ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.112 by dl, Thu Jan 26 18:15:12 2012 UTC vs.
Revision 1.139 by dl, Wed Oct 31 12:49:24 2012 UTC

# Line 21 | Line 21 | import java.util.concurrent.RunnableFutu
21   import java.util.concurrent.TimeUnit;
22   import java.util.concurrent.atomic.AtomicInteger;
23   import java.util.concurrent.atomic.AtomicLong;
24 < import java.util.concurrent.locks.ReentrantLock;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25   import java.util.concurrent.locks.Condition;
26  
27   /**
# Line 42 | Line 42 | import java.util.concurrent.locks.Condit
42   * ForkJoinPool}s may also be appropriate for use with event-style
43   * tasks that are never joined.
44   *
45 < * <p>A {@code ForkJoinPool} is constructed with a given target
46 < * parallelism level; by default, equal to the number of available
47 < * processors. The pool attempts to maintain enough active (or
48 < * available) threads by dynamically adding, suspending, or resuming
49 < * internal worker threads, even if some tasks are stalled waiting to
50 < * join others. However, no such adjustments are guaranteed in the
51 < * face of blocked IO or other unmanaged synchronization. The nested
52 < * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is used by any ForkJoinTask that
47 > * is not explicitly submitted to a specified pool. Using the common
48 > * pool normally reduces resource usage (its threads are slowly
49 > * reclaimed during periods of non-use, and reinstated upon subsequent
50 > * use).  The common pool is by default constructed with default
51 > * parameters, but these may be controlled by setting any or all of
52 > * the three properties {@code
53 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
54 > * threadFactory, exceptionHandler}}.
55 > *
56 > * <p>For applications that require separate or custom pools, a {@code
57 > * ForkJoinPool} may be constructed with a given target parallelism
58 > * level; by default, equal to the number of available processors. The
59 > * pool attempts to maintain enough active (or available) threads by
60 > * dynamically adding, suspending, or resuming internal worker
61 > * threads, even if some tasks are stalled waiting to join
62 > * others. However, no such adjustments are guaranteed in the face of
63 > * blocked IO or other unmanaged synchronization. The nested {@link
64 > * ManagedBlocker} interface enables extension of the kinds of
65   * synchronization accommodated.
66   *
67   * <p>In addition to execution and lifecycle control methods, this
# Line 60 | Line 72 | import java.util.concurrent.locks.Condit
72   * convenient form for informal monitoring.
73   *
74   * <p> As is the case with other ExecutorServices, there are three
75 < * main task execution methods summarized in the following
76 < * table. These are designed to be used primarily by clients not
77 < * already engaged in fork/join computations in the current pool.  The
78 < * main forms of these methods accept instances of {@code
79 < * ForkJoinTask}, but overloaded forms also allow mixed execution of
80 < * plain {@code Runnable}- or {@code Callable}- based activities as
81 < * well.  However, tasks that are already executing in a pool should
82 < * normally instead use the within-computation forms listed in the
83 < * table unless using async event-style tasks that are not usually
84 < * joined, in which case there is little difference among choice of
73 < * methods.
75 > * main task execution methods summarized in the following table.
76 > * These are designed to be used primarily by clients not already
77 > * engaged in fork/join computations in the current pool.  The main
78 > * forms of these methods accept instances of {@code ForkJoinTask},
79 > * but overloaded forms also allow mixed execution of plain {@code
80 > * Runnable}- or {@code Callable}- based activities as well.  However,
81 > * tasks that are already executing in a pool should normally instead
82 > * use the within-computation forms listed in the table unless using
83 > * async event-style tasks that are not usually joined, in which case
84 > * there is little difference among choice of methods.
85   *
86   * <table BORDER CELLPADDING=3 CELLSPACING=1>
87   *  <tr>
# Line 95 | Line 106 | import java.util.concurrent.locks.Condit
106   *  </tr>
107   * </table>
108   *
98 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
99 * used for all parallel task execution in a program or subsystem.
100 * Otherwise, use would not usually outweigh the construction and
101 * bookkeeping overhead of creating a large set of threads. For
102 * example, a common pool could be used for the {@code SortTasks}
103 * illustrated in {@link RecursiveAction}. Because {@code
104 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
105 * daemon} mode, there is typically no need to explicitly {@link
106 * #shutdown} such a pool upon program exit.
107 *
108 *  <pre> {@code
109 * static final ForkJoinPool mainPool = new ForkJoinPool();
110 * ...
111 * public void sort(long[] array) {
112 *   mainPool.invoke(new SortTask(array, 0, array.length));
113 * }}</pre>
114 *
109   * <p><b>Implementation notes</b>: This implementation restricts the
110   * maximum number of running threads to 32767. Attempts to create
111   * pools with greater than the maximum number result in
# Line 131 | Line 125 | public class ForkJoinPool extends Abstra
125       *
126       * This class and its nested classes provide the main
127       * functionality and control for a set of worker threads:
128 <     * Submissions from non-FJ threads enter into submission
129 <     * queues. Workers take these tasks and typically split them into
130 <     * subtasks that may be stolen by other workers.  Preference rules
131 <     * give first priority to processing tasks from their own queues
132 <     * (LIFO or FIFO, depending on mode), then to randomized FIFO
133 <     * steals of tasks in other queues.
128 >     * Submissions from non-FJ threads enter into submission queues.
129 >     * Workers take these tasks and typically split them into subtasks
130 >     * that may be stolen by other workers.  Preference rules give
131 >     * first priority to processing tasks from their own queues (LIFO
132 >     * or FIFO, depending on mode), then to randomized FIFO steals of
133 >     * tasks in other queues.
134       *
135 <     * WorkQueues.
135 >     * WorkQueues
136       * ==========
137       *
138       * Most operations occur within work-stealing queues (in nested
# Line 156 | Line 150 | public class ForkJoinPool extends Abstra
150       * (http://research.sun.com/scalable/pubs/index.html) and
151       * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152       * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 <     * The main differences ultimately stem from gc requirements that
153 >     * The main differences ultimately stem from GC requirements that
154       * we null out taken slots as soon as we can, to maintain as small
155       * a footprint as possible even in programs generating huge
156       * numbers of tasks. To accomplish this, we shift the CAS
# Line 178 | Line 172 | public class ForkJoinPool extends Abstra
172       * If an attempted steal fails, a thief always chooses a different
173       * random victim target to try next. So, in order for one thief to
174       * progress, it suffices for any in-progress poll or new push on
175 <     * any empty queue to complete.
175 >     * any empty queue to complete. (This is why we normally use
176 >     * method pollAt and its variants that try once at the apparent
177 >     * base index, else consider alternative actions, rather than
178 >     * method poll.)
179       *
180       * This approach also enables support of a user mode in which local
181       * task processing is in FIFO, not LIFO order, simply by using
# Line 188 | Line 185 | public class ForkJoinPool extends Abstra
185       * rarely provide the best possible performance on a given
186       * machine, but portably provide good throughput by averaging over
187       * these factors.  (Further, even if we did try to use such
188 <     * information, we do not usually have a basis for exploiting
189 <     * it. For example, some sets of tasks profit from cache
190 <     * affinities, but others are harmed by cache pollution effects.)
188 >     * information, we do not usually have a basis for exploiting it.
189 >     * For example, some sets of tasks profit from cache affinities,
190 >     * but others are harmed by cache pollution effects.)
191       *
192       * WorkQueues are also used in a similar way for tasks submitted
193       * to the pool. We cannot mix these tasks in the same queues used
194       * for work-stealing (this would contaminate lifo/fifo
195 <     * processing). Instead, we loosely associate (via hashing)
196 <     * submission queues with submitting threads, and randomly scan
197 <     * these queues as well when looking for work. In essence,
198 <     * submitters act like workers except that they never take tasks,
199 <     * and they are multiplexed on to a finite number of shared work
200 <     * queues. However, classes are set up so that future extensions
201 <     * could allow submitters to optionally help perform tasks as
202 <     * well. Pool submissions from internal workers are also allowed,
203 <     * but use randomized rather than thread-hashed queue indices to
204 <     * avoid imbalance.  Insertion of tasks in shared mode requires a
195 >     * processing). Instead, we loosely associate submission queues
196 >     * with submitting threads, using a form of hashing.  The
197 >     * ThreadLocal Submitter class contains a value initially used as
198 >     * a hash code for choosing existing queues, but may be randomly
199 >     * repositioned upon contention with other submitters.  In
200 >     * essence, submitters act like workers except that they never
201 >     * take tasks, and they are multiplexed on to a finite number of
202 >     * shared work queues. However, classes are set up so that future
203 >     * extensions could allow submitters to optionally help perform
204 >     * tasks as well. Insertion of tasks in shared mode requires a
205       * lock (mainly to protect in the case of resizing) but we use
206       * only a simple spinlock (using bits in field runState), because
207 <     * submitters encountering a busy queue try or create others so
208 <     * never block.
207 >     * submitters encountering a busy queue move on to try or create
208 >     * other queues -- they block only when creating and registering
209 >     * new queues.
210       *
211 <     * Management.
211 >     * Management
212       * ==========
213       *
214       * The main throughput advantages of work-stealing stem from
# Line 220 | Line 218 | public class ForkJoinPool extends Abstra
218       * tactic for avoiding bottlenecks is packing nearly all
219       * essentially atomic control state into two volatile variables
220       * that are by far most often read (not written) as status and
221 <     * consistency checks
221 >     * consistency checks.
222       *
223       * Field "ctl" contains 64 bits holding all the information needed
224       * to atomically decide to add, inactivate, enqueue (on an event
# Line 237 | Line 235 | public class ForkJoinPool extends Abstra
235       * when locked remains available to check consistency.
236       *
237       * Recording WorkQueues.  WorkQueues are recorded in the
238 <     * "workQueues" array that is created upon pool construction and
239 <     * expanded if necessary.  Updates to the array while recording
240 <     * new workers and unrecording terminated ones are protected from
241 <     * each other by a lock but the array is otherwise concurrently
242 <     * readable, and accessed directly.  To simplify index-based
243 <     * operations, the array size is always a power of two, and all
244 <     * readers must tolerate null slots. Shared (submission) queues
245 <     * are at even indices, worker queues at odd indices. Grouping
246 <     * them together in this way simplifies and speeds up task
247 <     * scanning. To avoid flailing during start-up, the array is
248 <     * presized to hold twice #parallelism workers (which is unlikely
249 <     * to need further resizing during execution). But to avoid
252 <     * dealing with so many null slots, variable runState includes a
253 <     * mask for the nearest power of two that contains all current
254 <     * workers.  All worker thread creation is on-demand, triggered by
255 <     * task submissions, replacement of terminated workers, and/or
238 >     * "workQueues" array that is created upon first use and expanded
239 >     * if necessary.  Updates to the array while recording new workers
240 >     * and unrecording terminated ones are protected from each other
241 >     * by a lock but the array is otherwise concurrently readable, and
242 >     * accessed directly.  To simplify index-based operations, the
243 >     * array size is always a power of two, and all readers must
244 >     * tolerate null slots. Shared (submission) queues are at even
245 >     * indices, worker queues at odd indices. Grouping them together
246 >     * in this way simplifies and speeds up task scanning.
247 >     *
248 >     * All worker thread creation is on-demand, triggered by task
249 >     * submissions, replacement of terminated workers, and/or
250       * compensation for blocked workers. However, all other support
251       * code is set up to work with other policies.  To ensure that we
252       * do not hold on to worker references that would prevent GC, ALL
# Line 265 | Line 259 | public class ForkJoinPool extends Abstra
259       * both index-check and null-check the IDs. All such accesses
260       * ignore bad IDs by returning out early from what they are doing,
261       * since this can only be associated with termination, in which
262 <     * case it is OK to give up.
263 <     *
264 <     * All uses of the workQueues array check that it is non-null
265 <     * (even if previously non-null). This allows nulling during
266 <     * termination, which is currently not necessary, but remains an
267 <     * option for resource-revocation-based shutdown schemes. It also
274 <     * helps reduce JIT issuance of uncommon-trap code, which tends to
262 >     * case it is OK to give up.  All uses of the workQueues array
263 >     * also check that it is non-null (even if previously
264 >     * non-null). This allows nulling during termination, which is
265 >     * currently not necessary, but remains an option for
266 >     * resource-revocation-based shutdown schemes. It also helps
267 >     * reduce JIT issuance of uncommon-trap code, which tends to
268       * unnecessarily complicate control flow in some methods.
269       *
270       * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
# Line 299 | Line 292 | public class ForkJoinPool extends Abstra
292       * some other queued worker rather than itself, which has the same
293       * net effect. Because enqueued workers may actually be rescanning
294       * rather than waiting, we set and clear the "parker" field of
295 <     * Workqueues to reduce unnecessary calls to unpark.  (This
295 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
296       * requires a secondary recheck to avoid missed signals.)  Note
297       * the unusual conventions about Thread.interrupts surrounding
298       * parking and other blocking: Because interrupts are used solely
# Line 322 | Line 315 | public class ForkJoinPool extends Abstra
315       *
316       * Trimming workers. To release resources after periods of lack of
317       * use, a worker starting to wait when the pool is quiescent will
318 <     * time out and terminate if the pool has remained quiescent for
319 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
320 <     * terminating all workers after long periods of non-use.
318 >     * time out and terminate if the pool has remained quiescent for a
319 >     * given period -- a short period if there are more threads than
320 >     * parallelism, longer as the number of threads decreases. This
321 >     * will slowly propagate, eventually terminating all workers after
322 >     * periods of non-use.
323       *
324       * Shutdown and Termination. A call to shutdownNow atomically sets
325 <     * a runState bit and then (non-atomically) sets each workers
325 >     * a runState bit and then (non-atomically) sets each worker's
326       * runState status, cancels all unprocessed tasks, and wakes up
327       * all waiting workers.  Detecting whether termination should
328       * commence after a non-abrupt shutdown() call requires more work
# Line 336 | Line 331 | public class ForkJoinPool extends Abstra
331       * indication but non-abrupt shutdown still requires a rechecking
332       * scan for any workers that are inactive but not queued.
333       *
334 <     * Joining Tasks.
335 <     * ==============
334 >     * Joining Tasks
335 >     * =============
336       *
337       * Any of several actions may be taken when one worker is waiting
338 <     * to join a task stolen (or always held by) another.  Because we
338 >     * to join a task stolen (or always held) by another.  Because we
339       * are multiplexing many tasks on to a pool of workers, we can't
340       * just let them block (as in Thread.join).  We also cannot just
341       * reassign the joiner's run-time stack with another and replace
342       * it later, which would be a form of "continuation", that even if
343       * possible is not necessarily a good idea since we sometimes need
344 <     * both an unblocked task and its continuation to
345 <     * progress. Instead we combine two tactics:
344 >     * both an unblocked task and its continuation to progress.
345 >     * Instead we combine two tactics:
346       *
347       *   Helping: Arranging for the joiner to execute some task that it
348       *      would be running if the steal had not occurred.
# Line 382 | Line 377 | public class ForkJoinPool extends Abstra
377       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378       * that: (1) We only maintain dependency links across workers upon
379       * steals, rather than use per-task bookkeeping.  This sometimes
380 <     * requires a linear scan of workers array to locate stealers, but
381 <     * often doesn't because stealers leave hints (that may become
380 >     * requires a linear scan of workQueues array to locate stealers,
381 >     * but often doesn't because stealers leave hints (that may become
382       * stale/wrong) of where to locate them.  A stealHint is only a
383       * hint because a worker might have had multiple steals and the
384       * hint records only one of them (usually the most current).
# Line 394 | Line 389 | public class ForkJoinPool extends Abstra
389       * which means that we miss links in the chain during long-lived
390       * tasks, GC stalls etc (which is OK since blocking in such cases
391       * is usually a good idea).  (4) We bound the number of attempts
392 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
393 <     * the worker and if necessary replacing it with another.
392 >     * to find work (see MAX_HELP) and fall back to suspending the
393 >     * worker and if necessary replacing it with another.
394       *
395       * It is impossible to keep exactly the target parallelism number
396       * of threads running at any given time.  Determining the
397       * existence of conservatively safe helping targets, the
398       * availability of already-created spares, and the apparent need
399       * to create new spares are all racy, so we rely on multiple
400 <     * retries of each.  Currently, in keeping with on-demand
401 <     * signalling policy, we compensate only if blocking would leave
402 <     * less than one active (non-waiting, non-blocked) worker.
403 <     * Additionally, to avoid some false alarms due to GC, lagging
404 <     * counters, system activity, etc, compensated blocking for joins
405 <     * is only attempted after rechecks stabilize in
406 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
407 <     * Thread.yield, for good citizenship.)
400 >     * retries of each.  Compensation in the apparent absence of
401 >     * helping opportunities is challenging to control on JVMs, where
402 >     * GC and other activities can stall progress of tasks that in
403 >     * turn stall out many other dependent tasks, without us being
404 >     * able to determine whether they will ever require compensation.
405 >     * Even though work-stealing otherwise encounters little
406 >     * degradation in the presence of more threads than cores,
407 >     * aggressively adding new threads in such cases entails risk of
408 >     * unwanted positive feedback control loops in which more threads
409 >     * cause more dependent stalls (as well as delayed progress of
410 >     * unblocked threads to the point that we know they are available)
411 >     * leading to more situations requiring more threads, and so
412 >     * on. This aspect of control can be seen as an (analytically
413 >     * intractable) game with an opponent that may choose the worst
414 >     * (for us) active thread to stall at any time.  We take several
415 >     * precautions to bound losses (and thus bound gains), mainly in
416 >     * methods tryCompensate and awaitJoin: (1) We only try
417 >     * compensation after attempting enough helping steps (measured
418 >     * via counting and timing) that we have already consumed the
419 >     * estimated cost of creating and activating a new thread.  (2) We
420 >     * allow up to 50% of threads to be blocked before initially
421 >     * adding any others, and unless completely saturated, check that
422 >     * some work is available for a new worker before adding. Also, we
423 >     * create up to only 50% more threads until entering a mode that
424 >     * only adds a thread if all others are possibly blocked.  All
425 >     * together, this means that we might be half as fast to react,
426 >     * and create half as many threads as possible in the ideal case,
427 >     * but present vastly fewer anomalies in all other cases compared
428 >     * to both more aggressive and more conservative alternatives.
429       *
430       * Style notes: There is a lot of representation-level coupling
431       * among classes ForkJoinPool, ForkJoinWorkerThread, and
# Line 417 | Line 433 | public class ForkJoinPool extends Abstra
433       * managed by ForkJoinPool, so are directly accessed.  There is
434       * little point trying to reduce this, since any associated future
435       * changes in representations will need to be accompanied by
436 <     * algorithmic changes anyway. All together, these low-level
437 <     * implementation choices produce as much as a factor of 4
438 <     * performance improvement compared to naive implementations, and
439 <     * enable the processing of billions of tasks per second, at the
440 <     * expense of some ugliness.
441 <     *
442 <     * Methods signalWork() and scan() are the main bottlenecks so are
443 <     * especially heavily micro-optimized/mangled.  There are lots of
444 <     * inline assignments (of form "while ((local = field) != 0)")
445 <     * which are usually the simplest way to ensure the required read
446 <     * orderings (which are sometimes critical). This leads to a
447 <     * "C"-like style of listing declarations of these locals at the
448 <     * heads of methods or blocks.  There are several occurrences of
449 <     * the unusual "do {} while (!cas...)"  which is the simplest way
450 <     * to force an update of a CAS'ed variable. There are also other
451 <     * coding oddities that help some methods perform reasonably even
452 <     * when interpreted (not compiled).
453 <     *
454 <     * The order of declarations in this file is: (1) declarations of
455 <     * statics (2) fields (along with constants used when unpacking
456 <     * some of them), listed in an order that tends to reduce
457 <     * contention among them a bit under most JVMs; (3) nested
458 <     * classes; (4) internal control methods; (5) callbacks and other
459 <     * support for ForkJoinTask methods; (6) exported methods (plus a
460 <     * few little helpers); (7) static block initializing all statics
461 <     * in a minimally dependent order.
436 >     * algorithmic changes anyway. Several methods intrinsically
437 >     * sprawl because they must accumulate sets of consistent reads of
438 >     * volatiles held in local variables.  Methods signalWork() and
439 >     * scan() are the main bottlenecks, so are especially heavily
440 >     * micro-optimized/mangled.  There are lots of inline assignments
441 >     * (of form "while ((local = field) != 0)") which are usually the
442 >     * simplest way to ensure the required read orderings (which are
443 >     * sometimes critical). This leads to a "C"-like style of listing
444 >     * declarations of these locals at the heads of methods or blocks.
445 >     * There are several occurrences of the unusual "do {} while
446 >     * (!cas...)"  which is the simplest way to force an update of a
447 >     * CAS'ed variable. There are also other coding oddities that help
448 >     * some methods perform reasonably even when interpreted (not
449 >     * compiled).
450 >     *
451 >     * The order of declarations in this file is:
452 >     * (1) Static utility functions
453 >     * (2) Nested (static) classes
454 >     * (3) Static fields
455 >     * (4) Fields, along with constants used when unpacking some of them
456 >     * (5) Internal control methods
457 >     * (6) Callbacks and other support for ForkJoinTask methods
458 >     * (7) Exported methods
459 >     * (8) Static block initializing statics in minimally dependent order
460 >     */
461 >
462 >    // Static utilities
463 >
464 >    /**
465 >     * If there is a security manager, makes sure caller has
466 >     * permission to modify threads.
467       */
468 +    private static void checkPermission() {
469 +        SecurityManager security = System.getSecurityManager();
470 +        if (security != null)
471 +            security.checkPermission(modifyThreadPermission);
472 +    }
473 +
474 +    // Nested classes
475  
476      /**
477       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 473 | Line 501 | public class ForkJoinPool extends Abstra
501      }
502  
503      /**
504 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
505 <     * overridden in ForkJoinPool constructors.
506 <     */
507 <    public static final ForkJoinWorkerThreadFactory
480 <        defaultForkJoinWorkerThreadFactory;
481 <
482 <    /**
483 <     * Permission required for callers of methods that may start or
484 <     * kill threads.
485 <     */
486 <    private static final RuntimePermission modifyThreadPermission;
487 <
488 <    /**
489 <     * If there is a security manager, makes sure caller has
490 <     * permission to modify threads.
504 >     * Class for artificial tasks that are used to replace the target
505 >     * of local joins if they are removed from an interior queue slot
506 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507 >     * actually do anything beyond having a unique identity.
508       */
509 <    private static void checkPermission() {
510 <        SecurityManager security = System.getSecurityManager();
511 <        if (security != null)
512 <            security.checkPermission(modifyThreadPermission);
509 >    static final class EmptyTask extends ForkJoinTask<Void> {
510 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511 >        public final Void getRawResult() { return null; }
512 >        public final void setRawResult(Void x) {}
513 >        public final boolean exec() { return true; }
514      }
515  
516      /**
499     * Generator for assigning sequence numbers as pool names.
500     */
501    private static final AtomicInteger poolNumberGenerator;
502
503    /**
504     * Bits and masks for control variables
505     *
506     * Field ctl is a long packed with:
507     * AC: Number of active running workers minus target parallelism (16 bits)
508     * TC: Number of total workers minus target parallelism (16 bits)
509     * ST: true if pool is terminating (1 bit)
510     * EC: the wait count of top waiting thread (15 bits)
511     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
512     *
513     * When convenient, we can extract the upper 32 bits of counts and
514     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
515     * (int)ctl.  The ec field is never accessed alone, but always
516     * together with id and st. The offsets of counts by the target
517     * parallelism and the positionings of fields makes it possible to
518     * perform the most common checks via sign tests of fields: When
519     * ac is negative, there are not enough active workers, when tc is
520     * negative, there are not enough total workers, when id is
521     * negative, there is at least one waiting worker, and when e is
522     * negative, the pool is terminating.  To deal with these possibly
523     * negative fields, we use casts in and out of "short" and/or
524     * signed shifts to maintain signedness.
525     *
526     * When a thread is queued (inactivated), its eventCount field is
527     * negative, which is the only way to tell if a worker is
528     * prevented from executing tasks, even though it must continue to
529     * scan for them to avoid queuing races.
530     *
531     * Field runState is an int packed with:
532     * SHUTDOWN: true if shutdown is enabled (1 bit)
533     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
534     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
535     *
536     * The combination of mask and sequence number enables simple
537     * consistency checks: Staleness of read-only operations on the
538     * workers and queues arrays can be checked by comparing runState
539     * before vs after the reads. The low 16 bits (i.e, anding with
540     * SMASK) hold (the smallest power of two covering all worker
541     * indices, minus one.  The mask for queues (vs workers) is twice
542     * this value plus 1.
543     */
544
545    // bit positions/shifts for fields
546    private static final int  AC_SHIFT   = 48;
547    private static final int  TC_SHIFT   = 32;
548    private static final int  ST_SHIFT   = 31;
549    private static final int  EC_SHIFT   = 16;
550
551    // bounds
552    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
553    private static final int  SMASK      = 0xffff;  // mask short bits
554    private static final int  SHORT_SIGN = 1 << 15;
555    private static final int  INT_SIGN   = 1 << 31;
556
557    // masks
558    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
559    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
560    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
561
562    // units for incrementing and decrementing
563    private static final long TC_UNIT    = 1L << TC_SHIFT;
564    private static final long AC_UNIT    = 1L << AC_SHIFT;
565
566    // masks and units for dealing with u = (int)(ctl >>> 32)
567    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
568    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
569    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
570    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
571    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
572    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
573
574    // masks and units for dealing with e = (int)ctl
575    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
576    private static final int E_SEQ       = 1 << EC_SHIFT;
577
578    // runState bits
579    private static final int SHUTDOWN    = 1 << 31;
580    private static final int RS_SEQ      = 1 << 16;
581    private static final int RS_SEQ_MASK = 0x7fff0000;
582
583    // access mode for WorkQueue
584    static final int LIFO_QUEUE          =  0;
585    static final int FIFO_QUEUE          =  1;
586    static final int SHARED_QUEUE        = -1;
587
588    /**
589     * The wakeup interval (in nanoseconds) for a worker waiting for a
590     * task when the pool is quiescent to instead try to shrink the
591     * number of workers.  The exact value does not matter too
592     * much. It must be short enough to release resources during
593     * sustained periods of idleness, but not so short that threads
594     * are continually re-created.
595     */
596    private static final long SHRINK_RATE =
597        4L * 1000L * 1000L * 1000L; // 4 seconds
598
599    /**
600     * The timeout value for attempted shrinkage, includes
601     * some slop to cope with system timer imprecision.
602     */
603    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
604
605    /**
606     * The maximum stolen->joining link depth allowed in tryHelpStealer.
607     * Depths for legitimate chains are unbounded, but we use a fixed
608     * constant to avoid (otherwise unchecked) cycles and to bound
609     * staleness of traversal parameters at the expense of sometimes
610     * blocking when we could be helping.
611     */
612    private static final int MAX_HELP_DEPTH = 16;
613
614    /*
615     * Field layout order in this class tends to matter more than one
616     * would like. Runtime layout order is only loosely related to
617     * declaration order and may differ across JVMs, but the following
618     * empirically works OK on current JVMs.
619     */
620
621    volatile long ctl;                       // main pool control
622    final int parallelism;                   // parallelism level
623    final int localMode;                     // per-worker scheduling mode
624    int nextPoolIndex;                       // hint used in registerWorker
625    volatile int runState;                   // shutdown status, seq, and mask
626    WorkQueue[] workQueues;                  // main registry
627    final ReentrantLock lock;                // for registration
628    final Condition termination;             // for awaitTermination
629    final ForkJoinWorkerThreadFactory factory; // factory for new workers
630    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
631    final AtomicLong stealCount;             // collect counts when terminated
632    final AtomicInteger nextWorkerNumber;    // to create worker name string
633    final String workerNamePrefix;           // Prefix for assigning worker names
634
635    /**
517       * Queues supporting work-stealing as well as external task
518       * submission. See above for main rationale and algorithms.
519       * Implementation relies heavily on "Unsafe" intrinsics
# Line 649 | Line 530 | public class ForkJoinPool extends Abstra
530       * for push, or under lock for trySharedPush, and accessed by
531       * other threads only after reading (volatile) base.  Both top and
532       * base are allowed to wrap around on overflow, but (top - base)
533 <     * (or more comonly -(base - top) to force volatile read of base
533 >     * (or more commonly -(base - top) to force volatile read of base
534       * before top) still estimates size.
535       *
536       * The array slots are read and written using the emulation of
# Line 681 | Line 562 | public class ForkJoinPool extends Abstra
562       * avoiding really bad worst-case access. (Until better JVM
563       * support is in place, this padding is dependent on transient
564       * properties of JVM field layout rules.)  We also take care in
565 <     * allocating and sizing and resizing the array. Non-shared queue
565 >     * allocating, sizing and resizing the array. Non-shared queue
566       * arrays are initialized (via method growArray) by workers before
567       * use. Others are allocated on first use.
568       */
569      static final class WorkQueue {
570          /**
571           * Capacity of work-stealing queue array upon initialization.
572 <         * Must be a power of two; at least 4, but set larger to
573 <         * reduce cacheline sharing among queues.
572 >         * Must be a power of two; at least 4, but should be larger to
573 >         * reduce or eliminate cacheline sharing among queues.
574 >         * Currently, it is much larger, as a partial workaround for
575 >         * the fact that JVMs often place arrays in locations that
576 >         * share GC bookkeeping (especially cardmarks) such that
577 >         * per-write accesses encounter serious memory contention.
578           */
579 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
579 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580  
581          /**
582           * Maximum size for queue arrays. Must be a power of two less
# Line 715 | Line 600 | public class ForkJoinPool extends Abstra
600          volatile int base;         // index of next slot for poll
601          int top;                   // index of next slot for push
602          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
603 +        final ForkJoinPool pool;   // the containing pool (may be null)
604          final ForkJoinWorkerThread owner; // owning thread or null if shared
605          volatile Thread parker;    // == owner during call to park; else null
606 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
606 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
607          ForkJoinTask<?> currentSteal; // current non-local task being executed
608          // Heuristic padding to ameliorate unfortunate memory placements
609 <        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
609 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
610 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611  
612 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
726 <            this.owner = owner;
612 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613              this.mode = mode;
614 +            this.pool = pool;
615 +            this.owner = owner;
616              // Place indices in the center of array (that is not yet allocated)
617              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618          }
619  
620          /**
621 <         * Returns number of tasks in the queue
621 >         * Returns the approximate number of tasks in the queue.
622           */
623          final int queueSize() {
624 <            int n = base - top; // non-owner callers must read base first
625 <            return (n >= 0) ? 0 : -n;
624 >            int n = base - top;       // non-owner callers must read base first
625 >            return (n >= 0) ? 0 : -n; // ignore transient negative
626 >        }
627 >
628 >        /**
629 >         * Provides a more accurate estimate of whether this queue has
630 >         * any tasks than does queueSize, by checking whether a
631 >         * near-empty queue has at least one unclaimed task.
632 >         */
633 >        final boolean isEmpty() {
634 >            ForkJoinTask<?>[] a; int m, s;
635 >            int n = base - (s = top);
636 >            return (n >= 0 ||
637 >                    (n == -1 &&
638 >                     ((a = array) == null ||
639 >                      (m = a.length - 1) < 0 ||
640 >                      U.getObjectVolatile
641 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642          }
643  
644          /**
645           * Pushes a task. Call only by owner in unshared queues.
646           *
647           * @param task the task. Caller must ensure non-null.
648 <         * @param p, if non-null, pool to signal if necessary
745 <         * @throw RejectedExecutionException if array cannot
746 <         * be resized
648 >         * @throw RejectedExecutionException if array cannot be resized
649           */
650 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
651 <            ForkJoinTask<?>[] a;
650 >        final void push(ForkJoinTask<?> task) {
651 >            ForkJoinTask<?>[] a; ForkJoinPool p;
652              int s = top, m, n;
653              if ((a = array) != null) {    // ignore if queue removed
654                  U.putOrderedObject
655                      (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656                  if ((n = (top = s + 1) - base) <= 2) {
657 <                    if (p != null)
657 >                    if ((p = pool) != null)
658                          p.signalWork();
659                  }
660                  else if (n >= m)
# Line 771 | Line 673 | public class ForkJoinPool extends Abstra
673              boolean submitted = false;
674              if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675                  ForkJoinTask<?>[] a = array;
676 <                int s = top, n = s - base;
676 >                int s = top;
677                  try {
678 <                    if ((a != null && n < a.length - 1) ||
678 >                    if ((a != null && a.length > s + 1 - base) ||
679                          (a = growArray(false)) != null) { // must presize
680                          int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681                          U.putObject(a, (long)j, task);    // don't need "ordered"
# Line 788 | Line 690 | public class ForkJoinPool extends Abstra
690          }
691  
692          /**
693 <         * Takes next task, if one exists, in FIFO order.
693 >         * Takes next task, if one exists, in LIFO order.  Call only
694 >         * by owner in unshared queues.
695           */
696 <        final ForkJoinTask<?> poll() {
697 <            ForkJoinTask<?>[] a; int b, i;
698 <            while ((b = base) - top < 0 && (a = array) != null &&
699 <                   (i = (a.length - 1) & b) >= 0) {
700 <                int j = (i << ASHIFT) + ABASE;
701 <                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
702 <                if (t != null && base == b &&
696 >        final ForkJoinTask<?> pop() {
697 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
698 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
699 >                for (int s; (s = top - 1) - base >= 0;) {
700 >                    long j = ((m & s) << ASHIFT) + ABASE;
701 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
702 >                        break;
703 >                    if (U.compareAndSwapObject(a, j, t, null)) {
704 >                        top = s;
705 >                        return t;
706 >                    }
707 >                }
708 >            }
709 >            return null;
710 >        }
711 >
712 >        final ForkJoinTask<?> sharedPop() {
713 >            ForkJoinTask<?> task = null;
714 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
715 >                try {
716 >                    ForkJoinTask<?>[] a; int m;
717 >                    if ((a = array) != null && (m = a.length - 1) >= 0) {
718 >                        for (int s; (s = top - 1) - base >= 0;) {
719 >                            long j = ((m & s) << ASHIFT) + ABASE;
720 >                            ForkJoinTask<?> t =
721 >                                (ForkJoinTask<?>)U.getObject(a, j);
722 >                            if (t == null)
723 >                                break;
724 >                            if (U.compareAndSwapObject(a, j, t, null)) {
725 >                                top = s;
726 >                                task = t;
727 >                                break;
728 >                            }
729 >                        }
730 >                    }
731 >                } finally {
732 >                    runState = 0;
733 >                }
734 >            }
735 >            return task;
736 >        }
737 >
738 >
739 >        /**
740 >         * Takes a task in FIFO order if b is base of queue and a task
741 >         * can be claimed without contention. Specialized versions
742 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
743 >         */
744 >        final ForkJoinTask<?> pollAt(int b) {
745 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
746 >            if ((a = array) != null) {
747 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
748 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
749 >                    base == b &&
750                      U.compareAndSwapObject(a, j, t, null)) {
751                      base = b + 1;
752                      return t;
# Line 806 | Line 756 | public class ForkJoinPool extends Abstra
756          }
757  
758          /**
759 <         * Takes next task, if one exists, in LIFO order.
810 <         * Call only by owner in unshared queues.
759 >         * Takes next task, if one exists, in FIFO order.
760           */
761 <        final ForkJoinTask<?> pop() {
762 <            ForkJoinTask<?> t; int m;
763 <            ForkJoinTask<?>[] a = array;
764 <            if (a != null && (m = a.length - 1) >= 0) {
765 <                for (int s; (s = top - 1) - base >= 0;) {
766 <                    int j = ((m & s) << ASHIFT) + ABASE;
767 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
768 <                        break;
769 <                    if (U.compareAndSwapObject(a, j, t, null)) {
821 <                        top = s;
761 >        final ForkJoinTask<?> poll() {
762 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
763 >            while ((b = base) - top < 0 && (a = array) != null) {
764 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
766 >                if (t != null) {
767 >                    if (base == b &&
768 >                        U.compareAndSwapObject(a, j, t, null)) {
769 >                        base = b + 1;
770                          return t;
771                      }
772                  }
773 +                else if (base == b) {
774 +                    if (b + 1 == top)
775 +                        break;
776 +                    Thread.yield(); // wait for lagging update
777 +                }
778              }
779              return null;
780          }
# Line 846 | Line 799 | public class ForkJoinPool extends Abstra
799          }
800  
801          /**
849         * Returns task at index b if b is current base of queue.
850         */
851        final ForkJoinTask<?> pollAt(int b) {
852            ForkJoinTask<?>[] a; int i;
853            ForkJoinTask<?> task = null;
854            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
855                int j = (i << ASHIFT) + ABASE;
856                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
857                if (t != null && base == b &&
858                    U.compareAndSwapObject(a, j, t, null)) {
859                    base = b + 1;
860                    task = t;
861                }
862            }
863            return task;
864        }
865
866        /**
802           * Pops the given task only if it is at the current top.
803           */
804          final boolean tryUnpush(ForkJoinTask<?> t) {
# Line 878 | Line 813 | public class ForkJoinPool extends Abstra
813          }
814  
815          /**
816 +         * Version of tryUnpush for shared queues; called by non-FJ
817 +         * submitters after prechecking that task probably exists.
818 +         */
819 +        final boolean trySharedUnpush(ForkJoinTask<?> t) {
820 +            boolean success = false;
821 +            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
822 +                try {
823 +                    ForkJoinTask<?>[] a; int s;
824 +                    if ((a = array) != null && (s = top) != base &&
825 +                        U.compareAndSwapObject
826 +                        (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827 +                        top = s;
828 +                        success = true;
829 +                    }
830 +                } finally {
831 +                    runState = 0;                         // unlock
832 +                }
833 +            }
834 +            return success;
835 +        }
836 +
837 +        /**
838           * Polls the given task only if it is at the current base.
839           */
840          final boolean pollFor(ForkJoinTask<?> task) {
841 <            ForkJoinTask<?>[] a; int b, i;
842 <            if ((b = base) - top < 0 && (a = array) != null &&
843 <                (i = (a.length - 1) & b) >= 0) {
887 <                int j = (i << ASHIFT) + ABASE;
841 >            ForkJoinTask<?>[] a; int b;
842 >            if ((b = base) - top < 0 && (a = array) != null) {
843 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
844                  if (U.getObjectVolatile(a, j) == task && base == b &&
845                      U.compareAndSwapObject(a, j, task, null)) {
846                      base = b + 1;
# Line 895 | Line 851 | public class ForkJoinPool extends Abstra
851          }
852  
853          /**
898         * If present, removes from queue and executes the given task, or
899         * any other cancelled task. Returns (true) immediately on any CAS
900         * or consistency check failure so caller can retry.
901         *
902         * @return false if no progress can be made
903         */
904        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
905            boolean removed = false, empty = true, progress = true;
906            ForkJoinTask<?>[] a; int m, s, b, n;
907            if ((a = array) != null && (m = a.length - 1) >= 0 &&
908                (n = (s = top) - (b = base)) > 0) {
909                for (ForkJoinTask<?> t;;) {           // traverse from s to b
910                    int j = ((--s & m) << ASHIFT) + ABASE;
911                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
912                    if (t == null)                    // inconsistent length
913                        break;
914                    else if (t == task) {
915                        if (s + 1 == top) {           // pop
916                            if (!U.compareAndSwapObject(a, j, task, null))
917                                break;
918                            top = s;
919                            removed = true;
920                        }
921                        else if (base == b)           // replace with proxy
922                            removed = U.compareAndSwapObject(a, j, task,
923                                                             new EmptyTask());
924                        break;
925                    }
926                    else if (t.status >= 0)
927                        empty = false;
928                    else if (s + 1 == top) {          // pop and throw away
929                        if (U.compareAndSwapObject(a, j, t, null))
930                            top = s;
931                        break;
932                    }
933                    if (--n == 0) {
934                        if (!empty && base == b)
935                            progress = false;
936                        break;
937                    }
938                }
939            }
940            if (removed)
941                task.doExec();
942            return progress;
943        }
944
945        /**
854           * Initializes or doubles the capacity of array. Call either
855           * by owner or with lock held -- it is OK for base, but not
856           * top, to move while resizings are in progress.
# Line 978 | Line 886 | public class ForkJoinPool extends Abstra
886          }
887  
888          /**
889 <         * Removes and cancels all known tasks, ignoring any exceptions
889 >         * Removes and cancels all known tasks, ignoring any exceptions.
890           */
891          final void cancelAll() {
892              ForkJoinTask.cancelIgnoringExceptions(currentJoin);
# Line 987 | Line 895 | public class ForkJoinPool extends Abstra
895                  ForkJoinTask.cancelIgnoringExceptions(t);
896          }
897  
898 <        // Execution methods
898 >        /**
899 >         * Computes next value for random probes.  Scans don't require
900 >         * a very high quality generator, but also not a crummy one.
901 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
902 >         * This is manually inlined in its usages in ForkJoinPool to
903 >         * avoid writes inside busy scan loops.
904 >         */
905 >        final int nextSeed() {
906 >            int r = seed;
907 >            r ^= r << 13;
908 >            r ^= r >>> 17;
909 >            return seed = r ^= r << 5;
910 >        }
911 >
912 >        // Specialized execution methods
913  
914          /**
915 <         * Removes and runs tasks until empty, using local mode
994 <         * ordering.
915 >         * Pops and runs tasks until empty.
916           */
917 <        final void runLocalTasks() {
918 <            if (base - top < 0) {
919 <                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
917 >        private void popAndExecAll() {
918 >            // A bit faster than repeated pop calls
919 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
920 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
921 >                   (s = top - 1) - base >= 0 &&
922 >                   (t = ((ForkJoinTask<?>)
923 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
924 >                   != null) {
925 >                if (U.compareAndSwapObject(a, j, t, null)) {
926 >                    top = s;
927                      t.doExec();
928 +                }
929              }
930          }
931  
932          /**
933 +         * Polls and runs tasks until empty.
934 +         */
935 +        private void pollAndExecAll() {
936 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
937 +                t.doExec();
938 +        }
939 +
940 +        /**
941 +         * If present, removes from queue and executes the given task, or
942 +         * any other cancelled task. Returns (true) immediately on any CAS
943 +         * or consistency check failure so caller can retry.
944 +         *
945 +         * @return 0 if no progress can be made, else positive
946 +         * (this unusual convention simplifies use with tryHelpStealer.)
947 +         */
948 +        final int tryRemoveAndExec(ForkJoinTask<?> task) {
949 +            int stat = 1;
950 +            boolean removed = false, empty = true;
951 +            ForkJoinTask<?>[] a; int m, s, b, n;
952 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
953 +                (n = (s = top) - (b = base)) > 0) {
954 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
955 +                    int j = ((--s & m) << ASHIFT) + ABASE;
956 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
957 +                    if (t == null)                    // inconsistent length
958 +                        break;
959 +                    else if (t == task) {
960 +                        if (s + 1 == top) {           // pop
961 +                            if (!U.compareAndSwapObject(a, j, task, null))
962 +                                break;
963 +                            top = s;
964 +                            removed = true;
965 +                        }
966 +                        else if (base == b)           // replace with proxy
967 +                            removed = U.compareAndSwapObject(a, j, task,
968 +                                                             new EmptyTask());
969 +                        break;
970 +                    }
971 +                    else if (t.status >= 0)
972 +                        empty = false;
973 +                    else if (s + 1 == top) {          // pop and throw away
974 +                        if (U.compareAndSwapObject(a, j, t, null))
975 +                            top = s;
976 +                        break;
977 +                    }
978 +                    if (--n == 0) {
979 +                        if (!empty && base == b)
980 +                            stat = 0;
981 +                        break;
982 +                    }
983 +                }
984 +            }
985 +            if (removed)
986 +                task.doExec();
987 +            return stat;
988 +        }
989 +
990 +        /**
991 +         * Version of shared pop that takes top element only if it
992 +         * its root is the given CountedCompleter.
993 +         */
994 +        final CountedCompleter<?> sharedPopCC(CountedCompleter<?> root) {
995 +            CountedCompleter<?> task = null;
996 +            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
997 +                try {
998 +                    ForkJoinTask<?>[] a; int m;
999 +                    if ((a = array) != null && (m = a.length - 1) >= 0) {
1000 +                        outer:for (int s; (s = top - 1) - base >= 0;) {
1001 +                            long j = ((m & s) << ASHIFT) + ABASE;
1002 +                            ForkJoinTask<?> t =
1003 +                                (ForkJoinTask<?>)U.getObject(a, j);
1004 +                            if (t == null || !(t instanceof CountedCompleter))
1005 +                                break;
1006 +                            CountedCompleter<?> cc = (CountedCompleter<?>)t;
1007 +                            for (CountedCompleter<?> q = cc, p;;) {
1008 +                                if (q == root) {
1009 +                                    if (U.compareAndSwapObject(a, j, cc, null)) {
1010 +                                        top = s;
1011 +                                        task = cc;
1012 +                                        break outer;
1013 +                                    }
1014 +                                    break;
1015 +                                }
1016 +                                if ((p = q.completer) == null)
1017 +                                    break outer;
1018 +                                q = p;
1019 +                            }
1020 +                        }
1021 +                    }
1022 +                } finally {
1023 +                    runState = 0;
1024 +                }
1025 +            }
1026 +            return task;
1027 +        }
1028 +
1029 +        /**
1030           * Executes a top-level task and any local tasks remaining
1031           * after execution.
1006         *
1007         * @return true unless terminating
1032           */
1033 <        final boolean runTask(ForkJoinTask<?> t) {
1010 <            boolean alive = true;
1033 >        final void runTask(ForkJoinTask<?> t) {
1034              if (t != null) {
1035                  currentSteal = t;
1036                  t.doExec();
1037 <                runLocalTasks();
1037 >                if (top != base) {       // process remaining local tasks
1038 >                    if (mode == 0)
1039 >                        popAndExecAll();
1040 >                    else
1041 >                        pollAndExecAll();
1042 >                }
1043                  ++nsteals;
1044                  currentSteal = null;
1045              }
1018            else if (runState < 0)            // terminating
1019                alive = false;
1020            return alive;
1046          }
1047  
1048          /**
1049 <         * Executes a non-top-level (stolen) task
1049 >         * Executes a non-top-level (stolen) task.
1050           */
1051          final void runSubtask(ForkJoinTask<?> t) {
1052              if (t != null) {
# Line 1033 | Line 1058 | public class ForkJoinPool extends Abstra
1058          }
1059  
1060          /**
1061 <         * Computes next value for random probes.  Scans don't require
1037 <         * a very high quality generator, but also not a crummy one.
1038 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
1039 <         * This is manually inlined in several usages in ForkJoinPool
1040 <         * to avoid writes inside busy scan loops.
1061 >         * Returns true if owned and not known to be blocked.
1062           */
1063 <        final int nextSeed() {
1064 <            int r = seed;
1065 <            r ^= r << 13;
1066 <            r ^= r >>> 17;
1067 <            r ^= r << 5;
1068 <            return seed = r;
1063 >        final boolean isApparentlyUnblocked() {
1064 >            Thread wt; Thread.State s;
1065 >            return (eventCount >= 0 &&
1066 >                    (wt = owner) != null &&
1067 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1068 >                    s != Thread.State.WAITING &&
1069 >                    s != Thread.State.TIMED_WAITING);
1070 >        }
1071 >
1072 >        /**
1073 >         * If this owned and is not already interrupted, try to
1074 >         * interrupt and/or unpark, ignoring exceptions.
1075 >         */
1076 >        final void interruptOwner() {
1077 >            Thread wt, p;
1078 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1079 >                try {
1080 >                    wt.interrupt();
1081 >                } catch (SecurityException ignore) {
1082 >                }
1083 >            }
1084 >            if ((p = parker) != null)
1085 >                U.unpark(p);
1086          }
1087  
1088          // Unsafe mechanics
# Line 1072 | Line 1110 | public class ForkJoinPool extends Abstra
1110      }
1111  
1112      /**
1113 <     * Class for artificial tasks that are used to replace the target
1114 <     * of local joins if they are removed from an interior queue slot
1115 <     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1116 <     * actually do anything beyond having a unique identity.
1117 <     */
1118 <    static final class EmptyTask extends ForkJoinTask<Void> {
1119 <        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1120 <        public Void getRawResult() { return null; }
1121 <        public void setRawResult(Void x) {}
1122 <        public boolean exec() { return true; }
1113 >     * Per-thread records for threads that submit to pools. Currently
1114 >     * holds only pseudo-random seed / index that is used to choose
1115 >     * submission queues in method doSubmit. In the future, this may
1116 >     * also incorporate a means to implement different task rejection
1117 >     * and resubmission policies.
1118 >     *
1119 >     * Seeds for submitters and workers/workQueues work in basically
1120 >     * the same way but are initialized and updated using slightly
1121 >     * different mechanics. Both are initialized using the same
1122 >     * approach as in class ThreadLocal, where successive values are
1123 >     * unlikely to collide with previous values. This is done during
1124 >     * registration for workers, but requires a separate AtomicInteger
1125 >     * for submitters. Seeds are then randomly modified upon
1126 >     * collisions using xorshifts, which requires a non-zero seed.
1127 >     */
1128 >    static final class Submitter {
1129 >        int seed;
1130 >        Submitter() {
1131 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1132 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1133 >        }
1134      }
1135  
1136 +    /** ThreadLocal class for Submitters */
1137 +    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1138 +        public Submitter initialValue() { return new Submitter(); }
1139 +    }
1140 +
1141 +    // static fields (initialized in static initializer below)
1142 +
1143      /**
1144 <     * Computes a hash code for the given thread. This method is
1145 <     * expected to provide higher-quality hash codes than those using
1090 <     * method hashCode().
1144 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1145 >     * overridden in ForkJoinPool constructors.
1146       */
1147 <    static final int hashThread(Thread t) {
1148 <        long id = (t == null)? 0L : t.getId(); // Use MurmurHash of thread id
1149 <        int h = (int)id ^ (int)(id >>> 32);
1150 <        h ^= h >>> 16;
1151 <        h *= 0x85ebca6b;
1152 <        h ^= h >>> 13;
1153 <        h *= 0xc2b2ae35;
1154 <        return h ^ (h >>> 16);
1155 <    }
1147 >    public static final ForkJoinWorkerThreadFactory
1148 >        defaultForkJoinWorkerThreadFactory;
1149 >
1150 >    /** Property prefix for constructing common pool */
1151 >    private static final String propPrefix =
1152 >        "java.util.concurrent.ForkJoinPool.common.";
1153 >
1154 >    /**
1155 >     * Common (static) pool. Non-null for public use unless a static
1156 >     * construction exception, but internal usages must null-check on
1157 >     * use.
1158 >     */
1159 >    static final ForkJoinPool commonPool;
1160 >
1161 >    /**
1162 >     * Common pool parallelism. Must equal commonPool.parallelism.
1163 >     */
1164 >    static final int commonPoolParallelism;
1165 >
1166 >    /**
1167 >     * Generator for assigning sequence numbers as pool names.
1168 >     */
1169 >    private static final AtomicInteger poolNumberGenerator;
1170 >
1171 >    /**
1172 >     * Generator for initial hashes/seeds for submitters. Accessed by
1173 >     * Submitter class constructor.
1174 >     */
1175 >    static final AtomicInteger nextSubmitterSeed;
1176 >
1177 >    /**
1178 >     * Permission required for callers of methods that may start or
1179 >     * kill threads.
1180 >     */
1181 >    private static final RuntimePermission modifyThreadPermission;
1182 >
1183 >    /**
1184 >     * Per-thread submission bookkeeping. Shared across all pools
1185 >     * to reduce ThreadLocal pollution and because random motion
1186 >     * to avoid contention in one pool is likely to hold for others.
1187 >     */
1188 >    private static final ThreadSubmitter submitters;
1189 >
1190 >    // static constants
1191 >
1192 >    /**
1193 >     * Initial timeout value (in nanoseconds) for the thread triggering
1194 >     * quiescence to park waiting for new work. On timeout, the thread
1195 >     * will instead try to shrink the number of workers.
1196 >     */
1197 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1198 >
1199 >    /**
1200 >     * Timeout value when there are more threads than parallelism level
1201 >     */
1202 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1203 >
1204 >    /**
1205 >     * The maximum stolen->joining link depth allowed in method
1206 >     * tryHelpStealer.  Must be a power of two. This value also
1207 >     * controls the maximum number of times to try to help join a task
1208 >     * without any apparent progress or change in pool state before
1209 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1210 >     * chains are unbounded, but we use a fixed constant to avoid
1211 >     * (otherwise unchecked) cycles and to bound staleness of
1212 >     * traversal parameters at the expense of sometimes blocking when
1213 >     * we could be helping.
1214 >     */
1215 >    private static final int MAX_HELP = 64;
1216 >
1217 >    /**
1218 >     * Secondary time-based bound (in nanosecs) for helping attempts
1219 >     * before trying compensated blocking in awaitJoin. Used in
1220 >     * conjunction with MAX_HELP to reduce variance due to different
1221 >     * polling rates associated with different helping options. The
1222 >     * value should roughly approximate the time required to create
1223 >     * and/or activate a worker thread.
1224 >     */
1225 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1226 >
1227 >    /**
1228 >     * Increment for seed generators. See class ThreadLocal for
1229 >     * explanation.
1230 >     */
1231 >    private static final int SEED_INCREMENT = 0x61c88647;
1232  
1233      /**
1234 <     * Top-level runloop for workers
1234 >     * Bits and masks for control variables
1235 >     *
1236 >     * Field ctl is a long packed with:
1237 >     * AC: Number of active running workers minus target parallelism (16 bits)
1238 >     * TC: Number of total workers minus target parallelism (16 bits)
1239 >     * ST: true if pool is terminating (1 bit)
1240 >     * EC: the wait count of top waiting thread (15 bits)
1241 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1242 >     *
1243 >     * When convenient, we can extract the upper 32 bits of counts and
1244 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1245 >     * (int)ctl.  The ec field is never accessed alone, but always
1246 >     * together with id and st. The offsets of counts by the target
1247 >     * parallelism and the positionings of fields makes it possible to
1248 >     * perform the most common checks via sign tests of fields: When
1249 >     * ac is negative, there are not enough active workers, when tc is
1250 >     * negative, there are not enough total workers, and when e is
1251 >     * negative, the pool is terminating.  To deal with these possibly
1252 >     * negative fields, we use casts in and out of "short" and/or
1253 >     * signed shifts to maintain signedness.
1254 >     *
1255 >     * When a thread is queued (inactivated), its eventCount field is
1256 >     * set negative, which is the only way to tell if a worker is
1257 >     * prevented from executing tasks, even though it must continue to
1258 >     * scan for them to avoid queuing races. Note however that
1259 >     * eventCount updates lag releases so usage requires care.
1260 >     *
1261 >     * Field runState is an int packed with:
1262 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1263 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1264 >     * INIT: set true after workQueues array construction (1 bit)
1265 >     *
1266 >     * The sequence number enables simple consistency checks:
1267 >     * Staleness of read-only operations on the workQueues array can
1268 >     * be checked by comparing runState before vs after the reads.
1269 >     */
1270 >
1271 >    // bit positions/shifts for fields
1272 >    private static final int  AC_SHIFT   = 48;
1273 >    private static final int  TC_SHIFT   = 32;
1274 >    private static final int  ST_SHIFT   = 31;
1275 >    private static final int  EC_SHIFT   = 16;
1276 >
1277 >    // bounds
1278 >    private static final int  SMASK      = 0xffff;  // short bits
1279 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1280 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1281 >    private static final int  SHORT_SIGN = 1 << 15;
1282 >    private static final int  INT_SIGN   = 1 << 31;
1283 >
1284 >    // masks
1285 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1286 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1287 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1288 >
1289 >    // units for incrementing and decrementing
1290 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1291 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1292 >
1293 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1294 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1295 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1296 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1297 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1298 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1299 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1300 >
1301 >    // masks and units for dealing with e = (int)ctl
1302 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1303 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1304 >
1305 >    // runState bits
1306 >    private static final int SHUTDOWN    = 1 << 31;
1307 >
1308 >    // access mode for WorkQueue
1309 >    static final int LIFO_QUEUE          =  0;
1310 >    static final int FIFO_QUEUE          =  1;
1311 >    static final int SHARED_QUEUE        = -1;
1312 >
1313 >    // Instance fields
1314 >
1315 >    /*
1316 >     * Field layout order in this class tends to matter more than one
1317 >     * would like. Runtime layout order is only loosely related to
1318 >     * declaration order and may differ across JVMs, but the following
1319 >     * empirically works OK on current JVMs.
1320       */
1105    final void runWorker(ForkJoinWorkerThread wt) {
1106        WorkQueue w = wt.workQueue;
1107        w.growArray(false);     // Initialize queue array and seed in this thread
1108        w.seed = hashThread(Thread.currentThread()) | (1 << 31); // force < 0
1321  
1322 <        do {} while (w.runTask(scan(w)));
1322 >    volatile long stealCount;                  // collects worker counts
1323 >    volatile long ctl;                         // main pool control
1324 >    final int parallelism;                     // parallelism level
1325 >    final int localMode;                       // per-worker scheduling mode
1326 >    volatile int nextWorkerNumber;             // to create worker name string
1327 >    final int submitMask;                      // submit queue index bound
1328 >    int nextSeed;                              // for initializing worker seeds
1329 >    volatile int mainLock;                     // spinlock for array updates
1330 >    volatile int runState;                     // shutdown status and seq
1331 >    WorkQueue[] workQueues;                    // main registry
1332 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1333 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1334 >    final String workerNamePrefix;             // to create worker name string
1335 >
1336 >    /*
1337 >     * Mechanics for main lock protecting worker array updates.  Uses
1338 >     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1339 >     * normal cases, but falling back to builtin lock when (rarely)
1340 >     * needed.  See internal ConcurrentHashMap documentation for
1341 >     * explanation.
1342 >     */
1343 >
1344 >    static final int LOCK_WAITING = 2; // bit to indicate need for signal
1345 >    static final int MAX_LOCK_SPINS = 1 << 8;
1346 >
1347 >    private void tryAwaitMainLock() {
1348 >        int spins = MAX_LOCK_SPINS, r = 0, h;
1349 >        while (((h = mainLock) & 1) != 0) {
1350 >            if (r == 0)
1351 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1352 >            else if (spins >= 0) {
1353 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1354 >                if (r >= 0)
1355 >                    --spins;
1356 >            }
1357 >            else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1358 >                synchronized (this) {
1359 >                    if ((mainLock & LOCK_WAITING) != 0) {
1360 >                        try {
1361 >                            wait();
1362 >                        } catch (InterruptedException ie) {
1363 >                            try {
1364 >                                Thread.currentThread().interrupt();
1365 >                            } catch (SecurityException ignore) {
1366 >                            }
1367 >                        }
1368 >                    }
1369 >                    else
1370 >                        notifyAll(); // possibly won race vs signaller
1371 >                }
1372 >                break;
1373 >            }
1374 >        }
1375      }
1376  
1377 <    // Creating, registering and deregistering workers
1377 >    //  Creating, registering, and deregistering workers
1378  
1379      /**
1380       * Tries to create and start a worker
1381       */
1382      private void addWorker() {
1383          Throwable ex = null;
1384 <        ForkJoinWorkerThread w = null;
1384 >        ForkJoinWorkerThread wt = null;
1385          try {
1386 <            if ((w = factory.newThread(this)) != null) {
1387 <                w.start();
1386 >            if ((wt = factory.newThread(this)) != null) {
1387 >                wt.start();
1388                  return;
1389              }
1390          } catch (Throwable e) {
1391              ex = e;
1392          }
1393 <        deregisterWorker(w, ex);
1393 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1394      }
1395  
1396      /**
# Line 1136 | Line 1400 | public class ForkJoinPool extends Abstra
1400       * ForkJoinWorkerThread.
1401       */
1402      final String nextWorkerName() {
1403 <        return workerNamePrefix.concat
1404 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1403 >        int n;
1404 >        do {} while (!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1405 >                                          n = nextWorkerNumber, ++n));
1406 >        return workerNamePrefix.concat(Integer.toString(n));
1407      }
1408  
1409      /**
1410 <     * Callback from ForkJoinWorkerThread constructor to establish and
1411 <     * record its WorkQueue
1410 >     * Callback from ForkJoinWorkerThread constructor to establish its
1411 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1412 >     * to packing entries in front of the workQueues array, we treat
1413 >     * the array as a simple power-of-two hash table using per-thread
1414 >     * seed as hash, expanding as needed.
1415       *
1416 <     * @param wt the worker thread
1416 >     * @param w the worker's queue
1417       */
1418 <    final void registerWorker(ForkJoinWorkerThread wt) {
1419 <        WorkQueue w = wt.workQueue;
1420 <        ReentrantLock lock = this.lock;
1152 <        lock.lock();
1418 >    final void registerWorker(WorkQueue w) {
1419 >        while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1420 >            tryAwaitMainLock();
1421          try {
1422 <            int k = nextPoolIndex;
1423 <            WorkQueue[] ws = workQueues;
1424 <            if (ws != null) {                       // ignore on shutdown
1425 <                int n = ws.length;
1426 <                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1427 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1428 <                        ;                           // workers are at odd indices
1429 <                    if (k >= n)                     // resize
1430 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1431 <                }
1432 <                w.poolIndex = k;
1433 <                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1434 <                ws[k] = w;                          // record worker
1435 <                nextPoolIndex = k + 2;
1436 <                int rs = runState;
1437 <                int m = rs & SMASK;                 // recalculate runState mask
1438 <                if (k > m)
1439 <                    m = (m << 1) + 1;
1440 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1422 >            WorkQueue[] ws;
1423 >            if ((ws = workQueues) == null)
1424 >                ws = workQueues = new WorkQueue[submitMask + 1];
1425 >            if (w != null) {
1426 >                int rs, n =  ws.length, m = n - 1;
1427 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1428 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1429 >                int r = (s << 1) | 1;               // use odd-numbered indices
1430 >                if (ws[r &= m] != null) {           // collision
1431 >                    int probes = 0;                 // step by approx half size
1432 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1433 >                    while (ws[r = (r + step) & m] != null) {
1434 >                        if (++probes >= n) {
1435 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1436 >                            m = n - 1;
1437 >                            probes = 0;
1438 >                        }
1439 >                    }
1440 >                }
1441 >                w.eventCount = w.poolIndex = r;     // establish before recording
1442 >                ws[r] = w;                          // also update seq
1443 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1444              }
1445          } finally {
1446 <            lock.unlock();
1446 >            if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1447 >                mainLock = 0;
1448 >                synchronized (this) { notifyAll(); };
1449 >            }
1450          }
1451      }
1452  
1453      /**
1454 <     * Final callback from terminating worker, as well as failure to
1455 <     * construct or start a worker in addWorker.  Removes record of
1454 >     * Final callback from terminating worker, as well as upon failure
1455 >     * to construct or start a worker in addWorker.  Removes record of
1456       * worker from array, and adjusts counts. If pool is shutting
1457       * down, tries to complete termination.
1458       *
# Line 1189 | Line 1463 | public class ForkJoinPool extends Abstra
1463          WorkQueue w = null;
1464          if (wt != null && (w = wt.workQueue) != null) {
1465              w.runState = -1;                // ensure runState is set
1466 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1466 >            long steals = w.totalSteals + w.nsteals, sc;
1467 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1468 >                                               sc = stealCount, sc + steals));
1469              int idx = w.poolIndex;
1470 <            ReentrantLock lock = this.lock;
1471 <            lock.lock();
1472 <            try {                           // remove record from array
1470 >            while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1471 >                tryAwaitMainLock();
1472 >            try {
1473                  WorkQueue[] ws = workQueues;
1474                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1475 <                    ws[nextPoolIndex = idx] = null;
1475 >                    ws[idx] = null;
1476              } finally {
1477 <                lock.unlock();
1477 >                if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1478 >                    mainLock = 0;
1479 >                    synchronized (this) { notifyAll(); };
1480 >                }
1481              }
1482          }
1483  
# Line 1208 | Line 1487 | public class ForkJoinPool extends Abstra
1487                                             ((c - TC_UNIT) & TC_MASK) |
1488                                             (c & ~(AC_MASK|TC_MASK)))));
1489  
1490 <        if (!tryTerminate(false) && w != null) {
1490 >        if (!tryTerminate(false, false) && w != null) {
1491              w.cancelAll();                  // cancel remaining tasks
1492              if (w.array != null)            // suppress signal if never ran
1493                  signalWork();               // wake up or create replacement
1494 +            if (ex == null)                 // help clean refs on way out
1495 +                ForkJoinTask.helpExpungeStaleExceptions();
1496          }
1497  
1498          if (ex != null)                     // rethrow
1499 <            U.throwException(ex);
1499 >            ForkJoinTask.rethrow(ex);
1500      }
1501  
1502 <
1222 <    // Maintaining ctl counts
1223 <
1224 <    /**
1225 <     * Increments active count; mainly called upon return from blocking
1226 <     */
1227 <    final void incrementActiveCount() {
1228 <        long c;
1229 <        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1230 <    }
1502 >    // Submissions
1503  
1504      /**
1505 <     * Activates or creates a worker
1505 >     * Unless shutting down, adds the given task to a submission queue
1506 >     * at submitter's current queue index (modulo submission
1507 >     * range). If no queue exists at the index, one is created.  If
1508 >     * the queue is busy, another index is randomly chosen. The
1509 >     * submitMask bounds the effective number of queues to the
1510 >     * (nearest power of two for) parallelism level.
1511 >     *
1512 >     * @param task the task. Caller must ensure non-null.
1513       */
1514 <    final void signalWork() {
1515 <        /*
1516 <         * The while condition is true if: (there is are too few total
1517 <         * workers OR there is at least one waiter) AND (there are too
1518 <         * few active workers OR the pool is terminating).  The value
1519 <         * of e distinguishes the remaining cases: zero (no waiters)
1520 <         * for create, negative if terminating (in which case do
1521 <         * nothing), else release a waiter. The secondary checks for
1522 <         * release (non-null array etc) can fail if the pool begins
1523 <         * terminating after the test, and don't impose any added cost
1524 <         * because JVMs must perform null and bounds checks anyway.
1525 <         */
1526 <        long c; int e, u;
1527 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1528 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1529 <            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1530 <            if (e == 0) {                    // add a new worker
1531 <                if (U.compareAndSwapLong
1253 <                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1254 <                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1255 <                    addWorker();
1256 <                    break;
1514 >    private void doSubmit(ForkJoinTask<?> task) {
1515 >        Submitter s = submitters.get();
1516 >        for (int r = s.seed, m = submitMask;;) {
1517 >            WorkQueue[] ws; WorkQueue q;
1518 >            int k = r & m & SQMASK;          // use only even indices
1519 >            if (runState < 0)
1520 >                throw new RejectedExecutionException(); // shutting down
1521 >            else if ((ws = workQueues) == null || ws.length <= k) {
1522 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1523 >                    tryAwaitMainLock();
1524 >                try {
1525 >                    if (workQueues == null)
1526 >                        workQueues = new WorkQueue[submitMask + 1];
1527 >                } finally {
1528 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1529 >                        mainLock = 0;
1530 >                        synchronized (this) { notifyAll(); };
1531 >                    }
1532                  }
1533              }
1534 <            else if (e > 0 && ws != null &&
1535 <                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1536 <                     (w = ws[i]) != null &&
1537 <                     w.eventCount == (e | INT_SIGN)) {
1538 <                if (U.compareAndSwapLong
1539 <                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1540 <                                    ((long)(u + UAC_UNIT) << 32)))) {
1541 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1542 <                    if ((p = w.parker) != null)
1543 <                        U.unpark(p);         // release a waiting worker
1544 <                    break;
1534 >            else if ((q = ws[k]) == null) {  // create new queue
1535 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1536 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1537 >                    tryAwaitMainLock();
1538 >                try {
1539 >                    int rs = runState;       // to update seq
1540 >                    if (ws == workQueues && ws[k] == null) {
1541 >                        ws[k] = nq;
1542 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1543 >                    }
1544 >                } finally {
1545 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1546 >                        mainLock = 0;
1547 >                        synchronized (this) { notifyAll(); };
1548 >                    }
1549                  }
1550              }
1551 +            else if (q.trySharedPush(task)) {
1552 +                signalWork();
1553 +                return;
1554 +            }
1555 +            else if (m > 1) {                // move to a different index
1556 +                r ^= r << 13;                // same xorshift as WorkQueues
1557 +                r ^= r >>> 17;
1558 +                s.seed = r ^= r << 5;
1559 +            }
1560              else
1561 <                break;
1561 >                Thread.yield();              // yield if no alternatives
1562          }
1563      }
1564  
1565      /**
1566 <     * Tries to decrement active count (sometimes implicitly) and
1279 <     * possibly release or create a compensating worker in preparation
1280 <     * for blocking. Fails on contention or termination.
1281 <     *
1282 <     * @return true if the caller can block, else should recheck and retry
1566 >     * Submits the given (non-null) task to the common pool, if possible.
1567       */
1568 <    final boolean tryCompensate() {
1569 <        WorkQueue[] ws; WorkQueue w; Thread p;
1570 <        int pc = parallelism, e, u, ac, tc, i;
1571 <        long c = ctl;
1568 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1569 >        ForkJoinPool p;
1570 >        if ((p = commonPool) == null)
1571 >            throw new RejectedExecutionException("Common Pool Unavailable");
1572 >        p.doSubmit(task);
1573 >    }
1574  
1575 <        if ((e = (int)c) >= 0) {
1576 <            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1577 <                e != 0 && (ws = workQueues) != null &&
1578 <                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1579 <                (w = ws[i]) != null) {
1580 <                if (w.eventCount == (e | INT_SIGN) &&
1581 <                    U.compareAndSwapLong
1582 <                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1583 <                                    (c & (AC_MASK|TC_MASK))))) {
1584 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1585 <                    if ((p = w.parker) != null)
1586 <                        U.unpark(p);
1587 <                    return true;             // release an idle worker
1588 <                }
1589 <            }
1590 <            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1591 <                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1592 <                if (U.compareAndSwapLong(this, CTL, c, nc))
1593 <                    return true;             // no compensation needed
1594 <            }
1595 <            else if (tc + pc < MAX_ID) {
1596 <                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1597 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1598 <                    addWorker();
1599 <                    return true;             // create replacement
1575 >    /**
1576 >     * Returns true if the given task was submitted to common pool
1577 >     * and has not yet commenced execution, and is available for
1578 >     * removal according to execution policies; if so removing the
1579 >     * submission from the pool.
1580 >     *
1581 >     * @param task the task
1582 >     * @return true if successful
1583 >     */
1584 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1585 >        // If not oversaturating platform, peek, looking for task and
1586 >        // eligibility before using trySharedUnpush to actually take
1587 >        // it under lock
1588 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
1589 >        ForkJoinTask<?>[] a; int ac, s, m;
1590 >        if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1591 >            int k = submitters.get().seed & p.submitMask & SQMASK;
1592 >            if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1593 >                (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1594 >                if (ac == 0) { // double check if all workers active
1595 >                    for (int i = 1; i <= m; i += 2) {
1596 >                        if ((w = ws[i]) != null && w.parker != null) {
1597 >                            ac = -1;
1598 >                            break;
1599 >                        }
1600 >                    }
1601                  }
1602 +                return (ac < 0 && (a = q.array) != null &&
1603 +                        (s = q.top - 1) - q.base >= 0 &&
1604 +                        s >= 0 && s < a.length &&
1605 +                        a[s] == task &&
1606 +                        q.trySharedUnpush(task));
1607              }
1608          }
1609          return false;
1610      }
1611  
1320    // Submissions
1321
1612      /**
1613 <     * Unless shutting down, adds the given task to some submission
1324 <     * queue; using a randomly chosen queue index if the caller is a
1325 <     * ForkJoinWorkerThread, else one based on caller thread's hash
1326 <     * code. If no queue exists at the index, one is created.  If the
1327 <     * queue is busy, another is chosen by sweeping through the queues
1328 <     * array.
1613 >     * Tries to pop and run a task within same computation from common pool
1614       */
1615 <    private void doSubmit(ForkJoinTask<?> task) {
1616 <        if (task == null)
1617 <            throw new NullPointerException();
1618 <        Thread t = Thread.currentThread();
1619 <        int r = ((t instanceof ForkJoinWorkerThread) ?
1620 <                 ((ForkJoinWorkerThread)t).workQueue.nextSeed() : hashThread(t));
1621 <        for (;;) {
1622 <            int rs = runState, m = rs & SMASK;
1623 <            int j = r &= (m & ~1);                      // even numbered queues
1624 <            WorkQueue[] ws = workQueues;
1625 <            if (rs < 0 || ws == null)
1626 <                throw new RejectedExecutionException(); // shutting down
1627 <            if (ws.length > m) {                        // consistency check
1628 <                for (WorkQueue q;;) {                   // circular sweep
1629 <                    if (((q = ws[j]) != null ||
1345 <                         (q = tryAddSharedQueue(j)) != null) &&
1346 <                        q.trySharedPush(task)) {
1347 <                        signalWork();
1348 <                        return;
1349 <                    }
1350 <                    if ((j = (j + 2) & m) == r) {
1351 <                        Thread.yield();                 // all queues busy
1352 <                        break;
1615 >    static void popAndExecCCFromCommonPool(CountedCompleter<?> cc) {
1616 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; int m, ac;
1617 >        CountedCompleter<?> par, task;
1618 >        if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1619 >            while ((par = cc.completer) != null) // find root
1620 >                cc = par;
1621 >            int k = submitters.get().seed & p.submitMask & SQMASK;
1622 >            if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1623 >                (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1624 >                if (ac == 0) {
1625 >                    for (int i = 1; i <= m; i += 2) {
1626 >                        if ((w = ws[i]) != null && w.parker != null) {
1627 >                            ac = -1;
1628 >                            break;
1629 >                        }
1630                      }
1631                  }
1632 +                if (ac < 0 && q.top - q.base > 0 &&
1633 +                    (task = q.sharedPopCC(cc)) != null)
1634 +                    task.exec();
1635              }
1636          }
1637      }
1638  
1639 +    // Maintaining ctl counts
1640 +
1641      /**
1642 <     * Tries to add and register a new queue at the given index.
1643 <     *
1644 <     * @param idx the workQueues array index to register the queue
1645 <     * @return the queue, or null if could not add because could
1646 <     * not acquire lock or idx is unusable
1647 <     */
1648 <    private WorkQueue tryAddSharedQueue(int idx) {
1649 <        WorkQueue q = null;
1650 <        ReentrantLock lock = this.lock;
1651 <        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1652 <            // create queue outside of lock but only if apparently free
1653 <            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1654 <            if (lock.tryLock()) {
1655 <                try {
1656 <                    WorkQueue[] ws = workQueues;
1657 <                    if (ws != null && idx < ws.length) {
1658 <                        if ((q = ws[idx]) == null) {
1659 <                            int rs;         // update runState seq
1660 <                            ws[idx] = q = nq;
1661 <                            runState = (((rs = runState) & SHUTDOWN) |
1662 <                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1663 <                        }
1642 >     * Increments active count; mainly called upon return from blocking.
1643 >     */
1644 >    final void incrementActiveCount() {
1645 >        long c;
1646 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1647 >    }
1648 >
1649 >    /**
1650 >     * Tries to create one or activate one or more workers if too few are active.
1651 >     */
1652 >    final void signalWork() {
1653 >        long c; int u;
1654 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1655 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1656 >            if ((e = (int)c) > 0) {                     // at least one waiting
1657 >                if (ws != null && (i = e & SMASK) < ws.length &&
1658 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1659 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1660 >                               ((long)(u + UAC_UNIT) << 32));
1661 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1662 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1663 >                        if ((p = w.parker) != null)
1664 >                            U.unpark(p);                // activate and release
1665 >                        break;
1666                      }
1667 <                } finally {
1668 <                    lock.unlock();
1667 >                }
1668 >                else
1669 >                    break;
1670 >            }
1671 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1672 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1673 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1674 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1675 >                    addWorker();
1676 >                    break;
1677                  }
1678              }
1679 +            else
1680 +                break;
1681          }
1388        return q;
1682      }
1683  
1684      // Scanning for tasks
1685  
1686      /**
1687 +     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1688 +     */
1689 +    final void runWorker(WorkQueue w) {
1690 +        w.growArray(false);         // initialize queue array in this thread
1691 +        do { w.runTask(scan(w)); } while (w.runState >= 0);
1692 +    }
1693 +
1694 +    /**
1695       * Scans for and, if found, returns one task, else possibly
1696       * inactivates the worker. This method operates on single reads of
1697 <     * volatile state and is designed to be re-invoked continuously in
1698 <     * part because it returns upon detecting inconsistencies,
1697 >     * volatile state and is designed to be re-invoked continuously,
1698 >     * in part because it returns upon detecting inconsistencies,
1699       * contention, or state changes that indicate possible success on
1700       * re-invocation.
1701       *
1702 <     * The scan searches for tasks across queues, randomly selecting
1703 <     * the first #queues probes, favoring steals 2:1 over submissions
1704 <     * (by exploiting even/odd indexing), and then performing a
1705 <     * circular sweep of all queues.  The scan terminates upon either
1706 <     * finding a non-empty queue, or completing a full sweep. If the
1707 <     * worker is not inactivated, it takes and returns a task from
1708 <     * this queue.  On failure to find a task, we take one of the
1709 <     * following actions, after which the caller will retry calling
1710 <     * this method unless terminated.
1702 >     * The scan searches for tasks across a random permutation of
1703 >     * queues (starting at a random index and stepping by a random
1704 >     * relative prime, checking each at least once).  The scan
1705 >     * terminates upon either finding a non-empty queue, or completing
1706 >     * the sweep. If the worker is not inactivated, it takes and
1707 >     * returns a task from this queue.  On failure to find a task, we
1708 >     * take one of the following actions, after which the caller will
1709 >     * retry calling this method unless terminated.
1710 >     *
1711 >     * * If pool is terminating, terminate the worker.
1712       *
1713       * * If not a complete sweep, try to release a waiting worker.  If
1714       * the scan terminated because the worker is inactivated, then the
# Line 1415 | Line 1717 | public class ForkJoinPool extends Abstra
1717       * another worker, but with same net effect. Releasing in other
1718       * cases as well ensures that we have enough workers running.
1719       *
1418     * * If the caller has run a task since the the last empty scan,
1419     * return (to allow rescan) if other workers are not also yet
1420     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1421     * ensure eventual inactivation, and occasional calls to
1422     * Thread.yield to help avoid interference with more useful
1423     * activities on the system.
1424     *
1425     * * If pool is terminating, terminate the worker
1426     *
1720       * * If not already enqueued, try to inactivate and enqueue the
1721 <     * worker on wait queue.
1721 >     * worker on wait queue. Or, if inactivating has caused the pool
1722 >     * to be quiescent, relay to idleAwaitWork to check for
1723 >     * termination and possibly shrink pool.
1724 >     *
1725 >     * * If already inactive, and the caller has run a task since the
1726 >     * last empty scan, return (to allow rescan) unless others are
1727 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1728 >     * scan to ensure eventual inactivation and blocking.
1729       *
1730 <     * * If already enqueued and none of the above apply, either park
1731 <     * awaiting signal, or if this is the most recent waiter and pool
1432 <     * is quiescent, relay to idleAwaitWork to check for termination
1433 <     * and possibly shrink pool.
1730 >     * * If already enqueued and none of the above apply, park
1731 >     * awaiting signal,
1732       *
1733       * @param w the worker (via its WorkQueue)
1734 <     * @return a task or null of none found
1734 >     * @return a task or null if none found
1735       */
1736      private final ForkJoinTask<?> scan(WorkQueue w) {
1737 <        boolean swept = false;                 // true after full empty scan
1738 <        WorkQueue[] ws;                        // volatile read order matters
1739 <        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1740 <        int rs = runState, m = rs & SMASK;
1741 <        if ((ws = workQueues) != null && ws.length > m) {
1742 <            ForkJoinTask<?> task = null;
1743 <            for (int k = 0, j = -2 - m; ; ++j) {
1744 <                WorkQueue q; int b;
1745 <                if (j < 0) {                    // random probes while j negative
1746 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1747 <                }                               // worker (not submit) for odd j
1748 <                else                            // cyclic scan when j >= 0
1749 <                    k += (m >>> 1) | 1;         // step by half to reduce bias
1750 <
1751 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1752 <                    if (ec >= 0)
1753 <                        task = q.pollAt(b);     // steal
1754 <                    break;
1737 >        WorkQueue[] ws;                       // first update random seed
1738 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1739 >        int rs = runState, m;                 // volatile read order matters
1740 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1741 >            int ec = w.eventCount;            // ec is negative if inactive
1742 >            int step = (r >>> 16) | 1;        // relative prime
1743 >            for (int j = (m + 1) << 2; ; r += step) {
1744 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1745 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1746 >                    (a = q.array) != null) {  // probably nonempty
1747 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1748 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1749 >                    if (q.base == b && ec >= 0 && t != null &&
1750 >                        U.compareAndSwapObject(a, i, t, null)) {
1751 >                        if (q.top - (q.base = b + 1) > 0)
1752 >                            signalWork();    // help pushes signal
1753 >                        return t;
1754 >                    }
1755 >                    else if (ec < 0 || j <= m) {
1756 >                        rs = 0;               // mark scan as imcomplete
1757 >                        break;                // caller can retry after release
1758 >                    }
1759                  }
1760 <                else if (j > m) {
1459 <                    if (rs == runState)        // staleness check
1460 <                        swept = true;
1760 >                if (--j < 0)
1761                      break;
1762 +            }
1763 +
1764 +            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1765 +            if (e < 0)                        // decode ctl on empty scan
1766 +                w.runState = -1;              // pool is terminating
1767 +            else if (rs == 0 || rs != runState) { // incomplete scan
1768 +                WorkQueue v; Thread p;        // try to release a waiter
1769 +                if (e > 0 && a < 0 && w.eventCount == ec &&
1770 +                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1771 +                    long nc = ((long)(v.nextWait & E_MASK) |
1772 +                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1773 +                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1774 +                        v.eventCount = (e + E_SEQ) & E_MASK;
1775 +                        if ((p = v.parker) != null)
1776 +                            U.unpark(p);
1777 +                    }
1778                  }
1779              }
1780 <            w.seed = r;                        // save seed for next scan
1781 <            if (task != null)
1782 <                return task;
1783 <        }
1784 <
1785 <        // Decode ctl on empty scan
1786 <        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1787 <        if (!swept) {                          // try to release a waiter
1788 <            WorkQueue v; Thread p;
1789 <            if (e > 0 && a < 0 && ws != null &&
1790 <                (v = ws[((~e << 1) | 1) & m]) != null &&
1791 <                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1792 <                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1793 <                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1794 <                v.eventCount = (e + E_SEQ) & E_MASK;
1795 <                if ((p = v.parker) != null)
1796 <                    U.unpark(p);
1797 <            }
1798 <        }
1799 <        else if ((nr = w.rescans) > 0) {       // continue rescanning
1800 <            int ac = a + parallelism;
1801 <            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1802 <                w.eventCount == ec)
1803 <                Thread.yield();                // 1 bit randomness for yield call
1804 <        }
1805 <        else if (e < 0)                        // pool is terminating
1806 <            w.runState = -1;
1807 <        else if (ec >= 0) {                    // try to enqueue
1808 <            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1809 <            w.nextWait = e;
1494 <            w.eventCount = ec | INT_SIGN;      // mark as inactive
1495 <            if (!U.compareAndSwapLong(this, CTL, c, nc))
1496 <                w.eventCount = ec;             // back out on CAS failure
1497 <            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1498 <                if (a <= 0)                    // ... unless too many active
1499 <                    w.rescans = a + parallelism;
1500 <                w.nsteals = 0;
1501 <                w.totalSteals += ns;
1502 <            }
1503 <        }
1504 <        else{                                  // already queued
1505 <            if (parallelism == -a)
1506 <                idleAwaitWork(w);              // quiescent
1507 <            if (w.eventCount == ec) {
1508 <                Thread.interrupted();          // clear status
1509 <                ForkJoinWorkerThread wt = w.owner;
1510 <                U.putObject(wt, PARKBLOCKER, this);
1511 <                w.parker = wt;                 // emulate LockSupport.park
1512 <                if (w.eventCount == ec)        // recheck
1513 <                    U.park(false, 0L);         // block
1514 <                w.parker = null;
1515 <                U.putObject(wt, PARKBLOCKER, null);
1780 >            else if (ec >= 0) {               // try to enqueue/inactivate
1781 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1782 >                w.nextWait = e;
1783 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1784 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1785 >                    w.eventCount = ec;        // unmark on CAS failure
1786 >                else {
1787 >                    if ((ns = w.nsteals) != 0) {
1788 >                        w.nsteals = 0;        // set rescans if ran task
1789 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1790 >                        w.totalSteals += ns;
1791 >                    }
1792 >                    if (a == 1 - parallelism) // quiescent
1793 >                        idleAwaitWork(w, nc, c);
1794 >                }
1795 >            }
1796 >            else if (w.eventCount < 0) {      // already queued
1797 >                int ac = a + parallelism;
1798 >                if ((nr = w.rescans) > 0)     // continue rescanning
1799 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1800 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1801 >                    Thread.interrupted();     // clear status
1802 >                    Thread wt = Thread.currentThread();
1803 >                    U.putObject(wt, PARKBLOCKER, this);
1804 >                    w.parker = wt;            // emulate LockSupport.park
1805 >                    if (w.eventCount < 0)     // recheck
1806 >                        U.park(false, 0L);
1807 >                    w.parker = null;
1808 >                    U.putObject(wt, PARKBLOCKER, null);
1809 >                }
1810              }
1811          }
1812          return null;
1813      }
1814  
1815      /**
1816 <     * If inactivating worker w has caused pool to become quiescent,
1817 <     * check for pool termination, and, so long as this is not the
1818 <     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1819 <     * timeout, if ctl has not changed, terminate the worker, which
1820 <     * will in turn wake up another worker to possibly repeat this
1821 <     * process.
1816 >     * If inactivating worker w has caused the pool to become
1817 >     * quiescent, checks for pool termination, and, so long as this is
1818 >     * not the only worker, waits for event for up to a given
1819 >     * duration.  On timeout, if ctl has not changed, terminates the
1820 >     * worker, which will in turn wake up another worker to possibly
1821 >     * repeat this process.
1822       *
1823       * @param w the calling worker
1824 +     * @param currentCtl the ctl value triggering possible quiescence
1825 +     * @param prevCtl the ctl value to restore if thread is terminated
1826       */
1827 <    private void idleAwaitWork(WorkQueue w) {
1828 <        long c; int nw, ec;
1829 <        if (!tryTerminate(false) &&
1830 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1831 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1832 <            (nw = w.nextWait) != 0) {
1833 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1834 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1539 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1540 <            ForkJoinWorkerThread wt = w.owner;
1541 <            while (ctl == c) {
1542 <                long startTime = System.nanoTime();
1827 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1828 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1829 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1830 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1831 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1832 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1833 >            Thread wt = Thread.currentThread();
1834 >            while (ctl == currentCtl) {
1835                  Thread.interrupted();  // timed variant of version in scan()
1836                  U.putObject(wt, PARKBLOCKER, this);
1837                  w.parker = wt;
1838 <                if (ctl == c)
1839 <                    U.park(false, SHRINK_RATE);
1838 >                if (ctl == currentCtl)
1839 >                    U.park(false, parkTime);
1840                  w.parker = null;
1841                  U.putObject(wt, PARKBLOCKER, null);
1842 <                if (ctl != c)
1842 >                if (ctl != currentCtl)
1843                      break;
1844 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1845 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1846 <                    w.runState = -1;          // shrink
1847 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1844 >                if (deadline - System.nanoTime() <= 0L &&
1845 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1846 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1847 >                    w.runState = -1;   // shrink
1848                      break;
1849                  }
1850              }
# Line 1570 | Line 1862 | public class ForkJoinPool extends Abstra
1862       * leaves hints in workers to speed up subsequent calls. The
1863       * implementation is very branchy to cope with potential
1864       * inconsistencies or loops encountering chains that are stale,
1865 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1574 <     * of these cases are dealt with by just retrying by caller.
1865 >     * unknown, or so long that they are likely cyclic.
1866       *
1867       * @param joiner the joining worker
1868       * @param task the task to join
1869 <     * @return true if found or ran a task (and so is immediately retryable)
1869 >     * @return 0 if no progress can be made, negative if task
1870 >     * known complete, else positive
1871       */
1872 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1873 <        ForkJoinTask<?> subtask;    // current target
1874 <        boolean progress = false;
1875 <        int depth = 0;              // current chain depth
1876 <        int m = runState & SMASK;
1877 <        WorkQueue[] ws = workQueues;
1878 <
1879 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1880 <            outer:for (WorkQueue j = joiner;;) {
1881 <                // Try to find the stealer of subtask, by first using hint
1590 <                WorkQueue stealer = null;
1591 <                WorkQueue v = ws[j.stealHint & m];
1592 <                if (v != null && v.currentSteal == subtask)
1593 <                    stealer = v;
1594 <                else {
1595 <                    for (int i = 1; i <= m; i += 2) {
1596 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1597 <                            stealer = v;
1598 <                            j.stealHint = i; // save hint
1599 <                            break;
1600 <                        }
1872 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1873 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1874 >        if (joiner != null && task != null) {       // hoist null checks
1875 >            restart: for (;;) {
1876 >                ForkJoinTask<?> subtask = task;     // current target
1877 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1878 >                    WorkQueue[] ws; int m, s, h;
1879 >                    if ((s = task.status) < 0) {
1880 >                        stat = s;
1881 >                        break restart;
1882                      }
1883 <                    if (stealer == null)
1884 <                        break;
1885 <                }
1886 <
1887 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1888 <                    ForkJoinTask<?> t; int b;
1889 <                    if (task.status < 0)
1890 <                        break outer;
1891 <                    if ((b = q.base) - q.top < 0) {
1892 <                        progress = true;
1893 <                        if (subtask.status < 0)
1894 <                            break outer;               // stale
1895 <                        if ((t = q.pollAt(b)) != null) {
1896 <                            stealer.stealHint = joiner.poolIndex;
1897 <                            joiner.runSubtask(t);
1883 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1884 >                        break restart;              // shutting down
1885 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1886 >                        v.currentSteal != subtask) {
1887 >                        for (int origin = h;;) {    // find stealer
1888 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1889 >                                (subtask.status < 0 || j.currentJoin != subtask))
1890 >                                continue restart;   // occasional staleness check
1891 >                            if ((v = ws[h]) != null &&
1892 >                                v.currentSteal == subtask) {
1893 >                                j.stealHint = h;    // save hint
1894 >                                break;
1895 >                            }
1896 >                            if (h == origin)
1897 >                                break restart;      // cannot find stealer
1898                          }
1899                      }
1900 <                    else { // empty - try to descend to find stealer's stealer
1901 <                        ForkJoinTask<?> next = stealer.currentJoin;
1902 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1903 <                            next == null || next == subtask)
1904 <                            break outer;  // max depth, stale, dead-end, cyclic
1905 <                        subtask = next;
1906 <                        j = stealer;
1907 <                        break;
1900 >                    for (;;) { // help stealer or descend to its stealer
1901 >                        ForkJoinTask[] a;  int b;
1902 >                        if (subtask.status < 0)     // surround probes with
1903 >                            continue restart;       //   consistency checks
1904 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1905 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1906 >                            ForkJoinTask<?> t =
1907 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1908 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1909 >                                v.currentSteal != subtask)
1910 >                                continue restart;   // stale
1911 >                            stat = 1;               // apparent progress
1912 >                            if (t != null && v.base == b &&
1913 >                                U.compareAndSwapObject(a, i, t, null)) {
1914 >                                v.base = b + 1;     // help stealer
1915 >                                joiner.runSubtask(t);
1916 >                            }
1917 >                            else if (v.base == b && ++steps == MAX_HELP)
1918 >                                break restart;      // v apparently stalled
1919 >                        }
1920 >                        else {                      // empty -- try to descend
1921 >                            ForkJoinTask<?> next = v.currentJoin;
1922 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1923 >                                v.currentSteal != subtask)
1924 >                                continue restart;   // stale
1925 >                            else if (next == null || ++steps == MAX_HELP)
1926 >                                break restart;      // dead-end or maybe cyclic
1927 >                            else {
1928 >                                subtask = next;
1929 >                                j = v;
1930 >                                break;
1931 >                            }
1932 >                        }
1933                      }
1934                  }
1935              }
1936          }
1937 <        return progress;
1937 >        return stat;
1938      }
1939  
1940      /**
# Line 1637 | Line 1943 | public class ForkJoinPool extends Abstra
1943       * @param joiner the joining worker
1944       * @param task the task
1945       */
1946 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1946 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1947          WorkQueue[] ws;
1948 <        int m = runState & SMASK;
1949 <        if ((ws = workQueues) != null && ws.length > m) {
1644 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1948 >        if ((ws = workQueues) != null) {
1949 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1950                  WorkQueue q = ws[j];
1951                  if (q != null && q.pollFor(task)) {
1952                      joiner.runSubtask(task);
# Line 1652 | Line 1957 | public class ForkJoinPool extends Abstra
1957      }
1958  
1959      /**
1960 <     * Returns a non-empty steal queue, if one is found during a random,
1961 <     * then cyclic scan, else null.  This method must be retried by
1962 <     * caller if, by the time it tries to use the queue, it is empty.
1960 >     * Tries to decrement active count (sometimes implicitly) and
1961 >     * possibly release or create a compensating worker in preparation
1962 >     * for blocking. Fails on contention or termination. Otherwise,
1963 >     * adds a new thread if no idle workers are available and either
1964 >     * pool would become completely starved or: (at least half
1965 >     * starved, and fewer than 50% spares exist, and there is at least
1966 >     * one task apparently available). Even though the availability
1967 >     * check requires a full scan, it is worthwhile in reducing false
1968 >     * alarms.
1969 >     *
1970 >     * @param task if non-null, a task being waited for
1971 >     * @param blocker if non-null, a blocker being waited for
1972 >     * @return true if the caller can block, else should recheck and retry
1973 >     */
1974 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1975 >        int pc = parallelism, e;
1976 >        long c = ctl;
1977 >        WorkQueue[] ws = workQueues;
1978 >        if ((e = (int)c) >= 0 && ws != null) {
1979 >            int u, a, ac, hc;
1980 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1981 >            boolean replace = false;
1982 >            if ((a = u >> UAC_SHIFT) <= 0) {
1983 >                if ((ac = a + pc) <= 1)
1984 >                    replace = true;
1985 >                else if ((e > 0 || (task != null &&
1986 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1987 >                    WorkQueue w;
1988 >                    for (int j = 0; j < ws.length; ++j) {
1989 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1990 >                            replace = true;
1991 >                            break;   // in compensation range and tasks available
1992 >                        }
1993 >                    }
1994 >                }
1995 >            }
1996 >            if ((task == null || task.status >= 0) && // recheck need to block
1997 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1998 >                if (!replace) {          // no compensation
1999 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2000 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
2001 >                        return true;
2002 >                }
2003 >                else if (e != 0) {       // release an idle worker
2004 >                    WorkQueue w; Thread p; int i;
2005 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
2006 >                        long nc = ((long)(w.nextWait & E_MASK) |
2007 >                                   (c & (AC_MASK|TC_MASK)));
2008 >                        if (w.eventCount == (e | INT_SIGN) &&
2009 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
2010 >                            w.eventCount = (e + E_SEQ) & E_MASK;
2011 >                            if ((p = w.parker) != null)
2012 >                                U.unpark(p);
2013 >                            return true;
2014 >                        }
2015 >                    }
2016 >                }
2017 >                else if (tc < MAX_CAP) { // create replacement
2018 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2019 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2020 >                        addWorker();
2021 >                        return true;
2022 >                    }
2023 >                }
2024 >            }
2025 >        }
2026 >        return false;
2027 >    }
2028 >
2029 >    /**
2030 >     * Helps and/or blocks until the given task is done.
2031 >     *
2032 >     * @param joiner the joining worker
2033 >     * @param task the task
2034 >     * @return task status on exit
2035 >     */
2036 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2037 >        int s;
2038 >        if ((s = task.status) >= 0) {
2039 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2040 >            joiner.currentJoin = task;
2041 >            long startTime = 0L;
2042 >            for (int k = 0;;) {
2043 >                if ((s = (joiner.isEmpty() ?           // try to help
2044 >                          tryHelpStealer(joiner, task) :
2045 >                          joiner.tryRemoveAndExec(task))) == 0 &&
2046 >                    (s = task.status) >= 0) {
2047 >                    if (k == 0) {
2048 >                        startTime = System.nanoTime();
2049 >                        tryPollForAndExec(joiner, task); // check uncommon case
2050 >                    }
2051 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
2052 >                             System.nanoTime() - startTime >=
2053 >                             COMPENSATION_DELAY &&
2054 >                             tryCompensate(task, null)) {
2055 >                        if (task.trySetSignal()) {
2056 >                            synchronized (task) {
2057 >                                if (task.status >= 0) {
2058 >                                    try {                // see ForkJoinTask
2059 >                                        task.wait();     //  for explanation
2060 >                                    } catch (InterruptedException ie) {
2061 >                                    }
2062 >                                }
2063 >                                else
2064 >                                    task.notifyAll();
2065 >                            }
2066 >                        }
2067 >                        long c;                          // re-activate
2068 >                        do {} while (!U.compareAndSwapLong
2069 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2070 >                    }
2071 >                }
2072 >                if (s < 0 || (s = task.status) < 0) {
2073 >                    joiner.currentJoin = prevJoin;
2074 >                    break;
2075 >                }
2076 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
2077 >                    Thread.yield();                     // for politeness
2078 >            }
2079 >        }
2080 >        return s;
2081 >    }
2082 >
2083 >    /**
2084 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2085 >     * to help join only while there is continuous progress. (Caller
2086 >     * will then enter a timed wait.)
2087 >     *
2088 >     * @param joiner the joining worker
2089 >     * @param task the task
2090 >     * @return task status on exit
2091 >     */
2092 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2093 >        int s;
2094 >        while ((s = task.status) >= 0 &&
2095 >               (joiner.isEmpty() ?
2096 >                tryHelpStealer(joiner, task) :
2097 >                joiner.tryRemoveAndExec(task)) != 0)
2098 >            ;
2099 >        return s;
2100 >    }
2101 >
2102 >    /**
2103 >     * Returns a (probably) non-empty steal queue, if one is found
2104 >     * during a random, then cyclic scan, else null.  This method must
2105 >     * be retried by caller if, by the time it tries to use the queue,
2106 >     * it is empty.
2107       */
2108      private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2109 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
2109 >        // Similar to loop in scan(), but ignoring submissions
2110 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2111 >        int step = (r >>> 16) | 1;
2112          for (WorkQueue[] ws;;) {
2113 <            int m = runState & SMASK;
2114 <            if ((ws = workQueues) == null)
2113 >            int rs = runState, m;
2114 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2115                  return null;
2116 <            if (ws.length > m) {
2117 <                WorkQueue q;
2118 <                for (int n = m << 2, k = r, j = -n;;) {
2119 <                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
2120 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
2121 <                        w.seed = r;
1671 <                        return q;
1672 <                    }
1673 <                    else if (j > n)
2116 >            for (int j = (m + 1) << 2; ; r += step) {
2117 >                WorkQueue q = ws[((r << 1) | 1) & m];
2118 >                if (q != null && !q.isEmpty())
2119 >                    return q;
2120 >                else if (--j < 0) {
2121 >                    if (runState == rs)
2122                          return null;
2123 <                    else
1676 <                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1677 <
2123 >                    break;
2124                  }
2125              }
2126          }
# Line 1688 | Line 2134 | public class ForkJoinPool extends Abstra
2134       */
2135      final void helpQuiescePool(WorkQueue w) {
2136          for (boolean active = true;;) {
2137 <            w.runLocalTasks();      // exhaust local queue
2137 >            ForkJoinTask<?> localTask; // exhaust local queue
2138 >            while ((localTask = w.nextLocalTask()) != null)
2139 >                localTask.doExec();
2140              WorkQueue q = findNonEmptyStealQueue(w);
2141              if (q != null) {
2142 <                ForkJoinTask<?> t;
2142 >                ForkJoinTask<?> t; int b;
2143                  if (!active) {      // re-establish active count
2144                      long c;
2145                      active = true;
2146                      do {} while (!U.compareAndSwapLong
2147                                   (this, CTL, c = ctl, c + AC_UNIT));
2148                  }
2149 <                if ((t = q.poll()) != null)
2149 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2150                      w.runSubtask(t);
2151              }
2152              else {
# Line 1720 | Line 2168 | public class ForkJoinPool extends Abstra
2168      }
2169  
2170      /**
2171 <     * Gets and removes a local or stolen task for the given worker
2171 >     * Restricted version of helpQuiescePool for non-FJ callers
2172 >     */
2173 >    static void externalHelpQuiescePool() {
2174 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, sq;
2175 >        ForkJoinTask<?>[] a; int b;
2176 >        ForkJoinTask<?> t = null;
2177 >        int k = submitters.get().seed & SQMASK;
2178 >        if ((p = commonPool) != null &&
2179 >            (ws = p.workQueues) != null &&
2180 >            ws.length > (k &= p.submitMask) &&
2181 >            (q = ws[k]) != null) {
2182 >            while (q.top - q.base > 0) {
2183 >                if ((t = q.sharedPop()) != null)
2184 >                    break;
2185 >            }
2186 >            if (t == null && (sq = p.findNonEmptyStealQueue(q)) != null &&
2187 >                (b = sq.base) - sq.top < 0)
2188 >                t = sq.pollAt(b);
2189 >            if (t != null)
2190 >                t.doExec();
2191 >        }
2192 >    }
2193 >
2194 >    /**
2195 >     * Gets and removes a local or stolen task for the given worker.
2196       *
2197       * @return a task, if available
2198       */
2199      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2200          for (ForkJoinTask<?> t;;) {
2201 <            WorkQueue q;
2201 >            WorkQueue q; int b;
2202              if ((t = w.nextLocalTask()) != null)
2203                  return t;
2204              if ((q = findNonEmptyStealQueue(w)) == null)
2205                  return null;
2206 <            if ((t = q.poll()) != null)
2206 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2207                  return t;
2208          }
2209      }
# Line 1752 | Line 2224 | public class ForkJoinPool extends Abstra
2224                  8);
2225      }
2226  
1755    // Termination
1756
2227      /**
2228 <     * Sets SHUTDOWN bit of runState under lock
2228 >     * Returns approximate submission queue length for the given caller
2229       */
2230 <    private void enableShutdown() {
2231 <        ReentrantLock lock = this.lock;
2232 <        if (runState >= 0) {
2233 <            lock.lock();                       // don't need try/finally
2234 <            runState |= SHUTDOWN;
2235 <            lock.unlock();
2236 <        }
2230 >    static int getEstimatedSubmitterQueueLength() {
2231 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2232 >        int k = submitters.get().seed & SQMASK;
2233 >        return ((p = commonPool) != null && (ws = p.workQueues) != null &&
2234 >                ws.length > (k &= p.submitMask) &&
2235 >                (q = ws[k]) != null) ?
2236 >            q.queueSize() : 0;
2237      }
2238  
2239 +    //  Termination
2240 +
2241      /**
2242 <     * Possibly initiates and/or completes termination.  Upon
2243 <     * termination, cancels all queued tasks and then
2242 >     * Possibly initiates and/or completes termination.  The caller
2243 >     * triggering termination runs three passes through workQueues:
2244 >     * (0) Setting termination status, followed by wakeups of queued
2245 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2246 >     * threads (likely in external tasks, but possibly also blocked in
2247 >     * joins).  Each pass repeats previous steps because of potential
2248 >     * lagging thread creation.
2249       *
2250       * @param now if true, unconditionally terminate, else only
2251       * if no work and no active workers
2252 +     * @param enable if true, enable shutdown when next possible
2253       * @return true if now terminating or terminated
2254       */
2255 <    private boolean tryTerminate(boolean now) {
2255 >    private boolean tryTerminate(boolean now, boolean enable) {
2256          for (long c;;) {
2257              if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2258                  if ((short)(c >>> TC_SHIFT) == -parallelism) {
2259 <                    ReentrantLock lock = this.lock; // signal when no workers
2260 <                    lock.lock();                    // don't need try/finally
2261 <                    termination.signalAll();        // signal when 0 workers
1784 <                    lock.unlock();
2259 >                    synchronized (this) {
2260 >                        notifyAll();                // signal when 0 workers
2261 >                    }
2262                  }
2263                  return true;
2264              }
2265 <            if (!now) {
2266 <                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
2265 >            if (runState >= 0) {                    // not yet enabled
2266 >                if (!enable)
2267 >                    return false;
2268 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2269 >                    tryAwaitMainLock();
2270 >                try {
2271 >                    runState |= SHUTDOWN;
2272 >                } finally {
2273 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2274 >                        mainLock = 0;
2275 >                        synchronized (this) { notifyAll(); };
2276 >                    }
2277 >                }
2278 >            }
2279 >            if (!now) {                             // check if idle & no tasks
2280 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2281                      hasQueuedSubmissions())
2282                      return false;
2283                  // Check for unqueued inactive workers. One pass suffices.
2284                  WorkQueue[] ws = workQueues; WorkQueue w;
2285                  if (ws != null) {
2286 <                    int n = ws.length;
1796 <                    for (int i = 1; i < n; i += 2) {
2286 >                    for (int i = 1; i < ws.length; i += 2) {
2287                          if ((w = ws[i]) != null && w.eventCount >= 0)
2288                              return false;
2289                      }
2290                  }
2291              }
2292 <            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
2293 <                startTerminating();
2294 <        }
2295 <    }
2296 <
2297 <    /**
2298 <     * Initiates termination: Runs three passes through workQueues:
2299 <     * (0) Setting termination status, followed by wakeups of queued
2300 <     * workers; (1) cancelling all tasks; (2) interrupting lagging
2301 <     * threads (likely in external tasks, but possibly also blocked in
2302 <     * joins).  Each pass repeats previous steps because of potential
2303 <     * lagging thread creation.
2304 <     */
1815 <    private void startTerminating() {
1816 <        for (int pass = 0; pass < 3; ++pass) {
1817 <            WorkQueue[] ws = workQueues;
1818 <            if (ws != null) {
1819 <                WorkQueue w; Thread wt;
1820 <                int n = ws.length;
1821 <                for (int j = 0; j < n; ++j) {
1822 <                    if ((w = ws[j]) != null) {
1823 <                        w.runState = -1;
1824 <                        if (pass > 0) {
1825 <                            w.cancelAll();
1826 <                            if (pass > 1 && (wt = w.owner) != null &&
1827 <                                !wt.isInterrupted()) {
1828 <                                try {
1829 <                                    wt.interrupt();
1830 <                                } catch (SecurityException ignore) {
2292 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2293 >                for (int pass = 0; pass < 3; ++pass) {
2294 >                    WorkQueue[] ws = workQueues;
2295 >                    if (ws != null) {
2296 >                        WorkQueue w;
2297 >                        int n = ws.length;
2298 >                        for (int i = 0; i < n; ++i) {
2299 >                            if ((w = ws[i]) != null) {
2300 >                                w.runState = -1;
2301 >                                if (pass > 0) {
2302 >                                    w.cancelAll();
2303 >                                    if (pass > 1)
2304 >                                        w.interruptOwner();
2305                                  }
2306                              }
2307                          }
2308 <                    }
2309 <                }
2310 <                // Wake up workers parked on event queue
2311 <                int i, e; long c; Thread p;
2312 <                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
2313 <                       (w = ws[i]) != null &&
2314 <                       w.eventCount == (e | INT_SIGN)) {
2315 <                    long nc = ((long)(w.nextWait & E_MASK) |
2316 <                               ((c + AC_UNIT) & AC_MASK) |
2317 <                               (c & (TC_MASK|STOP_BIT)));
2318 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2319 <                        w.eventCount = (e + E_SEQ) & E_MASK;
2320 <                        if ((p = w.parker) != null)
2321 <                            U.unpark(p);
2308 >                        // Wake up workers parked on event queue
2309 >                        int i, e; long cc; Thread p;
2310 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2311 >                               (i = e & SMASK) < n &&
2312 >                               (w = ws[i]) != null) {
2313 >                            long nc = ((long)(w.nextWait & E_MASK) |
2314 >                                       ((cc + AC_UNIT) & AC_MASK) |
2315 >                                       (cc & (TC_MASK|STOP_BIT)));
2316 >                            if (w.eventCount == (e | INT_SIGN) &&
2317 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2318 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2319 >                                w.runState = -1;
2320 >                                if ((p = w.parker) != null)
2321 >                                    U.unpark(p);
2322 >                            }
2323 >                        }
2324                      }
2325                  }
2326              }
# Line 1920 | Line 2396 | public class ForkJoinPool extends Abstra
2396          checkPermission();
2397          if (factory == null)
2398              throw new NullPointerException();
2399 <        if (parallelism <= 0 || parallelism > MAX_ID)
2399 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2400              throw new IllegalArgumentException();
2401          this.parallelism = parallelism;
2402          this.factory = factory;
2403          this.ueh = handler;
2404          this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1929        this.nextPoolIndex = 1;
2405          long np = (long)(-parallelism); // offset ctl counts
2406          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2407 <        // initialize workQueues array with room for 2*parallelism if possible
2408 <        int n = parallelism << 1;
2409 <        if (n >= MAX_ID)
2410 <            n = MAX_ID;
2411 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1937 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1938 <        }
1939 <        this.workQueues = new WorkQueue[(n + 1) << 1];
1940 <        ReentrantLock lck = this.lock = new ReentrantLock();
1941 <        this.termination = lck.newCondition();
1942 <        this.stealCount = new AtomicLong();
1943 <        this.nextWorkerNumber = new AtomicInteger();
2407 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2408 >        int n = parallelism - 1;
2409 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2410 >        this.submitMask = ((n + 1) << 1) - 1;
2411 >        int pn = poolNumberGenerator.incrementAndGet();
2412          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2413 <        sb.append(poolNumberGenerator.incrementAndGet());
2413 >        sb.append(Integer.toString(pn));
2414          sb.append("-worker-");
2415          this.workerNamePrefix = sb.toString();
2416 <        // Create initial submission queue
2417 <        WorkQueue sq = tryAddSharedQueue(0);
2418 <        if (sq != null)
2419 <            sq.growArray(false);
2416 >        this.runState = 1;              // set init flag
2417 >    }
2418 >
2419 >    /**
2420 >     * Constructor for common pool, suitable only for static initialization.
2421 >     * Basically the same as above, but uses smallest possible initial footprint.
2422 >     */
2423 >    ForkJoinPool(int parallelism, int submitMask,
2424 >                 ForkJoinWorkerThreadFactory factory,
2425 >                 Thread.UncaughtExceptionHandler handler) {
2426 >        this.factory = factory;
2427 >        this.ueh = handler;
2428 >        this.submitMask = submitMask;
2429 >        this.parallelism = parallelism;
2430 >        long np = (long)(-parallelism);
2431 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2432 >        this.localMode = LIFO_QUEUE;
2433 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2434 >        this.runState = 1;
2435 >    }
2436 >
2437 >    /**
2438 >     * Returns the common pool instance.
2439 >     *
2440 >     * @return the common pool instance
2441 >     */
2442 >    public static ForkJoinPool commonPool() {
2443 >        ForkJoinPool p;
2444 >        if ((p = commonPool) == null)
2445 >            throw new Error("Common Pool Unavailable");
2446 >        return p;
2447      }
2448  
2449      // Execution methods
# Line 1970 | Line 2465 | public class ForkJoinPool extends Abstra
2465       *         scheduled for execution
2466       */
2467      public <T> T invoke(ForkJoinTask<T> task) {
2468 +        if (task == null)
2469 +            throw new NullPointerException();
2470          doSubmit(task);
2471          return task.join();
2472      }
# Line 1983 | Line 2480 | public class ForkJoinPool extends Abstra
2480       *         scheduled for execution
2481       */
2482      public void execute(ForkJoinTask<?> task) {
2483 +        if (task == null)
2484 +            throw new NullPointerException();
2485          doSubmit(task);
2486      }
2487  
# Line 2000 | Line 2499 | public class ForkJoinPool extends Abstra
2499          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2500              job = (ForkJoinTask<?>) task;
2501          else
2502 <            job = ForkJoinTask.adapt(task, null);
2502 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2503          doSubmit(job);
2504      }
2505  
# Line 2014 | Line 2513 | public class ForkJoinPool extends Abstra
2513       *         scheduled for execution
2514       */
2515      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2516 +        if (task == null)
2517 +            throw new NullPointerException();
2518          doSubmit(task);
2519          return task;
2520      }
# Line 2024 | Line 2525 | public class ForkJoinPool extends Abstra
2525       *         scheduled for execution
2526       */
2527      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2528 <        if (task == null)
2028 <            throw new NullPointerException();
2029 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2528 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2529          doSubmit(job);
2530          return job;
2531      }
# Line 2037 | Line 2536 | public class ForkJoinPool extends Abstra
2536       *         scheduled for execution
2537       */
2538      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2539 <        if (task == null)
2041 <            throw new NullPointerException();
2042 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2539 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2540          doSubmit(job);
2541          return job;
2542      }
# Line 2056 | Line 2553 | public class ForkJoinPool extends Abstra
2553          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2554              job = (ForkJoinTask<?>) task;
2555          else
2556 <            job = ForkJoinTask.adapt(task, null);
2556 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2557          doSubmit(job);
2558          return job;
2559      }
# Line 2066 | Line 2563 | public class ForkJoinPool extends Abstra
2563       * @throws RejectedExecutionException {@inheritDoc}
2564       */
2565      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2566 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2567 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2568 <        for (Callable<T> task : tasks)
2569 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2570 <        invoke(new InvokeAll<T>(forkJoinTasks));
2571 <
2566 >        // In previous versions of this class, this method constructed
2567 >        // a task to run ForkJoinTask.invokeAll, but now external
2568 >        // invocation of multiple tasks is at least as efficient.
2569 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2570 >        // Workaround needed because method wasn't declared with
2571 >        // wildcards in return type but should have been.
2572          @SuppressWarnings({"unchecked", "rawtypes"})
2573 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2077 <        return futures;
2078 <    }
2573 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2574  
2575 <    static final class InvokeAll<T> extends RecursiveAction {
2576 <        final ArrayList<ForkJoinTask<T>> tasks;
2577 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2578 <        public void compute() {
2579 <            try { invokeAll(tasks); }
2580 <            catch (Exception ignore) {}
2575 >        boolean done = false;
2576 >        try {
2577 >            for (Callable<T> t : tasks) {
2578 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2579 >                doSubmit(f);
2580 >                fs.add(f);
2581 >            }
2582 >            for (ForkJoinTask<T> f : fs)
2583 >                f.quietlyJoin();
2584 >            done = true;
2585 >            return futures;
2586 >        } finally {
2587 >            if (!done)
2588 >                for (ForkJoinTask<T> f : fs)
2589 >                    f.cancel(false);
2590          }
2087        private static final long serialVersionUID = -7914297376763021607L;
2591      }
2592  
2593      /**
# Line 2116 | Line 2619 | public class ForkJoinPool extends Abstra
2619      }
2620  
2621      /**
2622 +     * Returns the targeted parallelism level of the common pool.
2623 +     *
2624 +     * @return the targeted parallelism level of the common pool
2625 +     */
2626 +    public static int getCommonPoolParallelism() {
2627 +        return commonPoolParallelism;
2628 +    }
2629 +
2630 +    /**
2631       * Returns the number of worker threads that have started but not
2632       * yet terminated.  The result returned by this method may differ
2633       * from {@link #getParallelism} when threads are created to
# Line 2149 | Line 2661 | public class ForkJoinPool extends Abstra
2661          int rc = 0;
2662          WorkQueue[] ws; WorkQueue w;
2663          if ((ws = workQueues) != null) {
2664 <            int n = ws.length;
2665 <            for (int i = 1; i < n; i += 2) {
2154 <                Thread.State s; ForkJoinWorkerThread wt;
2155 <                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2156 <                    w.eventCount >= 0 &&
2157 <                    (s = wt.getState()) != Thread.State.BLOCKED &&
2158 <                    s != Thread.State.WAITING &&
2159 <                    s != Thread.State.TIMED_WAITING)
2664 >            for (int i = 1; i < ws.length; i += 2) {
2665 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2666                      ++rc;
2667              }
2668          }
# Line 2202 | Line 2708 | public class ForkJoinPool extends Abstra
2708       * @return the number of steals
2709       */
2710      public long getStealCount() {
2711 <        long count = stealCount.get();
2711 >        long count = stealCount;
2712          WorkQueue[] ws; WorkQueue w;
2713          if ((ws = workQueues) != null) {
2714 <            int n = ws.length;
2209 <            for (int i = 1; i < n; i += 2) {
2714 >            for (int i = 1; i < ws.length; i += 2) {
2715                  if ((w = ws[i]) != null)
2716                      count += w.totalSteals;
2717              }
# Line 2228 | Line 2733 | public class ForkJoinPool extends Abstra
2733          long count = 0;
2734          WorkQueue[] ws; WorkQueue w;
2735          if ((ws = workQueues) != null) {
2736 <            int n = ws.length;
2232 <            for (int i = 1; i < n; i += 2) {
2736 >            for (int i = 1; i < ws.length; i += 2) {
2737                  if ((w = ws[i]) != null)
2738                      count += w.queueSize();
2739              }
# Line 2248 | Line 2752 | public class ForkJoinPool extends Abstra
2752          int count = 0;
2753          WorkQueue[] ws; WorkQueue w;
2754          if ((ws = workQueues) != null) {
2755 <            int n = ws.length;
2252 <            for (int i = 0; i < n; i += 2) {
2755 >            for (int i = 0; i < ws.length; i += 2) {
2756                  if ((w = ws[i]) != null)
2757                      count += w.queueSize();
2758              }
# Line 2266 | Line 2769 | public class ForkJoinPool extends Abstra
2769      public boolean hasQueuedSubmissions() {
2770          WorkQueue[] ws; WorkQueue w;
2771          if ((ws = workQueues) != null) {
2772 <            int n = ws.length;
2773 <            for (int i = 0; i < n; i += 2) {
2271 <                if ((w = ws[i]) != null && w.queueSize() != 0)
2772 >            for (int i = 0; i < ws.length; i += 2) {
2773 >                if ((w = ws[i]) != null && !w.isEmpty())
2774                      return true;
2775              }
2776          }
# Line 2285 | Line 2787 | public class ForkJoinPool extends Abstra
2787      protected ForkJoinTask<?> pollSubmission() {
2788          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2789          if ((ws = workQueues) != null) {
2790 <            int n = ws.length;
2289 <            for (int i = 0; i < n; i += 2) {
2790 >            for (int i = 0; i < ws.length; i += 2) {
2791                  if ((w = ws[i]) != null && (t = w.poll()) != null)
2792                      return t;
2793              }
# Line 2315 | Line 2816 | public class ForkJoinPool extends Abstra
2816          int count = 0;
2817          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2818          if ((ws = workQueues) != null) {
2819 <            int n = ws.length;
2319 <            for (int i = 0; i < n; ++i) {
2819 >            for (int i = 0; i < ws.length; ++i) {
2820                  if ((w = ws[i]) != null) {
2821                      while ((t = w.poll()) != null) {
2822                          c.add(t);
# Line 2336 | Line 2836 | public class ForkJoinPool extends Abstra
2836       * @return a string identifying this pool, as well as its state
2837       */
2838      public String toString() {
2839 <        long st = getStealCount();
2840 <        long qt = getQueuedTaskCount();
2841 <        long qs = getQueuedSubmissionCount();
2342 <        int rc = getRunningThreadCount();
2343 <        int pc = parallelism;
2839 >        // Use a single pass through workQueues to collect counts
2840 >        long qt = 0L, qs = 0L; int rc = 0;
2841 >        long st = stealCount;
2842          long c = ctl;
2843 +        WorkQueue[] ws; WorkQueue w;
2844 +        if ((ws = workQueues) != null) {
2845 +            for (int i = 0; i < ws.length; ++i) {
2846 +                if ((w = ws[i]) != null) {
2847 +                    int size = w.queueSize();
2848 +                    if ((i & 1) == 0)
2849 +                        qs += size;
2850 +                    else {
2851 +                        qt += size;
2852 +                        st += w.totalSteals;
2853 +                        if (w.isApparentlyUnblocked())
2854 +                            ++rc;
2855 +                    }
2856 +                }
2857 +            }
2858 +        }
2859 +        int pc = parallelism;
2860          int tc = pc + (short)(c >>> TC_SHIFT);
2861          int ac = pc + (int)(c >> AC_SHIFT);
2862          if (ac < 0) // ignore transient negative
# Line 2364 | Line 2879 | public class ForkJoinPool extends Abstra
2879      }
2880  
2881      /**
2882 <     * Initiates an orderly shutdown in which previously submitted
2883 <     * tasks are executed, but no new tasks will be accepted.
2884 <     * Invocation has no additional effect if already shut down.
2885 <     * Tasks that are in the process of being submitted concurrently
2886 <     * during the course of this method may or may not be rejected.
2882 >     * Possibly initiates an orderly shutdown in which previously
2883 >     * submitted tasks are executed, but no new tasks will be
2884 >     * accepted. Invocation has no effect on execution state if this
2885 >     * is the {@link #commonPool}, and no additional effect if
2886 >     * already shut down.  Tasks that are in the process of being
2887 >     * submitted concurrently during the course of this method may or
2888 >     * may not be rejected.
2889       *
2890       * @throws SecurityException if a security manager exists and
2891       *         the caller is not permitted to modify threads
# Line 2377 | Line 2894 | public class ForkJoinPool extends Abstra
2894       */
2895      public void shutdown() {
2896          checkPermission();
2897 <        enableShutdown();
2898 <        tryTerminate(false);
2897 >        if (this != commonPool)
2898 >            tryTerminate(false, true);
2899      }
2900  
2901      /**
2902 <     * Attempts to cancel and/or stop all tasks, and reject all
2903 <     * subsequently submitted tasks.  Tasks that are in the process of
2904 <     * being submitted or executed concurrently during the course of
2905 <     * this method may or may not be rejected. This method cancels
2906 <     * both existing and unexecuted tasks, in order to permit
2907 <     * termination in the presence of task dependencies. So the method
2908 <     * always returns an empty list (unlike the case for some other
2909 <     * Executors).
2902 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2903 >     * all subsequently submitted tasks.  Invocation has no effect on
2904 >     * execution state if this is the {@link #commonPool}, and no
2905 >     * additional effect if already shut down. Otherwise, tasks that
2906 >     * are in the process of being submitted or executed concurrently
2907 >     * during the course of this method may or may not be
2908 >     * rejected. This method cancels both existing and unexecuted
2909 >     * tasks, in order to permit termination in the presence of task
2910 >     * dependencies. So the method always returns an empty list
2911 >     * (unlike the case for some other Executors).
2912       *
2913       * @return an empty list
2914       * @throws SecurityException if a security manager exists and
# Line 2399 | Line 2918 | public class ForkJoinPool extends Abstra
2918       */
2919      public List<Runnable> shutdownNow() {
2920          checkPermission();
2921 <        enableShutdown();
2922 <        tryTerminate(true);
2921 >        if (this != commonPool)
2922 >            tryTerminate(true, true);
2923          return Collections.emptyList();
2924      }
2925  
# Line 2457 | Line 2976 | public class ForkJoinPool extends Abstra
2976      public boolean awaitTermination(long timeout, TimeUnit unit)
2977          throws InterruptedException {
2978          long nanos = unit.toNanos(timeout);
2979 <        final ReentrantLock lock = this.lock;
2980 <        lock.lock();
2981 <        try {
2982 <            for (;;) {
2983 <                if (isTerminated())
2984 <                    return true;
2985 <                if (nanos <= 0)
2986 <                    return false;
2987 <                nanos = termination.awaitNanos(nanos);
2979 >        if (isTerminated())
2980 >            return true;
2981 >        long startTime = System.nanoTime();
2982 >        boolean terminated = false;
2983 >        synchronized (this) {
2984 >            for (long waitTime = nanos, millis = 0L;;) {
2985 >                if (terminated = isTerminated() ||
2986 >                    waitTime <= 0L ||
2987 >                    (millis = unit.toMillis(waitTime)) <= 0L)
2988 >                    break;
2989 >                wait(millis);
2990 >                waitTime = nanos - (System.nanoTime() - startTime);
2991              }
2470        } finally {
2471            lock.unlock();
2992          }
2993 +        return terminated;
2994      }
2995  
2996      /**
# Line 2553 | Line 3074 | public class ForkJoinPool extends Abstra
3074       *
3075       * <p>If the caller is not a {@link ForkJoinTask}, this method is
3076       * behaviorally equivalent to
3077 < a     *  <pre> {@code
3077 >     *  <pre> {@code
3078       * while (!blocker.isReleasable())
3079       *   if (blocker.block())
3080       *     return;
# Line 2571 | Line 3092 | a     *  <pre> {@code
3092          ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3093                            ((ForkJoinWorkerThread)t).pool : null);
3094          while (!blocker.isReleasable()) {
3095 <            if (p == null || p.tryCompensate()) {
3095 >            if (p == null || p.tryCompensate(null, blocker)) {
3096                  try {
3097                      do {} while (!blocker.isReleasable() && !blocker.block());
3098                  } finally {
# Line 2588 | Line 3109 | a     *  <pre> {@code
3109      // implement RunnableFuture.
3110  
3111      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3112 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3112 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3113      }
3114  
3115      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3116 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3116 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3117      }
3118  
3119      // Unsafe mechanics
3120      private static final sun.misc.Unsafe U;
3121      private static final long CTL;
2601    private static final long RUNSTATE;
3122      private static final long PARKBLOCKER;
3123 +    private static final int ABASE;
3124 +    private static final int ASHIFT;
3125 +    private static final long NEXTWORKERNUMBER;
3126 +    private static final long STEALCOUNT;
3127 +    private static final long MAINLOCK;
3128  
3129      static {
3130          poolNumberGenerator = new AtomicInteger();
3131 +        nextSubmitterSeed = new AtomicInteger(0x55555555);
3132          modifyThreadPermission = new RuntimePermission("modifyThread");
3133          defaultForkJoinWorkerThreadFactory =
3134              new DefaultForkJoinWorkerThreadFactory();
3135 +        submitters = new ThreadSubmitter();
3136          int s;
3137          try {
3138              U = getUnsafe();
3139              Class<?> k = ForkJoinPool.class;
3140 <            Class<?> tk = Thread.class;
3140 >            Class<?> ak = ForkJoinTask[].class;
3141              CTL = U.objectFieldOffset
3142                  (k.getDeclaredField("ctl"));
3143 <            RUNSTATE = U.objectFieldOffset
3144 <                (k.getDeclaredField("runState"));
3143 >            NEXTWORKERNUMBER = U.objectFieldOffset
3144 >                (k.getDeclaredField("nextWorkerNumber"));
3145 >            STEALCOUNT = U.objectFieldOffset
3146 >                (k.getDeclaredField("stealCount"));
3147 >            MAINLOCK = U.objectFieldOffset
3148 >                (k.getDeclaredField("mainLock"));
3149 >            Class<?> tk = Thread.class;
3150              PARKBLOCKER = U.objectFieldOffset
3151                  (tk.getDeclaredField("parkBlocker"));
3152 +            ABASE = U.arrayBaseOffset(ak);
3153 +            s = U.arrayIndexScale(ak);
3154 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3155 +        } catch (Exception e) {
3156 +            throw new Error(e);
3157 +        }
3158 +        if ((s & (s-1)) != 0)
3159 +            throw new Error("data type scale not a power of two");
3160 +        try { // Establish common pool
3161 +            String pp = System.getProperty(propPrefix + "parallelism");
3162 +            String fp = System.getProperty(propPrefix + "threadFactory");
3163 +            String up = System.getProperty(propPrefix + "exceptionHandler");
3164 +            ForkJoinWorkerThreadFactory fac = (fp == null) ?
3165 +                defaultForkJoinWorkerThreadFactory :
3166 +                ((ForkJoinWorkerThreadFactory)ClassLoader.
3167 +                 getSystemClassLoader().loadClass(fp).newInstance());
3168 +            Thread.UncaughtExceptionHandler ueh = (up == null) ? null :
3169 +                ((Thread.UncaughtExceptionHandler)ClassLoader.
3170 +                 getSystemClassLoader().loadClass(up).newInstance());
3171 +            int par;
3172 +            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3173 +                par = Runtime.getRuntime().availableProcessors();
3174 +            if (par > MAX_CAP)
3175 +                par = MAX_CAP;
3176 +            commonPoolParallelism = par;
3177 +            int n = par - 1; // precompute submit mask
3178 +            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3179 +            n |= n >>> 8; n |= n >>> 16;
3180 +            int mask = ((n + 1) << 1) - 1;
3181 +            commonPool = new ForkJoinPool(par, mask, fac, ueh);
3182          } catch (Exception e) {
3183              throw new Error(e);
3184          }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines