ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.112 by dl, Thu Jan 26 18:15:12 2012 UTC vs.
Revision 1.135 by dl, Sun Oct 28 22:36:01 2012 UTC

# Line 21 | Line 21 | import java.util.concurrent.RunnableFutu
21   import java.util.concurrent.TimeUnit;
22   import java.util.concurrent.atomic.AtomicInteger;
23   import java.util.concurrent.atomic.AtomicLong;
24 < import java.util.concurrent.locks.ReentrantLock;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25   import java.util.concurrent.locks.Condition;
26  
27   /**
# Line 42 | Line 42 | import java.util.concurrent.locks.Condit
42   * ForkJoinPool}s may also be appropriate for use with event-style
43   * tasks that are never joined.
44   *
45 < * <p>A {@code ForkJoinPool} is constructed with a given target
46 < * parallelism level; by default, equal to the number of available
47 < * processors. The pool attempts to maintain enough active (or
48 < * available) threads by dynamically adding, suspending, or resuming
49 < * internal worker threads, even if some tasks are stalled waiting to
50 < * join others. However, no such adjustments are guaranteed in the
51 < * face of blocked IO or other unmanaged synchronization. The nested
52 < * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is constructed upon first
47 > * access, or upon usage by any ForkJoinTask that is not explictly
48 > * submitted to a specified pool. Using the common pool normally
49 > * reduces resource usage (its threads are slowly reclaimed during
50 > * periods of non-use, and reinstated upon subsequent use).  The
51 > * common pool is by default constructed with default parameters, but
52 > * these may be controlled by setting any or all of the three
53 > * properties {@code
54 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
55 > * threadFactory, exceptionHandler}}.
56 > *
57 > * <p>For applications that require separate or custom pools, a {@code
58 > * ForkJoinPool} may be constructed with a given target parallelism
59 > * level; by default, equal to the number of available processors. The
60 > * pool attempts to maintain enough active (or available) threads by
61 > * dynamically adding, suspending, or resuming internal worker
62 > * threads, even if some tasks are stalled waiting to join
63 > * others. However, no such adjustments are guaranteed in the face of
64 > * blocked IO or other unmanaged synchronization. The nested {@link
65 > * ManagedBlocker} interface enables extension of the kinds of
66   * synchronization accommodated.
67   *
68   * <p>In addition to execution and lifecycle control methods, this
# Line 60 | Line 73 | import java.util.concurrent.locks.Condit
73   * convenient form for informal monitoring.
74   *
75   * <p> As is the case with other ExecutorServices, there are three
76 < * main task execution methods summarized in the following
77 < * table. These are designed to be used primarily by clients not
78 < * already engaged in fork/join computations in the current pool.  The
79 < * main forms of these methods accept instances of {@code
80 < * ForkJoinTask}, but overloaded forms also allow mixed execution of
81 < * plain {@code Runnable}- or {@code Callable}- based activities as
82 < * well.  However, tasks that are already executing in a pool should
83 < * normally instead use the within-computation forms listed in the
84 < * table unless using async event-style tasks that are not usually
85 < * joined, in which case there is little difference among choice of
73 < * methods.
76 > * main task execution methods summarized in the following table.
77 > * These are designed to be used primarily by clients not already
78 > * engaged in fork/join computations in the current pool.  The main
79 > * forms of these methods accept instances of {@code ForkJoinTask},
80 > * but overloaded forms also allow mixed execution of plain {@code
81 > * Runnable}- or {@code Callable}- based activities as well.  However,
82 > * tasks that are already executing in a pool should normally instead
83 > * use the within-computation forms listed in the table unless using
84 > * async event-style tasks that are not usually joined, in which case
85 > * there is little difference among choice of methods.
86   *
87   * <table BORDER CELLPADDING=3 CELLSPACING=1>
88   *  <tr>
# Line 95 | Line 107 | import java.util.concurrent.locks.Condit
107   *  </tr>
108   * </table>
109   *
98 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
99 * used for all parallel task execution in a program or subsystem.
100 * Otherwise, use would not usually outweigh the construction and
101 * bookkeeping overhead of creating a large set of threads. For
102 * example, a common pool could be used for the {@code SortTasks}
103 * illustrated in {@link RecursiveAction}. Because {@code
104 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
105 * daemon} mode, there is typically no need to explicitly {@link
106 * #shutdown} such a pool upon program exit.
107 *
108 *  <pre> {@code
109 * static final ForkJoinPool mainPool = new ForkJoinPool();
110 * ...
111 * public void sort(long[] array) {
112 *   mainPool.invoke(new SortTask(array, 0, array.length));
113 * }}</pre>
114 *
110   * <p><b>Implementation notes</b>: This implementation restricts the
111   * maximum number of running threads to 32767. Attempts to create
112   * pools with greater than the maximum number result in
# Line 131 | Line 126 | public class ForkJoinPool extends Abstra
126       *
127       * This class and its nested classes provide the main
128       * functionality and control for a set of worker threads:
129 <     * Submissions from non-FJ threads enter into submission
130 <     * queues. Workers take these tasks and typically split them into
131 <     * subtasks that may be stolen by other workers.  Preference rules
132 <     * give first priority to processing tasks from their own queues
133 <     * (LIFO or FIFO, depending on mode), then to randomized FIFO
134 <     * steals of tasks in other queues.
129 >     * Submissions from non-FJ threads enter into submission queues.
130 >     * Workers take these tasks and typically split them into subtasks
131 >     * that may be stolen by other workers.  Preference rules give
132 >     * first priority to processing tasks from their own queues (LIFO
133 >     * or FIFO, depending on mode), then to randomized FIFO steals of
134 >     * tasks in other queues.
135       *
136 <     * WorkQueues.
136 >     * WorkQueues
137       * ==========
138       *
139       * Most operations occur within work-stealing queues (in nested
# Line 156 | Line 151 | public class ForkJoinPool extends Abstra
151       * (http://research.sun.com/scalable/pubs/index.html) and
152       * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153       * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 <     * The main differences ultimately stem from gc requirements that
154 >     * The main differences ultimately stem from GC requirements that
155       * we null out taken slots as soon as we can, to maintain as small
156       * a footprint as possible even in programs generating huge
157       * numbers of tasks. To accomplish this, we shift the CAS
# Line 178 | Line 173 | public class ForkJoinPool extends Abstra
173       * If an attempted steal fails, a thief always chooses a different
174       * random victim target to try next. So, in order for one thief to
175       * progress, it suffices for any in-progress poll or new push on
176 <     * any empty queue to complete.
176 >     * any empty queue to complete. (This is why we normally use
177 >     * method pollAt and its variants that try once at the apparent
178 >     * base index, else consider alternative actions, rather than
179 >     * method poll.)
180       *
181       * This approach also enables support of a user mode in which local
182       * task processing is in FIFO, not LIFO order, simply by using
# Line 188 | Line 186 | public class ForkJoinPool extends Abstra
186       * rarely provide the best possible performance on a given
187       * machine, but portably provide good throughput by averaging over
188       * these factors.  (Further, even if we did try to use such
189 <     * information, we do not usually have a basis for exploiting
190 <     * it. For example, some sets of tasks profit from cache
191 <     * affinities, but others are harmed by cache pollution effects.)
189 >     * information, we do not usually have a basis for exploiting it.
190 >     * For example, some sets of tasks profit from cache affinities,
191 >     * but others are harmed by cache pollution effects.)
192       *
193       * WorkQueues are also used in a similar way for tasks submitted
194       * to the pool. We cannot mix these tasks in the same queues used
195       * for work-stealing (this would contaminate lifo/fifo
196 <     * processing). Instead, we loosely associate (via hashing)
197 <     * submission queues with submitting threads, and randomly scan
198 <     * these queues as well when looking for work. In essence,
199 <     * submitters act like workers except that they never take tasks,
200 <     * and they are multiplexed on to a finite number of shared work
201 <     * queues. However, classes are set up so that future extensions
202 <     * could allow submitters to optionally help perform tasks as
203 <     * well. Pool submissions from internal workers are also allowed,
204 <     * but use randomized rather than thread-hashed queue indices to
205 <     * avoid imbalance.  Insertion of tasks in shared mode requires a
196 >     * processing). Instead, we loosely associate submission queues
197 >     * with submitting threads, using a form of hashing.  The
198 >     * ThreadLocal Submitter class contains a value initially used as
199 >     * a hash code for choosing existing queues, but may be randomly
200 >     * repositioned upon contention with other submitters.  In
201 >     * essence, submitters act like workers except that they never
202 >     * take tasks, and they are multiplexed on to a finite number of
203 >     * shared work queues. However, classes are set up so that future
204 >     * extensions could allow submitters to optionally help perform
205 >     * tasks as well. Insertion of tasks in shared mode requires a
206       * lock (mainly to protect in the case of resizing) but we use
207       * only a simple spinlock (using bits in field runState), because
208 <     * submitters encountering a busy queue try or create others so
209 <     * never block.
208 >     * submitters encountering a busy queue move on to try or create
209 >     * other queues -- they block only when creating and registering
210 >     * new queues.
211       *
212 <     * Management.
212 >     * Management
213       * ==========
214       *
215       * The main throughput advantages of work-stealing stem from
# Line 220 | Line 219 | public class ForkJoinPool extends Abstra
219       * tactic for avoiding bottlenecks is packing nearly all
220       * essentially atomic control state into two volatile variables
221       * that are by far most often read (not written) as status and
222 <     * consistency checks
222 >     * consistency checks.
223       *
224       * Field "ctl" contains 64 bits holding all the information needed
225       * to atomically decide to add, inactivate, enqueue (on an event
# Line 246 | Line 245 | public class ForkJoinPool extends Abstra
245       * readers must tolerate null slots. Shared (submission) queues
246       * are at even indices, worker queues at odd indices. Grouping
247       * them together in this way simplifies and speeds up task
248 <     * scanning. To avoid flailing during start-up, the array is
249 <     * presized to hold twice #parallelism workers (which is unlikely
250 <     * to need further resizing during execution). But to avoid
251 <     * dealing with so many null slots, variable runState includes a
253 <     * mask for the nearest power of two that contains all current
254 <     * workers.  All worker thread creation is on-demand, triggered by
255 <     * task submissions, replacement of terminated workers, and/or
248 >     * scanning.
249 >     *
250 >     * All worker thread creation is on-demand, triggered by task
251 >     * submissions, replacement of terminated workers, and/or
252       * compensation for blocked workers. However, all other support
253       * code is set up to work with other policies.  To ensure that we
254       * do not hold on to worker references that would prevent GC, ALL
# Line 265 | Line 261 | public class ForkJoinPool extends Abstra
261       * both index-check and null-check the IDs. All such accesses
262       * ignore bad IDs by returning out early from what they are doing,
263       * since this can only be associated with termination, in which
264 <     * case it is OK to give up.
265 <     *
266 <     * All uses of the workQueues array check that it is non-null
267 <     * (even if previously non-null). This allows nulling during
268 <     * termination, which is currently not necessary, but remains an
269 <     * option for resource-revocation-based shutdown schemes. It also
274 <     * helps reduce JIT issuance of uncommon-trap code, which tends to
264 >     * case it is OK to give up.  All uses of the workQueues array
265 >     * also check that it is non-null (even if previously
266 >     * non-null). This allows nulling during termination, which is
267 >     * currently not necessary, but remains an option for
268 >     * resource-revocation-based shutdown schemes. It also helps
269 >     * reduce JIT issuance of uncommon-trap code, which tends to
270       * unnecessarily complicate control flow in some methods.
271       *
272       * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
# Line 299 | Line 294 | public class ForkJoinPool extends Abstra
294       * some other queued worker rather than itself, which has the same
295       * net effect. Because enqueued workers may actually be rescanning
296       * rather than waiting, we set and clear the "parker" field of
297 <     * Workqueues to reduce unnecessary calls to unpark.  (This
297 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
298       * requires a secondary recheck to avoid missed signals.)  Note
299       * the unusual conventions about Thread.interrupts surrounding
300       * parking and other blocking: Because interrupts are used solely
# Line 322 | Line 317 | public class ForkJoinPool extends Abstra
317       *
318       * Trimming workers. To release resources after periods of lack of
319       * use, a worker starting to wait when the pool is quiescent will
320 <     * time out and terminate if the pool has remained quiescent for
321 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
322 <     * terminating all workers after long periods of non-use.
320 >     * time out and terminate if the pool has remained quiescent for a
321 >     * given period -- a short period if there are more threads than
322 >     * parallelism, longer as the number of threads decreases. This
323 >     * will slowly propagate, eventually terminating all workers after
324 >     * periods of non-use.
325       *
326       * Shutdown and Termination. A call to shutdownNow atomically sets
327 <     * a runState bit and then (non-atomically) sets each workers
327 >     * a runState bit and then (non-atomically) sets each worker's
328       * runState status, cancels all unprocessed tasks, and wakes up
329       * all waiting workers.  Detecting whether termination should
330       * commence after a non-abrupt shutdown() call requires more work
# Line 336 | Line 333 | public class ForkJoinPool extends Abstra
333       * indication but non-abrupt shutdown still requires a rechecking
334       * scan for any workers that are inactive but not queued.
335       *
336 <     * Joining Tasks.
337 <     * ==============
336 >     * Joining Tasks
337 >     * =============
338       *
339       * Any of several actions may be taken when one worker is waiting
340 <     * to join a task stolen (or always held by) another.  Because we
340 >     * to join a task stolen (or always held) by another.  Because we
341       * are multiplexing many tasks on to a pool of workers, we can't
342       * just let them block (as in Thread.join).  We also cannot just
343       * reassign the joiner's run-time stack with another and replace
344       * it later, which would be a form of "continuation", that even if
345       * possible is not necessarily a good idea since we sometimes need
346 <     * both an unblocked task and its continuation to
347 <     * progress. Instead we combine two tactics:
346 >     * both an unblocked task and its continuation to progress.
347 >     * Instead we combine two tactics:
348       *
349       *   Helping: Arranging for the joiner to execute some task that it
350       *      would be running if the steal had not occurred.
# Line 382 | Line 379 | public class ForkJoinPool extends Abstra
379       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
380       * that: (1) We only maintain dependency links across workers upon
381       * steals, rather than use per-task bookkeeping.  This sometimes
382 <     * requires a linear scan of workers array to locate stealers, but
383 <     * often doesn't because stealers leave hints (that may become
382 >     * requires a linear scan of workQueues array to locate stealers,
383 >     * but often doesn't because stealers leave hints (that may become
384       * stale/wrong) of where to locate them.  A stealHint is only a
385       * hint because a worker might have had multiple steals and the
386       * hint records only one of them (usually the most current).
# Line 394 | Line 391 | public class ForkJoinPool extends Abstra
391       * which means that we miss links in the chain during long-lived
392       * tasks, GC stalls etc (which is OK since blocking in such cases
393       * is usually a good idea).  (4) We bound the number of attempts
394 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
395 <     * the worker and if necessary replacing it with another.
394 >     * to find work (see MAX_HELP) and fall back to suspending the
395 >     * worker and if necessary replacing it with another.
396       *
397       * It is impossible to keep exactly the target parallelism number
398       * of threads running at any given time.  Determining the
399       * existence of conservatively safe helping targets, the
400       * availability of already-created spares, and the apparent need
401       * to create new spares are all racy, so we rely on multiple
402 <     * retries of each.  Currently, in keeping with on-demand
403 <     * signalling policy, we compensate only if blocking would leave
404 <     * less than one active (non-waiting, non-blocked) worker.
405 <     * Additionally, to avoid some false alarms due to GC, lagging
406 <     * counters, system activity, etc, compensated blocking for joins
407 <     * is only attempted after rechecks stabilize in
408 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
409 <     * Thread.yield, for good citizenship.)
402 >     * retries of each.  Compensation in the apparent absence of
403 >     * helping opportunities is challenging to control on JVMs, where
404 >     * GC and other activities can stall progress of tasks that in
405 >     * turn stall out many other dependent tasks, without us being
406 >     * able to determine whether they will ever require compensation.
407 >     * Even though work-stealing otherwise encounters little
408 >     * degradation in the presence of more threads than cores,
409 >     * aggressively adding new threads in such cases entails risk of
410 >     * unwanted positive feedback control loops in which more threads
411 >     * cause more dependent stalls (as well as delayed progress of
412 >     * unblocked threads to the point that we know they are available)
413 >     * leading to more situations requiring more threads, and so
414 >     * on. This aspect of control can be seen as an (analytically
415 >     * intractable) game with an opponent that may choose the worst
416 >     * (for us) active thread to stall at any time.  We take several
417 >     * precautions to bound losses (and thus bound gains), mainly in
418 >     * methods tryCompensate and awaitJoin: (1) We only try
419 >     * compensation after attempting enough helping steps (measured
420 >     * via counting and timing) that we have already consumed the
421 >     * estimated cost of creating and activating a new thread.  (2) We
422 >     * allow up to 50% of threads to be blocked before initially
423 >     * adding any others, and unless completely saturated, check that
424 >     * some work is available for a new worker before adding. Also, we
425 >     * create up to only 50% more threads until entering a mode that
426 >     * only adds a thread if all others are possibly blocked.  All
427 >     * together, this means that we might be half as fast to react,
428 >     * and create half as many threads as possible in the ideal case,
429 >     * but present vastly fewer anomalies in all other cases compared
430 >     * to both more aggressive and more conservative alternatives.
431       *
432       * Style notes: There is a lot of representation-level coupling
433       * among classes ForkJoinPool, ForkJoinWorkerThread, and
# Line 417 | Line 435 | public class ForkJoinPool extends Abstra
435       * managed by ForkJoinPool, so are directly accessed.  There is
436       * little point trying to reduce this, since any associated future
437       * changes in representations will need to be accompanied by
438 <     * algorithmic changes anyway. All together, these low-level
439 <     * implementation choices produce as much as a factor of 4
440 <     * performance improvement compared to naive implementations, and
441 <     * enable the processing of billions of tasks per second, at the
442 <     * expense of some ugliness.
443 <     *
444 <     * Methods signalWork() and scan() are the main bottlenecks so are
445 <     * especially heavily micro-optimized/mangled.  There are lots of
446 <     * inline assignments (of form "while ((local = field) != 0)")
447 <     * which are usually the simplest way to ensure the required read
448 <     * orderings (which are sometimes critical). This leads to a
449 <     * "C"-like style of listing declarations of these locals at the
450 <     * heads of methods or blocks.  There are several occurrences of
451 <     * the unusual "do {} while (!cas...)"  which is the simplest way
452 <     * to force an update of a CAS'ed variable. There are also other
453 <     * coding oddities that help some methods perform reasonably even
454 <     * when interpreted (not compiled).
455 <     *
456 <     * The order of declarations in this file is: (1) declarations of
457 <     * statics (2) fields (along with constants used when unpacking
458 <     * some of them), listed in an order that tends to reduce
459 <     * contention among them a bit under most JVMs; (3) nested
460 <     * classes; (4) internal control methods; (5) callbacks and other
461 <     * support for ForkJoinTask methods; (6) exported methods (plus a
462 <     * few little helpers); (7) static block initializing all statics
463 <     * in a minimally dependent order.
438 >     * algorithmic changes anyway. Several methods intrinsically
439 >     * sprawl because they must accumulate sets of consistent reads of
440 >     * volatiles held in local variables.  Methods signalWork() and
441 >     * scan() are the main bottlenecks, so are especially heavily
442 >     * micro-optimized/mangled.  There are lots of inline assignments
443 >     * (of form "while ((local = field) != 0)") which are usually the
444 >     * simplest way to ensure the required read orderings (which are
445 >     * sometimes critical). This leads to a "C"-like style of listing
446 >     * declarations of these locals at the heads of methods or blocks.
447 >     * There are several occurrences of the unusual "do {} while
448 >     * (!cas...)"  which is the simplest way to force an update of a
449 >     * CAS'ed variable. There are also other coding oddities that help
450 >     * some methods perform reasonably even when interpreted (not
451 >     * compiled).
452 >     *
453 >     * The order of declarations in this file is:
454 >     * (1) Static utility functions
455 >     * (2) Nested (static) classes
456 >     * (3) Static fields
457 >     * (4) Fields, along with constants used when unpacking some of them
458 >     * (5) Internal control methods
459 >     * (6) Callbacks and other support for ForkJoinTask methods
460 >     * (7) Exported methods
461 >     * (8) Static block initializing statics in minimally dependent order
462 >     */
463 >
464 >    // Static utilities
465 >
466 >    /**
467 >     * If there is a security manager, makes sure caller has
468 >     * permission to modify threads.
469       */
470 +    private static void checkPermission() {
471 +        SecurityManager security = System.getSecurityManager();
472 +        if (security != null)
473 +            security.checkPermission(modifyThreadPermission);
474 +    }
475 +
476 +    // Nested classes
477  
478      /**
479       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 473 | Line 503 | public class ForkJoinPool extends Abstra
503      }
504  
505      /**
506 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
507 <     * overridden in ForkJoinPool constructors.
508 <     */
509 <    public static final ForkJoinWorkerThreadFactory
510 <        defaultForkJoinWorkerThreadFactory;
511 <
512 <    /**
513 <     * Permission required for callers of methods that may start or
514 <     * kill threads.
515 <     */
516 <    private static final RuntimePermission modifyThreadPermission;
517 <
518 <    /**
519 <     * If there is a security manager, makes sure caller has
520 <     * permission to modify threads.
521 <     */
522 <    private static void checkPermission() {
523 <        SecurityManager security = System.getSecurityManager();
524 <        if (security != null)
525 <            security.checkPermission(modifyThreadPermission);
506 >     * A simple non-reentrant lock used for exclusion when managing
507 >     * queues and workers. We use a custom lock so that we can readily
508 >     * probe lock state in constructions that check among alternative
509 >     * actions. The lock is normally only very briefly held, and
510 >     * sometimes treated as a spinlock, but other usages block to
511 >     * reduce overall contention in those cases where locked code
512 >     * bodies perform allocation/resizing.
513 >     */
514 >    static final class Mutex extends AbstractQueuedSynchronizer {
515 >        public final boolean tryAcquire(int ignore) {
516 >            return compareAndSetState(0, 1);
517 >        }
518 >        public final boolean tryRelease(int ignore) {
519 >            setState(0);
520 >            return true;
521 >        }
522 >        public final void lock() { acquire(0); }
523 >        public final void unlock() { release(0); }
524 >        public final boolean isHeldExclusively() { return getState() == 1; }
525 >        public final Condition newCondition() { return new ConditionObject(); }
526      }
527  
528      /**
529 <     * Generator for assigning sequence numbers as pool names.
530 <     */
531 <    private static final AtomicInteger poolNumberGenerator;
532 <
503 <    /**
504 <     * Bits and masks for control variables
505 <     *
506 <     * Field ctl is a long packed with:
507 <     * AC: Number of active running workers minus target parallelism (16 bits)
508 <     * TC: Number of total workers minus target parallelism (16 bits)
509 <     * ST: true if pool is terminating (1 bit)
510 <     * EC: the wait count of top waiting thread (15 bits)
511 <     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
512 <     *
513 <     * When convenient, we can extract the upper 32 bits of counts and
514 <     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
515 <     * (int)ctl.  The ec field is never accessed alone, but always
516 <     * together with id and st. The offsets of counts by the target
517 <     * parallelism and the positionings of fields makes it possible to
518 <     * perform the most common checks via sign tests of fields: When
519 <     * ac is negative, there are not enough active workers, when tc is
520 <     * negative, there are not enough total workers, when id is
521 <     * negative, there is at least one waiting worker, and when e is
522 <     * negative, the pool is terminating.  To deal with these possibly
523 <     * negative fields, we use casts in and out of "short" and/or
524 <     * signed shifts to maintain signedness.
525 <     *
526 <     * When a thread is queued (inactivated), its eventCount field is
527 <     * negative, which is the only way to tell if a worker is
528 <     * prevented from executing tasks, even though it must continue to
529 <     * scan for them to avoid queuing races.
530 <     *
531 <     * Field runState is an int packed with:
532 <     * SHUTDOWN: true if shutdown is enabled (1 bit)
533 <     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
534 <     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
535 <     *
536 <     * The combination of mask and sequence number enables simple
537 <     * consistency checks: Staleness of read-only operations on the
538 <     * workers and queues arrays can be checked by comparing runState
539 <     * before vs after the reads. The low 16 bits (i.e, anding with
540 <     * SMASK) hold (the smallest power of two covering all worker
541 <     * indices, minus one.  The mask for queues (vs workers) is twice
542 <     * this value plus 1.
543 <     */
544 <
545 <    // bit positions/shifts for fields
546 <    private static final int  AC_SHIFT   = 48;
547 <    private static final int  TC_SHIFT   = 32;
548 <    private static final int  ST_SHIFT   = 31;
549 <    private static final int  EC_SHIFT   = 16;
550 <
551 <    // bounds
552 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
553 <    private static final int  SMASK      = 0xffff;  // mask short bits
554 <    private static final int  SHORT_SIGN = 1 << 15;
555 <    private static final int  INT_SIGN   = 1 << 31;
556 <
557 <    // masks
558 <    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
559 <    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
560 <    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
561 <
562 <    // units for incrementing and decrementing
563 <    private static final long TC_UNIT    = 1L << TC_SHIFT;
564 <    private static final long AC_UNIT    = 1L << AC_SHIFT;
565 <
566 <    // masks and units for dealing with u = (int)(ctl >>> 32)
567 <    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
568 <    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
569 <    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
570 <    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
571 <    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
572 <    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
573 <
574 <    // masks and units for dealing with e = (int)ctl
575 <    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
576 <    private static final int E_SEQ       = 1 << EC_SHIFT;
577 <
578 <    // runState bits
579 <    private static final int SHUTDOWN    = 1 << 31;
580 <    private static final int RS_SEQ      = 1 << 16;
581 <    private static final int RS_SEQ_MASK = 0x7fff0000;
582 <
583 <    // access mode for WorkQueue
584 <    static final int LIFO_QUEUE          =  0;
585 <    static final int FIFO_QUEUE          =  1;
586 <    static final int SHARED_QUEUE        = -1;
587 <
588 <    /**
589 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
590 <     * task when the pool is quiescent to instead try to shrink the
591 <     * number of workers.  The exact value does not matter too
592 <     * much. It must be short enough to release resources during
593 <     * sustained periods of idleness, but not so short that threads
594 <     * are continually re-created.
595 <     */
596 <    private static final long SHRINK_RATE =
597 <        4L * 1000L * 1000L * 1000L; // 4 seconds
598 <
599 <    /**
600 <     * The timeout value for attempted shrinkage, includes
601 <     * some slop to cope with system timer imprecision.
602 <     */
603 <    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
604 <
605 <    /**
606 <     * The maximum stolen->joining link depth allowed in tryHelpStealer.
607 <     * Depths for legitimate chains are unbounded, but we use a fixed
608 <     * constant to avoid (otherwise unchecked) cycles and to bound
609 <     * staleness of traversal parameters at the expense of sometimes
610 <     * blocking when we could be helping.
611 <     */
612 <    private static final int MAX_HELP_DEPTH = 16;
613 <
614 <    /*
615 <     * Field layout order in this class tends to matter more than one
616 <     * would like. Runtime layout order is only loosely related to
617 <     * declaration order and may differ across JVMs, but the following
618 <     * empirically works OK on current JVMs.
529 >     * Class for artificial tasks that are used to replace the target
530 >     * of local joins if they are removed from an interior queue slot
531 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
532 >     * actually do anything beyond having a unique identity.
533       */
534 <
535 <    volatile long ctl;                       // main pool control
536 <    final int parallelism;                   // parallelism level
537 <    final int localMode;                     // per-worker scheduling mode
538 <    int nextPoolIndex;                       // hint used in registerWorker
539 <    volatile int runState;                   // shutdown status, seq, and mask
626 <    WorkQueue[] workQueues;                  // main registry
627 <    final ReentrantLock lock;                // for registration
628 <    final Condition termination;             // for awaitTermination
629 <    final ForkJoinWorkerThreadFactory factory; // factory for new workers
630 <    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
631 <    final AtomicLong stealCount;             // collect counts when terminated
632 <    final AtomicInteger nextWorkerNumber;    // to create worker name string
633 <    final String workerNamePrefix;           // Prefix for assigning worker names
534 >    static final class EmptyTask extends ForkJoinTask<Void> {
535 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
536 >        public final Void getRawResult() { return null; }
537 >        public final void setRawResult(Void x) {}
538 >        public final boolean exec() { return true; }
539 >    }
540  
541      /**
542       * Queues supporting work-stealing as well as external task
# Line 649 | Line 555 | public class ForkJoinPool extends Abstra
555       * for push, or under lock for trySharedPush, and accessed by
556       * other threads only after reading (volatile) base.  Both top and
557       * base are allowed to wrap around on overflow, but (top - base)
558 <     * (or more comonly -(base - top) to force volatile read of base
558 >     * (or more commonly -(base - top) to force volatile read of base
559       * before top) still estimates size.
560       *
561       * The array slots are read and written using the emulation of
# Line 681 | Line 587 | public class ForkJoinPool extends Abstra
587       * avoiding really bad worst-case access. (Until better JVM
588       * support is in place, this padding is dependent on transient
589       * properties of JVM field layout rules.)  We also take care in
590 <     * allocating and sizing and resizing the array. Non-shared queue
590 >     * allocating, sizing and resizing the array. Non-shared queue
591       * arrays are initialized (via method growArray) by workers before
592       * use. Others are allocated on first use.
593       */
594      static final class WorkQueue {
595          /**
596           * Capacity of work-stealing queue array upon initialization.
597 <         * Must be a power of two; at least 4, but set larger to
598 <         * reduce cacheline sharing among queues.
597 >         * Must be a power of two; at least 4, but should be larger to
598 >         * reduce or eliminate cacheline sharing among queues.
599 >         * Currently, it is much larger, as a partial workaround for
600 >         * the fact that JVMs often place arrays in locations that
601 >         * share GC bookkeeping (especially cardmarks) such that
602 >         * per-write accesses encounter serious memory contention.
603           */
604 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
604 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
605  
606          /**
607           * Maximum size for queue arrays. Must be a power of two less
# Line 715 | Line 625 | public class ForkJoinPool extends Abstra
625          volatile int base;         // index of next slot for poll
626          int top;                   // index of next slot for push
627          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
628 +        final ForkJoinPool pool;   // the containing pool (may be null)
629          final ForkJoinWorkerThread owner; // owning thread or null if shared
630          volatile Thread parker;    // == owner during call to park; else null
631 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
631 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
632          ForkJoinTask<?> currentSteal; // current non-local task being executed
633          // Heuristic padding to ameliorate unfortunate memory placements
634 <        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
634 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
635 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
636  
637 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
726 <            this.owner = owner;
637 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
638              this.mode = mode;
639 +            this.pool = pool;
640 +            this.owner = owner;
641              // Place indices in the center of array (that is not yet allocated)
642              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
643          }
644  
645          /**
646 <         * Returns number of tasks in the queue
646 >         * Returns the approximate number of tasks in the queue.
647           */
648          final int queueSize() {
649 <            int n = base - top; // non-owner callers must read base first
650 <            return (n >= 0) ? 0 : -n;
649 >            int n = base - top;       // non-owner callers must read base first
650 >            return (n >= 0) ? 0 : -n; // ignore transient negative
651 >        }
652 >
653 >        /**
654 >         * Provides a more accurate estimate of whether this queue has
655 >         * any tasks than does queueSize, by checking whether a
656 >         * near-empty queue has at least one unclaimed task.
657 >         */
658 >        final boolean isEmpty() {
659 >            ForkJoinTask<?>[] a; int m, s;
660 >            int n = base - (s = top);
661 >            return (n >= 0 ||
662 >                    (n == -1 &&
663 >                     ((a = array) == null ||
664 >                      (m = a.length - 1) < 0 ||
665 >                      U.getObjectVolatile
666 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
667          }
668  
669          /**
670           * Pushes a task. Call only by owner in unshared queues.
671           *
672           * @param task the task. Caller must ensure non-null.
673 <         * @param p, if non-null, pool to signal if necessary
745 <         * @throw RejectedExecutionException if array cannot
746 <         * be resized
673 >         * @throw RejectedExecutionException if array cannot be resized
674           */
675 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
676 <            ForkJoinTask<?>[] a;
675 >        final void push(ForkJoinTask<?> task) {
676 >            ForkJoinTask<?>[] a; ForkJoinPool p;
677              int s = top, m, n;
678              if ((a = array) != null) {    // ignore if queue removed
679                  U.putOrderedObject
680                      (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
681                  if ((n = (top = s + 1) - base) <= 2) {
682 <                    if (p != null)
682 >                    if ((p = pool) != null)
683                          p.signalWork();
684                  }
685                  else if (n >= m)
# Line 771 | Line 698 | public class ForkJoinPool extends Abstra
698              boolean submitted = false;
699              if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
700                  ForkJoinTask<?>[] a = array;
701 <                int s = top, n = s - base;
701 >                int s = top;
702                  try {
703 <                    if ((a != null && n < a.length - 1) ||
703 >                    if ((a != null && a.length > s + 1 - base) ||
704                          (a = growArray(false)) != null) { // must presize
705                          int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
706                          U.putObject(a, (long)j, task);    // don't need "ordered"
# Line 788 | Line 715 | public class ForkJoinPool extends Abstra
715          }
716  
717          /**
718 <         * Takes next task, if one exists, in FIFO order.
718 >         * Takes next task, if one exists, in LIFO order.  Call only
719 >         * by owner in unshared queues. (We do not have a shared
720 >         * version of this method because it is never needed.)
721           */
722 <        final ForkJoinTask<?> poll() {
723 <            ForkJoinTask<?>[] a; int b, i;
724 <            while ((b = base) - top < 0 && (a = array) != null &&
725 <                   (i = (a.length - 1) & b) >= 0) {
726 <                int j = (i << ASHIFT) + ABASE;
727 <                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
728 <                if (t != null && base == b &&
722 >        final ForkJoinTask<?> pop() {
723 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
724 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
725 >                for (int s; (s = top - 1) - base >= 0;) {
726 >                    long j = ((m & s) << ASHIFT) + ABASE;
727 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
728 >                        break;
729 >                    if (U.compareAndSwapObject(a, j, t, null)) {
730 >                        top = s;
731 >                        return t;
732 >                    }
733 >                }
734 >            }
735 >            return null;
736 >        }
737 >
738 >        /**
739 >         * Takes a task in FIFO order if b is base of queue and a task
740 >         * can be claimed without contention. Specialized versions
741 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
742 >         */
743 >        final ForkJoinTask<?> pollAt(int b) {
744 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
745 >            if ((a = array) != null) {
746 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
747 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
748 >                    base == b &&
749                      U.compareAndSwapObject(a, j, t, null)) {
750                      base = b + 1;
751                      return t;
# Line 806 | Line 755 | public class ForkJoinPool extends Abstra
755          }
756  
757          /**
758 <         * Takes next task, if one exists, in LIFO order.
810 <         * Call only by owner in unshared queues.
758 >         * Takes next task, if one exists, in FIFO order.
759           */
760 <        final ForkJoinTask<?> pop() {
761 <            ForkJoinTask<?> t; int m;
762 <            ForkJoinTask<?>[] a = array;
763 <            if (a != null && (m = a.length - 1) >= 0) {
764 <                for (int s; (s = top - 1) - base >= 0;) {
765 <                    int j = ((m & s) << ASHIFT) + ABASE;
766 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
767 <                        break;
768 <                    if (U.compareAndSwapObject(a, j, t, null)) {
821 <                        top = s;
760 >        final ForkJoinTask<?> poll() {
761 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
762 >            while ((b = base) - top < 0 && (a = array) != null) {
763 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
764 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
765 >                if (t != null) {
766 >                    if (base == b &&
767 >                        U.compareAndSwapObject(a, j, t, null)) {
768 >                        base = b + 1;
769                          return t;
770                      }
771                  }
772 +                else if (base == b) {
773 +                    if (b + 1 == top)
774 +                        break;
775 +                    Thread.yield(); // wait for lagging update
776 +                }
777              }
778              return null;
779          }
# Line 846 | Line 798 | public class ForkJoinPool extends Abstra
798          }
799  
800          /**
849         * Returns task at index b if b is current base of queue.
850         */
851        final ForkJoinTask<?> pollAt(int b) {
852            ForkJoinTask<?>[] a; int i;
853            ForkJoinTask<?> task = null;
854            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
855                int j = (i << ASHIFT) + ABASE;
856                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
857                if (t != null && base == b &&
858                    U.compareAndSwapObject(a, j, t, null)) {
859                    base = b + 1;
860                    task = t;
861                }
862            }
863            return task;
864        }
865
866        /**
801           * Pops the given task only if it is at the current top.
802           */
803          final boolean tryUnpush(ForkJoinTask<?> t) {
# Line 878 | Line 812 | public class ForkJoinPool extends Abstra
812          }
813  
814          /**
815 +         * Version of tryUnpush for shared queues; called by non-FJ
816 +         * submitters. Conservatively fails to unpush if all workers
817 +         * are active unless there are multiple tasks in queue.
818 +         */
819 +        final boolean trySharedUnpush(ForkJoinTask<?> task, ForkJoinPool p) {
820 +            boolean success = false;
821 +            if (task != null && top != base && runState == 0 &&
822 +                U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
823 +                try {
824 +                    ForkJoinTask<?>[] a; int n, s;
825 +                    if ((a = array) != null && (n = (s = top) - base) > 0 &&
826 +                        (n > 1 || p == null || (int)(p.ctl >> AC_SHIFT) < 0)) {
827 +                        int j = (((a.length - 1) & --s) << ASHIFT) + ABASE;
828 +                        if (U.getObjectVolatile(a, j) == task &&
829 +                            U.compareAndSwapObject(a, j, task, null)) {
830 +                            top = s;
831 +                            success = true;
832 +                        }
833 +                    }
834 +                } finally {
835 +                    runState = 0;                         // unlock
836 +                }
837 +            }
838 +            return success;
839 +        }
840 +
841 +        /**
842           * Polls the given task only if it is at the current base.
843           */
844          final boolean pollFor(ForkJoinTask<?> task) {
845 <            ForkJoinTask<?>[] a; int b, i;
846 <            if ((b = base) - top < 0 && (a = array) != null &&
847 <                (i = (a.length - 1) & b) >= 0) {
887 <                int j = (i << ASHIFT) + ABASE;
845 >            ForkJoinTask<?>[] a; int b;
846 >            if ((b = base) - top < 0 && (a = array) != null) {
847 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
848                  if (U.getObjectVolatile(a, j) == task && base == b &&
849                      U.compareAndSwapObject(a, j, task, null)) {
850                      base = b + 1;
# Line 895 | Line 855 | public class ForkJoinPool extends Abstra
855          }
856  
857          /**
898         * If present, removes from queue and executes the given task, or
899         * any other cancelled task. Returns (true) immediately on any CAS
900         * or consistency check failure so caller can retry.
901         *
902         * @return false if no progress can be made
903         */
904        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
905            boolean removed = false, empty = true, progress = true;
906            ForkJoinTask<?>[] a; int m, s, b, n;
907            if ((a = array) != null && (m = a.length - 1) >= 0 &&
908                (n = (s = top) - (b = base)) > 0) {
909                for (ForkJoinTask<?> t;;) {           // traverse from s to b
910                    int j = ((--s & m) << ASHIFT) + ABASE;
911                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
912                    if (t == null)                    // inconsistent length
913                        break;
914                    else if (t == task) {
915                        if (s + 1 == top) {           // pop
916                            if (!U.compareAndSwapObject(a, j, task, null))
917                                break;
918                            top = s;
919                            removed = true;
920                        }
921                        else if (base == b)           // replace with proxy
922                            removed = U.compareAndSwapObject(a, j, task,
923                                                             new EmptyTask());
924                        break;
925                    }
926                    else if (t.status >= 0)
927                        empty = false;
928                    else if (s + 1 == top) {          // pop and throw away
929                        if (U.compareAndSwapObject(a, j, t, null))
930                            top = s;
931                        break;
932                    }
933                    if (--n == 0) {
934                        if (!empty && base == b)
935                            progress = false;
936                        break;
937                    }
938                }
939            }
940            if (removed)
941                task.doExec();
942            return progress;
943        }
944
945        /**
858           * Initializes or doubles the capacity of array. Call either
859           * by owner or with lock held -- it is OK for base, but not
860           * top, to move while resizings are in progress.
# Line 978 | Line 890 | public class ForkJoinPool extends Abstra
890          }
891  
892          /**
893 <         * Removes and cancels all known tasks, ignoring any exceptions
893 >         * Removes and cancels all known tasks, ignoring any exceptions.
894           */
895          final void cancelAll() {
896              ForkJoinTask.cancelIgnoringExceptions(currentJoin);
# Line 987 | Line 899 | public class ForkJoinPool extends Abstra
899                  ForkJoinTask.cancelIgnoringExceptions(t);
900          }
901  
902 +        /**
903 +         * Computes next value for random probes.  Scans don't require
904 +         * a very high quality generator, but also not a crummy one.
905 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
906 +         * This is manually inlined in its usages in ForkJoinPool to
907 +         * avoid writes inside busy scan loops.
908 +         */
909 +        final int nextSeed() {
910 +            int r = seed;
911 +            r ^= r << 13;
912 +            r ^= r >>> 17;
913 +            return seed = r ^= r << 5;
914 +        }
915 +
916          // Execution methods
917  
918          /**
919 <         * Removes and runs tasks until empty, using local mode
994 <         * ordering.
919 >         * Pops and runs tasks until empty.
920           */
921 <        final void runLocalTasks() {
922 <            if (base - top < 0) {
923 <                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
921 >        private void popAndExecAll() {
922 >            // A bit faster than repeated pop calls
923 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
924 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
925 >                   (s = top - 1) - base >= 0 &&
926 >                   (t = ((ForkJoinTask<?>)
927 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
928 >                   != null) {
929 >                if (U.compareAndSwapObject(a, j, t, null)) {
930 >                    top = s;
931                      t.doExec();
932 +                }
933              }
934          }
935  
936          /**
937 +         * Polls and runs tasks until empty.
938 +         */
939 +        private void pollAndExecAll() {
940 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
941 +                t.doExec();
942 +        }
943 +
944 +        /**
945 +         * If present, removes from queue and executes the given task, or
946 +         * any other cancelled task. Returns (true) immediately on any CAS
947 +         * or consistency check failure so caller can retry.
948 +         *
949 +         * @return 0 if no progress can be made, else positive
950 +         * (this unusual convention simplifies use with tryHelpStealer.)
951 +         */
952 +        final int tryRemoveAndExec(ForkJoinTask<?> task) {
953 +            int stat = 1;
954 +            boolean removed = false, empty = true;
955 +            ForkJoinTask<?>[] a; int m, s, b, n;
956 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
957 +                (n = (s = top) - (b = base)) > 0) {
958 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
959 +                    int j = ((--s & m) << ASHIFT) + ABASE;
960 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
961 +                    if (t == null)                    // inconsistent length
962 +                        break;
963 +                    else if (t == task) {
964 +                        if (s + 1 == top) {           // pop
965 +                            if (!U.compareAndSwapObject(a, j, task, null))
966 +                                break;
967 +                            top = s;
968 +                            removed = true;
969 +                        }
970 +                        else if (base == b)           // replace with proxy
971 +                            removed = U.compareAndSwapObject(a, j, task,
972 +                                                             new EmptyTask());
973 +                        break;
974 +                    }
975 +                    else if (t.status >= 0)
976 +                        empty = false;
977 +                    else if (s + 1 == top) {          // pop and throw away
978 +                        if (U.compareAndSwapObject(a, j, t, null))
979 +                            top = s;
980 +                        break;
981 +                    }
982 +                    if (--n == 0) {
983 +                        if (!empty && base == b)
984 +                            stat = 0;
985 +                        break;
986 +                    }
987 +                }
988 +            }
989 +            if (removed)
990 +                task.doExec();
991 +            return stat;
992 +        }
993 +
994 +        /**
995           * Executes a top-level task and any local tasks remaining
996           * after execution.
1006         *
1007         * @return true unless terminating
997           */
998 <        final boolean runTask(ForkJoinTask<?> t) {
1010 <            boolean alive = true;
998 >        final void runTask(ForkJoinTask<?> t) {
999              if (t != null) {
1000                  currentSteal = t;
1001                  t.doExec();
1002 <                runLocalTasks();
1002 >                if (top != base) {       // process remaining local tasks
1003 >                    if (mode == 0)
1004 >                        popAndExecAll();
1005 >                    else
1006 >                        pollAndExecAll();
1007 >                }
1008                  ++nsteals;
1009                  currentSteal = null;
1010              }
1018            else if (runState < 0)            // terminating
1019                alive = false;
1020            return alive;
1011          }
1012  
1013          /**
1014 <         * Executes a non-top-level (stolen) task
1014 >         * Executes a non-top-level (stolen) task.
1015           */
1016          final void runSubtask(ForkJoinTask<?> t) {
1017              if (t != null) {
# Line 1033 | Line 1023 | public class ForkJoinPool extends Abstra
1023          }
1024  
1025          /**
1026 <         * Computes next value for random probes.  Scans don't require
1037 <         * a very high quality generator, but also not a crummy one.
1038 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
1039 <         * This is manually inlined in several usages in ForkJoinPool
1040 <         * to avoid writes inside busy scan loops.
1026 >         * Returns true if owned and not known to be blocked.
1027           */
1028 <        final int nextSeed() {
1029 <            int r = seed;
1030 <            r ^= r << 13;
1031 <            r ^= r >>> 17;
1032 <            r ^= r << 5;
1033 <            return seed = r;
1028 >        final boolean isApparentlyUnblocked() {
1029 >            Thread wt; Thread.State s;
1030 >            return (eventCount >= 0 &&
1031 >                    (wt = owner) != null &&
1032 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1033 >                    s != Thread.State.WAITING &&
1034 >                    s != Thread.State.TIMED_WAITING);
1035 >        }
1036 >
1037 >        /**
1038 >         * If this owned and is not already interrupted, try to
1039 >         * interrupt and/or unpark, ignoring exceptions.
1040 >         */
1041 >        final void interruptOwner() {
1042 >            Thread wt, p;
1043 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1044 >                try {
1045 >                    wt.interrupt();
1046 >                } catch (SecurityException ignore) {
1047 >                }
1048 >            }
1049 >            if ((p = parker) != null)
1050 >                U.unpark(p);
1051          }
1052  
1053          // Unsafe mechanics
# Line 1072 | Line 1075 | public class ForkJoinPool extends Abstra
1075      }
1076  
1077      /**
1078 <     * Class for artificial tasks that are used to replace the target
1079 <     * of local joins if they are removed from an interior queue slot
1080 <     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1081 <     * actually do anything beyond having a unique identity.
1082 <     */
1083 <    static final class EmptyTask extends ForkJoinTask<Void> {
1084 <        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1085 <        public Void getRawResult() { return null; }
1086 <        public void setRawResult(Void x) {}
1087 <        public boolean exec() { return true; }
1078 >     * Per-thread records for threads that submit to pools. Currently
1079 >     * holds only pseudo-random seed / index that is used to choose
1080 >     * submission queues in method doSubmit. In the future, this may
1081 >     * also incorporate a means to implement different task rejection
1082 >     * and resubmission policies.
1083 >     *
1084 >     * Seeds for submitters and workers/workQueues work in basically
1085 >     * the same way but are initialized and updated using slightly
1086 >     * different mechanics. Both are initialized using the same
1087 >     * approach as in class ThreadLocal, where successive values are
1088 >     * unlikely to collide with previous values. This is done during
1089 >     * registration for workers, but requires a separate AtomicInteger
1090 >     * for submitters. Seeds are then randomly modified upon
1091 >     * collisions using xorshifts, which requires a non-zero seed.
1092 >     */
1093 >    static final class Submitter {
1094 >        int seed;
1095 >        Submitter() {
1096 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1097 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1098 >        }
1099 >    }
1100 >
1101 >    /** ThreadLocal class for Submitters */
1102 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1103 >        public Submitter initialValue() { return new Submitter(); }
1104      }
1105  
1106 +    // static fields (initialized in static initializer below)
1107 +
1108      /**
1109 <     * Computes a hash code for the given thread. This method is
1110 <     * expected to provide higher-quality hash codes than those using
1090 <     * method hashCode().
1109 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1110 >     * overridden in ForkJoinPool constructors.
1111       */
1112 <    static final int hashThread(Thread t) {
1113 <        long id = (t == null)? 0L : t.getId(); // Use MurmurHash of thread id
1094 <        int h = (int)id ^ (int)(id >>> 32);
1095 <        h ^= h >>> 16;
1096 <        h *= 0x85ebca6b;
1097 <        h ^= h >>> 13;
1098 <        h *= 0xc2b2ae35;
1099 <        return h ^ (h >>> 16);
1100 <    }
1112 >    public static final ForkJoinWorkerThreadFactory
1113 >        defaultForkJoinWorkerThreadFactory;
1114  
1115      /**
1116 <     * Top-level runloop for workers
1116 >     * Generator for assigning sequence numbers as pool names.
1117       */
1118 <    final void runWorker(ForkJoinWorkerThread wt) {
1106 <        WorkQueue w = wt.workQueue;
1107 <        w.growArray(false);     // Initialize queue array and seed in this thread
1108 <        w.seed = hashThread(Thread.currentThread()) | (1 << 31); // force < 0
1118 >    private static final AtomicInteger poolNumberGenerator;
1119  
1120 <        do {} while (w.runTask(scan(w)));
1121 <    }
1120 >    /**
1121 >     * Generator for initial hashes/seeds for submitters. Accessed by
1122 >     * Submitter class constructor.
1123 >     */
1124 >    static final AtomicInteger nextSubmitterSeed;
1125  
1126 <    // Creating, registering and deregistering workers
1126 >    /**
1127 >     * Permission required for callers of methods that may start or
1128 >     * kill threads.
1129 >     */
1130 >    private static final RuntimePermission modifyThreadPermission;
1131 >
1132 >    /**
1133 >     * Per-thread submission bookkeeping. Shared across all pools
1134 >     * to reduce ThreadLocal pollution and because random motion
1135 >     * to avoid contention in one pool is likely to hold for others.
1136 >     */
1137 >    private static final ThreadSubmitter submitters;
1138 >
1139 >    /** Common default pool */
1140 >    static volatile ForkJoinPool commonPool;
1141 >
1142 >    // commonPool construction parameters
1143 >    private static final String propPrefix =
1144 >        "java.util.concurrent.ForkJoinPool.common.";
1145 >    private static final Thread.UncaughtExceptionHandler commonPoolUEH;
1146 >    private static final ForkJoinWorkerThreadFactory commonPoolFactory;
1147 >    static final int commonPoolParallelism;
1148 >
1149 >    /** Static initialization lock */
1150 >    private static final Mutex initializationLock;
1151 >
1152 >    // static constants
1153 >
1154 >    /**
1155 >     * Initial timeout value (in nanoseconds) for the tread triggering
1156 >     * quiescence to park waiting for new work. On timeout, the thread
1157 >     * will instead try to shrink the number of workers.
1158 >     */
1159 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1160 >
1161 >    /**
1162 >     * Timeout value when there are more threads than parallelism level
1163 >     */
1164 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1165 >
1166 >    /**
1167 >     * The maximum stolen->joining link depth allowed in method
1168 >     * tryHelpStealer.  Must be a power of two. This value also
1169 >     * controls the maximum number of times to try to help join a task
1170 >     * without any apparent progress or change in pool state before
1171 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1172 >     * chains are unbounded, but we use a fixed constant to avoid
1173 >     * (otherwise unchecked) cycles and to bound staleness of
1174 >     * traversal parameters at the expense of sometimes blocking when
1175 >     * we could be helping.
1176 >     */
1177 >    private static final int MAX_HELP = 64;
1178 >
1179 >    /**
1180 >     * Secondary time-based bound (in nanosecs) for helping attempts
1181 >     * before trying compensated blocking in awaitJoin. Used in
1182 >     * conjunction with MAX_HELP to reduce variance due to different
1183 >     * polling rates associated with different helping options. The
1184 >     * value should roughly approximate the time required to create
1185 >     * and/or activate a worker thread.
1186 >     */
1187 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1188 >
1189 >    /**
1190 >     * Increment for seed generators. See class ThreadLocal for
1191 >     * explanation.
1192 >     */
1193 >    private static final int SEED_INCREMENT = 0x61c88647;
1194 >
1195 >    /**
1196 >     * Bits and masks for control variables
1197 >     *
1198 >     * Field ctl is a long packed with:
1199 >     * AC: Number of active running workers minus target parallelism (16 bits)
1200 >     * TC: Number of total workers minus target parallelism (16 bits)
1201 >     * ST: true if pool is terminating (1 bit)
1202 >     * EC: the wait count of top waiting thread (15 bits)
1203 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1204 >     *
1205 >     * When convenient, we can extract the upper 32 bits of counts and
1206 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1207 >     * (int)ctl.  The ec field is never accessed alone, but always
1208 >     * together with id and st. The offsets of counts by the target
1209 >     * parallelism and the positionings of fields makes it possible to
1210 >     * perform the most common checks via sign tests of fields: When
1211 >     * ac is negative, there are not enough active workers, when tc is
1212 >     * negative, there are not enough total workers, and when e is
1213 >     * negative, the pool is terminating.  To deal with these possibly
1214 >     * negative fields, we use casts in and out of "short" and/or
1215 >     * signed shifts to maintain signedness.
1216 >     *
1217 >     * When a thread is queued (inactivated), its eventCount field is
1218 >     * set negative, which is the only way to tell if a worker is
1219 >     * prevented from executing tasks, even though it must continue to
1220 >     * scan for them to avoid queuing races. Note however that
1221 >     * eventCount updates lag releases so usage requires care.
1222 >     *
1223 >     * Field runState is an int packed with:
1224 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1225 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1226 >     * INIT: set true after workQueues array construction (1 bit)
1227 >     *
1228 >     * The sequence number enables simple consistency checks:
1229 >     * Staleness of read-only operations on the workQueues array can
1230 >     * be checked by comparing runState before vs after the reads.
1231 >     */
1232 >
1233 >    // bit positions/shifts for fields
1234 >    private static final int  AC_SHIFT   = 48;
1235 >    private static final int  TC_SHIFT   = 32;
1236 >    private static final int  ST_SHIFT   = 31;
1237 >    private static final int  EC_SHIFT   = 16;
1238 >
1239 >    // bounds
1240 >    private static final int  SMASK      = 0xffff;  // short bits
1241 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1242 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1243 >    private static final int  SHORT_SIGN = 1 << 15;
1244 >    private static final int  INT_SIGN   = 1 << 31;
1245 >
1246 >    // masks
1247 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1248 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1249 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1250 >
1251 >    // units for incrementing and decrementing
1252 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1253 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1254 >
1255 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1256 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1257 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1258 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1259 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1260 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1261 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1262 >
1263 >    // masks and units for dealing with e = (int)ctl
1264 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1265 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1266 >
1267 >    // runState bits
1268 >    private static final int SHUTDOWN    = 1 << 31;
1269 >
1270 >    // access mode for WorkQueue
1271 >    static final int LIFO_QUEUE          =  0;
1272 >    static final int FIFO_QUEUE          =  1;
1273 >    static final int SHARED_QUEUE        = -1;
1274 >
1275 >    // Instance fields
1276 >
1277 >    /*
1278 >     * Field layout order in this class tends to matter more than one
1279 >     * would like. Runtime layout order is only loosely related to
1280 >     * declaration order and may differ across JVMs, but the following
1281 >     * empirically works OK on current JVMs.
1282 >     */
1283 >
1284 >    volatile long ctl;                         // main pool control
1285 >    final int parallelism;                     // parallelism level
1286 >    final int localMode;                       // per-worker scheduling mode
1287 >    final int submitMask;                      // submit queue index bound
1288 >    int nextSeed;                              // for initializing worker seeds
1289 >    volatile int runState;                     // shutdown status and seq
1290 >    WorkQueue[] workQueues;                    // main registry
1291 >    final Mutex lock;                          // for registration
1292 >    final Condition termination;               // for awaitTermination
1293 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1294 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1295 >    final AtomicLong stealCount;               // collect counts when terminated
1296 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1297 >    String workerNamePrefix;                   // to create worker name string
1298 >
1299 >    //  Creating, registering, and deregistering workers
1300  
1301      /**
1302       * Tries to create and start a worker
1303       */
1304      private void addWorker() {
1305          Throwable ex = null;
1306 <        ForkJoinWorkerThread w = null;
1306 >        ForkJoinWorkerThread wt = null;
1307          try {
1308 <            if ((w = factory.newThread(this)) != null) {
1309 <                w.start();
1308 >            if ((wt = factory.newThread(this)) != null) {
1309 >                wt.start();
1310                  return;
1311              }
1312          } catch (Throwable e) {
1313              ex = e;
1314          }
1315 <        deregisterWorker(w, ex);
1315 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1316      }
1317  
1318      /**
# Line 1141 | Line 1327 | public class ForkJoinPool extends Abstra
1327      }
1328  
1329      /**
1330 <     * Callback from ForkJoinWorkerThread constructor to establish and
1331 <     * record its WorkQueue
1330 >     * Callback from ForkJoinWorkerThread constructor to establish its
1331 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1332 >     * to packing entries in front of the workQueues array, we treat
1333 >     * the array as a simple power-of-two hash table using per-thread
1334 >     * seed as hash, expanding as needed.
1335       *
1336 <     * @param wt the worker thread
1336 >     * @param w the worker's queue
1337       */
1338 <    final void registerWorker(ForkJoinWorkerThread wt) {
1339 <        WorkQueue w = wt.workQueue;
1151 <        ReentrantLock lock = this.lock;
1338 >    final void registerWorker(WorkQueue w) {
1339 >        Mutex lock = this.lock;
1340          lock.lock();
1341          try {
1154            int k = nextPoolIndex;
1342              WorkQueue[] ws = workQueues;
1343 <            if (ws != null) {                       // ignore on shutdown
1344 <                int n = ws.length;
1345 <                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1346 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1347 <                        ;                           // workers are at odd indices
1348 <                    if (k >= n)                     // resize
1349 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1350 <                }
1351 <                w.poolIndex = k;
1352 <                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1353 <                ws[k] = w;                          // record worker
1354 <                nextPoolIndex = k + 2;
1355 <                int rs = runState;
1356 <                int m = rs & SMASK;                 // recalculate runState mask
1357 <                if (k > m)
1358 <                    m = (m << 1) + 1;
1359 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1343 >            if (w != null && ws != null) {          // skip on shutdown/failure
1344 >                int rs, n = ws.length, m = n - 1;
1345 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1346 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1347 >                int r = (s << 1) | 1;               // use odd-numbered indices
1348 >                if (ws[r &= m] != null) {           // collision
1349 >                    int probes = 0;                 // step by approx half size
1350 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1351 >                    while (ws[r = (r + step) & m] != null) {
1352 >                        if (++probes >= n) {
1353 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1354 >                            m = n - 1;
1355 >                            probes = 0;
1356 >                        }
1357 >                    }
1358 >                }
1359 >                w.eventCount = w.poolIndex = r;     // establish before recording
1360 >                ws[r] = w;                          // also update seq
1361 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1362              }
1363          } finally {
1364              lock.unlock();
# Line 1177 | Line 1366 | public class ForkJoinPool extends Abstra
1366      }
1367  
1368      /**
1369 <     * Final callback from terminating worker, as well as failure to
1370 <     * construct or start a worker in addWorker.  Removes record of
1369 >     * Final callback from terminating worker, as well as upon failure
1370 >     * to construct or start a worker in addWorker.  Removes record of
1371       * worker from array, and adjusts counts. If pool is shutting
1372       * down, tries to complete termination.
1373       *
# Line 1186 | Line 1375 | public class ForkJoinPool extends Abstra
1375       * @param ex the exception causing failure, or null if none
1376       */
1377      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1378 +        Mutex lock = this.lock;
1379          WorkQueue w = null;
1380          if (wt != null && (w = wt.workQueue) != null) {
1381              w.runState = -1;                // ensure runState is set
1382              stealCount.getAndAdd(w.totalSteals + w.nsteals);
1383              int idx = w.poolIndex;
1194            ReentrantLock lock = this.lock;
1384              lock.lock();
1385              try {                           // remove record from array
1386                  WorkQueue[] ws = workQueues;
1387                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1388 <                    ws[nextPoolIndex = idx] = null;
1388 >                    ws[idx] = null;
1389              } finally {
1390                  lock.unlock();
1391              }
# Line 1208 | Line 1397 | public class ForkJoinPool extends Abstra
1397                                             ((c - TC_UNIT) & TC_MASK) |
1398                                             (c & ~(AC_MASK|TC_MASK)))));
1399  
1400 <        if (!tryTerminate(false) && w != null) {
1400 >        if (!tryTerminate(false, false) && w != null) {
1401              w.cancelAll();                  // cancel remaining tasks
1402              if (w.array != null)            // suppress signal if never ran
1403                  signalWork();               // wake up or create replacement
1404 +            if (ex == null)                 // help clean refs on way out
1405 +                ForkJoinTask.helpExpungeStaleExceptions();
1406          }
1407  
1408          if (ex != null)                     // rethrow
1409              U.throwException(ex);
1410      }
1411  
1412 <
1222 <    // Maintaining ctl counts
1223 <
1224 <    /**
1225 <     * Increments active count; mainly called upon return from blocking
1226 <     */
1227 <    final void incrementActiveCount() {
1228 <        long c;
1229 <        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1230 <    }
1412 >    // Submissions
1413  
1414      /**
1415 <     * Activates or creates a worker
1415 >     * Unless shutting down, adds the given task to a submission queue
1416 >     * at submitter's current queue index (modulo submission
1417 >     * range). If no queue exists at the index, one is created.  If
1418 >     * the queue is busy, another index is randomly chosen. The
1419 >     * submitMask bounds the effective number of queues to the
1420 >     * (nearest power of two for) parallelism level.
1421 >     *
1422 >     * @param task the task. Caller must ensure non-null.
1423       */
1424 <    final void signalWork() {
1425 <        /*
1426 <         * The while condition is true if: (there is are too few total
1427 <         * workers OR there is at least one waiter) AND (there are too
1428 <         * few active workers OR the pool is terminating).  The value
1429 <         * of e distinguishes the remaining cases: zero (no waiters)
1430 <         * for create, negative if terminating (in which case do
1431 <         * nothing), else release a waiter. The secondary checks for
1432 <         * release (non-null array etc) can fail if the pool begins
1433 <         * terminating after the test, and don't impose any added cost
1434 <         * because JVMs must perform null and bounds checks anyway.
1435 <         */
1436 <        long c; int e, u;
1437 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1438 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1439 <            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1440 <            if (e == 0) {                    // add a new worker
1441 <                if (U.compareAndSwapLong
1442 <                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1254 <                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1255 <                    addWorker();
1256 <                    break;
1424 >    private void doSubmit(ForkJoinTask<?> task) {
1425 >        Submitter s = submitters.get();
1426 >        for (int r = s.seed, m = submitMask;;) {
1427 >            WorkQueue[] ws; WorkQueue q;
1428 >            int k = r & m & SQMASK;          // use only even indices
1429 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1430 >                throw new RejectedExecutionException(); // shutting down
1431 >            else if ((q = ws[k]) == null) {  // create new queue
1432 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1433 >                Mutex lock = this.lock;      // construct outside lock
1434 >                lock.lock();
1435 >                try {                        // recheck under lock
1436 >                    int rs = runState;       // to update seq
1437 >                    if (ws == workQueues && ws[k] == null) {
1438 >                        ws[k] = nq;
1439 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1440 >                    }
1441 >                } finally {
1442 >                    lock.unlock();
1443                  }
1444              }
1445 <            else if (e > 0 && ws != null &&
1446 <                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1447 <                     (w = ws[i]) != null &&
1448 <                     w.eventCount == (e | INT_SIGN)) {
1449 <                if (U.compareAndSwapLong
1450 <                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1451 <                                    ((long)(u + UAC_UNIT) << 32)))) {
1452 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1267 <                    if ((p = w.parker) != null)
1268 <                        U.unpark(p);         // release a waiting worker
1269 <                    break;
1270 <                }
1445 >            else if (q.trySharedPush(task)) {
1446 >                signalWork();
1447 >                return;
1448 >            }
1449 >            else if (m > 1) {                // move to a different index
1450 >                r ^= r << 13;                // same xorshift as WorkQueues
1451 >                r ^= r >>> 17;
1452 >                s.seed = r ^= r << 5;
1453              }
1454              else
1455 <                break;
1455 >                Thread.yield();              // yield if no alternatives
1456          }
1457      }
1458  
1459      /**
1460 <     * Tries to decrement active count (sometimes implicitly) and
1279 <     * possibly release or create a compensating worker in preparation
1280 <     * for blocking. Fails on contention or termination.
1281 <     *
1282 <     * @return true if the caller can block, else should recheck and retry
1460 >     * Submits the given (non-null) task to the common pool, if possible.
1461       */
1462 <    final boolean tryCompensate() {
1463 <        WorkQueue[] ws; WorkQueue w; Thread p;
1464 <        int pc = parallelism, e, u, ac, tc, i;
1465 <        long c = ctl;
1462 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1463 >        ForkJoinPool p;
1464 >        if ((p = commonPool) == null)
1465 >            p = ensureCommonPool();
1466 >        p.doSubmit(task);
1467 >    }
1468  
1469 <        if ((e = (int)c) >= 0) {
1470 <            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1471 <                e != 0 && (ws = workQueues) != null &&
1472 <                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1473 <                (w = ws[i]) != null) {
1474 <                if (w.eventCount == (e | INT_SIGN) &&
1475 <                    U.compareAndSwapLong
1476 <                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1477 <                                    (c & (AC_MASK|TC_MASK))))) {
1478 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1479 <                    if ((p = w.parker) != null)
1480 <                        U.unpark(p);
1481 <                    return true;             // release an idle worker
1482 <                }
1483 <            }
1484 <            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1485 <                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1306 <                if (U.compareAndSwapLong(this, CTL, c, nc))
1307 <                    return true;             // no compensation needed
1308 <            }
1309 <            else if (tc + pc < MAX_ID) {
1310 <                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1311 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1312 <                    addWorker();
1313 <                    return true;             // create replacement
1314 <                }
1315 <            }
1316 <        }
1317 <        return false;
1469 >    /**
1470 >     * Returns true if the given task was submitted to common pool
1471 >     * and has not yet commenced execution, and is available for
1472 >     * removal according to execution policies; if so removing the
1473 >     * submission from the pool.
1474 >     *
1475 >     * @param task the task
1476 >     * @return true if successful
1477 >     */
1478 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1479 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1480 >        int k = submitters.get().seed & SQMASK;
1481 >        return ((p = commonPool) != null &&
1482 >                (ws = p.workQueues) != null &&
1483 >                ws.length > (k &= p.submitMask) &&
1484 >                (q = ws[k]) != null &&
1485 >                q.trySharedUnpush(task, p));
1486      }
1487  
1488 <    // Submissions
1488 >    // Maintaining ctl counts
1489  
1490      /**
1491 <     * Unless shutting down, adds the given task to some submission
1324 <     * queue; using a randomly chosen queue index if the caller is a
1325 <     * ForkJoinWorkerThread, else one based on caller thread's hash
1326 <     * code. If no queue exists at the index, one is created.  If the
1327 <     * queue is busy, another is chosen by sweeping through the queues
1328 <     * array.
1491 >     * Increments active count; mainly called upon return from blocking.
1492       */
1493 <    private void doSubmit(ForkJoinTask<?> task) {
1494 <        if (task == null)
1495 <            throw new NullPointerException();
1333 <        Thread t = Thread.currentThread();
1334 <        int r = ((t instanceof ForkJoinWorkerThread) ?
1335 <                 ((ForkJoinWorkerThread)t).workQueue.nextSeed() : hashThread(t));
1336 <        for (;;) {
1337 <            int rs = runState, m = rs & SMASK;
1338 <            int j = r &= (m & ~1);                      // even numbered queues
1339 <            WorkQueue[] ws = workQueues;
1340 <            if (rs < 0 || ws == null)
1341 <                throw new RejectedExecutionException(); // shutting down
1342 <            if (ws.length > m) {                        // consistency check
1343 <                for (WorkQueue q;;) {                   // circular sweep
1344 <                    if (((q = ws[j]) != null ||
1345 <                         (q = tryAddSharedQueue(j)) != null) &&
1346 <                        q.trySharedPush(task)) {
1347 <                        signalWork();
1348 <                        return;
1349 <                    }
1350 <                    if ((j = (j + 2) & m) == r) {
1351 <                        Thread.yield();                 // all queues busy
1352 <                        break;
1353 <                    }
1354 <                }
1355 <            }
1356 <        }
1493 >    final void incrementActiveCount() {
1494 >        long c;
1495 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1496      }
1497  
1498      /**
1499 <     * Tries to add and register a new queue at the given index.
1500 <     *
1501 <     * @param idx the workQueues array index to register the queue
1502 <     * @return the queue, or null if could not add because could
1503 <     * not acquire lock or idx is unusable
1504 <     */
1505 <    private WorkQueue tryAddSharedQueue(int idx) {
1506 <        WorkQueue q = null;
1507 <        ReentrantLock lock = this.lock;
1508 <        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1509 <            // create queue outside of lock but only if apparently free
1510 <            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1511 <            if (lock.tryLock()) {
1512 <                try {
1513 <                    WorkQueue[] ws = workQueues;
1514 <                    if (ws != null && idx < ws.length) {
1376 <                        if ((q = ws[idx]) == null) {
1377 <                            int rs;         // update runState seq
1378 <                            ws[idx] = q = nq;
1379 <                            runState = (((rs = runState) & SHUTDOWN) |
1380 <                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1381 <                        }
1499 >     * Tries to create one or activate one or more workers if too few are active.
1500 >     */
1501 >    final void signalWork() {
1502 >        long c; int u;
1503 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1504 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1505 >            if ((e = (int)c) > 0) {                     // at least one waiting
1506 >                if (ws != null && (i = e & SMASK) < ws.length &&
1507 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1508 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1509 >                               ((long)(u + UAC_UNIT) << 32));
1510 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1511 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1512 >                        if ((p = w.parker) != null)
1513 >                            U.unpark(p);                // activate and release
1514 >                        break;
1515                      }
1383                } finally {
1384                    lock.unlock();
1516                  }
1517 +                else
1518 +                    break;
1519              }
1520 +            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1521 +                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1522 +                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1523 +                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1524 +                    addWorker();
1525 +                    break;
1526 +                }
1527 +            }
1528 +            else
1529 +                break;
1530          }
1388        return q;
1531      }
1532  
1533      // Scanning for tasks
1534  
1535      /**
1536 +     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1537 +     */
1538 +    final void runWorker(WorkQueue w) {
1539 +        w.growArray(false);         // initialize queue array in this thread
1540 +        do { w.runTask(scan(w)); } while (w.runState >= 0);
1541 +    }
1542 +
1543 +    /**
1544       * Scans for and, if found, returns one task, else possibly
1545       * inactivates the worker. This method operates on single reads of
1546 <     * volatile state and is designed to be re-invoked continuously in
1547 <     * part because it returns upon detecting inconsistencies,
1546 >     * volatile state and is designed to be re-invoked continuously,
1547 >     * in part because it returns upon detecting inconsistencies,
1548       * contention, or state changes that indicate possible success on
1549       * re-invocation.
1550       *
1551 <     * The scan searches for tasks across queues, randomly selecting
1552 <     * the first #queues probes, favoring steals 2:1 over submissions
1553 <     * (by exploiting even/odd indexing), and then performing a
1554 <     * circular sweep of all queues.  The scan terminates upon either
1555 <     * finding a non-empty queue, or completing a full sweep. If the
1556 <     * worker is not inactivated, it takes and returns a task from
1557 <     * this queue.  On failure to find a task, we take one of the
1558 <     * following actions, after which the caller will retry calling
1559 <     * this method unless terminated.
1551 >     * The scan searches for tasks across a random permutation of
1552 >     * queues (starting at a random index and stepping by a random
1553 >     * relative prime, checking each at least once).  The scan
1554 >     * terminates upon either finding a non-empty queue, or completing
1555 >     * the sweep. If the worker is not inactivated, it takes and
1556 >     * returns a task from this queue.  On failure to find a task, we
1557 >     * take one of the following actions, after which the caller will
1558 >     * retry calling this method unless terminated.
1559 >     *
1560 >     * * If pool is terminating, terminate the worker.
1561       *
1562       * * If not a complete sweep, try to release a waiting worker.  If
1563       * the scan terminated because the worker is inactivated, then the
# Line 1415 | Line 1566 | public class ForkJoinPool extends Abstra
1566       * another worker, but with same net effect. Releasing in other
1567       * cases as well ensures that we have enough workers running.
1568       *
1418     * * If the caller has run a task since the the last empty scan,
1419     * return (to allow rescan) if other workers are not also yet
1420     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1421     * ensure eventual inactivation, and occasional calls to
1422     * Thread.yield to help avoid interference with more useful
1423     * activities on the system.
1424     *
1425     * * If pool is terminating, terminate the worker
1426     *
1569       * * If not already enqueued, try to inactivate and enqueue the
1570 <     * worker on wait queue.
1570 >     * worker on wait queue. Or, if inactivating has caused the pool
1571 >     * to be quiescent, relay to idleAwaitWork to check for
1572 >     * termination and possibly shrink pool.
1573 >     *
1574 >     * * If already inactive, and the caller has run a task since the
1575 >     * last empty scan, return (to allow rescan) unless others are
1576 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1577 >     * scan to ensure eventual inactivation and blocking.
1578       *
1579 <     * * If already enqueued and none of the above apply, either park
1580 <     * awaiting signal, or if this is the most recent waiter and pool
1432 <     * is quiescent, relay to idleAwaitWork to check for termination
1433 <     * and possibly shrink pool.
1579 >     * * If already enqueued and none of the above apply, park
1580 >     * awaiting signal,
1581       *
1582       * @param w the worker (via its WorkQueue)
1583 <     * @return a task or null of none found
1583 >     * @return a task or null if none found
1584       */
1585      private final ForkJoinTask<?> scan(WorkQueue w) {
1586 <        boolean swept = false;                 // true after full empty scan
1587 <        WorkQueue[] ws;                        // volatile read order matters
1588 <        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1589 <        int rs = runState, m = rs & SMASK;
1590 <        if ((ws = workQueues) != null && ws.length > m) {
1591 <            ForkJoinTask<?> task = null;
1592 <            for (int k = 0, j = -2 - m; ; ++j) {
1593 <                WorkQueue q; int b;
1594 <                if (j < 0) {                    // random probes while j negative
1595 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1596 <                }                               // worker (not submit) for odd j
1597 <                else                            // cyclic scan when j >= 0
1598 <                    k += (m >>> 1) | 1;         // step by half to reduce bias
1599 <
1600 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1601 <                    if (ec >= 0)
1602 <                        task = q.pollAt(b);     // steal
1603 <                    break;
1586 >        WorkQueue[] ws;                       // first update random seed
1587 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1588 >        int rs = runState, m;                 // volatile read order matters
1589 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1590 >            int ec = w.eventCount;            // ec is negative if inactive
1591 >            int step = (r >>> 16) | 1;        // relative prime
1592 >            for (int j = (m + 1) << 2; ; r += step) {
1593 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1594 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1595 >                    (a = q.array) != null) {  // probably nonempty
1596 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1597 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1598 >                    if (q.base == b && ec >= 0 && t != null &&
1599 >                        U.compareAndSwapObject(a, i, t, null)) {
1600 >                        if (q.top - (q.base = b + 1) > 0)
1601 >                            signalWork();    // help pushes signal
1602 >                        return t;
1603 >                    }
1604 >                    else if (ec < 0 || j <= m) {
1605 >                        rs = 0;               // mark scan as imcomplete
1606 >                        break;                // caller can retry after release
1607 >                    }
1608                  }
1609 <                else if (j > m) {
1459 <                    if (rs == runState)        // staleness check
1460 <                        swept = true;
1609 >                if (--j < 0)
1610                      break;
1611 +            }
1612 +
1613 +            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1614 +            if (e < 0)                        // decode ctl on empty scan
1615 +                w.runState = -1;              // pool is terminating
1616 +            else if (rs == 0 || rs != runState) { // incomplete scan
1617 +                WorkQueue v; Thread p;        // try to release a waiter
1618 +                if (e > 0 && a < 0 && w.eventCount == ec &&
1619 +                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1620 +                    long nc = ((long)(v.nextWait & E_MASK) |
1621 +                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1622 +                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1623 +                        v.eventCount = (e + E_SEQ) & E_MASK;
1624 +                        if ((p = v.parker) != null)
1625 +                            U.unpark(p);
1626 +                    }
1627                  }
1628              }
1629 <            w.seed = r;                        // save seed for next scan
1630 <            if (task != null)
1631 <                return task;
1632 <        }
1633 <
1634 <        // Decode ctl on empty scan
1635 <        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1636 <        if (!swept) {                          // try to release a waiter
1637 <            WorkQueue v; Thread p;
1638 <            if (e > 0 && a < 0 && ws != null &&
1639 <                (v = ws[((~e << 1) | 1) & m]) != null &&
1640 <                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1641 <                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1642 <                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1643 <                v.eventCount = (e + E_SEQ) & E_MASK;
1644 <                if ((p = v.parker) != null)
1645 <                    U.unpark(p);
1646 <            }
1647 <        }
1648 <        else if ((nr = w.rescans) > 0) {       // continue rescanning
1649 <            int ac = a + parallelism;
1650 <            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1651 <                w.eventCount == ec)
1652 <                Thread.yield();                // 1 bit randomness for yield call
1653 <        }
1654 <        else if (e < 0)                        // pool is terminating
1655 <            w.runState = -1;
1656 <        else if (ec >= 0) {                    // try to enqueue
1657 <            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1658 <            w.nextWait = e;
1494 <            w.eventCount = ec | INT_SIGN;      // mark as inactive
1495 <            if (!U.compareAndSwapLong(this, CTL, c, nc))
1496 <                w.eventCount = ec;             // back out on CAS failure
1497 <            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1498 <                if (a <= 0)                    // ... unless too many active
1499 <                    w.rescans = a + parallelism;
1500 <                w.nsteals = 0;
1501 <                w.totalSteals += ns;
1502 <            }
1503 <        }
1504 <        else{                                  // already queued
1505 <            if (parallelism == -a)
1506 <                idleAwaitWork(w);              // quiescent
1507 <            if (w.eventCount == ec) {
1508 <                Thread.interrupted();          // clear status
1509 <                ForkJoinWorkerThread wt = w.owner;
1510 <                U.putObject(wt, PARKBLOCKER, this);
1511 <                w.parker = wt;                 // emulate LockSupport.park
1512 <                if (w.eventCount == ec)        // recheck
1513 <                    U.park(false, 0L);         // block
1514 <                w.parker = null;
1515 <                U.putObject(wt, PARKBLOCKER, null);
1629 >            else if (ec >= 0) {               // try to enqueue/inactivate
1630 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1631 >                w.nextWait = e;
1632 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1633 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1634 >                    w.eventCount = ec;        // unmark on CAS failure
1635 >                else {
1636 >                    if ((ns = w.nsteals) != 0) {
1637 >                        w.nsteals = 0;        // set rescans if ran task
1638 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1639 >                        w.totalSteals += ns;
1640 >                    }
1641 >                    if (a == 1 - parallelism) // quiescent
1642 >                        idleAwaitWork(w, nc, c);
1643 >                }
1644 >            }
1645 >            else if (w.eventCount < 0) {      // already queued
1646 >                int ac = a + parallelism;
1647 >                if ((nr = w.rescans) > 0)     // continue rescanning
1648 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1649 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1650 >                    Thread.interrupted();     // clear status
1651 >                    Thread wt = Thread.currentThread();
1652 >                    U.putObject(wt, PARKBLOCKER, this);
1653 >                    w.parker = wt;            // emulate LockSupport.park
1654 >                    if (w.eventCount < 0)     // recheck
1655 >                        U.park(false, 0L);
1656 >                    w.parker = null;
1657 >                    U.putObject(wt, PARKBLOCKER, null);
1658 >                }
1659              }
1660          }
1661          return null;
1662      }
1663  
1664      /**
1665 <     * If inactivating worker w has caused pool to become quiescent,
1666 <     * check for pool termination, and, so long as this is not the
1667 <     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1668 <     * timeout, if ctl has not changed, terminate the worker, which
1669 <     * will in turn wake up another worker to possibly repeat this
1670 <     * process.
1665 >     * If inactivating worker w has caused the pool to become
1666 >     * quiescent, checks for pool termination, and, so long as this is
1667 >     * not the only worker, waits for event for up to a given
1668 >     * duration.  On timeout, if ctl has not changed, terminates the
1669 >     * worker, which will in turn wake up another worker to possibly
1670 >     * repeat this process.
1671       *
1672       * @param w the calling worker
1673 +     * @param currentCtl the ctl value triggering possible quiescence
1674 +     * @param prevCtl the ctl value to restore if thread is terminated
1675       */
1676 <    private void idleAwaitWork(WorkQueue w) {
1677 <        long c; int nw, ec;
1678 <        if (!tryTerminate(false) &&
1679 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1680 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1681 <            (nw = w.nextWait) != 0) {
1682 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1683 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1539 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1540 <            ForkJoinWorkerThread wt = w.owner;
1541 <            while (ctl == c) {
1542 <                long startTime = System.nanoTime();
1676 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1677 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1678 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1679 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1680 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1681 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1682 >            Thread wt = Thread.currentThread();
1683 >            while (ctl == currentCtl) {
1684                  Thread.interrupted();  // timed variant of version in scan()
1685                  U.putObject(wt, PARKBLOCKER, this);
1686                  w.parker = wt;
1687 <                if (ctl == c)
1688 <                    U.park(false, SHRINK_RATE);
1687 >                if (ctl == currentCtl)
1688 >                    U.park(false, parkTime);
1689                  w.parker = null;
1690                  U.putObject(wt, PARKBLOCKER, null);
1691 <                if (ctl != c)
1691 >                if (ctl != currentCtl)
1692                      break;
1693 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1694 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1695 <                    w.runState = -1;          // shrink
1696 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1693 >                if (deadline - System.nanoTime() <= 0L &&
1694 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1695 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1696 >                    w.runState = -1;   // shrink
1697                      break;
1698                  }
1699              }
# Line 1570 | Line 1711 | public class ForkJoinPool extends Abstra
1711       * leaves hints in workers to speed up subsequent calls. The
1712       * implementation is very branchy to cope with potential
1713       * inconsistencies or loops encountering chains that are stale,
1714 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1574 <     * of these cases are dealt with by just retrying by caller.
1714 >     * unknown, or so long that they are likely cyclic.
1715       *
1716       * @param joiner the joining worker
1717       * @param task the task to join
1718 <     * @return true if found or ran a task (and so is immediately retryable)
1718 >     * @return 0 if no progress can be made, negative if task
1719 >     * known complete, else positive
1720       */
1721 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1722 <        ForkJoinTask<?> subtask;    // current target
1723 <        boolean progress = false;
1724 <        int depth = 0;              // current chain depth
1725 <        int m = runState & SMASK;
1726 <        WorkQueue[] ws = workQueues;
1727 <
1728 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1729 <            outer:for (WorkQueue j = joiner;;) {
1730 <                // Try to find the stealer of subtask, by first using hint
1590 <                WorkQueue stealer = null;
1591 <                WorkQueue v = ws[j.stealHint & m];
1592 <                if (v != null && v.currentSteal == subtask)
1593 <                    stealer = v;
1594 <                else {
1595 <                    for (int i = 1; i <= m; i += 2) {
1596 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1597 <                            stealer = v;
1598 <                            j.stealHint = i; // save hint
1599 <                            break;
1600 <                        }
1721 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1722 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1723 >        if (joiner != null && task != null) {       // hoist null checks
1724 >            restart: for (;;) {
1725 >                ForkJoinTask<?> subtask = task;     // current target
1726 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1727 >                    WorkQueue[] ws; int m, s, h;
1728 >                    if ((s = task.status) < 0) {
1729 >                        stat = s;
1730 >                        break restart;
1731                      }
1732 <                    if (stealer == null)
1733 <                        break;
1734 <                }
1735 <
1736 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1737 <                    ForkJoinTask<?> t; int b;
1738 <                    if (task.status < 0)
1739 <                        break outer;
1740 <                    if ((b = q.base) - q.top < 0) {
1741 <                        progress = true;
1742 <                        if (subtask.status < 0)
1743 <                            break outer;               // stale
1744 <                        if ((t = q.pollAt(b)) != null) {
1745 <                            stealer.stealHint = joiner.poolIndex;
1746 <                            joiner.runSubtask(t);
1732 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1733 >                        break restart;              // shutting down
1734 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1735 >                        v.currentSteal != subtask) {
1736 >                        for (int origin = h;;) {    // find stealer
1737 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1738 >                                (subtask.status < 0 || j.currentJoin != subtask))
1739 >                                continue restart;   // occasional staleness check
1740 >                            if ((v = ws[h]) != null &&
1741 >                                v.currentSteal == subtask) {
1742 >                                j.stealHint = h;    // save hint
1743 >                                break;
1744 >                            }
1745 >                            if (h == origin)
1746 >                                break restart;      // cannot find stealer
1747                          }
1748                      }
1749 <                    else { // empty - try to descend to find stealer's stealer
1750 <                        ForkJoinTask<?> next = stealer.currentJoin;
1751 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1752 <                            next == null || next == subtask)
1753 <                            break outer;  // max depth, stale, dead-end, cyclic
1754 <                        subtask = next;
1755 <                        j = stealer;
1756 <                        break;
1749 >                    for (;;) { // help stealer or descend to its stealer
1750 >                        ForkJoinTask[] a;  int b;
1751 >                        if (subtask.status < 0)     // surround probes with
1752 >                            continue restart;       //   consistency checks
1753 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1754 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1755 >                            ForkJoinTask<?> t =
1756 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1757 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1758 >                                v.currentSteal != subtask)
1759 >                                continue restart;   // stale
1760 >                            stat = 1;               // apparent progress
1761 >                            if (t != null && v.base == b &&
1762 >                                U.compareAndSwapObject(a, i, t, null)) {
1763 >                                v.base = b + 1;     // help stealer
1764 >                                joiner.runSubtask(t);
1765 >                            }
1766 >                            else if (v.base == b && ++steps == MAX_HELP)
1767 >                                break restart;      // v apparently stalled
1768 >                        }
1769 >                        else {                      // empty -- try to descend
1770 >                            ForkJoinTask<?> next = v.currentJoin;
1771 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1772 >                                v.currentSteal != subtask)
1773 >                                continue restart;   // stale
1774 >                            else if (next == null || ++steps == MAX_HELP)
1775 >                                break restart;      // dead-end or maybe cyclic
1776 >                            else {
1777 >                                subtask = next;
1778 >                                j = v;
1779 >                                break;
1780 >                            }
1781 >                        }
1782                      }
1783                  }
1784              }
1785          }
1786 <        return progress;
1786 >        return stat;
1787      }
1788  
1789      /**
# Line 1637 | Line 1792 | public class ForkJoinPool extends Abstra
1792       * @param joiner the joining worker
1793       * @param task the task
1794       */
1795 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1795 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1796          WorkQueue[] ws;
1797 <        int m = runState & SMASK;
1798 <        if ((ws = workQueues) != null && ws.length > m) {
1644 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1797 >        if ((ws = workQueues) != null) {
1798 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1799                  WorkQueue q = ws[j];
1800                  if (q != null && q.pollFor(task)) {
1801                      joiner.runSubtask(task);
# Line 1652 | Line 1806 | public class ForkJoinPool extends Abstra
1806      }
1807  
1808      /**
1809 <     * Returns a non-empty steal queue, if one is found during a random,
1810 <     * then cyclic scan, else null.  This method must be retried by
1811 <     * caller if, by the time it tries to use the queue, it is empty.
1809 >     * Tries to decrement active count (sometimes implicitly) and
1810 >     * possibly release or create a compensating worker in preparation
1811 >     * for blocking. Fails on contention or termination. Otherwise,
1812 >     * adds a new thread if no idle workers are available and either
1813 >     * pool would become completely starved or: (at least half
1814 >     * starved, and fewer than 50% spares exist, and there is at least
1815 >     * one task apparently available). Even though the availability
1816 >     * check requires a full scan, it is worthwhile in reducing false
1817 >     * alarms.
1818 >     *
1819 >     * @param task if non-null, a task being waited for
1820 >     * @param blocker if non-null, a blocker being waited for
1821 >     * @return true if the caller can block, else should recheck and retry
1822 >     */
1823 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1824 >        int pc = parallelism, e;
1825 >        long c = ctl;
1826 >        WorkQueue[] ws = workQueues;
1827 >        if ((e = (int)c) >= 0 && ws != null) {
1828 >            int u, a, ac, hc;
1829 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1830 >            boolean replace = false;
1831 >            if ((a = u >> UAC_SHIFT) <= 0) {
1832 >                if ((ac = a + pc) <= 1)
1833 >                    replace = true;
1834 >                else if ((e > 0 || (task != null &&
1835 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1836 >                    WorkQueue w;
1837 >                    for (int j = 0; j < ws.length; ++j) {
1838 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1839 >                            replace = true;
1840 >                            break;   // in compensation range and tasks available
1841 >                        }
1842 >                    }
1843 >                }
1844 >            }
1845 >            if ((task == null || task.status >= 0) && // recheck need to block
1846 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1847 >                if (!replace) {          // no compensation
1848 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1849 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
1850 >                        return true;
1851 >                }
1852 >                else if (e != 0) {       // release an idle worker
1853 >                    WorkQueue w; Thread p; int i;
1854 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1855 >                        long nc = ((long)(w.nextWait & E_MASK) |
1856 >                                   (c & (AC_MASK|TC_MASK)));
1857 >                        if (w.eventCount == (e | INT_SIGN) &&
1858 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
1859 >                            w.eventCount = (e + E_SEQ) & E_MASK;
1860 >                            if ((p = w.parker) != null)
1861 >                                U.unpark(p);
1862 >                            return true;
1863 >                        }
1864 >                    }
1865 >                }
1866 >                else if (tc < MAX_CAP) { // create replacement
1867 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1868 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1869 >                        addWorker();
1870 >                        return true;
1871 >                    }
1872 >                }
1873 >            }
1874 >        }
1875 >        return false;
1876 >    }
1877 >
1878 >    /**
1879 >     * Helps and/or blocks until the given task is done.
1880 >     *
1881 >     * @param joiner the joining worker
1882 >     * @param task the task
1883 >     * @return task status on exit
1884 >     */
1885 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1886 >        int s;
1887 >        if ((s = task.status) >= 0) {
1888 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1889 >            joiner.currentJoin = task;
1890 >            long startTime = 0L;
1891 >            for (int k = 0;;) {
1892 >                if ((s = (joiner.isEmpty() ?           // try to help
1893 >                          tryHelpStealer(joiner, task) :
1894 >                          joiner.tryRemoveAndExec(task))) == 0 &&
1895 >                    (s = task.status) >= 0) {
1896 >                    if (k == 0) {
1897 >                        startTime = System.nanoTime();
1898 >                        tryPollForAndExec(joiner, task); // check uncommon case
1899 >                    }
1900 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
1901 >                             System.nanoTime() - startTime >=
1902 >                             COMPENSATION_DELAY &&
1903 >                             tryCompensate(task, null)) {
1904 >                        if (task.trySetSignal()) {
1905 >                            synchronized (task) {
1906 >                                if (task.status >= 0) {
1907 >                                    try {                // see ForkJoinTask
1908 >                                        task.wait();     //  for explanation
1909 >                                    } catch (InterruptedException ie) {
1910 >                                    }
1911 >                                }
1912 >                                else
1913 >                                    task.notifyAll();
1914 >                            }
1915 >                        }
1916 >                        long c;                          // re-activate
1917 >                        do {} while (!U.compareAndSwapLong
1918 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1919 >                    }
1920 >                }
1921 >                if (s < 0 || (s = task.status) < 0) {
1922 >                    joiner.currentJoin = prevJoin;
1923 >                    break;
1924 >                }
1925 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1926 >                    Thread.yield();                     // for politeness
1927 >            }
1928 >        }
1929 >        return s;
1930 >    }
1931 >
1932 >    /**
1933 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1934 >     * to help join only while there is continuous progress. (Caller
1935 >     * will then enter a timed wait.)
1936 >     *
1937 >     * @param joiner the joining worker
1938 >     * @param task the task
1939 >     * @return task status on exit
1940 >     */
1941 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1942 >        int s;
1943 >        while ((s = task.status) >= 0 &&
1944 >               (joiner.isEmpty() ?
1945 >                tryHelpStealer(joiner, task) :
1946 >                joiner.tryRemoveAndExec(task)) != 0)
1947 >            ;
1948 >        return s;
1949 >    }
1950 >
1951 >    /**
1952 >     * Returns a (probably) non-empty steal queue, if one is found
1953 >     * during a random, then cyclic scan, else null.  This method must
1954 >     * be retried by caller if, by the time it tries to use the queue,
1955 >     * it is empty.
1956       */
1957      private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1958 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1958 >        // Similar to loop in scan(), but ignoring submissions
1959 >        int r;
1960 >        if (w == null) // allow external callers
1961 >            r = ThreadLocalRandom.current().nextInt();
1962 >        else {
1963 >            r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1964 >        }
1965 >        int step = (r >>> 16) | 1;
1966          for (WorkQueue[] ws;;) {
1967 <            int m = runState & SMASK;
1968 <            if ((ws = workQueues) == null)
1967 >            int rs = runState, m;
1968 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1969                  return null;
1970 <            if (ws.length > m) {
1971 <                WorkQueue q;
1972 <                for (int n = m << 2, k = r, j = -n;;) {
1973 <                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1974 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1975 <                        w.seed = r;
1671 <                        return q;
1672 <                    }
1673 <                    else if (j > n)
1970 >            for (int j = (m + 1) << 2; ; r += step) {
1971 >                WorkQueue q = ws[((r << 1) | 1) & m];
1972 >                if (q != null && !q.isEmpty())
1973 >                    return q;
1974 >                else if (--j < 0) {
1975 >                    if (runState == rs)
1976                          return null;
1977 <                    else
1676 <                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1677 <
1977 >                    break;
1978                  }
1979              }
1980          }
# Line 1688 | Line 1988 | public class ForkJoinPool extends Abstra
1988       */
1989      final void helpQuiescePool(WorkQueue w) {
1990          for (boolean active = true;;) {
1991 <            w.runLocalTasks();      // exhaust local queue
1991 >            ForkJoinTask<?> localTask; // exhaust local queue
1992 >            while ((localTask = w.nextLocalTask()) != null)
1993 >                localTask.doExec();
1994              WorkQueue q = findNonEmptyStealQueue(w);
1995              if (q != null) {
1996 <                ForkJoinTask<?> t;
1996 >                ForkJoinTask<?> t; int b;
1997                  if (!active) {      // re-establish active count
1998                      long c;
1999                      active = true;
2000                      do {} while (!U.compareAndSwapLong
2001                                   (this, CTL, c = ctl, c + AC_UNIT));
2002                  }
2003 <                if ((t = q.poll()) != null)
2003 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2004                      w.runSubtask(t);
2005              }
2006              else {
# Line 1720 | Line 2022 | public class ForkJoinPool extends Abstra
2022      }
2023  
2024      /**
2025 <     * Gets and removes a local or stolen task for the given worker
2025 >     * Restricted version of helpQuiescePool for non-FJ callers
2026 >     */
2027 >    static void externalHelpQuiescePool() {
2028 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
2029 >        ForkJoinTask<?> t; int b;
2030 >        int k = submitters.get().seed & SQMASK;
2031 >        if ((p = commonPool) != null &&
2032 >            (ws = p.workQueues) != null &&
2033 >            ws.length > (k &= p.submitMask) &&
2034 >            (w = ws[k]) != null &&
2035 >            (q = p.findNonEmptyStealQueue(w)) != null &&
2036 >            (b = q.base) - q.top < 0 &&
2037 >            (t = q.pollAt(b)) != null)
2038 >            t.doExec();
2039 >    }
2040 >
2041 >    /**
2042 >     * Gets and removes a local or stolen task for the given worker.
2043       *
2044       * @return a task, if available
2045       */
2046      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2047          for (ForkJoinTask<?> t;;) {
2048 <            WorkQueue q;
2048 >            WorkQueue q; int b;
2049              if ((t = w.nextLocalTask()) != null)
2050                  return t;
2051              if ((q = findNonEmptyStealQueue(w)) == null)
2052                  return null;
2053 <            if ((t = q.poll()) != null)
2053 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2054                  return t;
2055          }
2056      }
# Line 1752 | Line 2071 | public class ForkJoinPool extends Abstra
2071                  8);
2072      }
2073  
1755    // Termination
1756
2074      /**
2075 <     * Sets SHUTDOWN bit of runState under lock
2075 >     * Returns approximate submission queue length for the given caller
2076       */
2077 <    private void enableShutdown() {
2078 <        ReentrantLock lock = this.lock;
2079 <        if (runState >= 0) {
2080 <            lock.lock();                       // don't need try/finally
2081 <            runState |= SHUTDOWN;
2082 <            lock.unlock();
2083 <        }
2077 >    static int getEstimatedSubmitterQueueLength() {
2078 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2079 >        int k = submitters.get().seed & SQMASK;
2080 >        return ((p = commonPool) != null &&
2081 >                p.runState >= 0 &&
2082 >                (ws = p.workQueues) != null &&
2083 >                ws.length > (k &= p.submitMask) &&
2084 >                (q = ws[k]) != null) ?
2085 >            q.queueSize() : 0;
2086      }
2087  
2088 +    //  Termination
2089 +
2090      /**
2091 <     * Possibly initiates and/or completes termination.  Upon
2092 <     * termination, cancels all queued tasks and then
2091 >     * Possibly initiates and/or completes termination.  The caller
2092 >     * triggering termination runs three passes through workQueues:
2093 >     * (0) Setting termination status, followed by wakeups of queued
2094 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2095 >     * threads (likely in external tasks, but possibly also blocked in
2096 >     * joins).  Each pass repeats previous steps because of potential
2097 >     * lagging thread creation.
2098       *
2099       * @param now if true, unconditionally terminate, else only
2100       * if no work and no active workers
2101 +     * @param enable if true, enable shutdown when next possible
2102       * @return true if now terminating or terminated
2103       */
2104 <    private boolean tryTerminate(boolean now) {
2104 >    private boolean tryTerminate(boolean now, boolean enable) {
2105 >        Mutex lock = this.lock;
2106          for (long c;;) {
2107              if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2108                  if ((short)(c >>> TC_SHIFT) == -parallelism) {
1781                    ReentrantLock lock = this.lock; // signal when no workers
2109                      lock.lock();                    // don't need try/finally
2110                      termination.signalAll();        // signal when 0 workers
2111                      lock.unlock();
2112                  }
2113                  return true;
2114              }
2115 <            if (!now) {
2116 <                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
2115 >            if (runState >= 0) {                    // not yet enabled
2116 >                if (!enable)
2117 >                    return false;
2118 >                lock.lock();
2119 >                runState |= SHUTDOWN;
2120 >                lock.unlock();
2121 >            }
2122 >            if (!now) {                             // check if idle & no tasks
2123 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2124                      hasQueuedSubmissions())
2125                      return false;
2126                  // Check for unqueued inactive workers. One pass suffices.
2127                  WorkQueue[] ws = workQueues; WorkQueue w;
2128                  if (ws != null) {
2129 <                    int n = ws.length;
1796 <                    for (int i = 1; i < n; i += 2) {
2129 >                    for (int i = 1; i < ws.length; i += 2) {
2130                          if ((w = ws[i]) != null && w.eventCount >= 0)
2131                              return false;
2132                      }
2133                  }
2134              }
2135 <            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
2136 <                startTerminating();
2137 <        }
2138 <    }
2139 <
2140 <    /**
2141 <     * Initiates termination: Runs three passes through workQueues:
2142 <     * (0) Setting termination status, followed by wakeups of queued
2143 <     * workers; (1) cancelling all tasks; (2) interrupting lagging
2144 <     * threads (likely in external tasks, but possibly also blocked in
2145 <     * joins).  Each pass repeats previous steps because of potential
2146 <     * lagging thread creation.
2147 <     */
1815 <    private void startTerminating() {
1816 <        for (int pass = 0; pass < 3; ++pass) {
1817 <            WorkQueue[] ws = workQueues;
1818 <            if (ws != null) {
1819 <                WorkQueue w; Thread wt;
1820 <                int n = ws.length;
1821 <                for (int j = 0; j < n; ++j) {
1822 <                    if ((w = ws[j]) != null) {
1823 <                        w.runState = -1;
1824 <                        if (pass > 0) {
1825 <                            w.cancelAll();
1826 <                            if (pass > 1 && (wt = w.owner) != null &&
1827 <                                !wt.isInterrupted()) {
1828 <                                try {
1829 <                                    wt.interrupt();
1830 <                                } catch (SecurityException ignore) {
2135 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2136 >                for (int pass = 0; pass < 3; ++pass) {
2137 >                    WorkQueue[] ws = workQueues;
2138 >                    if (ws != null) {
2139 >                        WorkQueue w;
2140 >                        int n = ws.length;
2141 >                        for (int i = 0; i < n; ++i) {
2142 >                            if ((w = ws[i]) != null) {
2143 >                                w.runState = -1;
2144 >                                if (pass > 0) {
2145 >                                    w.cancelAll();
2146 >                                    if (pass > 1)
2147 >                                        w.interruptOwner();
2148                                  }
2149                              }
2150                          }
2151 <                    }
2152 <                }
2153 <                // Wake up workers parked on event queue
2154 <                int i, e; long c; Thread p;
2155 <                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
2156 <                       (w = ws[i]) != null &&
2157 <                       w.eventCount == (e | INT_SIGN)) {
2158 <                    long nc = ((long)(w.nextWait & E_MASK) |
2159 <                               ((c + AC_UNIT) & AC_MASK) |
2160 <                               (c & (TC_MASK|STOP_BIT)));
2161 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2162 <                        w.eventCount = (e + E_SEQ) & E_MASK;
2163 <                        if ((p = w.parker) != null)
2164 <                            U.unpark(p);
2151 >                        // Wake up workers parked on event queue
2152 >                        int i, e; long cc; Thread p;
2153 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2154 >                               (i = e & SMASK) < n &&
2155 >                               (w = ws[i]) != null) {
2156 >                            long nc = ((long)(w.nextWait & E_MASK) |
2157 >                                       ((cc + AC_UNIT) & AC_MASK) |
2158 >                                       (cc & (TC_MASK|STOP_BIT)));
2159 >                            if (w.eventCount == (e | INT_SIGN) &&
2160 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2161 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2162 >                                w.runState = -1;
2163 >                                if ((p = w.parker) != null)
2164 >                                    U.unpark(p);
2165 >                            }
2166 >                        }
2167                      }
2168                  }
2169              }
# Line 1920 | Line 2239 | public class ForkJoinPool extends Abstra
2239          checkPermission();
2240          if (factory == null)
2241              throw new NullPointerException();
2242 <        if (parallelism <= 0 || parallelism > MAX_ID)
2242 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2243              throw new IllegalArgumentException();
2244          this.parallelism = parallelism;
2245          this.factory = factory;
2246          this.ueh = handler;
2247          this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1929        this.nextPoolIndex = 1;
2248          long np = (long)(-parallelism); // offset ctl counts
2249          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2250 <        // initialize workQueues array with room for 2*parallelism if possible
2251 <        int n = parallelism << 1;
2252 <        if (n >= MAX_ID)
2253 <            n = MAX_ID;
2254 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
2255 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
2256 <        }
1939 <        this.workQueues = new WorkQueue[(n + 1) << 1];
1940 <        ReentrantLock lck = this.lock = new ReentrantLock();
1941 <        this.termination = lck.newCondition();
2250 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2251 >        int n = parallelism - 1;
2252 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2253 >        int size = (n + 1) << 1;        // #slots = 2*#workers
2254 >        this.submitMask = size - 1;     // room for max # of submit queues
2255 >        this.workQueues = new WorkQueue[size];
2256 >        this.termination = (this.lock = new Mutex()).newCondition();
2257          this.stealCount = new AtomicLong();
2258          this.nextWorkerNumber = new AtomicInteger();
2259 +        int pn = poolNumberGenerator.incrementAndGet();
2260          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2261 <        sb.append(poolNumberGenerator.incrementAndGet());
2261 >        sb.append(Integer.toString(pn));
2262          sb.append("-worker-");
2263          this.workerNamePrefix = sb.toString();
2264 <        // Create initial submission queue
2265 <        WorkQueue sq = tryAddSharedQueue(0);
2266 <        if (sq != null)
2267 <            sq.growArray(false);
2264 >        lock.lock();
2265 >        this.runState = 1;              // set init flag
2266 >        lock.unlock();
2267 >    }
2268 >
2269 >    /**
2270 >     * Returns the common pool instance
2271 >     *
2272 >     * @return the common pool instance
2273 >     */
2274 >    public static ForkJoinPool commonPool() {
2275 >        ForkJoinPool p;
2276 >        return (p = commonPool) != null? p : ensureCommonPool();
2277 >    }
2278 >
2279 >    private static ForkJoinPool ensureCommonPool() {
2280 >        ForkJoinPool p;
2281 >        if ((p = commonPool) == null) {
2282 >            final Mutex lock = initializationLock;
2283 >            lock.lock();
2284 >            try {
2285 >                if ((p = commonPool) == null) {
2286 >                    p = commonPool = new ForkJoinPool(commonPoolParallelism,
2287 >                                                      commonPoolFactory,
2288 >                                                      commonPoolUEH, false);
2289 >                    // use a more informative name string for workers
2290 >                    p.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2291 >                }
2292 >            } finally {
2293 >                lock.unlock();
2294 >            }
2295 >        }
2296 >        return p;
2297      }
2298  
2299      // Execution methods
# Line 1970 | Line 2315 | public class ForkJoinPool extends Abstra
2315       *         scheduled for execution
2316       */
2317      public <T> T invoke(ForkJoinTask<T> task) {
2318 +        if (task == null)
2319 +            throw new NullPointerException();
2320          doSubmit(task);
2321          return task.join();
2322      }
# Line 1983 | Line 2330 | public class ForkJoinPool extends Abstra
2330       *         scheduled for execution
2331       */
2332      public void execute(ForkJoinTask<?> task) {
2333 +        if (task == null)
2334 +            throw new NullPointerException();
2335          doSubmit(task);
2336      }
2337  
# Line 2000 | Line 2349 | public class ForkJoinPool extends Abstra
2349          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2350              job = (ForkJoinTask<?>) task;
2351          else
2352 <            job = ForkJoinTask.adapt(task, null);
2352 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2353          doSubmit(job);
2354      }
2355  
# Line 2014 | Line 2363 | public class ForkJoinPool extends Abstra
2363       *         scheduled for execution
2364       */
2365      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2366 +        if (task == null)
2367 +            throw new NullPointerException();
2368          doSubmit(task);
2369          return task;
2370      }
# Line 2024 | Line 2375 | public class ForkJoinPool extends Abstra
2375       *         scheduled for execution
2376       */
2377      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2378 <        if (task == null)
2028 <            throw new NullPointerException();
2029 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2378 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2379          doSubmit(job);
2380          return job;
2381      }
# Line 2037 | Line 2386 | public class ForkJoinPool extends Abstra
2386       *         scheduled for execution
2387       */
2388      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2389 <        if (task == null)
2041 <            throw new NullPointerException();
2042 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2389 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2390          doSubmit(job);
2391          return job;
2392      }
# Line 2056 | Line 2403 | public class ForkJoinPool extends Abstra
2403          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2404              job = (ForkJoinTask<?>) task;
2405          else
2406 <            job = ForkJoinTask.adapt(task, null);
2406 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2407          doSubmit(job);
2408          return job;
2409      }
# Line 2066 | Line 2413 | public class ForkJoinPool extends Abstra
2413       * @throws RejectedExecutionException {@inheritDoc}
2414       */
2415      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2416 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2417 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2418 <        for (Callable<T> task : tasks)
2419 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2420 <        invoke(new InvokeAll<T>(forkJoinTasks));
2421 <
2416 >        // In previous versions of this class, this method constructed
2417 >        // a task to run ForkJoinTask.invokeAll, but now external
2418 >        // invocation of multiple tasks is at least as efficient.
2419 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2420 >        // Workaround needed because method wasn't declared with
2421 >        // wildcards in return type but should have been.
2422          @SuppressWarnings({"unchecked", "rawtypes"})
2423 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2077 <        return futures;
2078 <    }
2423 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2424  
2425 <    static final class InvokeAll<T> extends RecursiveAction {
2426 <        final ArrayList<ForkJoinTask<T>> tasks;
2427 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2428 <        public void compute() {
2429 <            try { invokeAll(tasks); }
2430 <            catch (Exception ignore) {}
2425 >        boolean done = false;
2426 >        try {
2427 >            for (Callable<T> t : tasks) {
2428 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2429 >                doSubmit(f);
2430 >                fs.add(f);
2431 >            }
2432 >            for (ForkJoinTask<T> f : fs)
2433 >                f.quietlyJoin();
2434 >            done = true;
2435 >            return futures;
2436 >        } finally {
2437 >            if (!done)
2438 >                for (ForkJoinTask<T> f : fs)
2439 >                    f.cancel(false);
2440          }
2087        private static final long serialVersionUID = -7914297376763021607L;
2441      }
2442  
2443      /**
# Line 2116 | Line 2469 | public class ForkJoinPool extends Abstra
2469      }
2470  
2471      /**
2472 +     * Returns the targeted parallelism level of the common pool.
2473 +     *
2474 +     * @return the targeted parallelism level of the common pool
2475 +     */
2476 +    public static int getCommonPoolParallelism() {
2477 +        return commonPoolParallelism;
2478 +    }
2479 +
2480 +    /**
2481       * Returns the number of worker threads that have started but not
2482       * yet terminated.  The result returned by this method may differ
2483       * from {@link #getParallelism} when threads are created to
# Line 2149 | Line 2511 | public class ForkJoinPool extends Abstra
2511          int rc = 0;
2512          WorkQueue[] ws; WorkQueue w;
2513          if ((ws = workQueues) != null) {
2514 <            int n = ws.length;
2515 <            for (int i = 1; i < n; i += 2) {
2154 <                Thread.State s; ForkJoinWorkerThread wt;
2155 <                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2156 <                    w.eventCount >= 0 &&
2157 <                    (s = wt.getState()) != Thread.State.BLOCKED &&
2158 <                    s != Thread.State.WAITING &&
2159 <                    s != Thread.State.TIMED_WAITING)
2514 >            for (int i = 1; i < ws.length; i += 2) {
2515 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2516                      ++rc;
2517              }
2518          }
# Line 2205 | Line 2561 | public class ForkJoinPool extends Abstra
2561          long count = stealCount.get();
2562          WorkQueue[] ws; WorkQueue w;
2563          if ((ws = workQueues) != null) {
2564 <            int n = ws.length;
2209 <            for (int i = 1; i < n; i += 2) {
2564 >            for (int i = 1; i < ws.length; i += 2) {
2565                  if ((w = ws[i]) != null)
2566                      count += w.totalSteals;
2567              }
# Line 2228 | Line 2583 | public class ForkJoinPool extends Abstra
2583          long count = 0;
2584          WorkQueue[] ws; WorkQueue w;
2585          if ((ws = workQueues) != null) {
2586 <            int n = ws.length;
2232 <            for (int i = 1; i < n; i += 2) {
2586 >            for (int i = 1; i < ws.length; i += 2) {
2587                  if ((w = ws[i]) != null)
2588                      count += w.queueSize();
2589              }
# Line 2248 | Line 2602 | public class ForkJoinPool extends Abstra
2602          int count = 0;
2603          WorkQueue[] ws; WorkQueue w;
2604          if ((ws = workQueues) != null) {
2605 <            int n = ws.length;
2252 <            for (int i = 0; i < n; i += 2) {
2605 >            for (int i = 0; i < ws.length; i += 2) {
2606                  if ((w = ws[i]) != null)
2607                      count += w.queueSize();
2608              }
# Line 2266 | Line 2619 | public class ForkJoinPool extends Abstra
2619      public boolean hasQueuedSubmissions() {
2620          WorkQueue[] ws; WorkQueue w;
2621          if ((ws = workQueues) != null) {
2622 <            int n = ws.length;
2623 <            for (int i = 0; i < n; i += 2) {
2271 <                if ((w = ws[i]) != null && w.queueSize() != 0)
2622 >            for (int i = 0; i < ws.length; i += 2) {
2623 >                if ((w = ws[i]) != null && !w.isEmpty())
2624                      return true;
2625              }
2626          }
# Line 2285 | Line 2637 | public class ForkJoinPool extends Abstra
2637      protected ForkJoinTask<?> pollSubmission() {
2638          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2639          if ((ws = workQueues) != null) {
2640 <            int n = ws.length;
2289 <            for (int i = 0; i < n; i += 2) {
2640 >            for (int i = 0; i < ws.length; i += 2) {
2641                  if ((w = ws[i]) != null && (t = w.poll()) != null)
2642                      return t;
2643              }
# Line 2315 | Line 2666 | public class ForkJoinPool extends Abstra
2666          int count = 0;
2667          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2668          if ((ws = workQueues) != null) {
2669 <            int n = ws.length;
2319 <            for (int i = 0; i < n; ++i) {
2669 >            for (int i = 0; i < ws.length; ++i) {
2670                  if ((w = ws[i]) != null) {
2671                      while ((t = w.poll()) != null) {
2672                          c.add(t);
# Line 2336 | Line 2686 | public class ForkJoinPool extends Abstra
2686       * @return a string identifying this pool, as well as its state
2687       */
2688      public String toString() {
2689 <        long st = getStealCount();
2690 <        long qt = getQueuedTaskCount();
2691 <        long qs = getQueuedSubmissionCount();
2342 <        int rc = getRunningThreadCount();
2343 <        int pc = parallelism;
2689 >        // Use a single pass through workQueues to collect counts
2690 >        long qt = 0L, qs = 0L; int rc = 0;
2691 >        long st = stealCount.get();
2692          long c = ctl;
2693 +        WorkQueue[] ws; WorkQueue w;
2694 +        if ((ws = workQueues) != null) {
2695 +            for (int i = 0; i < ws.length; ++i) {
2696 +                if ((w = ws[i]) != null) {
2697 +                    int size = w.queueSize();
2698 +                    if ((i & 1) == 0)
2699 +                        qs += size;
2700 +                    else {
2701 +                        qt += size;
2702 +                        st += w.totalSteals;
2703 +                        if (w.isApparentlyUnblocked())
2704 +                            ++rc;
2705 +                    }
2706 +                }
2707 +            }
2708 +        }
2709 +        int pc = parallelism;
2710          int tc = pc + (short)(c >>> TC_SHIFT);
2711          int ac = pc + (int)(c >> AC_SHIFT);
2712          if (ac < 0) // ignore transient negative
# Line 2364 | Line 2729 | public class ForkJoinPool extends Abstra
2729      }
2730  
2731      /**
2732 <     * Initiates an orderly shutdown in which previously submitted
2733 <     * tasks are executed, but no new tasks will be accepted.
2734 <     * Invocation has no additional effect if already shut down.
2735 <     * Tasks that are in the process of being submitted concurrently
2736 <     * during the course of this method may or may not be rejected.
2732 >     * Possibly initiates an orderly shutdown in which previously
2733 >     * submitted tasks are executed, but no new tasks will be
2734 >     * accepted. Invocation has no effect on execution state if this
2735 >     * is the {@link #commonPool}, and no additional effect if
2736 >     * already shut down.  Tasks that are in the process of being
2737 >     * submitted concurrently during the course of this method may or
2738 >     * may not be rejected.
2739       *
2740       * @throws SecurityException if a security manager exists and
2741       *         the caller is not permitted to modify threads
# Line 2377 | Line 2744 | public class ForkJoinPool extends Abstra
2744       */
2745      public void shutdown() {
2746          checkPermission();
2747 <        enableShutdown();
2748 <        tryTerminate(false);
2747 >        if (this != commonPool)
2748 >            tryTerminate(false, true);
2749      }
2750  
2751      /**
2752 <     * Attempts to cancel and/or stop all tasks, and reject all
2753 <     * subsequently submitted tasks.  Tasks that are in the process of
2754 <     * being submitted or executed concurrently during the course of
2755 <     * this method may or may not be rejected. This method cancels
2756 <     * both existing and unexecuted tasks, in order to permit
2757 <     * termination in the presence of task dependencies. So the method
2758 <     * always returns an empty list (unlike the case for some other
2759 <     * Executors).
2752 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2753 >     * all subsequently submitted tasks.  Invocation has no effect on
2754 >     * execution state if this is the {@link #commonPool}, and no
2755 >     * additional effect if already shut down. Otherwise, tasks that
2756 >     * are in the process of being submitted or executed concurrently
2757 >     * during the course of this method may or may not be
2758 >     * rejected. This method cancels both existing and unexecuted
2759 >     * tasks, in order to permit termination in the presence of task
2760 >     * dependencies. So the method always returns an empty list
2761 >     * (unlike the case for some other Executors).
2762       *
2763       * @return an empty list
2764       * @throws SecurityException if a security manager exists and
# Line 2399 | Line 2768 | public class ForkJoinPool extends Abstra
2768       */
2769      public List<Runnable> shutdownNow() {
2770          checkPermission();
2771 <        enableShutdown();
2772 <        tryTerminate(true);
2771 >        if (this != commonPool)
2772 >            tryTerminate(true, true);
2773          return Collections.emptyList();
2774      }
2775  
# Line 2457 | Line 2826 | public class ForkJoinPool extends Abstra
2826      public boolean awaitTermination(long timeout, TimeUnit unit)
2827          throws InterruptedException {
2828          long nanos = unit.toNanos(timeout);
2829 <        final ReentrantLock lock = this.lock;
2829 >        final Mutex lock = this.lock;
2830          lock.lock();
2831          try {
2832              for (;;) {
# Line 2553 | Line 2922 | public class ForkJoinPool extends Abstra
2922       *
2923       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2924       * behaviorally equivalent to
2925 < a     *  <pre> {@code
2925 >     *  <pre> {@code
2926       * while (!blocker.isReleasable())
2927       *   if (blocker.block())
2928       *     return;
# Line 2571 | Line 2940 | a     *  <pre> {@code
2940          ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2941                            ((ForkJoinWorkerThread)t).pool : null);
2942          while (!blocker.isReleasable()) {
2943 <            if (p == null || p.tryCompensate()) {
2943 >            if (p == null || p.tryCompensate(null, blocker)) {
2944                  try {
2945                      do {} while (!blocker.isReleasable() && !blocker.block());
2946                  } finally {
# Line 2588 | Line 2957 | a     *  <pre> {@code
2957      // implement RunnableFuture.
2958  
2959      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2960 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2960 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2961      }
2962  
2963      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2964 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2964 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
2965      }
2966  
2967      // Unsafe mechanics
2968      private static final sun.misc.Unsafe U;
2969      private static final long CTL;
2601    private static final long RUNSTATE;
2970      private static final long PARKBLOCKER;
2971 +    private static final int ABASE;
2972 +    private static final int ASHIFT;
2973  
2974      static {
2975          poolNumberGenerator = new AtomicInteger();
2976 +        nextSubmitterSeed = new AtomicInteger(0x55555555);
2977          modifyThreadPermission = new RuntimePermission("modifyThread");
2978          defaultForkJoinWorkerThreadFactory =
2979              new DefaultForkJoinWorkerThreadFactory();
2980 +        submitters = new ThreadSubmitter();
2981 +        initializationLock = new Mutex();
2982          int s;
2983          try {
2984              U = getUnsafe();
2985              Class<?> k = ForkJoinPool.class;
2986 <            Class<?> tk = Thread.class;
2986 >            Class<?> ak = ForkJoinTask[].class;
2987              CTL = U.objectFieldOffset
2988                  (k.getDeclaredField("ctl"));
2989 <            RUNSTATE = U.objectFieldOffset
2617 <                (k.getDeclaredField("runState"));
2989 >            Class<?> tk = Thread.class;
2990              PARKBLOCKER = U.objectFieldOffset
2991                  (tk.getDeclaredField("parkBlocker"));
2992 +            ABASE = U.arrayBaseOffset(ak);
2993 +            s = U.arrayIndexScale(ak);
2994 +        } catch (Exception e) {
2995 +            throw new Error(e);
2996 +        }
2997 +        if ((s & (s-1)) != 0)
2998 +            throw new Error("data type scale not a power of two");
2999 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3000 +
3001 +        // Establish configuration for default pool
3002 +        try {
3003 +            String pp = System.getProperty(propPrefix + "parallelism");
3004 +            String fp = System.getProperty(propPrefix + "threadFactory");
3005 +            String up = System.getProperty(propPrefix + "exceptionHandler");
3006 +            int par;
3007 +            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3008 +                par = Runtime.getRuntime().availableProcessors();
3009 +            commonPoolParallelism = par;
3010 +            if (fp != null)
3011 +                commonPoolFactory = (ForkJoinWorkerThreadFactory)
3012 +                    ClassLoader.getSystemClassLoader().loadClass(fp).newInstance();
3013 +            else
3014 +                commonPoolFactory = defaultForkJoinWorkerThreadFactory;
3015 +            if (up != null)
3016 +                commonPoolUEH = (Thread.UncaughtExceptionHandler)
3017 +                    ClassLoader.getSystemClassLoader().loadClass(up).newInstance();
3018 +            else
3019 +                commonPoolUEH = null;
3020          } catch (Exception e) {
3021              throw new Error(e);
3022          }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines