ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.112 by dl, Thu Jan 26 18:15:12 2012 UTC vs.
Revision 1.158 by dl, Sat Dec 15 20:21:30 2012 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.atomic.AtomicInteger;
23 import java.util.concurrent.atomic.AtomicLong;
24 import java.util.concurrent.locks.ReentrantLock;
25 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 42 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used primarily by clients not
68 < * already engaged in fork/join computations in the current pool.  The
69 < * main forms of these methods accept instances of {@code
70 < * ForkJoinTask}, but overloaded forms also allow mixed execution of
71 < * plain {@code Runnable}- or {@code Callable}- based activities as
72 < * well.  However, tasks that are already executing in a pool should
73 < * normally instead use the within-computation forms listed in the
74 < * table unless using async event-style tasks that are not usually
75 < * joined, in which case there is little difference among choice of
73 < * methods.
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71 > * Runnable}- or {@code Callable}- based activities as well.  However,
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 95 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
108 < *  <pre> {@code
109 < * static final ForkJoinPool mainPool = new ForkJoinPool();
110 < * ...
111 < * public void sort(long[] array) {
112 < *   mainPool.invoke(new SortTask(array, 0, array.length));
113 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 131 | Line 127 | public class ForkJoinPool extends Abstra
127       *
128       * This class and its nested classes provide the main
129       * functionality and control for a set of worker threads:
130 <     * Submissions from non-FJ threads enter into submission
131 <     * queues. Workers take these tasks and typically split them into
132 <     * subtasks that may be stolen by other workers.  Preference rules
133 <     * give first priority to processing tasks from their own queues
134 <     * (LIFO or FIFO, depending on mode), then to randomized FIFO
135 <     * steals of tasks in other queues.
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136       *
137 <     * WorkQueues.
137 >     * WorkQueues
138       * ==========
139       *
140       * Most operations occur within work-stealing queues (in nested
# Line 156 | Line 152 | public class ForkJoinPool extends Abstra
152       * (http://research.sun.com/scalable/pubs/index.html) and
153       * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154       * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 <     * The main differences ultimately stem from gc requirements that
155 >     * The main differences ultimately stem from GC requirements that
156       * we null out taken slots as soon as we can, to maintain as small
157       * a footprint as possible even in programs generating huge
158       * numbers of tasks. To accomplish this, we shift the CAS
# Line 178 | Line 174 | public class ForkJoinPool extends Abstra
174       * If an attempted steal fails, a thief always chooses a different
175       * random victim target to try next. So, in order for one thief to
176       * progress, it suffices for any in-progress poll or new push on
177 <     * any empty queue to complete.
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181       *
182       * This approach also enables support of a user mode in which local
183       * task processing is in FIFO, not LIFO order, simply by using
# Line 188 | Line 187 | public class ForkJoinPool extends Abstra
187       * rarely provide the best possible performance on a given
188       * machine, but portably provide good throughput by averaging over
189       * these factors.  (Further, even if we did try to use such
190 <     * information, we do not usually have a basis for exploiting
191 <     * it. For example, some sets of tasks profit from cache
192 <     * affinities, but others are harmed by cache pollution effects.)
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193       *
194       * WorkQueues are also used in a similar way for tasks submitted
195       * to the pool. We cannot mix these tasks in the same queues used
196       * for work-stealing (this would contaminate lifo/fifo
197 <     * processing). Instead, we loosely associate (via hashing)
198 <     * submission queues with submitting threads, and randomly scan
199 <     * these queues as well when looking for work. In essence,
200 <     * submitters act like workers except that they never take tasks,
201 <     * and they are multiplexed on to a finite number of shared work
202 <     * queues. However, classes are set up so that future extensions
203 <     * could allow submitters to optionally help perform tasks as
204 <     * well. Pool submissions from internal workers are also allowed,
205 <     * but use randomized rather than thread-hashed queue indices to
206 <     * avoid imbalance.  Insertion of tasks in shared mode requires a
207 <     * lock (mainly to protect in the case of resizing) but we use
208 <     * only a simple spinlock (using bits in field runState), because
209 <     * submitters encountering a busy queue try or create others so
210 <     * never block.
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216 <     * Management.
216 >     * Management
217       * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
# Line 220 | Line 223 | public class ForkJoinPool extends Abstra
223       * tactic for avoiding bottlenecks is packing nearly all
224       * essentially atomic control state into two volatile variables
225       * that are by far most often read (not written) as status and
226 <     * consistency checks
226 >     * consistency checks.
227       *
228       * Field "ctl" contains 64 bits holding all the information needed
229       * to atomically decide to add, inactivate, enqueue (on an event
# Line 230 | Line 233 | public class ForkJoinPool extends Abstra
233       * and their negations (used for thresholding) to fit into 16bit
234       * fields.
235       *
236 <     * Field "runState" contains 32 bits needed to register and
237 <     * deregister WorkQueues, as well as to enable shutdown. It is
238 <     * only modified under a lock (normally briefly held, but
239 <     * occasionally protecting allocations and resizings) but even
240 <     * when locked remains available to check consistency.
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243       *
244       * Recording WorkQueues.  WorkQueues are recorded in the
245 <     * "workQueues" array that is created upon pool construction and
246 <     * expanded if necessary.  Updates to the array while recording
247 <     * new workers and unrecording terminated ones are protected from
248 <     * each other by a lock but the array is otherwise concurrently
249 <     * readable, and accessed directly.  To simplify index-based
250 <     * operations, the array size is always a power of two, and all
251 <     * readers must tolerate null slots. Shared (submission) queues
252 <     * are at even indices, worker queues at odd indices. Grouping
253 <     * them together in this way simplifies and speeds up task
254 <     * scanning. To avoid flailing during start-up, the array is
255 <     * presized to hold twice #parallelism workers (which is unlikely
256 <     * to need further resizing during execution). But to avoid
257 <     * dealing with so many null slots, variable runState includes a
258 <     * mask for the nearest power of two that contains all current
254 <     * workers.  All worker thread creation is on-demand, triggered by
255 <     * task submissions, replacement of terminated workers, and/or
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259       * compensation for blocked workers. However, all other support
260       * code is set up to work with other policies.  To ensure that we
261       * do not hold on to worker references that would prevent GC, ALL
# Line 265 | Line 268 | public class ForkJoinPool extends Abstra
268       * both index-check and null-check the IDs. All such accesses
269       * ignore bad IDs by returning out early from what they are doing,
270       * since this can only be associated with termination, in which
271 <     * case it is OK to give up.
272 <     *
273 <     * All uses of the workQueues array check that it is non-null
274 <     * (even if previously non-null). This allows nulling during
275 <     * termination, which is currently not necessary, but remains an
276 <     * option for resource-revocation-based shutdown schemes. It also
274 <     * helps reduce JIT issuance of uncommon-trap code, which tends to
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277       * unnecessarily complicate control flow in some methods.
278       *
279       * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
# Line 299 | Line 301 | public class ForkJoinPool extends Abstra
301       * some other queued worker rather than itself, which has the same
302       * net effect. Because enqueued workers may actually be rescanning
303       * rather than waiting, we set and clear the "parker" field of
304 <     * Workqueues to reduce unnecessary calls to unpark.  (This
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305       * requires a secondary recheck to avoid missed signals.)  Note
306       * the unusual conventions about Thread.interrupts surrounding
307       * parking and other blocking: Because interrupts are used solely
# Line 311 | Line 313 | public class ForkJoinPool extends Abstra
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had fewer than two tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans;
321 <     * together these cover the signals needed in cases when more
322 <     * tasks are pushed but untaken, and improve performance compared
323 <     * to having one thread wake up all workers.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331       *
332       * Trimming workers. To release resources after periods of lack of
333       * use, a worker starting to wait when the pool is quiescent will
334 <     * time out and terminate if the pool has remained quiescent for
335 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
336 <     * terminating all workers after long periods of non-use.
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339       *
340       * Shutdown and Termination. A call to shutdownNow atomically sets
341 <     * a runState bit and then (non-atomically) sets each workers
342 <     * runState status, cancels all unprocessed tasks, and wakes up
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343       * all waiting workers.  Detecting whether termination should
344       * commence after a non-abrupt shutdown() call requires more work
345       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 336 | Line 347 | public class ForkJoinPool extends Abstra
347       * indication but non-abrupt shutdown still requires a rechecking
348       * scan for any workers that are inactive but not queued.
349       *
350 <     * Joining Tasks.
351 <     * ==============
350 >     * Joining Tasks
351 >     * =============
352       *
353       * Any of several actions may be taken when one worker is waiting
354 <     * to join a task stolen (or always held by) another.  Because we
354 >     * to join a task stolen (or always held) by another.  Because we
355       * are multiplexing many tasks on to a pool of workers, we can't
356       * just let them block (as in Thread.join).  We also cannot just
357       * reassign the joiner's run-time stack with another and replace
358       * it later, which would be a form of "continuation", that even if
359       * possible is not necessarily a good idea since we sometimes need
360 <     * both an unblocked task and its continuation to
361 <     * progress. Instead we combine two tactics:
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362       *
363       *   Helping: Arranging for the joiner to execute some task that it
364       *      would be running if the steal had not occurred.
# Line 356 | Line 367 | public class ForkJoinPool extends Abstra
367       *      method tryCompensate() may create or re-activate a spare
368       *      thread to compensate for blocked joiners until they unblock.
369       *
370 <     * A third form (implemented in tryRemoveAndExec and
371 <     * tryPollForAndExec) amounts to helping a hypothetical
372 <     * compensator: If we can readily tell that a possible action of a
373 <     * compensator is to steal and execute the task being joined, the
374 <     * joining thread can do so directly, without the need for a
375 <     * compensation thread (although at the expense of larger run-time
376 <     * stacks, but the tradeoff is typically worthwhile).
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377       *
378       * The ManagedBlocker extension API can't use helping so relies
379       * only on compensation in method awaitBlocker.
# Line 382 | Line 393 | public class ForkJoinPool extends Abstra
393       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394       * that: (1) We only maintain dependency links across workers upon
395       * steals, rather than use per-task bookkeeping.  This sometimes
396 <     * requires a linear scan of workers array to locate stealers, but
397 <     * often doesn't because stealers leave hints (that may become
398 <     * stale/wrong) of where to locate them.  A stealHint is only a
399 <     * hint because a worker might have had multiple steals and the
400 <     * hint records only one of them (usually the most current).
401 <     * Hinting isolates cost to when it is needed, rather than adding
402 <     * to per-task overhead.  (2) It is "shallow", ignoring nesting
403 <     * and potentially cyclic mutual steals.  (3) It is intentionally
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404       * racy: field currentJoin is updated only while actively joining,
405       * which means that we miss links in the chain during long-lived
406       * tasks, GC stalls etc (which is OK since blocking in such cases
407       * is usually a good idea).  (4) We bound the number of attempts
408 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
409 <     * the worker and if necessary replacing it with another.
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416       *
417       * It is impossible to keep exactly the target parallelism number
418       * of threads running at any given time.  Determining the
419       * existence of conservatively safe helping targets, the
420       * availability of already-created spares, and the apparent need
421       * to create new spares are all racy, so we rely on multiple
422 <     * retries of each.  Currently, in keeping with on-demand
423 <     * signalling policy, we compensate only if blocking would leave
424 <     * less than one active (non-waiting, non-blocked) worker.
425 <     * Additionally, to avoid some false alarms due to GC, lagging
426 <     * counters, system activity, etc, compensated blocking for joins
427 <     * is only attempted after rechecks stabilize in
428 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
429 <     * Thread.yield, for good citizenship.)
430 <     *
431 <     * Style notes: There is a lot of representation-level coupling
432 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
433 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
434 <     * managed by ForkJoinPool, so are directly accessed.  There is
435 <     * little point trying to reduce this, since any associated future
436 <     * changes in representations will need to be accompanied by
437 <     * algorithmic changes anyway. All together, these low-level
438 <     * implementation choices produce as much as a factor of 4
439 <     * performance improvement compared to naive implementations, and
440 <     * enable the processing of billions of tasks per second, at the
441 <     * expense of some ugliness.
442 <     *
443 <     * Methods signalWork() and scan() are the main bottlenecks so are
444 <     * especially heavily micro-optimized/mangled.  There are lots of
445 <     * inline assignments (of form "while ((local = field) != 0)")
446 <     * which are usually the simplest way to ensure the required read
447 <     * orderings (which are sometimes critical). This leads to a
448 <     * "C"-like style of listing declarations of these locals at the
449 <     * heads of methods or blocks.  There are several occurrences of
450 <     * the unusual "do {} while (!cas...)"  which is the simplest way
451 <     * to force an update of a CAS'ed variable. There are also other
452 <     * coding oddities that help some methods perform reasonably even
453 <     * when interpreted (not compiled).
454 <     *
455 <     * The order of declarations in this file is: (1) declarations of
456 <     * statics (2) fields (along with constants used when unpacking
457 <     * some of them), listed in an order that tends to reduce
458 <     * contention among them a bit under most JVMs; (3) nested
459 <     * classes; (4) internal control methods; (5) callbacks and other
460 <     * support for ForkJoinTask methods; (6) exported methods (plus a
461 <     * few little helpers); (7) static block initializing all statics
462 <     * in a minimally dependent order.
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static commonPool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467 >     * trying to reduce this, since any associated future changes in
468 >     * representations will need to be accompanied by algorithmic
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494       */
495  
496 +    // Static utilities
497 +
498 +    /**
499 +     * If there is a security manager, makes sure caller has
500 +     * permission to modify threads.
501 +     */
502 +    private static void checkPermission() {
503 +        SecurityManager security = System.getSecurityManager();
504 +        if (security != null)
505 +            security.checkPermission(modifyThreadPermission);
506 +    }
507 +
508 +    // Nested classes
509 +
510      /**
511       * Factory for creating new {@link ForkJoinWorkerThread}s.
512       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 465 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
539 <     * overridden in ForkJoinPool constructors.
540 <     */
541 <    public static final ForkJoinWorkerThreadFactory
542 <        defaultForkJoinWorkerThreadFactory;
543 <
544 <    /**
545 <     * Permission required for callers of methods that may start or
546 <     * kill threads.
547 <     */
548 <    private static final RuntimePermission modifyThreadPermission;
549 <
550 <    /**
551 <     * If there is a security manager, makes sure caller has
552 <     * permission to modify threads.
553 <     */
554 <    private static void checkPermission() {
493 <        SecurityManager security = System.getSecurityManager();
494 <        if (security != null)
495 <            security.checkPermission(modifyThreadPermission);
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555      }
556  
557      /**
558 <     * Generator for assigning sequence numbers as pool names.
559 <     */
560 <    private static final AtomicInteger poolNumberGenerator;
561 <
503 <    /**
504 <     * Bits and masks for control variables
505 <     *
506 <     * Field ctl is a long packed with:
507 <     * AC: Number of active running workers minus target parallelism (16 bits)
508 <     * TC: Number of total workers minus target parallelism (16 bits)
509 <     * ST: true if pool is terminating (1 bit)
510 <     * EC: the wait count of top waiting thread (15 bits)
511 <     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
512 <     *
513 <     * When convenient, we can extract the upper 32 bits of counts and
514 <     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
515 <     * (int)ctl.  The ec field is never accessed alone, but always
516 <     * together with id and st. The offsets of counts by the target
517 <     * parallelism and the positionings of fields makes it possible to
518 <     * perform the most common checks via sign tests of fields: When
519 <     * ac is negative, there are not enough active workers, when tc is
520 <     * negative, there are not enough total workers, when id is
521 <     * negative, there is at least one waiting worker, and when e is
522 <     * negative, the pool is terminating.  To deal with these possibly
523 <     * negative fields, we use casts in and out of "short" and/or
524 <     * signed shifts to maintain signedness.
525 <     *
526 <     * When a thread is queued (inactivated), its eventCount field is
527 <     * negative, which is the only way to tell if a worker is
528 <     * prevented from executing tasks, even though it must continue to
529 <     * scan for them to avoid queuing races.
530 <     *
531 <     * Field runState is an int packed with:
532 <     * SHUTDOWN: true if shutdown is enabled (1 bit)
533 <     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
534 <     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
535 <     *
536 <     * The combination of mask and sequence number enables simple
537 <     * consistency checks: Staleness of read-only operations on the
538 <     * workers and queues arrays can be checked by comparing runState
539 <     * before vs after the reads. The low 16 bits (i.e, anding with
540 <     * SMASK) hold (the smallest power of two covering all worker
541 <     * indices, minus one.  The mask for queues (vs workers) is twice
542 <     * this value plus 1.
543 <     */
544 <
545 <    // bit positions/shifts for fields
546 <    private static final int  AC_SHIFT   = 48;
547 <    private static final int  TC_SHIFT   = 32;
548 <    private static final int  ST_SHIFT   = 31;
549 <    private static final int  EC_SHIFT   = 16;
550 <
551 <    // bounds
552 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
553 <    private static final int  SMASK      = 0xffff;  // mask short bits
554 <    private static final int  SHORT_SIGN = 1 << 15;
555 <    private static final int  INT_SIGN   = 1 << 31;
556 <
557 <    // masks
558 <    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
559 <    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
560 <    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
561 <
562 <    // units for incrementing and decrementing
563 <    private static final long TC_UNIT    = 1L << TC_SHIFT;
564 <    private static final long AC_UNIT    = 1L << AC_SHIFT;
565 <
566 <    // masks and units for dealing with u = (int)(ctl >>> 32)
567 <    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
568 <    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
569 <    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
570 <    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
571 <    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
572 <    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
573 <
574 <    // masks and units for dealing with e = (int)ctl
575 <    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
576 <    private static final int E_SEQ       = 1 << EC_SHIFT;
577 <
578 <    // runState bits
579 <    private static final int SHUTDOWN    = 1 << 31;
580 <    private static final int RS_SEQ      = 1 << 16;
581 <    private static final int RS_SEQ_MASK = 0x7fff0000;
582 <
583 <    // access mode for WorkQueue
584 <    static final int LIFO_QUEUE          =  0;
585 <    static final int FIFO_QUEUE          =  1;
586 <    static final int SHARED_QUEUE        = -1;
587 <
588 <    /**
589 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
590 <     * task when the pool is quiescent to instead try to shrink the
591 <     * number of workers.  The exact value does not matter too
592 <     * much. It must be short enough to release resources during
593 <     * sustained periods of idleness, but not so short that threads
594 <     * are continually re-created.
595 <     */
596 <    private static final long SHRINK_RATE =
597 <        4L * 1000L * 1000L * 1000L; // 4 seconds
598 <
599 <    /**
600 <     * The timeout value for attempted shrinkage, includes
601 <     * some slop to cope with system timer imprecision.
602 <     */
603 <    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
604 <
605 <    /**
606 <     * The maximum stolen->joining link depth allowed in tryHelpStealer.
607 <     * Depths for legitimate chains are unbounded, but we use a fixed
608 <     * constant to avoid (otherwise unchecked) cycles and to bound
609 <     * staleness of traversal parameters at the expense of sometimes
610 <     * blocking when we could be helping.
611 <     */
612 <    private static final int MAX_HELP_DEPTH = 16;
613 <
614 <    /*
615 <     * Field layout order in this class tends to matter more than one
616 <     * would like. Runtime layout order is only loosely related to
617 <     * declaration order and may differ across JVMs, but the following
618 <     * empirically works OK on current JVMs.
558 >     * Class for artificial tasks that are used to replace the target
559 >     * of local joins if they are removed from an interior queue slot
560 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 >     * actually do anything beyond having a unique identity.
562       */
563 <
564 <    volatile long ctl;                       // main pool control
565 <    final int parallelism;                   // parallelism level
566 <    final int localMode;                     // per-worker scheduling mode
567 <    int nextPoolIndex;                       // hint used in registerWorker
568 <    volatile int runState;                   // shutdown status, seq, and mask
569 <    WorkQueue[] workQueues;                  // main registry
627 <    final ReentrantLock lock;                // for registration
628 <    final Condition termination;             // for awaitTermination
629 <    final ForkJoinWorkerThreadFactory factory; // factory for new workers
630 <    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
631 <    final AtomicLong stealCount;             // collect counts when terminated
632 <    final AtomicInteger nextWorkerNumber;    // to create worker name string
633 <    final String workerNamePrefix;           // Prefix for assigning worker names
563 >    static final class EmptyTask extends ForkJoinTask<Void> {
564 >        private static final long serialVersionUID = -7721805057305804111L;
565 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 >        public final Void getRawResult() { return null; }
567 >        public final void setRawResult(Void x) {}
568 >        public final boolean exec() { return true; }
569 >    }
570  
571      /**
572       * Queues supporting work-stealing as well as external task
# Line 646 | Line 582 | public class ForkJoinPool extends Abstra
582       *
583       * Field "top" is the index (mod array.length) of the next queue
584       * slot to push to or pop from. It is written only by owner thread
585 <     * for push, or under lock for trySharedPush, and accessed by
586 <     * other threads only after reading (volatile) base.  Both top and
587 <     * base are allowed to wrap around on overflow, but (top - base)
588 <     * (or more comonly -(base - top) to force volatile read of base
589 <     * before top) still estimates size.
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596       *
597       * The array slots are read and written using the emulation of
598       * volatiles/atomics provided by Unsafe. Insertions must in
599       * general use putOrderedObject as a form of releasing store to
600       * ensure that all writes to the task object are ordered before
601 <     * its publication in the queue. (Although we can avoid one case
602 <     * of this when locked in trySharedPush.) All removals entail a
603 <     * CAS to null.  The array is always a power of two. To ensure
604 <     * safety of Unsafe array operations, all accesses perform
663 <     * explicit null checks and implicit bounds checks via
664 <     * power-of-two masking.
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605       *
606       * In addition to basic queuing support, this class contains
607       * fields described elsewhere to control execution. It turns out
608 <     * to work better memory-layout-wise to include them in this
609 <     * class rather than a separate class.
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610       *
611       * Performance on most platforms is very sensitive to placement of
612       * instances of both WorkQueues and their arrays -- we absolutely
# Line 680 | Line 620 | public class ForkJoinPool extends Abstra
620       * trades off slightly slower average field access for the sake of
621       * avoiding really bad worst-case access. (Until better JVM
622       * support is in place, this padding is dependent on transient
623 <     * properties of JVM field layout rules.)  We also take care in
624 <     * allocating and sizing and resizing the array. Non-shared queue
625 <     * arrays are initialized (via method growArray) by workers before
626 <     * use. Others are allocated on first use.
623 >     * properties of JVM field layout rules.) We also take care in
624 >     * allocating, sizing and resizing the array. Non-shared queue
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627       */
628      static final class WorkQueue {
629          /**
630           * Capacity of work-stealing queue array upon initialization.
631 <         * Must be a power of two; at least 4, but set larger to
632 <         * reduce cacheline sharing among queues.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637           */
638 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639  
640          /**
641           * Maximum size for queue arrays. Must be a power of two less
# Line 702 | Line 646 | public class ForkJoinPool extends Abstra
646           */
647          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648  
649 <        volatile long totalSteals; // cumulative number of steals
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652          int seed;                  // for random scanning; initialize nonzero
653          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654          int nextWait;              // encoded record of next event waiter
655 <        int rescans;               // remaining scans until block
710 <        int nsteals;               // top-level task executions since last idle
711 <        final int mode;            // lifo, fifo, or shared
655 >        int hint;                  // steal or signal hint (index)
656          int poolIndex;             // index of this queue in pool (or 0)
657 <        int stealHint;             // index of most recent known stealer
658 <        volatile int runState;     // 1: locked, -1: terminate; else 0
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660          volatile int base;         // index of next slot for poll
661          int top;                   // index of next slot for push
662          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 +        final ForkJoinPool pool;   // the containing pool (may be null)
664          final ForkJoinWorkerThread owner; // owning thread or null if shared
665          volatile Thread parker;    // == owner during call to park; else null
666 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667          ForkJoinTask<?> currentSteal; // current non-local task being executed
722        // Heuristic padding to ameliorate unfortunate memory placements
723        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
668  
669 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675              this.owner = owner;
676              this.mode = mode;
677 +            this.seed = seed;
678              // Place indices in the center of array (that is not yet allocated)
679              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680          }
681  
682          /**
683 <         * Returns number of tasks in the queue
683 >         * Returns the approximate number of tasks in the queue.
684           */
685          final int queueSize() {
686 <            int n = base - top; // non-owner callers must read base first
687 <            return (n >= 0) ? 0 : -n;
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689 >
690 >       /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704          }
705  
706          /**
707 <         * Pushes a task. Call only by owner in unshared queues.
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709           *
710           * @param task the task. Caller must ensure non-null.
711 <         * @param p, if non-null, pool to signal if necessary
745 <         * @throw RejectedExecutionException if array cannot
746 <         * be resized
711 >         * @throw RejectedExecutionException if array cannot be resized
712           */
713 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
714 <            ForkJoinTask<?>[] a;
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715              int s = top, m, n;
716              if ((a = array) != null) {    // ignore if queue removed
717 <                U.putOrderedObject
718 <                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719                  if ((n = (top = s + 1) - base) <= 2) {
720 <                    if (p != null)
721 <                        p.signalWork();
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722                  }
723                  else if (n >= m)
724 <                    growArray(true);
724 >                    growArray();
725 >            }
726 >        }
727 >
728 >       /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752              }
753 +            return a;
754          }
755  
756          /**
757 <         * Pushes a task if lock is free and array is either big
758 <         * enough or can be resized to be big enough.
766 <         *
767 <         * @param task the task. Caller must ensure non-null.
768 <         * @return true if submitted
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759           */
760 <        final boolean trySharedPush(ForkJoinTask<?> task) {
761 <            boolean submitted = false;
762 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
763 <                ForkJoinTask<?>[] a = array;
764 <                int s = top, n = s - base;
765 <                try {
766 <                    if ((a != null && n < a.length - 1) ||
767 <                        (a = growArray(false)) != null) { // must presize
768 <                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
769 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
780 <                        top = s + 1;
781 <                        submitted = true;
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770                      }
783                } finally {
784                    runState = 0;                         // unlock
771                  }
772              }
773 <            return submitted;
773 >            return null;
774          }
775  
776          /**
777 <         * Takes next task, if one exists, in FIFO order.
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780           */
781 <        final ForkJoinTask<?> poll() {
782 <            ForkJoinTask<?>[] a; int b, i;
783 <            while ((b = base) - top < 0 && (a = array) != null &&
784 <                   (i = (a.length - 1) & b) >= 0) {
785 <                int j = (i << ASHIFT) + ABASE;
786 <                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799 <                if (t != null && base == b &&
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 >                    base == b &&
787                      U.compareAndSwapObject(a, j, t, null)) {
788                      base = b + 1;
789                      return t;
# Line 806 | Line 793 | public class ForkJoinPool extends Abstra
793          }
794  
795          /**
796 <         * Takes next task, if one exists, in LIFO order.
810 <         * Call only by owner in unshared queues.
796 >         * Takes next task, if one exists, in FIFO order.
797           */
798 <        final ForkJoinTask<?> pop() {
799 <            ForkJoinTask<?> t; int m;
800 <            ForkJoinTask<?>[] a = array;
801 <            if (a != null && (m = a.length - 1) >= 0) {
802 <                for (int s; (s = top - 1) - base >= 0;) {
803 <                    int j = ((m & s) << ASHIFT) + ABASE;
804 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
805 <                        break;
806 <                    if (U.compareAndSwapObject(a, j, t, null)) {
821 <                        top = s;
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807                          return t;
808                      }
809                  }
810 +                else if (base == b) {
811 +                    if (b + 1 == top)
812 +                        break;
813 +                    Thread.yield(); // wait for lagging update (very rare)
814 +                }
815              }
816              return null;
817          }
# Line 846 | Line 836 | public class ForkJoinPool extends Abstra
836          }
837  
838          /**
849         * Returns task at index b if b is current base of queue.
850         */
851        final ForkJoinTask<?> pollAt(int b) {
852            ForkJoinTask<?>[] a; int i;
853            ForkJoinTask<?> task = null;
854            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
855                int j = (i << ASHIFT) + ABASE;
856                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
857                if (t != null && base == b &&
858                    U.compareAndSwapObject(a, j, t, null)) {
859                    base = b + 1;
860                    task = t;
861                }
862            }
863            return task;
864        }
865
866        /**
839           * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841           */
842          final boolean tryUnpush(ForkJoinTask<?> t) {
843              ForkJoinTask<?>[] a; int s;
# Line 878 | Line 851 | public class ForkJoinPool extends Abstra
851          }
852  
853          /**
854 <         * Polls the given task only if it is at the current base.
854 >         * Removes and cancels all known tasks, ignoring any exceptions.
855           */
856 <        final boolean pollFor(ForkJoinTask<?> task) {
857 <            ForkJoinTask<?>[] a; int b, i;
858 <            if ((b = base) - top < 0 && (a = array) != null &&
859 <                (i = (a.length - 1) & b) >= 0) {
860 <                int j = (i << ASHIFT) + ABASE;
861 <                if (U.getObjectVolatile(a, j) == task && base == b &&
862 <                    U.compareAndSwapObject(a, j, task, null)) {
863 <                    base = b + 1;
864 <                    return true;
856 >        final void cancelAll() {
857 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 >                ForkJoinTask.cancelIgnoringExceptions(t);
861 >        }
862 >
863 >        /**
864 >         * Computes next value for random probes.  Scans don't require
865 >         * a very high quality generator, but also not a crummy one.
866 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 >         * This is manually inlined in its usages in ForkJoinPool to
868 >         * avoid writes inside busy scan loops.
869 >         */
870 >        final int nextSeed() {
871 >            int r = seed;
872 >            r ^= r << 13;
873 >            r ^= r >>> 17;
874 >            return seed = r ^= r << 5;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893                  }
894              }
894            return false;
895          }
896  
897          /**
898 <         * If present, removes from queue and executes the given task, or
899 <         * any other cancelled task. Returns (true) immediately on any CAS
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908           * or consistency check failure so caller can retry.
909           *
910 <         * @return false if no progress can be made
910 >         * @return false if no progress can be made, else true;
911           */
912          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 <            boolean removed = false, empty = true, progress = true;
913 >            boolean stat = true, removed = false, empty = true;
914              ForkJoinTask<?>[] a; int m, s, b, n;
915              if ((a = array) != null && (m = a.length - 1) >= 0 &&
916                  (n = (s = top) - (b = base)) > 0) {
# Line 932 | Line 940 | public class ForkJoinPool extends Abstra
940                      }
941                      if (--n == 0) {
942                          if (!empty && base == b)
943 <                            progress = false;
943 >                            stat = false;
944                          break;
945                      }
946                  }
947              }
948              if (removed)
949                  task.doExec();
950 <            return progress;
950 >            return stat;
951          }
952  
953          /**
954 <         * Initializes or doubles the capacity of array. Call either
955 <         * by owner or with lock held -- it is OK for base, but not
948 <         * top, to move while resizings are in progress.
949 <         *
950 <         * @param rejectOnFailure if true, throw exception if capacity
951 <         * exceeded (relayed ultimately to user); else return null.
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation
956           */
957 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
958 <            ForkJoinTask<?>[] oldA = array;
959 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
960 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
961 <                int oldMask, t, b;
962 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
963 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
964 <                    (t = top) - (b = base) > 0) {
965 <                    int mask = size - 1;
966 <                    do {
967 <                        ForkJoinTask<?> x;
968 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
969 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
970 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
971 <                        if (x != null &&
972 <                            U.compareAndSwapObject(oldA, oldj, x, null))
973 <                            U.putObjectVolatile(a, j, x);
974 <                    } while (++b != t);
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971 >                        }
972 >                        else
973 >                            break; // restart
974 >                    }
975 >                    if ((r = r.completer) == null)
976 >                        break outer; // not part of root computation
977                  }
972                return a;
973            }
974            else if (!rejectOnFailure)
975                return null;
976            else
977                throw new RejectedExecutionException("Queue capacity exceeded");
978        }
979
980        /**
981         * Removes and cancels all known tasks, ignoring any exceptions
982         */
983        final void cancelAll() {
984            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
985            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
986            for (ForkJoinTask<?> t; (t = poll()) != null; )
987                ForkJoinTask.cancelIgnoringExceptions(t);
988        }
989
990        // Execution methods
991
992        /**
993         * Removes and runs tasks until empty, using local mode
994         * ordering.
995         */
996        final void runLocalTasks() {
997            if (base - top < 0) {
998                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
999                    t.doExec();
978              }
979 +            return false;
980          }
981  
982          /**
983           * Executes a top-level task and any local tasks remaining
984           * after execution.
1006         *
1007         * @return true unless terminating
985           */
986 <        final boolean runTask(ForkJoinTask<?> t) {
1010 <            boolean alive = true;
986 >        final void runTask(ForkJoinTask<?> t) {
987              if (t != null) {
988 <                currentSteal = t;
1013 <                t.doExec();
1014 <                runLocalTasks();
1015 <                ++nsteals;
988 >                (currentSteal = t).doExec();
989                  currentSteal = null;
990 +                if (base - top < 0) {       // process remaining local tasks
991 +                    if (mode == 0)
992 +                        popAndExecAll();
993 +                    else
994 +                        pollAndExecAll();
995 +                }
996 +                ++nsteals;
997 +                hint = -1;
998              }
1018            else if (runState < 0)            // terminating
1019                alive = false;
1020            return alive;
999          }
1000  
1001          /**
1002 <         * Executes a non-top-level (stolen) task
1002 >         * Executes a non-top-level (stolen) task.
1003           */
1004          final void runSubtask(ForkJoinTask<?> t) {
1005              if (t != null) {
1006                  ForkJoinTask<?> ps = currentSteal;
1007 <                currentSteal = t;
1030 <                t.doExec();
1007 >                (currentSteal = t).doExec();
1008                  currentSteal = ps;
1009              }
1010          }
1011  
1012          /**
1013 <         * Computes next value for random probes.  Scans don't require
1037 <         * a very high quality generator, but also not a crummy one.
1038 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
1039 <         * This is manually inlined in several usages in ForkJoinPool
1040 <         * to avoid writes inside busy scan loops.
1013 >         * Returns true if owned and not known to be blocked.
1014           */
1015 <        final int nextSeed() {
1016 <            int r = seed;
1017 <            r ^= r << 13;
1018 <            r ^= r >>> 17;
1019 <            r ^= r << 5;
1020 <            return seed = r;
1015 >        final boolean isApparentlyUnblocked() {
1016 >            Thread wt; Thread.State s;
1017 >            return (eventCount >= 0 &&
1018 >                    (wt = owner) != null &&
1019 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1020 >                    s != Thread.State.WAITING &&
1021 >                    s != Thread.State.TIMED_WAITING);
1022 >        }
1023 >
1024 >        /**
1025 >         * If this owned and is not already interrupted, try to
1026 >         * interrupt and/or unpark, ignoring exceptions.
1027 >         */
1028 >        final void interruptOwner() {
1029 >            Thread wt, p;
1030 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1031 >                try {
1032 >                    wt.interrupt();
1033 >                } catch (SecurityException ignore) {
1034 >                }
1035 >            }
1036 >            if ((p = parker) != null)
1037 >                U.unpark(p);
1038          }
1039  
1040          // Unsafe mechanics
1041          private static final sun.misc.Unsafe U;
1042 <        private static final long RUNSTATE;
1042 >        private static final long QLOCK;
1043          private static final int ABASE;
1044          private static final int ASHIFT;
1045          static {
# Line 1058 | Line 1048 | public class ForkJoinPool extends Abstra
1048                  U = getUnsafe();
1049                  Class<?> k = WorkQueue.class;
1050                  Class<?> ak = ForkJoinTask[].class;
1051 <                RUNSTATE = U.objectFieldOffset
1052 <                    (k.getDeclaredField("runState"));
1051 >                QLOCK = U.objectFieldOffset
1052 >                    (k.getDeclaredField("qlock"));
1053                  ABASE = U.arrayBaseOffset(ak);
1054                  s = U.arrayIndexScale(ak);
1055              } catch (Exception e) {
# Line 1071 | Line 1061 | public class ForkJoinPool extends Abstra
1061          }
1062      }
1063  
1064 +    // static fields (initialized in static initializer below)
1065 +
1066      /**
1067 <     * Class for artificial tasks that are used to replace the target
1068 <     * of local joins if they are removed from an interior queue slot
1077 <     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1078 <     * actually do anything beyond having a unique identity.
1067 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1068 >     * overridden in ForkJoinPool constructors.
1069       */
1070 <    static final class EmptyTask extends ForkJoinTask<Void> {
1071 <        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1082 <        public Void getRawResult() { return null; }
1083 <        public void setRawResult(Void x) {}
1084 <        public boolean exec() { return true; }
1085 <    }
1070 >    public static final ForkJoinWorkerThreadFactory
1071 >        defaultForkJoinWorkerThreadFactory;
1072  
1073      /**
1074 <     * Computes a hash code for the given thread. This method is
1075 <     * expected to provide higher-quality hash codes than those using
1076 <     * method hashCode().
1074 >     * Per-thread submission bookkeeping. Shared across all pools
1075 >     * to reduce ThreadLocal pollution and because random motion
1076 >     * to avoid contention in one pool is likely to hold for others.
1077 >     * Lazily initialized on first submission (but null-checked
1078 >     * in other contexts to avoid unnecessary initialization).
1079       */
1080 <    static final int hashThread(Thread t) {
1081 <        long id = (t == null)? 0L : t.getId(); // Use MurmurHash of thread id
1082 <        int h = (int)id ^ (int)(id >>> 32);
1083 <        h ^= h >>> 16;
1084 <        h *= 0x85ebca6b;
1085 <        h ^= h >>> 13;
1086 <        h *= 0xc2b2ae35;
1087 <        return h ^ (h >>> 16);
1088 <    }
1080 >    static final ThreadLocal<Submitter> submitters;
1081 >
1082 >    /**
1083 >     * Permission required for callers of methods that may start or
1084 >     * kill threads.
1085 >     */
1086 >    private static final RuntimePermission modifyThreadPermission;
1087 >
1088 >    /**
1089 >     * Common (static) pool. Non-null for public use unless a static
1090 >     * construction exception, but internal usages null-check on use
1091 >     * to paranoically avoid potential initialization circularities
1092 >     * as well as to simplify generated code.
1093 >     */
1094 >    static final ForkJoinPool commonPool;
1095 >
1096 >    /**
1097 >     * Common pool parallelism. Must equal commonPool.parallelism.
1098 >     */
1099 >    static final int commonPoolParallelism;
1100  
1101      /**
1102 <     * Top-level runloop for workers
1102 >     * Sequence number for creating workerNamePrefix.
1103       */
1104 <    final void runWorker(ForkJoinWorkerThread wt) {
1106 <        WorkQueue w = wt.workQueue;
1107 <        w.growArray(false);     // Initialize queue array and seed in this thread
1108 <        w.seed = hashThread(Thread.currentThread()) | (1 << 31); // force < 0
1104 >    private static int poolNumberSequence;
1105  
1106 <        do {} while (w.runTask(scan(w)));
1106 >    /**
1107 >     * Return the next sequence number. We don't expect this to
1108 >     * ever contend so use simple builtin sync.
1109 >     */
1110 >    private static final synchronized int nextPoolId() {
1111 >        return ++poolNumberSequence;
1112      }
1113  
1114 <    // Creating, registering and deregistering workers
1114 >    // static constants
1115  
1116      /**
1117 <     * Tries to create and start a worker
1117 >     * Initial timeout value (in nanoseconds) for the thread
1118 >     * triggering quiescence to park waiting for new work. On timeout,
1119 >     * the thread will instead try to shrink the number of
1120 >     * workers. The value should be large enough to avoid overly
1121 >     * aggressive shrinkage during most transient stalls (long GCs
1122 >     * etc).
1123       */
1124 <    private void addWorker() {
1125 <        Throwable ex = null;
1126 <        ForkJoinWorkerThread w = null;
1127 <        try {
1128 <            if ((w = factory.newThread(this)) != null) {
1129 <                w.start();
1130 <                return;
1124 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1125 >
1126 >    /**
1127 >     * Timeout value when there are more threads than parallelism level
1128 >     */
1129 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1130 >
1131 >    /**
1132 >     * Tolerance for idle timeouts, to cope with timer undershoots
1133 >     */
1134 >    private static final long TIMEOUT_SLOP = 2000000L; // 20ms
1135 >
1136 >    /**
1137 >     * The maximum stolen->joining link depth allowed in method
1138 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1139 >     * chains are unbounded, but we use a fixed constant to avoid
1140 >     * (otherwise unchecked) cycles and to bound staleness of
1141 >     * traversal parameters at the expense of sometimes blocking when
1142 >     * we could be helping.
1143 >     */
1144 >    private static final int MAX_HELP = 64;
1145 >
1146 >    /**
1147 >     * Increment for seed generators. See class ThreadLocal for
1148 >     * explanation.
1149 >     */
1150 >    private static final int SEED_INCREMENT = 0x61c88647;
1151 >
1152 >    /**
1153 >     * Bits and masks for control variables
1154 >     *
1155 >     * Field ctl is a long packed with:
1156 >     * AC: Number of active running workers minus target parallelism (16 bits)
1157 >     * TC: Number of total workers minus target parallelism (16 bits)
1158 >     * ST: true if pool is terminating (1 bit)
1159 >     * EC: the wait count of top waiting thread (15 bits)
1160 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1161 >     *
1162 >     * When convenient, we can extract the upper 32 bits of counts and
1163 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1164 >     * (int)ctl.  The ec field is never accessed alone, but always
1165 >     * together with id and st. The offsets of counts by the target
1166 >     * parallelism and the positionings of fields makes it possible to
1167 >     * perform the most common checks via sign tests of fields: When
1168 >     * ac is negative, there are not enough active workers, when tc is
1169 >     * negative, there are not enough total workers, and when e is
1170 >     * negative, the pool is terminating.  To deal with these possibly
1171 >     * negative fields, we use casts in and out of "short" and/or
1172 >     * signed shifts to maintain signedness.
1173 >     *
1174 >     * When a thread is queued (inactivated), its eventCount field is
1175 >     * set negative, which is the only way to tell if a worker is
1176 >     * prevented from executing tasks, even though it must continue to
1177 >     * scan for them to avoid queuing races. Note however that
1178 >     * eventCount updates lag releases so usage requires care.
1179 >     *
1180 >     * Field plock is an int packed with:
1181 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1182 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1183 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1184 >     *
1185 >     * The sequence number enables simple consistency checks:
1186 >     * Staleness of read-only operations on the workQueues array can
1187 >     * be checked by comparing plock before vs after the reads.
1188 >     */
1189 >
1190 >    // bit positions/shifts for fields
1191 >    private static final int  AC_SHIFT   = 48;
1192 >    private static final int  TC_SHIFT   = 32;
1193 >    private static final int  ST_SHIFT   = 31;
1194 >    private static final int  EC_SHIFT   = 16;
1195 >
1196 >    // bounds
1197 >    private static final int  SMASK      = 0xffff;  // short bits
1198 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1199 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1200 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1201 >    private static final int  SHORT_SIGN = 1 << 15;
1202 >    private static final int  INT_SIGN   = 1 << 31;
1203 >
1204 >    // masks
1205 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1206 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1207 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1208 >
1209 >    // units for incrementing and decrementing
1210 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1211 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1212 >
1213 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1214 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1215 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1216 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1217 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1218 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1219 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1220 >
1221 >    // masks and units for dealing with e = (int)ctl
1222 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1223 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1224 >
1225 >    // plock bits
1226 >    private static final int SHUTDOWN    = 1 << 31;
1227 >    private static final int PL_LOCK     = 2;
1228 >    private static final int PL_SIGNAL   = 1;
1229 >    private static final int PL_SPINS    = 1 << 8;
1230 >
1231 >    // access mode for WorkQueue
1232 >    static final int LIFO_QUEUE          =  0;
1233 >    static final int FIFO_QUEUE          =  1;
1234 >    static final int SHARED_QUEUE        = -1;
1235 >
1236 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1237 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1238 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1239 >
1240 >    // Instance fields
1241 >
1242 >    /*
1243 >     * Field layout of this class tends to matter more than one would
1244 >     * like. Runtime layout order is only loosely related to
1245 >     * declaration order and may differ across JVMs, but the following
1246 >     * empirically works OK on current JVMs.
1247 >     */
1248 >
1249 >    // Heuristic padding to ameliorate unfortunate memory placements
1250 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1251 >
1252 >    volatile long stealCount;                  // collects worker counts
1253 >    volatile long ctl;                         // main pool control
1254 >    volatile int plock;                        // shutdown status and seqLock
1255 >    volatile int indexSeed;                    // worker/submitter index seed
1256 >    final int config;                          // mode and parallelism level
1257 >    WorkQueue[] workQueues;                    // main registry
1258 >    final ForkJoinWorkerThreadFactory factory;
1259 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1260 >    final String workerNamePrefix;             // to create worker name string
1261 >
1262 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1263 >    volatile Object pad18, pad19, pad1a, pad1b;
1264 >
1265 >    /*
1266 >     * Acquires the plock lock to protect worker array and related
1267 >     * updates. This method is called only if an initial CAS on plock
1268 >     * fails. This acts as a spinLock for normal cases, but falls back
1269 >     * to builtin monitor to block when (rarely) needed. This would be
1270 >     * a terrible idea for a highly contended lock, but works fine as
1271 >     * a more conservative alternative to a pure spinlock.  See
1272 >     * internal ConcurrentHashMap documentation for further
1273 >     * explanation of nearly the same construction.
1274 >     */
1275 >    private int acquirePlock() {
1276 >        int spins = PL_SPINS, r = 0, ps, nps;
1277 >        for (;;) {
1278 >            if (((ps = plock) & PL_LOCK) == 0 &&
1279 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1280 >                return nps;
1281 >            else if (r == 0) { // randomize spins if possible
1282 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1283 >                if ((t instanceof ForkJoinWorkerThread) &&
1284 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1285 >                    r = w.seed;
1286 >                else if ((z = submitters.get()) != null)
1287 >                    r = z.seed;
1288 >                else
1289 >                    r = 1;
1290 >            }
1291 >            else if (spins >= 0) {
1292 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1293 >                if (r >= 0)
1294 >                    --spins;
1295 >            }
1296 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1297 >                synchronized (this) {
1298 >                    if ((plock & PL_SIGNAL) != 0) {
1299 >                        try {
1300 >                            wait();
1301 >                        } catch (InterruptedException ie) {
1302 >                            try {
1303 >                                Thread.currentThread().interrupt();
1304 >                            } catch (SecurityException ignore) {
1305 >                            }
1306 >                        }
1307 >                    }
1308 >                    else
1309 >                        notifyAll();
1310 >                }
1311              }
1126        } catch (Throwable e) {
1127            ex = e;
1312          }
1129        deregisterWorker(w, ex);
1313      }
1314  
1315      /**
1316 <     * Callback from ForkJoinWorkerThread constructor to assign a
1317 <     * public name. This must be separate from registerWorker because
1135 <     * it is called during the "super" constructor call in
1136 <     * ForkJoinWorkerThread.
1316 >     * Unlocks and signals any thread waiting for plock. Called only
1317 >     * when CAS of seq value for unlock fails.
1318       */
1319 <    final String nextWorkerName() {
1320 <        return workerNamePrefix.concat
1321 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1319 >    private void releasePlock(int ps) {
1320 >        plock = ps;
1321 >        synchronized (this) { notifyAll(); }
1322 >    }
1323 >
1324 >    /**
1325 >     * Performs secondary initialization, called when plock is zero.
1326 >     * Creates workQueue array and sets plock to a valid value.  The
1327 >     * lock body must be exception-free (so no try/finally) so we
1328 >     * optimistically allocate new array outside the lock and throw
1329 >     * away if (very rarely) not needed. (A similar tactic is used in
1330 >     * fullExternalPush.)  Because the plock seq value can eventually
1331 >     * wrap around zero, this method harmlessly fails to reinitialize
1332 >     * if workQueues exists, while still advancing plock.
1333 >     *
1334 >     * Additionally tries to create the first worker.
1335 >     */
1336 >    private void initWorkers() {
1337 >        WorkQueue[] ws, nws; int ps;
1338 >        int p = config & SMASK;        // find power of two table size
1339 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1340 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1341 >        n = (n + 1) << 1;
1342 >        if ((ws = workQueues) == null || ws.length == 0)
1343 >            nws = new WorkQueue[n];
1344 >        else
1345 >            nws = null;
1346 >        if (((ps = plock) & PL_LOCK) != 0 ||
1347 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1348 >            ps = acquirePlock();
1349 >        if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1350 >            workQueues = nws;
1351 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1352 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1353 >            releasePlock(nps);
1354 >        tryAddWorker();
1355 >    }
1356 >
1357 >    /**
1358 >     * Tries to create and start one worker if fewer than target
1359 >     * parallelism level exist. Adjusts counts etc on failure.
1360 >     */
1361 >    private void tryAddWorker() {
1362 >        long c; int u;
1363 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1364 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1365 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1366 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1367 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1368 >                ForkJoinWorkerThreadFactory fac;
1369 >                Throwable ex = null;
1370 >                ForkJoinWorkerThread wt = null;
1371 >                try {
1372 >                    if ((fac = factory) != null &&
1373 >                        (wt = fac.newThread(this)) != null) {
1374 >                        wt.start();
1375 >                        break;
1376 >                    }
1377 >                } catch (Throwable e) {
1378 >                    ex = e;
1379 >                }
1380 >                deregisterWorker(wt, ex);
1381 >                break;
1382 >            }
1383 >        }
1384      }
1385  
1386 +    //  Registering and deregistering workers
1387 +
1388      /**
1389 <     * Callback from ForkJoinWorkerThread constructor to establish and
1390 <     * record its WorkQueue
1389 >     * Callback from ForkJoinWorkerThread to establish and record its
1390 >     * WorkQueue. To avoid scanning bias due to packing entries in
1391 >     * front of the workQueues array, we treat the array as a simple
1392 >     * power-of-two hash table using per-thread seed as hash,
1393 >     * expanding as needed.
1394       *
1395       * @param wt the worker thread
1396 +     * @return the worker's queue
1397       */
1398 <    final void registerWorker(ForkJoinWorkerThread wt) {
1399 <        WorkQueue w = wt.workQueue;
1400 <        ReentrantLock lock = this.lock;
1401 <        lock.lock();
1398 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1399 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1400 >        wt.setDaemon(true);
1401 >        if ((handler = ueh) != null)
1402 >            wt.setUncaughtExceptionHandler(handler);
1403 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1404 >                                          s += SEED_INCREMENT) ||
1405 >                     s == 0); // skip 0
1406 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1407 >        if (((ps = plock) & PL_LOCK) != 0 ||
1408 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1409 >            ps = acquirePlock();
1410 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1411          try {
1412 <            int k = nextPoolIndex;
1413 <            WorkQueue[] ws = workQueues;
1414 <            if (ws != null) {                       // ignore on shutdown
1415 <                int n = ws.length;
1416 <                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1417 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1418 <                        ;                           // workers are at odd indices
1419 <                    if (k >= n)                     // resize
1420 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1421 <                }
1422 <                w.poolIndex = k;
1423 <                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1424 <                ws[k] = w;                          // record worker
1425 <                nextPoolIndex = k + 2;
1426 <                int rs = runState;
1427 <                int m = rs & SMASK;                 // recalculate runState mask
1170 <                if (k > m)
1171 <                    m = (m << 1) + 1;
1172 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1412 >            if ((ws = workQueues) != null) {    // skip if shutting down
1413 >                int n = ws.length, m = n - 1;
1414 >                int r = (s << 1) | 1;           // use odd-numbered indices
1415 >                if (ws[r &= m] != null) {       // collision
1416 >                    int probes = 0;             // step by approx half size
1417 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1418 >                    while (ws[r = (r + step) & m] != null) {
1419 >                        if (++probes >= n) {
1420 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1421 >                            m = n - 1;
1422 >                            probes = 0;
1423 >                        }
1424 >                    }
1425 >                }
1426 >                w.eventCount = w.poolIndex = r; // volatile write orders
1427 >                ws[r] = w;
1428              }
1429          } finally {
1430 <            lock.unlock();
1430 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1431 >                releasePlock(nps);
1432          }
1433 +        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1434 +        return w;
1435      }
1436  
1437      /**
1438 <     * Final callback from terminating worker, as well as failure to
1439 <     * construct or start a worker in addWorker.  Removes record of
1440 <     * worker from array, and adjusts counts. If pool is shutting
1441 <     * down, tries to complete termination.
1438 >     * Final callback from terminating worker, as well as upon failure
1439 >     * to construct or start a worker.  Removes record of worker from
1440 >     * array, and adjusts counts. If pool is shutting down, tries to
1441 >     * complete termination.
1442       *
1443 <     * @param wt the worker thread or null if addWorker failed
1443 >     * @param wt the worker thread or null if construction failed
1444       * @param ex the exception causing failure, or null if none
1445       */
1446      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1447          WorkQueue w = null;
1448          if (wt != null && (w = wt.workQueue) != null) {
1449 <            w.runState = -1;                // ensure runState is set
1450 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1451 <            int idx = w.poolIndex;
1452 <            ReentrantLock lock = this.lock;
1453 <            lock.lock();
1454 <            try {                           // remove record from array
1449 >            int ps;
1450 >            w.qlock = -1;                // ensure set
1451 >            long ns = w.nsteals, sc;     // collect steal count
1452 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1453 >                                               sc = stealCount, sc + ns));
1454 >            if (((ps = plock) & PL_LOCK) != 0 ||
1455 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1456 >                ps = acquirePlock();
1457 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1458 >            try {
1459 >                int idx = w.poolIndex;
1460                  WorkQueue[] ws = workQueues;
1461                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1462 <                    ws[nextPoolIndex = idx] = null;
1462 >                    ws[idx] = null;
1463              } finally {
1464 <                lock.unlock();
1464 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1465 >                    releasePlock(nps);
1466              }
1467          }
1468  
# Line 1208 | Line 1472 | public class ForkJoinPool extends Abstra
1472                                             ((c - TC_UNIT) & TC_MASK) |
1473                                             (c & ~(AC_MASK|TC_MASK)))));
1474  
1475 <        if (!tryTerminate(false) && w != null) {
1475 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1476              w.cancelAll();                  // cancel remaining tasks
1477 <            if (w.array != null)            // suppress signal if never ran
1478 <                signalWork();               // wake up or create replacement
1477 >            int e, u, i, n; WorkQueue[] ws; WorkQueue v; Thread p;
1478 >            while ((u = (int)((c = ctl) >>> 32)) < 0) {
1479 >                if ((e = (int)c) > 0) {     // activate or create replacement
1480 >                    if ((ws = workQueues) != null &&
1481 >                        ws.length > (i = e & SMASK) &&
1482 >                        (v = ws[i]) != null && v.eventCount == (e | INT_SIGN)) {
1483 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1484 >                                   ((long)(u + UAC_UNIT) << 32));
1485 >                        if (U.compareAndSwapLong(this, CTL, c, nc)) {
1486 >                            v.eventCount = (e + E_SEQ) & E_MASK;
1487 >                            if ((p = v.parker) != null)
1488 >                                U.unpark(p);
1489 >                            break;
1490 >                        }
1491 >                    }
1492 >                    else
1493 >                        break;
1494 >                }
1495 >                else {
1496 >                    if ((short)u < 0)
1497 >                        tryAddWorker();
1498 >                    break;
1499 >                }
1500 >            }
1501          }
1502 <
1503 <        if (ex != null)                     // rethrow
1504 <            U.throwException(ex);
1502 >        if (ex == null)                     // help clean refs on way out
1503 >            ForkJoinTask.helpExpungeStaleExceptions();
1504 >        else                                // rethrow
1505 >            ForkJoinTask.rethrow(ex);
1506      }
1507  
1508 <
1222 <    // Maintaining ctl counts
1223 <
1224 <    /**
1225 <     * Increments active count; mainly called upon return from blocking
1226 <     */
1227 <    final void incrementActiveCount() {
1228 <        long c;
1229 <        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1230 <    }
1508 >    // Submissions
1509  
1510      /**
1511 <     * Activates or creates a worker
1512 <     */
1513 <    final void signalWork() {
1514 <        /*
1515 <         * The while condition is true if: (there is are too few total
1516 <         * workers OR there is at least one waiter) AND (there are too
1517 <         * few active workers OR the pool is terminating).  The value
1518 <         * of e distinguishes the remaining cases: zero (no waiters)
1519 <         * for create, negative if terminating (in which case do
1520 <         * nothing), else release a waiter. The secondary checks for
1521 <         * release (non-null array etc) can fail if the pool begins
1522 <         * terminating after the test, and don't impose any added cost
1523 <         * because JVMs must perform null and bounds checks anyway.
1524 <         */
1525 <        long c; int e, u;
1526 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1527 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1528 <            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1529 <            if (e == 0) {                    // add a new worker
1530 <                if (U.compareAndSwapLong
1531 <                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1532 <                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1255 <                    addWorker();
1256 <                    break;
1257 <                }
1258 <            }
1259 <            else if (e > 0 && ws != null &&
1260 <                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1261 <                     (w = ws[i]) != null &&
1262 <                     w.eventCount == (e | INT_SIGN)) {
1263 <                if (U.compareAndSwapLong
1264 <                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1265 <                                    ((long)(u + UAC_UNIT) << 32)))) {
1266 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1267 <                    if ((p = w.parker) != null)
1268 <                        U.unpark(p);         // release a waiting worker
1269 <                    break;
1270 <                }
1511 >     * Unless shutting down, adds the given task to a submission queue
1512 >     * at submitter's current queue index (modulo submission
1513 >     * range). Only the most common path is directly handled in this
1514 >     * method. All others are relayed to fullExternalPush.
1515 >     *
1516 >     * @param task the task. Caller must ensure non-null.
1517 >     */
1518 >    final void externalPush(ForkJoinTask<?> task) {
1519 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1520 >        if ((z = submitters.get()) != null && plock > 0 &&
1521 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1522 >            (q = ws[m & z.seed & SQMASK]) != null &&
1523 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1524 >            int b = q.base, s = q.top, n, an;
1525 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1526 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1527 >                U.putOrderedObject(a, j, task);
1528 >                q.top = s + 1;                     // push on to deque
1529 >                q.qlock = 0;
1530 >                if (n <= 2)
1531 >                    signalWork(q);
1532 >                return;
1533              }
1534 <            else
1273 <                break;
1534 >            q.qlock = 0;
1535          }
1536 +        fullExternalPush(task);
1537      }
1538  
1539      /**
1540 <     * Tries to decrement active count (sometimes implicitly) and
1541 <     * possibly release or create a compensating worker in preparation
1542 <     * for blocking. Fails on contention or termination.
1543 <     *
1544 <     * @return true if the caller can block, else should recheck and retry
1545 <     */
1546 <    final boolean tryCompensate() {
1547 <        WorkQueue[] ws; WorkQueue w; Thread p;
1548 <        int pc = parallelism, e, u, ac, tc, i;
1549 <        long c = ctl;
1550 <
1551 <        if ((e = (int)c) >= 0) {
1552 <            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1553 <                e != 0 && (ws = workQueues) != null &&
1554 <                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1555 <                (w = ws[i]) != null) {
1556 <                if (w.eventCount == (e | INT_SIGN) &&
1557 <                    U.compareAndSwapLong
1558 <                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1559 <                                    (c & (AC_MASK|TC_MASK))))) {
1560 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1561 <                    if ((p = w.parker) != null)
1562 <                        U.unpark(p);
1563 <                    return true;             // release an idle worker
1540 >     * Full version of externalPush. This method is called, among
1541 >     * other times, upon the first submission of the first task to the
1542 >     * pool, so must perform secondary initialization (via
1543 >     * initWorkers). It also detects first submission by an external
1544 >     * thread by looking up its ThreadLocal, and creates a new shared
1545 >     * queue if the one at index if empty or contended. The plock lock
1546 >     * body must be exception-free (so no try/finally) so we
1547 >     * optimistically allocate new queues outside the lock and throw
1548 >     * them away if (very rarely) not needed.
1549 >     */
1550 >    private void fullExternalPush(ForkJoinTask<?> task) {
1551 >        int r = 0; // random index seed
1552 >        for (Submitter z = submitters.get();;) {
1553 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1554 >            if (z == null) {
1555 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1556 >                                        r += SEED_INCREMENT) && r != 0)
1557 >                    submitters.set(z = new Submitter(r));
1558 >            }
1559 >            else if (r == 0) {               // move to a different index
1560 >                r = z.seed;
1561 >                r ^= r << 13;                // same xorshift as WorkQueues
1562 >                r ^= r >>> 17;
1563 >                z.seed = r ^ (r << 5);
1564 >            }
1565 >            else if ((ps = plock) < 0)
1566 >                throw new RejectedExecutionException();
1567 >            else if (ps == 0 || (ws = workQueues) == null ||
1568 >                     (m = ws.length - 1) < 0)
1569 >                initWorkers();
1570 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1571 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1572 >                    ForkJoinTask<?>[] a = q.array;
1573 >                    int s = q.top;
1574 >                    boolean submitted = false;
1575 >                    try {                      // locked version of push
1576 >                        if ((a != null && a.length > s + 1 - q.base) ||
1577 >                            (a = q.growArray()) != null) {   // must presize
1578 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1579 >                            U.putOrderedObject(a, j, task);
1580 >                            q.top = s + 1;
1581 >                            submitted = true;
1582 >                        }
1583 >                    } finally {
1584 >                        q.qlock = 0;  // unlock
1585 >                    }
1586 >                    if (submitted) {
1587 >                        signalWork(q);
1588 >                        return;
1589 >                    }
1590                  }
1591 +                r = 0; // move on failure
1592              }
1593 <            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1594 <                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1595 <                if (U.compareAndSwapLong(this, CTL, c, nc))
1596 <                    return true;             // no compensation needed
1597 <            }
1598 <            else if (tc + pc < MAX_ID) {
1599 <                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1600 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1601 <                    addWorker();
1602 <                    return true;             // create replacement
1314 <                }
1593 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1594 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1595 >                if (((ps = plock) & PL_LOCK) != 0 ||
1596 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1597 >                    ps = acquirePlock();
1598 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1599 >                    ws[k] = q;
1600 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1601 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1602 >                    releasePlock(nps);
1603              }
1604 +            else
1605 +                r = 0; // try elsewhere while lock held
1606          }
1317        return false;
1607      }
1608  
1609 <    // Submissions
1609 >    // Maintaining ctl counts
1610  
1611      /**
1612 <     * Unless shutting down, adds the given task to some submission
1324 <     * queue; using a randomly chosen queue index if the caller is a
1325 <     * ForkJoinWorkerThread, else one based on caller thread's hash
1326 <     * code. If no queue exists at the index, one is created.  If the
1327 <     * queue is busy, another is chosen by sweeping through the queues
1328 <     * array.
1612 >     * Increments active count; mainly called upon return from blocking.
1613       */
1614 <    private void doSubmit(ForkJoinTask<?> task) {
1615 <        if (task == null)
1616 <            throw new NullPointerException();
1333 <        Thread t = Thread.currentThread();
1334 <        int r = ((t instanceof ForkJoinWorkerThread) ?
1335 <                 ((ForkJoinWorkerThread)t).workQueue.nextSeed() : hashThread(t));
1336 <        for (;;) {
1337 <            int rs = runState, m = rs & SMASK;
1338 <            int j = r &= (m & ~1);                      // even numbered queues
1339 <            WorkQueue[] ws = workQueues;
1340 <            if (rs < 0 || ws == null)
1341 <                throw new RejectedExecutionException(); // shutting down
1342 <            if (ws.length > m) {                        // consistency check
1343 <                for (WorkQueue q;;) {                   // circular sweep
1344 <                    if (((q = ws[j]) != null ||
1345 <                         (q = tryAddSharedQueue(j)) != null) &&
1346 <                        q.trySharedPush(task)) {
1347 <                        signalWork();
1348 <                        return;
1349 <                    }
1350 <                    if ((j = (j + 2) & m) == r) {
1351 <                        Thread.yield();                 // all queues busy
1352 <                        break;
1353 <                    }
1354 <                }
1355 <            }
1356 <        }
1614 >    final void incrementActiveCount() {
1615 >        long c;
1616 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1617      }
1618  
1619      /**
1620 <     * Tries to add and register a new queue at the given index.
1620 >     * Tries to create or activate a worker if too few are active.
1621       *
1622 <     * @param idx the workQueues array index to register the queue
1623 <     * @return the queue, or null if could not add because could
1624 <     * not acquire lock or idx is unusable
1625 <     */
1626 <    private WorkQueue tryAddSharedQueue(int idx) {
1627 <        WorkQueue q = null;
1628 <        ReentrantLock lock = this.lock;
1629 <        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1630 <            // create queue outside of lock but only if apparently free
1631 <            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1632 <            if (lock.tryLock()) {
1633 <                try {
1634 <                    WorkQueue[] ws = workQueues;
1635 <                    if (ws != null && idx < ws.length) {
1636 <                        if ((q = ws[idx]) == null) {
1637 <                            int rs;         // update runState seq
1638 <                            ws[idx] = q = nq;
1379 <                            runState = (((rs = runState) & SHUTDOWN) |
1380 <                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1381 <                        }
1622 >     * @param q the (non-null) queue holding tasks to be signalled
1623 >     */
1624 >    final void signalWork(WorkQueue q) {
1625 >        int hint = q.poolIndex;
1626 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1627 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1628 >            if ((e = (int)c) > 0) {
1629 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1630 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1631 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1632 >                               ((long)(u + UAC_UNIT) << 32));
1633 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1634 >                        w.hint = hint;
1635 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1636 >                        if ((p = w.parker) != null)
1637 >                            U.unpark(p);
1638 >                        break;
1639                      }
1640 <                } finally {
1641 <                    lock.unlock();
1640 >                    if (q.top - q.base <= 0)
1641 >                        break;
1642                  }
1643 +                else
1644 +                    break;
1645 +            }
1646 +            else {
1647 +                if ((short)u < 0)
1648 +                    tryAddWorker();
1649 +                break;
1650              }
1651          }
1388        return q;
1652      }
1653  
1654      // Scanning for tasks
1655  
1656      /**
1657 +     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1658 +     */
1659 +    final void runWorker(WorkQueue w) {
1660 +        w.growArray(); // allocate queue
1661 +        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1662 +    }
1663 +
1664 +    /**
1665       * Scans for and, if found, returns one task, else possibly
1666       * inactivates the worker. This method operates on single reads of
1667 <     * volatile state and is designed to be re-invoked continuously in
1668 <     * part because it returns upon detecting inconsistencies,
1667 >     * volatile state and is designed to be re-invoked continuously,
1668 >     * in part because it returns upon detecting inconsistencies,
1669       * contention, or state changes that indicate possible success on
1670       * re-invocation.
1671       *
1672 <     * The scan searches for tasks across queues, randomly selecting
1673 <     * the first #queues probes, favoring steals 2:1 over submissions
1674 <     * (by exploiting even/odd indexing), and then performing a
1675 <     * circular sweep of all queues.  The scan terminates upon either
1676 <     * finding a non-empty queue, or completing a full sweep. If the
1677 <     * worker is not inactivated, it takes and returns a task from
1678 <     * this queue.  On failure to find a task, we take one of the
1679 <     * following actions, after which the caller will retry calling
1680 <     * this method unless terminated.
1681 <     *
1682 <     * * If not a complete sweep, try to release a waiting worker.  If
1683 <     * the scan terminated because the worker is inactivated, then the
1413 <     * released worker will often be the calling worker, and it can
1414 <     * succeed obtaining a task on the next call. Or maybe it is
1415 <     * another worker, but with same net effect. Releasing in other
1416 <     * cases as well ensures that we have enough workers running.
1417 <     *
1418 <     * * If the caller has run a task since the the last empty scan,
1419 <     * return (to allow rescan) if other workers are not also yet
1420 <     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1421 <     * ensure eventual inactivation, and occasional calls to
1422 <     * Thread.yield to help avoid interference with more useful
1423 <     * activities on the system.
1672 >     * The scan searches for tasks across queues (starting at a random
1673 >     * index, and relying on registerWorker to irregularly scatter
1674 >     * them within array to avoid bias), checking each at least twice.
1675 >     * The scan terminates upon either finding a non-empty queue, or
1676 >     * completing the sweep. If the worker is not inactivated, it
1677 >     * takes and returns a task from this queue. Otherwise, if not
1678 >     * activated, it signals workers (that may include itself) and
1679 >     * returns so caller can retry. Also returns for true if the
1680 >     * worker array may have changed during an empty scan.  On failure
1681 >     * to find a task, we take one of the following actions, after
1682 >     * which the caller will retry calling this method unless
1683 >     * terminated.
1684       *
1685 <     * * If pool is terminating, terminate the worker
1685 >     * * If pool is terminating, terminate the worker.
1686       *
1687       * * If not already enqueued, try to inactivate and enqueue the
1688 <     * worker on wait queue.
1689 <     *
1690 <     * * If already enqueued and none of the above apply, either park
1691 <     * awaiting signal, or if this is the most recent waiter and pool
1692 <     * is quiescent, relay to idleAwaitWork to check for termination
1693 <     * and possibly shrink pool.
1688 >     * worker on wait queue. Or, if inactivating has caused the pool
1689 >     * to be quiescent, relay to idleAwaitWork to check for
1690 >     * termination and possibly shrink pool.
1691 >     *
1692 >     * * If already enqueued and none of the above apply, possibly
1693 >     * (with 1/2 probability) park awaiting signal, else lingering to
1694 >     * help scan and signal.
1695       *
1696       * @param w the worker (via its WorkQueue)
1697 <     * @return a task or null of none found
1697 >     * @return a task or null if none found
1698       */
1699      private final ForkJoinTask<?> scan(WorkQueue w) {
1700 <        boolean swept = false;                 // true after full empty scan
1701 <        WorkQueue[] ws;                        // volatile read order matters
1702 <        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1703 <        int rs = runState, m = rs & SMASK;
1704 <        if ((ws = workQueues) != null && ws.length > m) {
1705 <            ForkJoinTask<?> task = null;
1706 <            for (int k = 0, j = -2 - m; ; ++j) {
1707 <                WorkQueue q; int b;
1708 <                if (j < 0) {                    // random probes while j negative
1709 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1710 <                }                               // worker (not submit) for odd j
1711 <                else                            // cyclic scan when j >= 0
1712 <                    k += (m >>> 1) | 1;         // step by half to reduce bias
1713 <
1714 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1715 <                    if (ec >= 0)
1716 <                        task = q.pollAt(b);     // steal
1717 <                    break;
1700 >        WorkQueue[] ws; int m;
1701 >        int ps = plock;                          // read plock before ws
1702 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1703 >            int ec = w.eventCount;               // ec is negative if inactive
1704 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1705 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1706 >            do {
1707 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1708 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1709 >                    (a = q.array) != null) {     // probably nonempty
1710 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1711 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1712 >                        U.getObjectVolatile(a, i);
1713 >                    if (q.base == b && ec >= 0 && t != null &&
1714 >                        U.compareAndSwapObject(a, i, t, null)) {
1715 >                        if ((q.base = b + 1) - q.top < 0)
1716 >                            signalWork(q);
1717 >                        return t;                // taken
1718 >                    }
1719 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1720 >                        w.hint = (r + j) & m;    // help signal below
1721 >                        break;                   // cannot take
1722 >                    }
1723                  }
1724 <                else if (j > m) {
1725 <                    if (rs == runState)        // staleness check
1726 <                        swept = true;
1727 <                    break;
1724 >            } while (--j >= 0);
1725 >
1726 >            long c, sc; int e, ns, h;
1727 >            if ((h = w.hint) < 0) {
1728 >                if ((ns = w.nsteals) != 0) {
1729 >                    if (U.compareAndSwapLong(this, STEALCOUNT,
1730 >                                             sc = stealCount, sc + ns))
1731 >                        w.nsteals = 0;           // collect steals
1732 >                }
1733 >                else if (plock != ps)            // consistency check
1734 >                    ;                            // skip
1735 >                else if ((e = (int)(c = ctl)) < 0)
1736 >                    w.qlock = -1;                // pool is terminating
1737 >                else if (ec >= 0) {              // try to enqueue/inactivate
1738 >                    long nc = ((long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1739 >                    w.nextWait = e;              // link and mark inactive
1740 >                    w.eventCount = ec | INT_SIGN;
1741 >                    if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1742 >                        w.eventCount = ec;       // unmark on CAS failure
1743 >                    else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1744 >                        idleAwaitWork(w, nc, c);
1745 >                }
1746 >                else if (w.eventCount < 0) {     // block
1747 >                    Thread wt = Thread.currentThread();
1748 >                    Thread.interrupted();        // clear status
1749 >                    U.putObject(wt, PARKBLOCKER, this);
1750 >                    w.parker = wt;               // emulate LockSupport.park
1751 >                    if (w.eventCount < 0)        // recheck
1752 >                        U.park(false, 0L);
1753 >                    w.parker = null;
1754 >                    U.putObject(wt, PARKBLOCKER, null);
1755                  }
1756              }
1757 <            w.seed = r;                        // save seed for next scan
1758 <            if (task != null)
1466 <                return task;
1467 <        }
1468 <
1469 <        // Decode ctl on empty scan
1470 <        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1471 <        if (!swept) {                          // try to release a waiter
1472 <            WorkQueue v; Thread p;
1473 <            if (e > 0 && a < 0 && ws != null &&
1474 <                (v = ws[((~e << 1) | 1) & m]) != null &&
1475 <                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1476 <                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1477 <                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1478 <                v.eventCount = (e + E_SEQ) & E_MASK;
1479 <                if ((p = v.parker) != null)
1480 <                    U.unpark(p);
1481 <            }
1482 <        }
1483 <        else if ((nr = w.rescans) > 0) {       // continue rescanning
1484 <            int ac = a + parallelism;
1485 <            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1486 <                w.eventCount == ec)
1487 <                Thread.yield();                // 1 bit randomness for yield call
1488 <        }
1489 <        else if (e < 0)                        // pool is terminating
1490 <            w.runState = -1;
1491 <        else if (ec >= 0) {                    // try to enqueue
1492 <            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1493 <            w.nextWait = e;
1494 <            w.eventCount = ec | INT_SIGN;      // mark as inactive
1495 <            if (!U.compareAndSwapLong(this, CTL, c, nc))
1496 <                w.eventCount = ec;             // back out on CAS failure
1497 <            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1498 <                if (a <= 0)                    // ... unless too many active
1499 <                    w.rescans = a + parallelism;
1500 <                w.nsteals = 0;
1501 <                w.totalSteals += ns;
1502 <            }
1503 <        }
1504 <        else{                                  // already queued
1505 <            if (parallelism == -a)
1506 <                idleAwaitWork(w);              // quiescent
1507 <            if (w.eventCount == ec) {
1508 <                Thread.interrupted();          // clear status
1509 <                ForkJoinWorkerThread wt = w.owner;
1510 <                U.putObject(wt, PARKBLOCKER, this);
1511 <                w.parker = wt;                 // emulate LockSupport.park
1512 <                if (w.eventCount == ec)        // recheck
1513 <                    U.park(false, 0L);         // block
1514 <                w.parker = null;
1515 <                U.putObject(wt, PARKBLOCKER, null);
1516 <            }
1757 >            if (h >= 0 || w.hint >= 0)           // signal others before retry
1758 >                helpSignalHint(w);
1759          }
1760          return null;
1761      }
1762  
1763      /**
1764 <     * If inactivating worker w has caused pool to become quiescent,
1765 <     * check for pool termination, and, so long as this is not the
1766 <     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1767 <     * timeout, if ctl has not changed, terminate the worker, which
1768 <     * will in turn wake up another worker to possibly repeat this
1769 <     * process.
1764 >     * If inactivating worker w has caused the pool to become
1765 >     * quiescent, checks for pool termination, and, so long as this is
1766 >     * not the only worker, waits for event for up to a given
1767 >     * duration.  On timeout, if ctl has not changed, terminates the
1768 >     * worker, which will in turn wake up another worker to possibly
1769 >     * repeat this process.
1770       *
1771       * @param w the calling worker
1772 +     * @param currentCtl the ctl value triggering possible quiescence
1773 +     * @param prevCtl the ctl value to restore if thread is terminated
1774       */
1775 <    private void idleAwaitWork(WorkQueue w) {
1776 <        long c; int nw, ec;
1777 <        if (!tryTerminate(false) &&
1778 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1779 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1780 <            (nw = w.nextWait) != 0) {
1781 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1782 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1539 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1540 <            ForkJoinWorkerThread wt = w.owner;
1541 <            while (ctl == c) {
1542 <                long startTime = System.nanoTime();
1775 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1776 >        if (w != null && w.eventCount < 0 &&
1777 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1778 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1779 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1780 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1781 >            Thread wt = Thread.currentThread();
1782 >            while (ctl == currentCtl) {
1783                  Thread.interrupted();  // timed variant of version in scan()
1784                  U.putObject(wt, PARKBLOCKER, this);
1785                  w.parker = wt;
1786 <                if (ctl == c)
1787 <                    U.park(false, SHRINK_RATE);
1786 >                if (ctl == currentCtl)
1787 >                    U.park(false, parkTime);
1788                  w.parker = null;
1789                  U.putObject(wt, PARKBLOCKER, null);
1790 <                if (ctl != c)
1790 >                if (ctl != currentCtl)
1791                      break;
1792 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1793 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1794 <                    w.runState = -1;          // shrink
1795 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1792 >                if (deadline - System.nanoTime() <= 0L &&
1793 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1794 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1795 >                    w.qlock = -1;   // shrink
1796                      break;
1797                  }
1798              }
# Line 1560 | Line 1800 | public class ForkJoinPool extends Abstra
1800      }
1801  
1802      /**
1803 +     * Scans through queues looking for work while joining a task; if
1804 +     * any present, signals. May return early if more signalling is
1805 +     * detectably unneeded.
1806 +     *
1807 +     * @param task return early if done
1808 +     * @param origin an index to start scan
1809 +     */
1810 +    private void helpSignal(ForkJoinTask<?> task, int origin) {
1811 +        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1812 +        if (task != null && task.status >= 0 &&
1813 +            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1814 +            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1815 +            outer: for (int k = origin, j = m; j >= 0; --j) {
1816 +                WorkQueue q = ws[k++ & m];
1817 +                for (int n = m;;) { // limit to at most m signals
1818 +                    if (task.status < 0)
1819 +                        break outer;
1820 +                    if (q == null ||
1821 +                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1822 +                        break;
1823 +                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1824 +                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1825 +                        (w = ws[i]) == null)
1826 +                        break outer;
1827 +                    long nc = (((long)(w.nextWait & E_MASK)) |
1828 +                               ((long)(u + UAC_UNIT) << 32));
1829 +                    if (w.eventCount == (e | INT_SIGN) &&
1830 +                        U.compareAndSwapLong(this, CTL, c, nc)) {
1831 +                        w.eventCount = (e + E_SEQ) & E_MASK;
1832 +                        if ((p = w.parker) != null)
1833 +                            U.unpark(p);
1834 +                        if (--n <= 0)
1835 +                            break;
1836 +                    }
1837 +                }
1838 +            }
1839 +        }
1840 +    }
1841 +
1842 +    /**
1843 +     * Signals other workers if tasks are present in hinted queue.
1844 +     *
1845 +     * @param caller the worker with the hint
1846 +     */
1847 +    private void helpSignalHint(WorkQueue caller) {
1848 +        WorkQueue[] ws; WorkQueue q, w; Thread p; long c; int h, m, u, e, i, s;
1849 +        if (caller != null && (h = caller.hint) >= 0) {
1850 +            caller.hint = -1;
1851 +            if ((u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1852 +                (ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1853 +                (q = ws[h & m]) != null) {
1854 +                for (int n = (m >>> 2) | 1;;) { // limit signals
1855 +                    int idleCount = (caller.eventCount < 0) ? 0 : -1;
1856 +                    if (((s = idleCount - q.base + q.top) <= n &&
1857 +                         (n = s) <= 0) ||
1858 +                        (u = (int)((c = ctl) >>> 32)) >= 0 ||
1859 +                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1860 +                        (w = ws[i]) == null)
1861 +                        break;
1862 +                    long nc = (((long)(w.nextWait & E_MASK)) |
1863 +                               ((long)(u + UAC_UNIT) << 32));
1864 +                    if (w.eventCount == (e | INT_SIGN) &&
1865 +                        U.compareAndSwapLong(this, CTL, c, nc)) {
1866 +                        w.hint = h;
1867 +                        w.eventCount = (e + E_SEQ) & E_MASK;
1868 +                        if ((p = w.parker) != null)
1869 +                            U.unpark(p);
1870 +                        if (--n <= 0)
1871 +                            break;
1872 +                    }
1873 +                }
1874 +            }
1875 +        }
1876 +    }
1877 +
1878 +    /**
1879       * Tries to locate and execute tasks for a stealer of the given
1880       * task, or in turn one of its stealers, Traces currentSteal ->
1881       * currentJoin links looking for a thread working on a descendant
# Line 1570 | Line 1886 | public class ForkJoinPool extends Abstra
1886       * leaves hints in workers to speed up subsequent calls. The
1887       * implementation is very branchy to cope with potential
1888       * inconsistencies or loops encountering chains that are stale,
1889 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1574 <     * of these cases are dealt with by just retrying by caller.
1889 >     * unknown, or so long that they are likely cyclic.
1890       *
1891       * @param joiner the joining worker
1892       * @param task the task to join
1893 <     * @return true if found or ran a task (and so is immediately retryable)
1893 >     * @return 0 if no progress can be made, negative if task
1894 >     * known complete, else positive
1895       */
1896 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1897 <        ForkJoinTask<?> subtask;    // current target
1898 <        boolean progress = false;
1899 <        int depth = 0;              // current chain depth
1900 <        int m = runState & SMASK;
1901 <        WorkQueue[] ws = workQueues;
1902 <
1903 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1904 <            outer:for (WorkQueue j = joiner;;) {
1905 <                // Try to find the stealer of subtask, by first using hint
1906 <                WorkQueue stealer = null;
1907 <                WorkQueue v = ws[j.stealHint & m];
1908 <                if (v != null && v.currentSteal == subtask)
1909 <                    stealer = v;
1910 <                else {
1911 <                    for (int i = 1; i <= m; i += 2) {
1912 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1913 <                            stealer = v;
1914 <                            j.stealHint = i; // save hint
1915 <                            break;
1896 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1897 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1898 >        if (joiner != null && task != null) {       // hoist null checks
1899 >            restart: for (;;) {
1900 >                ForkJoinTask<?> subtask = task;     // current target
1901 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1902 >                    WorkQueue[] ws; int m, s, h;
1903 >                    if ((s = task.status) < 0) {
1904 >                        stat = s;
1905 >                        break restart;
1906 >                    }
1907 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1908 >                        break restart;              // shutting down
1909 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1910 >                        v.currentSteal != subtask) {
1911 >                        for (int origin = h;;) {    // find stealer
1912 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1913 >                                (subtask.status < 0 || j.currentJoin != subtask))
1914 >                                continue restart;   // occasional staleness check
1915 >                            if ((v = ws[h]) != null &&
1916 >                                v.currentSteal == subtask) {
1917 >                                j.hint = h;        // save hint
1918 >                                break;
1919 >                            }
1920 >                            if (h == origin)
1921 >                                break restart;      // cannot find stealer
1922                          }
1923                      }
1924 <                    if (stealer == null)
1924 >                    for (;;) { // help stealer or descend to its stealer
1925 >                        ForkJoinTask[] a;  int b;
1926 >                        if (subtask.status < 0)     // surround probes with
1927 >                            continue restart;       //   consistency checks
1928 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1929 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1930 >                            ForkJoinTask<?> t =
1931 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1932 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1933 >                                v.currentSteal != subtask)
1934 >                                continue restart;   // stale
1935 >                            stat = 1;               // apparent progress
1936 >                            if (t != null && v.base == b &&
1937 >                                U.compareAndSwapObject(a, i, t, null)) {
1938 >                                v.base = b + 1;     // help stealer
1939 >                                joiner.runSubtask(t);
1940 >                            }
1941 >                            else if (v.base == b && ++steps == MAX_HELP)
1942 >                                break restart;      // v apparently stalled
1943 >                        }
1944 >                        else {                      // empty -- try to descend
1945 >                            ForkJoinTask<?> next = v.currentJoin;
1946 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1947 >                                v.currentSteal != subtask)
1948 >                                continue restart;   // stale
1949 >                            else if (next == null || ++steps == MAX_HELP)
1950 >                                break restart;      // dead-end or maybe cyclic
1951 >                            else {
1952 >                                subtask = next;
1953 >                                j = v;
1954 >                                break;
1955 >                            }
1956 >                        }
1957 >                    }
1958 >                }
1959 >            }
1960 >        }
1961 >        return stat;
1962 >    }
1963 >
1964 >    /**
1965 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1966 >     * and run tasks within the target's computation.
1967 >     *
1968 >     * @param task the task to join
1969 >     * @param mode if shared, exit upon completing any task
1970 >     * if all workers are active
1971 >     *
1972 >     */
1973 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1974 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1975 >        if (task != null && (ws = workQueues) != null &&
1976 >            (m = ws.length - 1) >= 0) {
1977 >            for (int j = 1, origin = j;;) {
1978 >                if ((s = task.status) < 0)
1979 >                    return s;
1980 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1981 >                    origin = j;
1982 >                    if (mode == SHARED_QUEUE &&
1983 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1984                          break;
1985                  }
1986 +                else if ((j = (j + 2) & m) == origin)
1987 +                    break;
1988 +            }
1989 +        }
1990 +        return 0;
1991 +    }
1992  
1993 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1994 <                    ForkJoinTask<?> t; int b;
1995 <                    if (task.status < 0)
1996 <                        break outer;
1997 <                    if ((b = q.base) - q.top < 0) {
1998 <                        progress = true;
1999 <                        if (subtask.status < 0)
2000 <                            break outer;               // stale
2001 <                        if ((t = q.pollAt(b)) != null) {
2002 <                            stealer.stealHint = joiner.poolIndex;
2003 <                            joiner.runSubtask(t);
1993 >    /**
1994 >     * Tries to decrement active count (sometimes implicitly) and
1995 >     * possibly release or create a compensating worker in preparation
1996 >     * for blocking. Fails on contention or termination. Otherwise,
1997 >     * adds a new thread if no idle workers are available and pool
1998 >     * may become starved.
1999 >     */
2000 >    final boolean tryCompensate() {
2001 >        int pc = config & SMASK, e, i, tc; long c;
2002 >        WorkQueue[] ws; WorkQueue w; Thread p;
2003 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
2004 >            if (e != 0 && (i = e & SMASK) < ws.length &&
2005 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
2006 >                long nc = ((long)(w.nextWait & E_MASK) |
2007 >                           (c & (AC_MASK|TC_MASK)));
2008 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
2009 >                    w.eventCount = (e + E_SEQ) & E_MASK;
2010 >                    if ((p = w.parker) != null)
2011 >                        U.unpark(p);
2012 >                    return true;   // replace with idle worker
2013 >                }
2014 >            }
2015 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
2016 >                     (int)(c >> AC_SHIFT) + pc > 1) {
2017 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2018 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2019 >                    return true;   // no compensation
2020 >            }
2021 >            else if (tc + pc < MAX_CAP) {
2022 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2023 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
2024 >                    ForkJoinWorkerThreadFactory fac;
2025 >                    Throwable ex = null;
2026 >                    ForkJoinWorkerThread wt = null;
2027 >                    try {
2028 >                        if ((fac = factory) != null &&
2029 >                            (wt = fac.newThread(this)) != null) {
2030 >                            wt.start();
2031 >                            return true;
2032                          }
2033 +                    } catch (Throwable rex) {
2034 +                        ex = rex;
2035                      }
2036 <                    else { // empty - try to descend to find stealer's stealer
1620 <                        ForkJoinTask<?> next = stealer.currentJoin;
1621 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1622 <                            next == null || next == subtask)
1623 <                            break outer;  // max depth, stale, dead-end, cyclic
1624 <                        subtask = next;
1625 <                        j = stealer;
1626 <                        break;
1627 <                    }
2036 >                    deregisterWorker(wt, ex); // clean up and return false
2037                  }
2038              }
2039          }
2040 <        return progress;
2040 >        return false;
2041      }
2042  
2043      /**
2044 <     * If task is at base of some steal queue, steals and executes it.
2044 >     * Helps and/or blocks until the given task is done.
2045       *
2046       * @param joiner the joining worker
2047       * @param task the task
2048 +     * @return task status on exit
2049       */
2050 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
2051 <        WorkQueue[] ws;
2052 <        int m = runState & SMASK;
2053 <        if ((ws = workQueues) != null && ws.length > m) {
2054 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
2055 <                WorkQueue q = ws[j];
2056 <                if (q != null && q.pollFor(task)) {
2057 <                    joiner.runSubtask(task);
2058 <                    break;
2050 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2051 >        int s = 0;
2052 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2053 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2054 >            joiner.currentJoin = task;
2055 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2056 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2057 >            if (s >= 0 && (s = task.status) >= 0) {
2058 >                helpSignal(task, joiner.poolIndex);
2059 >                if ((s = task.status) >= 0 &&
2060 >                    (task instanceof CountedCompleter))
2061 >                    s = helpComplete(task, LIFO_QUEUE);
2062 >            }
2063 >            while (s >= 0 && (s = task.status) >= 0) {
2064 >                if ((!joiner.isEmpty() ||           // try helping
2065 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2066 >                    (s = task.status) >= 0) {
2067 >                    helpSignal(task, joiner.poolIndex);
2068 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2069 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2070 >                            synchronized (task) {
2071 >                                if (task.status >= 0) {
2072 >                                    try {                // see ForkJoinTask
2073 >                                        task.wait();     //  for explanation
2074 >                                    } catch (InterruptedException ie) {
2075 >                                    }
2076 >                                }
2077 >                                else
2078 >                                    task.notifyAll();
2079 >                            }
2080 >                        }
2081 >                        long c;                          // re-activate
2082 >                        do {} while (!U.compareAndSwapLong
2083 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2084 >                    }
2085                  }
2086              }
2087 +            joiner.currentJoin = prevJoin;
2088          }
2089 +        return s;
2090      }
2091  
2092      /**
2093 <     * Returns a non-empty steal queue, if one is found during a random,
2094 <     * then cyclic scan, else null.  This method must be retried by
2095 <     * caller if, by the time it tries to use the queue, it is empty.
2093 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2094 >     * to help join only while there is continuous progress. (Caller
2095 >     * will then enter a timed wait.)
2096 >     *
2097 >     * @param joiner the joining worker
2098 >     * @param task the task
2099       */
2100 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2101 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
2100 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2101 >        int s;
2102 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2103 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2104 >            joiner.currentJoin = task;
2105 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2106 >                         joiner.tryRemoveAndExec(task));
2107 >            if (s >= 0 && (s = task.status) >= 0) {
2108 >                helpSignal(task, joiner.poolIndex);
2109 >                if ((s = task.status) >= 0 &&
2110 >                    (task instanceof CountedCompleter))
2111 >                    s = helpComplete(task, LIFO_QUEUE);
2112 >            }
2113 >            if (s >= 0 && joiner.isEmpty()) {
2114 >                do {} while (task.status >= 0 &&
2115 >                             tryHelpStealer(joiner, task) > 0);
2116 >            }
2117 >            joiner.currentJoin = prevJoin;
2118 >        }
2119 >    }
2120 >
2121 >    /**
2122 >     * Returns a (probably) non-empty steal queue, if one is found
2123 >     * during a random, then cyclic scan, else null.  This method must
2124 >     * be retried by caller if, by the time it tries to use the queue,
2125 >     * it is empty.
2126 >     * @param r a (random) seed for scanning
2127 >     */
2128 >    private WorkQueue findNonEmptyStealQueue(int r) {
2129          for (WorkQueue[] ws;;) {
2130 <            int m = runState & SMASK;
2131 <            if ((ws = workQueues) == null)
2130 >            int ps = plock, m, n;
2131 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2132                  return null;
2133 <            if (ws.length > m) {
2134 <                WorkQueue q;
2135 <                for (int n = m << 2, k = r, j = -n;;) {
2136 <                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
2137 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
2138 <                        w.seed = r;
2139 <                        return q;
2140 <                    }
2141 <                    else if (j > n)
2133 >            for (int j = (m + 1) << 2; ;) {
2134 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2135 >                if (q != null && (n = q.base - q.top) < 0) {
2136 >                    if (n < -1)
2137 >                        signalWork(q);
2138 >                    return q;
2139 >                }
2140 >                else if (--j < 0) {
2141 >                    if (plock == ps)
2142                          return null;
2143 <                    else
1676 <                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1677 <
2143 >                    break;
2144                  }
2145              }
2146          }
# Line 1688 | Line 2154 | public class ForkJoinPool extends Abstra
2154       */
2155      final void helpQuiescePool(WorkQueue w) {
2156          for (boolean active = true;;) {
2157 <            w.runLocalTasks();      // exhaust local queue
2158 <            WorkQueue q = findNonEmptyStealQueue(w);
2157 >            ForkJoinTask<?> localTask; // exhaust local queue
2158 >            while ((localTask = w.nextLocalTask()) != null)
2159 >                localTask.doExec();
2160 >            // Similar to loop in scan(), but ignoring submissions
2161 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2162              if (q != null) {
2163 <                ForkJoinTask<?> t;
2163 >                ForkJoinTask<?> t; int b;
2164                  if (!active) {      // re-establish active count
2165                      long c;
2166                      active = true;
2167                      do {} while (!U.compareAndSwapLong
2168                                   (this, CTL, c = ctl, c + AC_UNIT));
2169                  }
2170 <                if ((t = q.poll()) != null)
2170 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2171                      w.runSubtask(t);
2172              }
2173              else {
# Line 1710 | Line 2179 | public class ForkJoinPool extends Abstra
2179                  }
2180                  else
2181                      c = ctl;        // re-increment on exit
2182 <                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2182 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2183                      do {} while (!U.compareAndSwapLong
2184                                   (this, CTL, c = ctl, c + AC_UNIT));
2185                      break;
# Line 1720 | Line 2189 | public class ForkJoinPool extends Abstra
2189      }
2190  
2191      /**
2192 <     * Gets and removes a local or stolen task for the given worker
2192 >     * Gets and removes a local or stolen task for the given worker.
2193       *
2194       * @return a task, if available
2195       */
2196      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2197          for (ForkJoinTask<?> t;;) {
2198 <            WorkQueue q;
2198 >            WorkQueue q; int b;
2199              if ((t = w.nextLocalTask()) != null)
2200                  return t;
2201 <            if ((q = findNonEmptyStealQueue(w)) == null)
2201 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2202                  return null;
2203 <            if ((t = q.poll()) != null)
2203 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2204                  return t;
2205          }
2206      }
2207  
2208      /**
2209 <     * Returns the approximate (non-atomic) number of idle threads per
2210 <     * active thread to offset steal queue size for method
2211 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2212 <     */
2213 <    final int idlePerActive() {
2214 <        // Approximate at powers of two for small values, saturate past 4
2215 <        int p = parallelism;
2216 <        int a = p + (int)(ctl >> AC_SHIFT);
2217 <        return (a > (p >>>= 1) ? 0 :
2218 <                a > (p >>>= 1) ? 1 :
2219 <                a > (p >>>= 1) ? 2 :
2220 <                a > (p >>>= 1) ? 4 :
2221 <                8);
2222 <    }
2223 <
2224 <    // Termination
2225 <
2226 <    /**
2227 <     * Sets SHUTDOWN bit of runState under lock
2228 <     */
2229 <    private void enableShutdown() {
2230 <        ReentrantLock lock = this.lock;
2231 <        if (runState >= 0) {
2232 <            lock.lock();                       // don't need try/finally
2233 <            runState |= SHUTDOWN;
2234 <            lock.unlock();
2209 >     * Returns a cheap heuristic guide for task partitioning when
2210 >     * programmers, frameworks, tools, or languages have little or no
2211 >     * idea about task granularity.  In essence by offering this
2212 >     * method, we ask users only about tradeoffs in overhead vs
2213 >     * expected throughput and its variance, rather than how finely to
2214 >     * partition tasks.
2215 >     *
2216 >     * In a steady state strict (tree-structured) computation, each
2217 >     * thread makes available for stealing enough tasks for other
2218 >     * threads to remain active. Inductively, if all threads play by
2219 >     * the same rules, each thread should make available only a
2220 >     * constant number of tasks.
2221 >     *
2222 >     * The minimum useful constant is just 1. But using a value of 1
2223 >     * would require immediate replenishment upon each steal to
2224 >     * maintain enough tasks, which is infeasible.  Further,
2225 >     * partitionings/granularities of offered tasks should minimize
2226 >     * steal rates, which in general means that threads nearer the top
2227 >     * of computation tree should generate more than those nearer the
2228 >     * bottom. In perfect steady state, each thread is at
2229 >     * approximately the same level of computation tree. However,
2230 >     * producing extra tasks amortizes the uncertainty of progress and
2231 >     * diffusion assumptions.
2232 >     *
2233 >     * So, users will want to use values larger, but not much larger
2234 >     * than 1 to both smooth over transient shortages and hedge
2235 >     * against uneven progress; as traded off against the cost of
2236 >     * extra task overhead. We leave the user to pick a threshold
2237 >     * value to compare with the results of this call to guide
2238 >     * decisions, but recommend values such as 3.
2239 >     *
2240 >     * When all threads are active, it is on average OK to estimate
2241 >     * surplus strictly locally. In steady-state, if one thread is
2242 >     * maintaining say 2 surplus tasks, then so are others. So we can
2243 >     * just use estimated queue length.  However, this strategy alone
2244 >     * leads to serious mis-estimates in some non-steady-state
2245 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2246 >     * many of these by further considering the number of "idle"
2247 >     * threads, that are known to have zero queued tasks, so
2248 >     * compensate by a factor of (#idle/#active) threads.
2249 >     *
2250 >     * Note: The approximation of #busy workers as #active workers is
2251 >     * not very good under current signalling scheme, and should be
2252 >     * improved.
2253 >     */
2254 >    static int getSurplusQueuedTaskCount() {
2255 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2256 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2257 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2258 >            int n = (q = wt.workQueue).top - q.base;
2259 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2260 >            return n - (a > (p >>>= 1) ? 0 :
2261 >                        a > (p >>>= 1) ? 1 :
2262 >                        a > (p >>>= 1) ? 2 :
2263 >                        a > (p >>>= 1) ? 4 :
2264 >                        8);
2265          }
2266 +        return 0;
2267      }
2268  
2269 +    //  Termination
2270 +
2271      /**
2272 <     * Possibly initiates and/or completes termination.  Upon
2273 <     * termination, cancels all queued tasks and then
2272 >     * Possibly initiates and/or completes termination.  The caller
2273 >     * triggering termination runs three passes through workQueues:
2274 >     * (0) Setting termination status, followed by wakeups of queued
2275 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2276 >     * threads (likely in external tasks, but possibly also blocked in
2277 >     * joins).  Each pass repeats previous steps because of potential
2278 >     * lagging thread creation.
2279       *
2280       * @param now if true, unconditionally terminate, else only
2281       * if no work and no active workers
2282 +     * @param enable if true, enable shutdown when next possible
2283       * @return true if now terminating or terminated
2284       */
2285 <    private boolean tryTerminate(boolean now) {
2285 >    private boolean tryTerminate(boolean now, boolean enable) {
2286 >        if (this == commonPool)                     // cannot shut down
2287 >            return false;
2288          for (long c;;) {
2289              if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2290 <                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2291 <                    ReentrantLock lock = this.lock; // signal when no workers
2292 <                    lock.lock();                    // don't need try/finally
2293 <                    termination.signalAll();        // signal when 0 workers
1784 <                    lock.unlock();
2290 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2291 >                    synchronized (this) {
2292 >                        notifyAll();                // signal when 0 workers
2293 >                    }
2294                  }
2295                  return true;
2296              }
2297 <            if (!now) {
2298 <                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
2297 >            if (plock >= 0) {                       // not yet enabled
2298 >                int ps;
2299 >                if (!enable)
2300 >                    return false;
2301 >                if (((ps = plock) & PL_LOCK) != 0 ||
2302 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2303 >                    ps = acquirePlock();
2304 >                int nps = SHUTDOWN;
2305 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2306 >                    releasePlock(nps);
2307 >            }
2308 >            if (!now) {                             // check if idle & no tasks
2309 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2310                      hasQueuedSubmissions())
2311                      return false;
2312                  // Check for unqueued inactive workers. One pass suffices.
2313                  WorkQueue[] ws = workQueues; WorkQueue w;
2314                  if (ws != null) {
2315 <                    int n = ws.length;
1796 <                    for (int i = 1; i < n; i += 2) {
2315 >                    for (int i = 1; i < ws.length; i += 2) {
2316                          if ((w = ws[i]) != null && w.eventCount >= 0)
2317                              return false;
2318                      }
2319                  }
2320              }
2321 <            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
2322 <                startTerminating();
2321 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2322 >                for (int pass = 0; pass < 3; ++pass) {
2323 >                    WorkQueue[] ws = workQueues;
2324 >                    if (ws != null) {
2325 >                        WorkQueue w;
2326 >                        int n = ws.length;
2327 >                        for (int i = 0; i < n; ++i) {
2328 >                            if ((w = ws[i]) != null) {
2329 >                                w.qlock = -1;
2330 >                                if (pass > 0) {
2331 >                                    w.cancelAll();
2332 >                                    if (pass > 1)
2333 >                                        w.interruptOwner();
2334 >                                }
2335 >                            }
2336 >                        }
2337 >                        // Wake up workers parked on event queue
2338 >                        int i, e; long cc; Thread p;
2339 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2340 >                               (i = e & SMASK) < n &&
2341 >                               (w = ws[i]) != null) {
2342 >                            long nc = ((long)(w.nextWait & E_MASK) |
2343 >                                       ((cc + AC_UNIT) & AC_MASK) |
2344 >                                       (cc & (TC_MASK|STOP_BIT)));
2345 >                            if (w.eventCount == (e | INT_SIGN) &&
2346 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2347 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2348 >                                w.qlock = -1;
2349 >                                if ((p = w.parker) != null)
2350 >                                    U.unpark(p);
2351 >                            }
2352 >                        }
2353 >                    }
2354 >                }
2355 >            }
2356          }
2357      }
2358  
2359 +    // external operations on common pool
2360 +
2361      /**
2362 <     * Initiates termination: Runs three passes through workQueues:
2363 <     * (0) Setting termination status, followed by wakeups of queued
1810 <     * workers; (1) cancelling all tasks; (2) interrupting lagging
1811 <     * threads (likely in external tasks, but possibly also blocked in
1812 <     * joins).  Each pass repeats previous steps because of potential
1813 <     * lagging thread creation.
2362 >     * Returns common pool queue for a thread that has submitted at
2363 >     * least one task.
2364       */
2365 <    private void startTerminating() {
2366 <        for (int pass = 0; pass < 3; ++pass) {
2367 <            WorkQueue[] ws = workQueues;
2368 <            if (ws != null) {
2369 <                WorkQueue w; Thread wt;
2370 <                int n = ws.length;
2371 <                for (int j = 0; j < n; ++j) {
2372 <                    if ((w = ws[j]) != null) {
2373 <                        w.runState = -1;
2374 <                        if (pass > 0) {
2375 <                            w.cancelAll();
2376 <                            if (pass > 1 && (wt = w.owner) != null &&
2377 <                                !wt.isInterrupted()) {
2378 <                                try {
2379 <                                    wt.interrupt();
2380 <                                } catch (SecurityException ignore) {
2365 >    static WorkQueue commonSubmitterQueue() {
2366 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2367 >        return ((z = submitters.get()) != null &&
2368 >                (p = commonPool) != null &&
2369 >                (ws = p.workQueues) != null &&
2370 >                (m = ws.length - 1) >= 0) ?
2371 >            ws[m & z.seed & SQMASK] : null;
2372 >    }
2373 >
2374 >    /**
2375 >     * Tries to pop the given task from submitter's queue in common pool.
2376 >     */
2377 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2378 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2379 >        ForkJoinTask<?>[] a;  int m, s;
2380 >        if (t != null &&
2381 >            (z = submitters.get()) != null &&
2382 >            (p = commonPool) != null &&
2383 >            (ws = p.workQueues) != null &&
2384 >            (m = ws.length - 1) >= 0 &&
2385 >            (q = ws[m & z.seed & SQMASK]) != null &&
2386 >            (s = q.top) != q.base &&
2387 >            (a = q.array) != null) {
2388 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2389 >            if (U.getObject(a, j) == t &&
2390 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391 >                if (q.array == a && q.top == s && // recheck
2392 >                    U.compareAndSwapObject(a, j, t, null)) {
2393 >                    q.top = s - 1;
2394 >                    q.qlock = 0;
2395 >                    return true;
2396 >                }
2397 >                q.qlock = 0;
2398 >            }
2399 >        }
2400 >        return false;
2401 >    }
2402 >
2403 >    /**
2404 >     * Tries to pop and run local tasks within the same computation
2405 >     * as the given root. On failure, tries to help complete from
2406 >     * other queues via helpComplete.
2407 >     */
2408 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2409 >        ForkJoinTask<?>[] a; int m;
2410 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2411 >            root != null && root.status >= 0) {
2412 >            for (;;) {
2413 >                int s, u; Object o; CountedCompleter<?> task = null;
2414 >                if ((s = q.top) - q.base > 0) {
2415 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2416 >                    if ((o = U.getObject(a, j)) != null &&
2417 >                        (o instanceof CountedCompleter)) {
2418 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2419 >                        do {
2420 >                            if (r == root) {
2421 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2422 >                                    if (q.array == a && q.top == s &&
2423 >                                        U.compareAndSwapObject(a, j, t, null)) {
2424 >                                        q.top = s - 1;
2425 >                                        task = t;
2426 >                                    }
2427 >                                    q.qlock = 0;
2428                                  }
2429 +                                break;
2430                              }
2431 <                        }
2431 >                        } while ((r = r.completer) != null);
2432                      }
2433                  }
2434 <                // Wake up workers parked on event queue
2435 <                int i, e; long c; Thread p;
2436 <                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
2437 <                       (w = ws[i]) != null &&
2438 <                       w.eventCount == (e | INT_SIGN)) {
2439 <                    long nc = ((long)(w.nextWait & E_MASK) |
2440 <                               ((c + AC_UNIT) & AC_MASK) |
2441 <                               (c & (TC_MASK|STOP_BIT)));
2442 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2443 <                        w.eventCount = (e + E_SEQ) & E_MASK;
2444 <                        if ((p = w.parker) != null)
2445 <                            U.unpark(p);
2434 >                if (task != null)
2435 >                    task.doExec();
2436 >                if (root.status < 0 ||
2437 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2438 >                    break;
2439 >                if (task == null) {
2440 >                    helpSignal(root, q.poolIndex);
2441 >                    if (root.status >= 0)
2442 >                        helpComplete(root, SHARED_QUEUE);
2443 >                    break;
2444 >                }
2445 >            }
2446 >        }
2447 >    }
2448 >
2449 >    /**
2450 >     * Tries to help execute or signal availability of the given task
2451 >     * from submitter's queue in common pool.
2452 >     */
2453 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2454 >        // Some hard-to-avoid overlap with tryExternalUnpush
2455 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2456 >        ForkJoinTask<?>[] a;  int m, s, n;
2457 >        if (t != null &&
2458 >            (z = submitters.get()) != null &&
2459 >            (p = commonPool) != null &&
2460 >            (ws = p.workQueues) != null &&
2461 >            (m = ws.length - 1) >= 0 &&
2462 >            (q = ws[m & z.seed & SQMASK]) != null &&
2463 >            (a = q.array) != null) {
2464 >            int am = a.length - 1;
2465 >            if ((s = q.top) != q.base) {
2466 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2467 >                if (U.getObject(a, j) == t &&
2468 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2469 >                    if (q.array == a && q.top == s &&
2470 >                        U.compareAndSwapObject(a, j, t, null)) {
2471 >                        q.top = s - 1;
2472 >                        q.qlock = 0;
2473 >                        t.doExec();
2474                      }
2475 +                    else
2476 +                        q.qlock = 0;
2477                  }
2478              }
2479 +            if (t.status >= 0) {
2480 +                if (t instanceof CountedCompleter)
2481 +                    p.externalHelpComplete(q, t);
2482 +                else
2483 +                    p.helpSignal(t, q.poolIndex);
2484 +            }
2485          }
2486      }
2487  
2488 +    /**
2489 +     * Restricted version of helpQuiescePool for external callers
2490 +     */
2491 +    static void externalHelpQuiescePool() {
2492 +        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2493 +        if ((p = commonPool) != null &&
2494 +            (q = p.findNonEmptyStealQueue(1)) != null &&
2495 +            (b = q.base) - q.top < 0 &&
2496 +            (t = q.pollAt(b)) != null)
2497 +            t.doExec();
2498 +    }
2499 +
2500      // Exported methods
2501  
2502      // Constructors
# Line 1920 | Line 2566 | public class ForkJoinPool extends Abstra
2566          checkPermission();
2567          if (factory == null)
2568              throw new NullPointerException();
2569 <        if (parallelism <= 0 || parallelism > MAX_ID)
2569 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2570              throw new IllegalArgumentException();
1925        this.parallelism = parallelism;
2571          this.factory = factory;
2572          this.ueh = handler;
2573 <        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1929 <        this.nextPoolIndex = 1;
2573 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2574          long np = (long)(-parallelism); // offset ctl counts
2575          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2576 <        // initialize workQueues array with room for 2*parallelism if possible
1933 <        int n = parallelism << 1;
1934 <        if (n >= MAX_ID)
1935 <            n = MAX_ID;
1936 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1937 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1938 <        }
1939 <        this.workQueues = new WorkQueue[(n + 1) << 1];
1940 <        ReentrantLock lck = this.lock = new ReentrantLock();
1941 <        this.termination = lck.newCondition();
1942 <        this.stealCount = new AtomicLong();
1943 <        this.nextWorkerNumber = new AtomicInteger();
2576 >        int pn = nextPoolId();
2577          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2578 <        sb.append(poolNumberGenerator.incrementAndGet());
2578 >        sb.append(Integer.toString(pn));
2579          sb.append("-worker-");
2580          this.workerNamePrefix = sb.toString();
2581 <        // Create initial submission queue
2582 <        WorkQueue sq = tryAddSharedQueue(0);
2583 <        if (sq != null)
2584 <            sq.growArray(false);
2581 >    }
2582 >
2583 >    /**
2584 >     * Constructor for common pool, suitable only for static initialization.
2585 >     * Basically the same as above, but uses smallest possible initial footprint.
2586 >     */
2587 >    ForkJoinPool(int parallelism, long ctl,
2588 >                 ForkJoinWorkerThreadFactory factory,
2589 >                 Thread.UncaughtExceptionHandler handler) {
2590 >        this.config = parallelism;
2591 >        this.ctl = ctl;
2592 >        this.factory = factory;
2593 >        this.ueh = handler;
2594 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2595 >    }
2596 >
2597 >    /**
2598 >     * Returns the common pool instance.
2599 >     *
2600 >     * @return the common pool instance
2601 >     */
2602 >    public static ForkJoinPool commonPool() {
2603 >        // assert commonPool != null : "static init error";
2604 >        return commonPool;
2605      }
2606  
2607      // Execution methods
# Line 1970 | Line 2623 | public class ForkJoinPool extends Abstra
2623       *         scheduled for execution
2624       */
2625      public <T> T invoke(ForkJoinTask<T> task) {
2626 <        doSubmit(task);
2626 >        if (task == null)
2627 >            throw new NullPointerException();
2628 >        externalPush(task);
2629          return task.join();
2630      }
2631  
# Line 1983 | Line 2638 | public class ForkJoinPool extends Abstra
2638       *         scheduled for execution
2639       */
2640      public void execute(ForkJoinTask<?> task) {
2641 <        doSubmit(task);
2641 >        if (task == null)
2642 >            throw new NullPointerException();
2643 >        externalPush(task);
2644      }
2645  
2646      // AbstractExecutorService methods
# Line 2000 | Line 2657 | public class ForkJoinPool extends Abstra
2657          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2658              job = (ForkJoinTask<?>) task;
2659          else
2660 <            job = ForkJoinTask.adapt(task, null);
2661 <        doSubmit(job);
2660 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2661 >        externalPush(job);
2662      }
2663  
2664      /**
# Line 2014 | Line 2671 | public class ForkJoinPool extends Abstra
2671       *         scheduled for execution
2672       */
2673      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2674 <        doSubmit(task);
2674 >        if (task == null)
2675 >            throw new NullPointerException();
2676 >        externalPush(task);
2677          return task;
2678      }
2679  
# Line 2024 | Line 2683 | public class ForkJoinPool extends Abstra
2683       *         scheduled for execution
2684       */
2685      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2686 <        if (task == null)
2687 <            throw new NullPointerException();
2029 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2030 <        doSubmit(job);
2686 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2687 >        externalPush(job);
2688          return job;
2689      }
2690  
# Line 2037 | Line 2694 | public class ForkJoinPool extends Abstra
2694       *         scheduled for execution
2695       */
2696      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2697 <        if (task == null)
2698 <            throw new NullPointerException();
2042 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2043 <        doSubmit(job);
2697 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2698 >        externalPush(job);
2699          return job;
2700      }
2701  
# Line 2056 | Line 2711 | public class ForkJoinPool extends Abstra
2711          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2712              job = (ForkJoinTask<?>) task;
2713          else
2714 <            job = ForkJoinTask.adapt(task, null);
2715 <        doSubmit(job);
2714 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2715 >        externalPush(job);
2716          return job;
2717      }
2718  
# Line 2066 | Line 2721 | public class ForkJoinPool extends Abstra
2721       * @throws RejectedExecutionException {@inheritDoc}
2722       */
2723      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2724 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2725 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2726 <        for (Callable<T> task : tasks)
2727 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2728 <        invoke(new InvokeAll<T>(forkJoinTasks));
2729 <
2724 >        // In previous versions of this class, this method constructed
2725 >        // a task to run ForkJoinTask.invokeAll, but now external
2726 >        // invocation of multiple tasks is at least as efficient.
2727 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2728 >        // Workaround needed because method wasn't declared with
2729 >        // wildcards in return type but should have been.
2730          @SuppressWarnings({"unchecked", "rawtypes"})
2731 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2077 <        return futures;
2078 <    }
2731 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2732  
2733 <    static final class InvokeAll<T> extends RecursiveAction {
2734 <        final ArrayList<ForkJoinTask<T>> tasks;
2735 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2736 <        public void compute() {
2737 <            try { invokeAll(tasks); }
2738 <            catch (Exception ignore) {}
2733 >        boolean done = false;
2734 >        try {
2735 >            for (Callable<T> t : tasks) {
2736 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2737 >                externalPush(f);
2738 >                fs.add(f);
2739 >            }
2740 >            for (ForkJoinTask<T> f : fs)
2741 >                f.quietlyJoin();
2742 >            done = true;
2743 >            return futures;
2744 >        } finally {
2745 >            if (!done)
2746 >                for (ForkJoinTask<T> f : fs)
2747 >                    f.cancel(false);
2748          }
2087        private static final long serialVersionUID = -7914297376763021607L;
2749      }
2750  
2751      /**
# Line 2112 | Line 2773 | public class ForkJoinPool extends Abstra
2773       * @return the targeted parallelism level of this pool
2774       */
2775      public int getParallelism() {
2776 <        return parallelism;
2776 >        return config & SMASK;
2777 >    }
2778 >
2779 >    /**
2780 >     * Returns the targeted parallelism level of the common pool.
2781 >     *
2782 >     * @return the targeted parallelism level of the common pool
2783 >     */
2784 >    public static int getCommonPoolParallelism() {
2785 >        return commonPoolParallelism;
2786      }
2787  
2788      /**
# Line 2124 | Line 2794 | public class ForkJoinPool extends Abstra
2794       * @return the number of worker threads
2795       */
2796      public int getPoolSize() {
2797 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2797 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2798      }
2799  
2800      /**
# Line 2134 | Line 2804 | public class ForkJoinPool extends Abstra
2804       * @return {@code true} if this pool uses async mode
2805       */
2806      public boolean getAsyncMode() {
2807 <        return localMode != 0;
2807 >        return (config >>> 16) == FIFO_QUEUE;
2808      }
2809  
2810      /**
# Line 2149 | Line 2819 | public class ForkJoinPool extends Abstra
2819          int rc = 0;
2820          WorkQueue[] ws; WorkQueue w;
2821          if ((ws = workQueues) != null) {
2822 <            int n = ws.length;
2823 <            for (int i = 1; i < n; i += 2) {
2154 <                Thread.State s; ForkJoinWorkerThread wt;
2155 <                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2156 <                    w.eventCount >= 0 &&
2157 <                    (s = wt.getState()) != Thread.State.BLOCKED &&
2158 <                    s != Thread.State.WAITING &&
2159 <                    s != Thread.State.TIMED_WAITING)
2822 >            for (int i = 1; i < ws.length; i += 2) {
2823 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2824                      ++rc;
2825              }
2826          }
# Line 2171 | Line 2835 | public class ForkJoinPool extends Abstra
2835       * @return the number of active threads
2836       */
2837      public int getActiveThreadCount() {
2838 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2838 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2839          return (r <= 0) ? 0 : r; // suppress momentarily negative values
2840      }
2841  
# Line 2187 | Line 2851 | public class ForkJoinPool extends Abstra
2851       * @return {@code true} if all threads are currently idle
2852       */
2853      public boolean isQuiescent() {
2854 <        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2854 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2855      }
2856  
2857      /**
# Line 2202 | Line 2866 | public class ForkJoinPool extends Abstra
2866       * @return the number of steals
2867       */
2868      public long getStealCount() {
2869 <        long count = stealCount.get();
2869 >        long count = stealCount;
2870          WorkQueue[] ws; WorkQueue w;
2871          if ((ws = workQueues) != null) {
2872 <            int n = ws.length;
2209 <            for (int i = 1; i < n; i += 2) {
2872 >            for (int i = 1; i < ws.length; i += 2) {
2873                  if ((w = ws[i]) != null)
2874 <                    count += w.totalSteals;
2874 >                    count += w.nsteals;
2875              }
2876          }
2877          return count;
# Line 2228 | Line 2891 | public class ForkJoinPool extends Abstra
2891          long count = 0;
2892          WorkQueue[] ws; WorkQueue w;
2893          if ((ws = workQueues) != null) {
2894 <            int n = ws.length;
2232 <            for (int i = 1; i < n; i += 2) {
2894 >            for (int i = 1; i < ws.length; i += 2) {
2895                  if ((w = ws[i]) != null)
2896                      count += w.queueSize();
2897              }
# Line 2248 | Line 2910 | public class ForkJoinPool extends Abstra
2910          int count = 0;
2911          WorkQueue[] ws; WorkQueue w;
2912          if ((ws = workQueues) != null) {
2913 <            int n = ws.length;
2252 <            for (int i = 0; i < n; i += 2) {
2913 >            for (int i = 0; i < ws.length; i += 2) {
2914                  if ((w = ws[i]) != null)
2915                      count += w.queueSize();
2916              }
# Line 2266 | Line 2927 | public class ForkJoinPool extends Abstra
2927      public boolean hasQueuedSubmissions() {
2928          WorkQueue[] ws; WorkQueue w;
2929          if ((ws = workQueues) != null) {
2930 <            int n = ws.length;
2931 <            for (int i = 0; i < n; i += 2) {
2271 <                if ((w = ws[i]) != null && w.queueSize() != 0)
2930 >            for (int i = 0; i < ws.length; i += 2) {
2931 >                if ((w = ws[i]) != null && !w.isEmpty())
2932                      return true;
2933              }
2934          }
# Line 2285 | Line 2945 | public class ForkJoinPool extends Abstra
2945      protected ForkJoinTask<?> pollSubmission() {
2946          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2947          if ((ws = workQueues) != null) {
2948 <            int n = ws.length;
2289 <            for (int i = 0; i < n; i += 2) {
2948 >            for (int i = 0; i < ws.length; i += 2) {
2949                  if ((w = ws[i]) != null && (t = w.poll()) != null)
2950                      return t;
2951              }
# Line 2315 | Line 2974 | public class ForkJoinPool extends Abstra
2974          int count = 0;
2975          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2976          if ((ws = workQueues) != null) {
2977 <            int n = ws.length;
2319 <            for (int i = 0; i < n; ++i) {
2977 >            for (int i = 0; i < ws.length; ++i) {
2978                  if ((w = ws[i]) != null) {
2979                      while ((t = w.poll()) != null) {
2980                          c.add(t);
# Line 2336 | Line 2994 | public class ForkJoinPool extends Abstra
2994       * @return a string identifying this pool, as well as its state
2995       */
2996      public String toString() {
2997 <        long st = getStealCount();
2998 <        long qt = getQueuedTaskCount();
2999 <        long qs = getQueuedSubmissionCount();
2342 <        int rc = getRunningThreadCount();
2343 <        int pc = parallelism;
2997 >        // Use a single pass through workQueues to collect counts
2998 >        long qt = 0L, qs = 0L; int rc = 0;
2999 >        long st = stealCount;
3000          long c = ctl;
3001 +        WorkQueue[] ws; WorkQueue w;
3002 +        if ((ws = workQueues) != null) {
3003 +            for (int i = 0; i < ws.length; ++i) {
3004 +                if ((w = ws[i]) != null) {
3005 +                    int size = w.queueSize();
3006 +                    if ((i & 1) == 0)
3007 +                        qs += size;
3008 +                    else {
3009 +                        qt += size;
3010 +                        st += w.nsteals;
3011 +                        if (w.isApparentlyUnblocked())
3012 +                            ++rc;
3013 +                    }
3014 +                }
3015 +            }
3016 +        }
3017 +        int pc = (config & SMASK);
3018          int tc = pc + (short)(c >>> TC_SHIFT);
3019          int ac = pc + (int)(c >> AC_SHIFT);
3020          if (ac < 0) // ignore transient negative
# Line 2350 | Line 3023 | public class ForkJoinPool extends Abstra
3023          if ((c & STOP_BIT) != 0)
3024              level = (tc == 0) ? "Terminated" : "Terminating";
3025          else
3026 <            level = runState < 0 ? "Shutting down" : "Running";
3026 >            level = plock < 0 ? "Shutting down" : "Running";
3027          return super.toString() +
3028              "[" + level +
3029              ", parallelism = " + pc +
# Line 2364 | Line 3037 | public class ForkJoinPool extends Abstra
3037      }
3038  
3039      /**
3040 <     * Initiates an orderly shutdown in which previously submitted
3041 <     * tasks are executed, but no new tasks will be accepted.
3042 <     * Invocation has no additional effect if already shut down.
3043 <     * Tasks that are in the process of being submitted concurrently
3044 <     * during the course of this method may or may not be rejected.
3040 >     * Possibly initiates an orderly shutdown in which previously
3041 >     * submitted tasks are executed, but no new tasks will be
3042 >     * accepted. Invocation has no effect on execution state if this
3043 >     * is the {@link #commonPool}, and no additional effect if
3044 >     * already shut down.  Tasks that are in the process of being
3045 >     * submitted concurrently during the course of this method may or
3046 >     * may not be rejected.
3047       *
3048       * @throws SecurityException if a security manager exists and
3049       *         the caller is not permitted to modify threads
# Line 2377 | Line 3052 | public class ForkJoinPool extends Abstra
3052       */
3053      public void shutdown() {
3054          checkPermission();
3055 <        enableShutdown();
2381 <        tryTerminate(false);
3055 >        tryTerminate(false, true);
3056      }
3057  
3058      /**
3059 <     * Attempts to cancel and/or stop all tasks, and reject all
3060 <     * subsequently submitted tasks.  Tasks that are in the process of
3061 <     * being submitted or executed concurrently during the course of
3062 <     * this method may or may not be rejected. This method cancels
3063 <     * both existing and unexecuted tasks, in order to permit
3064 <     * termination in the presence of task dependencies. So the method
3065 <     * always returns an empty list (unlike the case for some other
3066 <     * Executors).
3059 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3060 >     * all subsequently submitted tasks.  Invocation has no effect on
3061 >     * execution state if this is the {@link #commonPool}, and no
3062 >     * additional effect if already shut down. Otherwise, tasks that
3063 >     * are in the process of being submitted or executed concurrently
3064 >     * during the course of this method may or may not be
3065 >     * rejected. This method cancels both existing and unexecuted
3066 >     * tasks, in order to permit termination in the presence of task
3067 >     * dependencies. So the method always returns an empty list
3068 >     * (unlike the case for some other Executors).
3069       *
3070       * @return an empty list
3071       * @throws SecurityException if a security manager exists and
# Line 2399 | Line 3075 | public class ForkJoinPool extends Abstra
3075       */
3076      public List<Runnable> shutdownNow() {
3077          checkPermission();
3078 <        enableShutdown();
2403 <        tryTerminate(true);
3078 >        tryTerminate(true, true);
3079          return Collections.emptyList();
3080      }
3081  
# Line 2412 | Line 3087 | public class ForkJoinPool extends Abstra
3087      public boolean isTerminated() {
3088          long c = ctl;
3089          return ((c & STOP_BIT) != 0L &&
3090 <                (short)(c >>> TC_SHIFT) == -parallelism);
3090 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3091      }
3092  
3093      /**
# Line 2420 | Line 3095 | public class ForkJoinPool extends Abstra
3095       * commenced but not yet completed.  This method may be useful for
3096       * debugging. A return of {@code true} reported a sufficient
3097       * period after shutdown may indicate that submitted tasks have
3098 <     * ignored or suppressed interruption, or are waiting for IO,
3098 >     * ignored or suppressed interruption, or are waiting for I/O,
3099       * causing this executor not to properly terminate. (See the
3100       * advisory notes for class {@link ForkJoinTask} stating that
3101       * tasks should not normally entail blocking operations.  But if
# Line 2431 | Line 3106 | public class ForkJoinPool extends Abstra
3106      public boolean isTerminating() {
3107          long c = ctl;
3108          return ((c & STOP_BIT) != 0L &&
3109 <                (short)(c >>> TC_SHIFT) != -parallelism);
3109 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3110      }
3111  
3112      /**
# Line 2440 | Line 3115 | public class ForkJoinPool extends Abstra
3115       * @return {@code true} if this pool has been shut down
3116       */
3117      public boolean isShutdown() {
3118 <        return runState < 0;
3118 >        return plock < 0;
3119      }
3120  
3121      /**
3122 <     * Blocks until all tasks have completed execution after a shutdown
3123 <     * request, or the timeout occurs, or the current thread is
3124 <     * interrupted, whichever happens first.
3122 >     * Blocks until all tasks have completed execution after a
3123 >     * shutdown request, or the timeout occurs, or the current thread
3124 >     * is interrupted, whichever happens first. Note that the {@link
3125 >     * #commonPool()} never terminates until program shutdown so
3126 >     * this method will always time out.
3127       *
3128       * @param timeout the maximum time to wait
3129       * @param unit the time unit of the timeout argument
# Line 2457 | Line 3134 | public class ForkJoinPool extends Abstra
3134      public boolean awaitTermination(long timeout, TimeUnit unit)
3135          throws InterruptedException {
3136          long nanos = unit.toNanos(timeout);
3137 <        final ReentrantLock lock = this.lock;
3138 <        lock.lock();
3139 <        try {
3140 <            for (;;) {
3141 <                if (isTerminated())
3142 <                    return true;
3143 <                if (nanos <= 0)
3144 <                    return false;
3145 <                nanos = termination.awaitNanos(nanos);
3137 >        if (isTerminated())
3138 >            return true;
3139 >        long startTime = System.nanoTime();
3140 >        boolean terminated = false;
3141 >        synchronized (this) {
3142 >            for (long waitTime = nanos, millis = 0L;;) {
3143 >                if (terminated = isTerminated() ||
3144 >                    waitTime <= 0L ||
3145 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3146 >                    break;
3147 >                wait(millis);
3148 >                waitTime = nanos - (System.nanoTime() - startTime);
3149              }
2470        } finally {
2471            lock.unlock();
3150          }
3151 +        return terminated;
3152      }
3153  
3154      /**
# Line 2553 | Line 3232 | public class ForkJoinPool extends Abstra
3232       *
3233       * <p>If the caller is not a {@link ForkJoinTask}, this method is
3234       * behaviorally equivalent to
3235 < a     *  <pre> {@code
3235 >     *  <pre> {@code
3236       * while (!blocker.isReleasable())
3237       *   if (blocker.block())
3238       *     return;
# Line 2568 | Line 3247 | a     *  <pre> {@code
3247      public static void managedBlock(ManagedBlocker blocker)
3248          throws InterruptedException {
3249          Thread t = Thread.currentThread();
3250 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3251 <                          ((ForkJoinWorkerThread)t).pool : null);
3252 <        while (!blocker.isReleasable()) {
3253 <            if (p == null || p.tryCompensate()) {
3254 <                try {
3255 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3256 <                } finally {
3257 <                    if (p != null)
3250 >        if (t instanceof ForkJoinWorkerThread) {
3251 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3252 >            while (!blocker.isReleasable()) { // variant of helpSignal
3253 >                WorkQueue[] ws; WorkQueue q; int m, u;
3254 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3255 >                    for (int i = 0; i <= m; ++i) {
3256 >                        if (blocker.isReleasable())
3257 >                            return;
3258 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3259 >                            p.signalWork(q);
3260 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3261 >                                (u >> UAC_SHIFT) >= 0)
3262 >                                break;
3263 >                        }
3264 >                    }
3265 >                }
3266 >                if (p.tryCompensate()) {
3267 >                    try {
3268 >                        do {} while (!blocker.isReleasable() &&
3269 >                                     !blocker.block());
3270 >                    } finally {
3271                          p.incrementActiveCount();
3272 +                    }
3273 +                    break;
3274                  }
2581                break;
3275              }
3276          }
3277 +        else {
3278 +            do {} while (!blocker.isReleasable() &&
3279 +                         !blocker.block());
3280 +        }
3281      }
3282  
3283      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2588 | Line 3285 | a     *  <pre> {@code
3285      // implement RunnableFuture.
3286  
3287      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3288 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3288 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3289      }
3290  
3291      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3292 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3292 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3293      }
3294  
3295      // Unsafe mechanics
3296      private static final sun.misc.Unsafe U;
3297      private static final long CTL;
2601    private static final long RUNSTATE;
3298      private static final long PARKBLOCKER;
3299 +    private static final int ABASE;
3300 +    private static final int ASHIFT;
3301 +    private static final long STEALCOUNT;
3302 +    private static final long PLOCK;
3303 +    private static final long INDEXSEED;
3304 +    private static final long QLOCK;
3305  
3306      static {
3307 <        poolNumberGenerator = new AtomicInteger();
2606 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2607 <        defaultForkJoinWorkerThreadFactory =
2608 <            new DefaultForkJoinWorkerThreadFactory();
2609 <        int s;
3307 >        int s; // initialize field offsets for CAS etc
3308          try {
3309              U = getUnsafe();
3310              Class<?> k = ForkJoinPool.class;
2613            Class<?> tk = Thread.class;
3311              CTL = U.objectFieldOffset
3312                  (k.getDeclaredField("ctl"));
3313 <            RUNSTATE = U.objectFieldOffset
3314 <                (k.getDeclaredField("runState"));
3313 >            STEALCOUNT = U.objectFieldOffset
3314 >                (k.getDeclaredField("stealCount"));
3315 >            PLOCK = U.objectFieldOffset
3316 >                (k.getDeclaredField("plock"));
3317 >            INDEXSEED = U.objectFieldOffset
3318 >                (k.getDeclaredField("indexSeed"));
3319 >            Class<?> tk = Thread.class;
3320              PARKBLOCKER = U.objectFieldOffset
3321                  (tk.getDeclaredField("parkBlocker"));
3322 +            Class<?> wk = WorkQueue.class;
3323 +            QLOCK = U.objectFieldOffset
3324 +                (wk.getDeclaredField("qlock"));
3325 +            Class<?> ak = ForkJoinTask[].class;
3326 +            ABASE = U.arrayBaseOffset(ak);
3327 +            s = U.arrayIndexScale(ak);
3328 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3329          } catch (Exception e) {
3330              throw new Error(e);
3331          }
3332 +        if ((s & (s-1)) != 0)
3333 +            throw new Error("data type scale not a power of two");
3334 +
3335 +        submitters = new ThreadLocal<Submitter>();
3336 +        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3337 +            new DefaultForkJoinWorkerThreadFactory();
3338 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3339 +
3340 +        /*
3341 +         * Establish common pool parameters.  For extra caution,
3342 +         * computations to set up common pool state are here; the
3343 +         * constructor just assigns these values to fields.
3344 +         */
3345 +
3346 +        int par = 0;
3347 +        Thread.UncaughtExceptionHandler handler = null;
3348 +        try {  // TBD: limit or report ignored exceptions?
3349 +            String pp = System.getProperty
3350 +                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3351 +            String hp = System.getProperty
3352 +                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3353 +            String fp = System.getProperty
3354 +                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3355 +            if (fp != null)
3356 +                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3357 +                       getSystemClassLoader().loadClass(fp).newInstance());
3358 +            if (hp != null)
3359 +                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3360 +                           getSystemClassLoader().loadClass(hp).newInstance());
3361 +            if (pp != null)
3362 +                par = Integer.parseInt(pp);
3363 +        } catch (Exception ignore) {
3364 +        }
3365 +
3366 +        if (par <= 0)
3367 +            par = Runtime.getRuntime().availableProcessors();
3368 +        if (par > MAX_CAP)
3369 +            par = MAX_CAP;
3370 +        commonPoolParallelism = par;
3371 +        long np = (long)(-par); // precompute initial ctl value
3372 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3373 +
3374 +        commonPool = new ForkJoinPool(par, ct, fac, handler);
3375      }
3376  
3377      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines