
571  
572      /**
573 <     * Tries to increment running count part of workerCounts.
573 >     * The index for the next created worker. Accessed under scanGuard.
574       */
575 <    final boolean tryIncrementRunningCount() {
602 <        int c;
603 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
604 <                                        c = workerCounts,
605 <                                        c + ONE_RUNNING);
606 <    }
575 >    private int nextWorkerIndex;
576  
577      /**
578 <     * Tries to decrement running count unless already zero.
578 >     * SeqLock and index masking for updates to workers array.  Locked
579 >     * when SG_UNIT is set. Unlocking clears bit by adding
580 >     * SG_UNIT. Staleness of read-only operations can be checked by
581 >     * comparing scanGuard to value before the reads. The low 16 bits
582 >     * (i.e, anding with SMASK) hold (the smallest power of two
583 >     * covering all worker indices, minus one, and is used to avoid
584 >     * dealing with large numbers of null slots when the workers array
585 >     * is overallocated.
586       */
587 <    final boolean tryDecrementRunningCount() {
612 <        int wc = workerCounts;
613 <        if ((wc & RUNNING_COUNT_MASK) == 0)
614 <            return false;
615 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
616 <                                        wc, wc - ONE_RUNNING);
617 <    }
587 >    volatile int scanGuard;
588  
589 <    /**
620 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
621 <     * (rarely) necessary when other count updates lag.
622 <     *
623 <     * @param dr -- either zero or ONE_RUNNING
624 <     * @param dt -- either zero or ONE_TOTAL
625 <     */
626 <    private void decrementWorkerCounts(int dr, int dt) {
627 <        for (;;) {
628 <            int wc = workerCounts;
629 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
630 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
631 <                if ((runState & TERMINATED) != 0)
632 <                    return; // lagging termination on a backout
633 <                Thread.yield();
634 <            }
635 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
636 <                                         wc, wc - (dr + dt)))
637 <                return;
638 <        }
639 <    }
589 >    private static final int SG_UNIT = 1 << 16;
590  
591      /**
592 <     * Tries decrementing active count; fails on contention.
593 <     * Called when workers cannot find tasks to run.
592 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 >     * task when the pool is quiescent to instead try to shrink the
594 >     * number of workers.  The exact value does not matter too
595 >     * much. It must be short enough to release resources during
596 >     * sustained periods of idleness, but not so short that threads
597 >     * are continually re-created.
598       */
599 <    final boolean tryDecrementActiveCount() {
600 <        int c;
647 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
648 <                                        c = runState, c - 1);
649 <    }
599 >    private static final long SHRINK_RATE =
600 >        4L * 1000L * 1000L * 1000L; // 4 seconds
601  
602      /**
603 <     * Advances to at least the given level. Returns true if not
604 <     * already in at least the given level.
603 >     * Top-level loop for worker threads: On each step: if the
604 >     * previous step swept through all queues and found no tasks, or
605 >     * there are excess threads, then possibly blocks. Otherwise,
606 >     * scans for and, if found, executes a task. Returns when pool
607 >     * and/or worker terminate.
608 >     *
609 >     * @param w the worker
610       */
611 <    private boolean advanceRunLevel(int level) {
612 <        for (;;) {
613 <            int s = runState;
614 <            if ((s & level) != 0)
615 <                return false;
616 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
617 <                return true;
611 >    final void work(ForkJoinWorkerThread w) {
612 >        boolean swept = false;                // true on empty scans
613 >        long c;
614 >        while (!w.terminate && (int)(c = ctl) >= 0) {
615 >            int a;                            // active count
616 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 >                swept = scan(w, a);
618 >            else if (tryAwaitWork(w, c))
619 >                swept = false;
620          }
621      }
622  
623 <    // workers array maintenance
623 >    // Signalling
624  
625      /**
626 <     * Records and returns a workers array index for new worker.
626 >     * Wakes up or creates a worker.
627       */
628 <    private int recordWorker(ForkJoinWorkerThread w) {
629 <        // Try using slot totalCount-1. If not available, scan and/or resize
630 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
631 <        final ReentrantLock lock = this.workerLock;
632 <        lock.lock();
633 <        try {
634 <            ForkJoinWorkerThread[] ws = workers;
635 <            int n = ws.length;
636 <            if (k < 0 || k >= n || ws[k] != null) {
637 <                for (k = 0; k < n && ws[k] != null; ++k)
638 <                    ;
639 <                if (k == n)
640 <                    ws = workers = Arrays.copyOf(ws, n << 1);
641 <            }
642 <            ws[k] = w;
643 <            int c = eventCount; // advance event count to ensure visibility
644 <            UNSAFE.compareAndSwapInt(this, eventCountOffset, c, c+1);
645 <        } finally {
646 <            lock.unlock();
628 >    final void signalWork() {
629 >        /*
630 >         * The while condition is true if: (there is are too few total
631 >         * workers OR there is at least one waiter) AND (there are too
632 >         * few active workers OR the pool is terminating).  The value
633 >         * of e distinguishes the remaining cases: zero (no waiters)
634 >         * for create, negative if terminating (in which case do
635 >         * nothing), else release a waiter. The secondary checks for
636 >         * release (non-null array etc) can fail if the pool begins
637 >         * terminating after the test, and don't impose any added cost
638 >         * because JVMs must perform null and bounds checks anyway.
639 >         */
640 >        long c; int e, u;
641 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643 >            if (e > 0) {                         // release a waiting worker
644 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 >                if ((ws = workers) == null ||
646 >                    (i = ~e & SMASK) >= ws.length ||
647 >                    (w = ws[i]) == null)
648 >                    break;
649 >                long nc = (((long)(w.nextWait & E_MASK)) |
650 >                           ((long)(u + UAC_UNIT) << 32));
651 >                if (w.eventCount == e &&
652 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
654 >                    if (w.parked)
655 >                        UNSAFE.unpark(w);
656 >                    break;
657 >                }
658 >            }
659 >            else if (UNSAFE.compareAndSwapLong
660 >                     (this, ctlOffset, c,
661 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 >                addWorker();
664 >                break;
665 >            }
666          }
690        return k;
667      }
668  
669      /**
670 <     * Nulls out record of worker in workers array.
670 >     * Variant of signalWork to help release waiters on rescans.
671 >     * Tries once to release a waiter if active count < 0.
672 >     *
673 >     * @return false if failed due to contention, else true
674       */
675 <    private void forgetWorker(ForkJoinWorkerThread w) {
676 <        int idx = w.poolIndex;
677 <        // Locking helps method recordWorker avoid unnecessary expansion
678 <        final ReentrantLock lock = this.workerLock;
679 <        lock.lock();
680 <        try {
681 <            ForkJoinWorkerThread[] ws = workers;
682 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
683 <                ws[idx] = null;
684 <        } finally {
685 <            lock.unlock();
675 >    private boolean tryReleaseWaiter() {
676 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677 >        if ((e = (int)(c = ctl)) > 0 &&
678 >            (int)(c >> AC_SHIFT) < 0 &&
679 >            (ws = workers) != null &&
680 >            (i = ~e & SMASK) < ws.length &&
681 >            (w = ws[i]) != null) {
682 >            long nc = ((long)(w.nextWait & E_MASK) |
683 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 >            if (w.eventCount != e ||
685 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 >                return false;
687 >            w.eventCount = (e + EC_UNIT) & E_MASK;
688 >            if (w.parked)
689 >                UNSAFE.unpark(w);
690          }
691 +        return true;
692      }
693  
694 +    // Scanning for tasks
695 +
696      /**
697 <     * Final callback from terminating worker.  Removes record of
698 <     * worker from array, and adjusts counts. If pool is shutting
699 <     * down, tries to complete termination.
697 >     * Scans for and, if found, executes one task. Scans start at a
698 >     * random index of workers array, and randomly select the first
699 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700 >     * circular sweeps, which is necessary to check quiescence. and
701 >     * taking a submission only if no stealable tasks were found.  The
702 >     * steal code inside the loop is a specialized form of
703 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704 >     * helpJoinTask and signal propagation. The code for submission
705 >     * queues is almost identical. On each steal, the worker completes
706 >     * not only the task, but also all local tasks that this task may
707 >     * have generated. On detecting staleness or contention when
708 >     * trying to take a task, this method returns without finishing
709 >     * sweep, which allows global state rechecks before retry.
710       *
711       * @param w the worker
712 +     * @param a the number of active workers
713 +     * @return true if swept all queues without finding a task
714       */
715 <    final void workerTerminated(ForkJoinWorkerThread w) {
716 <        forgetWorker(w);
717 <        decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
720 <        while (w.stealCount != 0) // collect final count
721 <            tryAccumulateStealCount(w);
722 <        tryTerminate(false);
723 <    }
724 <
725 <    // Waiting for and signalling events
726 <
727 <    /**
728 <     * Releases workers blocked on a count not equal to current count.
729 <     * Normally called after precheck that eventWaiters isn't zero to
730 <     * avoid wasted array checks. Gives up upon a change in count or
731 <     * upon releasing four workers, letting others take over.
732 <     */
733 <    private void releaseEventWaiters() {
715 >    private boolean scan(ForkJoinWorkerThread w, int a) {
716 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718          ForkJoinWorkerThread[] ws = workers;
719 <        int n = ws.length;
720 <        long h = eventWaiters;
721 <        int ec = eventCount;
722 <        int releases = 4;
723 <        ForkJoinWorkerThread w; int id;
724 <        while ((id = (((int)h) & WAITER_ID_MASK) - 1) >= 0 &&
725 <               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
726 <               id < n && (w = ws[id]) != null) {
727 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
728 <                                          h,  w.nextWaiter)) {
729 <                LockSupport.unpark(w);
730 <                if (--releases == 0)
731 <                    break;
719 >        if (ws == null || ws.length <= m)         // staleness check
720 >            return false;
721 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 >            ForkJoinWorkerThread v = ws[k & m];
724 >            if (v != null && (b = v.queueBase) != v.queueTop &&
725 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 >                long u = (i << ASHIFT) + ABASE;
727 >                if ((t = q[i]) != null && v.queueBase == b &&
728 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 >                    int d = (v.queueBase = b + 1) - v.queueTop;
730 >                    v.stealHint = w.poolIndex;
731 >                    if (d != 0)
732 >                        signalWork();             // propagate if nonempty
733 >                    w.execTask(t);
734 >                }
735 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736 >                return false;                     // store next seed
737              }
738 <            if (eventCount != ec)
739 <                break;
740 <            h = eventWaiters;
738 >            else if (j < 0) {                     // xorshift
739 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740 >            }
741 >            else
742 >                ++k;
743 >        }
744 >        if (scanGuard != g)                       // staleness check
745 >            return false;
746 >        else {                                    // try to take submission
747 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748 >            if ((b = queueBase) != queueTop &&
749 >                (q = submissionQueue) != null &&
750 >                (i = (q.length - 1) & b) >= 0) {
751 >                long u = (i << ASHIFT) + ABASE;
752 >                if ((t = q[i]) != null && queueBase == b &&
753 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754 >                    queueBase = b + 1;
755 >                    w.execTask(t);
756 >                }
757 >                return false;
758 >            }
759 >            return true;                         // all queues empty
760          }
761      }
762  
763      /**
764 <     * Tries to advance eventCount and releases waiters. Called only
765 <     * from workers.
766 <     */
767 <    final void signalWork() {
768 <        int c; // try to increment event count -- CAS failure OK
769 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
770 <        if (eventWaiters != 0L)
771 <            releaseEventWaiters();
772 <    }
773 <
774 <    /**
775 <     * Adds the given worker to event queue and blocks until
776 <     * terminating or event count advances from the given value
777 <     *
778 <     * @param w the calling worker thread
779 <     * @param ec the count
780 <     */
781 <    private void eventSync(ForkJoinWorkerThread w, int ec) {
782 <        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
783 <        long h;
784 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
785 <               (((int)(h = eventWaiters) & WAITER_ID_MASK) == 0 ||
786 <                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
787 <               eventCount == ec) {
788 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
789 <                                          w.nextWaiter = h, nh)) {
790 <                awaitEvent(w, ec);
791 <                break;
764 >     * Tries to enqueue worker w in wait queue and await change in
765 >     * worker's eventCount.  If the pool is quiescent and there is
766 >     * more than one worker, possibly terminates worker upon exit.
767 >     * Otherwise, before blocking, rescans queues to avoid missed
768 >     * signals.  Upon finding work, releases at least one worker
769 >     * (which may be the current worker). Rescans restart upon
770 >     * detected staleness or failure to release due to
771 >     * contention. Note the unusual conventions about Thread.interrupt
772 >     * here and elsewhere: Because interrupts are used solely to alert
773 >     * threads to check termination, which is checked here anyway, we
774 >     * clear status (using Thread.interrupted) before any call to
775 >     * park, so that park does not immediately return due to status
776 >     * being set via some other unrelated call to interrupt in user
777 >     * code.
778 >     *
779 >     * @param w the calling worker
780 >     * @param c the ctl value on entry
781 >     * @return true if waited or another thread was released upon enq
782 >     */
783 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
784 >        int v = w.eventCount;
785 >        w.nextWait = (int)c;                      // w's successor record
786 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
787 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
788 >            long d = ctl; // return true if lost to a deq, to force scan
789 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
790 >        }
791 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
792 >            long s = stealCount;
793 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
794 >                sc = w.stealCount = 0;
795 >            else if (w.eventCount != v)
796 >                return true;                      // update next time
797 >        }
798 >        if ((!shutdown || !tryTerminate(false)) &&
799 >            (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
800 >            blockedCount == 0 && quiescerCount == 0)
801 >            idleAwaitWork(w, nc, c, v);           // quiescent
802 >        for (boolean rescanned = false;;) {
803 >            if (w.eventCount != v)
804 >                return true;
805 >            if (!rescanned) {
806 >                int g = scanGuard, m = g & SMASK;
807 >                ForkJoinWorkerThread[] ws = workers;
808 >                if (ws != null && m < ws.length) {
809 >                    rescanned = true;
810 >                    for (int i = 0; i <= m; ++i) {
811 >                        ForkJoinWorkerThread u = ws[i];
812 >                        if (u != null) {
813 >                            if (u.queueBase != u.queueTop &&
814 >                                !tryReleaseWaiter())
815 >                                rescanned = false; // contended
816 >                            if (w.eventCount != v)
817 >                                return true;
818 >                        }
819 >                    }
820 >                }
821 >                if (scanGuard != g ||              // stale
822 >                    (queueBase != queueTop && !tryReleaseWaiter()))
823 >                    rescanned = false;
824 >                if (!rescanned)
825 >                    Thread.yield();                // reduce contention
826 >                else
827 >                    Thread.interrupted();          // clear before park
828 >            }
829 >            else {
830 >                w.parked = true;                   // must recheck
831 >                if (w.eventCount != v) {
832 >                    w.parked = false;
833 >                    return true;
834 >                }
835 >                LockSupport.park(this);
836 >                rescanned = w.parked = false;
837              }
838          }
839      }
840  
841      /**
842 <     * Blocks the given worker (that has already been entered as an
843 <     * event waiter) until terminating or event count advances from
844 <     * the given value. The oldest (first) waiter uses a timed wait to
845 <     * occasionally one-by-one shrink the number of workers (to a
846 <     * minimum of one) if the pool has not been used for extended
847 <     * periods.
848 <     *
849 <     * @param w the calling worker thread
850 <     * @param ec the count
851 <     */
852 <    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
853 <        while (eventCount == ec) {
854 <            if (tryAccumulateStealCount(w)) { // transfer while idle
855 <                boolean untimed = (w.nextWaiter != 0L ||
856 <                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
857 <                long startTime = untimed ? 0 : System.nanoTime();
858 <                Thread.interrupted();         // clear/ignore interrupt
859 <                if (w.isTerminating() || eventCount != ec)
860 <                    break;                    // recheck after clear
861 <                if (untimed)
862 <                    LockSupport.park(w);
863 <                else {
864 <                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
865 <                    if (eventCount != ec || w.isTerminating())
866 <                        break;
867 <                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
868 <                        tryShutdownUnusedWorker(ec);
842 >     * If inactivating worker w has caused pool to become
843 >     * quiescent, check for pool termination, and wait for event
844 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
845 >     * this case because quiescence reflects consensus about lack
846 >     * of work). On timeout, if ctl has not changed, terminate the
847 >     * worker. Upon its termination (see deregisterWorker), it may
848 >     * wake up another worker to possibly repeat this process.
849 >     *
850 >     * @param w the calling worker
851 >     * @param currentCtl the ctl value after enqueuing w
852 >     * @param prevCtl the ctl value if w terminated
853 >     * @param v the eventCount w awaits change
854 >     */
855 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
856 >                               long prevCtl, int v) {
857 >        if (w.eventCount == v) {
858 >            if (shutdown)
859 >                tryTerminate(false);
860 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
861 >            while (ctl == currentCtl) {
862 >                long startTime = System.nanoTime();
863 >                w.parked = true;
864 >                if (w.eventCount == v)             // must recheck
865 >                    LockSupport.parkNanos(this, SHRINK_RATE);
866 >                w.parked = false;
867 >                if (w.eventCount != v)
868 >                    break;
869 >                else if (System.nanoTime() - startTime <
870 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
871 >                    Thread.interrupted();          // spurious wakeup
872 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
873 >                                                   currentCtl, prevCtl)) {
874 >                    w.terminate = true;            // restore previous
875 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
876 >                    break;
877                  }
878              }
879          }
880      }
881  
882 <    // Maintaining parallelism
882 >    // Submissions
883  
884      /**
885 <     * Pushes worker onto the spare stack.
885 >     * Enqueues the given task in the submissionQueue.  Same idea as
886 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
887 >     *
888 >     * @param t the task
889       */
890 <    final void pushSpare(ForkJoinWorkerThread w) {
891 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
892 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
893 <                                               w.nextSpare = spareWaiters,ns));
890 >    private void addSubmission(ForkJoinTask<?> t) {
891 >        final ReentrantLock lock = this.submissionLock;
892 >        lock.lock();
893 >        try {
894 >            ForkJoinTask<?>[] q; int s, m;
895 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
896 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
897 >                UNSAFE.putOrderedObject(q, u, t);
898 >                queueTop = s + 1;
899 >                if (s - queueBase == m)
900 >                    growSubmissionQueue();
901 >            }
902 >        } finally {
903 >            lock.unlock();
904 >        }
905 >        signalWork();
906      }
907  
908 +    //  (pollSubmission is defined below with exported methods)
909 +
910      /**
911 <     * Tries (once) to resume a spare if the number of running
912 <     * threads is less than target.
911 >     * Creates or doubles submissionQueue array.
912 >     * Basically identical to ForkJoinWorkerThread version.
913       */
914 <    private void tryResumeSpare() {
915 <        int sw, id;
916 <        ForkJoinWorkerThread[] ws = workers;
917 <        int n = ws.length;
918 <        ForkJoinWorkerThread w;
919 <        if ((sw = spareWaiters) != 0 &&
920 <            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
921 <            id < n && (w = ws[id]) != null &&
922 <            (runState >= TERMINATING ||
923 <             (workerCounts & RUNNING_COUNT_MASK) < parallelism) &&
924 <            spareWaiters == sw &&
925 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
926 <                                     sw, w.nextSpare)) {
927 <            int c; // increment running count before resume
928 <            do {} while (!UNSAFE.compareAndSwapInt
929 <                         (this, workerCountsOffset,
930 <                          c = workerCounts, c + ONE_RUNNING));
931 <            if (w.tryUnsuspend())
932 <                LockSupport.unpark(w);
855 <            else   // back out if w was shutdown
856 <                decrementWorkerCounts(ONE_RUNNING, 0);
914 >    private void growSubmissionQueue() {
915 >        ForkJoinTask<?>[] oldQ = submissionQueue;
916 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
917 >        if (size > MAXIMUM_QUEUE_CAPACITY)
918 >            throw new RejectedExecutionException("Queue capacity exceeded");
919 >        if (size < INITIAL_QUEUE_CAPACITY)
920 >            size = INITIAL_QUEUE_CAPACITY;
921 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
922 >        int mask = size - 1;
923 >        int top = queueTop;
924 >        int oldMask;
925 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
926 >            for (int b = queueBase; b != top; ++b) {
927 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
928 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
929 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
930 >                    UNSAFE.putObjectVolatile
931 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
932 >            }
933          }
934      }
935  
936 +    // Blocking support
937 +
938      /**
939 <     * Tries to increase the number of running workers if below target
940 <     * parallelism: If a spare exists tries to resume it via
941 <     * tryResumeSpare.  Otherwise, if not enough total workers or all
942 <     * existing workers are busy, adds a new worker. In all cases also
943 <     * helps wake up releasable workers waiting for work.
944 <     */
945 <    private void helpMaintainParallelism() {
946 <        int pc = parallelism;
947 <        int wc, rs, tc;
948 <        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
949 <               (rs = runState) < TERMINATING) {
950 <            if (spareWaiters != 0)
951 <                tryResumeSpare();
952 <            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
953 <                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
954 <                break;   // enough total
955 <            else if (runState == rs && workerCounts == wc &&
956 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
879 <                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
880 <                ForkJoinWorkerThread w = null;
881 <                Throwable fail = null;
882 <                try {
883 <                    w = factory.newThread(this);
884 <                } catch (Throwable ex) {
885 <                    fail = ex;
939 >     * Tries to increment blockedCount, decrement active count
940 >     * (sometimes implicitly) and possibly release or create a
941 >     * compensating worker in preparation for blocking. Fails
942 >     * on contention or termination.
943 >     *
944 >     * @return true if the caller can block, else should recheck and retry
945 >     */
946 >    private boolean tryPreBlock() {
947 >        int b = blockedCount;
948 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
949 >            int pc = parallelism;
950 >            do {
951 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
952 >                int e, ac, tc, rc, i;
953 >                long c = ctl;
954 >                int u = (int)(c >>> 32);
955 >                if ((e = (int)c) < 0) {
956 >                                                 // skip -- terminating
957                  }
958 <                if (w == null) { // null or exceptional factory return
959 <                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
960 <                    tryTerminate(false); // handle failure during shutdown
961 <                    // If originating from an external caller,
962 <                    // propagate exception, else ignore
963 <                    if (fail != null && runState < TERMINATING &&
964 <                        !(Thread.currentThread() instanceof
965 <                          ForkJoinWorkerThread))
966 <                        UNSAFE.throwException(fail);
967 <                    break;
958 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
959 >                         (ws = workers) != null &&
960 >                         (i = ~e & SMASK) < ws.length &&
961 >                         (w = ws[i]) != null) {
962 >                    long nc = ((long)(w.nextWait & E_MASK) |
963 >                               (c & (AC_MASK|TC_MASK)));
964 >                    if (w.eventCount == e &&
965 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
966 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
967 >                        if (w.parked)
968 >                            UNSAFE.unpark(w);
969 >                        return true;             // release an idle worker
970 >                    }
971                  }
972 <                w.start(recordWorker(w), ueh);
973 <                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc)
974 <                    break; // add at most one unless total below target
975 <            }
972 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
973 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
974 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
975 >                        return true;             // no compensation needed
976 >                }
977 >                else if (tc + pc < MAX_ID) {
978 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
979 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
980 >                        addWorker();
981 >                        return true;            // create a replacement
982 >                    }
983 >                }
984 >                // try to back out on any failure and let caller retry
985 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
986 >                                               b = blockedCount, b - 1));
987          }
988 <        if (eventWaiters != 0L)
904 <            releaseEventWaiters();
988 >        return false;
989      }
990  
991      /**
992 <     * Callback from the oldest waiter in awaitEvent waking up after a
909 <     * period of non-use. If all workers are idle, tries (once) to
910 <     * shutdown an event waiter or a spare, if one exists. Note that
911 <     * we don't need CAS or locks here because the method is called
912 <     * only from one thread occasionally waking (and even misfires are
913 <     * OK). Note that until the shutdown worker fully terminates,
914 <     * workerCounts will overestimate total count, which is tolerable.
915 <     *
916 <     * @param ec the event count waited on by caller (to abort
917 <     * attempt if count has since changed).
992 >     * Decrements blockedCount and increments active count
993       */
994 <    private void tryShutdownUnusedWorker(int ec) {
995 <        if (runState == 0 && eventCount == ec) { // only trigger if all idle
996 <            ForkJoinWorkerThread[] ws = workers;
997 <            int n = ws.length;
998 <            ForkJoinWorkerThread w = null;
999 <            boolean shutdown = false;
1000 <            int sw;
926 <            long h;
927 <            if ((sw = spareWaiters) != 0) { // prefer killing spares
928 <                int id = (sw & SPARE_ID_MASK) - 1;
929 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
930 <                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
931 <                                             sw, w.nextSpare))
932 <                    shutdown = true;
933 <            }
934 <            else if ((h = eventWaiters) != 0L) {
935 <                long nh;
936 <                int id = (((int)h) & WAITER_ID_MASK) - 1;
937 <                if (id >= 0 && id < n && (w = ws[id]) != null &&
938 <                    (nh = w.nextWaiter) != 0L && // keep at least one worker
939 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
940 <                    shutdown = true;
941 <            }
942 <            if (w != null && shutdown) {
943 <                w.shutdown();
944 <                LockSupport.unpark(w);
945 <            }
946 <        }
947 <        releaseEventWaiters(); // in case of interference
994 >    private void postBlock() {
995 >        long c;
996 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
997 >                                                c = ctl, c + AC_UNIT));
998 >        int b;
999 >        do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
1000 >                                               b = blockedCount, b - 1));
1001      }
1002  
1003      /**
1004 <     * Callback from workers invoked upon each top-level action (i.e.,
1005 <     * stealing a task or taking a submission and running it).
953 <     * Performs one or more of the following:
954 <     *
955 <     * 1. If the worker is active and either did not run a task
956 <     *    or there are too many workers, try to set its active status
957 <     *    to inactive and update activeCount. On contention, we may
958 <     *    try again in this or a subsequent call.
959 <     *
960 <     * 2. If not enough total workers, help create some.
961 <     *
962 <     * 3. If there are too many running workers, suspend this worker
963 <     *    (first forcing inactive if necessary).  If it is not needed,
964 <     *    it may be shutdown while suspended (via
965 <     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
966 <     *    rechecks running thread count and need for event sync.
967 <     *
968 <     * 4. If worker did not run a task, await the next task event via
969 <     *    eventSync if necessary (first forcing inactivation), upon
970 <     *    which the worker may be shutdown via
971 <     *    tryShutdownUnusedWorker.  Otherwise, help release any
972 <     *    existing event waiters that are now releasable,
1004 >     * Possibly blocks waiting for the given task to complete, or
1005 >     * cancels the task if terminating.  Fails to wait if contended.
1006       *
1007 <     * @param w the worker
975 <     * @param ran true if worker ran a task since last call to this method
1007 >     * @param joinMe the task
1008       */
1009 <    final void preStep(ForkJoinWorkerThread w, boolean ran) {
1010 <        int wec = w.lastEventCount;
1011 <        boolean active = w.active;
1012 <        boolean inactivate = false;
1013 <        int pc = parallelism;
1014 <        while (w.runState == 0) {
1015 <            int rs = runState;
984 <            if (rs >= TERMINATING) {           // propagate shutdown
985 <                w.shutdown();
986 <                break;
987 <            }
988 <            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
989 <                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, --rs)) {
990 <                inactivate = active = w.active = false;
991 <                if (rs == SHUTDOWN) {          // all inactive and shut down
992 <                    tryTerminate(false);
993 <                    continue;
994 <                }
995 <            }
996 <            int wc = workerCounts;             // try to suspend as spare
997 <            if ((wc & RUNNING_COUNT_MASK) > pc) {
998 <                if (!(inactivate |= active) && // must inactivate to suspend
999 <                    workerCounts == wc &&
1000 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1001 <                                             wc, wc - ONE_RUNNING))
1002 <                    w.suspendAsSpare();
1003 <            }
1004 <            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1005 <                helpMaintainParallelism();     // not enough workers
1006 <            else if (ran)
1007 <                break;
1008 <            else {
1009 <                long h = eventWaiters;
1010 <                int ec = eventCount;
1011 <                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
1012 <                    releaseEventWaiters();     // release others before waiting
1013 <                else if (ec != wec) {
1014 <                    w.lastEventCount = ec;     // no need to wait
1015 <                    break;
1016 <                }
1017 <                else if (!(inactivate |= active))
1018 <                    eventSync(w, wec);         // must inactivate before sync
1009 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1010 >        int s;
1011 >        Thread.interrupted(); // clear interrupts before checking termination
1012 >        if (joinMe.status >= 0) {
1013 >            if (tryPreBlock()) {
1014 >                joinMe.tryAwaitDone(0L);
1015 >                postBlock();
1016              }
1017 +            else if ((ctl & STOP_BIT) != 0L)
1018 +                joinMe.cancelIgnoringExceptions();
1019          }
1020      }
1021  
1022      /**
1023 <     * Helps and/or blocks awaiting join of the given task.
1024 <     * See above for explanation.
1023 >     * Possibly blocks the given worker waiting for joinMe to
1024 >     * complete or timeout
1025       *
1026 <     * @param joinMe the task to join
1027 <     * @param worker the current worker thread
1029 <     * @param timed true if wait should time out
1030 <     * @param nanos timeout value if timed
1026 >     * @param joinMe the task
1027 >     * @param millis the wait time for underlying Object.wait
1028       */
1029 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1033 <                         boolean timed, long nanos) {
1034 <        long startTime = timed ? System.nanoTime() : 0L;
1035 <        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1036 <        boolean running = true;               // false when count decremented
1029 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1030          while (joinMe.status >= 0) {
1031 <            if (runState >= TERMINATING) {
1031 >            Thread.interrupted();
1032 >            if ((ctl & STOP_BIT) != 0L) {
1033                  joinMe.cancelIgnoringExceptions();
1034                  break;
1035              }
1036 <            running = worker.helpJoinTask(joinMe, running);
1037 <            if (joinMe.status < 0)
1038 <                break;
1039 <            if (retries > 0) {
1040 <                --retries;
1041 <                continue;
1042 <            }
1043 <            int wc = workerCounts;
1044 <            if ((wc & RUNNING_COUNT_MASK) != 0) {
1045 <                if (running) {
1046 <                    if (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1047 <                                                  wc, wc - ONE_RUNNING))
1054 <                        continue;
1055 <                    running = false;
1056 <                }
1057 <                long h = eventWaiters;
1058 <                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1059 <                    releaseEventWaiters();
1060 <                if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1061 <                    long ms; int ns;
1062 <                    if (!timed) {
1063 <                        ms = JOIN_TIMEOUT_MILLIS;
1064 <                        ns = 0;
1065 <                    }
1066 <                    else { // at most JOIN_TIMEOUT_MILLIS per wait
1067 <                        long nt = nanos - (System.nanoTime() - startTime);
1068 <                        if (nt <= 0L)
1069 <                            break;
1070 <                        ms = nt / 1000000;
1071 <                        if (ms > JOIN_TIMEOUT_MILLIS) {
1072 <                            ms = JOIN_TIMEOUT_MILLIS;
1073 <                            ns = 0;
1074 <                        }
1075 <                        else
1076 <                            ns = (int) (nt % 1000000);
1036 >            if (tryPreBlock()) {
1037 >                long last = System.nanoTime();
1038 >                while (joinMe.status >= 0) {
1039 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1040 >                    if (millis <= 0)
1041 >                        break;
1042 >                    joinMe.tryAwaitDone(millis);
1043 >                    if (joinMe.status < 0)
1044 >                        break;
1045 >                    if ((ctl & STOP_BIT) != 0L) {
1046 >                        joinMe.cancelIgnoringExceptions();
1047 >                        break;
1048                      }
1049 <                    joinMe.internalAwaitDone(ms, ns);
1049 >                    long now = System.nanoTime();
1050 >                    nanos -= now - last;
1051 >                    last = now;
1052                  }
1053 <                if (joinMe.status < 0)
1054 <                    break;
1053 >                postBlock();
1054 >                break;
1055              }
1083            helpMaintainParallelism();
1084        }
1085        if (!running) {
1086            int c;
1087            do {} while (!UNSAFE.compareAndSwapInt
1088                         (this, workerCountsOffset,
1089                          c = workerCounts, c + ONE_RUNNING));
1056          }
1057      }
1058  
1059      /**
1060 <     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1060 >     * If necessary, compensates for blocker, and blocks
1061       */
1062 <    final void awaitBlocker(ManagedBlocker blocker)
1062 >    private void awaitBlocker(ManagedBlocker blocker)
1063          throws InterruptedException {
1064          while (!blocker.isReleasable()) {
1065 <            int wc = workerCounts;
1100 <            if ((wc & RUNNING_COUNT_MASK) == 0)
1101 <                helpMaintainParallelism();
1102 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1103 <                                              wc, wc - ONE_RUNNING)) {
1065 >            if (tryPreBlock()) {
1066                  try {
1067 <                    while (!blocker.isReleasable()) {
1106 <                        long h = eventWaiters;
1107 <                        if (h != 0L &&
1108 <                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1109 <                            releaseEventWaiters();
1110 <                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1111 <                                 runState < TERMINATING)
1112 <                            helpMaintainParallelism();
1113 <                        else if (blocker.block())
1114 <                            break;
1115 <                    }
1067 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1068                  } finally {
1069 <                    int c;
1118 <                    do {} while (!UNSAFE.compareAndSwapInt
1119 <                                 (this, workerCountsOffset,
1120 <                                  c = workerCounts, c + ONE_RUNNING));
1069 >                    postBlock();
1070                  }
1071                  break;
1072              }
1073          }
1074      }
1075  
1076 +    // Creating, registering and deregistring workers
1077 +
1078 +    /**
1079 +     * Tries to create and start a worker; minimally rolls back counts
1080 +     * on failure.
1081 +     */
1082 +    private void addWorker() {
1083 +        Throwable ex = null;
1084 +        ForkJoinWorkerThread t = null;
1085 +        try {
1086 +            t = factory.newThread(this);
1087 +        } catch (Throwable e) {
1088 +            ex = e;
1089 +        }
1090 +        if (t == null) {  // null or exceptional factory return
1091 +            long c;       // adjust counts
1092 +            do {} while (!UNSAFE.compareAndSwapLong
1093 +                         (this, ctlOffset, c = ctl,
1094 +                          (((c - AC_UNIT) & AC_MASK) |
1095 +                           ((c - TC_UNIT) & TC_MASK) |
1096 +                           (c & ~(AC_MASK|TC_MASK)))));
1097 +            // Propagate exception if originating from an external caller
1098 +            if (!tryTerminate(false) && ex != null &&
1099 +                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1100 +                UNSAFE.throwException(ex);
1101 +        }
1102 +        else
1103 +            t.start();
1104 +    }
1105 +
1106 +    /**
1107 +     * Callback from ForkJoinWorkerThread constructor to assign a
1108 +     * public name
1109 +     */
1110 +    final String nextWorkerName() {
1111 +        for (int n;;) {
1112 +            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1113 +                                         n = nextWorkerNumber, ++n))
1114 +                return workerNamePrefix + n;
1115 +        }
1116 +    }
1117 +
1118 +    /**
1119 +     * Callback from ForkJoinWorkerThread constructor to
1120 +     * determine its poolIndex and record in workers array.
1121 +     *
1122 +     * @param w the worker
1123 +     * @return the worker's pool index
1124 +     */
1125 +    final int registerWorker(ForkJoinWorkerThread w) {
1126 +        /*
1127 +         * In the typical case, a new worker acquires the lock, uses
1128 +         * next available index and returns quickly.  Since we should
1129 +         * not block callers (ultimately from signalWork or
1130 +         * tryPreBlock) waiting for the lock needed to do this, we
1131 +         * instead help release other workers while waiting for the
1132 +         * lock.
1133 +         */
1134 +        for (int g;;) {
1135 +            ForkJoinWorkerThread[] ws;
1136 +            if (((g = scanGuard) & SG_UNIT) == 0 &&
1137 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1138 +                                         g, g | SG_UNIT)) {
1139 +                int k = nextWorkerIndex;
1140 +                try {
1141 +                    if ((ws = workers) != null) { // ignore on shutdown
1142 +                        int n = ws.length;
1143 +                        if (k < 0 || k >= n || ws[k] != null) {
1144 +                            for (k = 0; k < n && ws[k] != null; ++k)
1145 +                                ;
1146 +                            if (k == n)
1147 +                                ws = workers = Arrays.copyOf(ws, n << 1);
1148 +                        }
1149 +                        ws[k] = w;
1150 +                        nextWorkerIndex = k + 1;
1151 +                        int m = g & SMASK;
1152 +                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1153 +                    }
1154 +                } finally {
1155 +                    scanGuard = g;
1156 +                }
1157 +                return k;
1158 +            }
1159 +            else if ((ws = workers) != null) { // help release others
1160 +                for (ForkJoinWorkerThread u : ws) {
1161 +                    if (u != null && u.queueBase != u.queueTop) {
1162 +                        if (tryReleaseWaiter())
1163 +                            break;
1164 +                    }
1165 +                }
1166 +            }
1167 +        }
1168 +    }
1169 +
1170 +    /**
1171 +     * Final callback from terminating worker.  Removes record of
1172 +     * worker from array, and adjusts counts. If pool is shutting
1173 +     * down, tries to complete termination.
1174 +     *
1175 +     * @param w the worker
1176 +     */
1177 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1178 +        int idx = w.poolIndex;
1179 +        int sc = w.stealCount;
1180 +        int steps = 0;
1181 +        // Remove from array, adjust worker counts and collect steal count.
1182 +        // We can intermix failed removes or adjusts with steal updates
1183 +        do {
1184 +            long s, c;
1185 +            int g;
1186 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1187 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1188 +                                         g, g |= SG_UNIT)) {
1189 +                ForkJoinWorkerThread[] ws = workers;
1190 +                if (ws != null && idx >= 0 &&
1191 +                    idx < ws.length && ws[idx] == w)
1192 +                    ws[idx] = null;    // verify
1193 +                nextWorkerIndex = idx;
1194 +                scanGuard = g + SG_UNIT;
1195 +                steps = 1;
1196 +            }
1197 +            if (steps == 1 &&
1198 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1199 +                                          (((c - AC_UNIT) & AC_MASK) |
1200 +                                           ((c - TC_UNIT) & TC_MASK) |
1201 +                                           (c & ~(AC_MASK|TC_MASK)))))
1202 +                steps = 2;
1203 +            if (sc != 0 &&
1204 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1205 +                                          s = stealCount, s + sc))
1206 +                sc = 0;
1207 +        } while (steps != 2 || sc != 0);
1208 +        if (!tryTerminate(false)) {
1209 +            if (ex != null)   // possibly replace if died abnormally
1210 +                signalWork();
1211 +            else
1212 +                tryReleaseWaiter();
1213 +        }
1214 +    }
1215 +
1216 +    // Shutdown and termination
1217 +
1218      /**
1219       * Possibly initiates and/or completes termination.
1220       *
# Line 1132 | Line 1223 | public class ForkJoinPool extends Abstra
1223       * @return true if now terminating or terminated
1224       */
1225      private boolean tryTerminate(boolean now) {
1226 <        if (now)
1227 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1228 <        else if (runState < SHUTDOWN ||
1229 <                 !submissionQueue.isEmpty() ||
1230 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1231 <            return false;
1232 <
1233 <        if (advanceRunLevel(TERMINATING))
1234 <            startTerminating();
1235 <
1236 <        // Finish now if all threads terminated; else in some subsequent call
1237 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1238 <            advanceRunLevel(TERMINATED);
1239 <            termination.forceTermination();
1226 >        long c;
1227 >        while (((c = ctl) & STOP_BIT) == 0) {
1228 >            if (!now) {
1229 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1230 >                    return false;
1231 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1232 >                    queueBase != queueTop) {
1233 >                    if (ctl == c) // staleness check
1234 >                        return false;
1235 >                    continue;
1236 >                }
1237 >            }
1238 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1239 >                startTerminating();
1240 >        }
1241 >        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1242 >            final ReentrantLock lock = this.submissionLock;
1243 >            lock.lock();
1244 >            try {
1245 >                termination.signalAll();
1246 >            } finally {
1247 >                lock.unlock();
1248 >            }
1249          }
1250          return true;
1251      }
1252  
1253      /**
1254 <     * Actions on transition to TERMINATING
1255 <     *
1256 <     * Runs up to four passes through workers: (0) shutting down each
1257 <     * (without waking up if parked) to quickly spread notifications
1258 <     * without unnecessary bouncing around event queues etc (1) wake
1259 <     * up and help cancel tasks (2) interrupt (3) mop up races with
1160 <     * interrupted workers
1254 >     * Runs up to three passes through workers: (0) Setting
1255 >     * termination status for each worker, followed by wakeups up to
1256 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1257 >     * lagging threads (likely in external tasks, but possibly also
1258 >     * blocked in joins).  Each pass repeats previous steps because of
1259 >     * potential lagging thread creation.
1260       */
1261      private void startTerminating() {
1262          cancelSubmissions();
1263 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1264 <            int c; // advance event count
1265 <            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1266 <                                     c = eventCount, c+1);
1267 <            eventWaiters = 0L; // clobber lists
1268 <            spareWaiters = 0;
1269 <            for (ForkJoinWorkerThread w : workers) {
1270 <                if (w != null) {
1271 <                    w.shutdown();
1272 <                    if (passes > 0 && !w.isTerminated()) {
1273 <                        w.cancelTasks();
1274 <                        LockSupport.unpark(w);
1275 <                        if (passes > 1 && !w.isInterrupted()) {
1177 <                            try {
1178 <                                w.interrupt();
1179 <                            } catch (SecurityException ignore) {
1263 >        for (int pass = 0; pass < 3; ++pass) {
1264 >            ForkJoinWorkerThread[] ws = workers;
1265 >            if (ws != null) {
1266 >                for (ForkJoinWorkerThread w : ws) {
1267 >                    if (w != null) {
1268 >                        w.terminate = true;
1269 >                        if (pass > 0) {
1270 >                            w.cancelTasks();
1271 >                            if (pass > 1 && !w.isInterrupted()) {
1272 >                                try {
1273 >                                    w.interrupt();
1274 >                                } catch (SecurityException ignore) {
1275 >                                }
1276                              }
1277                          }
1278                      }
1279                  }
1280 +                terminateWaiters();
1281              }
1282          }
1283      }
1284  
1285      /**
1286 <     * Clears out and cancels submissions, ignoring exceptions.
1286 >     * Polls and cancels all submissions. Called only during termination.
1287       */
1288      private void cancelSubmissions() {
1289 <        ForkJoinTask<?> task;
1290 <        while ((task = submissionQueue.poll()) != null) {
1291 <            try {
1292 <                task.cancel(false);
1293 <            } catch (Throwable ignore) {
1289 >        while (queueBase != queueTop) {
1290 >            ForkJoinTask<?> task = pollSubmission();
1291 >            if (task != null) {
1292 >                try {
1293 >                    task.cancel(false);
1294 >                } catch (Throwable ignore) {
1295 >                }
1296              }
1297          }
1298      }
1299  
1300 <    // misc support for ForkJoinWorkerThread
1300 >    /**
1301 >     * Tries to set the termination status of waiting workers, and
1302 >     * then wakes them up (after which they will terminate).
1303 >     */
1304 >    private void terminateWaiters() {
1305 >        ForkJoinWorkerThread[] ws = workers;
1306 >        if (ws != null) {
1307 >            ForkJoinWorkerThread w; long c; int i, e;
1308 >            int n = ws.length;
1309 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1310 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1311 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1312 >                                              (long)(w.nextWait & E_MASK) |
1313 >                                              ((c + AC_UNIT) & AC_MASK) |
1314 >                                              (c & (TC_MASK|STOP_BIT)))) {
1315 >                    w.terminate = true;
1316 >                    w.eventCount = e + EC_UNIT;
1317 >                    if (w.parked)
1318 >                        UNSAFE.unpark(w);
1319 >                }
1320 >            }
1321 >        }
1322 >    }
1323 >
1324 >    // misc ForkJoinWorkerThread support
1325  
1326      /**
1327 <     * Returns pool number.
1327 >     * Increment or decrement quiescerCount. Needed only to prevent
1328 >     * triggering shutdown if a worker is transiently inactive while
1329 >     * checking quiescence.
1330 >     *
1331 >     * @param delta 1 for increment, -1 for decrement
1332       */
1333 <    final int getPoolNumber() {
1334 <        return poolNumber;
1333 >    final void addQuiescerCount(int delta) {
1334 >        int c;
1335 >        do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1336 >                                               c = quiescerCount, c + delta));
1337      }
1338  
1339      /**
1340 <     * Tries to accumulate steal count from a worker, clearing
1341 <     * the worker's value if successful.
1340 >     * Directly increment or decrement active count without
1341 >     * queuing. This method is used to transiently assert inactivation
1342 >     * while checking quiescence.
1343       *
1344 <     * @return true if worker steal count now zero
1344 >     * @param delta 1 for increment, -1 for decrement
1345       */
1346 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1347 <        int sc = w.stealCount;
1348 <        long c = stealCount;
1349 <        // CAS even if zero, for fence effects
1350 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1351 <            if (sc != 0)
1222 <                w.stealCount = 0;
1223 <            return true;
1224 <        }
1225 <        return sc == 0;
1346 >    final void addActiveCount(int delta) {
1347 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1348 >        long c;
1349 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1350 >                                                ((c + d) & AC_MASK) |
1351 >                                                (c & ~AC_MASK)));
1352      }
1353  
1354      /**
# Line 1230 | Line 1356 | public class ForkJoinPool extends Abstra
1356       * active thread.
1357       */
1358      final int idlePerActive() {
1359 <        int pc = parallelism; // use parallelism, not rc
1360 <        int ac = runState;    // no mask -- artificially boosts during shutdown
1361 <        // Use exact results for small values, saturate past 4
1362 <        return ((pc <= ac) ? 0 :
1363 <                (pc >>> 1 <= ac) ? 1 :
1364 <                (pc >>> 2 <= ac) ? 3 :
1365 <                pc >>> 3);
1359 >        // Approximate at powers of two for small values, saturate past 4
1360 >        int p = parallelism;
1361 >        int a = p + (int)(ctl >> AC_SHIFT);
1362 >        return (a > (p >>>= 1) ? 0 :
1363 >                a > (p >>>= 1) ? 1 :
1364 >                a > (p >>>= 1) ? 2 :
1365 >                a > (p >>>= 1) ? 4 :
1366 >                8);
1367      }
1368  
1369 <    // Public and protected methods
1369 >    // Exported methods
1370  
1371      // Constructors
1372  
# Line 1308 | Line 1435 | public class ForkJoinPool extends Abstra
1435          checkPermission();
1436          if (factory == null)
1437              throw new NullPointerException();
1438 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1438 >        if (parallelism <= 0 || parallelism > MAX_ID)
1439              throw new IllegalArgumentException();
1440          this.parallelism = parallelism;
1441          this.factory = factory;
1442          this.ueh = handler;
1443          this.locallyFifo = asyncMode;
1444 <        int arraySize = initialArraySizeFor(parallelism);
1445 <        this.workers = new ForkJoinWorkerThread[arraySize];
1446 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1447 <        this.workerLock = new ReentrantLock();
1448 <        this.termination = new Phaser(1);
1449 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1450 <    }
1451 <
1452 <    /**
1453 <     * Returns initial power of two size for workers array.
1454 <     * @param pc the initial parallelism level
1455 <     */
1456 <    private static int initialArraySizeFor(int pc) {
1457 <        // If possible, initially allocate enough space for one spare
1458 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1459 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1460 <        size |= size >>> 1;
1334 <        size |= size >>> 2;
1335 <        size |= size >>> 4;
1336 <        size |= size >>> 8;
1337 <        return size + 1;
1444 >        long np = (long)(-parallelism); // offset ctl counts
1445 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1446 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1447 >        // initialize workers array with room for 2*parallelism if possible
1448 >        int n = parallelism << 1;
1449 >        if (n >= MAX_ID)
1450 >            n = MAX_ID;
1451 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1452 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1453 >        }
1454 >        workers = new ForkJoinWorkerThread[n + 1];
1455 >        this.submissionLock = new ReentrantLock();
1456 >        this.termination = submissionLock.newCondition();
1457 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1458 >        sb.append(poolNumberGenerator.incrementAndGet());
1459 >        sb.append("-worker-");
1460 >        this.workerNamePrefix = sb.toString();
1461      }
1462  
1463      // Execution methods
1464  
1465      /**
1343     * Submits task and creates, starts, or resumes some workers if necessary
1344     */
1345    private <T> void doSubmit(ForkJoinTask<T> task) {
1346        submissionQueue.offer(task);
1347        int c; // try to increment event count -- CAS failure OK
1348        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1349        helpMaintainParallelism();
1350    }
1351
1352    /**
1466       * Performs the given task, returning its result upon completion.
1467 +     * If the computation encounters an unchecked Exception or Error,
1468 +     * it is rethrown as the outcome of this invocation.  Rethrown
1469 +     * exceptions behave in the same way as regular exceptions, but,
1470 +     * when possible, contain stack traces (as displayed for example
1471 +     * using {@code ex.printStackTrace()}) of both the current thread
1472 +     * as well as the thread actually encountering the exception;
1473 +     * minimally only the latter.
1474       *
1475       * @param task the task
1476       * @return the task's result
# Line 1359 | Line 1479 | public class ForkJoinPool extends Abstra
1479       *         scheduled for execution
1480       */
1481      public <T> T invoke(ForkJoinTask<T> task) {
1482 +        Thread t = Thread.currentThread();
1483          if (task == null)
1484              throw new NullPointerException();
1485 <        if (runState >= SHUTDOWN)
1485 >        if (shutdown)
1486              throw new RejectedExecutionException();
1366        Thread t = Thread.currentThread();
1487          if ((t instanceof ForkJoinWorkerThread) &&
1488              ((ForkJoinWorkerThread)t).pool == this)
1489              return task.invoke();  // bypass submit if in same pool
1490          else {
1491 <            doSubmit(task);
1491 >            addSubmission(task);
1492              return task.join();
1493          }
1494      }
# Line 1378 | Line 1498 | public class ForkJoinPool extends Abstra
1498       * computation in the current pool, else submits as external task.
1499       */
1500      private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1501 <        if (runState >= SHUTDOWN)
1382 <            throw new RejectedExecutionException();
1501 >        ForkJoinWorkerThread w;
1502          Thread t = Thread.currentThread();
1503 +        if (shutdown)
1504 +            throw new RejectedExecutionException();
1505          if ((t instanceof ForkJoinWorkerThread) &&
1506 <            ((ForkJoinWorkerThread)t).pool == this)
1507 <            task.fork();
1506 >            (w = (ForkJoinWorkerThread)t).pool == this)
1507 >            w.pushTask(task);
1508          else
1509 <            doSubmit(task);
1509 >            addSubmission(task);
1510      }
1511  
1512      /**
# Line 1542 | Line 1663 | public class ForkJoinPool extends Abstra
1663       * @return the number of worker threads
1664       */
1665      public int getPoolSize() {
1666 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1666 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1667      }
1668  
1669      /**
# Line 1564 | Line 1685 | public class ForkJoinPool extends Abstra
1685       * @return the number of worker threads
1686       */
1687      public int getRunningThreadCount() {
1688 <        return workerCounts & RUNNING_COUNT_MASK;
1688 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1689 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1690      }
1691  
1692      /**
# Line 1575 | Line 1697 | public class ForkJoinPool extends Abstra
1697       * @return the number of active threads
1698       */
1699      public int getActiveThreadCount() {
1700 <        return runState & ACTIVE_COUNT_MASK;
1700 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1701 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1702      }
1703  
1704      /**
# Line 1590 | Line 1713 | public class ForkJoinPool extends Abstra
1713       * @return {@code true} if all threads are currently idle
1714       */
1715      public boolean isQuiescent() {
1716 <        return (runState & ACTIVE_COUNT_MASK) == 0;
1716 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1717      }
1718  
1719      /**
# Line 1620 | Line 1743 | public class ForkJoinPool extends Abstra
1743       */
1744      public long getQueuedTaskCount() {
1745          long count = 0;
1746 <        for (ForkJoinWorkerThread w : workers)
1747 <            if (w != null)
1748 <                count += w.getQueueSize();
1746 >        ForkJoinWorkerThread[] ws;
1747 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1748 >            (ws = workers) != null) {
1749 >            for (ForkJoinWorkerThread w : ws)
1750 >                if (w != null)
1751 >                    count -= w.queueBase - w.queueTop; // must read base first
1752 >        }
1753          return count;
1754      }
1755  
1756      /**
1757       * Returns an estimate of the number of tasks submitted to this
1758 <     * pool that have not yet begun executing.  This method takes time
1759 <     * proportional to the number of submissions.
1758 >     * pool that have not yet begun executing.  This method may take
1759 >     * time proportional to the number of submissions.
1760       *
1761       * @return the number of queued submissions
1762       */
1763      public int getQueuedSubmissionCount() {
1764 <        return submissionQueue.size();
1764 >        return -queueBase + queueTop;
1765      }
1766  
1767      /**
# Line 1644 | Line 1771 | public class ForkJoinPool extends Abstra
1771       * @return {@code true} if there are any queued submissions
1772       */
1773      public boolean hasQueuedSubmissions() {
1774 <        return !submissionQueue.isEmpty();
1774 >        return queueBase != queueTop;
1775      }
1776  
1777      /**
# Line 1655 | Line 1782 | public class ForkJoinPool extends Abstra
1782       * @return the next submission, or {@code null} if none
1783       */
1784      protected ForkJoinTask<?> pollSubmission() {
1785 <        return submissionQueue.poll();
1785 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1786 >        while ((b = queueBase) != queueTop &&
1787 >               (q = submissionQueue) != null &&
1788 >               (i = (q.length - 1) & b) >= 0) {
1789 >            long u = (i << ASHIFT) + ABASE;
1790 >            if ((t = q[i]) != null &&
1791 >                queueBase == b &&
1792 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1793 >                queueBase = b + 1;
1794 >                return t;
1795 >            }
1796 >        }
1797 >        return null;
1798      }
1799  
1800      /**
# Line 1676 | Line 1815 | public class ForkJoinPool extends Abstra
1815       * @return the number of elements transferred
1816       */
1817      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1818 <        int count = submissionQueue.drainTo(c);
1819 <        for (ForkJoinWorkerThread w : workers)
1820 <            if (w != null)
1821 <                count += w.drainTasksTo(c);
1818 >        int count = 0;
1819 >        while (queueBase != queueTop) {
1820 >            ForkJoinTask<?> t = pollSubmission();
1821 >            if (t != null) {
1822 >                c.add(t);
1823 >                ++count;
1824 >            }
1825 >        }
1826 >        ForkJoinWorkerThread[] ws;
1827 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1828 >            (ws = workers) != null) {
1829 >            for (ForkJoinWorkerThread w : ws)
1830 >                if (w != null)
1831 >                    count += w.drainTasksTo(c);
1832 >        }
1833          return count;
1834      }
1835  
# Line 1694 | Line 1844 | public class ForkJoinPool extends Abstra
1844          long st = getStealCount();
1845          long qt = getQueuedTaskCount();
1846          long qs = getQueuedSubmissionCount();
1697        int wc = workerCounts;
1698        int tc = wc >>> TOTAL_COUNT_SHIFT;
1699        int rc = wc & RUNNING_COUNT_MASK;
1847          int pc = parallelism;
1848 <        int rs = runState;
1849 <        int ac = rs & ACTIVE_COUNT_MASK;
1848 >        long c = ctl;
1849 >        int tc = pc + (short)(c >>> TC_SHIFT);
1850 >        int rc = pc + (int)(c >> AC_SHIFT);
1851 >        if (rc < 0) // ignore transient negative
1852 >            rc = 0;
1853 >        int ac = rc + blockedCount;
1854 >        String level;
1855 >        if ((c & STOP_BIT) != 0)
1856 >            level = (tc == 0) ? "Terminated" : "Terminating";
1857 >        else
1858 >            level = shutdown ? "Shutting down" : "Running";
1859          return super.toString() +
1860 <            "[" + runLevelToString(rs) +
1860 >            "[" + level +
1861              ", parallelism = " + pc +
1862              ", size = " + tc +
1863              ", active = " + ac +
# Line 1712 | Line 1868 | public class ForkJoinPool extends Abstra
1868              "]";
1869      }
1870  
1715    private static String runLevelToString(int s) {
1716        return ((s & TERMINATED) != 0 ? "Terminated" :
1717                ((s & TERMINATING) != 0 ? "Terminating" :
1718                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1719                  "Running")));
1720    }
1721
1871      /**
1872       * Initiates an orderly shutdown in which previously submitted
1873       * tasks are executed, but no new tasks will be accepted.
# Line 1733 | Line 1882 | public class ForkJoinPool extends Abstra
1882       */
1883      public void shutdown() {
1884          checkPermission();
1885 <        advanceRunLevel(SHUTDOWN);
1885 >        shutdown = true;
1886          tryTerminate(false);
1887      }
1888  
# Line 1755 | Line 1904 | public class ForkJoinPool extends Abstra
1904       */
1905      public List<Runnable> shutdownNow() {
1906          checkPermission();
1907 +        shutdown = true;
1908          tryTerminate(true);
1909          return Collections.emptyList();
1910      }
# Line 1765 | Line 1915 | public class ForkJoinPool extends Abstra
1915       * @return {@code true} if all tasks have completed following shut down
1916       */
1917      public boolean isTerminated() {
1918 <        return runState >= TERMINATED;
1918 >        long c = ctl;
1919 >        return ((c & STOP_BIT) != 0L &&
1920 >                (short)(c >>> TC_SHIFT) == -parallelism);
1921      }
1922  
1923      /**
# Line 1782 | Line 1934 | public class ForkJoinPool extends Abstra
1934       * @return {@code true} if terminating but not yet terminated
1935       */
1936      public boolean isTerminating() {
1937 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1937 >        long c = ctl;
1938 >        return ((c & STOP_BIT) != 0L &&
1939 >                (short)(c >>> TC_SHIFT) != -parallelism);
1940      }
1941  
1942      /**
1943       * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1944       */
1945      final boolean isAtLeastTerminating() {
1946 <        return runState >= TERMINATING;
1946 >        return (ctl & STOP_BIT) != 0L;
1947      }
1948  
1949      /**
# Line 1798 | Line 1952 | public class ForkJoinPool extends Abstra
1952       * @return {@code true} if this pool has been shut down
1953       */
1954      public boolean isShutdown() {
1955 <        return runState >= SHUTDOWN;
1955 >        return shutdown;
1956      }
1957  
1958      /**
# Line 1814 | Line 1968 | public class ForkJoinPool extends Abstra
1968       */
1969      public boolean awaitTermination(long timeout, TimeUnit unit)
1970          throws InterruptedException {
1971 +        long nanos = unit.toNanos(timeout);
1972 +        final ReentrantLock lock = this.submissionLock;
1973 +        lock.lock();
1974          try {
1975 <            termination.awaitAdvanceInterruptibly(0, timeout, unit);
1976 <        } catch (TimeoutException ex) {
1977 <            return false;
1975 >            for (;;) {
1976 >                if (isTerminated())
1977 >                    return true;
1978 >                if (nanos <= 0)
1979 >                    return false;
1980 >                nanos = termination.awaitNanos(nanos);
1981 >            }
1982 >        } finally {
1983 >            lock.unlock();
1984          }
1822        return true;
1985      }
1986  
1987      /**
# Line 1830 | Line 1992 | public class ForkJoinPool extends Abstra
1992       * {@code isReleasable} must return {@code true} if blocking is
1993       * not necessary. Method {@code block} blocks the current thread
1994       * if necessary (perhaps internally invoking {@code isReleasable}
1995 <     * before actually blocking). The unusual methods in this API
1996 <     * accommodate synchronizers that may, but don't usually, block
1997 <     * for long periods. Similarly, they allow more efficient internal
1998 <     * handling of cases in which additional workers may be, but
1999 <     * usually are not, needed to ensure sufficient parallelism.
2000 <     * Toward this end, implementations of method {@code isReleasable}
2001 <     * must be amenable to repeated invocation.
1995 >     * before actually blocking). These actions are performed by any
1996 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1997 >     * unusual methods in this API accommodate synchronizers that may,
1998 >     * but don't usually, block for long periods. Similarly, they
1999 >     * allow more efficient internal handling of cases in which
2000 >     * additional workers may be, but usually are not, needed to
2001 >     * ensure sufficient parallelism.  Toward this end,
2002 >     * implementations of method {@code isReleasable} must be amenable
2003 >     * to repeated invocation.
2004       *
2005       * <p>For example, here is a ManagedBlocker based on a
2006       * ReentrantLock:
# Line 1938 | Line 2102 | public class ForkJoinPool extends Abstra
2102      }
2103  
2104      // Unsafe mechanics
2105 <
2106 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2107 <    private static final long workerCountsOffset =
2108 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2109 <    private static final long runStateOffset =
2110 <        objectFieldOffset("runState", ForkJoinPool.class);
2111 <    private static final long eventCountOffset =
2112 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2113 <    private static final long eventWaitersOffset =
2114 <        objectFieldOffset("eventWaiters", ForkJoinPool.class);
2115 <    private static final long stealCountOffset =
2116 <        objectFieldOffset("stealCount", ForkJoinPool.class);
2117 <    private static final long spareWaitersOffset =
2118 <        objectFieldOffset("spareWaiters", ForkJoinPool.class);
2119 <
2120 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2105 >    private static final sun.misc.Unsafe UNSAFE;
2106 >    private static final long ctlOffset;
2107 >    private static final long stealCountOffset;
2108 >    private static final long blockedCountOffset;
2109 >    private static final long quiescerCountOffset;
2110 >    private static final long scanGuardOffset;
2111 >    private static final long nextWorkerNumberOffset;
2112 >    private static final long ABASE;
2113 >    private static final int ASHIFT;
2114 >
2115 >    static {
2116 >        poolNumberGenerator = new AtomicInteger();
2117 >        workerSeedGenerator = new Random();
2118 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2119 >        defaultForkJoinWorkerThreadFactory =
2120 >            new DefaultForkJoinWorkerThreadFactory();
2121 >        int s;
2122          try {
2123 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2124 <        } catch (NoSuchFieldException e) {
2125 <            // Convert Exception to corresponding Error
2126 <            NoSuchFieldError error = new NoSuchFieldError(field);
2127 <            error.initCause(e);
2128 <            throw error;
2129 <        }
2123 >            UNSAFE = getUnsafe();
2124 >            Class<?> k = ForkJoinPool.class;
2125 >            ctlOffset = UNSAFE.objectFieldOffset
2126 >                (k.getDeclaredField("ctl"));
2127 >            stealCountOffset = UNSAFE.objectFieldOffset
2128 >                (k.getDeclaredField("stealCount"));
2129 >            blockedCountOffset = UNSAFE.objectFieldOffset
2130 >                (k.getDeclaredField("blockedCount"));
2131 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2132 >                (k.getDeclaredField("quiescerCount"));
2133 >            scanGuardOffset = UNSAFE.objectFieldOffset
2134 >                (k.getDeclaredField("scanGuard"));
2135 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2136 >                (k.getDeclaredField("nextWorkerNumber"));
2137 >            Class<?> a = ForkJoinTask[].class;
2138 >            ABASE = UNSAFE.arrayBaseOffset(a);
2139 >            s = UNSAFE.arrayIndexScale(a);
2140 >        } catch (Exception e) {
2141 >            throw new Error(e);
2142 >        }
2143 >        if ((s & (s-1)) != 0)
2144 >            throw new Error("data type scale not a power of two");
2145 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2146      }
2147  
2148      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines