ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.109 by jsr166, Fri Jul 1 18:20:11 2011 UTC vs.
Revision 1.121 by jsr166, Tue Jan 31 01:33:21 2012 UTC

# Line 20 | Line 20 | import java.util.concurrent.RejectedExec
20   import java.util.concurrent.RunnableFuture;
21   import java.util.concurrent.TimeUnit;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.locks.LockSupport;
24 < import java.util.concurrent.locks.ReentrantLock;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25   import java.util.concurrent.locks.Condition;
26  
27   /**
# Line 33 | Line 33 | import java.util.concurrent.locks.Condit
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45   * <p>A {@code ForkJoinPool} is constructed with a given target
46   * parallelism level; by default, equal to the number of available
# Line 58 | Line 60 | import java.util.concurrent.locks.Condit
60   * convenient form for informal monitoring.
61   *
62   * <p> As is the case with other ExecutorServices, there are three
63 < * main task execution methods summarized in the following
64 < * table. These are designed to be used by clients not already engaged
65 < * in fork/join computations in the current pool.  The main forms of
66 < * these methods accept instances of {@code ForkJoinTask}, but
67 < * overloaded forms also allow mixed execution of plain {@code
63 > * main task execution methods summarized in the following table.
64 > * These are designed to be used primarily by clients not already
65 > * engaged in fork/join computations in the current pool.  The main
66 > * forms of these methods accept instances of {@code ForkJoinTask},
67 > * but overloaded forms also allow mixed execution of plain {@code
68   * Runnable}- or {@code Callable}- based activities as well.  However,
69 < * tasks that are already executing in a pool should normally
70 < * <em>NOT</em> use these pool execution methods, but instead use the
71 < * within-computation forms listed in the table.
69 > * tasks that are already executing in a pool should normally instead
70 > * use the within-computation forms listed in the table unless using
71 > * async event-style tasks that are not usually joined, in which case
72 > * there is little difference among choice of methods.
73   *
74   * <table BORDER CELLPADDING=3 CELLSPACING=1>
75   *  <tr>
# Line 125 | Line 128 | public class ForkJoinPool extends Abstra
128      /*
129       * Implementation Overview
130       *
131 <     * This class provides the central bookkeeping and control for a
132 <     * set of worker threads: Submissions from non-FJ threads enter
133 <     * into a submission queue. Workers take these tasks and typically
134 <     * split them into subtasks that may be stolen by other workers.
135 <     * Preference rules give first priority to processing tasks from
136 <     * their own queues (LIFO or FIFO, depending on mode), then to
137 <     * randomized FIFO steals of tasks in other worker queues, and
138 <     * lastly to new submissions.
131 >     * This class and its nested classes provide the main
132 >     * functionality and control for a set of worker threads:
133 >     * Submissions from non-FJ threads enter into submission queues.
134 >     * Workers take these tasks and typically split them into subtasks
135 >     * that may be stolen by other workers.  Preference rules give
136 >     * first priority to processing tasks from their own queues (LIFO
137 >     * or FIFO, depending on mode), then to randomized FIFO steals of
138 >     * tasks in other queues.
139 >     *
140 >     * WorkQueues
141 >     * ==========
142 >     *
143 >     * Most operations occur within work-stealing queues (in nested
144 >     * class WorkQueue).  These are special forms of Deques that
145 >     * support only three of the four possible end-operations -- push,
146 >     * pop, and poll (aka steal), under the further constraints that
147 >     * push and pop are called only from the owning thread (or, as
148 >     * extended here, under a lock), while poll may be called from
149 >     * other threads.  (If you are unfamiliar with them, you probably
150 >     * want to read Herlihy and Shavit's book "The Art of
151 >     * Multiprocessor programming", chapter 16 describing these in
152 >     * more detail before proceeding.)  The main work-stealing queue
153 >     * design is roughly similar to those in the papers "Dynamic
154 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155 >     * (http://research.sun.com/scalable/pubs/index.html) and
156 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158 >     * The main differences ultimately stem from GC requirements that
159 >     * we null out taken slots as soon as we can, to maintain as small
160 >     * a footprint as possible even in programs generating huge
161 >     * numbers of tasks. To accomplish this, we shift the CAS
162 >     * arbitrating pop vs poll (steal) from being on the indices
163 >     * ("base" and "top") to the slots themselves.  So, both a
164 >     * successful pop and poll mainly entail a CAS of a slot from
165 >     * non-null to null.  Because we rely on CASes of references, we
166 >     * do not need tag bits on base or top.  They are simple ints as
167 >     * used in any circular array-based queue (see for example
168 >     * ArrayDeque).  Updates to the indices must still be ordered in a
169 >     * way that guarantees that top == base means the queue is empty,
170 >     * but otherwise may err on the side of possibly making the queue
171 >     * appear nonempty when a push, pop, or poll have not fully
172 >     * committed. Note that this means that the poll operation,
173 >     * considered individually, is not wait-free. One thief cannot
174 >     * successfully continue until another in-progress one (or, if
175 >     * previously empty, a push) completes.  However, in the
176 >     * aggregate, we ensure at least probabilistic non-blockingness.
177 >     * If an attempted steal fails, a thief always chooses a different
178 >     * random victim target to try next. So, in order for one thief to
179 >     * progress, it suffices for any in-progress poll or new push on
180 >     * any empty queue to complete.
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we loosely associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they never
203 >     * take tasks, and they are multiplexed on to a finite number of
204 >     * shared work queues. However, classes are set up so that future
205 >     * extensions could allow submitters to optionally help perform
206 >     * tasks as well. Insertion of tasks in shared mode requires a
207 >     * lock (mainly to protect in the case of resizing) but we use
208 >     * only a simple spinlock (using bits in field runState), because
209 >     * submitters encountering a busy queue move on to try or create
210 >     * other queues, so never block.
211 >     *
212 >     * Management
213 >     * ==========
214       *
215       * The main throughput advantages of work-stealing stem from
216       * decentralized control -- workers mostly take tasks from
217       * themselves or each other. We cannot negate this in the
218       * implementation of other management responsibilities. The main
219       * tactic for avoiding bottlenecks is packing nearly all
220 <     * essentially atomic control state into a single 64bit volatile
221 <     * variable ("ctl"). This variable is read on the order of 10-100
222 <     * times as often as it is modified (always via CAS). (There is
223 <     * some additional control state, for example variable "shutdown"
224 <     * for which we can cope with uncoordinated updates.)  This
225 <     * streamlines synchronization and control at the expense of messy
226 <     * constructions needed to repack status bits upon updates.
227 <     * Updates tend not to contend with each other except during
228 <     * bursts while submitted tasks begin or end.  In some cases when
229 <     * they do contend, threads can instead do something else
230 <     * (usually, scan for tasks) until contention subsides.
231 <     *
232 <     * To enable packing, we restrict maximum parallelism to (1<<15)-1
233 <     * (which is far in excess of normal operating range) to allow
234 <     * ids, counts, and their negations (used for thresholding) to fit
235 <     * into 16bit fields.
236 <     *
237 <     * Recording Workers.  Workers are recorded in the "workers" array
238 <     * that is created upon pool construction and expanded if (rarely)
239 <     * necessary.  This is an array as opposed to some other data
240 <     * structure to support index-based random steals by workers.
241 <     * Updates to the array recording new workers and unrecording
242 <     * terminated ones are protected from each other by a seqLock
243 <     * (scanGuard) but the array is otherwise concurrently readable,
244 <     * and accessed directly by workers. To simplify index-based
220 >     * essentially atomic control state into two volatile variables
221 >     * that are by far most often read (not written) as status and
222 >     * consistency checks.
223 >     *
224 >     * Field "ctl" contains 64 bits holding all the information needed
225 >     * to atomically decide to add, inactivate, enqueue (on an event
226 >     * queue), dequeue, and/or re-activate workers.  To enable this
227 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228 >     * far in excess of normal operating range) to allow ids, counts,
229 >     * and their negations (used for thresholding) to fit into 16bit
230 >     * fields.
231 >     *
232 >     * Field "runState" contains 32 bits needed to register and
233 >     * deregister WorkQueues, as well as to enable shutdown. It is
234 >     * only modified under a lock (normally briefly held, but
235 >     * occasionally protecting allocations and resizings) but even
236 >     * when locked remains available to check consistency. An
237 >     * auxiliary field "growHints", also only modified under lock,
238 >     * contains a candidate index for the next WorkQueue and
239 >     * a mask for submission queue indices.
240 >     *
241 >     * Recording WorkQueues.  WorkQueues are recorded in the
242 >     * "workQueues" array that is created upon pool construction and
243 >     * expanded if necessary.  Updates to the array while recording
244 >     * new workers and unrecording terminated ones are protected from
245 >     * each other by a lock but the array is otherwise concurrently
246 >     * readable, and accessed directly.  To simplify index-based
247       * operations, the array size is always a power of two, and all
248 <     * readers must tolerate null slots. To avoid flailing during
249 <     * start-up, the array is presized to hold twice #parallelism
250 <     * workers (which is unlikely to need further resizing during
251 <     * execution). But to avoid dealing with so many null slots,
252 <     * variable scanGuard includes a mask for the nearest power of two
253 <     * that contains all current workers.  All worker thread creation
254 <     * is on-demand, triggered by task submissions, replacement of
255 <     * terminated workers, and/or compensation for blocked
256 <     * workers. However, all other support code is set up to work with
257 <     * other policies.  To ensure that we do not hold on to worker
258 <     * references that would prevent GC, ALL accesses to workers are
259 <     * via indices into the workers array (which is one source of some
260 <     * of the messy code constructions here). In essence, the workers
261 <     * array serves as a weak reference mechanism. Thus for example
262 <     * the wait queue field of ctl stores worker indices, not worker
263 <     * references.  Access to the workers in associated methods (for
264 <     * example signalWork) must both index-check and null-check the
265 <     * IDs. All such accesses ignore bad IDs by returning out early
266 <     * from what they are doing, since this can only be associated
267 <     * with termination, in which case it is OK to give up.
268 <     *
269 <     * All uses of the workers array, as well as queue arrays, check
270 <     * that the array is non-null (even if previously non-null). This
271 <     * allows nulling during termination, which is currently not
272 <     * necessary, but remains an option for resource-revocation-based
273 <     * shutdown schemes.
248 >     * readers must tolerate null slots. Shared (submission) queues
249 >     * are at even indices, worker queues at odd indices. Grouping
250 >     * them together in this way simplifies and speeds up task
251 >     * scanning. To avoid flailing during start-up, the array is
252 >     * presized to hold twice #parallelism workers (which is unlikely
253 >     * to need further resizing during execution). But to avoid
254 >     * dealing with so many null slots, variable runState includes a
255 >     * mask for the nearest power of two that contains all currently
256 >     * used indices.
257 >     *
258 >     * All worker thread creation is on-demand, triggered by task
259 >     * submissions, replacement of terminated workers, and/or
260 >     * compensation for blocked workers. However, all other support
261 >     * code is set up to work with other policies.  To ensure that we
262 >     * do not hold on to worker references that would prevent GC, ALL
263 >     * accesses to workQueues are via indices into the workQueues
264 >     * array (which is one source of some of the messy code
265 >     * constructions here). In essence, the workQueues array serves as
266 >     * a weak reference mechanism. Thus for example the wait queue
267 >     * field of ctl stores indices, not references.  Access to the
268 >     * workQueues in associated methods (for example signalWork) must
269 >     * both index-check and null-check the IDs. All such accesses
270 >     * ignore bad IDs by returning out early from what they are doing,
271 >     * since this can only be associated with termination, in which
272 >     * case it is OK to give up.  All uses of the workQueues array
273 >     * also check that it is non-null (even if previously
274 >     * non-null). This allows nulling during termination, which is
275 >     * currently not necessary, but remains an option for
276 >     * resource-revocation-based shutdown schemes. It also helps
277 >     * reduce JIT issuance of uncommon-trap code, which tends to
278 >     * unnecessarily complicate control flow in some methods.
279       *
280 <     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
281       * let workers spin indefinitely scanning for tasks when none can
282       * be found immediately, and we cannot start/resume workers unless
283       * there appear to be tasks available.  On the other hand, we must
284       * quickly prod them into action when new tasks are submitted or
285 <     * generated.  We park/unpark workers after placing in an event
286 <     * wait queue when they cannot find work. This "queue" is actually
287 <     * a simple Treiber stack, headed by the "id" field of ctl, plus a
288 <     * 15bit counter value to both wake up waiters (by advancing their
289 <     * count) and avoid ABA effects. Successors are held in worker
290 <     * field "nextWait".  Queuing deals with several intrinsic races,
291 <     * mainly that a task-producing thread can miss seeing (and
285 >     * generated. In many usages, ramp-up time to activate workers is
286 >     * the main limiting factor in overall performance (this is
287 >     * compounded at program start-up by JIT compilation and
288 >     * allocation). So we try to streamline this as much as possible.
289 >     * We park/unpark workers after placing in an event wait queue
290 >     * when they cannot find work. This "queue" is actually a simple
291 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
292 >     * counter value (that reflects the number of times a worker has
293 >     * been inactivated) to avoid ABA effects (we need only as many
294 >     * version numbers as worker threads). Successors are held in
295 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
296 >     * races, mainly that a task-producing thread can miss seeing (and
297       * signalling) another thread that gave up looking for work but
298       * has not yet entered the wait queue. We solve this by requiring
299 <     * a full sweep of all workers both before (in scan()) and after
300 <     * (in tryAwaitWork()) a newly waiting worker is added to the wait
301 <     * queue. During a rescan, the worker might release some other
302 <     * queued worker rather than itself, which has the same net
303 <     * effect. Because enqueued workers may actually be rescanning
304 <     * rather than waiting, we set and clear the "parked" field of
305 <     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
306 <     * (Use of the parked field requires a secondary recheck to avoid
307 <     * missed signals.)
299 >     * a full sweep of all workers (via repeated calls to method
300 >     * scan()) both before and after a newly waiting worker is added
301 >     * to the wait queue. During a rescan, the worker might release
302 >     * some other queued worker rather than itself, which has the same
303 >     * net effect. Because enqueued workers may actually be rescanning
304 >     * rather than waiting, we set and clear the "parker" field of
305 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
306 >     * requires a secondary recheck to avoid missed signals.)  Note
307 >     * the unusual conventions about Thread.interrupts surrounding
308 >     * parking and other blocking: Because interrupts are used solely
309 >     * to alert threads to check termination, which is checked anyway
310 >     * upon blocking, we clear status (using Thread.interrupted)
311 >     * before any call to park, so that park does not immediately
312 >     * return due to status being set via some other unrelated call to
313 >     * interrupt in user code.
314       *
315       * Signalling.  We create or wake up workers only when there
316       * appears to be at least one task they might be able to find and
317       * execute.  When a submission is added or another worker adds a
318 <     * task to a queue that previously had two or fewer tasks, they
318 >     * task to a queue that previously had fewer than two tasks, they
319       * signal waiting workers (or trigger creation of new ones if
320       * fewer than the given parallelism level -- see signalWork).
321 <     * These primary signals are buttressed by signals during rescans
322 <     * as well as those performed when a worker steals a task and
323 <     * notices that there are more tasks too; together these cover the
324 <     * signals needed in cases when more than two tasks are pushed
229 <     * but untaken.
321 >     * These primary signals are buttressed by signals during rescans;
322 >     * together these cover the signals needed in cases when more
323 >     * tasks are pushed but untaken, and improve performance compared
324 >     * to having one thread wake up all workers.
325       *
326       * Trimming workers. To release resources after periods of lack of
327       * use, a worker starting to wait when the pool is quiescent will
# Line 234 | Line 329 | public class ForkJoinPool extends Abstra
329       * SHRINK_RATE nanosecs. This will slowly propagate, eventually
330       * terminating all workers after long periods of non-use.
331       *
332 <     * Submissions. External submissions are maintained in an
333 <     * array-based queue that is structured identically to
334 <     * ForkJoinWorkerThread queues except for the use of
335 <     * submissionLock in method addSubmission. Unlike the case for
336 <     * worker queues, multiple external threads can add new
337 <     * submissions, so adding requires a lock.
338 <     *
339 <     * Compensation. Beyond work-stealing support and lifecycle
340 <     * control, the main responsibility of this framework is to take
341 <     * actions when one worker is waiting to join a task stolen (or
342 <     * always held by) another.  Because we are multiplexing many
343 <     * tasks on to a pool of workers, we can't just let them block (as
344 <     * in Thread.join).  We also cannot just reassign the joiner's
345 <     * run-time stack with another and replace it later, which would
346 <     * be a form of "continuation", that even if possible is not
347 <     * necessarily a good idea since we sometimes need both an
348 <     * unblocked task and its continuation to progress. Instead we
349 <     * combine two tactics:
332 >     * Shutdown and Termination. A call to shutdownNow atomically sets
333 >     * a runState bit and then (non-atomically) sets each worker's
334 >     * runState status, cancels all unprocessed tasks, and wakes up
335 >     * all waiting workers.  Detecting whether termination should
336 >     * commence after a non-abrupt shutdown() call requires more work
337 >     * and bookkeeping. We need consensus about quiescence (i.e., that
338 >     * there is no more work). The active count provides a primary
339 >     * indication but non-abrupt shutdown still requires a rechecking
340 >     * scan for any workers that are inactive but not queued.
341 >     *
342 >     * Joining Tasks
343 >     * =============
344 >     *
345 >     * Any of several actions may be taken when one worker is waiting
346 >     * to join a task stolen (or always held) by another.  Because we
347 >     * are multiplexing many tasks on to a pool of workers, we can't
348 >     * just let them block (as in Thread.join).  We also cannot just
349 >     * reassign the joiner's run-time stack with another and replace
350 >     * it later, which would be a form of "continuation", that even if
351 >     * possible is not necessarily a good idea since we sometimes need
352 >     * both an unblocked task and its continuation to progress.
353 >     * Instead we combine two tactics:
354       *
355       *   Helping: Arranging for the joiner to execute some task that it
356 <     *      would be running if the steal had not occurred.  Method
258 <     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
259 <     *      links to try to find such a task.
356 >     *      would be running if the steal had not occurred.
357       *
358       *   Compensating: Unless there are already enough live threads,
359 <     *      method tryPreBlock() may create or re-activate a spare
360 <     *      thread to compensate for blocked joiners until they
361 <     *      unblock.
359 >     *      method tryCompensate() may create or re-activate a spare
360 >     *      thread to compensate for blocked joiners until they unblock.
361 >     *
362 >     * A third form (implemented in tryRemoveAndExec and
363 >     * tryPollForAndExec) amounts to helping a hypothetical
364 >     * compensator: If we can readily tell that a possible action of a
365 >     * compensator is to steal and execute the task being joined, the
366 >     * joining thread can do so directly, without the need for a
367 >     * compensation thread (although at the expense of larger run-time
368 >     * stacks, but the tradeoff is typically worthwhile).
369       *
370       * The ManagedBlocker extension API can't use helping so relies
371       * only on compensation in method awaitBlocker.
372       *
373 +     * The algorithm in tryHelpStealer entails a form of "linear"
374 +     * helping: Each worker records (in field currentSteal) the most
375 +     * recent task it stole from some other worker. Plus, it records
376 +     * (in field currentJoin) the task it is currently actively
377 +     * joining. Method tryHelpStealer uses these markers to try to
378 +     * find a worker to help (i.e., steal back a task from and execute
379 +     * it) that could hasten completion of the actively joined task.
380 +     * In essence, the joiner executes a task that would be on its own
381 +     * local deque had the to-be-joined task not been stolen. This may
382 +     * be seen as a conservative variant of the approach in Wagner &
383 +     * Calder "Leapfrogging: a portable technique for implementing
384 +     * efficient futures" SIGPLAN Notices, 1993
385 +     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
386 +     * that: (1) We only maintain dependency links across workers upon
387 +     * steals, rather than use per-task bookkeeping.  This sometimes
388 +     * requires a linear scan of workQueues array to locate stealers, but
389 +     * often doesn't because stealers leave hints (that may become
390 +     * stale/wrong) of where to locate them.  A stealHint is only a
391 +     * hint because a worker might have had multiple steals and the
392 +     * hint records only one of them (usually the most current).
393 +     * Hinting isolates cost to when it is needed, rather than adding
394 +     * to per-task overhead.  (2) It is "shallow", ignoring nesting
395 +     * and potentially cyclic mutual steals.  (3) It is intentionally
396 +     * racy: field currentJoin is updated only while actively joining,
397 +     * which means that we miss links in the chain during long-lived
398 +     * tasks, GC stalls etc (which is OK since blocking in such cases
399 +     * is usually a good idea).  (4) We bound the number of attempts
400 +     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
401 +     * the worker and if necessary replacing it with another.
402 +     *
403       * It is impossible to keep exactly the target parallelism number
404       * of threads running at any given time.  Determining the
405       * existence of conservatively safe helping targets, the
406       * availability of already-created spares, and the apparent need
407 <     * to create new spares are all racy and require heuristic
408 <     * guidance, so we rely on multiple retries of each.  Currently,
409 <     * in keeping with on-demand signalling policy, we compensate only
410 <     * if blocking would leave less than one active (non-waiting,
411 <     * non-blocked) worker. Additionally, to avoid some false alarms
412 <     * due to GC, lagging counters, system activity, etc, compensated
413 <     * blocking for joins is only attempted after rechecks stabilize
414 <     * (retries are interspersed with Thread.yield, for good
415 <     * citizenship).  The variable blockedCount, incremented before
282 <     * blocking and decremented after, is sometimes needed to
283 <     * distinguish cases of waiting for work vs blocking on joins or
284 <     * other managed sync. Both cases are equivalent for most pool
285 <     * control, so we can update non-atomically. (Additionally,
286 <     * contention on blockedCount alleviates some contention on ctl).
287 <     *
288 <     * Shutdown and Termination. A call to shutdownNow atomically sets
289 <     * the ctl stop bit and then (non-atomically) sets each workers
290 <     * "terminate" status, cancels all unprocessed tasks, and wakes up
291 <     * all waiting workers.  Detecting whether termination should
292 <     * commence after a non-abrupt shutdown() call requires more work
293 <     * and bookkeeping. We need consensus about quiescence (i.e., that
294 <     * there is no more work) which is reflected in active counts so
295 <     * long as there are no current blockers, as well as possible
296 <     * re-evaluations during independent changes in blocking or
297 <     * quiescing workers.
407 >     * to create new spares are all racy, so we rely on multiple
408 >     * retries of each.  Currently, in keeping with on-demand
409 >     * signalling policy, we compensate only if blocking would leave
410 >     * less than one active (non-waiting, non-blocked) worker.
411 >     * Additionally, to avoid some false alarms due to GC, lagging
412 >     * counters, system activity, etc, compensated blocking for joins
413 >     * is only attempted after rechecks stabilize in
414 >     * ForkJoinTask.awaitJoin. (Retries are interspersed with
415 >     * Thread.yield, for good citizenship.)
416       *
417       * Style notes: There is a lot of representation-level coupling
418       * among classes ForkJoinPool, ForkJoinWorkerThread, and
419 <     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
420 <     * data structures managed by ForkJoinPool, so are directly
421 <     * accessed.  Conversely we allow access to "workers" array by
422 <     * workers, and direct access to ForkJoinTask.status by both
423 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
424 <     * trying to reduce this, since any associated future changes in
425 <     * representations will need to be accompanied by algorithmic
426 <     * changes anyway. All together, these low-level implementation
427 <     * choices produce as much as a factor of 4 performance
428 <     * improvement compared to naive implementations, and enable the
429 <     * processing of billions of tasks per second, at the expense of
430 <     * some ugliness.
431 <     *
432 <     * Methods signalWork() and scan() are the main bottlenecks so are
433 <     * especially heavily micro-optimized/mangled.  There are lots of
434 <     * inline assignments (of form "while ((local = field) != 0)")
435 <     * which are usually the simplest way to ensure the required read
436 <     * orderings (which are sometimes critical). This leads to a
437 <     * "C"-like style of listing declarations of these locals at the
438 <     * heads of methods or blocks.  There are several occurrences of
439 <     * the unusual "do {} while (!cas...)"  which is the simplest way
440 <     * to force an update of a CAS'ed variable. There are also other
441 <     * coding oddities that help some methods perform reasonably even
442 <     * when interpreted (not compiled).
443 <     *
444 <     * The order of declarations in this file is: (1) declarations of
445 <     * statics (2) fields (along with constants used when unpacking
446 <     * some of them), listed in an order that tends to reduce
447 <     * contention among them a bit under most JVMs.  (3) internal
448 <     * control methods (4) callbacks and other support for
449 <     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
450 <     * methods (plus a few little helpers). (6) static block
451 <     * initializing all statics in a minimally dependent order.
419 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
420 >     * managed by ForkJoinPool, so are directly accessed.  There is
421 >     * little point trying to reduce this, since any associated future
422 >     * changes in representations will need to be accompanied by
423 >     * algorithmic changes anyway. Several methods intrinsically
424 >     * sprawl because they must accumulate sets of consistent reads of
425 >     * volatiles held in local variables.  Methods signalWork() and
426 >     * scan() are the main bottlenecks, so are especially heavily
427 >     * micro-optimized/mangled.  There are lots of inline assignments
428 >     * (of form "while ((local = field) != 0)") which are usually the
429 >     * simplest way to ensure the required read orderings (which are
430 >     * sometimes critical). This leads to a "C"-like style of listing
431 >     * declarations of these locals at the heads of methods or blocks.
432 >     * There are several occurrences of the unusual "do {} while
433 >     * (!cas...)"  which is the simplest way to force an update of a
434 >     * CAS'ed variable. There are also other coding oddities that help
435 >     * some methods perform reasonably even when interpreted (not
436 >     * compiled).
437 >     *
438 >     * The order of declarations in this file is:
439 >     * (1) Static utility functions
440 >     * (2) Nested (static) classes
441 >     * (3) Static fields
442 >     * (4) Fields, along with constants used when unpacking some of them
443 >     * (5) Internal control methods
444 >     * (6) Callbacks and other support for ForkJoinTask methods
445 >     * (7) Exported methods
446 >     * (8) Static block initializing statics in minimally dependent order
447 >     */
448 >
449 >    // Static utilities
450 >
451 >    /**
452 >     * Computes an initial hash code (also serving as a non-zero
453 >     * random seed) for a thread id. This method is expected to
454 >     * provide higher-quality hash codes than using method hashCode().
455 >     */
456 >    static final int hashId(long id) {
457 >        int h = (int)id ^ (int)(id >>> 32); // Use MurmurHash of thread id
458 >        h ^= h >>> 16; h *= 0x85ebca6b;
459 >        h ^= h >>> 13; h *= 0xc2b2ae35;
460 >        h ^= h >>> 16;
461 >        return (h == 0) ? 1 : h; // ensure nonzero
462 >    }
463 >
464 >    /**
465 >     * If there is a security manager, makes sure caller has
466 >     * permission to modify threads.
467       */
468 +    private static void checkPermission() {
469 +        SecurityManager security = System.getSecurityManager();
470 +        if (security != null)
471 +            security.checkPermission(modifyThreadPermission);
472 +    }
473 +
474 +    // Nested classes
475  
476      /**
477       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 361 | Line 501 | public class ForkJoinPool extends Abstra
501      }
502  
503      /**
504 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
505 <     * overridden in ForkJoinPool constructors.
504 >     * A simple non-reentrant lock used for exclusion when managing
505 >     * queues and workers. We use a custom lock so that we can readily
506 >     * probe lock state in constructions that check among alternative
507 >     * actions. The lock is normally only very briefly held, and
508 >     * sometimes treated as a spinlock, but other usages block to
509 >     * reduce overall contention in those cases where locked code
510 >     * bodies perform allocation/resizing.
511 >     */
512 >    static final class Mutex extends AbstractQueuedSynchronizer {
513 >        public final boolean tryAcquire(int ignore) {
514 >            return compareAndSetState(0, 1);
515 >        }
516 >        public final boolean tryRelease(int ignore) {
517 >            setState(0);
518 >            return true;
519 >        }
520 >        public final void lock() { acquire(0); }
521 >        public final void unlock() { release(0); }
522 >        public final boolean isHeldExclusively() { return getState() == 1; }
523 >        public final Condition newCondition() { return new ConditionObject(); }
524 >    }
525 >
526 >    /**
527 >     * Class for artificial tasks that are used to replace the target
528 >     * of local joins if they are removed from an interior queue slot
529 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
530 >     * actually do anything beyond having a unique identity.
531 >     */
532 >    static final class EmptyTask extends ForkJoinTask<Void> {
533 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
534 >        public final Void getRawResult() { return null; }
535 >        public final void setRawResult(Void x) {}
536 >        public final boolean exec() { return true; }
537 >    }
538 >
539 >    /**
540 >     * Queues supporting work-stealing as well as external task
541 >     * submission. See above for main rationale and algorithms.
542 >     * Implementation relies heavily on "Unsafe" intrinsics
543 >     * and selective use of "volatile":
544 >     *
545 >     * Field "base" is the index (mod array.length) of the least valid
546 >     * queue slot, which is always the next position to steal (poll)
547 >     * from if nonempty. Reads and writes require volatile orderings
548 >     * but not CAS, because updates are only performed after slot
549 >     * CASes.
550 >     *
551 >     * Field "top" is the index (mod array.length) of the next queue
552 >     * slot to push to or pop from. It is written only by owner thread
553 >     * for push, or under lock for trySharedPush, and accessed by
554 >     * other threads only after reading (volatile) base.  Both top and
555 >     * base are allowed to wrap around on overflow, but (top - base)
556 >     * (or more commonly -(base - top) to force volatile read of base
557 >     * before top) still estimates size.
558 >     *
559 >     * The array slots are read and written using the emulation of
560 >     * volatiles/atomics provided by Unsafe. Insertions must in
561 >     * general use putOrderedObject as a form of releasing store to
562 >     * ensure that all writes to the task object are ordered before
563 >     * its publication in the queue. (Although we can avoid one case
564 >     * of this when locked in trySharedPush.) All removals entail a
565 >     * CAS to null.  The array is always a power of two. To ensure
566 >     * safety of Unsafe array operations, all accesses perform
567 >     * explicit null checks and implicit bounds checks via
568 >     * power-of-two masking.
569 >     *
570 >     * In addition to basic queuing support, this class contains
571 >     * fields described elsewhere to control execution. It turns out
572 >     * to work better memory-layout-wise to include them in this
573 >     * class rather than a separate class.
574 >     *
575 >     * Performance on most platforms is very sensitive to placement of
576 >     * instances of both WorkQueues and their arrays -- we absolutely
577 >     * do not want multiple WorkQueue instances or multiple queue
578 >     * arrays sharing cache lines. (It would be best for queue objects
579 >     * and their arrays to share, but there is nothing available to
580 >     * help arrange that).  Unfortunately, because they are recorded
581 >     * in a common array, WorkQueue instances are often moved to be
582 >     * adjacent by garbage collectors. To reduce impact, we use field
583 >     * padding that works OK on common platforms; this effectively
584 >     * trades off slightly slower average field access for the sake of
585 >     * avoiding really bad worst-case access. (Until better JVM
586 >     * support is in place, this padding is dependent on transient
587 >     * properties of JVM field layout rules.)  We also take care in
588 >     * allocating, sizing and resizing the array. Non-shared queue
589 >     * arrays are initialized (via method growArray) by workers before
590 >     * use. Others are allocated on first use.
591       */
592 <    public static final ForkJoinWorkerThreadFactory
593 <        defaultForkJoinWorkerThreadFactory;
592 >    static final class WorkQueue {
593 >        /**
594 >         * Capacity of work-stealing queue array upon initialization.
595 >         * Must be a power of two; at least 4, but set larger to
596 >         * reduce cacheline sharing among queues.
597 >         */
598 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
599  
600 <    /**
601 <     * Permission required for callers of methods that may start or
602 <     * kill threads.
603 <     */
604 <    private static final RuntimePermission modifyThreadPermission;
600 >        /**
601 >         * Maximum size for queue arrays. Must be a power of two less
602 >         * than or equal to 1 << (31 - width of array entry) to ensure
603 >         * lack of wraparound of index calculations, but defined to a
604 >         * value a bit less than this to help users trap runaway
605 >         * programs before saturating systems.
606 >         */
607 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
608  
609 <    /**
610 <     * If there is a security manager, makes sure caller has
611 <     * permission to modify threads.
612 <     */
613 <    private static void checkPermission() {
614 <        SecurityManager security = System.getSecurityManager();
615 <        if (security != null)
616 <            security.checkPermission(modifyThreadPermission);
617 <    }
609 >        volatile long totalSteals; // cumulative number of steals
610 >        int seed;                  // for random scanning; initialize nonzero
611 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
612 >        int nextWait;              // encoded record of next event waiter
613 >        int rescans;               // remaining scans until block
614 >        int nsteals;               // top-level task executions since last idle
615 >        final int mode;            // lifo, fifo, or shared
616 >        int poolIndex;             // index of this queue in pool (or 0)
617 >        int stealHint;             // index of most recent known stealer
618 >        volatile int runState;     // 1: locked, -1: terminate; else 0
619 >        volatile int base;         // index of next slot for poll
620 >        int top;                   // index of next slot for push
621 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
622 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
623 >        volatile Thread parker;    // == owner during call to park; else null
624 >        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
625 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
626 >        // Heuristic padding to ameliorate unfortunate memory placements
627 >        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
628 >
629 >        WorkQueue(ForkJoinWorkerThread owner, int mode) {
630 >            this.owner = owner;
631 >            this.mode = mode;
632 >            // Place indices in the center of array (that is not yet allocated)
633 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
634 >        }
635  
636 <    /**
637 <     * Generator for assigning sequence numbers as pool names.
638 <     */
639 <    private static final AtomicInteger poolNumberGenerator;
636 >        /**
637 >         * Returns number of tasks in the queue.
638 >         */
639 >        final int queueSize() {
640 >            int n = base - top; // non-owner callers must read base first
641 >            return (n >= 0) ? 0 : -n;
642 >        }
643  
644 <    /**
645 <     * Generator for initial random seeds for worker victim
646 <     * selection. This is used only to create initial seeds. Random
647 <     * steals use a cheaper xorshift generator per steal attempt. We
648 <     * don't expect much contention on seedGenerator, so just use a
649 <     * plain Random.
650 <     */
651 <    static final Random workerSeedGenerator;
644 >        /**
645 >         * Pushes a task. Call only by owner in unshared queues.
646 >         *
647 >         * @param task the task. Caller must ensure non-null.
648 >         * @param p if non-null, pool to signal if necessary
649 >         * @throw RejectedExecutionException if array cannot be resized
650 >         */
651 >        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
652 >            ForkJoinTask<?>[] a;
653 >            int s = top, m, n;
654 >            if ((a = array) != null) {    // ignore if queue removed
655 >                U.putOrderedObject
656 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
657 >                if ((n = (top = s + 1) - base) <= 2) {
658 >                    if (p != null)
659 >                        p.signalWork();
660 >                }
661 >                else if (n >= m)
662 >                    growArray(true);
663 >            }
664 >        }
665  
666 <    /**
667 <     * Array holding all worker threads in the pool.  Initialized upon
668 <     * construction. Array size must be a power of two.  Updates and
669 <     * replacements are protected by scanGuard, but the array is
670 <     * always kept in a consistent enough state to be randomly
671 <     * accessed without locking by workers performing work-stealing,
672 <     * as well as other traversal-based methods in this class, so long
673 <     * as reads memory-acquire by first reading ctl. All readers must
674 <     * tolerate that some array slots may be null.
675 <     */
676 <    ForkJoinWorkerThread[] workers;
666 >        /**
667 >         * Pushes a task if lock is free and array is either big
668 >         * enough or can be resized to be big enough.
669 >         *
670 >         * @param task the task. Caller must ensure non-null.
671 >         * @return true if submitted
672 >         */
673 >        final boolean trySharedPush(ForkJoinTask<?> task) {
674 >            boolean submitted = false;
675 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
676 >                ForkJoinTask<?>[] a = array;
677 >                int s = top;
678 >                try {
679 >                    if ((a != null && a.length > s + 1 - base) ||
680 >                        (a = growArray(false)) != null) { // must presize
681 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
682 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
683 >                        top = s + 1;
684 >                        submitted = true;
685 >                    }
686 >                } finally {
687 >                    runState = 0;                         // unlock
688 >                }
689 >            }
690 >            return submitted;
691 >        }
692  
693 <    /**
694 <     * Initial size for submission queue array. Must be a power of
695 <     * two.  In many applications, these always stay small so we use a
696 <     * small initial cap.
697 <     */
698 <    private static final int INITIAL_QUEUE_CAPACITY = 8;
693 >        /**
694 >         * Takes next task, if one exists, in FIFO order.
695 >         */
696 >        final ForkJoinTask<?> poll() {
697 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
698 >            while ((b = base) - top < 0 && (a = array) != null) {
699 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
700 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
701 >                    base == b &&
702 >                    U.compareAndSwapObject(a, j, t, null)) {
703 >                    base = b + 1;
704 >                    return t;
705 >                }
706 >            }
707 >            return null;
708 >        }
709 >
710 >        /**
711 >         * Takes next task, if one exists, in LIFO order.  Call only
712 >         * by owner in unshared queues. (We do not have a shared
713 >         * version of this method because it is never needed.)
714 >         */
715 >        final ForkJoinTask<?> pop() {
716 >            ForkJoinTask<?> t; int m;
717 >            ForkJoinTask<?>[] a = array;
718 >            if (a != null && (m = a.length - 1) >= 0) {
719 >                for (int s; (s = top - 1) - base >= 0;) {
720 >                    int j = ((m & s) << ASHIFT) + ABASE;
721 >                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
722 >                        break;
723 >                    if (U.compareAndSwapObject(a, j, t, null)) {
724 >                        top = s;
725 >                        return t;
726 >                    }
727 >                }
728 >            }
729 >            return null;
730 >        }
731 >
732 >        /**
733 >         * Takes next task, if one exists, in order specified by mode.
734 >         */
735 >        final ForkJoinTask<?> nextLocalTask() {
736 >            return mode == 0 ? pop() : poll();
737 >        }
738 >
739 >        /**
740 >         * Returns next task, if one exists, in order specified by mode.
741 >         */
742 >        final ForkJoinTask<?> peek() {
743 >            ForkJoinTask<?>[] a = array; int m;
744 >            if (a == null || (m = a.length - 1) < 0)
745 >                return null;
746 >            int i = mode == 0 ? top - 1 : base;
747 >            int j = ((i & m) << ASHIFT) + ABASE;
748 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
749 >        }
750 >
751 >        /**
752 >         * Returns task at index b if b is current base of queue.
753 >         */
754 >        final ForkJoinTask<?> pollAt(int b) {
755 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
756 >            if ((a = array) != null) {
757 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
758 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
759 >                    base == b &&
760 >                    U.compareAndSwapObject(a, j, t, null)) {
761 >                    base = b + 1;
762 >                    return t;
763 >                }
764 >            }
765 >            return null;
766 >        }
767 >
768 >        /**
769 >         * Pops the given task only if it is at the current top.
770 >         */
771 >        final boolean tryUnpush(ForkJoinTask<?> t) {
772 >            ForkJoinTask<?>[] a; int s;
773 >            if ((a = array) != null && (s = top) != base &&
774 >                U.compareAndSwapObject
775 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
776 >                top = s;
777 >                return true;
778 >            }
779 >            return false;
780 >        }
781 >
782 >        /**
783 >         * Polls the given task only if it is at the current base.
784 >         */
785 >        final boolean pollFor(ForkJoinTask<?> task) {
786 >            ForkJoinTask<?>[] a; int b;
787 >            if ((b = base) - top < 0 && (a = array) != null) {
788 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
789 >                if (U.getObjectVolatile(a, j) == task && base == b &&
790 >                    U.compareAndSwapObject(a, j, task, null)) {
791 >                    base = b + 1;
792 >                    return true;
793 >                }
794 >            }
795 >            return false;
796 >        }
797 >
798 >        /**
799 >         * If present, removes from queue and executes the given task, or
800 >         * any other cancelled task. Returns (true) immediately on any CAS
801 >         * or consistency check failure so caller can retry.
802 >         *
803 >         * @return false if no progress can be made
804 >         */
805 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
806 >            boolean removed = false, empty = true, progress = true;
807 >            ForkJoinTask<?>[] a; int m, s, b, n;
808 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
809 >                (n = (s = top) - (b = base)) > 0) {
810 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
811 >                    int j = ((--s & m) << ASHIFT) + ABASE;
812 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
813 >                    if (t == null)                    // inconsistent length
814 >                        break;
815 >                    else if (t == task) {
816 >                        if (s + 1 == top) {           // pop
817 >                            if (!U.compareAndSwapObject(a, j, task, null))
818 >                                break;
819 >                            top = s;
820 >                            removed = true;
821 >                        }
822 >                        else if (base == b)           // replace with proxy
823 >                            removed = U.compareAndSwapObject(a, j, task,
824 >                                                             new EmptyTask());
825 >                        break;
826 >                    }
827 >                    else if (t.status >= 0)
828 >                        empty = false;
829 >                    else if (s + 1 == top) {          // pop and throw away
830 >                        if (U.compareAndSwapObject(a, j, t, null))
831 >                            top = s;
832 >                        break;
833 >                    }
834 >                    if (--n == 0) {
835 >                        if (!empty && base == b)
836 >                            progress = false;
837 >                        break;
838 >                    }
839 >                }
840 >            }
841 >            if (removed)
842 >                task.doExec();
843 >            return progress;
844 >        }
845 >
846 >        /**
847 >         * Initializes or doubles the capacity of array. Call either
848 >         * by owner or with lock held -- it is OK for base, but not
849 >         * top, to move while resizings are in progress.
850 >         *
851 >         * @param rejectOnFailure if true, throw exception if capacity
852 >         * exceeded (relayed ultimately to user); else return null.
853 >         */
854 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
855 >            ForkJoinTask<?>[] oldA = array;
856 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
857 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
858 >                int oldMask, t, b;
859 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
860 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
861 >                    (t = top) - (b = base) > 0) {
862 >                    int mask = size - 1;
863 >                    do {
864 >                        ForkJoinTask<?> x;
865 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
866 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
867 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
868 >                        if (x != null &&
869 >                            U.compareAndSwapObject(oldA, oldj, x, null))
870 >                            U.putObjectVolatile(a, j, x);
871 >                    } while (++b != t);
872 >                }
873 >                return a;
874 >            }
875 >            else if (!rejectOnFailure)
876 >                return null;
877 >            else
878 >                throw new RejectedExecutionException("Queue capacity exceeded");
879 >        }
880 >
881 >        /**
882 >         * Removes and cancels all known tasks, ignoring any exceptions.
883 >         */
884 >        final void cancelAll() {
885 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
886 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
887 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
888 >                ForkJoinTask.cancelIgnoringExceptions(t);
889 >        }
890 >
891 >        /**
892 >         * Computes next value for random probes.  Scans don't require
893 >         * a very high quality generator, but also not a crummy one.
894 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
895 >         * This is manually inlined in several usages in ForkJoinPool
896 >         * to avoid writes inside busy scan loops.
897 >         */
898 >        final int nextSeed() {
899 >            int r = seed;
900 >            r ^= r << 13;
901 >            r ^= r >>> 17;
902 >            return seed = r ^= r << 5;
903 >        }
904 >
905 >        // Execution methods
906 >
907 >        /**
908 >         * Removes and runs tasks until empty, using local mode
909 >         * ordering.
910 >         */
911 >        final void runLocalTasks() {
912 >            if (base - top < 0) {
913 >                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
914 >                    t.doExec();
915 >            }
916 >        }
917 >
918 >        /**
919 >         * Executes a top-level task and any local tasks remaining
920 >         * after execution.
921 >         *
922 >         * @return true unless terminating
923 >         */
924 >        final boolean runTask(ForkJoinTask<?> t) {
925 >            boolean alive = true;
926 >            if (t != null) {
927 >                currentSteal = t;
928 >                t.doExec();
929 >                runLocalTasks();
930 >                ++nsteals;
931 >                currentSteal = null;
932 >            }
933 >            else if (runState < 0)            // terminating
934 >                alive = false;
935 >            return alive;
936 >        }
937 >
938 >        /**
939 >         * Executes a non-top-level (stolen) task.
940 >         */
941 >        final void runSubtask(ForkJoinTask<?> t) {
942 >            if (t != null) {
943 >                ForkJoinTask<?> ps = currentSteal;
944 >                currentSteal = t;
945 >                t.doExec();
946 >                currentSteal = ps;
947 >            }
948 >        }
949 >
950 >        /**
951 >         * Returns true if owned and not known to be blocked.
952 >         */
953 >        final boolean isApparentlyUnblocked() {
954 >            Thread wt; Thread.State s;
955 >            return (eventCount >= 0 &&
956 >                    (wt = owner) != null &&
957 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
958 >                    s != Thread.State.WAITING &&
959 >                    s != Thread.State.TIMED_WAITING);
960 >        }
961 >
962 >        /**
963 >         * If this owned and is not already interrupted, try to
964 >         * interrupt and/or unpark, ignoring exceptions.
965 >         */
966 >        final void interruptOwner() {
967 >            Thread wt, p;
968 >            if ((wt = owner) != null && !wt.isInterrupted()) {
969 >                try {
970 >                    wt.interrupt();
971 >                } catch (SecurityException ignore) {
972 >                }
973 >            }
974 >            if ((p = parker) != null)
975 >                U.unpark(p);
976 >        }
977 >
978 >        // Unsafe mechanics
979 >        private static final sun.misc.Unsafe U;
980 >        private static final long RUNSTATE;
981 >        private static final int ABASE;
982 >        private static final int ASHIFT;
983 >        static {
984 >            int s;
985 >            try {
986 >                U = getUnsafe();
987 >                Class<?> k = WorkQueue.class;
988 >                Class<?> ak = ForkJoinTask[].class;
989 >                RUNSTATE = U.objectFieldOffset
990 >                    (k.getDeclaredField("runState"));
991 >                ABASE = U.arrayBaseOffset(ak);
992 >                s = U.arrayIndexScale(ak);
993 >            } catch (Exception e) {
994 >                throw new Error(e);
995 >            }
996 >            if ((s & (s-1)) != 0)
997 >                throw new Error("data type scale not a power of two");
998 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
999 >        }
1000 >    }
1001  
1002      /**
1003 <     * Maximum size for submission queue array. Must be a power of two
1004 <     * less than or equal to 1 << (31 - width of array entry) to
1005 <     * ensure lack of index wraparound, but is capped at a lower
1006 <     * value to help users trap runaway computations.
1003 >     * Per-thread records for threads that submit to pools. Currently
1004 >     * holds only pseudo-random seed / index that is used to choose
1005 >     * submission queues in method doSubmit. In the future, this may
1006 >     * also incorporate a means to implement different task rejection
1007 >     * and resubmission policies.
1008       */
1009 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
1009 >    static final class Submitter {
1010 >        int seed;
1011 >        Submitter() { seed = hashId(Thread.currentThread().getId()); }
1012 >    }
1013 >
1014 >    /** ThreadLocal class for Submitters */
1015 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1016 >        public Submitter initialValue() { return new Submitter(); }
1017 >    }
1018 >
1019 >    // static fields (initialized in static initializer below)
1020  
1021      /**
1022 <     * Array serving as submission queue. Initialized upon construction.
1022 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1023 >     * overridden in ForkJoinPool constructors.
1024       */
1025 <    private ForkJoinTask<?>[] submissionQueue;
1025 >    public static final ForkJoinWorkerThreadFactory
1026 >        defaultForkJoinWorkerThreadFactory;
1027  
1028      /**
1029 <     * Lock protecting submissions array for addSubmission
1029 >     * Generator for assigning sequence numbers as pool names.
1030       */
1031 <    private final ReentrantLock submissionLock;
1031 >    private static final AtomicInteger poolNumberGenerator;
1032  
1033      /**
1034 <     * Condition for awaitTermination, using submissionLock for
1035 <     * convenience.
1034 >     * Permission required for callers of methods that may start or
1035 >     * kill threads.
1036       */
1037 <    private final Condition termination;
1037 >    private static final RuntimePermission modifyThreadPermission;
1038  
1039      /**
1040 <     * Creation factory for worker threads.
1040 >     * Per-thread submission bookeeping. Shared across all pools
1041 >     * to reduce ThreadLocal pollution and because random motion
1042 >     * to avoid contention in one pool is likely to hold for others.
1043       */
1044 <    private final ForkJoinWorkerThreadFactory factory;
1044 >    private static final ThreadSubmitter submitters;
1045 >
1046 >    // static constants
1047  
1048      /**
1049 <     * The uncaught exception handler used when any worker abruptly
1050 <     * terminates.
1049 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
1050 >     * task when the pool is quiescent to instead try to shrink the
1051 >     * number of workers.  The exact value does not matter too
1052 >     * much. It must be short enough to release resources during
1053 >     * sustained periods of idleness, but not so short that threads
1054 >     * are continually re-created.
1055       */
1056 <    final Thread.UncaughtExceptionHandler ueh;
1056 >    private static final long SHRINK_RATE =
1057 >        4L * 1000L * 1000L * 1000L; // 4 seconds
1058  
1059      /**
1060 <     * Prefix for assigning names to worker threads
1060 >     * The timeout value for attempted shrinkage, includes
1061 >     * some slop to cope with system timer imprecision.
1062       */
1063 <    private final String workerNamePrefix;
1063 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1064  
1065      /**
1066 <     * Sum of per-thread steal counts, updated only when threads are
1067 <     * idle or terminating.
1066 >     * The maximum stolen->joining link depth allowed in tryHelpStealer.
1067 >     * Depths for legitimate chains are unbounded, but we use a fixed
1068 >     * constant to avoid (otherwise unchecked) cycles and to bound
1069 >     * staleness of traversal parameters at the expense of sometimes
1070 >     * blocking when we could be helping.
1071       */
1072 <    private volatile long stealCount;
1072 >    private static final int MAX_HELP_DEPTH = 16;
1073  
1074      /**
1075 <     * Main pool control -- a long packed with:
1075 >     * Bits and masks for control variables
1076 >     *
1077 >     * Field ctl is a long packed with:
1078       * AC: Number of active running workers minus target parallelism (16 bits)
1079       * TC: Number of total workers minus target parallelism (16 bits)
1080       * ST: true if pool is terminating (1 bit)
1081       * EC: the wait count of top waiting thread (15 bits)
1082 <     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
1082 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1083       *
1084       * When convenient, we can extract the upper 32 bits of counts and
1085       * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
# Line 477 | Line 1088 | public class ForkJoinPool extends Abstra
1088       * parallelism and the positionings of fields makes it possible to
1089       * perform the most common checks via sign tests of fields: When
1090       * ac is negative, there are not enough active workers, when tc is
1091 <     * negative, there are not enough total workers, when id is
481 <     * negative, there is at least one waiting worker, and when e is
1091 >     * negative, there are not enough total workers, and when e is
1092       * negative, the pool is terminating.  To deal with these possibly
1093       * negative fields, we use casts in and out of "short" and/or
1094       * signed shifts to maintain signedness.
1095 +     *
1096 +     * When a thread is queued (inactivated), its eventCount field is
1097 +     * set negative, which is the only way to tell if a worker is
1098 +     * prevented from executing tasks, even though it must continue to
1099 +     * scan for them to avoid queuing races. Note however that
1100 +     * eventCount updates lag releases so usage requires care.
1101 +     *
1102 +     * Field runState is an int packed with:
1103 +     * SHUTDOWN: true if shutdown is enabled (1 bit)
1104 +     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
1105 +     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
1106 +     *
1107 +     * The combination of mask and sequence number enables simple
1108 +     * consistency checks: Staleness of read-only operations on the
1109 +     * workQueues array can be checked by comparing runState before vs
1110 +     * after the reads. The low 16 bits (i.e, anding with SMASK) hold
1111 +     * the smallest power of two covering all indices, minus
1112 +     * one.
1113       */
486    volatile long ctl;
1114  
1115      // bit positions/shifts for fields
1116      private static final int  AC_SHIFT   = 48;
# Line 492 | Line 1119 | public class ForkJoinPool extends Abstra
1119      private static final int  EC_SHIFT   = 16;
1120  
1121      // bounds
1122 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
1123 <    private static final int  SMASK      = 0xffff;  // mask short bits
1122 >    private static final int  POOL_MAX   = 0x7fff;  // max #workers - 1
1123 >    private static final int  SMASK      = 0xffff;  // short bits
1124 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1125      private static final int  SHORT_SIGN = 1 << 15;
1126      private static final int  INT_SIGN   = 1 << 31;
1127  
# Line 515 | Line 1143 | public class ForkJoinPool extends Abstra
1143      private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1144  
1145      // masks and units for dealing with e = (int)ctl
1146 <    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
1147 <    private static final int  EC_UNIT    = 1 << EC_SHIFT;
520 <
521 <    /**
522 <     * The target parallelism level.
523 <     */
524 <    final int parallelism;
525 <
526 <    /**
527 <     * Index (mod submission queue length) of next element to take
528 <     * from submission queue. Usage is identical to that for
529 <     * per-worker queues -- see ForkJoinWorkerThread internal
530 <     * documentation.
531 <     */
532 <    volatile int queueBase;
533 <
534 <    /**
535 <     * Index (mod submission queue length) of next element to add
536 <     * in submission queue. Usage is identical to that for
537 <     * per-worker queues -- see ForkJoinWorkerThread internal
538 <     * documentation.
539 <     */
540 <    int queueTop;
541 <
542 <    /**
543 <     * True when shutdown() has been called.
544 <     */
545 <    volatile boolean shutdown;
546 <
547 <    /**
548 <     * True if use local fifo, not default lifo, for local polling.
549 <     * Read by, and replicated by ForkJoinWorkerThreads.
550 <     */
551 <    final boolean locallyFifo;
552 <
553 <    /**
554 <     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
555 <     * When non-zero, suppresses automatic shutdown when active
556 <     * counts become zero.
557 <     */
558 <    volatile int quiescerCount;
1146 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1147 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1148  
1149 <    /**
1150 <     * The number of threads blocked in join.
1151 <     */
1152 <    volatile int blockedCount;
1149 >    // runState bits
1150 >    private static final int SHUTDOWN    = 1 << 31;
1151 >    private static final int RS_SEQ      = 1 << 16;
1152 >    private static final int RS_SEQ_MASK = 0x7fff0000;
1153 >
1154 >    // access mode for WorkQueue
1155 >    static final int LIFO_QUEUE          =  0;
1156 >    static final int FIFO_QUEUE          =  1;
1157 >    static final int SHARED_QUEUE        = -1;
1158  
1159 <    /**
566 <     * Counter for worker Thread names (unrelated to their poolIndex)
567 <     */
568 <    private volatile int nextWorkerNumber;
569 <
570 <    /**
571 <     * The index for the next created worker. Accessed under scanGuard.
572 <     */
573 <    private int nextWorkerIndex;
1159 >    // Instance fields
1160  
1161 <    /**
1162 <     * SeqLock and index masking for updates to workers array.  Locked
1163 <     * when SG_UNIT is set. Unlocking clears bit by adding
1164 <     * SG_UNIT. Staleness of read-only operations can be checked by
1165 <     * comparing scanGuard to value before the reads. The low 16 bits
1166 <     * (i.e, anding with SMASK) hold (the smallest power of two
1167 <     * covering all worker indices, minus one, and is used to avoid
1168 <     * dealing with large numbers of null slots when the workers array
1169 <     * is overallocated.
1170 <     */
1171 <    volatile int scanGuard;
1172 <
1173 <    private static final int SG_UNIT = 1 << 16;
1174 <
1175 <    /**
1176 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1177 <     * task when the pool is quiescent to instead try to shrink the
1178 <     * number of workers.  The exact value does not matter too
1179 <     * much. It must be short enough to release resources during
1180 <     * sustained periods of idleness, but not so short that threads
595 <     * are continually re-created.
596 <     */
597 <    private static final long SHRINK_RATE =
598 <        4L * 1000L * 1000L * 1000L; // 4 seconds
599 <
600 <    /**
601 <     * Top-level loop for worker threads: On each step: if the
602 <     * previous step swept through all queues and found no tasks, or
603 <     * there are excess threads, then possibly blocks. Otherwise,
604 <     * scans for and, if found, executes a task. Returns when pool
605 <     * and/or worker terminate.
606 <     *
607 <     * @param w the worker
608 <     */
609 <    final void work(ForkJoinWorkerThread w) {
610 <        boolean swept = false;                // true on empty scans
611 <        long c;
612 <        while (!w.terminate && (int)(c = ctl) >= 0) {
613 <            int a;                            // active count
614 <            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
615 <                swept = scan(w, a);
616 <            else if (tryAwaitWork(w, c))
617 <                swept = false;
618 <        }
619 <    }
1161 >    /*
1162 >     * Field layout order in this class tends to matter more than one
1163 >     * would like. Runtime layout order is only loosely related to
1164 >     * declaration order and may differ across JVMs, but the following
1165 >     * empirically works OK on current JVMs.
1166 >     */
1167 >
1168 >    volatile long ctl;                         // main pool control
1169 >    final int parallelism;                     // parallelism level
1170 >    final int localMode;                       // per-worker scheduling mode
1171 >    int growHints;                             // for expanding indices/ranges
1172 >    volatile int runState;                     // shutdown status, seq, and mask
1173 >    WorkQueue[] workQueues;                    // main registry
1174 >    final Mutex lock;                          // for registration
1175 >    final Condition termination;               // for awaitTermination
1176 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1177 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1178 >    final AtomicLong stealCount;               // collect counts when terminated
1179 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1180 >    final String workerNamePrefix;             // to create worker name string
1181  
1182 <    // Signalling
1182 >    //  Creating, registering, deregistering and running workers
1183  
1184      /**
1185 <     * Wakes up or creates a worker.
1185 >     * Tries to create and start a worker
1186       */
1187 <    final void signalWork() {
1188 <        /*
1189 <         * The while condition is true if: (there is are too few total
1190 <         * workers OR there is at least one waiter) AND (there are too
1191 <         * few active workers OR the pool is terminating).  The value
1192 <         * of e distinguishes the remaining cases: zero (no waiters)
1193 <         * for create, negative if terminating (in which case do
633 <         * nothing), else release a waiter. The secondary checks for
634 <         * release (non-null array etc) can fail if the pool begins
635 <         * terminating after the test, and don't impose any added cost
636 <         * because JVMs must perform null and bounds checks anyway.
637 <         */
638 <        long c; int e, u;
639 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
640 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
641 <            if (e > 0) {                         // release a waiting worker
642 <                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
643 <                if ((ws = workers) == null ||
644 <                    (i = ~e & SMASK) >= ws.length ||
645 <                    (w = ws[i]) == null)
646 <                    break;
647 <                long nc = (((long)(w.nextWait & E_MASK)) |
648 <                           ((long)(u + UAC_UNIT) << 32));
649 <                if (w.eventCount == e &&
650 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
651 <                    w.eventCount = (e + EC_UNIT) & E_MASK;
652 <                    if (w.parked)
653 <                        UNSAFE.unpark(w);
654 <                    break;
655 <                }
656 <            }
657 <            else if (UNSAFE.compareAndSwapLong
658 <                     (this, ctlOffset, c,
659 <                      (long)(((u + UTC_UNIT) & UTC_MASK) |
660 <                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
661 <                addWorker();
662 <                break;
1187 >    private void addWorker() {
1188 >        Throwable ex = null;
1189 >        ForkJoinWorkerThread wt = null;
1190 >        try {
1191 >            if ((wt = factory.newThread(this)) != null) {
1192 >                wt.start();
1193 >                return;
1194              }
1195 +        } catch (Throwable e) {
1196 +            ex = e;
1197          }
1198 +        deregisterWorker(wt, ex); // adjust counts etc on failure
1199      }
1200  
1201      /**
1202 <     * Variant of signalWork to help release waiters on rescans.
1203 <     * Tries once to release a waiter if active count < 0.
1204 <     *
1205 <     * @return false if failed due to contention, else true
1202 >     * Callback from ForkJoinWorkerThread constructor to assign a
1203 >     * public name. This must be separate from registerWorker because
1204 >     * it is called during the "super" constructor call in
1205 >     * ForkJoinWorkerThread.
1206       */
1207 <    private boolean tryReleaseWaiter() {
1208 <        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
1209 <        if ((e = (int)(c = ctl)) > 0 &&
676 <            (int)(c >> AC_SHIFT) < 0 &&
677 <            (ws = workers) != null &&
678 <            (i = ~e & SMASK) < ws.length &&
679 <            (w = ws[i]) != null) {
680 <            long nc = ((long)(w.nextWait & E_MASK) |
681 <                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
682 <            if (w.eventCount != e ||
683 <                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
684 <                return false;
685 <            w.eventCount = (e + EC_UNIT) & E_MASK;
686 <            if (w.parked)
687 <                UNSAFE.unpark(w);
688 <        }
689 <        return true;
690 <    }
691 <
692 <    // Scanning for tasks
693 <
694 <    /**
695 <     * Scans for and, if found, executes one task. Scans start at a
696 <     * random index of workers array, and randomly select the first
697 <     * (2*#workers)-1 probes, and then, if all empty, resort to 2
698 <     * circular sweeps, which is necessary to check quiescence. and
699 <     * taking a submission only if no stealable tasks were found.  The
700 <     * steal code inside the loop is a specialized form of
701 <     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
702 <     * helpJoinTask and signal propagation. The code for submission
703 <     * queues is almost identical. On each steal, the worker completes
704 <     * not only the task, but also all local tasks that this task may
705 <     * have generated. On detecting staleness or contention when
706 <     * trying to take a task, this method returns without finishing
707 <     * sweep, which allows global state rechecks before retry.
708 <     *
709 <     * @param w the worker
710 <     * @param a the number of active workers
711 <     * @return true if swept all queues without finding a task
712 <     */
713 <    private boolean scan(ForkJoinWorkerThread w, int a) {
714 <        int g = scanGuard; // mask 0 avoids useless scans if only one active
715 <        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
716 <        ForkJoinWorkerThread[] ws = workers;
717 <        if (ws == null || ws.length <= m)         // staleness check
718 <            return false;
719 <        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
720 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
721 <            ForkJoinWorkerThread v = ws[k & m];
722 <            if (v != null && (b = v.queueBase) != v.queueTop &&
723 <                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
724 <                long u = (i << ASHIFT) + ABASE;
725 <                if ((t = q[i]) != null && v.queueBase == b &&
726 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
727 <                    int d = (v.queueBase = b + 1) - v.queueTop;
728 <                    v.stealHint = w.poolIndex;
729 <                    if (d != 0)
730 <                        signalWork();             // propagate if nonempty
731 <                    w.execTask(t);
732 <                }
733 <                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
734 <                return false;                     // store next seed
735 <            }
736 <            else if (j < 0) {                     // xorshift
737 <                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
738 <            }
739 <            else
740 <                ++k;
741 <        }
742 <        if (scanGuard != g)                       // staleness check
743 <            return false;
744 <        else {                                    // try to take submission
745 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
746 <            if ((b = queueBase) != queueTop &&
747 <                (q = submissionQueue) != null &&
748 <                (i = (q.length - 1) & b) >= 0) {
749 <                long u = (i << ASHIFT) + ABASE;
750 <                if ((t = q[i]) != null && queueBase == b &&
751 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
752 <                    queueBase = b + 1;
753 <                    w.execTask(t);
754 <                }
755 <                return false;
756 <            }
757 <            return true;                         // all queues empty
758 <        }
1207 >    final String nextWorkerName() {
1208 >        return workerNamePrefix.concat
1209 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1210      }
1211  
1212      /**
1213 <     * Tries to enqueue worker w in wait queue and await change in
1214 <     * worker's eventCount.  If the pool is quiescent and there is
764 <     * more than one worker, possibly terminates worker upon exit.
765 <     * Otherwise, before blocking, rescans queues to avoid missed
766 <     * signals.  Upon finding work, releases at least one worker
767 <     * (which may be the current worker). Rescans restart upon
768 <     * detected staleness or failure to release due to
769 <     * contention. Note the unusual conventions about Thread.interrupt
770 <     * here and elsewhere: Because interrupts are used solely to alert
771 <     * threads to check termination, which is checked here anyway, we
772 <     * clear status (using Thread.interrupted) before any call to
773 <     * park, so that park does not immediately return due to status
774 <     * being set via some other unrelated call to interrupt in user
775 <     * code.
1213 >     * Callback from ForkJoinWorkerThread constructor to establish and
1214 >     * record its WorkQueue.
1215       *
1216 <     * @param w the calling worker
778 <     * @param c the ctl value on entry
779 <     * @return true if waited or another thread was released upon enq
1216 >     * @param wt the worker thread
1217       */
1218 <    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
1219 <        int v = w.eventCount;
1220 <        w.nextWait = (int)c;                      // w's successor record
1221 <        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1222 <        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1223 <            long d = ctl; // return true if lost to a deq, to force scan
1224 <            return (int)d != (int)c && (d & AC_MASK) >= (c & AC_MASK);
1225 <        }
1226 <        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
1227 <            long s = stealCount;
1228 <            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
1229 <                sc = w.stealCount = 0;
1230 <            else if (w.eventCount != v)
1231 <                return true;                      // update next time
795 <        }
796 <        if ((!shutdown || !tryTerminate(false)) &&
797 <            (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
798 <            blockedCount == 0 && quiescerCount == 0)
799 <            idleAwaitWork(w, nc, c, v);           // quiescent
800 <        for (boolean rescanned = false;;) {
801 <            if (w.eventCount != v)
802 <                return true;
803 <            if (!rescanned) {
804 <                int g = scanGuard, m = g & SMASK;
805 <                ForkJoinWorkerThread[] ws = workers;
806 <                if (ws != null && m < ws.length) {
807 <                    rescanned = true;
808 <                    for (int i = 0; i <= m; ++i) {
809 <                        ForkJoinWorkerThread u = ws[i];
810 <                        if (u != null) {
811 <                            if (u.queueBase != u.queueTop &&
812 <                                !tryReleaseWaiter())
813 <                                rescanned = false; // contended
814 <                            if (w.eventCount != v)
815 <                                return true;
816 <                        }
817 <                    }
818 <                }
819 <                if (scanGuard != g ||              // stale
820 <                    (queueBase != queueTop && !tryReleaseWaiter()))
821 <                    rescanned = false;
822 <                if (!rescanned)
823 <                    Thread.yield();                // reduce contention
824 <                else
825 <                    Thread.interrupted();          // clear before park
826 <            }
827 <            else {
828 <                w.parked = true;                   // must recheck
829 <                if (w.eventCount != v) {
830 <                    w.parked = false;
831 <                    return true;
1218 >    final void registerWorker(ForkJoinWorkerThread wt) {
1219 >        WorkQueue w = wt.workQueue;
1220 >        Mutex lock = this.lock;
1221 >        lock.lock();
1222 >        try {
1223 >            int g = growHints, k = g & SMASK;
1224 >            WorkQueue[] ws = workQueues;
1225 >            if (ws != null) {                       // ignore on shutdown
1226 >                int n = ws.length;
1227 >                if ((k & 1) == 0 || k >= n || ws[k] != null) {
1228 >                    for (k = 1; k < n && ws[k] != null; k += 2)
1229 >                        ;                           // workers are at odd indices
1230 >                    if (k >= n)                     // resize
1231 >                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1232                  }
1233 <                LockSupport.park(this);
1234 <                rescanned = w.parked = false;
1233 >                w.eventCount = w.poolIndex = k;     // establish before recording
1234 >                ws[k] = w;
1235 >                growHints = (g & ~SMASK) | ((k + 2) & SMASK);
1236 >                int rs = runState;
1237 >                int m = rs & SMASK;                 // recalculate runState mask
1238 >                if (k > m)
1239 >                    m = (m << 1) + 1;
1240 >                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1241              }
1242 +        } finally {
1243 +            lock.unlock();
1244          }
1245      }
1246  
1247      /**
1248 <     * If inactivating worker w has caused pool to become
1249 <     * quiescent, check for pool termination, and wait for event
1250 <     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
1251 <     * this case because quiescence reflects consensus about lack
844 <     * of work). On timeout, if ctl has not changed, terminate the
845 <     * worker. Upon its termination (see deregisterWorker), it may
846 <     * wake up another worker to possibly repeat this process.
1248 >     * Final callback from terminating worker, as well as upon failure
1249 >     * to construct or start a worker in addWorker.  Removes record of
1250 >     * worker from array, and adjusts counts. If pool is shutting
1251 >     * down, tries to complete termination.
1252       *
1253 <     * @param w the calling worker
1254 <     * @param currentCtl the ctl value after enqueuing w
1255 <     * @param prevCtl the ctl value if w terminated
1256 <     * @param v the eventCount w awaits change
1257 <     */
1258 <    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
1259 <                               long prevCtl, int v) {
1260 <        if (w.eventCount == v) {
1261 <            if (shutdown)
1262 <                tryTerminate(false);
1263 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
1264 <            while (ctl == currentCtl) {
1265 <                long startTime = System.nanoTime();
1266 <                w.parked = true;
1267 <                if (w.eventCount == v)             // must recheck
1268 <                    LockSupport.parkNanos(this, SHRINK_RATE);
864 <                w.parked = false;
865 <                if (w.eventCount != v)
866 <                    break;
867 <                else if (System.nanoTime() - startTime <
868 <                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
869 <                    Thread.interrupted();          // spurious wakeup
870 <                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
871 <                                                   currentCtl, prevCtl)) {
872 <                    w.terminate = true;            // restore previous
873 <                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
874 <                    break;
1253 >     * @param wt the worker thread or null if addWorker failed
1254 >     * @param ex the exception causing failure, or null if none
1255 >     */
1256 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1257 >        WorkQueue w = null;
1258 >        if (wt != null && (w = wt.workQueue) != null) {
1259 >            w.runState = -1;                // ensure runState is set
1260 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1261 >            int idx = w.poolIndex;
1262 >            Mutex lock = this.lock;
1263 >            lock.lock();
1264 >            try {                           // remove record from array
1265 >                WorkQueue[] ws = workQueues;
1266 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) {
1267 >                    ws[idx] = null;
1268 >                    growHints = (growHints & ~SMASK) | idx;
1269                  }
1270 +            } finally {
1271 +                lock.unlock();
1272              }
1273          }
878    }
1274  
1275 <    // Submissions
1275 >        long c;                             // adjust ctl counts
1276 >        do {} while (!U.compareAndSwapLong
1277 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1278 >                                           ((c - TC_UNIT) & TC_MASK) |
1279 >                                           (c & ~(AC_MASK|TC_MASK)))));
1280  
1281 <    /**
1282 <     * Enqueues the given task in the submissionQueue.  Same idea as
1283 <     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
1284 <     *
1285 <     * @param t the task
1286 <     */
888 <    private void addSubmission(ForkJoinTask<?> t) {
889 <        final ReentrantLock lock = this.submissionLock;
890 <        lock.lock();
891 <        try {
892 <            ForkJoinTask<?>[] q; int s, m;
893 <            if ((q = submissionQueue) != null) {    // ignore if queue removed
894 <                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
895 <                UNSAFE.putOrderedObject(q, u, t);
896 <                queueTop = s + 1;
897 <                if (s - queueBase == m)
898 <                    growSubmissionQueue();
899 <            }
900 <        } finally {
901 <            lock.unlock();
1281 >        if (!tryTerminate(false, false) && w != null) {
1282 >            w.cancelAll();                  // cancel remaining tasks
1283 >            if (w.array != null)            // suppress signal if never ran
1284 >                signalWork();               // wake up or create replacement
1285 >            if (ex == null)                 // help clean refs on way out
1286 >                ForkJoinTask.helpExpungeStaleExceptions();
1287          }
903        signalWork();
904    }
1288  
1289 <    //  (pollSubmission is defined below with exported methods)
1289 >        if (ex != null)                     // rethrow
1290 >            U.throwException(ex);
1291 >    }
1292  
1293      /**
1294 <     * Creates or doubles submissionQueue array.
910 <     * Basically identical to ForkJoinWorkerThread version.
1294 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1295       */
1296 <    private void growSubmissionQueue() {
1297 <        ForkJoinTask<?>[] oldQ = submissionQueue;
1298 <        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
1299 <        if (size > MAXIMUM_QUEUE_CAPACITY)
1300 <            throw new RejectedExecutionException("Queue capacity exceeded");
1301 <        if (size < INITIAL_QUEUE_CAPACITY)
1302 <            size = INITIAL_QUEUE_CAPACITY;
919 <        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
920 <        int mask = size - 1;
921 <        int top = queueTop;
922 <        int oldMask;
923 <        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
924 <            for (int b = queueBase; b != top; ++b) {
925 <                long u = ((b & oldMask) << ASHIFT) + ABASE;
926 <                Object x = UNSAFE.getObjectVolatile(oldQ, u);
927 <                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
928 <                    UNSAFE.putObjectVolatile
929 <                        (q, ((b & mask) << ASHIFT) + ABASE, x);
930 <            }
931 <        }
1296 >    final void runWorker(ForkJoinWorkerThread wt) {
1297 >        // Initialize queue array and seed in this thread
1298 >        WorkQueue w = wt.workQueue;
1299 >        w.growArray(false);
1300 >        w.seed = hashId(Thread.currentThread().getId());
1301 >
1302 >        do {} while (w.runTask(scan(w)));
1303      }
1304  
1305 <    // Blocking support
1305 >    // Submissions
1306  
1307      /**
1308 <     * Tries to increment blockedCount, decrement active count
1309 <     * (sometimes implicitly) and possibly release or create a
1310 <     * compensating worker in preparation for blocking. Fails
1311 <     * on contention or termination.
1312 <     *
1313 <     * @return true if the caller can block, else should recheck and retry
1308 >     * Unless shutting down, adds the given task to a submission queue
1309 >     * at submitter's current queue index (modulo submission
1310 >     * range). If no queue exists at the index, one is created unless
1311 >     * pool lock is busy.  If the queue and/or lock are busy, another
1312 >     * index is randomly chosen. The mask in growHints controls the
1313 >     * effective index range of queues considered. The mask is
1314 >     * expanded, up to the current workerQueue mask, upon any detected
1315 >     * contention but otherwise remains small to avoid needlessly
1316 >     * creating queues when there is no contention.
1317       */
1318 <    private boolean tryPreBlock() {
1319 <        int b = blockedCount;
1320 <        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
1321 <            int pc = parallelism;
1322 <            do {
1323 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1324 <                int e, ac, tc, i;
1325 <                long c = ctl;
1326 <                int u = (int)(c >>> 32);
1327 <                if ((e = (int)c) < 0) {
1328 <                                                 // skip -- terminating
1329 <                }
1330 <                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
1331 <                         (ws = workers) != null &&
1332 <                         (i = ~e & SMASK) < ws.length &&
1333 <                         (w = ws[i]) != null) {
960 <                    long nc = ((long)(w.nextWait & E_MASK) |
961 <                               (c & (AC_MASK|TC_MASK)));
962 <                    if (w.eventCount == e &&
963 <                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 <                        w.eventCount = (e + EC_UNIT) & E_MASK;
965 <                        if (w.parked)
966 <                            UNSAFE.unpark(w);
967 <                        return true;             // release an idle worker
1318 >    private void doSubmit(ForkJoinTask<?> task) {
1319 >        if (task == null)
1320 >            throw new NullPointerException();
1321 >        Submitter s = submitters.get();
1322 >        for (int r = s.seed, m = growHints >>> 16;;) {
1323 >            WorkQueue[] ws; WorkQueue q; Mutex lk;
1324 >            int k = r & m & SQMASK;          // use only even indices
1325 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1326 >                throw new RejectedExecutionException(); // shutting down
1327 >            if ((q = ws[k]) == null && (lk = lock).tryAcquire(0)) {
1328 >                try {                        // try to create new queue
1329 >                    if (ws == workQueues && (q = ws[k]) == null) {
1330 >                        int rs;              // update runState seq
1331 >                        ws[k] = q = new WorkQueue(null, SHARED_QUEUE);
1332 >                        runState = (((rs = runState) & SHUTDOWN) |
1333 >                                    ((rs + RS_SEQ) & ~SHUTDOWN));
1334                      }
1335 +                } finally {
1336 +                    lk.unlock();
1337                  }
1338 <                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1339 <                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1340 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
1341 <                        return true;             // no compensation needed
1342 <                }
975 <                else if (tc + pc < MAX_ID) {
976 <                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
977 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
978 <                        addWorker();
979 <                        return true;            // create a replacement
980 <                    }
1338 >            }
1339 >            if (q != null) {
1340 >                if (q.trySharedPush(task)) {
1341 >                    signalWork();
1342 >                    return;
1343                  }
1344 <                // try to back out on any failure and let caller retry
1345 <            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
1346 <                                               b = blockedCount, b - 1));
1344 >                else if (m < parallelism - 1 && m < (runState & SMASK)) {
1345 >                    Mutex lock = this.lock;
1346 >                    lock.lock();             // block until lock free
1347 >                    int g = growHints;
1348 >                    if (g >>> 16 == m)       // expand range
1349 >                        growHints = (((m << 1) + 1) << 16) | (g & SMASK);
1350 >                    lock.unlock();           // no need for try/finally
1351 >                }
1352 >                else if ((r & m) == 0)
1353 >                    Thread.yield();          // occasionally yield if busy
1354 >            }
1355 >            if (m == (m = growHints >>> 16)) {
1356 >                r ^= r << 13;                // update seed unless new range
1357 >                r ^= r >>> 17;               // same xorshift as WorkQueues
1358 >                s.seed = r ^= r << 5;
1359 >            }
1360          }
986        return false;
1361      }
1362  
1363 +    // Maintaining ctl counts
1364 +
1365      /**
1366 <     * Decrements blockedCount and increments active count.
1366 >     * Increments active count; mainly called upon return from blocking.
1367       */
1368 <    private void postBlock() {
1368 >    final void incrementActiveCount() {
1369          long c;
1370 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
995 <                                                c = ctl, c + AC_UNIT));
996 <        int b;
997 <        do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
998 <                                               b = blockedCount, b - 1));
1370 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1371      }
1372  
1373      /**
1374 <     * Possibly blocks waiting for the given task to complete, or
1003 <     * cancels the task if terminating.  Fails to wait if contended.
1004 <     *
1005 <     * @param joinMe the task
1374 >     * Tries to activate or create a worker if too few are active.
1375       */
1376 <    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1377 <        Thread.interrupted(); // clear interrupts before checking termination
1378 <        if (joinMe.status >= 0) {
1379 <            if (tryPreBlock()) {
1380 <                joinMe.tryAwaitDone(0L);
1381 <                postBlock();
1376 >    final void signalWork() {
1377 >        long c; int u;
1378 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1379 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1380 >            if ((e = (int)c) > 0) {                     // at least one waiting
1381 >                if (ws != null && (i = e & SMASK) < ws.length &&
1382 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1383 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1384 >                               ((long)(u + UAC_UNIT) << 32));
1385 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1386 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1387 >                        if ((p = w.parker) != null)
1388 >                            U.unpark(p);                // activate and release
1389 >                        break;
1390 >                    }
1391 >                }
1392 >                else
1393 >                    break;
1394              }
1395 <            else if ((ctl & STOP_BIT) != 0L)
1396 <                joinMe.cancelIgnoringExceptions();
1395 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1396 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1397 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1398 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1399 >                    addWorker();
1400 >                    break;
1401 >                }
1402 >            }
1403 >            else
1404 >                break;
1405          }
1406      }
1407  
1408      /**
1409 <     * Possibly blocks the given worker waiting for joinMe to
1410 <     * complete or timeout.
1409 >     * Tries to decrement active count (sometimes implicitly) and
1410 >     * possibly release or create a compensating worker in preparation
1411 >     * for blocking. Fails on contention or termination.
1412       *
1413 <     * @param joinMe the task
1024 <     * @param millis the wait time for underlying Object.wait
1413 >     * @return true if the caller can block, else should recheck and retry
1414       */
1415 <    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1416 <        while (joinMe.status >= 0) {
1417 <            Thread.interrupted();
1418 <            if ((ctl & STOP_BIT) != 0L) {
1419 <                joinMe.cancelIgnoringExceptions();
1420 <                break;
1415 >    final boolean tryCompensate() {
1416 >        WorkQueue w; Thread p;
1417 >        int pc = parallelism, e, u, ac, tc, i;
1418 >        long c = ctl;
1419 >        WorkQueue[] ws = workQueues;
1420 >        if ((e = (int)c) >= 0) {
1421 >            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1422 >                e != 0 && ws != null && (i = e & SMASK) < ws.length &&
1423 >                (w = ws[i]) != null) {
1424 >                long nc = (long)(w.nextWait & E_MASK) | (c & (AC_MASK|TC_MASK));
1425 >                if (w.eventCount == (e | INT_SIGN) &&
1426 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1427 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1428 >                    if ((p = w.parker) != null)
1429 >                        U.unpark(p);
1430 >                    return true;             // release an idle worker
1431 >                }
1432              }
1433 <            if (tryPreBlock()) {
1434 <                long last = System.nanoTime();
1435 <                while (joinMe.status >= 0) {
1436 <                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1437 <                    if (millis <= 0)
1438 <                        break;
1439 <                    joinMe.tryAwaitDone(millis);
1440 <                    if (joinMe.status < 0)
1441 <                        break;
1442 <                    if ((ctl & STOP_BIT) != 0L) {
1043 <                        joinMe.cancelIgnoringExceptions();
1044 <                        break;
1045 <                    }
1046 <                    long now = System.nanoTime();
1047 <                    nanos -= now - last;
1048 <                    last = now;
1433 >            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1434 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1435 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1436 >                    return true;             // no compensation needed
1437 >            }
1438 >            else if (tc + pc < POOL_MAX) {
1439 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1440 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1441 >                    addWorker();
1442 >                    return true;             // create replacement
1443                  }
1050                postBlock();
1051                break;
1444              }
1445          }
1446 +        return false;
1447      }
1448  
1449 +    // Scanning for tasks
1450 +
1451      /**
1452 <     * If necessary, compensates for blocker, and blocks.
1453 <     */
1454 <    private void awaitBlocker(ManagedBlocker blocker)
1455 <        throws InterruptedException {
1456 <        while (!blocker.isReleasable()) {
1457 <            if (tryPreBlock()) {
1458 <                try {
1459 <                    do {} while (!blocker.isReleasable() && !blocker.block());
1460 <                } finally {
1461 <                    postBlock();
1452 >     * Scans for and, if found, returns one task, else possibly
1453 >     * inactivates the worker. This method operates on single reads of
1454 >     * volatile state and is designed to be re-invoked continuously in
1455 >     * part because it returns upon detecting inconsistencies,
1456 >     * contention, or state changes that indicate possible success on
1457 >     * re-invocation.
1458 >     *
1459 >     * The scan searches for tasks across queues, randomly selecting
1460 >     * the first #queues probes, favoring steals over submissions
1461 >     * (by exploiting even/odd indexing), and then performing a
1462 >     * circular sweep of all queues.  The scan terminates upon either
1463 >     * finding a non-empty queue, or completing a full sweep. If the
1464 >     * worker is not inactivated, it takes and returns a task from
1465 >     * this queue.  On failure to find a task, we take one of the
1466 >     * following actions, after which the caller will retry calling
1467 >     * this method unless terminated.
1468 >     *
1469 >     * * If pool is terminating, terminate the worker.
1470 >     *
1471 >     * * If not a complete sweep, try to release a waiting worker.  If
1472 >     * the scan terminated because the worker is inactivated, then the
1473 >     * released worker will often be the calling worker, and it can
1474 >     * succeed obtaining a task on the next call. Or maybe it is
1475 >     * another worker, but with same net effect. Releasing in other
1476 >     * cases as well ensures that we have enough workers running.
1477 >     *
1478 >     * * If the caller has run a task since the last empty scan,
1479 >     * return (to allow rescan) if other workers are not also yet
1480 >     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1481 >     * ensure eventual inactivation and blocking.
1482 >     *
1483 >     * * If not already enqueued, try to inactivate and enqueue the
1484 >     * worker on wait queue.
1485 >     *
1486 >     * * If already enqueued and none of the above apply, either park
1487 >     * awaiting signal, or if this is the most recent waiter and pool
1488 >     * is quiescent, relay to idleAwaitWork to check for termination
1489 >     * and possibly shrink pool.
1490 >     *
1491 >     * @param w the worker (via its WorkQueue)
1492 >     * @return a task or null of none found
1493 >     */
1494 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1495 >        boolean swept = false;               // true after full empty scan
1496 >        WorkQueue[] ws;                      // volatile read order matters
1497 >        int r = w.seed, ec = w.eventCount;   // ec is negative if inactive
1498 >        int rs = runState, m = rs & SMASK;
1499 >        if ((ws = workQueues) != null && ws.length > m) { // consistency check
1500 >            for (int k = 0, j = -1 - m; ; ++j) {
1501 >                WorkQueue q; int b;
1502 >                if (j < 0) {                 // random probes while j negative
1503 >                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1504 >                }                            // worker (not submit) for odd j
1505 >                else                         // cyclic scan when j >= 0
1506 >                    k += 7;                  // step 7 reduces array packing bias
1507 >                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1508 >                    ForkJoinTask<?> t = (ec >= 0) ? q.pollAt(b) : null;
1509 >                    w.seed = r;              // save seed for next scan
1510 >                    if (t != null)
1511 >                        return t;
1512 >                    break;
1513 >                }
1514 >                else if (j - m > m) {
1515 >                    if (rs == runState)      // staleness check
1516 >                        swept = true;
1517 >                    break;
1518                  }
1068                break;
1519              }
1070        }
1071    }
1072
1073    // Creating, registering and deregistring workers
1520  
1521 <    /**
1522 <     * Tries to create and start a worker; minimally rolls back counts
1523 <     * on failure.
1524 <     */
1525 <    private void addWorker() {
1526 <        Throwable ex = null;
1527 <        ForkJoinWorkerThread t = null;
1528 <        try {
1529 <            t = factory.newThread(this);
1530 <        } catch (Throwable e) {
1531 <            ex = e;
1532 <        }
1533 <        if (t == null) {  // null or exceptional factory return
1534 <            long c;       // adjust counts
1535 <            do {} while (!UNSAFE.compareAndSwapLong
1536 <                         (this, ctlOffset, c = ctl,
1537 <                          (((c - AC_UNIT) & AC_MASK) |
1538 <                           ((c - TC_UNIT) & TC_MASK) |
1539 <                           (c & ~(AC_MASK|TC_MASK)))));
1540 <            // Propagate exception if originating from an external caller
1541 <            if (!tryTerminate(false) && ex != null &&
1542 <                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1543 <                UNSAFE.throwException(ex);
1521 >            // Decode ctl on empty scan
1522 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1523 >            if (e < 0)                       // pool is terminating
1524 >                w.runState = -1;
1525 >            else if (!swept) {               // try to release a waiter
1526 >                WorkQueue v; Thread p;
1527 >                if (e > 0 && a < 0 && (v = ws[e & m]) != null &&
1528 >                    v.eventCount == (e | INT_SIGN)) {
1529 >                    long nc = ((long)(v.nextWait & E_MASK) |
1530 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1531 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1532 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1533 >                        if ((p = v.parker) != null)
1534 >                            U.unpark(p);
1535 >                    }
1536 >                }
1537 >            }
1538 >            else if ((nr = w.rescans) > 0) { // continue rescanning
1539 >                int ac = a + parallelism;
1540 >                if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0 &&
1541 >                    w.eventCount == ec)
1542 >                    Thread.yield();          // occasionally yield
1543 >            }
1544 >            else if (ec >= 0) {              // try to enqueue
1545 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1546 >                w.nextWait = e;
1547 >                w.eventCount = ec | INT_SIGN;// mark as inactive
1548 >                if (!U.compareAndSwapLong(this, CTL, c, nc))
1549 >                    w.eventCount = ec;       // unmark on CAS failure
1550 >                else if ((ns = w.nsteals) != 0) {
1551 >                    w.nsteals = 0;           // set rescans if ran task
1552 >                    w.rescans = a + parallelism;
1553 >                    w.totalSteals += ns;
1554 >                }
1555 >            }
1556 >            else{                            // already queued
1557 >                if (parallelism == -a)
1558 >                    idleAwaitWork(w);        // quiescent
1559 >                if (w.eventCount == ec) {
1560 >                    Thread.interrupted();    // clear status
1561 >                    ForkJoinWorkerThread wt = w.owner;
1562 >                    U.putObject(wt, PARKBLOCKER, this);
1563 >                    w.parker = wt;           // emulate LockSupport.park
1564 >                    if (w.eventCount == ec)  // recheck
1565 >                        U.park(false, 0L);   // block
1566 >                    w.parker = null;
1567 >                    U.putObject(wt, PARKBLOCKER, null);
1568 >                }
1569 >            }
1570          }
1571 <        else
1100 <            t.start();
1571 >        return null;
1572      }
1573  
1574      /**
1575 <     * Callback from ForkJoinWorkerThread constructor to assign a
1576 <     * public name
1575 >     * If inactivating worker w has caused pool to become quiescent,
1576 >     * checks for pool termination, and, so long as this is not the
1577 >     * only worker, waits for event for up to SHRINK_RATE nanosecs.
1578 >     * On timeout, if ctl has not changed, terminates the worker,
1579 >     * which will in turn wake up another worker to possibly repeat
1580 >     * this process.
1581 >     *
1582 >     * @param w the calling worker
1583       */
1584 <    final String nextWorkerName() {
1585 <        for (int n;;) {
1586 <            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1587 <                                         n = nextWorkerNumber, ++n))
1588 <                return workerNamePrefix + n;
1584 >    private void idleAwaitWork(WorkQueue w) {
1585 >        long c; int nw, ec;
1586 >        if (!tryTerminate(false, false) &&
1587 >            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1588 >            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1589 >            (nw = w.nextWait) != 0) {
1590 >            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1591 >                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1592 >            ForkJoinWorkerThread wt = w.owner;
1593 >            while (ctl == c) {
1594 >                long startTime = System.nanoTime();
1595 >                Thread.interrupted();  // timed variant of version in scan()
1596 >                U.putObject(wt, PARKBLOCKER, this);
1597 >                w.parker = wt;
1598 >                if (ctl == c)
1599 >                    U.park(false, SHRINK_RATE);
1600 >                w.parker = null;
1601 >                U.putObject(wt, PARKBLOCKER, null);
1602 >                if (ctl != c)
1603 >                    break;
1604 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1605 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1606 >                    w.eventCount = (ec + E_SEQ) | E_MASK;
1607 >                    w.runState = -1;          // shrink
1608 >                    break;
1609 >                }
1610 >            }
1611          }
1612      }
1613  
1614      /**
1615 <     * Callback from ForkJoinWorkerThread constructor to
1616 <     * determine its poolIndex and record in workers array.
1617 <     *
1618 <     * @param w the worker
1619 <     * @return the worker's pool index
1620 <     */
1621 <    final int registerWorker(ForkJoinWorkerThread w) {
1622 <        /*
1623 <         * In the typical case, a new worker acquires the lock, uses
1624 <         * next available index and returns quickly.  Since we should
1625 <         * not block callers (ultimately from signalWork or
1626 <         * tryPreBlock) waiting for the lock needed to do this, we
1627 <         * instead help release other workers while waiting for the
1628 <         * lock.
1629 <         */
1630 <        for (int g;;) {
1631 <            ForkJoinWorkerThread[] ws;
1632 <            if (((g = scanGuard) & SG_UNIT) == 0 &&
1633 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1634 <                                         g, g | SG_UNIT)) {
1635 <                int k = nextWorkerIndex;
1636 <                try {
1637 <                    if ((ws = workers) != null) { // ignore on shutdown
1638 <                        int n = ws.length;
1639 <                        if (k < 0 || k >= n || ws[k] != null) {
1640 <                            for (k = 0; k < n && ws[k] != null; ++k)
1641 <                                ;
1642 <                            if (k == n)
1643 <                                ws = workers = Arrays.copyOf(ws, n << 1);
1615 >     * Tries to locate and execute tasks for a stealer of the given
1616 >     * task, or in turn one of its stealers, Traces currentSteal ->
1617 >     * currentJoin links looking for a thread working on a descendant
1618 >     * of the given task and with a non-empty queue to steal back and
1619 >     * execute tasks from. The first call to this method upon a
1620 >     * waiting join will often entail scanning/search, (which is OK
1621 >     * because the joiner has nothing better to do), but this method
1622 >     * leaves hints in workers to speed up subsequent calls. The
1623 >     * implementation is very branchy to cope with potential
1624 >     * inconsistencies or loops encountering chains that are stale,
1625 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1626 >     * of these cases are dealt with by just retrying by caller.
1627 >     *
1628 >     * @param joiner the joining worker
1629 >     * @param task the task to join
1630 >     * @return true if found or ran a task (and so is immediately retryable)
1631 >     */
1632 >    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1633 >        ForkJoinTask<?> subtask;    // current target
1634 >        boolean progress = false;
1635 >        int depth = 0;              // current chain depth
1636 >        int m = runState & SMASK;
1637 >        WorkQueue[] ws = workQueues;
1638 >
1639 >        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1640 >            outer:for (WorkQueue j = joiner;;) {
1641 >                // Try to find the stealer of subtask, by first using hint
1642 >                WorkQueue stealer = null;
1643 >                WorkQueue v = ws[j.stealHint & m];
1644 >                if (v != null && v.currentSteal == subtask)
1645 >                    stealer = v;
1646 >                else {
1647 >                    for (int i = 1; i <= m; i += 2) {
1648 >                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1649 >                            stealer = v;
1650 >                            j.stealHint = i; // save hint
1651 >                            break;
1652                          }
1146                        ws[k] = w;
1147                        nextWorkerIndex = k + 1;
1148                        int m = g & SMASK;
1149                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1653                      }
1654 <                } finally {
1655 <                    scanGuard = g;
1654 >                    if (stealer == null)
1655 >                        break;
1656                  }
1657 <                return k;
1658 <            }
1659 <            else if ((ws = workers) != null) { // help release others
1660 <                for (ForkJoinWorkerThread u : ws) {
1661 <                    if (u != null && u.queueBase != u.queueTop) {
1662 <                        if (tryReleaseWaiter())
1663 <                            break;
1657 >
1658 >                for (WorkQueue q = stealer;;) { // Try to help stealer
1659 >                    ForkJoinTask<?> t; int b;
1660 >                    if (task.status < 0)
1661 >                        break outer;
1662 >                    if ((b = q.base) - q.top < 0) {
1663 >                        progress = true;
1664 >                        if (subtask.status < 0)
1665 >                            break outer;               // stale
1666 >                        if ((t = q.pollAt(b)) != null) {
1667 >                            stealer.stealHint = joiner.poolIndex;
1668 >                            joiner.runSubtask(t);
1669 >                        }
1670 >                    }
1671 >                    else { // empty - try to descend to find stealer's stealer
1672 >                        ForkJoinTask<?> next = stealer.currentJoin;
1673 >                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1674 >                            next == null || next == subtask)
1675 >                            break outer;  // max depth, stale, dead-end, cyclic
1676 >                        subtask = next;
1677 >                        j = stealer;
1678 >                        break;
1679                      }
1680                  }
1681              }
1682          }
1683 +        return progress;
1684      }
1685  
1686      /**
1687 <     * Final callback from terminating worker.  Removes record of
1169 <     * worker from array, and adjusts counts. If pool is shutting
1170 <     * down, tries to complete termination.
1687 >     * If task is at base of some steal queue, steals and executes it.
1688       *
1689 <     * @param w the worker
1690 <     */
1174 <    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1175 <        int idx = w.poolIndex;
1176 <        int sc = w.stealCount;
1177 <        int steps = 0;
1178 <        // Remove from array, adjust worker counts and collect steal count.
1179 <        // We can intermix failed removes or adjusts with steal updates
1180 <        do {
1181 <            long s, c;
1182 <            int g;
1183 <            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1184 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1185 <                                         g, g |= SG_UNIT)) {
1186 <                ForkJoinWorkerThread[] ws = workers;
1187 <                if (ws != null && idx >= 0 &&
1188 <                    idx < ws.length && ws[idx] == w)
1189 <                    ws[idx] = null;    // verify
1190 <                nextWorkerIndex = idx;
1191 <                scanGuard = g + SG_UNIT;
1192 <                steps = 1;
1193 <            }
1194 <            if (steps == 1 &&
1195 <                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1196 <                                          (((c - AC_UNIT) & AC_MASK) |
1197 <                                           ((c - TC_UNIT) & TC_MASK) |
1198 <                                           (c & ~(AC_MASK|TC_MASK)))))
1199 <                steps = 2;
1200 <            if (sc != 0 &&
1201 <                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1202 <                                          s = stealCount, s + sc))
1203 <                sc = 0;
1204 <        } while (steps != 2 || sc != 0);
1205 <        if (!tryTerminate(false)) {
1206 <            if (ex != null)   // possibly replace if died abnormally
1207 <                signalWork();
1208 <            else
1209 <                tryReleaseWaiter();
1210 <        }
1211 <    }
1212 <
1213 <    // Shutdown and termination
1214 <
1215 <    /**
1216 <     * Possibly initiates and/or completes termination.
1217 <     *
1218 <     * @param now if true, unconditionally terminate, else only
1219 <     * if shutdown and empty queue and no active workers
1220 <     * @return true if now terminating or terminated
1689 >     * @param joiner the joining worker
1690 >     * @param task the task
1691       */
1692 <    private boolean tryTerminate(boolean now) {
1693 <        long c;
1694 <        while (((c = ctl) & STOP_BIT) == 0) {
1695 <            if (!now) {
1696 <                if ((int)(c >> AC_SHIFT) != -parallelism)
1697 <                    return false;
1698 <                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1699 <                    queueBase != queueTop) {
1700 <                    if (ctl == c) // staleness check
1231 <                        return false;
1232 <                    continue;
1692 >    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1693 >        WorkQueue[] ws;
1694 >        int m = runState & SMASK;
1695 >        if ((ws = workQueues) != null && ws.length > m) {
1696 >            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1697 >                WorkQueue q = ws[j];
1698 >                if (q != null && q.pollFor(task)) {
1699 >                    joiner.runSubtask(task);
1700 >                    break;
1701                  }
1702              }
1235            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1236                startTerminating();
1703          }
1238        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1239            final ReentrantLock lock = this.submissionLock;
1240            lock.lock();
1241            try {
1242                termination.signalAll();
1243            } finally {
1244                lock.unlock();
1245            }
1246        }
1247        return true;
1704      }
1705  
1706      /**
1707 <     * Runs up to three passes through workers: (0) Setting
1708 <     * termination status for each worker, followed by wakeups up to
1709 <     * queued workers; (1) helping cancel tasks; (2) interrupting
1710 <     * lagging threads (likely in external tasks, but possibly also
1711 <     * blocked in joins).  Each pass repeats previous steps because of
1712 <     * potential lagging thread creation.
1713 <     */
1714 <    private void startTerminating() {
1715 <        cancelSubmissions();
1716 <        for (int pass = 0; pass < 3; ++pass) {
1717 <            ForkJoinWorkerThread[] ws = workers;
1718 <            if (ws != null) {
1719 <                for (ForkJoinWorkerThread w : ws) {
1720 <                    if (w != null) {
1721 <                        w.terminate = true;
1266 <                        if (pass > 0) {
1267 <                            w.cancelTasks();
1268 <                            if (pass > 1 && !w.isInterrupted()) {
1269 <                                try {
1270 <                                    w.interrupt();
1271 <                                } catch (SecurityException ignore) {
1272 <                                }
1273 <                            }
1274 <                        }
1707 >     * Returns a non-empty steal queue, if one is found during a random,
1708 >     * then cyclic scan, else null.  This method must be retried by
1709 >     * caller if, by the time it tries to use the queue, it is empty.
1710 >     */
1711 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1712 >        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1713 >        for (WorkQueue[] ws;;) {
1714 >            int m = runState & SMASK;
1715 >            if ((ws = workQueues) == null)
1716 >                return null;
1717 >            if (ws.length > m) {
1718 >                WorkQueue q;
1719 >                for (int k = 0, j = -1 - m;; ++j) {
1720 >                    if (j < 0) {
1721 >                        r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1722                      }
1723 +                    else
1724 +                        k += 7;
1725 +                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1726 +                        w.seed = r;
1727 +                        return q;
1728 +                    }
1729 +                    else if (j - m > m)
1730 +                        return null;
1731                  }
1277                terminateWaiters();
1732              }
1733          }
1734      }
1735  
1736      /**
1737 <     * Polls and cancels all submissions. Called only during termination.
1738 <     */
1739 <    private void cancelSubmissions() {
1740 <        while (queueBase != queueTop) {
1741 <            ForkJoinTask<?> task = pollSubmission();
1742 <            if (task != null) {
1743 <                try {
1744 <                    task.cancel(false);
1745 <                } catch (Throwable ignore) {
1737 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1738 >     * active count ctl maintenance, but rather than blocking
1739 >     * when tasks cannot be found, we rescan until all others cannot
1740 >     * find tasks either.
1741 >     */
1742 >    final void helpQuiescePool(WorkQueue w) {
1743 >        for (boolean active = true;;) {
1744 >            w.runLocalTasks();      // exhaust local queue
1745 >            WorkQueue q = findNonEmptyStealQueue(w);
1746 >            if (q != null) {
1747 >                ForkJoinTask<?> t;
1748 >                if (!active) {      // re-establish active count
1749 >                    long c;
1750 >                    active = true;
1751 >                    do {} while (!U.compareAndSwapLong
1752 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1753                  }
1754 +                if ((t = q.poll()) != null)
1755 +                    w.runSubtask(t);
1756              }
1757 <        }
1758 <    }
1759 <
1760 <    /**
1761 <     * Tries to set the termination status of waiting workers, and
1762 <     * then wakes them up (after which they will terminate).
1763 <     */
1764 <    private void terminateWaiters() {
1765 <        ForkJoinWorkerThread[] ws = workers;
1766 <        if (ws != null) {
1767 <            ForkJoinWorkerThread w; long c; int i, e;
1768 <            int n = ws.length;
1769 <            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1307 <                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1308 <                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1309 <                                              (long)(w.nextWait & E_MASK) |
1310 <                                              ((c + AC_UNIT) & AC_MASK) |
1311 <                                              (c & (TC_MASK|STOP_BIT)))) {
1312 <                    w.terminate = true;
1313 <                    w.eventCount = e + EC_UNIT;
1314 <                    if (w.parked)
1315 <                        UNSAFE.unpark(w);
1757 >            else {
1758 >                long c;
1759 >                if (active) {       // decrement active count without queuing
1760 >                    active = false;
1761 >                    do {} while (!U.compareAndSwapLong
1762 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1763 >                }
1764 >                else
1765 >                    c = ctl;        // re-increment on exit
1766 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1767 >                    do {} while (!U.compareAndSwapLong
1768 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1769 >                    break;
1770                  }
1771              }
1772          }
1773      }
1774  
1321    // misc ForkJoinWorkerThread support
1322
1775      /**
1776 <     * Increments or decrements quiescerCount. Needed only to prevent
1325 <     * triggering shutdown if a worker is transiently inactive while
1326 <     * checking quiescence.
1776 >     * Gets and removes a local or stolen task for the given worker.
1777       *
1778 <     * @param delta 1 for increment, -1 for decrement
1778 >     * @return a task, if available
1779       */
1780 <    final void addQuiescerCount(int delta) {
1781 <        int c;
1782 <        do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1783 <                                               c = quiescerCount, c + delta));
1784 <    }
1785 <
1786 <    /**
1787 <     * Directly increments or decrements active count without queuing.
1788 <     * This method is used to transiently assert inactivation while
1789 <     * checking quiescence.
1340 <     *
1341 <     * @param delta 1 for increment, -1 for decrement
1342 <     */
1343 <    final void addActiveCount(int delta) {
1344 <        long d = (long)delta << AC_SHIFT;
1345 <        long c;
1346 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,
1347 <                                                c = ctl, c + d));
1780 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1781 >        for (ForkJoinTask<?> t;;) {
1782 >            WorkQueue q;
1783 >            if ((t = w.nextLocalTask()) != null)
1784 >                return t;
1785 >            if ((q = findNonEmptyStealQueue(w)) == null)
1786 >                return null;
1787 >            if ((t = q.poll()) != null)
1788 >                return t;
1789 >        }
1790      }
1791  
1792      /**
1793       * Returns the approximate (non-atomic) number of idle threads per
1794 <     * active thread.
1794 >     * active thread to offset steal queue size for method
1795 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1796       */
1797      final int idlePerActive() {
1798          // Approximate at powers of two for small values, saturate past 4
# Line 1362 | Line 1805 | public class ForkJoinPool extends Abstra
1805                  8);
1806      }
1807  
1808 +    //  Termination
1809 +
1810 +    /**
1811 +     * Possibly initiates and/or completes termination.  The caller
1812 +     * triggering termination runs three passes through workQueues:
1813 +     * (0) Setting termination status, followed by wakeups of queued
1814 +     * workers; (1) cancelling all tasks; (2) interrupting lagging
1815 +     * threads (likely in external tasks, but possibly also blocked in
1816 +     * joins).  Each pass repeats previous steps because of potential
1817 +     * lagging thread creation.
1818 +     *
1819 +     * @param now if true, unconditionally terminate, else only
1820 +     * if no work and no active workers
1821 +     * @param enable if true, enable shutdown when next possible
1822 +     * @return true if now terminating or terminated
1823 +     */
1824 +    private boolean tryTerminate(boolean now, boolean enable) {
1825 +        Mutex lock = this.lock;
1826 +        for (long c;;) {
1827 +            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
1828 +                if ((short)(c >>> TC_SHIFT) == -parallelism) {
1829 +                    lock.lock();                    // don't need try/finally
1830 +                    termination.signalAll();        // signal when 0 workers
1831 +                    lock.unlock();
1832 +                }
1833 +                return true;
1834 +            }
1835 +            if (runState >= 0) {                    // not yet enabled
1836 +                if (!enable)
1837 +                    return false;
1838 +                lock.lock();
1839 +                runState |= SHUTDOWN;
1840 +                lock.unlock();
1841 +            }
1842 +            if (!now) {                             // check if idle & no tasks
1843 +                if ((int)(c >> AC_SHIFT) != -parallelism ||
1844 +                    hasQueuedSubmissions())
1845 +                    return false;
1846 +                // Check for unqueued inactive workers. One pass suffices.
1847 +                WorkQueue[] ws = workQueues; WorkQueue w;
1848 +                if (ws != null) {
1849 +                    for (int i = 1; i < ws.length; i += 2) {
1850 +                        if ((w = ws[i]) != null && w.eventCount >= 0)
1851 +                            return false;
1852 +                    }
1853 +                }
1854 +            }
1855 +            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
1856 +                for (int pass = 0; pass < 3; ++pass) {
1857 +                    WorkQueue[] ws = workQueues;
1858 +                    if (ws != null) {
1859 +                        WorkQueue w;
1860 +                        int n = ws.length;
1861 +                        for (int i = 0; i < n; ++i) {
1862 +                            if ((w = ws[i]) != null) {
1863 +                                w.runState = -1;
1864 +                                if (pass > 0) {
1865 +                                    w.cancelAll();
1866 +                                    if (pass > 1)
1867 +                                        w.interruptOwner();
1868 +                                }
1869 +                            }
1870 +                        }
1871 +                        // Wake up workers parked on event queue
1872 +                        int i, e; long cc; Thread p;
1873 +                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
1874 +                               (i = e & SMASK) < n &&
1875 +                               (w = ws[i]) != null) {
1876 +                            long nc = ((long)(w.nextWait & E_MASK) |
1877 +                                       ((cc + AC_UNIT) & AC_MASK) |
1878 +                                       (cc & (TC_MASK|STOP_BIT)));
1879 +                            if (w.eventCount == (e | INT_SIGN) &&
1880 +                                U.compareAndSwapLong(this, CTL, cc, nc)) {
1881 +                                w.eventCount = (e + E_SEQ) & E_MASK;
1882 +                                w.runState = -1;
1883 +                                if ((p = w.parker) != null)
1884 +                                    U.unpark(p);
1885 +                            }
1886 +                        }
1887 +                    }
1888 +                }
1889 +            }
1890 +        }
1891 +    }
1892 +
1893      // Exported methods
1894  
1895      // Constructors
# Line 1431 | Line 1959 | public class ForkJoinPool extends Abstra
1959          checkPermission();
1960          if (factory == null)
1961              throw new NullPointerException();
1962 <        if (parallelism <= 0 || parallelism > MAX_ID)
1962 >        if (parallelism <= 0 || parallelism > POOL_MAX)
1963              throw new IllegalArgumentException();
1964          this.parallelism = parallelism;
1965          this.factory = factory;
1966          this.ueh = handler;
1967 <        this.locallyFifo = asyncMode;
1967 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1968 >        this.growHints = 1;
1969          long np = (long)(-parallelism); // offset ctl counts
1970          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1971 <        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1443 <        // initialize workers array with room for 2*parallelism if possible
1971 >        // initialize workQueues array with room for 2*parallelism if possible
1972          int n = parallelism << 1;
1973 <        if (n >= MAX_ID)
1974 <            n = MAX_ID;
1973 >        if (n >= POOL_MAX)
1974 >            n = POOL_MAX;
1975          else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1976              n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1977          }
1978 <        workers = new ForkJoinWorkerThread[n + 1];
1979 <        this.submissionLock = new ReentrantLock();
1980 <        this.termination = submissionLock.newCondition();
1978 >        this.workQueues = new WorkQueue[(n + 1) << 1]; // #slots = 2 * #workers
1979 >        this.termination = (this.lock = new Mutex()).newCondition();
1980 >        this.stealCount = new AtomicLong();
1981 >        this.nextWorkerNumber = new AtomicInteger();
1982          StringBuilder sb = new StringBuilder("ForkJoinPool-");
1983          sb.append(poolNumberGenerator.incrementAndGet());
1984          sb.append("-worker-");
# Line 1475 | Line 2004 | public class ForkJoinPool extends Abstra
2004       *         scheduled for execution
2005       */
2006      public <T> T invoke(ForkJoinTask<T> task) {
2007 <        Thread t = Thread.currentThread();
2008 <        if (task == null)
1480 <            throw new NullPointerException();
1481 <        if (shutdown)
1482 <            throw new RejectedExecutionException();
1483 <        if ((t instanceof ForkJoinWorkerThread) &&
1484 <            ((ForkJoinWorkerThread)t).pool == this)
1485 <            return task.invoke();  // bypass submit if in same pool
1486 <        else {
1487 <            addSubmission(task);
1488 <            return task.join();
1489 <        }
1490 <    }
1491 <
1492 <    /**
1493 <     * Unless terminating, forks task if within an ongoing FJ
1494 <     * computation in the current pool, else submits as external task.
1495 <     */
1496 <    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1497 <        ForkJoinWorkerThread w;
1498 <        Thread t = Thread.currentThread();
1499 <        if (shutdown)
1500 <            throw new RejectedExecutionException();
1501 <        if ((t instanceof ForkJoinWorkerThread) &&
1502 <            (w = (ForkJoinWorkerThread)t).pool == this)
1503 <            w.pushTask(task);
1504 <        else
1505 <            addSubmission(task);
2007 >        doSubmit(task);
2008 >        return task.join();
2009      }
2010  
2011      /**
# Line 1514 | Line 2017 | public class ForkJoinPool extends Abstra
2017       *         scheduled for execution
2018       */
2019      public void execute(ForkJoinTask<?> task) {
2020 <        if (task == null)
1518 <            throw new NullPointerException();
1519 <        forkOrSubmit(task);
2020 >        doSubmit(task);
2021      }
2022  
2023      // AbstractExecutorService methods
# Line 1534 | Line 2035 | public class ForkJoinPool extends Abstra
2035              job = (ForkJoinTask<?>) task;
2036          else
2037              job = ForkJoinTask.adapt(task, null);
2038 <        forkOrSubmit(job);
2038 >        doSubmit(job);
2039      }
2040  
2041      /**
# Line 1547 | Line 2048 | public class ForkJoinPool extends Abstra
2048       *         scheduled for execution
2049       */
2050      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2051 <        if (task == null)
1551 <            throw new NullPointerException();
1552 <        forkOrSubmit(task);
2051 >        doSubmit(task);
2052          return task;
2053      }
2054  
# Line 1562 | Line 2061 | public class ForkJoinPool extends Abstra
2061          if (task == null)
2062              throw new NullPointerException();
2063          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2064 <        forkOrSubmit(job);
2064 >        doSubmit(job);
2065          return job;
2066      }
2067  
# Line 1575 | Line 2074 | public class ForkJoinPool extends Abstra
2074          if (task == null)
2075              throw new NullPointerException();
2076          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2077 <        forkOrSubmit(job);
2077 >        doSubmit(job);
2078          return job;
2079      }
2080  
# Line 1592 | Line 2091 | public class ForkJoinPool extends Abstra
2091              job = (ForkJoinTask<?>) task;
2092          else
2093              job = ForkJoinTask.adapt(task, null);
2094 <        forkOrSubmit(job);
2094 >        doSubmit(job);
2095          return job;
2096      }
2097  
# Line 1601 | Line 2100 | public class ForkJoinPool extends Abstra
2100       * @throws RejectedExecutionException {@inheritDoc}
2101       */
2102      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2103 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2104 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2105 <        for (Callable<T> task : tasks)
2106 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2107 <        invoke(new InvokeAll<T>(forkJoinTasks));
2108 <
2103 >        // In previous versions of this class, this method constructed
2104 >        // a task to run ForkJoinTask.invokeAll, but now external
2105 >        // invocation of multiple tasks is at least as efficient.
2106 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2107 >        // Workaround needed because method wasn't declared with
2108 >        // wildcards in return type but should have been.
2109          @SuppressWarnings({"unchecked", "rawtypes"})
2110 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1612 <        return futures;
1613 <    }
2110 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2111  
2112 <    static final class InvokeAll<T> extends RecursiveAction {
2113 <        final ArrayList<ForkJoinTask<T>> tasks;
2114 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2115 <        public void compute() {
2116 <            try { invokeAll(tasks); }
2117 <            catch (Exception ignore) {}
2112 >        boolean done = false;
2113 >        try {
2114 >            for (Callable<T> t : tasks) {
2115 >                ForkJoinTask<T> f = ForkJoinTask.adapt(t);
2116 >                doSubmit(f);
2117 >                fs.add(f);
2118 >            }
2119 >            for (ForkJoinTask<T> f : fs)
2120 >                f.quietlyJoin();
2121 >            done = true;
2122 >            return futures;
2123 >        } finally {
2124 >            if (!done)
2125 >                for (ForkJoinTask<T> f : fs)
2126 >                    f.cancel(false);
2127          }
1622        private static final long serialVersionUID = -7914297376763021607L;
2128      }
2129  
2130      /**
# Line 1669 | Line 2174 | public class ForkJoinPool extends Abstra
2174       * @return {@code true} if this pool uses async mode
2175       */
2176      public boolean getAsyncMode() {
2177 <        return locallyFifo;
2177 >        return localMode != 0;
2178      }
2179  
2180      /**
# Line 1681 | Line 2186 | public class ForkJoinPool extends Abstra
2186       * @return the number of worker threads
2187       */
2188      public int getRunningThreadCount() {
2189 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2190 <        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2189 >        int rc = 0;
2190 >        WorkQueue[] ws; WorkQueue w;
2191 >        if ((ws = workQueues) != null) {
2192 >            for (int i = 1; i < ws.length; i += 2) {
2193 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2194 >                    ++rc;
2195 >            }
2196 >        }
2197 >        return rc;
2198      }
2199  
2200      /**
# Line 1693 | Line 2205 | public class ForkJoinPool extends Abstra
2205       * @return the number of active threads
2206       */
2207      public int getActiveThreadCount() {
2208 <        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
2208 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2209          return (r <= 0) ? 0 : r; // suppress momentarily negative values
2210      }
2211  
# Line 1709 | Line 2221 | public class ForkJoinPool extends Abstra
2221       * @return {@code true} if all threads are currently idle
2222       */
2223      public boolean isQuiescent() {
2224 <        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
2224 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2225      }
2226  
2227      /**
# Line 1724 | Line 2236 | public class ForkJoinPool extends Abstra
2236       * @return the number of steals
2237       */
2238      public long getStealCount() {
2239 <        return stealCount;
2239 >        long count = stealCount.get();
2240 >        WorkQueue[] ws; WorkQueue w;
2241 >        if ((ws = workQueues) != null) {
2242 >            for (int i = 1; i < ws.length; i += 2) {
2243 >                if ((w = ws[i]) != null)
2244 >                    count += w.totalSteals;
2245 >            }
2246 >        }
2247 >        return count;
2248      }
2249  
2250      /**
# Line 1739 | Line 2259 | public class ForkJoinPool extends Abstra
2259       */
2260      public long getQueuedTaskCount() {
2261          long count = 0;
2262 <        ForkJoinWorkerThread[] ws;
2263 <        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
2264 <            (ws = workers) != null) {
2265 <            for (ForkJoinWorkerThread w : ws)
2266 <                if (w != null)
2267 <                    count -= w.queueBase - w.queueTop; // must read base first
2262 >        WorkQueue[] ws; WorkQueue w;
2263 >        if ((ws = workQueues) != null) {
2264 >            for (int i = 1; i < ws.length; i += 2) {
2265 >                if ((w = ws[i]) != null)
2266 >                    count += w.queueSize();
2267 >            }
2268          }
2269          return count;
2270      }
# Line 1757 | Line 2277 | public class ForkJoinPool extends Abstra
2277       * @return the number of queued submissions
2278       */
2279      public int getQueuedSubmissionCount() {
2280 <        return -queueBase + queueTop;
2280 >        int count = 0;
2281 >        WorkQueue[] ws; WorkQueue w;
2282 >        if ((ws = workQueues) != null) {
2283 >            for (int i = 0; i < ws.length; i += 2) {
2284 >                if ((w = ws[i]) != null)
2285 >                    count += w.queueSize();
2286 >            }
2287 >        }
2288 >        return count;
2289      }
2290  
2291      /**
# Line 1767 | Line 2295 | public class ForkJoinPool extends Abstra
2295       * @return {@code true} if there are any queued submissions
2296       */
2297      public boolean hasQueuedSubmissions() {
2298 <        return queueBase != queueTop;
2298 >        WorkQueue[] ws; WorkQueue w;
2299 >        if ((ws = workQueues) != null) {
2300 >            for (int i = 0; i < ws.length; i += 2) {
2301 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2302 >                    return true;
2303 >            }
2304 >        }
2305 >        return false;
2306      }
2307  
2308      /**
# Line 1778 | Line 2313 | public class ForkJoinPool extends Abstra
2313       * @return the next submission, or {@code null} if none
2314       */
2315      protected ForkJoinTask<?> pollSubmission() {
2316 <        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
2317 <        while ((b = queueBase) != queueTop &&
2318 <               (q = submissionQueue) != null &&
2319 <               (i = (q.length - 1) & b) >= 0) {
2320 <            long u = (i << ASHIFT) + ABASE;
1786 <            if ((t = q[i]) != null &&
1787 <                queueBase == b &&
1788 <                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1789 <                queueBase = b + 1;
1790 <                return t;
2316 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2317 >        if ((ws = workQueues) != null) {
2318 >            for (int i = 0; i < ws.length; i += 2) {
2319 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2320 >                    return t;
2321              }
2322          }
2323          return null;
# Line 1812 | Line 2342 | public class ForkJoinPool extends Abstra
2342       */
2343      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2344          int count = 0;
2345 <        while (queueBase != queueTop) {
2346 <            ForkJoinTask<?> t = pollSubmission();
2347 <            if (t != null) {
2348 <                c.add(t);
2349 <                ++count;
2345 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2346 >        if ((ws = workQueues) != null) {
2347 >            for (int i = 0; i < ws.length; ++i) {
2348 >                if ((w = ws[i]) != null) {
2349 >                    while ((t = w.poll()) != null) {
2350 >                        c.add(t);
2351 >                        ++count;
2352 >                    }
2353 >                }
2354              }
2355          }
1822        ForkJoinWorkerThread[] ws;
1823        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1824            (ws = workers) != null) {
1825            for (ForkJoinWorkerThread w : ws)
1826                if (w != null)
1827                    count += w.drainTasksTo(c);
1828        }
2356          return count;
2357      }
2358  
# Line 1837 | Line 2364 | public class ForkJoinPool extends Abstra
2364       * @return a string identifying this pool, as well as its state
2365       */
2366      public String toString() {
2367 <        long st = getStealCount();
2368 <        long qt = getQueuedTaskCount();
2369 <        long qs = getQueuedSubmissionCount();
1843 <        int pc = parallelism;
2367 >        // Use a single pass through workQueues to collect counts
2368 >        long qt = 0L, qs = 0L; int rc = 0;
2369 >        long st = stealCount.get();
2370          long c = ctl;
2371 +        WorkQueue[] ws; WorkQueue w;
2372 +        if ((ws = workQueues) != null) {
2373 +            for (int i = 0; i < ws.length; ++i) {
2374 +                if ((w = ws[i]) != null) {
2375 +                    int size = w.queueSize();
2376 +                    if ((i & 1) == 0)
2377 +                        qs += size;
2378 +                    else {
2379 +                        qt += size;
2380 +                        st += w.totalSteals;
2381 +                        if (w.isApparentlyUnblocked())
2382 +                            ++rc;
2383 +                    }
2384 +                }
2385 +            }
2386 +        }
2387 +        int pc = parallelism;
2388          int tc = pc + (short)(c >>> TC_SHIFT);
2389 <        int rc = pc + (int)(c >> AC_SHIFT);
2390 <        if (rc < 0) // ignore transient negative
2391 <            rc = 0;
1849 <        int ac = rc + blockedCount;
2389 >        int ac = pc + (int)(c >> AC_SHIFT);
2390 >        if (ac < 0) // ignore transient negative
2391 >            ac = 0;
2392          String level;
2393          if ((c & STOP_BIT) != 0)
2394              level = (tc == 0) ? "Terminated" : "Terminating";
2395          else
2396 <            level = shutdown ? "Shutting down" : "Running";
2396 >            level = runState < 0 ? "Shutting down" : "Running";
2397          return super.toString() +
2398              "[" + level +
2399              ", parallelism = " + pc +
# Line 1878 | Line 2420 | public class ForkJoinPool extends Abstra
2420       */
2421      public void shutdown() {
2422          checkPermission();
2423 <        shutdown = true;
1882 <        tryTerminate(false);
2423 >        tryTerminate(false, true);
2424      }
2425  
2426      /**
# Line 1900 | Line 2441 | public class ForkJoinPool extends Abstra
2441       */
2442      public List<Runnable> shutdownNow() {
2443          checkPermission();
2444 <        shutdown = true;
1904 <        tryTerminate(true);
2444 >        tryTerminate(true, true);
2445          return Collections.emptyList();
2446      }
2447  
# Line 1936 | Line 2476 | public class ForkJoinPool extends Abstra
2476      }
2477  
2478      /**
1939     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1940     */
1941    final boolean isAtLeastTerminating() {
1942        return (ctl & STOP_BIT) != 0L;
1943    }
1944
1945    /**
2479       * Returns {@code true} if this pool has been shut down.
2480       *
2481       * @return {@code true} if this pool has been shut down
2482       */
2483      public boolean isShutdown() {
2484 <        return shutdown;
2484 >        return runState < 0;
2485      }
2486  
2487      /**
# Line 1965 | Line 2498 | public class ForkJoinPool extends Abstra
2498      public boolean awaitTermination(long timeout, TimeUnit unit)
2499          throws InterruptedException {
2500          long nanos = unit.toNanos(timeout);
2501 <        final ReentrantLock lock = this.submissionLock;
2501 >        final Mutex lock = this.lock;
2502          lock.lock();
2503          try {
2504              for (;;) {
# Line 2076 | Line 2609 | public class ForkJoinPool extends Abstra
2609      public static void managedBlock(ManagedBlocker blocker)
2610          throws InterruptedException {
2611          Thread t = Thread.currentThread();
2612 <        if (t instanceof ForkJoinWorkerThread) {
2613 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2614 <            w.pool.awaitBlocker(blocker);
2615 <        }
2616 <        else {
2617 <            do {} while (!blocker.isReleasable() && !blocker.block());
2612 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2613 >                          ((ForkJoinWorkerThread)t).pool : null);
2614 >        while (!blocker.isReleasable()) {
2615 >            if (p == null || p.tryCompensate()) {
2616 >                try {
2617 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2618 >                } finally {
2619 >                    if (p != null)
2620 >                        p.incrementActiveCount();
2621 >                }
2622 >                break;
2623 >            }
2624          }
2625      }
2626  
# Line 2098 | Line 2637 | public class ForkJoinPool extends Abstra
2637      }
2638  
2639      // Unsafe mechanics
2640 <    private static final sun.misc.Unsafe UNSAFE;
2641 <    private static final long ctlOffset;
2642 <    private static final long stealCountOffset;
2104 <    private static final long blockedCountOffset;
2105 <    private static final long quiescerCountOffset;
2106 <    private static final long scanGuardOffset;
2107 <    private static final long nextWorkerNumberOffset;
2108 <    private static final long ABASE;
2109 <    private static final int ASHIFT;
2640 >    private static final sun.misc.Unsafe U;
2641 >    private static final long CTL;
2642 >    private static final long PARKBLOCKER;
2643  
2644      static {
2645          poolNumberGenerator = new AtomicInteger();
2113        workerSeedGenerator = new Random();
2646          modifyThreadPermission = new RuntimePermission("modifyThread");
2647          defaultForkJoinWorkerThreadFactory =
2648              new DefaultForkJoinWorkerThreadFactory();
2649 +        submitters = new ThreadSubmitter();
2650          try {
2651 <            UNSAFE = getUnsafe();
2651 >            U = getUnsafe();
2652              Class<?> k = ForkJoinPool.class;
2653 <            ctlOffset = UNSAFE.objectFieldOffset
2653 >            CTL = U.objectFieldOffset
2654                  (k.getDeclaredField("ctl"));
2655 <            stealCountOffset = UNSAFE.objectFieldOffset
2656 <                (k.getDeclaredField("stealCount"));
2657 <            blockedCountOffset = UNSAFE.objectFieldOffset
2125 <                (k.getDeclaredField("blockedCount"));
2126 <            quiescerCountOffset = UNSAFE.objectFieldOffset
2127 <                (k.getDeclaredField("quiescerCount"));
2128 <            scanGuardOffset = UNSAFE.objectFieldOffset
2129 <                (k.getDeclaredField("scanGuard"));
2130 <            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2131 <                (k.getDeclaredField("nextWorkerNumber"));
2655 >            Class<?> tk = Thread.class;
2656 >            PARKBLOCKER = U.objectFieldOffset
2657 >                (tk.getDeclaredField("parkBlocker"));
2658          } catch (Exception e) {
2659              throw new Error(e);
2660          }
2135        Class<?> a = ForkJoinTask[].class;
2136        ABASE = UNSAFE.arrayBaseOffset(a);
2137        int s = UNSAFE.arrayIndexScale(a);
2138        if ((s & (s-1)) != 0)
2139            throw new Error("data type scale not a power of two");
2140        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2661      }
2662  
2663      /**
# Line 2167 | Line 2687 | public class ForkJoinPool extends Abstra
2687              }
2688          }
2689      }
2690 +
2691   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines