ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.116 by dl, Fri Jan 27 17:27:28 2012 UTC vs.
Revision 1.144 by jsr166, Sun Nov 18 18:03:10 2012 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.atomic.AtomicInteger;
23 import java.util.concurrent.atomic.AtomicLong;
24 import java.util.concurrent.locks.ReentrantLock;
25 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 42 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used primarily by clients not
68 < * already engaged in fork/join computations in the current pool.  The
69 < * main forms of these methods accept instances of {@code
70 < * ForkJoinTask}, but overloaded forms also allow mixed execution of
71 < * plain {@code Runnable}- or {@code Callable}- based activities as
72 < * well.  However, tasks that are already executing in a pool should
73 < * normally instead use the within-computation forms listed in the
74 < * table unless using async event-style tasks that are not usually
75 < * joined, in which case there is little difference among choice of
73 < * methods.
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71 > * Runnable}- or {@code Callable}- based activities as well.  However,
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 95 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
108 < *  <pre> {@code
109 < * static final ForkJoinPool mainPool = new ForkJoinPool();
110 < * ...
111 < * public void sort(long[] array) {
112 < *   mainPool.invoke(new SortTask(array, 0, array.length));
113 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 131 | Line 127 | public class ForkJoinPool extends Abstra
127       *
128       * This class and its nested classes provide the main
129       * functionality and control for a set of worker threads:
130 <     * Submissions from non-FJ threads enter into submission
131 <     * queues. Workers take these tasks and typically split them into
132 <     * subtasks that may be stolen by other workers.  Preference rules
133 <     * give first priority to processing tasks from their own queues
134 <     * (LIFO or FIFO, depending on mode), then to randomized FIFO
135 <     * steals of tasks in other queues.
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136       *
137 <     * WorkQueues.
137 >     * WorkQueues
138       * ==========
139       *
140       * Most operations occur within work-stealing queues (in nested
# Line 156 | Line 152 | public class ForkJoinPool extends Abstra
152       * (http://research.sun.com/scalable/pubs/index.html) and
153       * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154       * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 <     * The main differences ultimately stem from gc requirements that
155 >     * The main differences ultimately stem from GC requirements that
156       * we null out taken slots as soon as we can, to maintain as small
157       * a footprint as possible even in programs generating huge
158       * numbers of tasks. To accomplish this, we shift the CAS
# Line 178 | Line 174 | public class ForkJoinPool extends Abstra
174       * If an attempted steal fails, a thief always chooses a different
175       * random victim target to try next. So, in order for one thief to
176       * progress, it suffices for any in-progress poll or new push on
177 <     * any empty queue to complete.
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181       *
182       * This approach also enables support of a user mode in which local
183       * task processing is in FIFO, not LIFO order, simply by using
# Line 188 | Line 187 | public class ForkJoinPool extends Abstra
187       * rarely provide the best possible performance on a given
188       * machine, but portably provide good throughput by averaging over
189       * these factors.  (Further, even if we did try to use such
190 <     * information, we do not usually have a basis for exploiting
191 <     * it. For example, some sets of tasks profit from cache
192 <     * affinities, but others are harmed by cache pollution effects.)
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193       *
194       * WorkQueues are also used in a similar way for tasks submitted
195       * to the pool. We cannot mix these tasks in the same queues used
196       * for work-stealing (this would contaminate lifo/fifo
197 <     * processing). Instead, we loosely associate submission queues
197 >     * processing). Instead, we randomly associate submission queues
198       * with submitting threads, using a form of hashing.  The
199       * ThreadLocal Submitter class contains a value initially used as
200       * a hash code for choosing existing queues, but may be randomly
201       * repositioned upon contention with other submitters.  In
202 <     * essence, submitters act like workers except that they never
203 <     * take tasks, and they are multiplexed on to a finite number of
204 <     * shared work queues. However, classes are set up so that future
205 <     * extensions could allow submitters to optionally help perform
206 <     * tasks as well. Pool submissions from internal workers are also
207 <     * allowed, but use randomized rather than thread-hashed queue
208 <     * indices to avoid imbalance.  Insertion of tasks in shared mode
209 <     * requires a lock (mainly to protect in the case of resizing) but
210 <     * we use only a simple spinlock (using bits in field runState),
211 <     * because submitters encountering a busy queue try or create
212 <     * others so never block.
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216 <     * Management.
216 >     * Management
217       * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
# Line 222 | Line 223 | public class ForkJoinPool extends Abstra
223       * tactic for avoiding bottlenecks is packing nearly all
224       * essentially atomic control state into two volatile variables
225       * that are by far most often read (not written) as status and
226 <     * consistency checks
226 >     * consistency checks.
227       *
228       * Field "ctl" contains 64 bits holding all the information needed
229       * to atomically decide to add, inactivate, enqueue (on an event
# Line 232 | Line 233 | public class ForkJoinPool extends Abstra
233       * and their negations (used for thresholding) to fit into 16bit
234       * fields.
235       *
236 <     * Field "runState" contains 32 bits needed to register and
237 <     * deregister WorkQueues, as well as to enable shutdown. It is
238 <     * only modified under a lock (normally briefly held, but
239 <     * occasionally protecting allocations and resizings) but even
240 <     * when locked remains available to check consistency.
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * blocking when needed.
243       *
244       * Recording WorkQueues.  WorkQueues are recorded in the
245 <     * "workQueues" array that is created upon pool construction and
246 <     * expanded if necessary.  Updates to the array while recording
247 <     * new workers and unrecording terminated ones are protected from
248 <     * each other by a lock but the array is otherwise concurrently
249 <     * readable, and accessed directly.  To simplify index-based
250 <     * operations, the array size is always a power of two, and all
251 <     * readers must tolerate null slots. Shared (submission) queues
252 <     * are at even indices, worker queues at odd indices. Grouping
253 <     * them together in this way simplifies and speeds up task
254 <     * scanning. To avoid flailing during start-up, the array is
255 <     * presized to hold twice #parallelism workers (which is unlikely
256 <     * to need further resizing during execution). But to avoid
257 <     * dealing with so many null slots, variable runState includes a
258 <     * mask for the nearest power of two that contains all current
256 <     * workers.  All worker thread creation is on-demand, triggered by
257 <     * task submissions, replacement of terminated workers, and/or
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259       * compensation for blocked workers. However, all other support
260       * code is set up to work with other policies.  To ensure that we
261       * do not hold on to worker references that would prevent GC, ALL
# Line 267 | Line 268 | public class ForkJoinPool extends Abstra
268       * both index-check and null-check the IDs. All such accesses
269       * ignore bad IDs by returning out early from what they are doing,
270       * since this can only be associated with termination, in which
271 <     * case it is OK to give up.
272 <     *
273 <     * All uses of the workQueues array check that it is non-null
274 <     * (even if previously non-null). This allows nulling during
275 <     * termination, which is currently not necessary, but remains an
276 <     * option for resource-revocation-based shutdown schemes. It also
276 <     * helps reduce JIT issuance of uncommon-trap code, which tends to
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277       * unnecessarily complicate control flow in some methods.
278       *
279       * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
# Line 301 | Line 301 | public class ForkJoinPool extends Abstra
301       * some other queued worker rather than itself, which has the same
302       * net effect. Because enqueued workers may actually be rescanning
303       * rather than waiting, we set and clear the "parker" field of
304 <     * Workqueues to reduce unnecessary calls to unpark.  (This
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305       * requires a secondary recheck to avoid missed signals.)  Note
306       * the unusual conventions about Thread.interrupts surrounding
307       * parking and other blocking: Because interrupts are used solely
# Line 313 | Line 313 | public class ForkJoinPool extends Abstra
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had fewer than two tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans;
321 <     * together these cover the signals needed in cases when more
322 <     * tasks are pushed but untaken, and improve performance compared
323 <     * to having one thread wake up all workers.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that is
320 >     * apparently empty, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- see signalWork).  These primary signals are buttressed by
323 >     * signals whenever other threads scan for work or do not have a
324 >     * task to process. On most platforms, signalling (unpark)
325 >     * overhead time is noticeably long, and the time between
326 >     * signalling a thread and it actually making progress can be very
327 >     * noticeably long, so it is worth offloading these delays from
328 >     * critical paths as much as possible.
329       *
330       * Trimming workers. To release resources after periods of lack of
331       * use, a worker starting to wait when the pool is quiescent will
332 <     * time out and terminate if the pool has remained quiescent for
333 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
334 <     * terminating all workers after long periods of non-use.
332 >     * time out and terminate if the pool has remained quiescent for a
333 >     * given period -- a short period if there are more threads than
334 >     * parallelism, longer as the number of threads decreases. This
335 >     * will slowly propagate, eventually terminating all workers after
336 >     * periods of non-use.
337       *
338       * Shutdown and Termination. A call to shutdownNow atomically sets
339 <     * a runState bit and then (non-atomically) sets each workers
340 <     * runState status, cancels all unprocessed tasks, and wakes up
339 >     * a plock bit and then (non-atomically) sets each worker's
340 >     * qlock status, cancels all unprocessed tasks, and wakes up
341       * all waiting workers.  Detecting whether termination should
342       * commence after a non-abrupt shutdown() call requires more work
343       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 338 | Line 345 | public class ForkJoinPool extends Abstra
345       * indication but non-abrupt shutdown still requires a rechecking
346       * scan for any workers that are inactive but not queued.
347       *
348 <     * Joining Tasks.
349 <     * ==============
348 >     * Joining Tasks
349 >     * =============
350       *
351       * Any of several actions may be taken when one worker is waiting
352 <     * to join a task stolen (or always held by) another.  Because we
352 >     * to join a task stolen (or always held) by another.  Because we
353       * are multiplexing many tasks on to a pool of workers, we can't
354       * just let them block (as in Thread.join).  We also cannot just
355       * reassign the joiner's run-time stack with another and replace
356       * it later, which would be a form of "continuation", that even if
357       * possible is not necessarily a good idea since we sometimes need
358 <     * both an unblocked task and its continuation to
359 <     * progress. Instead we combine two tactics:
358 >     * both an unblocked task and its continuation to progress.
359 >     * Instead we combine two tactics:
360       *
361       *   Helping: Arranging for the joiner to execute some task that it
362       *      would be running if the steal had not occurred.
# Line 358 | Line 365 | public class ForkJoinPool extends Abstra
365       *      method tryCompensate() may create or re-activate a spare
366       *      thread to compensate for blocked joiners until they unblock.
367       *
368 <     * A third form (implemented in tryRemoveAndExec and
369 <     * tryPollForAndExec) amounts to helping a hypothetical
370 <     * compensator: If we can readily tell that a possible action of a
371 <     * compensator is to steal and execute the task being joined, the
372 <     * joining thread can do so directly, without the need for a
373 <     * compensation thread (although at the expense of larger run-time
374 <     * stacks, but the tradeoff is typically worthwhile).
368 >     * A third form (implemented in tryRemoveAndExec) amounts to
369 >     * helping a hypothetical compensator: If we can readily tell that
370 >     * a possible action of a compensator is to steal and execute the
371 >     * task being joined, the joining thread can do so directly,
372 >     * without the need for a compensation thread (although at the
373 >     * expense of larger run-time stacks, but the tradeoff is
374 >     * typically worthwhile).
375       *
376       * The ManagedBlocker extension API can't use helping so relies
377       * only on compensation in method awaitBlocker.
# Line 384 | Line 391 | public class ForkJoinPool extends Abstra
391       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
392       * that: (1) We only maintain dependency links across workers upon
393       * steals, rather than use per-task bookkeeping.  This sometimes
394 <     * requires a linear scan of workers array to locate stealers, but
395 <     * often doesn't because stealers leave hints (that may become
394 >     * requires a linear scan of workQueues array to locate stealers,
395 >     * but often doesn't because stealers leave hints (that may become
396       * stale/wrong) of where to locate them.  A stealHint is only a
397       * hint because a worker might have had multiple steals and the
398       * hint records only one of them (usually the most current).
# Line 396 | Line 403 | public class ForkJoinPool extends Abstra
403       * which means that we miss links in the chain during long-lived
404       * tasks, GC stalls etc (which is OK since blocking in such cases
405       * is usually a good idea).  (4) We bound the number of attempts
406 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
407 <     * the worker and if necessary replacing it with another.
406 >     * to find work (see MAX_HELP) and fall back to suspending the
407 >     * worker and if necessary replacing it with another.
408 >     *
409 >     * Helping actions for CountedCompleters are much simpler: Method
410 >     * helpComplete can take and execute any task with the same root
411 >     * as the task being waited on. However, this still entails some
412 >     * traversal of completer chains, so is less efficient than using
413 >     * CountedCompleters without explicit joins.
414       *
415       * It is impossible to keep exactly the target parallelism number
416       * of threads running at any given time.  Determining the
417       * existence of conservatively safe helping targets, the
418       * availability of already-created spares, and the apparent need
419       * to create new spares are all racy, so we rely on multiple
420 <     * retries of each.  Currently, in keeping with on-demand
421 <     * signalling policy, we compensate only if blocking would leave
422 <     * less than one active (non-waiting, non-blocked) worker.
423 <     * Additionally, to avoid some false alarms due to GC, lagging
424 <     * counters, system activity, etc, compensated blocking for joins
425 <     * is only attempted after rechecks stabilize in
426 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
427 <     * Thread.yield, for good citizenship.)
428 <     *
429 <     * Style notes: There is a lot of representation-level coupling
430 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
431 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
432 <     * managed by ForkJoinPool, so are directly accessed.  There is
433 <     * little point trying to reduce this, since any associated future
434 <     * changes in representations will need to be accompanied by
435 <     * algorithmic changes anyway. All together, these low-level
436 <     * implementation choices produce as much as a factor of 4
437 <     * performance improvement compared to naive implementations, and
438 <     * enable the processing of billions of tasks per second, at the
439 <     * expense of some ugliness.
440 <     *
441 <     * Methods signalWork() and scan() are the main bottlenecks so are
442 <     * especially heavily micro-optimized/mangled.  There are lots of
443 <     * inline assignments (of form "while ((local = field) != 0)")
444 <     * which are usually the simplest way to ensure the required read
445 <     * orderings (which are sometimes critical). This leads to a
446 <     * "C"-like style of listing declarations of these locals at the
447 <     * heads of methods or blocks.  There are several occurrences of
448 <     * the unusual "do {} while (!cas...)"  which is the simplest way
449 <     * to force an update of a CAS'ed variable. There are also other
450 <     * coding oddities that help some methods perform reasonably even
451 <     * when interpreted (not compiled).
452 <     *
453 <     * The order of declarations in this file is: (1) declarations of
454 <     * statics (2) fields (along with constants used when unpacking
455 <     * some of them), listed in an order that tends to reduce
456 <     * contention among them a bit under most JVMs; (3) nested
457 <     * classes; (4) internal control methods; (5) callbacks and other
458 <     * support for ForkJoinTask methods; (6) exported methods (plus a
459 <     * few little helpers); (7) static block initializing all statics
460 <     * in a minimally dependent order.
420 >     * retries of each.  Compensation in the apparent absence of
421 >     * helping opportunities is challenging to control on JVMs, where
422 >     * GC and other activities can stall progress of tasks that in
423 >     * turn stall out many other dependent tasks, without us being
424 >     * able to determine whether they will ever require compensation.
425 >     * Even though work-stealing otherwise encounters little
426 >     * degradation in the presence of more threads than cores,
427 >     * aggressively adding new threads in such cases entails risk of
428 >     * unwanted positive feedback control loops in which more threads
429 >     * cause more dependent stalls (as well as delayed progress of
430 >     * unblocked threads to the point that we know they are available)
431 >     * leading to more situations requiring more threads, and so
432 >     * on. This aspect of control can be seen as an (analytically
433 >     * intractable) game with an opponent that may choose the worst
434 >     * (for us) active thread to stall at any time.  We take several
435 >     * precautions to bound losses (and thus bound gains), mainly in
436 >     * methods tryCompensate and awaitJoin.
437 >     *
438 >     * Common Pool
439 >     * ===========
440 >     *
441 >     * The static commonPool always exists after static
442 >     * initialization.  Since it (or any other created pool) need
443 >     * never be used, we minimize initial construction overhead and
444 >     * footprint to the setup of about a dozen fields, with no nested
445 >     * allocation. Most bootstrapping occurs within method
446 >     * fullExternalPush during the first submission to the pool.
447 >     *
448 >     * When external threads submit to the common pool, they can
449 >     * perform some subtask processing (see externalHelpJoin and
450 >     * related methods).  We do not need to record whether these
451 >     * submissions are to the common pool -- if not, externalHelpJoin
452 >     * returns quickly (at the most helping to signal some common pool
453 >     * workers). These submitters would otherwise be blocked waiting
454 >     * for completion, so the extra effort (with liberally sprinkled
455 >     * task status checks) in inapplicable cases amounts to an odd
456 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
457 >     *
458 >     * Style notes
459 >     * ===========
460 >     *
461 >     * There is a lot of representation-level coupling among classes
462 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
463 >     * fields of WorkQueue maintain data structures managed by
464 >     * ForkJoinPool, so are directly accessed.  There is little point
465 >     * trying to reduce this, since any associated future changes in
466 >     * representations will need to be accompanied by algorithmic
467 >     * changes anyway. Several methods intrinsically sprawl because
468 >     * they must accumulate sets of consistent reads of volatiles held
469 >     * in local variables.  Methods signalWork() and scan() are the
470 >     * main bottlenecks, so are especially heavily
471 >     * micro-optimized/mangled.  There are lots of inline assignments
472 >     * (of form "while ((local = field) != 0)") which are usually the
473 >     * simplest way to ensure the required read orderings (which are
474 >     * sometimes critical). This leads to a "C"-like style of listing
475 >     * declarations of these locals at the heads of methods or blocks.
476 >     * There are several occurrences of the unusual "do {} while
477 >     * (!cas...)"  which is the simplest way to force an update of a
478 >     * CAS'ed variable. There are also other coding oddities (including
479 >     * several unnecessary-looking hoisted null checks) that help
480 >     * some methods perform reasonably even when interpreted (not
481 >     * compiled).
482 >     *
483 >     * The order of declarations in this file is:
484 >     * (1) Static utility functions
485 >     * (2) Nested (static) classes
486 >     * (3) Static fields
487 >     * (4) Fields, along with constants used when unpacking some of them
488 >     * (5) Internal control methods
489 >     * (6) Callbacks and other support for ForkJoinTask methods
490 >     * (7) Exported methods
491 >     * (8) Static block initializing statics in minimally dependent order
492 >     */
493 >
494 >    // Static utilities
495 >
496 >    /**
497 >     * If there is a security manager, makes sure caller has
498 >     * permission to modify threads.
499       */
500 +    private static void checkPermission() {
501 +        SecurityManager security = System.getSecurityManager();
502 +        if (security != null)
503 +            security.checkPermission(modifyThreadPermission);
504 +    }
505 +
506 +    // Nested classes
507  
508      /**
509       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 475 | Line 533 | public class ForkJoinPool extends Abstra
533      }
534  
535      /**
536 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
537 <     * overridden in ForkJoinPool constructors.
538 <     */
539 <    public static final ForkJoinWorkerThreadFactory
482 <        defaultForkJoinWorkerThreadFactory;
483 <
484 <    /**
485 <     * Permission required for callers of methods that may start or
486 <     * kill threads.
487 <     */
488 <    private static final RuntimePermission modifyThreadPermission;
489 <
490 <    /**
491 <     * If there is a security manager, makes sure caller has
492 <     * permission to modify threads.
536 >     * Class for artificial tasks that are used to replace the target
537 >     * of local joins if they are removed from an interior queue slot
538 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
539 >     * actually do anything beyond having a unique identity.
540       */
541 <    private static void checkPermission() {
542 <        SecurityManager security = System.getSecurityManager();
543 <        if (security != null)
544 <            security.checkPermission(modifyThreadPermission);
541 >    static final class EmptyTask extends ForkJoinTask<Void> {
542 >        private static final long serialVersionUID = -7721805057305804111L;
543 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
544 >        public final Void getRawResult() { return null; }
545 >        public final void setRawResult(Void x) {}
546 >        public final boolean exec() { return true; }
547      }
548  
549      /**
501     * Generator for assigning sequence numbers as pool names.
502     */
503    private static final AtomicInteger poolNumberGenerator;
504
505    /**
506     * Bits and masks for control variables
507     *
508     * Field ctl is a long packed with:
509     * AC: Number of active running workers minus target parallelism (16 bits)
510     * TC: Number of total workers minus target parallelism (16 bits)
511     * ST: true if pool is terminating (1 bit)
512     * EC: the wait count of top waiting thread (15 bits)
513     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
514     *
515     * When convenient, we can extract the upper 32 bits of counts and
516     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
517     * (int)ctl.  The ec field is never accessed alone, but always
518     * together with id and st. The offsets of counts by the target
519     * parallelism and the positionings of fields makes it possible to
520     * perform the most common checks via sign tests of fields: When
521     * ac is negative, there are not enough active workers, when tc is
522     * negative, there are not enough total workers, when id is
523     * negative, there is at least one waiting worker, and when e is
524     * negative, the pool is terminating.  To deal with these possibly
525     * negative fields, we use casts in and out of "short" and/or
526     * signed shifts to maintain signedness.
527     *
528     * When a thread is queued (inactivated), its eventCount field is
529     * negative, which is the only way to tell if a worker is
530     * prevented from executing tasks, even though it must continue to
531     * scan for them to avoid queuing races.
532     *
533     * Field runState is an int packed with:
534     * SHUTDOWN: true if shutdown is enabled (1 bit)
535     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
536     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
537     *
538     * The combination of mask and sequence number enables simple
539     * consistency checks: Staleness of read-only operations on the
540     * workers and queues arrays can be checked by comparing runState
541     * before vs after the reads. The low 16 bits (i.e, anding with
542     * SMASK) hold (the smallest power of two covering all worker
543     * indices, minus one.  The mask for queues (vs workers) is twice
544     * this value plus 1.
545     */
546
547    // bit positions/shifts for fields
548    private static final int  AC_SHIFT   = 48;
549    private static final int  TC_SHIFT   = 32;
550    private static final int  ST_SHIFT   = 31;
551    private static final int  EC_SHIFT   = 16;
552
553    // bounds
554    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
555    private static final int  SMASK      = 0xffff;  // mask short bits
556    private static final int  SHORT_SIGN = 1 << 15;
557    private static final int  INT_SIGN   = 1 << 31;
558
559    // masks
560    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
561    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
562    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
563
564    // units for incrementing and decrementing
565    private static final long TC_UNIT    = 1L << TC_SHIFT;
566    private static final long AC_UNIT    = 1L << AC_SHIFT;
567
568    // masks and units for dealing with u = (int)(ctl >>> 32)
569    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
570    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
571    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
572    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
573    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
574    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
575
576    // masks and units for dealing with e = (int)ctl
577    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
578    private static final int E_SEQ       = 1 << EC_SHIFT;
579
580    // runState bits
581    private static final int SHUTDOWN    = 1 << 31;
582    private static final int RS_SEQ      = 1 << 16;
583    private static final int RS_SEQ_MASK = 0x7fff0000;
584
585    // access mode for WorkQueue
586    static final int LIFO_QUEUE          =  0;
587    static final int FIFO_QUEUE          =  1;
588    static final int SHARED_QUEUE        = -1;
589
590    /**
591     * The wakeup interval (in nanoseconds) for a worker waiting for a
592     * task when the pool is quiescent to instead try to shrink the
593     * number of workers.  The exact value does not matter too
594     * much. It must be short enough to release resources during
595     * sustained periods of idleness, but not so short that threads
596     * are continually re-created.
597     */
598    private static final long SHRINK_RATE =
599        4L * 1000L * 1000L * 1000L; // 4 seconds
600
601    /**
602     * The timeout value for attempted shrinkage, includes
603     * some slop to cope with system timer imprecision.
604     */
605    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
606
607    /**
608     * The maximum stolen->joining link depth allowed in tryHelpStealer.
609     * Depths for legitimate chains are unbounded, but we use a fixed
610     * constant to avoid (otherwise unchecked) cycles and to bound
611     * staleness of traversal parameters at the expense of sometimes
612     * blocking when we could be helping.
613     */
614    private static final int MAX_HELP_DEPTH = 16;
615
616    /*
617     * Field layout order in this class tends to matter more than one
618     * would like. Runtime layout order is only loosely related to
619     * declaration order and may differ across JVMs, but the following
620     * empirically works OK on current JVMs.
621     */
622
623    volatile long ctl;                       // main pool control
624    final int parallelism;                   // parallelism level
625    final int localMode;                     // per-worker scheduling mode
626    int nextPoolIndex;                       // hint used in registerWorker
627    volatile int runState;                   // shutdown status, seq, and mask
628    WorkQueue[] workQueues;                  // main registry
629    final ReentrantLock lock;                // for registration
630    final Condition termination;             // for awaitTermination
631    final ForkJoinWorkerThreadFactory factory; // factory for new workers
632    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
633    final AtomicLong stealCount;             // collect counts when terminated
634    final AtomicInteger nextWorkerNumber;    // to create worker name string
635    final String workerNamePrefix;           // Prefix for assigning worker names
636
637    /**
550       * Queues supporting work-stealing as well as external task
551       * submission. See above for main rationale and algorithms.
552       * Implementation relies heavily on "Unsafe" intrinsics
# Line 648 | Line 560 | public class ForkJoinPool extends Abstra
560       *
561       * Field "top" is the index (mod array.length) of the next queue
562       * slot to push to or pop from. It is written only by owner thread
563 <     * for push, or under lock for trySharedPush, and accessed by
564 <     * other threads only after reading (volatile) base.  Both top and
565 <     * base are allowed to wrap around on overflow, but (top - base)
566 <     * (or more commonly -(base - top) to force volatile read of base
567 <     * before top) still estimates size.
563 >     * for push, or under lock for external/shared push, and accessed
564 >     * by other threads only after reading (volatile) base.  Both top
565 >     * and base are allowed to wrap around on overflow, but (top -
566 >     * base) (or more commonly -(base - top) to force volatile read of
567 >     * base before top) still estimates size. The lock ("qlock") is
568 >     * forced to -1 on termination, causing all further lock attempts
569 >     * to fail. (Note: we don't need CAS for termination state because
570 >     * upon pool shutdown, all shared-queues will stop being used
571 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
572 >     * within lock bodies are "impossible" (modulo JVM errors that
573 >     * would cause failure anyway.)
574       *
575       * The array slots are read and written using the emulation of
576       * volatiles/atomics provided by Unsafe. Insertions must in
577       * general use putOrderedObject as a form of releasing store to
578       * ensure that all writes to the task object are ordered before
579 <     * its publication in the queue. (Although we can avoid one case
580 <     * of this when locked in trySharedPush.) All removals entail a
581 <     * CAS to null.  The array is always a power of two. To ensure
582 <     * safety of Unsafe array operations, all accesses perform
665 <     * explicit null checks and implicit bounds checks via
666 <     * power-of-two masking.
579 >     * its publication in the queue.  All removals entail a CAS to
580 >     * null.  The array is always a power of two. To ensure safety of
581 >     * Unsafe array operations, all accesses perform explicit null
582 >     * checks and implicit bounds checks via power-of-two masking.
583       *
584       * In addition to basic queuing support, this class contains
585       * fields described elsewhere to control execution. It turns out
586 <     * to work better memory-layout-wise to include them in this
587 <     * class rather than a separate class.
586 >     * to work better memory-layout-wise to include them in this class
587 >     * rather than a separate class.
588       *
589       * Performance on most platforms is very sensitive to placement of
590       * instances of both WorkQueues and their arrays -- we absolutely
# Line 683 | Line 599 | public class ForkJoinPool extends Abstra
599       * avoiding really bad worst-case access. (Until better JVM
600       * support is in place, this padding is dependent on transient
601       * properties of JVM field layout rules.)  We also take care in
602 <     * allocating and sizing and resizing the array. Non-shared queue
603 <     * arrays are initialized (via method growArray) by workers before
604 <     * use. Others are allocated on first use.
602 >     * allocating, sizing and resizing the array. Non-shared queue
603 >     * arrays are initialized by workers before use. Others are
604 >     * allocated on first use.
605       */
606      static final class WorkQueue {
607          /**
608           * Capacity of work-stealing queue array upon initialization.
609 <         * Must be a power of two; at least 4, but set larger to
610 <         * reduce cacheline sharing among queues.
609 >         * Must be a power of two; at least 4, but should be larger to
610 >         * reduce or eliminate cacheline sharing among queues.
611 >         * Currently, it is much larger, as a partial workaround for
612 >         * the fact that JVMs often place arrays in locations that
613 >         * share GC bookkeeping (especially cardmarks) such that
614 >         * per-write accesses encounter serious memory contention.
615           */
616 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
616 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
617  
618          /**
619           * Maximum size for queue arrays. Must be a power of two less
# Line 704 | Line 624 | public class ForkJoinPool extends Abstra
624           */
625          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
626  
707        volatile long totalSteals; // cumulative number of steals
627          int seed;                  // for random scanning; initialize nonzero
628          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
629          int nextWait;              // encoded record of next event waiter
711        int rescans;               // remaining scans until block
712        int nsteals;               // top-level task executions since last idle
630          final int mode;            // lifo, fifo, or shared
631 +        int nsteals;               // cumulative number of steals
632          int poolIndex;             // index of this queue in pool (or 0)
633          int stealHint;             // index of most recent known stealer
634 <        volatile int runState;     // 1: locked, -1: terminate; else 0
634 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
635          volatile int base;         // index of next slot for poll
636          int top;                   // index of next slot for push
637          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
638 +        final ForkJoinPool pool;   // the containing pool (may be null)
639          final ForkJoinWorkerThread owner; // owning thread or null if shared
640          volatile Thread parker;    // == owner during call to park; else null
641 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
641 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
642          ForkJoinTask<?> currentSteal; // current non-local task being executed
643          // Heuristic padding to ameliorate unfortunate memory placements
644 <        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
644 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
645 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
646  
647 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
728 <            this.owner = owner;
647 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
648              this.mode = mode;
649 +            this.pool = pool;
650 +            this.owner = owner;
651              // Place indices in the center of array (that is not yet allocated)
652              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
653          }
654  
655          /**
735         * Returns number of tasks in the queue
736         */
737        final int queueSize() {
738            int n = base - top; // non-owner callers must read base first
739            return (n >= 0) ? 0 : -n;
740        }
741
742        /**
656           * Pushes a task. Call only by owner in unshared queues.
657 +         * Cases needing resizing or rejection are relayed to fullPush
658 +         * (that also handles shared queues).
659           *
660           * @param task the task. Caller must ensure non-null.
661 <         * @param p, if non-null, pool to signal if necessary
662 <         * @throw RejectedExecutionException if array cannot
663 <         * be resized
664 <         */
665 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
666 <            ForkJoinTask<?>[] a;
752 <            int s = top, m, n;
753 <            if ((a = array) != null) {    // ignore if queue removed
661 >         * @throw RejectedExecutionException if array cannot be resized
662 >         */
663 >        final void push(ForkJoinTask<?> task) {
664 >            ForkJoinPool p; ForkJoinTask<?>[] a;
665 >            int s = top, n;
666 >            if ((a = array) != null && a.length > (n = s + 1 - base)) {
667                  U.putOrderedObject
668 <                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
669 <                if ((n = (top = s + 1) - base) <= 2) {
670 <                    if (p != null)
671 <                        p.signalWork();
759 <                }
760 <                else if (n >= m)
761 <                    growArray(true);
668 >                    (a, (((a.length - 1) & s) << ASHIFT) + ABASE, task);
669 >                top = s + 1;
670 >                if (n <= 1 && (p = pool) != null)
671 >                    p.signalWork(this, 1);
672              }
673 +            else
674 +                fullPush(task, true);
675          }
676  
677          /**
678           * Pushes a task if lock is free and array is either big
679 <         * enough or can be resized to be big enough.
679 >         * enough or can be resized to be big enough. Note: a
680 >         * specialization of a common fast path of this method is in
681 >         * ForkJoinPool.externalPush. When called from a FJWT queue,
682 >         * this can fail only if the pool has been shut down or
683 >         * an out of memory error.
684           *
685           * @param task the task. Caller must ensure non-null.
686 <         * @return true if submitted
686 >         * @param owned if true, throw RJE on failure
687           */
688 <        final boolean trySharedPush(ForkJoinTask<?> task) {
689 <            boolean submitted = false;
690 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
691 <                ForkJoinTask<?>[] a = array;
692 <                int s = top, n = s - base;
693 <                try {
694 <                    if ((a != null && n < a.length - 1) ||
695 <                        (a = growArray(false)) != null) { // must presize
696 <                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
697 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
698 <                        top = s + 1;
699 <                        submitted = true;
688 >        final boolean fullPush(ForkJoinTask<?> task, boolean owned) {
689 >            ForkJoinPool p; ForkJoinTask<?>[] a;
690 >            if (owned) {
691 >                if (qlock < 0) // must be shutting down
692 >                    throw new RejectedExecutionException();
693 >            }
694 >            else if (!U.compareAndSwapInt(this, QLOCK, 0, 1))
695 >                return false;
696 >            try {
697 >                int s = top, oldLen, len;
698 >                if ((a = array) == null)
699 >                    a = array = new ForkJoinTask<?>[len=INITIAL_QUEUE_CAPACITY];
700 >                else if ((oldLen = a.length) > s + 1 - base)
701 >                    len = oldLen;
702 >                else if ((len = oldLen << 1) > MAXIMUM_QUEUE_CAPACITY)
703 >                    throw new RejectedExecutionException("Capacity exceeded");
704 >                else {
705 >                    int oldMask, b;
706 >                    ForkJoinTask<?>[] oldA = a;
707 >                    a = array = new ForkJoinTask<?>[len];
708 >                    if ((oldMask = oldLen - 1) >= 0 && s - (b = base) > 0) {
709 >                        int mask = len - 1;
710 >                        do {
711 >                            ForkJoinTask<?> x;
712 >                            int oldj = ((b & oldMask) << ASHIFT) + ABASE;
713 >                            int j    = ((b &    mask) << ASHIFT) + ABASE;
714 >                            x = (ForkJoinTask<?>)
715 >                                U.getObjectVolatile(oldA, oldj);
716 >                            if (x != null &&
717 >                                U.compareAndSwapObject(oldA, oldj, x, null))
718 >                                U.putObjectVolatile(a, j, x);
719 >                        } while (++b != s);
720                      }
785                } finally {
786                    runState = 0;                         // unlock
721                  }
722 +                U.putOrderedObject
723 +                    (a, (((len - 1) & s) << ASHIFT) + ABASE, task);
724 +                top = s + 1;
725 +            } finally {
726 +                if (!owned)
727 +                    qlock = 0;
728              }
729 <            return submitted;
729 >            if ((p = pool) != null)
730 >                p.signalWork(this, 1);
731 >            return true;
732          }
733  
734          /**
735 <         * Takes next task, if one exists, in FIFO order.
735 >         * Takes next task, if one exists, in LIFO order.  Call only
736 >         * by owner in unshared queues.
737           */
738 <        final ForkJoinTask<?> poll() {
739 <            ForkJoinTask<?>[] a; int b, i;
740 <            while ((b = base) - top < 0 && (a = array) != null &&
741 <                   (i = (a.length - 1) & b) >= 0) {
742 <                int j = (i << ASHIFT) + ABASE;
743 <                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
744 <                if (t != null && base == b &&
738 >        final ForkJoinTask<?> pop() {
739 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
740 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
741 >                for (int s; (s = top - 1) - base >= 0;) {
742 >                    long j = ((m & s) << ASHIFT) + ABASE;
743 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
744 >                        break;
745 >                    if (U.compareAndSwapObject(a, j, t, null)) {
746 >                        top = s;
747 >                        return t;
748 >                    }
749 >                }
750 >            }
751 >            return null;
752 >        }
753 >
754 >        /**
755 >         * Takes a task in FIFO order if b is base of queue and a task
756 >         * can be claimed without contention. Specialized versions
757 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
758 >         */
759 >        final ForkJoinTask<?> pollAt(int b) {
760 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
761 >            if ((a = array) != null) {
762 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
763 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
764 >                    base == b &&
765                      U.compareAndSwapObject(a, j, t, null)) {
766                      base = b + 1;
767                      return t;
# Line 808 | Line 771 | public class ForkJoinPool extends Abstra
771          }
772  
773          /**
774 <         * Takes next task, if one exists, in LIFO order.
812 <         * Call only by owner in unshared queues.
774 >         * Takes next task, if one exists, in FIFO order.
775           */
776 <        final ForkJoinTask<?> pop() {
777 <            ForkJoinTask<?> t; int m;
778 <            ForkJoinTask<?>[] a = array;
779 <            if (a != null && (m = a.length - 1) >= 0) {
780 <                for (int s; (s = top - 1) - base >= 0;) {
781 <                    int j = ((m & s) << ASHIFT) + ABASE;
782 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
783 <                        break;
784 <                    if (U.compareAndSwapObject(a, j, t, null)) {
823 <                        top = s;
776 >        final ForkJoinTask<?> poll() {
777 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
778 >            while ((b = base) - top < 0 && (a = array) != null) {
779 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
780 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
781 >                if (t != null) {
782 >                    if (base == b &&
783 >                        U.compareAndSwapObject(a, j, t, null)) {
784 >                        base = b + 1;
785                          return t;
786                      }
787                  }
788 +                else if (base == b) {
789 +                    if (b + 1 == top)
790 +                        break;
791 +                    Thread.yield(); // wait for lagging update (very rare)
792 +                }
793              }
794              return null;
795          }
# Line 848 | Line 814 | public class ForkJoinPool extends Abstra
814          }
815  
816          /**
851         * Returns task at index b if b is current base of queue.
852         */
853        final ForkJoinTask<?> pollAt(int b) {
854            ForkJoinTask<?>[] a; int i;
855            ForkJoinTask<?> task = null;
856            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
857                int j = (i << ASHIFT) + ABASE;
858                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
859                if (t != null && base == b &&
860                    U.compareAndSwapObject(a, j, t, null)) {
861                    base = b + 1;
862                    task = t;
863                }
864            }
865            return task;
866        }
867
868        /**
817           * Pops the given task only if it is at the current top.
818 +         * (A shared version is available only via FJP.tryExternalUnpush)
819           */
820          final boolean tryUnpush(ForkJoinTask<?> t) {
821              ForkJoinTask<?>[] a; int s;
# Line 880 | Line 829 | public class ForkJoinPool extends Abstra
829          }
830  
831          /**
832 <         * Polls the given task only if it is at the current base.
832 >         * Removes and cancels all known tasks, ignoring any exceptions.
833           */
834 <        final boolean pollFor(ForkJoinTask<?> task) {
835 <            ForkJoinTask<?>[] a; int b, i;
836 <            if ((b = base) - top < 0 && (a = array) != null &&
837 <                (i = (a.length - 1) & b) >= 0) {
838 <                int j = (i << ASHIFT) + ABASE;
839 <                if (U.getObjectVolatile(a, j) == task && base == b &&
840 <                    U.compareAndSwapObject(a, j, task, null)) {
841 <                    base = b + 1;
842 <                    return true;
834 >        final void cancelAll() {
835 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
836 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
837 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
838 >                ForkJoinTask.cancelIgnoringExceptions(t);
839 >        }
840 >
841 >        /**
842 >         * Computes next value for random probes.  Scans don't require
843 >         * a very high quality generator, but also not a crummy one.
844 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
845 >         * This is manually inlined in its usages in ForkJoinPool to
846 >         * avoid writes inside busy scan loops.
847 >         */
848 >        final int nextSeed() {
849 >            int r = seed;
850 >            r ^= r << 13;
851 >            r ^= r >>> 17;
852 >            return seed = r ^= r << 5;
853 >        }
854 >
855 >        /**
856 >         * Provides a more accurate estimate of size than (top - base)
857 >         * by ordering reads and checking whether a near-empty queue
858 >         * has at least one unclaimed task.
859 >         */
860 >        final int queueSize() {
861 >            ForkJoinTask<?>[] a; int k, s, n;
862 >            return ((n = base - (s = top)) < 0 &&
863 >                    (n != -1 ||
864 >                     ((a = array) != null && (k = a.length) > 0 &&
865 >                      U.getObject
866 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
867 >                -n : 0;
868 >        }
869 >
870 >        // Specialized execution methods
871 >
872 >        /**
873 >         * Pops and runs tasks until empty.
874 >         */
875 >        private void popAndExecAll() {
876 >            // A bit faster than repeated pop calls
877 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
878 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
879 >                   (s = top - 1) - base >= 0 &&
880 >                   (t = ((ForkJoinTask<?>)
881 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
882 >                   != null) {
883 >                if (U.compareAndSwapObject(a, j, t, null)) {
884 >                    top = s;
885 >                    t.doExec();
886                  }
887              }
896            return false;
888          }
889  
890          /**
891 <         * If present, removes from queue and executes the given task, or
892 <         * any other cancelled task. Returns (true) immediately on any CAS
891 >         * Polls and runs tasks until empty.
892 >         */
893 >        private void pollAndExecAll() {
894 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
895 >                t.doExec();
896 >        }
897 >
898 >        /**
899 >         * If present, removes from queue and executes the given task,
900 >         * or any other cancelled task. Returns (true) on any CAS
901           * or consistency check failure so caller can retry.
902           *
903 <         * @return false if no progress can be made
903 >         * @return false if no progress can be made, else true;
904           */
905          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
906 <            boolean removed = false, empty = true, progress = true;
906 >            boolean stat = true, removed = false, empty = true;
907              ForkJoinTask<?>[] a; int m, s, b, n;
908              if ((a = array) != null && (m = a.length - 1) >= 0 &&
909                  (n = (s = top) - (b = base)) > 0) {
# Line 934 | Line 933 | public class ForkJoinPool extends Abstra
933                      }
934                      if (--n == 0) {
935                          if (!empty && base == b)
936 <                            progress = false;
936 >                            stat = false;
937                          break;
938                      }
939                  }
940              }
941              if (removed)
942                  task.doExec();
943 <            return progress;
943 >            return stat;
944          }
945  
946          /**
947 <         * Initializes or doubles the capacity of array. Call either
948 <         * by owner or with lock held -- it is OK for base, but not
950 <         * top, to move while resizings are in progress.
951 <         *
952 <         * @param rejectOnFailure if true, throw exception if capacity
953 <         * exceeded (relayed ultimately to user); else return null.
947 >         * Polls for and executes the given task or any other task in
948 >         * its CountedCompleter computation
949           */
950 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
951 <            ForkJoinTask<?>[] oldA = array;
952 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
953 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
954 <                int oldMask, t, b;
955 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
956 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
957 <                    (t = top) - (b = base) > 0) {
958 <                    int mask = size - 1;
959 <                    do {
960 <                        ForkJoinTask<?> x;
961 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
962 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
963 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
964 <                        if (x != null &&
965 <                            U.compareAndSwapObject(oldA, oldj, x, null))
966 <                            U.putObjectVolatile(a, j, x);
967 <                    } while (++b != t);
950 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
951 >            ForkJoinTask<?>[] a; int b; Object o;
952 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
953 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
954 >                if ((o = U.getObject(a, j)) == null ||
955 >                    !(o instanceof CountedCompleter))
956 >                    break;
957 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
958 >                    if (r == root) {
959 >                        if (base == b &&
960 >                            U.compareAndSwapObject(a, j, t, null)) {
961 >                            base = b + 1;
962 >                            t.doExec();
963 >                            return true;
964 >                        }
965 >                        else
966 >                            break; // restart
967 >                    }
968 >                    if ((r = r.completer) == null)
969 >                        break outer; // not part of root computation
970                  }
974                return a;
975            }
976            else if (!rejectOnFailure)
977                return null;
978            else
979                throw new RejectedExecutionException("Queue capacity exceeded");
980        }
981
982        /**
983         * Removes and cancels all known tasks, ignoring any exceptions
984         */
985        final void cancelAll() {
986            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
987            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
988            for (ForkJoinTask<?> t; (t = poll()) != null; )
989                ForkJoinTask.cancelIgnoringExceptions(t);
990        }
991
992        // Execution methods
993
994        /**
995         * Removes and runs tasks until empty, using local mode
996         * ordering.
997         */
998        final void runLocalTasks() {
999            if (base - top < 0) {
1000                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
1001                    t.doExec();
971              }
972 +            return false;
973          }
974  
975          /**
976           * Executes a top-level task and any local tasks remaining
977           * after execution.
1008         *
1009         * @return true unless terminating
978           */
979 <        final boolean runTask(ForkJoinTask<?> t) {
1012 <            boolean alive = true;
979 >        final void runTask(ForkJoinTask<?> t) {
980              if (t != null) {
981 <                currentSteal = t;
1015 <                t.doExec();
1016 <                runLocalTasks();
1017 <                ++nsteals;
981 >                (currentSteal = t).doExec();
982                  currentSteal = null;
983 +                if (++nsteals < 0) {     // spill on overflow
984 +                    ForkJoinPool p;
985 +                    if ((p = pool) != null)
986 +                        p.collectStealCount(this);
987 +                }
988 +                if (top != base) {       // process remaining local tasks
989 +                    if (mode == 0)
990 +                        popAndExecAll();
991 +                    else
992 +                        pollAndExecAll();
993 +                }
994              }
1020            else if (runState < 0)            // terminating
1021                alive = false;
1022            return alive;
995          }
996  
997          /**
998 <         * Executes a non-top-level (stolen) task
998 >         * Executes a non-top-level (stolen) task.
999           */
1000          final void runSubtask(ForkJoinTask<?> t) {
1001              if (t != null) {
1002                  ForkJoinTask<?> ps = currentSteal;
1003 <                currentSteal = t;
1032 <                t.doExec();
1003 >                (currentSteal = t).doExec();
1004                  currentSteal = ps;
1005              }
1006          }
1007  
1008          /**
1009 <         * Computes next value for random probes.  Scans don't require
1039 <         * a very high quality generator, but also not a crummy one.
1040 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
1041 <         * This is manually inlined in several usages in ForkJoinPool
1042 <         * to avoid writes inside busy scan loops.
1009 >         * Returns true if owned and not known to be blocked.
1010           */
1011 <        final int nextSeed() {
1012 <            int r = seed;
1013 <            r ^= r << 13;
1014 <            r ^= r >>> 17;
1015 <            r ^= r << 5;
1016 <            return seed = r;
1011 >        final boolean isApparentlyUnblocked() {
1012 >            Thread wt; Thread.State s;
1013 >            return (eventCount >= 0 &&
1014 >                    (wt = owner) != null &&
1015 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1016 >                    s != Thread.State.WAITING &&
1017 >                    s != Thread.State.TIMED_WAITING);
1018 >        }
1019 >
1020 >        /**
1021 >         * If this owned and is not already interrupted, try to
1022 >         * interrupt and/or unpark, ignoring exceptions.
1023 >         */
1024 >        final void interruptOwner() {
1025 >            Thread wt, p;
1026 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1027 >                try {
1028 >                    wt.interrupt();
1029 >                } catch (SecurityException ignore) {
1030 >                }
1031 >            }
1032 >            if ((p = parker) != null)
1033 >                U.unpark(p);
1034          }
1035  
1036          // Unsafe mechanics
1037          private static final sun.misc.Unsafe U;
1038 <        private static final long RUNSTATE;
1038 >        private static final long QLOCK;
1039          private static final int ABASE;
1040          private static final int ASHIFT;
1041          static {
# Line 1060 | Line 1044 | public class ForkJoinPool extends Abstra
1044                  U = getUnsafe();
1045                  Class<?> k = WorkQueue.class;
1046                  Class<?> ak = ForkJoinTask[].class;
1047 <                RUNSTATE = U.objectFieldOffset
1048 <                    (k.getDeclaredField("runState"));
1047 >                QLOCK = U.objectFieldOffset
1048 >                    (k.getDeclaredField("qlock"));
1049                  ABASE = U.arrayBaseOffset(ak);
1050                  s = U.arrayIndexScale(ak);
1051              } catch (Exception e) {
# Line 1074 | Line 1058 | public class ForkJoinPool extends Abstra
1058      }
1059  
1060      /**
1061 <     * Class for artificial tasks that are used to replace the target
1062 <     * of local joins if they are removed from an interior queue slot
1063 <     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1064 <     * actually do anything beyond having a unique identity.
1061 >     * Per-thread records for threads that submit to pools. Currently
1062 >     * holds only pseudo-random seed / index that is used to choose
1063 >     * submission queues in method externalPush. In the future, this may
1064 >     * also incorporate a means to implement different task rejection
1065 >     * and resubmission policies.
1066 >     *
1067 >     * Seeds for submitters and workers/workQueues work in basically
1068 >     * the same way but are initialized and updated using slightly
1069 >     * different mechanics. Both are initialized using the same
1070 >     * approach as in class ThreadLocal, where successive values are
1071 >     * unlikely to collide with previous values. Seeds are then
1072 >     * randomly modified upon collisions using xorshifts, which
1073 >     * requires a non-zero seed.
1074       */
1075 <    static final class EmptyTask extends ForkJoinTask<Void> {
1076 <        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1077 <        public Void getRawResult() { return null; }
1085 <        public void setRawResult(Void x) {}
1086 <        public boolean exec() { return true; }
1075 >    static final class Submitter {
1076 >        int seed;
1077 >        Submitter(int s) { seed = s; }
1078      }
1079  
1080 <    /**
1081 < <<<<<<< ForkJoinPool.java
1082 <     * Per-thread records for (typically non-FJ) threads that submit
1092 <     * to pools. Cureently holds only psuedo-random seed / index that
1093 <     * is used to chose submission queues in method doSubmit. In the
1094 <     * future, this may incorporate a means to implement different
1095 <     * task rejection and resubmission policies.
1096 <     */
1097 <    static final class Submitter {
1098 <        int seed; // seed for random submission queue selection
1080 >    /** Property prefix for constructing common pool */
1081 >    private static final String propPrefix =
1082 >        "java.util.concurrent.ForkJoinPool.common.";
1083  
1084 <        // Heuristic padding to ameliorate unfortunate memory placements
1101 <        int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
1084 >    // static fields (initialized in static initializer below)
1085  
1086 <        Submitter() {
1087 <            // Use identityHashCode, forced negative, for seed
1088 <            seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1089 <        }
1086 >    /**
1087 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1088 >     * overridden in ForkJoinPool constructors.
1089 >     */
1090 >    public static final ForkJoinWorkerThreadFactory
1091 >        defaultForkJoinWorkerThreadFactory;
1092  
1093 <        /**
1094 <         * Computes next value for random probes.  Like method
1095 <         * WorkQueue.nextSeed, this is manually inlined in several
1096 <         * usages to avoid writes inside busy loops.
1097 <         */
1098 <        final int nextSeed() {
1099 <            int r = seed;
1115 <            r ^= r << 13;
1116 <            r ^= r >>> 17;
1117 <            return seed = r ^= r << 5;
1118 <        }
1119 <    }
1093 >    /**
1094 >     * Common (static) pool. Non-null for public use unless a static
1095 >     * construction exception, but internal usages null-check on use
1096 >     * to paranoically avoid potential initialization circularities
1097 >     * as well as to simplify generated code.
1098 >     */
1099 >    static final ForkJoinPool commonPool;
1100  
1101 <    /** ThreadLocal class for Submitters */
1102 <    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1103 <        public Submitter initialValue() { return new Submitter(); }
1104 <    }
1101 >    /**
1102 >     * Permission required for callers of methods that may start or
1103 >     * kill threads.
1104 >     */
1105 >    private static final RuntimePermission modifyThreadPermission;
1106  
1107      /**
1108 <     * Per-thread submission bookeeping. Shared across all pools
1108 >     * Per-thread submission bookkeeping. Shared across all pools
1109       * to reduce ThreadLocal pollution and because random motion
1110       * to avoid contention in one pool is likely to hold for others.
1111 +     * Lazily initialized on first submission (but null-checked
1112 +     * in other contexts to avoid unnecessary initialization).
1113       */
1114 <    static final ThreadSubmitter submitters = new ThreadSubmitter();
1114 >    static final ThreadLocal<Submitter> submitters;
1115  
1116      /**
1117 <     * Top-level runloop for workers
1117 >     * Common pool parallelism. Must equal commonPool.parallelism.
1118       */
1119 <    final void runWorker(ForkJoinWorkerThread wt) {
1137 <        // Initialize queue array and seed in this thread
1138 <        WorkQueue w = wt.workQueue;
1139 <        w.growArray(false);
1140 <        // Same initial hash as Submitters
1141 <        w.seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1119 >    static final int commonPoolParallelism;
1120  
1121 <        do {} while (w.runTask(scan(w)));
1121 >    /**
1122 >     * Sequence number for creating workerNamePrefix.
1123 >     */
1124 >    private static int poolNumberSequence;
1125 >
1126 >    /**
1127 >     * Return the next sequence number. We don't expect this to
1128 >     * ever contend so use simple builtin sync.
1129 >     */
1130 >    private static final synchronized int nextPoolId() {
1131 >        return ++poolNumberSequence;
1132      }
1133  
1134 <    // Creating, registering and deregistering workers
1134 >    // static constants
1135  
1136      /**
1137 <     * Tries to create and start a worker
1137 >     * Initial timeout value (in nanoseconds) for the thread
1138 >     * triggering quiescence to park waiting for new work. On timeout,
1139 >     * the thread will instead try to shrink the number of
1140 >     * workers. The value should be large enough to avoid overly
1141 >     * aggressive shrinkage during most transient stalls (long GCs
1142 >     * etc).
1143       */
1144 <    private void addWorker() {
1145 <        Throwable ex = null;
1146 <        ForkJoinWorkerThread w = null;
1147 <        try {
1148 <            if ((w = factory.newThread(this)) != null) {
1149 <                w.start();
1150 <                return;
1144 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1145 >
1146 >    /**
1147 >     * Timeout value when there are more threads than parallelism level
1148 >     */
1149 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1150 >
1151 >    /**
1152 >     * The maximum stolen->joining link depth allowed in method
1153 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1154 >     * chains are unbounded, but we use a fixed constant to avoid
1155 >     * (otherwise unchecked) cycles and to bound staleness of
1156 >     * traversal parameters at the expense of sometimes blocking when
1157 >     * we could be helping.
1158 >     */
1159 >    private static final int MAX_HELP = 64;
1160 >
1161 >    /**
1162 >     * Increment for seed generators. See class ThreadLocal for
1163 >     * explanation.
1164 >     */
1165 >    private static final int SEED_INCREMENT = 0x61c88647;
1166 >
1167 >    /**
1168 >     * Bits and masks for control variables
1169 >     *
1170 >     * Field ctl is a long packed with:
1171 >     * AC: Number of active running workers minus target parallelism (16 bits)
1172 >     * TC: Number of total workers minus target parallelism (16 bits)
1173 >     * ST: true if pool is terminating (1 bit)
1174 >     * EC: the wait count of top waiting thread (15 bits)
1175 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1176 >     *
1177 >     * When convenient, we can extract the upper 32 bits of counts and
1178 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1179 >     * (int)ctl.  The ec field is never accessed alone, but always
1180 >     * together with id and st. The offsets of counts by the target
1181 >     * parallelism and the positionings of fields makes it possible to
1182 >     * perform the most common checks via sign tests of fields: When
1183 >     * ac is negative, there are not enough active workers, when tc is
1184 >     * negative, there are not enough total workers, and when e is
1185 >     * negative, the pool is terminating.  To deal with these possibly
1186 >     * negative fields, we use casts in and out of "short" and/or
1187 >     * signed shifts to maintain signedness.
1188 >     *
1189 >     * When a thread is queued (inactivated), its eventCount field is
1190 >     * set negative, which is the only way to tell if a worker is
1191 >     * prevented from executing tasks, even though it must continue to
1192 >     * scan for them to avoid queuing races. Note however that
1193 >     * eventCount updates lag releases so usage requires care.
1194 >     *
1195 >     * Field plock is an int packed with:
1196 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1197 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1198 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1199 >     *
1200 >     * The sequence number enables simple consistency checks:
1201 >     * Staleness of read-only operations on the workQueues array can
1202 >     * be checked by comparing plock before vs after the reads.
1203 >     */
1204 >
1205 >    // bit positions/shifts for fields
1206 >    private static final int  AC_SHIFT   = 48;
1207 >    private static final int  TC_SHIFT   = 32;
1208 >    private static final int  ST_SHIFT   = 31;
1209 >    private static final int  EC_SHIFT   = 16;
1210 >
1211 >    // bounds
1212 >    private static final int  SMASK      = 0xffff;  // short bits
1213 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1214 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1215 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1216 >    private static final int  SHORT_SIGN = 1 << 15;
1217 >    private static final int  INT_SIGN   = 1 << 31;
1218 >
1219 >    // masks
1220 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1221 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1222 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1223 >
1224 >    // units for incrementing and decrementing
1225 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1226 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1227 >
1228 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1229 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1230 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1231 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1232 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1233 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1234 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1235 >
1236 >    // masks and units for dealing with e = (int)ctl
1237 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1238 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1239 >
1240 >    // plock bits
1241 >    private static final int SHUTDOWN    = 1 << 31;
1242 >    private static final int PL_LOCK     = 2;
1243 >    private static final int PL_SIGNAL   = 1;
1244 >    private static final int PL_SPINS    = 1 << 8;
1245 >
1246 >    // access mode for WorkQueue
1247 >    static final int LIFO_QUEUE          =  0;
1248 >    static final int FIFO_QUEUE          =  1;
1249 >    static final int SHARED_QUEUE        = -1;
1250 >
1251 >    // Instance fields
1252 >
1253 >    /*
1254 >     * Field layout order in this class tends to matter more than one
1255 >     * would like. Runtime layout order is only loosely related to
1256 >     * declaration order and may differ across JVMs, but the following
1257 >     * empirically works OK on current JVMs.
1258 >     */
1259 >    volatile long stealCount;                  // collects worker counts
1260 >    volatile long ctl;                         // main pool control
1261 >    final int parallelism;                     // parallelism level
1262 >    final int localMode;                       // per-worker scheduling mode
1263 >    volatile int indexSeed;                    // worker/submitter index seed
1264 >    volatile int plock;                        // shutdown status and seqLock
1265 >    WorkQueue[] workQueues;                    // main registry
1266 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1267 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1268 >    final String workerNamePrefix;             // to create worker name string
1269 >
1270 >    /*
1271 >     * Acquires the plock lock to protect worker array and related
1272 >     * updates. This method is called only if an initial CAS on plock
1273 >     * fails. This acts as a spinLock for normal cases, but falls back
1274 >     * to builtin monitor to block when (rarely) needed. This would be
1275 >     * a terrible idea for a highly contended lock, but works fine as
1276 >     * a more conservative alternative to a pure spinlock.  See
1277 >     * internal ConcurrentHashMap documentation for further
1278 >     * explanation of nearly the same construction.
1279 >     */
1280 >    private int acquirePlock() {
1281 >        int spins = PL_SPINS, r = 0, ps, nps;
1282 >        for (;;) {
1283 >            if (((ps = plock) & PL_LOCK) == 0 &&
1284 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1285 >                return nps;
1286 >            else if (r == 0)
1287 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1288 >            else if (spins >= 0) {
1289 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1290 >                if (r >= 0)
1291 >                    --spins;
1292 >            }
1293 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1294 >                synchronized (this) {
1295 >                    if ((plock & PL_SIGNAL) != 0) {
1296 >                        try {
1297 >                            wait();
1298 >                        } catch (InterruptedException ie) {
1299 >                            try {
1300 >                                Thread.currentThread().interrupt();
1301 >                            } catch (SecurityException ignore) {
1302 >                            }
1303 >                        }
1304 >                    }
1305 >                    else
1306 >                        notifyAll();
1307 >                }
1308              }
1159        } catch (Throwable e) {
1160            ex = e;
1309          }
1162        deregisterWorker(w, ex);
1310      }
1311  
1312      /**
1313 <     * Callback from ForkJoinWorkerThread constructor to assign a
1314 <     * public name. This must be separate from registerWorker because
1168 <     * it is called during the "super" constructor call in
1169 <     * ForkJoinWorkerThread.
1313 >     * Unlocks and signals any thread waiting for plock. Called only
1314 >     * when CAS of seq value for unlock fails.
1315       */
1316 <    final String nextWorkerName() {
1317 <        return workerNamePrefix.concat
1318 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1316 >    private void releasePlock(int ps) {
1317 >        plock = ps;
1318 >        synchronized (this) { notifyAll(); }
1319      }
1320  
1321 +    //  Registering and deregistering workers
1322 +
1323      /**
1324 <     * Callback from ForkJoinWorkerThread constructor to establish and
1325 <     * record its WorkQueue
1324 >     * Callback from ForkJoinWorkerThread constructor to establish its
1325 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1326 >     * to packing entries in front of the workQueues array, we treat
1327 >     * the array as a simple power-of-two hash table using per-thread
1328 >     * seed as hash, expanding as needed.
1329       *
1330 <     * @param wt the worker thread
1330 >     * @param w the worker's queue
1331       */
1332 <    final void registerWorker(ForkJoinWorkerThread wt) {
1333 <        WorkQueue w = wt.workQueue;
1334 <        ReentrantLock lock = this.lock;
1335 <        lock.lock();
1332 >    final void registerWorker(WorkQueue w) {
1333 >        int s, ps; // generate a rarely colliding candidate index seed
1334 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED,
1335 >                                          s = indexSeed, s += SEED_INCREMENT) ||
1336 >                     s == 0); // skip 0
1337 >        if (((ps = plock) & PL_LOCK) != 0 ||
1338 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1339 >            ps = acquirePlock();
1340 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1341          try {
1342 <            int k = nextPoolIndex;
1343 <            WorkQueue[] ws = workQueues;
1344 <            if (ws != null) {                       // ignore on shutdown
1345 <                int n = ws.length;
1346 <                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1347 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1348 <                        ;                           // workers are at odd indices
1349 <                    if (k >= n)                     // resize
1350 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1351 <                }
1352 <                w.poolIndex = k;
1353 <                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1354 <                ws[k] = w;                          // record worker
1355 <                nextPoolIndex = k + 2;
1356 <                int rs = runState;
1357 <                int m = rs & SMASK;                 // recalculate runState mask
1358 <                if (k > m)
1359 <                    m = (m << 1) + 1;
1205 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1342 >            WorkQueue[] ws;
1343 >            if (w != null && (ws = workQueues) != null) {
1344 >                w.seed = s;
1345 >                int n = ws.length, m = n - 1;
1346 >                int r = (s << 1) | 1;               // use odd-numbered indices
1347 >                if (ws[r &= m] != null) {           // collision
1348 >                    int probes = 0;                 // step by approx half size
1349 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1350 >                    while (ws[r = (r + step) & m] != null) {
1351 >                        if (++probes >= n) {
1352 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1353 >                            m = n - 1;
1354 >                            probes = 0;
1355 >                        }
1356 >                    }
1357 >                }
1358 >                w.eventCount = w.poolIndex = r;     // establish before recording
1359 >                ws[r] = w;
1360              }
1361          } finally {
1362 <            lock.unlock();
1362 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1363 >                releasePlock(nps);
1364          }
1365      }
1366  
1367      /**
1368 <     * Final callback from terminating worker, as well as failure to
1369 <     * construct or start a worker in addWorker.  Removes record of
1370 <     * worker from array, and adjusts counts. If pool is shutting
1371 <     * down, tries to complete termination.
1368 >     * Final callback from terminating worker, as well as upon failure
1369 >     * to construct or start a worker.  Removes record of worker from
1370 >     * array, and adjusts counts. If pool is shutting down, tries to
1371 >     * complete termination.
1372       *
1373 <     * @param wt the worker thread or null if addWorker failed
1373 >     * @param wt the worker thread or null if construction failed
1374       * @param ex the exception causing failure, or null if none
1375       */
1376      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1377          WorkQueue w = null;
1378          if (wt != null && (w = wt.workQueue) != null) {
1379 <            w.runState = -1;                // ensure runState is set
1380 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1381 <            int idx = w.poolIndex;
1382 <            ReentrantLock lock = this.lock;
1383 <            lock.lock();
1384 <            try {                           // remove record from array
1379 >            int ps;
1380 >            collectStealCount(w);
1381 >            w.qlock = -1;                // ensure set
1382 >            if (((ps = plock) & PL_LOCK) != 0 ||
1383 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1384 >                ps = acquirePlock();
1385 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1386 >            try {
1387 >                int idx = w.poolIndex;
1388                  WorkQueue[] ws = workQueues;
1389                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1390 <                    ws[nextPoolIndex = idx] = null;
1390 >                    ws[idx] = null;
1391              } finally {
1392 <                lock.unlock();
1392 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1393 >                    releasePlock(nps);
1394              }
1395          }
1396  
# Line 1241 | Line 1400 | public class ForkJoinPool extends Abstra
1400                                             ((c - TC_UNIT) & TC_MASK) |
1401                                             (c & ~(AC_MASK|TC_MASK)))));
1402  
1403 <        if (!tryTerminate(false) && w != null) {
1403 >        if (!tryTerminate(false, false) && w != null) {
1404              w.cancelAll();                  // cancel remaining tasks
1405              if (w.array != null)            // suppress signal if never ran
1406 <                signalWork();               // wake up or create replacement
1406 >                signalWork(null, 1);        // wake up or create replacement
1407 >            if (ex == null)                 // help clean refs on way out
1408 >                ForkJoinTask.helpExpungeStaleExceptions();
1409          }
1410  
1411          if (ex != null)                     // rethrow
1412 <            U.throwException(ex);
1412 >            ForkJoinTask.rethrow(ex);
1413      }
1414  
1415      /**
1416 <     * Tries to add and register a new queue at the given index.
1417 <     *
1418 <     * @param idx the workQueues array index to register the queue
1419 <     * @return the queue, or null if could not add because could
1420 <     * not acquire lock or idx is unusable
1421 <     */
1422 <    private WorkQueue tryAddSharedQueue(int idx) {
1423 <        WorkQueue q = null;
1424 <        ReentrantLock lock = this.lock;
1425 <        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1426 <            // create queue outside of lock but only if apparently free
1427 <            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1428 <            if (lock.tryLock()) {
1268 <                try {
1269 <                    WorkQueue[] ws = workQueues;
1270 <                    if (ws != null && idx < ws.length) {
1271 <                        if ((q = ws[idx]) == null) {
1272 <                            int rs;         // update runState seq
1273 <                            ws[idx] = q = nq;
1274 <                            runState = (((rs = runState) & SHUTDOWN) |
1275 <                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1276 <                        }
1277 <                    }
1278 <                } finally {
1279 <                    lock.unlock();
1280 <                }
1281 <            }
1416 >     * Collect worker steal count into total. Called on termination
1417 >     * and upon int overflow of local count. (There is a possible race
1418 >     * in the latter case vs any caller of getStealCount, which can
1419 >     * make its results less accurate than usual.)
1420 >     */
1421 >    final void collectStealCount(WorkQueue w) {
1422 >        if (w != null) {
1423 >            long sc;
1424 >            int ns = w.nsteals;
1425 >            w.nsteals = 0; // handle overflow
1426 >            long steals = (ns >= 0) ? ns : 1L + (long)(Integer.MAX_VALUE);
1427 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1428 >                                               sc = stealCount, sc + steals));
1429          }
1283        return q;
1430      }
1431  
1432 <    // Maintaining ctl counts
1432 >    // Submissions
1433  
1434      /**
1435 <     * Increments active count; mainly called upon return from blocking
1436 <     */
1437 <    final void incrementActiveCount() {
1438 <        long c;
1439 <        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1435 >     * Unless shutting down, adds the given task to a submission queue
1436 >     * at submitter's current queue index (modulo submission
1437 >     * range). Only the most common path is directly handled in this
1438 >     * method. All others are relayed to fullExternalPush.
1439 >     *
1440 >     * @param task the task. Caller must ensure non-null.
1441 >     */
1442 >    final void externalPush(ForkJoinTask<?> task) {
1443 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1444 >        if ((z = submitters.get()) != null && plock > 0 &&
1445 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1446 >            (q = ws[m & z.seed & SQMASK]) != null &&
1447 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1448 >            int s = q.top, n;
1449 >            if ((a = q.array) != null && a.length > (n = s + 1 - q.base)) {
1450 >                U.putObject(a, (long)(((a.length - 1) & s) << ASHIFT) + ABASE,
1451 >                            task);
1452 >                q.top = s + 1;                     // push on to deque
1453 >                q.qlock = 0;
1454 >                if (n <= 1)
1455 >                    signalWork(q, 1);
1456 >                return;
1457 >            }
1458 >            q.qlock = 0;
1459 >        }
1460 >        fullExternalPush(task);
1461      }
1462  
1463      /**
1464 <     * Activates or creates a worker
1465 <     */
1466 <    final void signalWork() {
1467 <        /*
1468 <         * The while condition is true if: (there is are too few total
1469 <         * workers OR there is at least one waiter) AND (there are too
1470 <         * few active workers OR the pool is terminating).  The value
1471 <         * of e distinguishes the remaining cases: zero (no waiters)
1472 <         * for create, negative if terminating (in which case do
1473 <         * nothing), else release a waiter. The secondary checks for
1474 <         * release (non-null array etc) can fail if the pool begins
1475 <         * terminating after the test, and don't impose any added cost
1476 <         * because JVMs must perform null and bounds checks anyway.
1477 <         */
1478 <        long c; int e, u;
1479 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1480 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1481 <            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1482 <            if (e == 0) {                    // add a new worker
1483 <                if (U.compareAndSwapLong
1484 <                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1485 <                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1486 <                    addWorker();
1487 <                    break;
1488 <                }
1464 >     * Full version of externalPush. This method is called, among
1465 >     * other times, upon the first submission of the first task to the
1466 >     * pool, so must perform secondary initialization: creating
1467 >     * workQueue array and setting plock to a valid value. It also
1468 >     * detects first submission by an external thread by looking up
1469 >     * its ThreadLocal, and creates a new shared queue if the one at
1470 >     * index if empty or contended. The lock bodies must be
1471 >     * exception-free (so no try/finally) so we optimistically
1472 >     * allocate new queues/arrays outside the locks and throw them
1473 >     * away if (very rarely) not needed. Note that the plock seq value
1474 >     * can eventually wrap around zero, but if so harmlessly fails to
1475 >     * reinitialize.
1476 >     */
1477 >    private void fullExternalPush(ForkJoinTask<?> task) {
1478 >        for (Submitter z = null;;) {
1479 >            WorkQueue[] ws; WorkQueue q; int ps, m, r, s;
1480 >            if ((ps = plock) < 0)
1481 >                throw new RejectedExecutionException();
1482 >            else if ((ws = workQueues) == null || (m = ws.length - 1) < 0) {
1483 >                int n = parallelism - 1; n |= n >>> 1; n |= n >>> 2;
1484 >                n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1485 >                WorkQueue[] nws = new WorkQueue[(n + 1) << 1]; // power of two
1486 >                if ((ps & PL_LOCK) != 0 ||
1487 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1488 >                    ps = acquirePlock();
1489 >                if ((ws = workQueues) == null)
1490 >                    workQueues = nws;
1491 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1492 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1493 >                    releasePlock(nps);
1494 >            }
1495 >            else if (z == null && (z = submitters.get()) == null) {
1496 >                if (U.compareAndSwapInt(this, INDEXSEED,
1497 >                                        s = indexSeed, s += SEED_INCREMENT) &&
1498 >                    s != 0) // skip 0
1499 >                    submitters.set(z = new Submitter(s));
1500              }
1501 <            else if (e > 0 && ws != null &&
1502 <                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1503 <                     (w = ws[i]) != null &&
1504 <                     w.eventCount == (e | INT_SIGN)) {
1505 <                if (U.compareAndSwapLong
1506 <                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1507 <                                    ((long)(u + UAC_UNIT) << 32)))) {
1508 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1509 <                    if ((p = w.parker) != null)
1510 <                        U.unpark(p);         // release a waiting worker
1511 <                    break;
1512 <                }
1501 >            else {
1502 >                int k = (r = z.seed) & m & SQMASK;
1503 >                if ((q = ws[k]) == null && (ps & PL_LOCK) == 0) {
1504 >                    (q = new WorkQueue(this, null, SHARED_QUEUE)).poolIndex = k;
1505 >                    if (((ps = plock) & PL_LOCK) != 0 ||
1506 >                        !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1507 >                        ps = acquirePlock();
1508 >                    WorkQueue w = null;
1509 >                    if ((ws = workQueues) != null && k < ws.length &&
1510 >                        (w = ws[k]) == null)
1511 >                        ws[k] = q;
1512 >                    else
1513 >                        q = w;
1514 >                    int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1515 >                    if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1516 >                        releasePlock(nps);
1517 >                }
1518 >                if (q != null && q.qlock == 0 && q.fullPush(task, false))
1519 >                    return;
1520 >                r ^= r << 13;                // same xorshift as WorkQueues
1521 >                r ^= r >>> 17;
1522 >                z.seed = r ^= r << 5;        // move to a different index
1523              }
1336            else
1337                break;
1524          }
1525      }
1526  
1527 +    // Maintaining ctl counts
1528 +
1529      /**
1530 <     * Tries to decrement active count (sometimes implicitly) and
1343 <     * possibly release or create a compensating worker in preparation
1344 <     * for blocking. Fails on contention or termination.
1345 <     *
1346 <     * @return true if the caller can block, else should recheck and retry
1530 >     * Increments active count; mainly called upon return from blocking.
1531       */
1532 <    final boolean tryCompensate() {
1533 <        WorkQueue[] ws; WorkQueue w; Thread p;
1534 <        int pc = parallelism, e, u, ac, tc, i;
1535 <        long c = ctl;
1532 >    final void incrementActiveCount() {
1533 >        long c;
1534 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1535 >    }
1536  
1537 <        if ((e = (int)c) >= 0) {
1538 <            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1539 <                e != 0 && (ws = workQueues) != null &&
1540 <                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1541 <                (w = ws[i]) != null) {
1542 <                if (w.eventCount == (e | INT_SIGN) &&
1543 <                    U.compareAndSwapLong
1544 <                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1545 <                                    (c & (AC_MASK|TC_MASK))))) {
1546 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1547 <                    if ((p = w.parker) != null)
1548 <                        U.unpark(p);
1549 <                    return true;             // release an idle worker
1537 >    /**
1538 >     * Tries to create (at most one) or activate (possibly several)
1539 >     * workers if too few are active. On contention failure, continues
1540 >     * until at least one worker is signalled or the given queue is
1541 >     * empty or all workers are active.
1542 >     *
1543 >     * @param q if non-null, the queue holding tasks to be signalled
1544 >     * @param signals the target number of signals.
1545 >     */
1546 >    final void signalWork(WorkQueue q, int signals) {
1547 >        long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1548 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1549 >            if ((e = (int)c) > 0) {
1550 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1551 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1552 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1553 >                               ((long)(u + UAC_UNIT) << 32));
1554 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1555 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1556 >                        if ((p = w.parker) != null)
1557 >                            U.unpark(p);
1558 >                        if (--signals <= 0)
1559 >                            break;
1560 >                    }
1561 >                    else
1562 >                        signals = 1;
1563 >                    if ((q != null && q.queueSize() == 0))
1564 >                        break;
1565                  }
1566 +                else
1567 +                    break;
1568              }
1569 <            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1570 <                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1571 <                if (U.compareAndSwapLong(this, CTL, c, nc))
1371 <                    return true;             // no compensation needed
1372 <            }
1373 <            else if (tc + pc < MAX_ID) {
1374 <                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1569 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1570 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1571 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1572                  if (U.compareAndSwapLong(this, CTL, c, nc)) {
1573 <                    addWorker();
1574 <                    return true;             // create replacement
1573 >                    ForkJoinWorkerThread wt = null;
1574 >                    Throwable ex = null;
1575 >                    boolean started = false;
1576 >                    try {
1577 >                        ForkJoinWorkerThreadFactory fac;
1578 >                        if ((fac = factory) != null &&
1579 >                            (wt = fac.newThread(this)) != null) {
1580 >                            wt.start();
1581 >                            started = true;
1582 >                        }
1583 >                    } catch (Throwable rex) {
1584 >                        ex = rex;
1585 >                    }
1586 >                    if (!started)
1587 >                        deregisterWorker(wt, ex); // adjust counts on failure
1588 >                    break;
1589                  }
1590              }
1591 +            else
1592 +                break;
1593          }
1381        return false;
1594      }
1595  
1596 <    // Submissions
1596 >    // Scanning for tasks
1597  
1598      /**
1599 <     * Unless shutting down, adds the given task to a submission queue
1388 <     * at submitter's current queue index. If no queue exists at the
1389 <     * index, one is created unless pool lock is busy.  If the queue
1390 <     * and/or lock are busy, another index is randomly chosen.
1599 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1600       */
1601 <    private void doSubmit(ForkJoinTask<?> task) {
1602 <        if (task == null)
1603 <            throw new NullPointerException();
1604 <        Submitter s = submitters.get();
1396 <        for (int r = s.seed;;) {
1397 <            WorkQueue q; int k;
1398 <            int rs = runState, m = rs & SMASK;
1399 <            WorkQueue[] ws = workQueues;
1400 <            if (rs < 0 || ws == null)   // shutting down
1401 <                throw new RejectedExecutionException();
1402 <            if (ws.length > m &&        // k must be at index
1403 <                ((q = ws[k = (r << 1) & m]) != null ||
1404 <                 (q = tryAddSharedQueue(k)) != null) &&
1405 <                q.trySharedPush(task)) {
1406 <                signalWork();
1407 <                return;
1408 <            }
1409 <            r ^= r << 13;               // xorshift seed to new position
1410 <            r ^= r >>> 17;
1411 <            if (((s.seed = r ^= r << 5) & m) == 0)
1412 <                Thread.yield();         // occasionally yield if busy
1413 <        }
1601 >    final void runWorker(WorkQueue w) {
1602 >        // initialize queue array in this thread
1603 >        w.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
1604 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1605      }
1606  
1416
1417    // Scanning for tasks
1418
1607      /**
1608       * Scans for and, if found, returns one task, else possibly
1609       * inactivates the worker. This method operates on single reads of
1610 <     * volatile state and is designed to be re-invoked continuously in
1611 <     * part because it returns upon detecting inconsistencies,
1610 >     * volatile state and is designed to be re-invoked continuously,
1611 >     * in part because it returns upon detecting inconsistencies,
1612       * contention, or state changes that indicate possible success on
1613       * re-invocation.
1614       *
1615 <     * The scan searches for tasks across queues, randomly selecting
1616 <     * the first #queues probes, favoring steals 2:1 over submissions
1617 <     * (by exploiting even/odd indexing), and then performing a
1618 <     * circular sweep of all queues.  The scan terminates upon either
1619 <     * finding a non-empty queue, or completing a full sweep. If the
1620 <     * worker is not inactivated, it takes and returns a task from
1621 <     * this queue.  On failure to find a task, we take one of the
1622 <     * following actions, after which the caller will retry calling
1623 <     * this method unless terminated.
1624 <     *
1625 <     * * If not a complete sweep, try to release a waiting worker.  If
1438 <     * the scan terminated because the worker is inactivated, then the
1439 <     * released worker will often be the calling worker, and it can
1440 <     * succeed obtaining a task on the next call. Or maybe it is
1441 <     * another worker, but with same net effect. Releasing in other
1442 <     * cases as well ensures that we have enough workers running.
1443 <     *
1444 <     * * If the caller has run a task since the the last empty scan,
1445 <     * return (to allow rescan) if other workers are not also yet
1446 <     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1447 <     * ensure eventual inactivation, and occasional calls to
1448 <     * Thread.yield to help avoid interference with more useful
1449 <     * activities on the system.
1615 >     * The scan searches for tasks across a random permutation of
1616 >     * queues (starting at a random index and stepping by a random
1617 >     * relative prime, checking each at least once).  The scan
1618 >     * terminates upon either finding a non-empty queue, or completing
1619 >     * the sweep. If the worker is not inactivated, it takes and
1620 >     * returns a task from this queue. Otherwise, if not activated, it
1621 >     * signals workers (that may include itself) and returns so caller
1622 >     * can retry. Also returns for trtry if the worker array may have
1623 >     * changed during an empty scan.  On failure to find a task, we
1624 >     * take one of the following actions, after which the caller will
1625 >     * retry calling this method unless terminated.
1626       *
1627 <     * * If pool is terminating, terminate the worker
1627 >     * * If pool is terminating, terminate the worker.
1628       *
1629       * * If not already enqueued, try to inactivate and enqueue the
1630 <     * worker on wait queue.
1631 <     *
1632 <     * * If already enqueued and none of the above apply, either park
1633 <     * awaiting signal, or if this is the most recent waiter and pool
1634 <     * is quiescent, relay to idleAwaitWork to check for termination
1635 <     * and possibly shrink pool.
1630 >     * worker on wait queue. Or, if inactivating has caused the pool
1631 >     * to be quiescent, relay to idleAwaitWork to check for
1632 >     * termination and possibly shrink pool.
1633 >     *
1634 >     * * If already enqueued and none of the above apply, possibly
1635 >     * (with 1/2 probability) park awaiting signal, else lingering to
1636 >     * help scan and signal.
1637       *
1638       * @param w the worker (via its WorkQueue)
1639 <     * @return a task or null of none found
1639 >     * @return a task or null if none found
1640       */
1641      private final ForkJoinTask<?> scan(WorkQueue w) {
1642 <        boolean swept = false;                 // true after full empty scan
1643 <        WorkQueue[] ws;                        // volatile read order matters
1644 <        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1645 <        int rs = runState, m = rs & SMASK;
1646 <        if ((ws = workQueues) != null && ws.length > m) {
1647 <            ForkJoinTask<?> task = null;
1648 <            for (int k = 0, j = -2 - m; ; ++j) {
1649 <                WorkQueue q; int b;
1650 <                if (j < 0) {                    // random probes while j negative
1651 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1652 <                }                               // worker (not submit) for odd j
1653 <                else                            // cyclic scan when j >= 0
1654 <                    k += (m >>> 1) | 1;         // step by half to reduce bias
1655 <
1656 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1657 <                    if (ec >= 0)
1658 <                        task = q.pollAt(b);     // steal
1659 <                    break;
1642 >        WorkQueue[] ws; WorkQueue q;           // first update random seed
1643 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1644 >        int ps = plock, m;                     // volatile read order matters
1645 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1646 >            int ec = w.eventCount;             // ec is negative if inactive
1647 >            int step = (r >>> 16) | 1;         // relatively prime
1648 >            for (int j = (m + 1) << 2;  ; --j, r += step) {
1649 >                ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b, n;
1650 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1651 >                    (a = q.array) != null) {   // probably nonempty
1652 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1653 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1654 >                    if (q.base == b && ec >= 0 && t != null &&
1655 >                        U.compareAndSwapObject(a, i, t, null)) {
1656 >                        if ((n = q.top - (q.base = b + 1)) > 0)
1657 >                            signalWork(q, n);
1658 >                        return t;              // taken
1659 >                    }
1660 >                    if (j < m || (ec < 0 && (ec = w.eventCount) < 0)) {
1661 >                        if ((n = q.queueSize() - 1) > 0)
1662 >                            signalWork(q, n);
1663 >                        break;                 // let caller retry after signal
1664 >                    }
1665                  }
1666 <                else if (j > m) {
1667 <                    if (rs == runState)        // staleness check
1668 <                        swept = true;
1666 >                else if (j < 0) {              // end of scan
1667 >                    long c = ctl; int e;
1668 >                    if (plock != ps)           // incomplete sweep
1669 >                        break;
1670 >                    if ((e = (int)c) < 0)      // pool is terminating
1671 >                        w.qlock = -1;
1672 >                    else if (ec >= 0) {        // try to enqueue/inactivate
1673 >                        long nc = ((long)ec |
1674 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1675 >                        w.nextWait = e;
1676 >                        w.eventCount = ec | INT_SIGN; // mark as inactive
1677 >                        if (ctl != c ||
1678 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1679 >                            w.eventCount = ec; // unmark on CAS failure
1680 >                        else if ((int)(c >> AC_SHIFT) == 1 - parallelism)
1681 >                            idleAwaitWork(w, nc, c);  // quiescent
1682 >                    }
1683 >                    else if (w.seed >= 0 && w.eventCount < 0) {
1684 >                        Thread wt = Thread.currentThread();
1685 >                        Thread.interrupted();  // clear status
1686 >                        U.putObject(wt, PARKBLOCKER, this);
1687 >                        w.parker = wt;         // emulate LockSupport.park
1688 >                        if (w.eventCount < 0)  // recheck
1689 >                            U.park(false, 0L);
1690 >                        w.parker = null;
1691 >                        U.putObject(wt, PARKBLOCKER, null);
1692 >                    }
1693                      break;
1694                  }
1695              }
1490            w.seed = r;                        // save seed for next scan
1491            if (task != null)
1492                return task;
1493        }
1494
1495        // Decode ctl on empty scan
1496        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1497        if (!swept) {                          // try to release a waiter
1498            WorkQueue v; Thread p;
1499            if (e > 0 && a < 0 && ws != null &&
1500                (v = ws[((~e << 1) | 1) & m]) != null &&
1501                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1502                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1503                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1504                v.eventCount = (e + E_SEQ) & E_MASK;
1505                if ((p = v.parker) != null)
1506                    U.unpark(p);
1507            }
1508        }
1509        else if ((nr = w.rescans) > 0) {       // continue rescanning
1510            int ac = a + parallelism;
1511            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1512                w.eventCount == ec)
1513                Thread.yield();                // 1 bit randomness for yield call
1514        }
1515        else if (e < 0)                        // pool is terminating
1516            w.runState = -1;
1517        else if (ec >= 0) {                    // try to enqueue
1518            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1519            w.nextWait = e;
1520            w.eventCount = ec | INT_SIGN;      // mark as inactive
1521            if (!U.compareAndSwapLong(this, CTL, c, nc))
1522                w.eventCount = ec;             // back out on CAS failure
1523            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1524                if (a <= 0)                    // ... unless too many active
1525                    w.rescans = a + parallelism;
1526                w.nsteals = 0;
1527                w.totalSteals += ns;
1528            }
1529        }
1530        else{                                  // already queued
1531            if (parallelism == -a)
1532                idleAwaitWork(w);              // quiescent
1533            if (w.eventCount == ec) {
1534                Thread.interrupted();          // clear status
1535                ForkJoinWorkerThread wt = w.owner;
1536                U.putObject(wt, PARKBLOCKER, this);
1537                w.parker = wt;                 // emulate LockSupport.park
1538                if (w.eventCount == ec)        // recheck
1539                    U.park(false, 0L);         // block
1540                w.parker = null;
1541                U.putObject(wt, PARKBLOCKER, null);
1542            }
1696          }
1697          return null;
1698      }
1699  
1700      /**
1701 <     * If inactivating worker w has caused pool to become quiescent,
1702 <     * check for pool termination, and, so long as this is not the
1703 <     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1704 <     * timeout, if ctl has not changed, terminate the worker, which
1705 <     * will in turn wake up another worker to possibly repeat this
1706 <     * process.
1701 >     * If inactivating worker w has caused the pool to become
1702 >     * quiescent, checks for pool termination, and, so long as this is
1703 >     * not the only worker, waits for event for up to a given
1704 >     * duration.  On timeout, if ctl has not changed, terminates the
1705 >     * worker, which will in turn wake up another worker to possibly
1706 >     * repeat this process.
1707       *
1708       * @param w the calling worker
1709 +     * @param currentCtl the ctl value triggering possible quiescence
1710 +     * @param prevCtl the ctl value to restore if thread is terminated
1711       */
1712 <    private void idleAwaitWork(WorkQueue w) {
1713 <        long c; int nw, ec;
1714 <        if (!tryTerminate(false) &&
1715 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1716 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1717 <            (nw = w.nextWait) != 0) {
1718 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1719 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1720 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1566 <            ForkJoinWorkerThread wt = w.owner;
1567 <            while (ctl == c) {
1568 <                long startTime = System.nanoTime();
1712 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1713 >        if (w.eventCount < 0 &&
1714 >            (this == commonPool || !tryTerminate(false, false)) &&
1715 >            (int)prevCtl != 0) {
1716 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1717 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1718 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1719 >            Thread wt = Thread.currentThread();
1720 >            while (ctl == currentCtl) {
1721                  Thread.interrupted();  // timed variant of version in scan()
1722                  U.putObject(wt, PARKBLOCKER, this);
1723                  w.parker = wt;
1724 <                if (ctl == c)
1725 <                    U.park(false, SHRINK_RATE);
1724 >                if (ctl == currentCtl)
1725 >                    U.park(false, parkTime);
1726                  w.parker = null;
1727                  U.putObject(wt, PARKBLOCKER, null);
1728 <                if (ctl != c)
1728 >                if (ctl != currentCtl)
1729                      break;
1730 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1731 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1732 <                    w.runState = -1;          // shrink
1733 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1730 >                if (deadline - System.nanoTime() <= 0L &&
1731 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1732 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1733 >                    w.qlock = -1;   // shrink
1734                      break;
1735                  }
1736              }
# Line 1586 | Line 1738 | public class ForkJoinPool extends Abstra
1738      }
1739  
1740      /**
1741 +     * Scans through queues looking for work while joining a task;
1742 +     * if any are present, signals.
1743 +     *
1744 +     * @param task to return early if done
1745 +     * @param origin an index to start scan
1746 +     */
1747 +    final int helpSignal(ForkJoinTask<?> task, int origin) {
1748 +        WorkQueue[] ws; WorkQueue q; int m, n, s;
1749 +        if (task != null && (ws = workQueues) != null &&
1750 +            (m = ws.length - 1) >= 0) {
1751 +            for (int i = 0; i <= m; ++i) {
1752 +                if ((s = task.status) < 0)
1753 +                    return s;
1754 +                if ((q = ws[(i + origin) & m]) != null &&
1755 +                    (n = q.queueSize()) > 0) {
1756 +                    signalWork(q, n);
1757 +                    if ((int)(ctl >> AC_SHIFT) >= 0)
1758 +                        break;
1759 +                }
1760 +            }
1761 +        }
1762 +        return 0;
1763 +    }
1764 +
1765 +    /**
1766       * Tries to locate and execute tasks for a stealer of the given
1767       * task, or in turn one of its stealers, Traces currentSteal ->
1768       * currentJoin links looking for a thread working on a descendant
# Line 1596 | Line 1773 | public class ForkJoinPool extends Abstra
1773       * leaves hints in workers to speed up subsequent calls. The
1774       * implementation is very branchy to cope with potential
1775       * inconsistencies or loops encountering chains that are stale,
1776 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1600 <     * of these cases are dealt with by just retrying by caller.
1776 >     * unknown, or so long that they are likely cyclic.
1777       *
1778       * @param joiner the joining worker
1779       * @param task the task to join
1780 <     * @return true if found or ran a task (and so is immediately retryable)
1780 >     * @return 0 if no progress can be made, negative if task
1781 >     * known complete, else positive
1782       */
1783 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1784 <        ForkJoinTask<?> subtask;    // current target
1785 <        boolean progress = false;
1786 <        int depth = 0;              // current chain depth
1787 <        int m = runState & SMASK;
1788 <        WorkQueue[] ws = workQueues;
1789 <
1790 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1791 <            outer:for (WorkQueue j = joiner;;) {
1792 <                // Try to find the stealer of subtask, by first using hint
1793 <                WorkQueue stealer = null;
1794 <                WorkQueue v = ws[j.stealHint & m];
1795 <                if (v != null && v.currentSteal == subtask)
1796 <                    stealer = v;
1797 <                else {
1798 <                    for (int i = 1; i <= m; i += 2) {
1799 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1800 <                            stealer = v;
1801 <                            j.stealHint = i; // save hint
1802 <                            break;
1783 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1784 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1785 >        if (joiner != null && task != null) {       // hoist null checks
1786 >            restart: for (;;) {
1787 >                ForkJoinTask<?> subtask = task;     // current target
1788 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1789 >                    WorkQueue[] ws; int m, s, h;
1790 >                    if ((s = task.status) < 0) {
1791 >                        stat = s;
1792 >                        break restart;
1793 >                    }
1794 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1795 >                        break restart;              // shutting down
1796 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1797 >                        v.currentSteal != subtask) {
1798 >                        for (int origin = h;;) {    // find stealer
1799 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1800 >                                (subtask.status < 0 || j.currentJoin != subtask))
1801 >                                continue restart;   // occasional staleness check
1802 >                            if ((v = ws[h]) != null &&
1803 >                                v.currentSteal == subtask) {
1804 >                                j.stealHint = h;    // save hint
1805 >                                break;
1806 >                            }
1807 >                            if (h == origin)
1808 >                                break restart;      // cannot find stealer
1809                          }
1810                      }
1811 <                    if (stealer == null)
1811 >                    for (;;) { // help stealer or descend to its stealer
1812 >                        ForkJoinTask[] a;  int b;
1813 >                        if (subtask.status < 0)     // surround probes with
1814 >                            continue restart;       //   consistency checks
1815 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1816 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1817 >                            ForkJoinTask<?> t =
1818 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1819 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1820 >                                v.currentSteal != subtask)
1821 >                                continue restart;   // stale
1822 >                            stat = 1;               // apparent progress
1823 >                            if (t != null && v.base == b &&
1824 >                                U.compareAndSwapObject(a, i, t, null)) {
1825 >                                v.base = b + 1;     // help stealer
1826 >                                joiner.runSubtask(t);
1827 >                            }
1828 >                            else if (v.base == b && ++steps == MAX_HELP)
1829 >                                break restart;      // v apparently stalled
1830 >                        }
1831 >                        else {                      // empty -- try to descend
1832 >                            ForkJoinTask<?> next = v.currentJoin;
1833 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1834 >                                v.currentSteal != subtask)
1835 >                                continue restart;   // stale
1836 >                            else if (next == null || ++steps == MAX_HELP)
1837 >                                break restart;      // dead-end or maybe cyclic
1838 >                            else {
1839 >                                subtask = next;
1840 >                                j = v;
1841 >                                break;
1842 >                            }
1843 >                        }
1844 >                    }
1845 >                }
1846 >            }
1847 >        }
1848 >        return stat;
1849 >    }
1850 >
1851 >    /**
1852 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1853 >     * and run tasks within the target's computation
1854 >     *
1855 >     * @param task the task to join
1856 >     * @param mode if shared, exit upon completing any task
1857 >     * if all workers are active
1858 >     *
1859 >     */
1860 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1861 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1862 >        if (task != null && (ws = workQueues) != null &&
1863 >            (m = ws.length - 1) >= 0) {
1864 >            for (int j = 1, origin = j;;) {
1865 >                if ((s = task.status) < 0)
1866 >                    return s;
1867 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1868 >                    origin = j;
1869 >                    if (mode == SHARED_QUEUE && (int)(ctl >> AC_SHIFT) >= 0)
1870                          break;
1871                  }
1872 +                else if ((j = (j + 2) & m) == origin)
1873 +                    break;
1874 +            }
1875 +        }
1876 +        return 0;
1877 +    }
1878  
1879 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1880 <                    ForkJoinTask<?> t; int b;
1881 <                    if (task.status < 0)
1882 <                        break outer;
1883 <                    if ((b = q.base) - q.top < 0) {
1884 <                        progress = true;
1885 <                        if (subtask.status < 0)
1886 <                            break outer;               // stale
1887 <                        if ((t = q.pollAt(b)) != null) {
1888 <                            stealer.stealHint = joiner.poolIndex;
1889 <                            joiner.runSubtask(t);
1879 >    /**
1880 >     * Tries to decrement active count (sometimes implicitly) and
1881 >     * possibly release or create a compensating worker in preparation
1882 >     * for blocking. Fails on contention or termination. Otherwise,
1883 >     * adds a new thread if no idle workers are available and pool
1884 >     * may become starved.
1885 >     */
1886 >    final boolean tryCompensate() {
1887 >        int pc = parallelism, e, u, i, tc; long c;
1888 >        WorkQueue[] ws; WorkQueue w; Thread p;
1889 >        if ((e = (int)(c = ctl)) >= 0 && (ws = workQueues) != null) {
1890 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1891 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1892 >                long nc = ((long)(w.nextWait & E_MASK) |
1893 >                           (c & (AC_MASK|TC_MASK)));
1894 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1895 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1896 >                    if ((p = w.parker) != null)
1897 >                        U.unpark(p);
1898 >                    return true;   // replace with idle worker
1899 >                }
1900 >            }
1901 >            else if ((short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) >= 0 &&
1902 >                     (u >> UAC_SHIFT) + pc > 1) {
1903 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1904 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1905 >                    return true;    // no compensation
1906 >            }
1907 >            else if ((tc = u + pc) < MAX_CAP) {
1908 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1909 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1910 >                    Throwable ex = null;
1911 >                    ForkJoinWorkerThread wt = null;
1912 >                    try {
1913 >                        ForkJoinWorkerThreadFactory fac;
1914 >                        if ((fac = factory) != null &&
1915 >                            (wt = fac.newThread(this)) != null) {
1916 >                            wt.start();
1917 >                            return true;
1918                          }
1919 +                    } catch (Throwable rex) {
1920 +                        ex = rex;
1921                      }
1922 <                    else { // empty - try to descend to find stealer's stealer
1646 <                        ForkJoinTask<?> next = stealer.currentJoin;
1647 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1648 <                            next == null || next == subtask)
1649 <                            break outer;  // max depth, stale, dead-end, cyclic
1650 <                        subtask = next;
1651 <                        j = stealer;
1652 <                        break;
1653 <                    }
1922 >                    deregisterWorker(wt, ex); // adjust counts etc
1923                  }
1924              }
1925          }
1926 <        return progress;
1926 >        return false;
1927      }
1928  
1929      /**
1930 <     * If task is at base of some steal queue, steals and executes it.
1930 >     * Helps and/or blocks until the given task is done.
1931       *
1932       * @param joiner the joining worker
1933       * @param task the task
1934 +     * @return task status on exit
1935       */
1936 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1937 <        WorkQueue[] ws;
1938 <        int m = runState & SMASK;
1939 <        if ((ws = workQueues) != null && ws.length > m) {
1940 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1941 <                WorkQueue q = ws[j];
1942 <                if (q != null && q.pollFor(task)) {
1943 <                    joiner.runSubtask(task);
1944 <                    break;
1936 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1937 >        int s = 0;
1938 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1939 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1940 >            joiner.currentJoin = task;
1941 >            do {} while ((s = task.status) >= 0 &&
1942 >                         joiner.queueSize() > 0 &&
1943 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1944 >            if (s >= 0 && (s = task.status) >= 0 &&
1945 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1946 >                (task instanceof CountedCompleter))
1947 >                s = helpComplete(task, LIFO_QUEUE);
1948 >            while (s >= 0 && (s = task.status) >= 0) {
1949 >                if ((joiner.queueSize() > 0 ||           // try helping
1950 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1951 >                    (s = task.status) >= 0 && tryCompensate()) {
1952 >                    if (task.trySetSignal() && (s = task.status) >= 0) {
1953 >                        synchronized (task) {
1954 >                            if (task.status >= 0) {
1955 >                                try {                // see ForkJoinTask
1956 >                                    task.wait();     //  for explanation
1957 >                                } catch (InterruptedException ie) {
1958 >                                }
1959 >                            }
1960 >                            else
1961 >                                task.notifyAll();
1962 >                        }
1963 >                    }
1964 >                    long c;                          // re-activate
1965 >                    do {} while (!U.compareAndSwapLong
1966 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1967                  }
1968              }
1969 +            joiner.currentJoin = prevJoin;
1970 +        }
1971 +        return s;
1972 +    }
1973 +
1974 +    /**
1975 +     * Stripped-down variant of awaitJoin used by timed joins. Tries
1976 +     * to help join only while there is continuous progress. (Caller
1977 +     * will then enter a timed wait.)
1978 +     *
1979 +     * @param joiner the joining worker
1980 +     * @param task the task
1981 +     */
1982 +    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1983 +        int s;
1984 +        if (joiner != null && task != null && (s = task.status) >= 0) {
1985 +            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1986 +            joiner.currentJoin = task;
1987 +            do {} while ((s = task.status) >= 0 &&
1988 +                         joiner.queueSize() > 0 &&
1989 +                         joiner.tryRemoveAndExec(task));
1990 +            if (s >= 0 && (s = task.status) >= 0 &&
1991 +                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1992 +                (task instanceof CountedCompleter))
1993 +                s = helpComplete(task, LIFO_QUEUE);
1994 +            if (s >= 0 && joiner.queueSize() == 0) {
1995 +                do {} while (task.status >= 0 &&
1996 +                             tryHelpStealer(joiner, task) > 0);
1997 +            }
1998 +            joiner.currentJoin = prevJoin;
1999          }
2000      }
2001  
2002      /**
2003 <     * Returns a non-empty steal queue, if one is found during a random,
2004 <     * then cyclic scan, else null.  This method must be retried by
2005 <     * caller if, by the time it tries to use the queue, it is empty.
2003 >     * Returns a (probably) non-empty steal queue, if one is found
2004 >     * during a random, then cyclic scan, else null.  This method must
2005 >     * be retried by caller if, by the time it tries to use the queue,
2006 >     * it is empty.
2007 >     * @param r a (random) seed for scanning
2008       */
2009 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2010 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
2009 >    private WorkQueue findNonEmptyStealQueue(int r) {
2010 >        int step = (r >>> 16) | 1;
2011          for (WorkQueue[] ws;;) {
2012 <            int m = runState & SMASK;
2013 <            if ((ws = workQueues) == null)
2012 >            int ps = plock, m;
2013 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2014                  return null;
2015 <            if (ws.length > m) {
2016 <                WorkQueue q;
2017 <                for (int n = m << 2, k = r, j = -n;;) {
2018 <                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
2019 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
2020 <                        w.seed = r;
1697 <                        return q;
1698 <                    }
1699 <                    else if (j > n)
2015 >            for (int j = (m + 1) << 2; ; r += step) {
2016 >                WorkQueue q = ws[((r << 1) | 1) & m];
2017 >                if (q != null && q.queueSize() > 0)
2018 >                    return q;
2019 >                else if (--j < 0) {
2020 >                    if (plock == ps)
2021                          return null;
2022 <                    else
1702 <                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1703 <
2022 >                    break;
2023                  }
2024              }
2025          }
# Line 1714 | Line 2033 | public class ForkJoinPool extends Abstra
2033       */
2034      final void helpQuiescePool(WorkQueue w) {
2035          for (boolean active = true;;) {
2036 <            w.runLocalTasks();      // exhaust local queue
2037 <            WorkQueue q = findNonEmptyStealQueue(w);
2036 >            ForkJoinTask<?> localTask; // exhaust local queue
2037 >            while ((localTask = w.nextLocalTask()) != null)
2038 >                localTask.doExec();
2039 >            // Similar to loop in scan(), but ignoring submissions
2040 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2041              if (q != null) {
2042 <                ForkJoinTask<?> t;
2042 >                ForkJoinTask<?> t; int b;
2043                  if (!active) {      // re-establish active count
2044                      long c;
2045                      active = true;
2046                      do {} while (!U.compareAndSwapLong
2047                                   (this, CTL, c = ctl, c + AC_UNIT));
2048                  }
2049 <                if ((t = q.poll()) != null)
2049 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2050                      w.runSubtask(t);
2051              }
2052              else {
# Line 1746 | Line 2068 | public class ForkJoinPool extends Abstra
2068      }
2069  
2070      /**
2071 <     * Gets and removes a local or stolen task for the given worker
2071 >     * Gets and removes a local or stolen task for the given worker.
2072       *
2073       * @return a task, if available
2074       */
2075      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2076          for (ForkJoinTask<?> t;;) {
2077 <            WorkQueue q;
2077 >            WorkQueue q; int b;
2078              if ((t = w.nextLocalTask()) != null)
2079                  return t;
2080 <            if ((q = findNonEmptyStealQueue(w)) == null)
2080 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2081                  return null;
2082 <            if ((t = q.poll()) != null)
2082 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2083                  return t;
2084          }
2085      }
2086  
2087      /**
2088 <     * Returns the approximate (non-atomic) number of idle threads per
2089 <     * active thread to offset steal queue size for method
2090 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2091 <     */
2092 <    final int idlePerActive() {
2093 <        // Approximate at powers of two for small values, saturate past 4
2094 <        int p = parallelism;
2095 <        int a = p + (int)(ctl >> AC_SHIFT);
2096 <        return (a > (p >>>= 1) ? 0 :
2097 <                a > (p >>>= 1) ? 1 :
2098 <                a > (p >>>= 1) ? 2 :
2099 <                a > (p >>>= 1) ? 4 :
2100 <                8);
2101 <    }
2102 <
2103 <    // Termination
2104 <
2105 <    /**
2106 <     * Sets SHUTDOWN bit of runState under lock
2107 <     */
2108 <    private void enableShutdown() {
2109 <        ReentrantLock lock = this.lock;
2110 <        if (runState >= 0) {
2111 <            lock.lock();                       // don't need try/finally
2112 <            runState |= SHUTDOWN;
2113 <            lock.unlock();
2088 >     * Returns a cheap heuristic guide for task partitioning when
2089 >     * programmers, frameworks, tools, or languages have little or no
2090 >     * idea about task granularity.  In essence by offering this
2091 >     * method, we ask users only about tradeoffs in overhead vs
2092 >     * expected throughput and its variance, rather than how finely to
2093 >     * partition tasks.
2094 >     *
2095 >     * In a steady state strict (tree-structured) computation, each
2096 >     * thread makes available for stealing enough tasks for other
2097 >     * threads to remain active. Inductively, if all threads play by
2098 >     * the same rules, each thread should make available only a
2099 >     * constant number of tasks.
2100 >     *
2101 >     * The minimum useful constant is just 1. But using a value of 1
2102 >     * would require immediate replenishment upon each steal to
2103 >     * maintain enough tasks, which is infeasible.  Further,
2104 >     * partitionings/granularities of offered tasks should minimize
2105 >     * steal rates, which in general means that threads nearer the top
2106 >     * of computation tree should generate more than those nearer the
2107 >     * bottom. In perfect steady state, each thread is at
2108 >     * approximately the same level of computation tree. However,
2109 >     * producing extra tasks amortizes the uncertainty of progress and
2110 >     * diffusion assumptions.
2111 >     *
2112 >     * So, users will want to use values larger, but not much larger
2113 >     * than 1 to both smooth over transient shortages and hedge
2114 >     * against uneven progress; as traded off against the cost of
2115 >     * extra task overhead. We leave the user to pick a threshold
2116 >     * value to compare with the results of this call to guide
2117 >     * decisions, but recommend values such as 3.
2118 >     *
2119 >     * When all threads are active, it is on average OK to estimate
2120 >     * surplus strictly locally. In steady-state, if one thread is
2121 >     * maintaining say 2 surplus tasks, then so are others. So we can
2122 >     * just use estimated queue length.  However, this strategy alone
2123 >     * leads to serious mis-estimates in some non-steady-state
2124 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2125 >     * many of these by further considering the number of "idle"
2126 >     * threads, that are known to have zero queued tasks, so
2127 >     * compensate by a factor of (#idle/#active) threads.
2128 >     *
2129 >     * Note: The approximation of #busy workers as #active workers is
2130 >     * not very good under current signalling scheme, and should be
2131 >     * improved.
2132 >     */
2133 >    static int getSurplusQueuedTaskCount() {
2134 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2135 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2136 >            int b = (q = (wt = (ForkJoinWorkerThread)t).workQueue).base;
2137 >            int p = (pool = wt.pool).parallelism;
2138 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2139 >            return q.top - b - (a > (p >>>= 1) ? 0 :
2140 >                                a > (p >>>= 1) ? 1 :
2141 >                                a > (p >>>= 1) ? 2 :
2142 >                                a > (p >>>= 1) ? 4 :
2143 >                                8);
2144          }
2145 +        return 0;
2146      }
2147  
2148 +    //  Termination
2149 +
2150      /**
2151 <     * Possibly initiates and/or completes termination.  Upon
2152 <     * termination, cancels all queued tasks and then
2151 >     * Possibly initiates and/or completes termination.  The caller
2152 >     * triggering termination runs three passes through workQueues:
2153 >     * (0) Setting termination status, followed by wakeups of queued
2154 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2155 >     * threads (likely in external tasks, but possibly also blocked in
2156 >     * joins).  Each pass repeats previous steps because of potential
2157 >     * lagging thread creation.
2158       *
2159       * @param now if true, unconditionally terminate, else only
2160       * if no work and no active workers
2161 +     * @param enable if true, enable shutdown when next possible
2162       * @return true if now terminating or terminated
2163       */
2164 <    private boolean tryTerminate(boolean now) {
2164 >    private boolean tryTerminate(boolean now, boolean enable) {
2165 >        if (this == commonPool)                     // cannot shut down
2166 >            return false;
2167          for (long c;;) {
2168              if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2169                  if ((short)(c >>> TC_SHIFT) == -parallelism) {
2170 <                    ReentrantLock lock = this.lock; // signal when no workers
2171 <                    lock.lock();                    // don't need try/finally
2172 <                    termination.signalAll();        // signal when 0 workers
1810 <                    lock.unlock();
2170 >                    synchronized (this) {
2171 >                        notifyAll();                // signal when 0 workers
2172 >                    }
2173                  }
2174                  return true;
2175              }
2176 <            if (!now) {
2177 <                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
2176 >            if (plock >= 0) {                       // not yet enabled
2177 >                int ps;
2178 >                if (!enable)
2179 >                    return false;
2180 >                if (((ps = plock) & PL_LOCK) != 0 ||
2181 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2182 >                    ps = acquirePlock();
2183 >                int nps = SHUTDOWN;
2184 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2185 >                    releasePlock(nps);
2186 >            }
2187 >            if (!now) {                             // check if idle & no tasks
2188 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2189                      hasQueuedSubmissions())
2190                      return false;
2191                  // Check for unqueued inactive workers. One pass suffices.
2192                  WorkQueue[] ws = workQueues; WorkQueue w;
2193                  if (ws != null) {
2194 <                    int n = ws.length;
1822 <                    for (int i = 1; i < n; i += 2) {
2194 >                    for (int i = 1; i < ws.length; i += 2) {
2195                          if ((w = ws[i]) != null && w.eventCount >= 0)
2196                              return false;
2197                      }
2198                  }
2199              }
2200 <            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
2201 <                startTerminating();
2200 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2201 >                for (int pass = 0; pass < 3; ++pass) {
2202 >                    WorkQueue[] ws = workQueues;
2203 >                    if (ws != null) {
2204 >                        WorkQueue w;
2205 >                        int n = ws.length;
2206 >                        for (int i = 0; i < n; ++i) {
2207 >                            if ((w = ws[i]) != null) {
2208 >                                w.qlock = -1;
2209 >                                if (pass > 0) {
2210 >                                    w.cancelAll();
2211 >                                    if (pass > 1)
2212 >                                        w.interruptOwner();
2213 >                                }
2214 >                            }
2215 >                        }
2216 >                        // Wake up workers parked on event queue
2217 >                        int i, e; long cc; Thread p;
2218 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2219 >                               (i = e & SMASK) < n &&
2220 >                               (w = ws[i]) != null) {
2221 >                            long nc = ((long)(w.nextWait & E_MASK) |
2222 >                                       ((cc + AC_UNIT) & AC_MASK) |
2223 >                                       (cc & (TC_MASK|STOP_BIT)));
2224 >                            if (w.eventCount == (e | INT_SIGN) &&
2225 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2226 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2227 >                                w.qlock = -1;
2228 >                                if ((p = w.parker) != null)
2229 >                                    U.unpark(p);
2230 >                            }
2231 >                        }
2232 >                    }
2233 >                }
2234 >            }
2235          }
2236      }
2237  
2238 +    // external operations on common pool
2239 +
2240      /**
2241 <     * Initiates termination: Runs three passes through workQueues:
2242 <     * (0) Setting termination status, followed by wakeups of queued
1836 <     * workers; (1) cancelling all tasks; (2) interrupting lagging
1837 <     * threads (likely in external tasks, but possibly also blocked in
1838 <     * joins).  Each pass repeats previous steps because of potential
1839 <     * lagging thread creation.
2241 >     * Returns common pool queue for a thread that has submitted at
2242 >     * least one task.
2243       */
2244 <    private void startTerminating() {
2245 <        for (int pass = 0; pass < 3; ++pass) {
2246 <            WorkQueue[] ws = workQueues;
2247 <            if (ws != null) {
2248 <                WorkQueue w; Thread wt;
2249 <                int n = ws.length;
2250 <                for (int j = 0; j < n; ++j) {
2251 <                    if ((w = ws[j]) != null) {
2252 <                        w.runState = -1;
2253 <                        if (pass > 0) {
2254 <                            w.cancelAll();
2255 <                            if (pass > 1 && (wt = w.owner) != null &&
2256 <                                !wt.isInterrupted()) {
2257 <                                try {
2258 <                                    wt.interrupt();
2259 <                                } catch (SecurityException ignore) {
2244 >    static WorkQueue commonSubmitterQueue() {
2245 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2246 >        return ((z = submitters.get()) != null &&
2247 >                (p = commonPool) != null &&
2248 >                (ws = p.workQueues) != null &&
2249 >                (m = ws.length - 1) >= 0) ?
2250 >            ws[m & z.seed & SQMASK] : null;
2251 >    }
2252 >
2253 >    /**
2254 >     * Tries to pop the given task from submitter's queue in common pool.
2255 >     */
2256 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2257 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2258 >        ForkJoinTask<?>[] a;  int m, s; long j;
2259 >        if ((z = submitters.get()) != null &&
2260 >            (p = commonPool) != null &&
2261 >            (ws = p.workQueues) != null &&
2262 >            (m = ws.length - 1) >= 0 &&
2263 >            (q = ws[m & z.seed & SQMASK]) != null &&
2264 >            (s = q.top) != q.base &&
2265 >            (a = q.array) != null &&
2266 >            U.getObjectVolatile
2267 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2268 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2269 >            if (q.array == a && q.top == s && // recheck
2270 >                U.compareAndSwapObject(a, j, t, null)) {
2271 >                q.top = s - 1;
2272 >                q.qlock = 0;
2273 >                return true;
2274 >            }
2275 >            q.qlock = 0;
2276 >        }
2277 >        return false;
2278 >    }
2279 >
2280 >    /**
2281 >     * Tries to pop and run local tasks within the same computation
2282 >     * as the given root. On failure, tries to help complete from
2283 >     * other queues via helpComplete.
2284 >     */
2285 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2286 >        ForkJoinTask<?>[] a; int m;
2287 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2288 >            root != null && root.status >= 0) {
2289 >            for (;;) {
2290 >                int s; Object o; CountedCompleter<?> task = null;
2291 >                if ((s = q.top) - q.base > 0) {
2292 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2293 >                    if ((o = U.getObject(a, j)) != null &&
2294 >                        (o instanceof CountedCompleter)) {
2295 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2296 >                        do {
2297 >                            if (r == root) {
2298 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2299 >                                    if (q.array == a && q.top == s &&
2300 >                                        U.compareAndSwapObject(a, j, t, null)) {
2301 >                                        q.top = s - 1;
2302 >                                        task = t;
2303 >                                    }
2304 >                                    q.qlock = 0;
2305                                  }
2306 +                                break;
2307                              }
2308 <                        }
2308 >                        } while ((r = r.completer) != null);
2309                      }
2310                  }
2311 <                // Wake up workers parked on event queue
2312 <                int i, e; long c; Thread p;
2313 <                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
2314 <                       (w = ws[i]) != null &&
2315 <                       w.eventCount == (e | INT_SIGN)) {
2316 <                    long nc = ((long)(w.nextWait & E_MASK) |
2317 <                               ((c + AC_UNIT) & AC_MASK) |
2318 <                               (c & (TC_MASK|STOP_BIT)));
2319 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2320 <                        w.eventCount = (e + E_SEQ) & E_MASK;
2321 <                        if ((p = w.parker) != null)
2322 <                            U.unpark(p);
2323 <                    }
2311 >                if (task != null)
2312 >                    task.doExec();
2313 >                if (root.status < 0 || (int)(ctl >> AC_SHIFT) >= 0)
2314 >                    break;
2315 >                if (task == null) {
2316 >                    if (helpSignal(root, q.poolIndex) >= 0)
2317 >                        helpComplete(root, SHARED_QUEUE);
2318 >                    break;
2319 >                }
2320 >            }
2321 >        }
2322 >    }
2323 >
2324 >    /**
2325 >     * Tries to help execute or signal availability of the given task
2326 >     * from submitter's queue in common pool.
2327 >     */
2328 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2329 >        // Some hard-to-avoid overlap with tryExternalUnpush
2330 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2331 >        ForkJoinTask<?>[] a;  int m, s, n; long j;
2332 >        if (t != null && t.status >= 0 &&
2333 >            (z = submitters.get()) != null &&
2334 >            (p = commonPool) != null &&
2335 >            (ws = p.workQueues) != null &&
2336 >            (m = ws.length - 1) >= 0 &&
2337 >            (q = ws[m & z.seed & SQMASK]) != null &&
2338 >            (a = q.array) != null) {
2339 >            if ((s = q.top) != q.base &&
2340 >                U.getObjectVolatile
2341 >                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2342 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2343 >                if (q.array == a && q.top == s &&
2344 >                    U.compareAndSwapObject(a, j, t, null)) {
2345 >                    q.top = s - 1;
2346 >                    q.qlock = 0;
2347 >                    t.doExec();
2348                  }
2349 +                else
2350 +                    q.qlock = 0;
2351 +            }
2352 +            if (t.status >= 0) {
2353 +                if (t instanceof CountedCompleter)
2354 +                    p.externalHelpComplete(q, t);
2355 +                else
2356 +                    p.helpSignal(t, q.poolIndex);
2357              }
2358          }
2359      }
2360  
2361 +    /**
2362 +     * Restricted version of helpQuiescePool for external callers
2363 +     */
2364 +    static void externalHelpQuiescePool() {
2365 +        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2366 +        int r = ThreadLocalRandom.current().nextInt();
2367 +        if ((p = commonPool) != null &&
2368 +            (q = p.findNonEmptyStealQueue(r)) != null &&
2369 +            (b = q.base) - q.top < 0 &&
2370 +            (t = q.pollAt(b)) != null)
2371 +            t.doExec();
2372 +    }
2373 +
2374      // Exported methods
2375  
2376      // Constructors
# Line 1946 | Line 2440 | public class ForkJoinPool extends Abstra
2440          checkPermission();
2441          if (factory == null)
2442              throw new NullPointerException();
2443 <        if (parallelism <= 0 || parallelism > MAX_ID)
2443 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2444              throw new IllegalArgumentException();
2445          this.parallelism = parallelism;
2446          this.factory = factory;
2447          this.ueh = handler;
2448          this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1955        this.nextPoolIndex = 1;
2449          long np = (long)(-parallelism); // offset ctl counts
2450          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2451 <        // initialize workQueues array with room for 2*parallelism if possible
1959 <        int n = parallelism << 1;
1960 <        if (n >= MAX_ID)
1961 <            n = MAX_ID;
1962 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1963 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1964 <        }
1965 <        this.workQueues = new WorkQueue[(n + 1) << 1];
1966 <        ReentrantLock lck = this.lock = new ReentrantLock();
1967 <        this.termination = lck.newCondition();
1968 <        this.stealCount = new AtomicLong();
1969 <        this.nextWorkerNumber = new AtomicInteger();
2451 >        int pn = nextPoolId();
2452          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2453 <        sb.append(poolNumberGenerator.incrementAndGet());
2453 >        sb.append(Integer.toString(pn));
2454          sb.append("-worker-");
2455          this.workerNamePrefix = sb.toString();
2456 <        // Create initial submission queue
2457 <        WorkQueue sq = tryAddSharedQueue(0);
2458 <        if (sq != null)
2459 <            sq.growArray(false);
2456 >    }
2457 >
2458 >    /**
2459 >     * Constructor for common pool, suitable only for static initialization.
2460 >     * Basically the same as above, but uses smallest possible initial footprint.
2461 >     */
2462 >    ForkJoinPool(int parallelism, long ctl,
2463 >                 ForkJoinWorkerThreadFactory factory,
2464 >                 Thread.UncaughtExceptionHandler handler) {
2465 >        this.parallelism = parallelism;
2466 >        this.ctl = ctl;
2467 >        this.factory = factory;
2468 >        this.ueh = handler;
2469 >        this.localMode = LIFO_QUEUE;
2470 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2471 >    }
2472 >
2473 >    /**
2474 >     * Returns the common pool instance.
2475 >     *
2476 >     * @return the common pool instance
2477 >     */
2478 >    public static ForkJoinPool commonPool() {
2479 >        return commonPool; // cannot be null (if so, a static init error)
2480      }
2481  
2482      // Execution methods
# Line 1996 | Line 2498 | public class ForkJoinPool extends Abstra
2498       *         scheduled for execution
2499       */
2500      public <T> T invoke(ForkJoinTask<T> task) {
2501 <        doSubmit(task);
2501 >        if (task == null)
2502 >            throw new NullPointerException();
2503 >        externalPush(task);
2504          return task.join();
2505      }
2506  
# Line 2009 | Line 2513 | public class ForkJoinPool extends Abstra
2513       *         scheduled for execution
2514       */
2515      public void execute(ForkJoinTask<?> task) {
2516 <        doSubmit(task);
2516 >        if (task == null)
2517 >            throw new NullPointerException();
2518 >        externalPush(task);
2519      }
2520  
2521      // AbstractExecutorService methods
# Line 2026 | Line 2532 | public class ForkJoinPool extends Abstra
2532          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2533              job = (ForkJoinTask<?>) task;
2534          else
2535 <            job = ForkJoinTask.adapt(task, null);
2536 <        doSubmit(job);
2535 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2536 >        externalPush(job);
2537      }
2538  
2539      /**
# Line 2040 | Line 2546 | public class ForkJoinPool extends Abstra
2546       *         scheduled for execution
2547       */
2548      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2549 <        doSubmit(task);
2549 >        if (task == null)
2550 >            throw new NullPointerException();
2551 >        externalPush(task);
2552          return task;
2553      }
2554  
# Line 2050 | Line 2558 | public class ForkJoinPool extends Abstra
2558       *         scheduled for execution
2559       */
2560      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2561 <        if (task == null)
2562 <            throw new NullPointerException();
2055 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2056 <        doSubmit(job);
2561 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2562 >        externalPush(job);
2563          return job;
2564      }
2565  
# Line 2063 | Line 2569 | public class ForkJoinPool extends Abstra
2569       *         scheduled for execution
2570       */
2571      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2572 <        if (task == null)
2573 <            throw new NullPointerException();
2068 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2069 <        doSubmit(job);
2572 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2573 >        externalPush(job);
2574          return job;
2575      }
2576  
# Line 2082 | Line 2586 | public class ForkJoinPool extends Abstra
2586          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2587              job = (ForkJoinTask<?>) task;
2588          else
2589 <            job = ForkJoinTask.adapt(task, null);
2590 <        doSubmit(job);
2589 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2590 >        externalPush(job);
2591          return job;
2592      }
2593  
# Line 2092 | Line 2596 | public class ForkJoinPool extends Abstra
2596       * @throws RejectedExecutionException {@inheritDoc}
2597       */
2598      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2599 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2600 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2601 <        for (Callable<T> task : tasks)
2602 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2603 <        invoke(new InvokeAll<T>(forkJoinTasks));
2604 <
2599 >        // In previous versions of this class, this method constructed
2600 >        // a task to run ForkJoinTask.invokeAll, but now external
2601 >        // invocation of multiple tasks is at least as efficient.
2602 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2603 >        // Workaround needed because method wasn't declared with
2604 >        // wildcards in return type but should have been.
2605          @SuppressWarnings({"unchecked", "rawtypes"})
2606 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2103 <        return futures;
2104 <    }
2606 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2607  
2608 <    static final class InvokeAll<T> extends RecursiveAction {
2609 <        final ArrayList<ForkJoinTask<T>> tasks;
2610 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2611 <        public void compute() {
2612 <            try { invokeAll(tasks); }
2613 <            catch (Exception ignore) {}
2608 >        boolean done = false;
2609 >        try {
2610 >            for (Callable<T> t : tasks) {
2611 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2612 >                externalPush(f);
2613 >                fs.add(f);
2614 >            }
2615 >            for (ForkJoinTask<T> f : fs)
2616 >                f.quietlyJoin();
2617 >            done = true;
2618 >            return futures;
2619 >        } finally {
2620 >            if (!done)
2621 >                for (ForkJoinTask<T> f : fs)
2622 >                    f.cancel(false);
2623          }
2113        private static final long serialVersionUID = -7914297376763021607L;
2624      }
2625  
2626      /**
# Line 2142 | Line 2652 | public class ForkJoinPool extends Abstra
2652      }
2653  
2654      /**
2655 +     * Returns the targeted parallelism level of the common pool.
2656 +     *
2657 +     * @return the targeted parallelism level of the common pool
2658 +     */
2659 +    public static int getCommonPoolParallelism() {
2660 +        return commonPoolParallelism;
2661 +    }
2662 +
2663 +    /**
2664       * Returns the number of worker threads that have started but not
2665       * yet terminated.  The result returned by this method may differ
2666       * from {@link #getParallelism} when threads are created to
# Line 2175 | Line 2694 | public class ForkJoinPool extends Abstra
2694          int rc = 0;
2695          WorkQueue[] ws; WorkQueue w;
2696          if ((ws = workQueues) != null) {
2697 <            int n = ws.length;
2698 <            for (int i = 1; i < n; i += 2) {
2180 <                Thread.State s; ForkJoinWorkerThread wt;
2181 <                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2182 <                    w.eventCount >= 0 &&
2183 <                    (s = wt.getState()) != Thread.State.BLOCKED &&
2184 <                    s != Thread.State.WAITING &&
2185 <                    s != Thread.State.TIMED_WAITING)
2697 >            for (int i = 1; i < ws.length; i += 2) {
2698 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2699                      ++rc;
2700              }
2701          }
# Line 2228 | Line 2741 | public class ForkJoinPool extends Abstra
2741       * @return the number of steals
2742       */
2743      public long getStealCount() {
2744 <        long count = stealCount.get();
2744 >        long count = stealCount;
2745          WorkQueue[] ws; WorkQueue w;
2746          if ((ws = workQueues) != null) {
2747 <            int n = ws.length;
2235 <            for (int i = 1; i < n; i += 2) {
2747 >            for (int i = 1; i < ws.length; i += 2) {
2748                  if ((w = ws[i]) != null)
2749 <                    count += w.totalSteals;
2749 >                    count += w.nsteals;
2750              }
2751          }
2752          return count;
# Line 2254 | Line 2766 | public class ForkJoinPool extends Abstra
2766          long count = 0;
2767          WorkQueue[] ws; WorkQueue w;
2768          if ((ws = workQueues) != null) {
2769 <            int n = ws.length;
2258 <            for (int i = 1; i < n; i += 2) {
2769 >            for (int i = 1; i < ws.length; i += 2) {
2770                  if ((w = ws[i]) != null)
2771                      count += w.queueSize();
2772              }
# Line 2274 | Line 2785 | public class ForkJoinPool extends Abstra
2785          int count = 0;
2786          WorkQueue[] ws; WorkQueue w;
2787          if ((ws = workQueues) != null) {
2788 <            int n = ws.length;
2278 <            for (int i = 0; i < n; i += 2) {
2788 >            for (int i = 0; i < ws.length; i += 2) {
2789                  if ((w = ws[i]) != null)
2790                      count += w.queueSize();
2791              }
# Line 2292 | Line 2802 | public class ForkJoinPool extends Abstra
2802      public boolean hasQueuedSubmissions() {
2803          WorkQueue[] ws; WorkQueue w;
2804          if ((ws = workQueues) != null) {
2805 <            int n = ws.length;
2296 <            for (int i = 0; i < n; i += 2) {
2805 >            for (int i = 0; i < ws.length; i += 2) {
2806                  if ((w = ws[i]) != null && w.queueSize() != 0)
2807                      return true;
2808              }
# Line 2311 | Line 2820 | public class ForkJoinPool extends Abstra
2820      protected ForkJoinTask<?> pollSubmission() {
2821          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2822          if ((ws = workQueues) != null) {
2823 <            int n = ws.length;
2315 <            for (int i = 0; i < n; i += 2) {
2823 >            for (int i = 0; i < ws.length; i += 2) {
2824                  if ((w = ws[i]) != null && (t = w.poll()) != null)
2825                      return t;
2826              }
# Line 2341 | Line 2849 | public class ForkJoinPool extends Abstra
2849          int count = 0;
2850          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2851          if ((ws = workQueues) != null) {
2852 <            int n = ws.length;
2345 <            for (int i = 0; i < n; ++i) {
2852 >            for (int i = 0; i < ws.length; ++i) {
2853                  if ((w = ws[i]) != null) {
2854                      while ((t = w.poll()) != null) {
2855                          c.add(t);
# Line 2362 | Line 2869 | public class ForkJoinPool extends Abstra
2869       * @return a string identifying this pool, as well as its state
2870       */
2871      public String toString() {
2872 <        long st = getStealCount();
2873 <        long qt = getQueuedTaskCount();
2874 <        long qs = getQueuedSubmissionCount();
2368 <        int rc = getRunningThreadCount();
2369 <        int pc = parallelism;
2872 >        // Use a single pass through workQueues to collect counts
2873 >        long qt = 0L, qs = 0L; int rc = 0;
2874 >        long st = stealCount;
2875          long c = ctl;
2876 +        WorkQueue[] ws; WorkQueue w;
2877 +        if ((ws = workQueues) != null) {
2878 +            for (int i = 0; i < ws.length; ++i) {
2879 +                if ((w = ws[i]) != null) {
2880 +                    int size = w.queueSize();
2881 +                    if ((i & 1) == 0)
2882 +                        qs += size;
2883 +                    else {
2884 +                        qt += size;
2885 +                        st += w.nsteals;
2886 +                        if (w.isApparentlyUnblocked())
2887 +                            ++rc;
2888 +                    }
2889 +                }
2890 +            }
2891 +        }
2892 +        int pc = parallelism;
2893          int tc = pc + (short)(c >>> TC_SHIFT);
2894          int ac = pc + (int)(c >> AC_SHIFT);
2895          if (ac < 0) // ignore transient negative
# Line 2376 | Line 2898 | public class ForkJoinPool extends Abstra
2898          if ((c & STOP_BIT) != 0)
2899              level = (tc == 0) ? "Terminated" : "Terminating";
2900          else
2901 <            level = runState < 0 ? "Shutting down" : "Running";
2901 >            level = plock < 0 ? "Shutting down" : "Running";
2902          return super.toString() +
2903              "[" + level +
2904              ", parallelism = " + pc +
# Line 2390 | Line 2912 | public class ForkJoinPool extends Abstra
2912      }
2913  
2914      /**
2915 <     * Initiates an orderly shutdown in which previously submitted
2916 <     * tasks are executed, but no new tasks will be accepted.
2917 <     * Invocation has no additional effect if already shut down.
2918 <     * Tasks that are in the process of being submitted concurrently
2919 <     * during the course of this method may or may not be rejected.
2915 >     * Possibly initiates an orderly shutdown in which previously
2916 >     * submitted tasks are executed, but no new tasks will be
2917 >     * accepted. Invocation has no effect on execution state if this
2918 >     * is the {@link #commonPool}, and no additional effect if
2919 >     * already shut down.  Tasks that are in the process of being
2920 >     * submitted concurrently during the course of this method may or
2921 >     * may not be rejected.
2922       *
2923       * @throws SecurityException if a security manager exists and
2924       *         the caller is not permitted to modify threads
# Line 2403 | Line 2927 | public class ForkJoinPool extends Abstra
2927       */
2928      public void shutdown() {
2929          checkPermission();
2930 <        enableShutdown();
2407 <        tryTerminate(false);
2930 >        tryTerminate(false, true);
2931      }
2932  
2933      /**
2934 <     * Attempts to cancel and/or stop all tasks, and reject all
2935 <     * subsequently submitted tasks.  Tasks that are in the process of
2936 <     * being submitted or executed concurrently during the course of
2937 <     * this method may or may not be rejected. This method cancels
2938 <     * both existing and unexecuted tasks, in order to permit
2939 <     * termination in the presence of task dependencies. So the method
2940 <     * always returns an empty list (unlike the case for some other
2941 <     * Executors).
2934 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2935 >     * all subsequently submitted tasks.  Invocation has no effect on
2936 >     * execution state if this is the {@link #commonPool}, and no
2937 >     * additional effect if already shut down. Otherwise, tasks that
2938 >     * are in the process of being submitted or executed concurrently
2939 >     * during the course of this method may or may not be
2940 >     * rejected. This method cancels both existing and unexecuted
2941 >     * tasks, in order to permit termination in the presence of task
2942 >     * dependencies. So the method always returns an empty list
2943 >     * (unlike the case for some other Executors).
2944       *
2945       * @return an empty list
2946       * @throws SecurityException if a security manager exists and
# Line 2425 | Line 2950 | public class ForkJoinPool extends Abstra
2950       */
2951      public List<Runnable> shutdownNow() {
2952          checkPermission();
2953 <        enableShutdown();
2429 <        tryTerminate(true);
2953 >        tryTerminate(true, true);
2954          return Collections.emptyList();
2955      }
2956  
# Line 2466 | Line 2990 | public class ForkJoinPool extends Abstra
2990       * @return {@code true} if this pool has been shut down
2991       */
2992      public boolean isShutdown() {
2993 <        return runState < 0;
2993 >        return plock < 0;
2994      }
2995  
2996      /**
2997 <     * Blocks until all tasks have completed execution after a shutdown
2998 <     * request, or the timeout occurs, or the current thread is
2999 <     * interrupted, whichever happens first.
2997 >     * Blocks until all tasks have completed execution after a
2998 >     * shutdown request, or the timeout occurs, or the current thread
2999 >     * is interrupted, whichever happens first. Note that the {@link
3000 >     * #commonPool()} never terminates until program shutdown so
3001 >     * this method will always time out.
3002       *
3003       * @param timeout the maximum time to wait
3004       * @param unit the time unit of the timeout argument
# Line 2483 | Line 3009 | public class ForkJoinPool extends Abstra
3009      public boolean awaitTermination(long timeout, TimeUnit unit)
3010          throws InterruptedException {
3011          long nanos = unit.toNanos(timeout);
3012 <        final ReentrantLock lock = this.lock;
3013 <        lock.lock();
3014 <        try {
3015 <            for (;;) {
3016 <                if (isTerminated())
3017 <                    return true;
3018 <                if (nanos <= 0)
3019 <                    return false;
3020 <                nanos = termination.awaitNanos(nanos);
3012 >        if (isTerminated())
3013 >            return true;
3014 >        long startTime = System.nanoTime();
3015 >        boolean terminated = false;
3016 >        synchronized (this) {
3017 >            for (long waitTime = nanos, millis = 0L;;) {
3018 >                if (terminated = isTerminated() ||
3019 >                    waitTime <= 0L ||
3020 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3021 >                    break;
3022 >                wait(millis);
3023 >                waitTime = nanos - (System.nanoTime() - startTime);
3024              }
2496        } finally {
2497            lock.unlock();
3025          }
3026 +        return terminated;
3027      }
3028  
3029      /**
# Line 2594 | Line 3122 | public class ForkJoinPool extends Abstra
3122      public static void managedBlock(ManagedBlocker blocker)
3123          throws InterruptedException {
3124          Thread t = Thread.currentThread();
3125 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3126 <                          ((ForkJoinWorkerThread)t).pool : null);
3127 <        while (!blocker.isReleasable()) {
3128 <            if (p == null || p.tryCompensate()) {
3129 <                try {
3130 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3131 <                } finally {
3132 <                    if (p != null)
3125 >        if (t instanceof ForkJoinWorkerThread) {
3126 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3127 >            while (!blocker.isReleasable()) { // variant of helpSignal
3128 >                WorkQueue[] ws; WorkQueue q; int m, n;
3129 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3130 >                    for (int i = 0; i <= m; ++i) {
3131 >                        if (blocker.isReleasable())
3132 >                            return;
3133 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3134 >                            p.signalWork(q, n);
3135 >                            if ((int)(p.ctl >> AC_SHIFT) >= 0)
3136 >                                break;
3137 >                        }
3138 >                    }
3139 >                }
3140 >                if (p.tryCompensate()) {
3141 >                    try {
3142 >                        do {} while (!blocker.isReleasable() &&
3143 >                                     !blocker.block());
3144 >                    } finally {
3145                          p.incrementActiveCount();
3146 +                    }
3147 +                    break;
3148                  }
2607                break;
3149              }
3150          }
3151 +        else {
3152 +            do {} while (!blocker.isReleasable() &&
3153 +                         !blocker.block());
3154 +        }
3155      }
3156  
3157      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2614 | Line 3159 | public class ForkJoinPool extends Abstra
3159      // implement RunnableFuture.
3160  
3161      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3162 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3162 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3163      }
3164  
3165      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3166 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3166 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3167      }
3168  
3169      // Unsafe mechanics
3170      private static final sun.misc.Unsafe U;
3171      private static final long CTL;
2627    private static final long RUNSTATE;
3172      private static final long PARKBLOCKER;
3173 +    private static final int ABASE;
3174 +    private static final int ASHIFT;
3175 +    private static final long STEALCOUNT;
3176 +    private static final long PLOCK;
3177 +    private static final long INDEXSEED;
3178 +    private static final long QLOCK;
3179  
3180      static {
3181 <        poolNumberGenerator = new AtomicInteger();
3182 <        modifyThreadPermission = new RuntimePermission("modifyThread");
3183 <        defaultForkJoinWorkerThreadFactory =
3184 <            new DefaultForkJoinWorkerThreadFactory();
3185 <        int s;
3181 >        // Establish common pool parameters
3182 >        // TBD: limit or report ignored exceptions?
3183 >
3184 >        int par = 0;
3185 >        ForkJoinWorkerThreadFactory fac = null;
3186 >        Thread.UncaughtExceptionHandler handler = null;
3187 >        try {
3188 >            String pp = System.getProperty(propPrefix + "parallelism");
3189 >            String hp = System.getProperty(propPrefix + "exceptionHandler");
3190 >            String fp = System.getProperty(propPrefix + "threadFactory");
3191 >            if (fp != null)
3192 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3193 >                       getSystemClassLoader().loadClass(fp).newInstance());
3194 >            if (hp != null)
3195 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3196 >                           getSystemClassLoader().loadClass(hp).newInstance());
3197 >            if (pp != null)
3198 >                par = Integer.parseInt(pp);
3199 >        } catch (Exception ignore) {
3200 >        }
3201 >
3202 >        int s; // initialize field offsets for CAS etc
3203          try {
3204              U = getUnsafe();
3205              Class<?> k = ForkJoinPool.class;
2639            Class<?> tk = Thread.class;
3206              CTL = U.objectFieldOffset
3207                  (k.getDeclaredField("ctl"));
3208 <            RUNSTATE = U.objectFieldOffset
3209 <                (k.getDeclaredField("runState"));
3208 >            STEALCOUNT = U.objectFieldOffset
3209 >                (k.getDeclaredField("stealCount"));
3210 >            PLOCK = U.objectFieldOffset
3211 >                (k.getDeclaredField("plock"));
3212 >            INDEXSEED = U.objectFieldOffset
3213 >                (k.getDeclaredField("indexSeed"));
3214 >            Class<?> tk = Thread.class;
3215              PARKBLOCKER = U.objectFieldOffset
3216                  (tk.getDeclaredField("parkBlocker"));
3217 +            Class<?> wk = WorkQueue.class;
3218 +            QLOCK = U.objectFieldOffset
3219 +                (wk.getDeclaredField("qlock"));
3220 +            Class<?> ak = ForkJoinTask[].class;
3221 +            ABASE = U.arrayBaseOffset(ak);
3222 +            s = U.arrayIndexScale(ak);
3223 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3224          } catch (Exception e) {
3225              throw new Error(e);
3226          }
3227 +        if ((s & (s-1)) != 0)
3228 +            throw new Error("data type scale not a power of two");
3229 +
3230 +        /*
3231 +         * For extra caution, computations to set up pool state are
3232 +         * here; the constructor just assigns these values to fields.
3233 +         */
3234 +        ForkJoinWorkerThreadFactory defaultFac =
3235 +            defaultForkJoinWorkerThreadFactory =
3236 +            new DefaultForkJoinWorkerThreadFactory();
3237 +        if (fac == null)
3238 +            fac = defaultFac;
3239 +        if (par <= 0)
3240 +            par = Runtime.getRuntime().availableProcessors();
3241 +        if (par > MAX_CAP)
3242 +            par = MAX_CAP;
3243 +        long np = (long)(-par); // precompute initial ctl value
3244 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3245 +
3246 +        commonPoolParallelism = par;
3247 +        commonPool = new ForkJoinPool(par, ct, fac, handler);
3248 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3249 +        submitters = new ThreadLocal<Submitter>();
3250      }
3251  
3252      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines