ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.12 by jsr166, Tue Jul 21 18:11:44 2009 UTC vs.
Revision 1.116 by dl, Fri Jan 27 17:27:28 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.atomic.AtomicInteger;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.ReentrantLock;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
29 < * ForkJoinPool provides the entry point for submissions from
30 < * non-ForkJoinTasks, as well as management and monitoring operations.
31 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
28 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 > * A {@code ForkJoinPool} provides the entry point for submissions
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31 > * monitoring operations.
32   *
33 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
34 < * that they provide <em>work-stealing</em>: all threads in the pool
35 < * attempt to find and execute subtasks created by other active tasks
36 < * (eventually blocking if none exist). This makes them efficient when
37 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
38 < * as the mixed execution of some plain Runnable- or Callable- based
39 < * activities along with ForkJoinTasks. When setting
40 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
41 < * use with fine-grained tasks that are never joined. Otherwise, other
42 < * ExecutorService implementations are typically more appropriate
43 < * choices.
33 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34 > * ExecutorService} mainly by virtue of employing
35 > * <em>work-stealing</em>: all threads in the pool attempt to find and
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45 < * <p>A ForkJoinPool may be constructed with a given parallelism level
46 < * (target pool size), which it attempts to maintain by dynamically
47 < * adding, suspending, or resuming threads, even if some tasks are
48 < * waiting to join others. However, no such adjustments are performed
49 < * in the face of blocked IO or other unmanaged synchronization. The
50 < * nested {@code ManagedBlocker} interface enables extension of
51 < * the kinds of synchronization accommodated.  The target parallelism
52 < * level may also be changed dynamically ({@code setParallelism})
53 < * and thread construction can be limited using methods
45 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
45 > * <p>A {@code ForkJoinPool} is constructed with a given target
46 > * parallelism level; by default, equal to the number of available
47 > * processors. The pool attempts to maintain enough active (or
48 > * available) threads by dynamically adding, suspending, or resuming
49 > * internal worker threads, even if some tasks are stalled waiting to
50 > * join others. However, no such adjustments are guaranteed in the
51 > * face of blocked IO or other unmanaged synchronization. The nested
52 > * {@link ManagedBlocker} interface enables extension of the kinds of
53 > * synchronization accommodated.
54   *
55   * <p>In addition to execution and lifecycle control methods, this
56   * class provides status check methods (for example
57 < * {@code getStealCount}) that are intended to aid in developing,
57 > * {@link #getStealCount}) that are intended to aid in developing,
58   * tuning, and monitoring fork/join applications. Also, method
59 < * {@code toString} returns indications of pool state in a
59 > * {@link #toString} returns indications of pool state in a
60   * convenient form for informal monitoring.
61   *
62 + * <p> As is the case with other ExecutorServices, there are three
63 + * main task execution methods summarized in the following
64 + * table. These are designed to be used primarily by clients not
65 + * already engaged in fork/join computations in the current pool.  The
66 + * main forms of these methods accept instances of {@code
67 + * ForkJoinTask}, but overloaded forms also allow mixed execution of
68 + * plain {@code Runnable}- or {@code Callable}- based activities as
69 + * well.  However, tasks that are already executing in a pool should
70 + * normally instead use the within-computation forms listed in the
71 + * table unless using async event-style tasks that are not usually
72 + * joined, in which case there is little difference among choice of
73 + * methods.
74 + *
75 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
76 + *  <tr>
77 + *    <td></td>
78 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
79 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange async execution</td>
83 + *    <td> {@link #execute(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork}</td>
85 + *  </tr>
86 + *  <tr>
87 + *    <td> <b>Await and obtain result</td>
88 + *    <td> {@link #invoke(ForkJoinTask)}</td>
89 + *    <td> {@link ForkJoinTask#invoke}</td>
90 + *  </tr>
91 + *  <tr>
92 + *    <td> <b>Arrange exec and obtain Future</td>
93 + *    <td> {@link #submit(ForkJoinTask)}</td>
94 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
95 + *  </tr>
96 + * </table>
97 + *
98 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
99 + * used for all parallel task execution in a program or subsystem.
100 + * Otherwise, use would not usually outweigh the construction and
101 + * bookkeeping overhead of creating a large set of threads. For
102 + * example, a common pool could be used for the {@code SortTasks}
103 + * illustrated in {@link RecursiveAction}. Because {@code
104 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
105 + * daemon} mode, there is typically no need to explicitly {@link
106 + * #shutdown} such a pool upon program exit.
107 + *
108 + *  <pre> {@code
109 + * static final ForkJoinPool mainPool = new ForkJoinPool();
110 + * ...
111 + * public void sort(long[] array) {
112 + *   mainPool.invoke(new SortTask(array, 0, array.length));
113 + * }}</pre>
114 + *
115   * <p><b>Implementation notes</b>: This implementation restricts the
116   * maximum number of running threads to 32767. Attempts to create
117 < * pools with greater than the maximum result in
118 < * IllegalArgumentExceptions.
117 > * pools with greater than the maximum number result in
118 > * {@code IllegalArgumentException}.
119 > *
120 > * <p>This implementation rejects submitted tasks (that is, by throwing
121 > * {@link RejectedExecutionException}) only when the pool is shut down
122 > * or internal resources have been exhausted.
123 > *
124 > * @since 1.7
125 > * @author Doug Lea
126   */
127   public class ForkJoinPool extends AbstractExecutorService {
128  
129      /*
130 <     * See the extended comments interspersed below for design,
131 <     * rationale, and walkthroughs.
132 <     */
133 <
134 <    /** Mask for packing and unpacking shorts */
135 <    private static final int  shortMask = 0xffff;
136 <
137 <    /** Max pool size -- must be a power of two minus 1 */
138 <    private static final int MAX_THREADS =  0x7FFF;
139 <
140 <    /**
141 <     * Factory for creating new ForkJoinWorkerThreads.  A
142 <     * ForkJoinWorkerThreadFactory must be defined and used for
143 <     * ForkJoinWorkerThread subclasses that extend base functionality
144 <     * or initialize threads with different contexts.
130 >     * Implementation Overview
131 >     *
132 >     * This class and its nested classes provide the main
133 >     * functionality and control for a set of worker threads:
134 >     * Submissions from non-FJ threads enter into submission
135 >     * queues. Workers take these tasks and typically split them into
136 >     * subtasks that may be stolen by other workers.  Preference rules
137 >     * give first priority to processing tasks from their own queues
138 >     * (LIFO or FIFO, depending on mode), then to randomized FIFO
139 >     * steals of tasks in other queues.
140 >     *
141 >     * WorkQueues.
142 >     * ==========
143 >     *
144 >     * Most operations occur within work-stealing queues (in nested
145 >     * class WorkQueue).  These are special forms of Deques that
146 >     * support only three of the four possible end-operations -- push,
147 >     * pop, and poll (aka steal), under the further constraints that
148 >     * push and pop are called only from the owning thread (or, as
149 >     * extended here, under a lock), while poll may be called from
150 >     * other threads.  (If you are unfamiliar with them, you probably
151 >     * want to read Herlihy and Shavit's book "The Art of
152 >     * Multiprocessor programming", chapter 16 describing these in
153 >     * more detail before proceeding.)  The main work-stealing queue
154 >     * design is roughly similar to those in the papers "Dynamic
155 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
156 >     * (http://research.sun.com/scalable/pubs/index.html) and
157 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
158 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
159 >     * The main differences ultimately stem from gc requirements that
160 >     * we null out taken slots as soon as we can, to maintain as small
161 >     * a footprint as possible even in programs generating huge
162 >     * numbers of tasks. To accomplish this, we shift the CAS
163 >     * arbitrating pop vs poll (steal) from being on the indices
164 >     * ("base" and "top") to the slots themselves.  So, both a
165 >     * successful pop and poll mainly entail a CAS of a slot from
166 >     * non-null to null.  Because we rely on CASes of references, we
167 >     * do not need tag bits on base or top.  They are simple ints as
168 >     * used in any circular array-based queue (see for example
169 >     * ArrayDeque).  Updates to the indices must still be ordered in a
170 >     * way that guarantees that top == base means the queue is empty,
171 >     * but otherwise may err on the side of possibly making the queue
172 >     * appear nonempty when a push, pop, or poll have not fully
173 >     * committed. Note that this means that the poll operation,
174 >     * considered individually, is not wait-free. One thief cannot
175 >     * successfully continue until another in-progress one (or, if
176 >     * previously empty, a push) completes.  However, in the
177 >     * aggregate, we ensure at least probabilistic non-blockingness.
178 >     * If an attempted steal fails, a thief always chooses a different
179 >     * random victim target to try next. So, in order for one thief to
180 >     * progress, it suffices for any in-progress poll or new push on
181 >     * any empty queue to complete.
182 >     *
183 >     * This approach also enables support of a user mode in which local
184 >     * task processing is in FIFO, not LIFO order, simply by using
185 >     * poll rather than pop.  This can be useful in message-passing
186 >     * frameworks in which tasks are never joined.  However neither
187 >     * mode considers affinities, loads, cache localities, etc, so
188 >     * rarely provide the best possible performance on a given
189 >     * machine, but portably provide good throughput by averaging over
190 >     * these factors.  (Further, even if we did try to use such
191 >     * information, we do not usually have a basis for exploiting
192 >     * it. For example, some sets of tasks profit from cache
193 >     * affinities, but others are harmed by cache pollution effects.)
194 >     *
195 >     * WorkQueues are also used in a similar way for tasks submitted
196 >     * to the pool. We cannot mix these tasks in the same queues used
197 >     * for work-stealing (this would contaminate lifo/fifo
198 >     * processing). Instead, we loosely associate submission queues
199 >     * with submitting threads, using a form of hashing.  The
200 >     * ThreadLocal Submitter class contains a value initially used as
201 >     * a hash code for choosing existing queues, but may be randomly
202 >     * repositioned upon contention with other submitters.  In
203 >     * essence, submitters act like workers except that they never
204 >     * take tasks, and they are multiplexed on to a finite number of
205 >     * shared work queues. However, classes are set up so that future
206 >     * extensions could allow submitters to optionally help perform
207 >     * tasks as well. Pool submissions from internal workers are also
208 >     * allowed, but use randomized rather than thread-hashed queue
209 >     * indices to avoid imbalance.  Insertion of tasks in shared mode
210 >     * requires a lock (mainly to protect in the case of resizing) but
211 >     * we use only a simple spinlock (using bits in field runState),
212 >     * because submitters encountering a busy queue try or create
213 >     * others so never block.
214 >     *
215 >     * Management.
216 >     * ==========
217 >     *
218 >     * The main throughput advantages of work-stealing stem from
219 >     * decentralized control -- workers mostly take tasks from
220 >     * themselves or each other. We cannot negate this in the
221 >     * implementation of other management responsibilities. The main
222 >     * tactic for avoiding bottlenecks is packing nearly all
223 >     * essentially atomic control state into two volatile variables
224 >     * that are by far most often read (not written) as status and
225 >     * consistency checks
226 >     *
227 >     * Field "ctl" contains 64 bits holding all the information needed
228 >     * to atomically decide to add, inactivate, enqueue (on an event
229 >     * queue), dequeue, and/or re-activate workers.  To enable this
230 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231 >     * far in excess of normal operating range) to allow ids, counts,
232 >     * and their negations (used for thresholding) to fit into 16bit
233 >     * fields.
234 >     *
235 >     * Field "runState" contains 32 bits needed to register and
236 >     * deregister WorkQueues, as well as to enable shutdown. It is
237 >     * only modified under a lock (normally briefly held, but
238 >     * occasionally protecting allocations and resizings) but even
239 >     * when locked remains available to check consistency.
240 >     *
241 >     * Recording WorkQueues.  WorkQueues are recorded in the
242 >     * "workQueues" array that is created upon pool construction and
243 >     * expanded if necessary.  Updates to the array while recording
244 >     * new workers and unrecording terminated ones are protected from
245 >     * each other by a lock but the array is otherwise concurrently
246 >     * readable, and accessed directly.  To simplify index-based
247 >     * operations, the array size is always a power of two, and all
248 >     * readers must tolerate null slots. Shared (submission) queues
249 >     * are at even indices, worker queues at odd indices. Grouping
250 >     * them together in this way simplifies and speeds up task
251 >     * scanning. To avoid flailing during start-up, the array is
252 >     * presized to hold twice #parallelism workers (which is unlikely
253 >     * to need further resizing during execution). But to avoid
254 >     * dealing with so many null slots, variable runState includes a
255 >     * mask for the nearest power of two that contains all current
256 >     * workers.  All worker thread creation is on-demand, triggered by
257 >     * task submissions, replacement of terminated workers, and/or
258 >     * compensation for blocked workers. However, all other support
259 >     * code is set up to work with other policies.  To ensure that we
260 >     * do not hold on to worker references that would prevent GC, ALL
261 >     * accesses to workQueues are via indices into the workQueues
262 >     * array (which is one source of some of the messy code
263 >     * constructions here). In essence, the workQueues array serves as
264 >     * a weak reference mechanism. Thus for example the wait queue
265 >     * field of ctl stores indices, not references.  Access to the
266 >     * workQueues in associated methods (for example signalWork) must
267 >     * both index-check and null-check the IDs. All such accesses
268 >     * ignore bad IDs by returning out early from what they are doing,
269 >     * since this can only be associated with termination, in which
270 >     * case it is OK to give up.
271 >     *
272 >     * All uses of the workQueues array check that it is non-null
273 >     * (even if previously non-null). This allows nulling during
274 >     * termination, which is currently not necessary, but remains an
275 >     * option for resource-revocation-based shutdown schemes. It also
276 >     * helps reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * Workqueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute.  When a submission is added or another worker adds a
317 >     * task to a queue that previously had fewer than two tasks, they
318 >     * signal waiting workers (or trigger creation of new ones if
319 >     * fewer than the given parallelism level -- see signalWork).
320 >     * These primary signals are buttressed by signals during rescans;
321 >     * together these cover the signals needed in cases when more
322 >     * tasks are pushed but untaken, and improve performance compared
323 >     * to having one thread wake up all workers.
324 >     *
325 >     * Trimming workers. To release resources after periods of lack of
326 >     * use, a worker starting to wait when the pool is quiescent will
327 >     * time out and terminate if the pool has remained quiescent for
328 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
329 >     * terminating all workers after long periods of non-use.
330 >     *
331 >     * Shutdown and Termination. A call to shutdownNow atomically sets
332 >     * a runState bit and then (non-atomically) sets each workers
333 >     * runState status, cancels all unprocessed tasks, and wakes up
334 >     * all waiting workers.  Detecting whether termination should
335 >     * commence after a non-abrupt shutdown() call requires more work
336 >     * and bookkeeping. We need consensus about quiescence (i.e., that
337 >     * there is no more work). The active count provides a primary
338 >     * indication but non-abrupt shutdown still requires a rechecking
339 >     * scan for any workers that are inactive but not queued.
340 >     *
341 >     * Joining Tasks.
342 >     * ==============
343 >     *
344 >     * Any of several actions may be taken when one worker is waiting
345 >     * to join a task stolen (or always held by) another.  Because we
346 >     * are multiplexing many tasks on to a pool of workers, we can't
347 >     * just let them block (as in Thread.join).  We also cannot just
348 >     * reassign the joiner's run-time stack with another and replace
349 >     * it later, which would be a form of "continuation", that even if
350 >     * possible is not necessarily a good idea since we sometimes need
351 >     * both an unblocked task and its continuation to
352 >     * progress. Instead we combine two tactics:
353 >     *
354 >     *   Helping: Arranging for the joiner to execute some task that it
355 >     *      would be running if the steal had not occurred.
356 >     *
357 >     *   Compensating: Unless there are already enough live threads,
358 >     *      method tryCompensate() may create or re-activate a spare
359 >     *      thread to compensate for blocked joiners until they unblock.
360 >     *
361 >     * A third form (implemented in tryRemoveAndExec and
362 >     * tryPollForAndExec) amounts to helping a hypothetical
363 >     * compensator: If we can readily tell that a possible action of a
364 >     * compensator is to steal and execute the task being joined, the
365 >     * joining thread can do so directly, without the need for a
366 >     * compensation thread (although at the expense of larger run-time
367 >     * stacks, but the tradeoff is typically worthwhile).
368 >     *
369 >     * The ManagedBlocker extension API can't use helping so relies
370 >     * only on compensation in method awaitBlocker.
371 >     *
372 >     * The algorithm in tryHelpStealer entails a form of "linear"
373 >     * helping: Each worker records (in field currentSteal) the most
374 >     * recent task it stole from some other worker. Plus, it records
375 >     * (in field currentJoin) the task it is currently actively
376 >     * joining. Method tryHelpStealer uses these markers to try to
377 >     * find a worker to help (i.e., steal back a task from and execute
378 >     * it) that could hasten completion of the actively joined task.
379 >     * In essence, the joiner executes a task that would be on its own
380 >     * local deque had the to-be-joined task not been stolen. This may
381 >     * be seen as a conservative variant of the approach in Wagner &
382 >     * Calder "Leapfrogging: a portable technique for implementing
383 >     * efficient futures" SIGPLAN Notices, 1993
384 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
385 >     * that: (1) We only maintain dependency links across workers upon
386 >     * steals, rather than use per-task bookkeeping.  This sometimes
387 >     * requires a linear scan of workers array to locate stealers, but
388 >     * often doesn't because stealers leave hints (that may become
389 >     * stale/wrong) of where to locate them.  A stealHint is only a
390 >     * hint because a worker might have had multiple steals and the
391 >     * hint records only one of them (usually the most current).
392 >     * Hinting isolates cost to when it is needed, rather than adding
393 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
394 >     * and potentially cyclic mutual steals.  (3) It is intentionally
395 >     * racy: field currentJoin is updated only while actively joining,
396 >     * which means that we miss links in the chain during long-lived
397 >     * tasks, GC stalls etc (which is OK since blocking in such cases
398 >     * is usually a good idea).  (4) We bound the number of attempts
399 >     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
400 >     * the worker and if necessary replacing it with another.
401 >     *
402 >     * It is impossible to keep exactly the target parallelism number
403 >     * of threads running at any given time.  Determining the
404 >     * existence of conservatively safe helping targets, the
405 >     * availability of already-created spares, and the apparent need
406 >     * to create new spares are all racy, so we rely on multiple
407 >     * retries of each.  Currently, in keeping with on-demand
408 >     * signalling policy, we compensate only if blocking would leave
409 >     * less than one active (non-waiting, non-blocked) worker.
410 >     * Additionally, to avoid some false alarms due to GC, lagging
411 >     * counters, system activity, etc, compensated blocking for joins
412 >     * is only attempted after rechecks stabilize in
413 >     * ForkJoinTask.awaitJoin. (Retries are interspersed with
414 >     * Thread.yield, for good citizenship.)
415 >     *
416 >     * Style notes: There is a lot of representation-level coupling
417 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
418 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
419 >     * managed by ForkJoinPool, so are directly accessed.  There is
420 >     * little point trying to reduce this, since any associated future
421 >     * changes in representations will need to be accompanied by
422 >     * algorithmic changes anyway. All together, these low-level
423 >     * implementation choices produce as much as a factor of 4
424 >     * performance improvement compared to naive implementations, and
425 >     * enable the processing of billions of tasks per second, at the
426 >     * expense of some ugliness.
427 >     *
428 >     * Methods signalWork() and scan() are the main bottlenecks so are
429 >     * especially heavily micro-optimized/mangled.  There are lots of
430 >     * inline assignments (of form "while ((local = field) != 0)")
431 >     * which are usually the simplest way to ensure the required read
432 >     * orderings (which are sometimes critical). This leads to a
433 >     * "C"-like style of listing declarations of these locals at the
434 >     * heads of methods or blocks.  There are several occurrences of
435 >     * the unusual "do {} while (!cas...)"  which is the simplest way
436 >     * to force an update of a CAS'ed variable. There are also other
437 >     * coding oddities that help some methods perform reasonably even
438 >     * when interpreted (not compiled).
439 >     *
440 >     * The order of declarations in this file is: (1) declarations of
441 >     * statics (2) fields (along with constants used when unpacking
442 >     * some of them), listed in an order that tends to reduce
443 >     * contention among them a bit under most JVMs; (3) nested
444 >     * classes; (4) internal control methods; (5) callbacks and other
445 >     * support for ForkJoinTask methods; (6) exported methods (plus a
446 >     * few little helpers); (7) static block initializing all statics
447 >     * in a minimally dependent order.
448 >     */
449 >
450 >    /**
451 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
452 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
453 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
454 >     * functionality or initialize threads with different contexts.
455       */
456      public static interface ForkJoinWorkerThreadFactory {
457          /**
458           * Returns a new worker thread operating in the given pool.
459           *
460           * @param pool the pool this thread works in
461 <         * @throws NullPointerException if pool is null
461 >         * @throws NullPointerException if the pool is null
462           */
463          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
464      }
465  
466      /**
467 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
467 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
468       * new ForkJoinWorkerThread.
469       */
470 <    static class  DefaultForkJoinWorkerThreadFactory
470 >    static class DefaultForkJoinWorkerThreadFactory
471          implements ForkJoinWorkerThreadFactory {
472          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
473 <            try {
97 <                return new ForkJoinWorkerThread(pool);
98 <            } catch (OutOfMemoryError oom)  {
99 <                return null;
100 <            }
473 >            return new ForkJoinWorkerThread(pool);
474          }
475      }
476  
# Line 106 | Line 479 | public class ForkJoinPool extends Abstra
479       * overridden in ForkJoinPool constructors.
480       */
481      public static final ForkJoinWorkerThreadFactory
482 <        defaultForkJoinWorkerThreadFactory =
110 <        new DefaultForkJoinWorkerThreadFactory();
482 >        defaultForkJoinWorkerThreadFactory;
483  
484      /**
485       * Permission required for callers of methods that may start or
486       * kill threads.
487       */
488 <    private static final RuntimePermission modifyThreadPermission =
117 <        new RuntimePermission("modifyThread");
488 >    private static final RuntimePermission modifyThreadPermission;
489  
490      /**
491       * If there is a security manager, makes sure caller has
# Line 129 | Line 500 | public class ForkJoinPool extends Abstra
500      /**
501       * Generator for assigning sequence numbers as pool names.
502       */
503 <    private static final AtomicInteger poolNumberGenerator =
133 <        new AtomicInteger();
503 >    private static final AtomicInteger poolNumberGenerator;
504  
505      /**
506 <     * Array holding all worker threads in the pool. Initialized upon
507 <     * first use. Array size must be a power of two.  Updates and
508 <     * replacements are protected by workerLock, but it is always kept
509 <     * in a consistent enough state to be randomly accessed without
510 <     * locking by workers performing work-stealing.
506 >     * Bits and masks for control variables
507 >     *
508 >     * Field ctl is a long packed with:
509 >     * AC: Number of active running workers minus target parallelism (16 bits)
510 >     * TC: Number of total workers minus target parallelism (16 bits)
511 >     * ST: true if pool is terminating (1 bit)
512 >     * EC: the wait count of top waiting thread (15 bits)
513 >     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
514 >     *
515 >     * When convenient, we can extract the upper 32 bits of counts and
516 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
517 >     * (int)ctl.  The ec field is never accessed alone, but always
518 >     * together with id and st. The offsets of counts by the target
519 >     * parallelism and the positionings of fields makes it possible to
520 >     * perform the most common checks via sign tests of fields: When
521 >     * ac is negative, there are not enough active workers, when tc is
522 >     * negative, there are not enough total workers, when id is
523 >     * negative, there is at least one waiting worker, and when e is
524 >     * negative, the pool is terminating.  To deal with these possibly
525 >     * negative fields, we use casts in and out of "short" and/or
526 >     * signed shifts to maintain signedness.
527 >     *
528 >     * When a thread is queued (inactivated), its eventCount field is
529 >     * negative, which is the only way to tell if a worker is
530 >     * prevented from executing tasks, even though it must continue to
531 >     * scan for them to avoid queuing races.
532 >     *
533 >     * Field runState is an int packed with:
534 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
535 >     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
536 >     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
537 >     *
538 >     * The combination of mask and sequence number enables simple
539 >     * consistency checks: Staleness of read-only operations on the
540 >     * workers and queues arrays can be checked by comparing runState
541 >     * before vs after the reads. The low 16 bits (i.e, anding with
542 >     * SMASK) hold (the smallest power of two covering all worker
543 >     * indices, minus one.  The mask for queues (vs workers) is twice
544 >     * this value plus 1.
545 >     */
546 >
547 >    // bit positions/shifts for fields
548 >    private static final int  AC_SHIFT   = 48;
549 >    private static final int  TC_SHIFT   = 32;
550 >    private static final int  ST_SHIFT   = 31;
551 >    private static final int  EC_SHIFT   = 16;
552 >
553 >    // bounds
554 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
555 >    private static final int  SMASK      = 0xffff;  // mask short bits
556 >    private static final int  SHORT_SIGN = 1 << 15;
557 >    private static final int  INT_SIGN   = 1 << 31;
558 >
559 >    // masks
560 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
561 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
562 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
563 >
564 >    // units for incrementing and decrementing
565 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
566 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
567 >
568 >    // masks and units for dealing with u = (int)(ctl >>> 32)
569 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
570 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
571 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
572 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
573 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
574 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
575 >
576 >    // masks and units for dealing with e = (int)ctl
577 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
578 >    private static final int E_SEQ       = 1 << EC_SHIFT;
579 >
580 >    // runState bits
581 >    private static final int SHUTDOWN    = 1 << 31;
582 >    private static final int RS_SEQ      = 1 << 16;
583 >    private static final int RS_SEQ_MASK = 0x7fff0000;
584 >
585 >    // access mode for WorkQueue
586 >    static final int LIFO_QUEUE          =  0;
587 >    static final int FIFO_QUEUE          =  1;
588 >    static final int SHARED_QUEUE        = -1;
589 >
590 >    /**
591 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
592 >     * task when the pool is quiescent to instead try to shrink the
593 >     * number of workers.  The exact value does not matter too
594 >     * much. It must be short enough to release resources during
595 >     * sustained periods of idleness, but not so short that threads
596 >     * are continually re-created.
597 >     */
598 >    private static final long SHRINK_RATE =
599 >        4L * 1000L * 1000L * 1000L; // 4 seconds
600 >
601 >    /**
602 >     * The timeout value for attempted shrinkage, includes
603 >     * some slop to cope with system timer imprecision.
604 >     */
605 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
606 >
607 >    /**
608 >     * The maximum stolen->joining link depth allowed in tryHelpStealer.
609 >     * Depths for legitimate chains are unbounded, but we use a fixed
610 >     * constant to avoid (otherwise unchecked) cycles and to bound
611 >     * staleness of traversal parameters at the expense of sometimes
612 >     * blocking when we could be helping.
613       */
614 <    volatile ForkJoinWorkerThread[] workers;
614 >    private static final int MAX_HELP_DEPTH = 16;
615  
616 <    /**
617 <     * Lock protecting access to workers.
616 >    /*
617 >     * Field layout order in this class tends to matter more than one
618 >     * would like. Runtime layout order is only loosely related to
619 >     * declaration order and may differ across JVMs, but the following
620 >     * empirically works OK on current JVMs.
621 >     */
622 >
623 >    volatile long ctl;                       // main pool control
624 >    final int parallelism;                   // parallelism level
625 >    final int localMode;                     // per-worker scheduling mode
626 >    int nextPoolIndex;                       // hint used in registerWorker
627 >    volatile int runState;                   // shutdown status, seq, and mask
628 >    WorkQueue[] workQueues;                  // main registry
629 >    final ReentrantLock lock;                // for registration
630 >    final Condition termination;             // for awaitTermination
631 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
632 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
633 >    final AtomicLong stealCount;             // collect counts when terminated
634 >    final AtomicInteger nextWorkerNumber;    // to create worker name string
635 >    final String workerNamePrefix;           // Prefix for assigning worker names
636 >
637 >    /**
638 >     * Queues supporting work-stealing as well as external task
639 >     * submission. See above for main rationale and algorithms.
640 >     * Implementation relies heavily on "Unsafe" intrinsics
641 >     * and selective use of "volatile":
642 >     *
643 >     * Field "base" is the index (mod array.length) of the least valid
644 >     * queue slot, which is always the next position to steal (poll)
645 >     * from if nonempty. Reads and writes require volatile orderings
646 >     * but not CAS, because updates are only performed after slot
647 >     * CASes.
648 >     *
649 >     * Field "top" is the index (mod array.length) of the next queue
650 >     * slot to push to or pop from. It is written only by owner thread
651 >     * for push, or under lock for trySharedPush, and accessed by
652 >     * other threads only after reading (volatile) base.  Both top and
653 >     * base are allowed to wrap around on overflow, but (top - base)
654 >     * (or more commonly -(base - top) to force volatile read of base
655 >     * before top) still estimates size.
656 >     *
657 >     * The array slots are read and written using the emulation of
658 >     * volatiles/atomics provided by Unsafe. Insertions must in
659 >     * general use putOrderedObject as a form of releasing store to
660 >     * ensure that all writes to the task object are ordered before
661 >     * its publication in the queue. (Although we can avoid one case
662 >     * of this when locked in trySharedPush.) All removals entail a
663 >     * CAS to null.  The array is always a power of two. To ensure
664 >     * safety of Unsafe array operations, all accesses perform
665 >     * explicit null checks and implicit bounds checks via
666 >     * power-of-two masking.
667 >     *
668 >     * In addition to basic queuing support, this class contains
669 >     * fields described elsewhere to control execution. It turns out
670 >     * to work better memory-layout-wise to include them in this
671 >     * class rather than a separate class.
672 >     *
673 >     * Performance on most platforms is very sensitive to placement of
674 >     * instances of both WorkQueues and their arrays -- we absolutely
675 >     * do not want multiple WorkQueue instances or multiple queue
676 >     * arrays sharing cache lines. (It would be best for queue objects
677 >     * and their arrays to share, but there is nothing available to
678 >     * help arrange that).  Unfortunately, because they are recorded
679 >     * in a common array, WorkQueue instances are often moved to be
680 >     * adjacent by garbage collectors. To reduce impact, we use field
681 >     * padding that works OK on common platforms; this effectively
682 >     * trades off slightly slower average field access for the sake of
683 >     * avoiding really bad worst-case access. (Until better JVM
684 >     * support is in place, this padding is dependent on transient
685 >     * properties of JVM field layout rules.)  We also take care in
686 >     * allocating and sizing and resizing the array. Non-shared queue
687 >     * arrays are initialized (via method growArray) by workers before
688 >     * use. Others are allocated on first use.
689       */
690 <    private final ReentrantLock workerLock;
690 >    static final class WorkQueue {
691 >        /**
692 >         * Capacity of work-stealing queue array upon initialization.
693 >         * Must be a power of two; at least 4, but set larger to
694 >         * reduce cacheline sharing among queues.
695 >         */
696 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
697  
698 <    /**
699 <     * Condition for awaitTermination.
700 <     */
701 <    private final Condition termination;
698 >        /**
699 >         * Maximum size for queue arrays. Must be a power of two less
700 >         * than or equal to 1 << (31 - width of array entry) to ensure
701 >         * lack of wraparound of index calculations, but defined to a
702 >         * value a bit less than this to help users trap runaway
703 >         * programs before saturating systems.
704 >         */
705 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
706  
707 <    /**
708 <     * The uncaught exception handler used when any worker
709 <     * abruptly terminates
710 <     */
711 <    private Thread.UncaughtExceptionHandler ueh;
707 >        volatile long totalSteals; // cumulative number of steals
708 >        int seed;                  // for random scanning; initialize nonzero
709 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
710 >        int nextWait;              // encoded record of next event waiter
711 >        int rescans;               // remaining scans until block
712 >        int nsteals;               // top-level task executions since last idle
713 >        final int mode;            // lifo, fifo, or shared
714 >        int poolIndex;             // index of this queue in pool (or 0)
715 >        int stealHint;             // index of most recent known stealer
716 >        volatile int runState;     // 1: locked, -1: terminate; else 0
717 >        volatile int base;         // index of next slot for poll
718 >        int top;                   // index of next slot for push
719 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
720 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
721 >        volatile Thread parker;    // == owner during call to park; else null
722 >        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
723 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
724 >        // Heuristic padding to ameliorate unfortunate memory placements
725 >        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
726 >
727 >        WorkQueue(ForkJoinWorkerThread owner, int mode) {
728 >            this.owner = owner;
729 >            this.mode = mode;
730 >            // Place indices in the center of array (that is not yet allocated)
731 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
732 >        }
733  
734 <    /**
735 <     * Creation factory for worker threads.
736 <     */
737 <    private final ForkJoinWorkerThreadFactory factory;
734 >        /**
735 >         * Returns number of tasks in the queue
736 >         */
737 >        final int queueSize() {
738 >            int n = base - top; // non-owner callers must read base first
739 >            return (n >= 0) ? 0 : -n;
740 >        }
741  
742 <    /**
743 <     * Head of stack of threads that were created to maintain
744 <     * parallelism when other threads blocked, but have since
745 <     * suspended when the parallelism level rose.
746 <     */
747 <    private volatile WaitQueueNode spareStack;
742 >        /**
743 >         * Pushes a task. Call only by owner in unshared queues.
744 >         *
745 >         * @param task the task. Caller must ensure non-null.
746 >         * @param p, if non-null, pool to signal if necessary
747 >         * @throw RejectedExecutionException if array cannot
748 >         * be resized
749 >         */
750 >        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
751 >            ForkJoinTask<?>[] a;
752 >            int s = top, m, n;
753 >            if ((a = array) != null) {    // ignore if queue removed
754 >                U.putOrderedObject
755 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
756 >                if ((n = (top = s + 1) - base) <= 2) {
757 >                    if (p != null)
758 >                        p.signalWork();
759 >                }
760 >                else if (n >= m)
761 >                    growArray(true);
762 >            }
763 >        }
764  
765 <    /**
766 <     * Sum of per-thread steal counts, updated only when threads are
767 <     * idle or terminating.
768 <     */
769 <    private final AtomicLong stealCount;
765 >        /**
766 >         * Pushes a task if lock is free and array is either big
767 >         * enough or can be resized to be big enough.
768 >         *
769 >         * @param task the task. Caller must ensure non-null.
770 >         * @return true if submitted
771 >         */
772 >        final boolean trySharedPush(ForkJoinTask<?> task) {
773 >            boolean submitted = false;
774 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
775 >                ForkJoinTask<?>[] a = array;
776 >                int s = top, n = s - base;
777 >                try {
778 >                    if ((a != null && n < a.length - 1) ||
779 >                        (a = growArray(false)) != null) { // must presize
780 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
781 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
782 >                        top = s + 1;
783 >                        submitted = true;
784 >                    }
785 >                } finally {
786 >                    runState = 0;                         // unlock
787 >                }
788 >            }
789 >            return submitted;
790 >        }
791  
792 <    /**
793 <     * Queue for external submissions.
794 <     */
795 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
792 >        /**
793 >         * Takes next task, if one exists, in FIFO order.
794 >         */
795 >        final ForkJoinTask<?> poll() {
796 >            ForkJoinTask<?>[] a; int b, i;
797 >            while ((b = base) - top < 0 && (a = array) != null &&
798 >                   (i = (a.length - 1) & b) >= 0) {
799 >                int j = (i << ASHIFT) + ABASE;
800 >                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
801 >                if (t != null && base == b &&
802 >                    U.compareAndSwapObject(a, j, t, null)) {
803 >                    base = b + 1;
804 >                    return t;
805 >                }
806 >            }
807 >            return null;
808 >        }
809  
810 <    /**
811 <     * Head of Treiber stack for barrier sync. See below for explanation
812 <     */
813 <    private volatile WaitQueueNode syncStack;
810 >        /**
811 >         * Takes next task, if one exists, in LIFO order.
812 >         * Call only by owner in unshared queues.
813 >         */
814 >        final ForkJoinTask<?> pop() {
815 >            ForkJoinTask<?> t; int m;
816 >            ForkJoinTask<?>[] a = array;
817 >            if (a != null && (m = a.length - 1) >= 0) {
818 >                for (int s; (s = top - 1) - base >= 0;) {
819 >                    int j = ((m & s) << ASHIFT) + ABASE;
820 >                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
821 >                        break;
822 >                    if (U.compareAndSwapObject(a, j, t, null)) {
823 >                        top = s;
824 >                        return t;
825 >                    }
826 >                }
827 >            }
828 >            return null;
829 >        }
830  
831 <    /**
832 <     * The count for event barrier
833 <     */
834 <    private volatile long eventCount;
831 >        /**
832 >         * Takes next task, if one exists, in order specified by mode.
833 >         */
834 >        final ForkJoinTask<?> nextLocalTask() {
835 >            return mode == 0 ? pop() : poll();
836 >        }
837  
838 <    /**
839 <     * Pool number, just for assigning useful names to worker threads
840 <     */
841 <    private final int poolNumber;
838 >        /**
839 >         * Returns next task, if one exists, in order specified by mode.
840 >         */
841 >        final ForkJoinTask<?> peek() {
842 >            ForkJoinTask<?>[] a = array; int m;
843 >            if (a == null || (m = a.length - 1) < 0)
844 >                return null;
845 >            int i = mode == 0 ? top - 1 : base;
846 >            int j = ((i & m) << ASHIFT) + ABASE;
847 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
848 >        }
849 >
850 >        /**
851 >         * Returns task at index b if b is current base of queue.
852 >         */
853 >        final ForkJoinTask<?> pollAt(int b) {
854 >            ForkJoinTask<?>[] a; int i;
855 >            ForkJoinTask<?> task = null;
856 >            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
857 >                int j = (i << ASHIFT) + ABASE;
858 >                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
859 >                if (t != null && base == b &&
860 >                    U.compareAndSwapObject(a, j, t, null)) {
861 >                    base = b + 1;
862 >                    task = t;
863 >                }
864 >            }
865 >            return task;
866 >        }
867 >
868 >        /**
869 >         * Pops the given task only if it is at the current top.
870 >         */
871 >        final boolean tryUnpush(ForkJoinTask<?> t) {
872 >            ForkJoinTask<?>[] a; int s;
873 >            if ((a = array) != null && (s = top) != base &&
874 >                U.compareAndSwapObject
875 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
876 >                top = s;
877 >                return true;
878 >            }
879 >            return false;
880 >        }
881 >
882 >        /**
883 >         * Polls the given task only if it is at the current base.
884 >         */
885 >        final boolean pollFor(ForkJoinTask<?> task) {
886 >            ForkJoinTask<?>[] a; int b, i;
887 >            if ((b = base) - top < 0 && (a = array) != null &&
888 >                (i = (a.length - 1) & b) >= 0) {
889 >                int j = (i << ASHIFT) + ABASE;
890 >                if (U.getObjectVolatile(a, j) == task && base == b &&
891 >                    U.compareAndSwapObject(a, j, task, null)) {
892 >                    base = b + 1;
893 >                    return true;
894 >                }
895 >            }
896 >            return false;
897 >        }
898 >
899 >        /**
900 >         * If present, removes from queue and executes the given task, or
901 >         * any other cancelled task. Returns (true) immediately on any CAS
902 >         * or consistency check failure so caller can retry.
903 >         *
904 >         * @return false if no progress can be made
905 >         */
906 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
907 >            boolean removed = false, empty = true, progress = true;
908 >            ForkJoinTask<?>[] a; int m, s, b, n;
909 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
910 >                (n = (s = top) - (b = base)) > 0) {
911 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
912 >                    int j = ((--s & m) << ASHIFT) + ABASE;
913 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
914 >                    if (t == null)                    // inconsistent length
915 >                        break;
916 >                    else if (t == task) {
917 >                        if (s + 1 == top) {           // pop
918 >                            if (!U.compareAndSwapObject(a, j, task, null))
919 >                                break;
920 >                            top = s;
921 >                            removed = true;
922 >                        }
923 >                        else if (base == b)           // replace with proxy
924 >                            removed = U.compareAndSwapObject(a, j, task,
925 >                                                             new EmptyTask());
926 >                        break;
927 >                    }
928 >                    else if (t.status >= 0)
929 >                        empty = false;
930 >                    else if (s + 1 == top) {          // pop and throw away
931 >                        if (U.compareAndSwapObject(a, j, t, null))
932 >                            top = s;
933 >                        break;
934 >                    }
935 >                    if (--n == 0) {
936 >                        if (!empty && base == b)
937 >                            progress = false;
938 >                        break;
939 >                    }
940 >                }
941 >            }
942 >            if (removed)
943 >                task.doExec();
944 >            return progress;
945 >        }
946 >
947 >        /**
948 >         * Initializes or doubles the capacity of array. Call either
949 >         * by owner or with lock held -- it is OK for base, but not
950 >         * top, to move while resizings are in progress.
951 >         *
952 >         * @param rejectOnFailure if true, throw exception if capacity
953 >         * exceeded (relayed ultimately to user); else return null.
954 >         */
955 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
956 >            ForkJoinTask<?>[] oldA = array;
957 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
958 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
959 >                int oldMask, t, b;
960 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
961 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
962 >                    (t = top) - (b = base) > 0) {
963 >                    int mask = size - 1;
964 >                    do {
965 >                        ForkJoinTask<?> x;
966 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
967 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
968 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
969 >                        if (x != null &&
970 >                            U.compareAndSwapObject(oldA, oldj, x, null))
971 >                            U.putObjectVolatile(a, j, x);
972 >                    } while (++b != t);
973 >                }
974 >                return a;
975 >            }
976 >            else if (!rejectOnFailure)
977 >                return null;
978 >            else
979 >                throw new RejectedExecutionException("Queue capacity exceeded");
980 >        }
981 >
982 >        /**
983 >         * Removes and cancels all known tasks, ignoring any exceptions
984 >         */
985 >        final void cancelAll() {
986 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
987 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
988 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
989 >                ForkJoinTask.cancelIgnoringExceptions(t);
990 >        }
991 >
992 >        // Execution methods
993 >
994 >        /**
995 >         * Removes and runs tasks until empty, using local mode
996 >         * ordering.
997 >         */
998 >        final void runLocalTasks() {
999 >            if (base - top < 0) {
1000 >                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
1001 >                    t.doExec();
1002 >            }
1003 >        }
1004 >
1005 >        /**
1006 >         * Executes a top-level task and any local tasks remaining
1007 >         * after execution.
1008 >         *
1009 >         * @return true unless terminating
1010 >         */
1011 >        final boolean runTask(ForkJoinTask<?> t) {
1012 >            boolean alive = true;
1013 >            if (t != null) {
1014 >                currentSteal = t;
1015 >                t.doExec();
1016 >                runLocalTasks();
1017 >                ++nsteals;
1018 >                currentSteal = null;
1019 >            }
1020 >            else if (runState < 0)            // terminating
1021 >                alive = false;
1022 >            return alive;
1023 >        }
1024 >
1025 >        /**
1026 >         * Executes a non-top-level (stolen) task
1027 >         */
1028 >        final void runSubtask(ForkJoinTask<?> t) {
1029 >            if (t != null) {
1030 >                ForkJoinTask<?> ps = currentSteal;
1031 >                currentSteal = t;
1032 >                t.doExec();
1033 >                currentSteal = ps;
1034 >            }
1035 >        }
1036 >
1037 >        /**
1038 >         * Computes next value for random probes.  Scans don't require
1039 >         * a very high quality generator, but also not a crummy one.
1040 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
1041 >         * This is manually inlined in several usages in ForkJoinPool
1042 >         * to avoid writes inside busy scan loops.
1043 >         */
1044 >        final int nextSeed() {
1045 >            int r = seed;
1046 >            r ^= r << 13;
1047 >            r ^= r >>> 17;
1048 >            r ^= r << 5;
1049 >            return seed = r;
1050 >        }
1051 >
1052 >        // Unsafe mechanics
1053 >        private static final sun.misc.Unsafe U;
1054 >        private static final long RUNSTATE;
1055 >        private static final int ABASE;
1056 >        private static final int ASHIFT;
1057 >        static {
1058 >            int s;
1059 >            try {
1060 >                U = getUnsafe();
1061 >                Class<?> k = WorkQueue.class;
1062 >                Class<?> ak = ForkJoinTask[].class;
1063 >                RUNSTATE = U.objectFieldOffset
1064 >                    (k.getDeclaredField("runState"));
1065 >                ABASE = U.arrayBaseOffset(ak);
1066 >                s = U.arrayIndexScale(ak);
1067 >            } catch (Exception e) {
1068 >                throw new Error(e);
1069 >            }
1070 >            if ((s & (s-1)) != 0)
1071 >                throw new Error("data type scale not a power of two");
1072 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1073 >        }
1074 >    }
1075  
1076      /**
1077 <     * The maximum allowed pool size
1077 >     * Class for artificial tasks that are used to replace the target
1078 >     * of local joins if they are removed from an interior queue slot
1079 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1080 >     * actually do anything beyond having a unique identity.
1081       */
1082 <    private volatile int maxPoolSize;
1082 >    static final class EmptyTask extends ForkJoinTask<Void> {
1083 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1084 >        public Void getRawResult() { return null; }
1085 >        public void setRawResult(Void x) {}
1086 >        public boolean exec() { return true; }
1087 >    }
1088  
1089      /**
1090 <     * The desired parallelism level, updated only under workerLock.
1090 > <<<<<<< ForkJoinPool.java
1091 >     * Per-thread records for (typically non-FJ) threads that submit
1092 >     * to pools. Cureently holds only psuedo-random seed / index that
1093 >     * is used to chose submission queues in method doSubmit. In the
1094 >     * future, this may incorporate a means to implement different
1095 >     * task rejection and resubmission policies.
1096       */
1097 <    private volatile int parallelism;
1097 >    static final class Submitter {
1098 >        int seed; // seed for random submission queue selection
1099 >
1100 >        // Heuristic padding to ameliorate unfortunate memory placements
1101 >        int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
1102 >
1103 >        Submitter() {
1104 >            // Use identityHashCode, forced negative, for seed
1105 >            seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1106 >        }
1107 >
1108 >        /**
1109 >         * Computes next value for random probes.  Like method
1110 >         * WorkQueue.nextSeed, this is manually inlined in several
1111 >         * usages to avoid writes inside busy loops.
1112 >         */
1113 >        final int nextSeed() {
1114 >            int r = seed;
1115 >            r ^= r << 13;
1116 >            r ^= r >>> 17;
1117 >            return seed = r ^= r << 5;
1118 >        }
1119 >    }
1120 >
1121 >    /** ThreadLocal class for Submitters */
1122 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1123 >        public Submitter initialValue() { return new Submitter(); }
1124 >    }
1125  
1126      /**
1127 <     * True if use local fifo, not default lifo, for local polling
1127 >     * Per-thread submission bookeeping. Shared across all pools
1128 >     * to reduce ThreadLocal pollution and because random motion
1129 >     * to avoid contention in one pool is likely to hold for others.
1130       */
1131 <    private volatile boolean locallyFifo;
1131 >    static final ThreadSubmitter submitters = new ThreadSubmitter();
1132  
1133      /**
1134 <     * Holds number of total (i.e., created and not yet terminated)
215 <     * and running (i.e., not blocked on joins or other managed sync)
216 <     * threads, packed into one int to ensure consistent snapshot when
217 <     * making decisions about creating and suspending spare
218 <     * threads. Updated only by CAS.  Note: CASes in
219 <     * updateRunningCount and preJoin running active count is in low
220 <     * word, so need to be modified if this changes
1134 >     * Top-level runloop for workers
1135       */
1136 <    private volatile int workerCounts;
1136 >    final void runWorker(ForkJoinWorkerThread wt) {
1137 >        // Initialize queue array and seed in this thread
1138 >        WorkQueue w = wt.workQueue;
1139 >        w.growArray(false);
1140 >        // Same initial hash as Submitters
1141 >        w.seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1142 >
1143 >        do {} while (w.runTask(scan(w)));
1144 >    }
1145  
1146 <    private static int totalCountOf(int s)           { return s >>> 16;  }
225 <    private static int runningCountOf(int s)         { return s & shortMask; }
226 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1146 >    // Creating, registering and deregistering workers
1147  
1148      /**
1149 <     * Adds delta (which may be negative) to running count.  This must
230 <     * be called before (with negative arg) and after (with positive)
231 <     * any managed synchronization (i.e., mainly, joins).
232 <     * @param delta the number to add
1149 >     * Tries to create and start a worker
1150       */
1151 <    final void updateRunningCount(int delta) {
1152 <        int s;
1153 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1151 >    private void addWorker() {
1152 >        Throwable ex = null;
1153 >        ForkJoinWorkerThread w = null;
1154 >        try {
1155 >            if ((w = factory.newThread(this)) != null) {
1156 >                w.start();
1157 >                return;
1158 >            }
1159 >        } catch (Throwable e) {
1160 >            ex = e;
1161 >        }
1162 >        deregisterWorker(w, ex);
1163      }
1164  
1165      /**
1166 <     * Adds delta (which may be negative) to both total and running
1167 <     * count.  This must be called upon creation and termination of
1168 <     * worker threads.
1169 <     * @param delta the number to add
1166 >     * Callback from ForkJoinWorkerThread constructor to assign a
1167 >     * public name. This must be separate from registerWorker because
1168 >     * it is called during the "super" constructor call in
1169 >     * ForkJoinWorkerThread.
1170       */
1171 <    private void updateWorkerCount(int delta) {
1172 <        int d = delta + (delta << 16); // add to both lo and hi parts
1173 <        int s;
248 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1171 >    final String nextWorkerName() {
1172 >        return workerNamePrefix.concat
1173 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1174      }
1175  
1176      /**
1177 <     * Lifecycle control. High word contains runState, low word
1178 <     * contains the number of workers that are (probably) executing
1179 <     * tasks. This value is atomically incremented before a worker
1180 <     * gets a task to run, and decremented when worker has no tasks
256 <     * and cannot find any. These two fields are bundled together to
257 <     * support correct termination triggering.  Note: activeCount
258 <     * CAS'es cheat by assuming active count is in low word, so need
259 <     * to be modified if this changes
1177 >     * Callback from ForkJoinWorkerThread constructor to establish and
1178 >     * record its WorkQueue
1179 >     *
1180 >     * @param wt the worker thread
1181       */
1182 <    private volatile int runControl;
1183 <
1184 <    // RunState values. Order among values matters
1185 <    private static final int RUNNING     = 0;
1186 <    private static final int SHUTDOWN    = 1;
1187 <    private static final int TERMINATING = 2;
1188 <    private static final int TERMINATED  = 3;
1189 <
1190 <    private static int runStateOf(int c)             { return c >>> 16; }
1191 <    private static int activeCountOf(int c)          { return c & shortMask; }
1192 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1182 >    final void registerWorker(ForkJoinWorkerThread wt) {
1183 >        WorkQueue w = wt.workQueue;
1184 >        ReentrantLock lock = this.lock;
1185 >        lock.lock();
1186 >        try {
1187 >            int k = nextPoolIndex;
1188 >            WorkQueue[] ws = workQueues;
1189 >            if (ws != null) {                       // ignore on shutdown
1190 >                int n = ws.length;
1191 >                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1192 >                    for (k = 1; k < n && ws[k] != null; k += 2)
1193 >                        ;                           // workers are at odd indices
1194 >                    if (k >= n)                     // resize
1195 >                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1196 >                }
1197 >                w.poolIndex = k;
1198 >                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1199 >                ws[k] = w;                          // record worker
1200 >                nextPoolIndex = k + 2;
1201 >                int rs = runState;
1202 >                int m = rs & SMASK;                 // recalculate runState mask
1203 >                if (k > m)
1204 >                    m = (m << 1) + 1;
1205 >                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1206 >            }
1207 >        } finally {
1208 >            lock.unlock();
1209 >        }
1210 >    }
1211  
1212      /**
1213 <     * Try incrementing active count; fail on contention. Called by
1214 <     * workers before/during executing tasks.
1215 <     * @return true on success
1216 <     */
1217 <    final boolean tryIncrementActiveCount() {
1218 <        int c = runControl;
1219 <        return casRunControl(c, c+1);
1213 >     * Final callback from terminating worker, as well as failure to
1214 >     * construct or start a worker in addWorker.  Removes record of
1215 >     * worker from array, and adjusts counts. If pool is shutting
1216 >     * down, tries to complete termination.
1217 >     *
1218 >     * @param wt the worker thread or null if addWorker failed
1219 >     * @param ex the exception causing failure, or null if none
1220 >     */
1221 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1222 >        WorkQueue w = null;
1223 >        if (wt != null && (w = wt.workQueue) != null) {
1224 >            w.runState = -1;                // ensure runState is set
1225 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1226 >            int idx = w.poolIndex;
1227 >            ReentrantLock lock = this.lock;
1228 >            lock.lock();
1229 >            try {                           // remove record from array
1230 >                WorkQueue[] ws = workQueues;
1231 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1232 >                    ws[nextPoolIndex = idx] = null;
1233 >            } finally {
1234 >                lock.unlock();
1235 >            }
1236 >        }
1237 >
1238 >        long c;                             // adjust ctl counts
1239 >        do {} while (!U.compareAndSwapLong
1240 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1241 >                                           ((c - TC_UNIT) & TC_MASK) |
1242 >                                           (c & ~(AC_MASK|TC_MASK)))));
1243 >
1244 >        if (!tryTerminate(false) && w != null) {
1245 >            w.cancelAll();                  // cancel remaining tasks
1246 >            if (w.array != null)            // suppress signal if never ran
1247 >                signalWork();               // wake up or create replacement
1248 >        }
1249 >
1250 >        if (ex != null)                     // rethrow
1251 >            U.throwException(ex);
1252      }
1253  
1254      /**
1255 <     * Tries decrementing active count; fails on contention.
1256 <     * Possibly triggers termination on success.
1257 <     * Called by workers when they can't find tasks.
1258 <     * @return true on success
1259 <     */
1260 <    final boolean tryDecrementActiveCount() {
1261 <        int c = runControl;
1262 <        int nextc = c - 1;
1263 <        if (!casRunControl(c, nextc))
1264 <            return false;
1265 <        if (canTerminateOnShutdown(nextc))
1266 <            terminateOnShutdown();
1267 <        return true;
1255 >     * Tries to add and register a new queue at the given index.
1256 >     *
1257 >     * @param idx the workQueues array index to register the queue
1258 >     * @return the queue, or null if could not add because could
1259 >     * not acquire lock or idx is unusable
1260 >     */
1261 >    private WorkQueue tryAddSharedQueue(int idx) {
1262 >        WorkQueue q = null;
1263 >        ReentrantLock lock = this.lock;
1264 >        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1265 >            // create queue outside of lock but only if apparently free
1266 >            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1267 >            if (lock.tryLock()) {
1268 >                try {
1269 >                    WorkQueue[] ws = workQueues;
1270 >                    if (ws != null && idx < ws.length) {
1271 >                        if ((q = ws[idx]) == null) {
1272 >                            int rs;         // update runState seq
1273 >                            ws[idx] = q = nq;
1274 >                            runState = (((rs = runState) & SHUTDOWN) |
1275 >                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1276 >                        }
1277 >                    }
1278 >                } finally {
1279 >                    lock.unlock();
1280 >                }
1281 >            }
1282 >        }
1283 >        return q;
1284      }
1285  
1286 +    // Maintaining ctl counts
1287 +
1288      /**
1289 <     * Returns true if argument represents zero active count and
301 <     * nonzero runstate, which is the triggering condition for
302 <     * terminating on shutdown.
1289 >     * Increments active count; mainly called upon return from blocking
1290       */
1291 <    private static boolean canTerminateOnShutdown(int c) {
1292 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
1291 >    final void incrementActiveCount() {
1292 >        long c;
1293 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1294      }
1295  
1296      /**
1297 <     * Transition run state to at least the given state. Return true
310 <     * if not already at least given state.
1297 >     * Activates or creates a worker
1298       */
1299 <    private boolean transitionRunStateTo(int state) {
1300 <        for (;;) {
1301 <            int c = runControl;
1302 <            if (runStateOf(c) >= state)
1303 <                return false;
1304 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1305 <                return true;
1299 >    final void signalWork() {
1300 >        /*
1301 >         * The while condition is true if: (there is are too few total
1302 >         * workers OR there is at least one waiter) AND (there are too
1303 >         * few active workers OR the pool is terminating).  The value
1304 >         * of e distinguishes the remaining cases: zero (no waiters)
1305 >         * for create, negative if terminating (in which case do
1306 >         * nothing), else release a waiter. The secondary checks for
1307 >         * release (non-null array etc) can fail if the pool begins
1308 >         * terminating after the test, and don't impose any added cost
1309 >         * because JVMs must perform null and bounds checks anyway.
1310 >         */
1311 >        long c; int e, u;
1312 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1313 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1314 >            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1315 >            if (e == 0) {                    // add a new worker
1316 >                if (U.compareAndSwapLong
1317 >                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1318 >                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1319 >                    addWorker();
1320 >                    break;
1321 >                }
1322 >            }
1323 >            else if (e > 0 && ws != null &&
1324 >                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1325 >                     (w = ws[i]) != null &&
1326 >                     w.eventCount == (e | INT_SIGN)) {
1327 >                if (U.compareAndSwapLong
1328 >                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1329 >                                    ((long)(u + UAC_UNIT) << 32)))) {
1330 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1331 >                    if ((p = w.parker) != null)
1332 >                        U.unpark(p);         // release a waiting worker
1333 >                    break;
1334 >                }
1335 >            }
1336 >            else
1337 >                break;
1338          }
1339      }
1340  
1341      /**
1342 <     * Controls whether to add spares to maintain parallelism
1343 <     */
1344 <    private volatile boolean maintainsParallelism;
1342 >     * Tries to decrement active count (sometimes implicitly) and
1343 >     * possibly release or create a compensating worker in preparation
1344 >     * for blocking. Fails on contention or termination.
1345 >     *
1346 >     * @return true if the caller can block, else should recheck and retry
1347 >     */
1348 >    final boolean tryCompensate() {
1349 >        WorkQueue[] ws; WorkQueue w; Thread p;
1350 >        int pc = parallelism, e, u, ac, tc, i;
1351 >        long c = ctl;
1352 >
1353 >        if ((e = (int)c) >= 0) {
1354 >            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1355 >                e != 0 && (ws = workQueues) != null &&
1356 >                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1357 >                (w = ws[i]) != null) {
1358 >                if (w.eventCount == (e | INT_SIGN) &&
1359 >                    U.compareAndSwapLong
1360 >                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1361 >                                    (c & (AC_MASK|TC_MASK))))) {
1362 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1363 >                    if ((p = w.parker) != null)
1364 >                        U.unpark(p);
1365 >                    return true;             // release an idle worker
1366 >                }
1367 >            }
1368 >            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1369 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1370 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1371 >                    return true;             // no compensation needed
1372 >            }
1373 >            else if (tc + pc < MAX_ID) {
1374 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1375 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1376 >                    addWorker();
1377 >                    return true;             // create replacement
1378 >                }
1379 >            }
1380 >        }
1381 >        return false;
1382 >    }
1383  
1384 <    // Constructors
1384 >    // Submissions
1385  
1386      /**
1387 <     * Creates a ForkJoinPool with a pool size equal to the number of
1388 <     * processors available on the system and using the default
1389 <     * ForkJoinWorkerThreadFactory,
1390 <     * @throws SecurityException if a security manager exists and
334 <     *         the caller is not permitted to modify threads
335 <     *         because it does not hold {@link
336 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1387 >     * Unless shutting down, adds the given task to a submission queue
1388 >     * at submitter's current queue index. If no queue exists at the
1389 >     * index, one is created unless pool lock is busy.  If the queue
1390 >     * and/or lock are busy, another index is randomly chosen.
1391       */
1392 <    public ForkJoinPool() {
1393 <        this(Runtime.getRuntime().availableProcessors(),
1394 <             defaultForkJoinWorkerThreadFactory);
1392 >    private void doSubmit(ForkJoinTask<?> task) {
1393 >        if (task == null)
1394 >            throw new NullPointerException();
1395 >        Submitter s = submitters.get();
1396 >        for (int r = s.seed;;) {
1397 >            WorkQueue q; int k;
1398 >            int rs = runState, m = rs & SMASK;
1399 >            WorkQueue[] ws = workQueues;
1400 >            if (rs < 0 || ws == null)   // shutting down
1401 >                throw new RejectedExecutionException();
1402 >            if (ws.length > m &&        // k must be at index
1403 >                ((q = ws[k = (r << 1) & m]) != null ||
1404 >                 (q = tryAddSharedQueue(k)) != null) &&
1405 >                q.trySharedPush(task)) {
1406 >                signalWork();
1407 >                return;
1408 >            }
1409 >            r ^= r << 13;               // xorshift seed to new position
1410 >            r ^= r >>> 17;
1411 >            if (((s.seed = r ^= r << 5) & m) == 0)
1412 >                Thread.yield();         // occasionally yield if busy
1413 >        }
1414 >    }
1415 >
1416 >
1417 >    // Scanning for tasks
1418 >
1419 >    /**
1420 >     * Scans for and, if found, returns one task, else possibly
1421 >     * inactivates the worker. This method operates on single reads of
1422 >     * volatile state and is designed to be re-invoked continuously in
1423 >     * part because it returns upon detecting inconsistencies,
1424 >     * contention, or state changes that indicate possible success on
1425 >     * re-invocation.
1426 >     *
1427 >     * The scan searches for tasks across queues, randomly selecting
1428 >     * the first #queues probes, favoring steals 2:1 over submissions
1429 >     * (by exploiting even/odd indexing), and then performing a
1430 >     * circular sweep of all queues.  The scan terminates upon either
1431 >     * finding a non-empty queue, or completing a full sweep. If the
1432 >     * worker is not inactivated, it takes and returns a task from
1433 >     * this queue.  On failure to find a task, we take one of the
1434 >     * following actions, after which the caller will retry calling
1435 >     * this method unless terminated.
1436 >     *
1437 >     * * If not a complete sweep, try to release a waiting worker.  If
1438 >     * the scan terminated because the worker is inactivated, then the
1439 >     * released worker will often be the calling worker, and it can
1440 >     * succeed obtaining a task on the next call. Or maybe it is
1441 >     * another worker, but with same net effect. Releasing in other
1442 >     * cases as well ensures that we have enough workers running.
1443 >     *
1444 >     * * If the caller has run a task since the the last empty scan,
1445 >     * return (to allow rescan) if other workers are not also yet
1446 >     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1447 >     * ensure eventual inactivation, and occasional calls to
1448 >     * Thread.yield to help avoid interference with more useful
1449 >     * activities on the system.
1450 >     *
1451 >     * * If pool is terminating, terminate the worker
1452 >     *
1453 >     * * If not already enqueued, try to inactivate and enqueue the
1454 >     * worker on wait queue.
1455 >     *
1456 >     * * If already enqueued and none of the above apply, either park
1457 >     * awaiting signal, or if this is the most recent waiter and pool
1458 >     * is quiescent, relay to idleAwaitWork to check for termination
1459 >     * and possibly shrink pool.
1460 >     *
1461 >     * @param w the worker (via its WorkQueue)
1462 >     * @return a task or null of none found
1463 >     */
1464 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1465 >        boolean swept = false;                 // true after full empty scan
1466 >        WorkQueue[] ws;                        // volatile read order matters
1467 >        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1468 >        int rs = runState, m = rs & SMASK;
1469 >        if ((ws = workQueues) != null && ws.length > m) {
1470 >            ForkJoinTask<?> task = null;
1471 >            for (int k = 0, j = -2 - m; ; ++j) {
1472 >                WorkQueue q; int b;
1473 >                if (j < 0) {                    // random probes while j negative
1474 >                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1475 >                }                               // worker (not submit) for odd j
1476 >                else                            // cyclic scan when j >= 0
1477 >                    k += (m >>> 1) | 1;         // step by half to reduce bias
1478 >
1479 >                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1480 >                    if (ec >= 0)
1481 >                        task = q.pollAt(b);     // steal
1482 >                    break;
1483 >                }
1484 >                else if (j > m) {
1485 >                    if (rs == runState)        // staleness check
1486 >                        swept = true;
1487 >                    break;
1488 >                }
1489 >            }
1490 >            w.seed = r;                        // save seed for next scan
1491 >            if (task != null)
1492 >                return task;
1493 >        }
1494 >
1495 >        // Decode ctl on empty scan
1496 >        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1497 >        if (!swept) {                          // try to release a waiter
1498 >            WorkQueue v; Thread p;
1499 >            if (e > 0 && a < 0 && ws != null &&
1500 >                (v = ws[((~e << 1) | 1) & m]) != null &&
1501 >                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1502 >                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1503 >                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1504 >                v.eventCount = (e + E_SEQ) & E_MASK;
1505 >                if ((p = v.parker) != null)
1506 >                    U.unpark(p);
1507 >            }
1508 >        }
1509 >        else if ((nr = w.rescans) > 0) {       // continue rescanning
1510 >            int ac = a + parallelism;
1511 >            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1512 >                w.eventCount == ec)
1513 >                Thread.yield();                // 1 bit randomness for yield call
1514 >        }
1515 >        else if (e < 0)                        // pool is terminating
1516 >            w.runState = -1;
1517 >        else if (ec >= 0) {                    // try to enqueue
1518 >            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1519 >            w.nextWait = e;
1520 >            w.eventCount = ec | INT_SIGN;      // mark as inactive
1521 >            if (!U.compareAndSwapLong(this, CTL, c, nc))
1522 >                w.eventCount = ec;             // back out on CAS failure
1523 >            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1524 >                if (a <= 0)                    // ... unless too many active
1525 >                    w.rescans = a + parallelism;
1526 >                w.nsteals = 0;
1527 >                w.totalSteals += ns;
1528 >            }
1529 >        }
1530 >        else{                                  // already queued
1531 >            if (parallelism == -a)
1532 >                idleAwaitWork(w);              // quiescent
1533 >            if (w.eventCount == ec) {
1534 >                Thread.interrupted();          // clear status
1535 >                ForkJoinWorkerThread wt = w.owner;
1536 >                U.putObject(wt, PARKBLOCKER, this);
1537 >                w.parker = wt;                 // emulate LockSupport.park
1538 >                if (w.eventCount == ec)        // recheck
1539 >                    U.park(false, 0L);         // block
1540 >                w.parker = null;
1541 >                U.putObject(wt, PARKBLOCKER, null);
1542 >            }
1543 >        }
1544 >        return null;
1545 >    }
1546 >
1547 >    /**
1548 >     * If inactivating worker w has caused pool to become quiescent,
1549 >     * check for pool termination, and, so long as this is not the
1550 >     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1551 >     * timeout, if ctl has not changed, terminate the worker, which
1552 >     * will in turn wake up another worker to possibly repeat this
1553 >     * process.
1554 >     *
1555 >     * @param w the calling worker
1556 >     */
1557 >    private void idleAwaitWork(WorkQueue w) {
1558 >        long c; int nw, ec;
1559 >        if (!tryTerminate(false) &&
1560 >            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1561 >            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1562 >            (nw = w.nextWait) != 0) {
1563 >            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1564 >                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1565 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1566 >            ForkJoinWorkerThread wt = w.owner;
1567 >            while (ctl == c) {
1568 >                long startTime = System.nanoTime();
1569 >                Thread.interrupted();  // timed variant of version in scan()
1570 >                U.putObject(wt, PARKBLOCKER, this);
1571 >                w.parker = wt;
1572 >                if (ctl == c)
1573 >                    U.park(false, SHRINK_RATE);
1574 >                w.parker = null;
1575 >                U.putObject(wt, PARKBLOCKER, null);
1576 >                if (ctl != c)
1577 >                    break;
1578 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1579 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1580 >                    w.runState = -1;          // shrink
1581 >                    w.eventCount = (ec + E_SEQ) | E_MASK;
1582 >                    break;
1583 >                }
1584 >            }
1585 >        }
1586      }
1587  
1588      /**
1589 <     * Creates a ForkJoinPool with the indicated parallelism level
1590 <     * threads, and using the default ForkJoinWorkerThreadFactory,
1591 <     * @param parallelism the number of worker threads
1592 <     * @throws IllegalArgumentException if parallelism less than or
1593 <     * equal to zero
1594 <     * @throws SecurityException if a security manager exists and
1595 <     *         the caller is not permitted to modify threads
1596 <     *         because it does not hold {@link
1597 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1598 <     */
1599 <    public ForkJoinPool(int parallelism) {
1600 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1589 >     * Tries to locate and execute tasks for a stealer of the given
1590 >     * task, or in turn one of its stealers, Traces currentSteal ->
1591 >     * currentJoin links looking for a thread working on a descendant
1592 >     * of the given task and with a non-empty queue to steal back and
1593 >     * execute tasks from. The first call to this method upon a
1594 >     * waiting join will often entail scanning/search, (which is OK
1595 >     * because the joiner has nothing better to do), but this method
1596 >     * leaves hints in workers to speed up subsequent calls. The
1597 >     * implementation is very branchy to cope with potential
1598 >     * inconsistencies or loops encountering chains that are stale,
1599 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1600 >     * of these cases are dealt with by just retrying by caller.
1601 >     *
1602 >     * @param joiner the joining worker
1603 >     * @param task the task to join
1604 >     * @return true if found or ran a task (and so is immediately retryable)
1605 >     */
1606 >    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1607 >        ForkJoinTask<?> subtask;    // current target
1608 >        boolean progress = false;
1609 >        int depth = 0;              // current chain depth
1610 >        int m = runState & SMASK;
1611 >        WorkQueue[] ws = workQueues;
1612 >
1613 >        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1614 >            outer:for (WorkQueue j = joiner;;) {
1615 >                // Try to find the stealer of subtask, by first using hint
1616 >                WorkQueue stealer = null;
1617 >                WorkQueue v = ws[j.stealHint & m];
1618 >                if (v != null && v.currentSteal == subtask)
1619 >                    stealer = v;
1620 >                else {
1621 >                    for (int i = 1; i <= m; i += 2) {
1622 >                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1623 >                            stealer = v;
1624 >                            j.stealHint = i; // save hint
1625 >                            break;
1626 >                        }
1627 >                    }
1628 >                    if (stealer == null)
1629 >                        break;
1630 >                }
1631 >
1632 >                for (WorkQueue q = stealer;;) { // Try to help stealer
1633 >                    ForkJoinTask<?> t; int b;
1634 >                    if (task.status < 0)
1635 >                        break outer;
1636 >                    if ((b = q.base) - q.top < 0) {
1637 >                        progress = true;
1638 >                        if (subtask.status < 0)
1639 >                            break outer;               // stale
1640 >                        if ((t = q.pollAt(b)) != null) {
1641 >                            stealer.stealHint = joiner.poolIndex;
1642 >                            joiner.runSubtask(t);
1643 >                        }
1644 >                    }
1645 >                    else { // empty - try to descend to find stealer's stealer
1646 >                        ForkJoinTask<?> next = stealer.currentJoin;
1647 >                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1648 >                            next == null || next == subtask)
1649 >                            break outer;  // max depth, stale, dead-end, cyclic
1650 >                        subtask = next;
1651 >                        j = stealer;
1652 >                        break;
1653 >                    }
1654 >                }
1655 >            }
1656 >        }
1657 >        return progress;
1658      }
1659  
1660      /**
1661 <     * Creates a ForkJoinPool with parallelism equal to the number of
1662 <     * processors available on the system and using the given
1663 <     * ForkJoinWorkerThreadFactory,
1664 <     * @param factory the factory for creating new threads
363 <     * @throws NullPointerException if factory is null
364 <     * @throws SecurityException if a security manager exists and
365 <     *         the caller is not permitted to modify threads
366 <     *         because it does not hold {@link
367 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1661 >     * If task is at base of some steal queue, steals and executes it.
1662 >     *
1663 >     * @param joiner the joining worker
1664 >     * @param task the task
1665       */
1666 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1667 <        this(Runtime.getRuntime().availableProcessors(), factory);
1666 >    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1667 >        WorkQueue[] ws;
1668 >        int m = runState & SMASK;
1669 >        if ((ws = workQueues) != null && ws.length > m) {
1670 >            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1671 >                WorkQueue q = ws[j];
1672 >                if (q != null && q.pollFor(task)) {
1673 >                    joiner.runSubtask(task);
1674 >                    break;
1675 >                }
1676 >            }
1677 >        }
1678      }
1679  
1680      /**
1681 <     * Creates a ForkJoinPool with the given parallelism and factory.
1682 <     *
1683 <     * @param parallelism the targeted number of worker threads
1684 <     * @param factory the factory for creating new threads
1685 <     * @throws IllegalArgumentException if parallelism less than or
1686 <     * equal to zero, or greater than implementation limit
1687 <     * @throws NullPointerException if factory is null
1688 <     * @throws SecurityException if a security manager exists and
1689 <     *         the caller is not permitted to modify threads
1690 <     *         because it does not hold {@link
1691 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1692 <     */
1693 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1694 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1695 <            throw new IllegalArgumentException();
1696 <        if (factory == null)
1697 <            throw new NullPointerException();
1698 <        checkPermission();
1699 <        this.factory = factory;
1700 <        this.parallelism = parallelism;
1701 <        this.maxPoolSize = MAX_THREADS;
1702 <        this.maintainsParallelism = true;
1703 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1704 <        this.workerLock = new ReentrantLock();
1705 <        this.termination = workerLock.newCondition();
1706 <        this.stealCount = new AtomicLong();
400 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
401 <        // worker array and workers are lazily constructed
1681 >     * Returns a non-empty steal queue, if one is found during a random,
1682 >     * then cyclic scan, else null.  This method must be retried by
1683 >     * caller if, by the time it tries to use the queue, it is empty.
1684 >     */
1685 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1686 >        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1687 >        for (WorkQueue[] ws;;) {
1688 >            int m = runState & SMASK;
1689 >            if ((ws = workQueues) == null)
1690 >                return null;
1691 >            if (ws.length > m) {
1692 >                WorkQueue q;
1693 >                for (int n = m << 2, k = r, j = -n;;) {
1694 >                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1695 >                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1696 >                        w.seed = r;
1697 >                        return q;
1698 >                    }
1699 >                    else if (j > n)
1700 >                        return null;
1701 >                    else
1702 >                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1703 >
1704 >                }
1705 >            }
1706 >        }
1707      }
1708  
1709      /**
1710 <     * Create new worker using factory.
1711 <     * @param index the index to assign worker
1712 <     * @return new worker, or null of factory failed
1713 <     */
1714 <    private ForkJoinWorkerThread createWorker(int index) {
1715 <        Thread.UncaughtExceptionHandler h = ueh;
1716 <        ForkJoinWorkerThread w = factory.newThread(this);
1717 <        if (w != null) {
1718 <            w.poolIndex = index;
1719 <            w.setDaemon(true);
1720 <            w.setAsyncMode(locallyFifo);
1721 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1722 <            if (h != null)
1723 <                w.setUncaughtExceptionHandler(h);
1710 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1711 >     * active count ctl maintenance, but rather than blocking
1712 >     * when tasks cannot be found, we rescan until all others cannot
1713 >     * find tasks either.
1714 >     */
1715 >    final void helpQuiescePool(WorkQueue w) {
1716 >        for (boolean active = true;;) {
1717 >            w.runLocalTasks();      // exhaust local queue
1718 >            WorkQueue q = findNonEmptyStealQueue(w);
1719 >            if (q != null) {
1720 >                ForkJoinTask<?> t;
1721 >                if (!active) {      // re-establish active count
1722 >                    long c;
1723 >                    active = true;
1724 >                    do {} while (!U.compareAndSwapLong
1725 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1726 >                }
1727 >                if ((t = q.poll()) != null)
1728 >                    w.runSubtask(t);
1729 >            }
1730 >            else {
1731 >                long c;
1732 >                if (active) {       // decrement active count without queuing
1733 >                    active = false;
1734 >                    do {} while (!U.compareAndSwapLong
1735 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1736 >                }
1737 >                else
1738 >                    c = ctl;        // re-increment on exit
1739 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1740 >                    do {} while (!U.compareAndSwapLong
1741 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1742 >                    break;
1743 >                }
1744 >            }
1745          }
420        return w;
1746      }
1747  
1748      /**
1749 <     * Returns a good size for worker array given pool size.
1750 <     * Currently requires size to be a power of two.
1749 >     * Gets and removes a local or stolen task for the given worker
1750 >     *
1751 >     * @return a task, if available
1752       */
1753 <    private static int arraySizeFor(int ps) {
1754 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1753 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1754 >        for (ForkJoinTask<?> t;;) {
1755 >            WorkQueue q;
1756 >            if ((t = w.nextLocalTask()) != null)
1757 >                return t;
1758 >            if ((q = findNonEmptyStealQueue(w)) == null)
1759 >                return null;
1760 >            if ((t = q.poll()) != null)
1761 >                return t;
1762 >        }
1763      }
1764  
1765      /**
1766 <     * Creates or resizes array if necessary to hold newLength.
1767 <     * Call only under exclusion or lock.
1768 <     * @return the array
1766 >     * Returns the approximate (non-atomic) number of idle threads per
1767 >     * active thread to offset steal queue size for method
1768 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1769       */
1770 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1771 <        ForkJoinWorkerThread[] ws = workers;
1772 <        if (ws == null)
1773 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1774 <        else if (newLength > ws.length)
1775 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1776 <        else
1777 <            return ws;
1770 >    final int idlePerActive() {
1771 >        // Approximate at powers of two for small values, saturate past 4
1772 >        int p = parallelism;
1773 >        int a = p + (int)(ctl >> AC_SHIFT);
1774 >        return (a > (p >>>= 1) ? 0 :
1775 >                a > (p >>>= 1) ? 1 :
1776 >                a > (p >>>= 1) ? 2 :
1777 >                a > (p >>>= 1) ? 4 :
1778 >                8);
1779      }
1780  
1781 +    // Termination
1782 +
1783      /**
1784 <     * Try to shrink workers into smaller array after one or more terminate
1784 >     * Sets SHUTDOWN bit of runState under lock
1785       */
1786 <    private void tryShrinkWorkerArray() {
1787 <        ForkJoinWorkerThread[] ws = workers;
1788 <        if (ws != null) {
1789 <            int len = ws.length;
1790 <            int last = len - 1;
1791 <            while (last >= 0 && ws[last] == null)
455 <                --last;
456 <            int newLength = arraySizeFor(last+1);
457 <            if (newLength < len)
458 <                workers = Arrays.copyOf(ws, newLength);
1786 >    private void enableShutdown() {
1787 >        ReentrantLock lock = this.lock;
1788 >        if (runState >= 0) {
1789 >            lock.lock();                       // don't need try/finally
1790 >            runState |= SHUTDOWN;
1791 >            lock.unlock();
1792          }
1793      }
1794  
1795      /**
1796 <     * Initialize workers if necessary
1797 <     */
1798 <    final void ensureWorkerInitialization() {
1799 <        ForkJoinWorkerThread[] ws = workers;
1800 <        if (ws == null) {
1801 <            final ReentrantLock lock = this.workerLock;
1802 <            lock.lock();
1803 <            try {
1804 <                ws = workers;
1805 <                if (ws == null) {
1806 <                    int ps = parallelism;
1807 <                    ws = ensureWorkerArrayCapacity(ps);
1808 <                    for (int i = 0; i < ps; ++i) {
1809 <                        ForkJoinWorkerThread w = createWorker(i);
1810 <                        if (w != null) {
1811 <                            ws[i] = w;
1812 <                            w.start();
1813 <                            updateWorkerCount(1);
1814 <                        }
1796 >     * Possibly initiates and/or completes termination.  Upon
1797 >     * termination, cancels all queued tasks and then
1798 >     *
1799 >     * @param now if true, unconditionally terminate, else only
1800 >     * if no work and no active workers
1801 >     * @return true if now terminating or terminated
1802 >     */
1803 >    private boolean tryTerminate(boolean now) {
1804 >        for (long c;;) {
1805 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
1806 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
1807 >                    ReentrantLock lock = this.lock; // signal when no workers
1808 >                    lock.lock();                    // don't need try/finally
1809 >                    termination.signalAll();        // signal when 0 workers
1810 >                    lock.unlock();
1811 >                }
1812 >                return true;
1813 >            }
1814 >            if (!now) {
1815 >                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
1816 >                    hasQueuedSubmissions())
1817 >                    return false;
1818 >                // Check for unqueued inactive workers. One pass suffices.
1819 >                WorkQueue[] ws = workQueues; WorkQueue w;
1820 >                if (ws != null) {
1821 >                    int n = ws.length;
1822 >                    for (int i = 1; i < n; i += 2) {
1823 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
1824 >                            return false;
1825                      }
1826                  }
484            } finally {
485                lock.unlock();
1827              }
1828 +            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
1829 +                startTerminating();
1830          }
1831      }
1832  
1833      /**
1834 <     * Worker creation and startup for threads added via setParallelism.
1834 >     * Initiates termination: Runs three passes through workQueues:
1835 >     * (0) Setting termination status, followed by wakeups of queued
1836 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
1837 >     * threads (likely in external tasks, but possibly also blocked in
1838 >     * joins).  Each pass repeats previous steps because of potential
1839 >     * lagging thread creation.
1840       */
1841 <    private void createAndStartAddedWorkers() {
1842 <        resumeAllSpares();  // Allow spares to convert to nonspare
1843 <        int ps = parallelism;
1844 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1845 <        int len = ws.length;
1846 <        // Sweep through slots, to keep lowest indices most populated
1847 <        int k = 0;
1848 <        while (k < len) {
1849 <            if (ws[k] != null) {
1850 <                ++k;
1851 <                continue;
1852 <            }
1853 <            int s = workerCounts;
1854 <            int tc = totalCountOf(s);
1855 <            int rc = runningCountOf(s);
1856 <            if (rc >= ps || tc >= ps)
1857 <                break;
1858 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1859 <                ForkJoinWorkerThread w = createWorker(k);
1860 <                if (w != null) {
513 <                    ws[k++] = w;
514 <                    w.start();
1841 >    private void startTerminating() {
1842 >        for (int pass = 0; pass < 3; ++pass) {
1843 >            WorkQueue[] ws = workQueues;
1844 >            if (ws != null) {
1845 >                WorkQueue w; Thread wt;
1846 >                int n = ws.length;
1847 >                for (int j = 0; j < n; ++j) {
1848 >                    if ((w = ws[j]) != null) {
1849 >                        w.runState = -1;
1850 >                        if (pass > 0) {
1851 >                            w.cancelAll();
1852 >                            if (pass > 1 && (wt = w.owner) != null &&
1853 >                                !wt.isInterrupted()) {
1854 >                                try {
1855 >                                    wt.interrupt();
1856 >                                } catch (SecurityException ignore) {
1857 >                                }
1858 >                            }
1859 >                        }
1860 >                    }
1861                  }
1862 <                else {
1863 <                    updateWorkerCount(-1); // back out on failed creation
1864 <                    break;
1862 >                // Wake up workers parked on event queue
1863 >                int i, e; long c; Thread p;
1864 >                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
1865 >                       (w = ws[i]) != null &&
1866 >                       w.eventCount == (e | INT_SIGN)) {
1867 >                    long nc = ((long)(w.nextWait & E_MASK) |
1868 >                               ((c + AC_UNIT) & AC_MASK) |
1869 >                               (c & (TC_MASK|STOP_BIT)));
1870 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1871 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1872 >                        if ((p = w.parker) != null)
1873 >                            U.unpark(p);
1874 >                    }
1875                  }
1876              }
1877          }
1878      }
1879  
1880 <    // Execution methods
1880 >    // Exported methods
1881 >
1882 >    // Constructors
1883 >
1884 >    /**
1885 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1886 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1887 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1888 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1889 >     *
1890 >     * @throws SecurityException if a security manager exists and
1891 >     *         the caller is not permitted to modify threads
1892 >     *         because it does not hold {@link
1893 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1894 >     */
1895 >    public ForkJoinPool() {
1896 >        this(Runtime.getRuntime().availableProcessors(),
1897 >             defaultForkJoinWorkerThreadFactory, null, false);
1898 >    }
1899  
1900      /**
1901 <     * Common code for execute, invoke and submit
1901 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1902 >     * level, the {@linkplain
1903 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1904 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1905 >     *
1906 >     * @param parallelism the parallelism level
1907 >     * @throws IllegalArgumentException if parallelism less than or
1908 >     *         equal to zero, or greater than implementation limit
1909 >     * @throws SecurityException if a security manager exists and
1910 >     *         the caller is not permitted to modify threads
1911 >     *         because it does not hold {@link
1912 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1913       */
1914 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1915 <        if (isShutdown())
531 <            throw new RejectedExecutionException();
532 <        if (workers == null)
533 <            ensureWorkerInitialization();
534 <        submissionQueue.offer(task);
535 <        signalIdleWorkers();
1914 >    public ForkJoinPool(int parallelism) {
1915 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1916      }
1917  
1918      /**
1919 <     * Performs the given task; returning its result upon completion
1919 >     * Creates a {@code ForkJoinPool} with the given parameters.
1920 >     *
1921 >     * @param parallelism the parallelism level. For default value,
1922 >     * use {@link java.lang.Runtime#availableProcessors}.
1923 >     * @param factory the factory for creating new threads. For default value,
1924 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1925 >     * @param handler the handler for internal worker threads that
1926 >     * terminate due to unrecoverable errors encountered while executing
1927 >     * tasks. For default value, use {@code null}.
1928 >     * @param asyncMode if true,
1929 >     * establishes local first-in-first-out scheduling mode for forked
1930 >     * tasks that are never joined. This mode may be more appropriate
1931 >     * than default locally stack-based mode in applications in which
1932 >     * worker threads only process event-style asynchronous tasks.
1933 >     * For default value, use {@code false}.
1934 >     * @throws IllegalArgumentException if parallelism less than or
1935 >     *         equal to zero, or greater than implementation limit
1936 >     * @throws NullPointerException if the factory is null
1937 >     * @throws SecurityException if a security manager exists and
1938 >     *         the caller is not permitted to modify threads
1939 >     *         because it does not hold {@link
1940 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1941 >     */
1942 >    public ForkJoinPool(int parallelism,
1943 >                        ForkJoinWorkerThreadFactory factory,
1944 >                        Thread.UncaughtExceptionHandler handler,
1945 >                        boolean asyncMode) {
1946 >        checkPermission();
1947 >        if (factory == null)
1948 >            throw new NullPointerException();
1949 >        if (parallelism <= 0 || parallelism > MAX_ID)
1950 >            throw new IllegalArgumentException();
1951 >        this.parallelism = parallelism;
1952 >        this.factory = factory;
1953 >        this.ueh = handler;
1954 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1955 >        this.nextPoolIndex = 1;
1956 >        long np = (long)(-parallelism); // offset ctl counts
1957 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1958 >        // initialize workQueues array with room for 2*parallelism if possible
1959 >        int n = parallelism << 1;
1960 >        if (n >= MAX_ID)
1961 >            n = MAX_ID;
1962 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1963 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1964 >        }
1965 >        this.workQueues = new WorkQueue[(n + 1) << 1];
1966 >        ReentrantLock lck = this.lock = new ReentrantLock();
1967 >        this.termination = lck.newCondition();
1968 >        this.stealCount = new AtomicLong();
1969 >        this.nextWorkerNumber = new AtomicInteger();
1970 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1971 >        sb.append(poolNumberGenerator.incrementAndGet());
1972 >        sb.append("-worker-");
1973 >        this.workerNamePrefix = sb.toString();
1974 >        // Create initial submission queue
1975 >        WorkQueue sq = tryAddSharedQueue(0);
1976 >        if (sq != null)
1977 >            sq.growArray(false);
1978 >    }
1979 >
1980 >    // Execution methods
1981 >
1982 >    /**
1983 >     * Performs the given task, returning its result upon completion.
1984 >     * If the computation encounters an unchecked Exception or Error,
1985 >     * it is rethrown as the outcome of this invocation.  Rethrown
1986 >     * exceptions behave in the same way as regular exceptions, but,
1987 >     * when possible, contain stack traces (as displayed for example
1988 >     * using {@code ex.printStackTrace()}) of both the current thread
1989 >     * as well as the thread actually encountering the exception;
1990 >     * minimally only the latter.
1991 >     *
1992       * @param task the task
1993       * @return the task's result
1994 <     * @throws NullPointerException if task is null
1995 <     * @throws RejectedExecutionException if pool is shut down
1994 >     * @throws NullPointerException if the task is null
1995 >     * @throws RejectedExecutionException if the task cannot be
1996 >     *         scheduled for execution
1997       */
1998      public <T> T invoke(ForkJoinTask<T> task) {
1999          doSubmit(task);
# Line 549 | Line 2002 | public class ForkJoinPool extends Abstra
2002  
2003      /**
2004       * Arranges for (asynchronous) execution of the given task.
2005 +     *
2006       * @param task the task
2007 <     * @throws NullPointerException if task is null
2008 <     * @throws RejectedExecutionException if pool is shut down
2007 >     * @throws NullPointerException if the task is null
2008 >     * @throws RejectedExecutionException if the task cannot be
2009 >     *         scheduled for execution
2010       */
2011 <    public <T> void execute(ForkJoinTask<T> task) {
2011 >    public void execute(ForkJoinTask<?> task) {
2012          doSubmit(task);
2013      }
2014  
2015      // AbstractExecutorService methods
2016  
2017 +    /**
2018 +     * @throws NullPointerException if the task is null
2019 +     * @throws RejectedExecutionException if the task cannot be
2020 +     *         scheduled for execution
2021 +     */
2022      public void execute(Runnable task) {
2023 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2023 >        if (task == null)
2024 >            throw new NullPointerException();
2025 >        ForkJoinTask<?> job;
2026 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2027 >            job = (ForkJoinTask<?>) task;
2028 >        else
2029 >            job = ForkJoinTask.adapt(task, null);
2030 >        doSubmit(job);
2031      }
2032  
2033 +    /**
2034 +     * Submits a ForkJoinTask for execution.
2035 +     *
2036 +     * @param task the task to submit
2037 +     * @return the task
2038 +     * @throws NullPointerException if the task is null
2039 +     * @throws RejectedExecutionException if the task cannot be
2040 +     *         scheduled for execution
2041 +     */
2042 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2043 +        doSubmit(task);
2044 +        return task;
2045 +    }
2046 +
2047 +    /**
2048 +     * @throws NullPointerException if the task is null
2049 +     * @throws RejectedExecutionException if the task cannot be
2050 +     *         scheduled for execution
2051 +     */
2052      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2053 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2053 >        if (task == null)
2054 >            throw new NullPointerException();
2055 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2056          doSubmit(job);
2057          return job;
2058      }
2059  
2060 +    /**
2061 +     * @throws NullPointerException if the task is null
2062 +     * @throws RejectedExecutionException if the task cannot be
2063 +     *         scheduled for execution
2064 +     */
2065      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2066 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2066 >        if (task == null)
2067 >            throw new NullPointerException();
2068 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2069          doSubmit(job);
2070          return job;
2071      }
2072  
2073 +    /**
2074 +     * @throws NullPointerException if the task is null
2075 +     * @throws RejectedExecutionException if the task cannot be
2076 +     *         scheduled for execution
2077 +     */
2078      public ForkJoinTask<?> submit(Runnable task) {
2079 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2079 >        if (task == null)
2080 >            throw new NullPointerException();
2081 >        ForkJoinTask<?> job;
2082 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2083 >            job = (ForkJoinTask<?>) task;
2084 >        else
2085 >            job = ForkJoinTask.adapt(task, null);
2086          doSubmit(job);
2087          return job;
2088      }
2089  
2090      /**
2091 <     * Adaptor for Runnables. This implements RunnableFuture
2092 <     * to be compliant with AbstractExecutorService constraints
2091 >     * @throws NullPointerException       {@inheritDoc}
2092 >     * @throws RejectedExecutionException {@inheritDoc}
2093       */
588    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
589        implements RunnableFuture<T> {
590        final Runnable runnable;
591        final T resultOnCompletion;
592        T result;
593        AdaptedRunnable(Runnable runnable, T result) {
594            if (runnable == null) throw new NullPointerException();
595            this.runnable = runnable;
596            this.resultOnCompletion = result;
597        }
598        public T getRawResult() { return result; }
599        public void setRawResult(T v) { result = v; }
600        public boolean exec() {
601            runnable.run();
602            result = resultOnCompletion;
603            return true;
604        }
605        public void run() { invoke(); }
606    }
607
608    /**
609     * Adaptor for Callables
610     */
611    static final class AdaptedCallable<T> extends ForkJoinTask<T>
612        implements RunnableFuture<T> {
613        final Callable<T> callable;
614        T result;
615        AdaptedCallable(Callable<T> callable) {
616            if (callable == null) throw new NullPointerException();
617            this.callable = callable;
618        }
619        public T getRawResult() { return result; }
620        public void setRawResult(T v) { result = v; }
621        public boolean exec() {
622            try {
623                result = callable.call();
624                return true;
625            } catch (Error err) {
626                throw err;
627            } catch (RuntimeException rex) {
628                throw rex;
629            } catch (Exception ex) {
630                throw new RuntimeException(ex);
631            }
632        }
633        public void run() { invoke(); }
634    }
635
2094      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2095 <        ArrayList<ForkJoinTask<T>> ts =
2095 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2096              new ArrayList<ForkJoinTask<T>>(tasks.size());
2097 <        for (Callable<T> c : tasks)
2098 <            ts.add(new AdaptedCallable<T>(c));
2099 <        invoke(new InvokeAll<T>(ts));
2100 <        return (List<Future<T>>)(List)ts;
2097 >        for (Callable<T> task : tasks)
2098 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
2099 >        invoke(new InvokeAll<T>(forkJoinTasks));
2100 >
2101 >        @SuppressWarnings({"unchecked", "rawtypes"})
2102 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2103 >        return futures;
2104      }
2105  
2106      static final class InvokeAll<T> extends RecursiveAction {
2107          final ArrayList<ForkJoinTask<T>> tasks;
2108          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2109          public void compute() {
2110 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2110 >            try { invokeAll(tasks); }
2111 >            catch (Exception ignore) {}
2112          }
2113 +        private static final long serialVersionUID = -7914297376763021607L;
2114      }
2115  
653    // Configuration and status settings and queries
654
2116      /**
2117 <     * Returns the factory used for constructing new workers
2117 >     * Returns the factory used for constructing new workers.
2118       *
2119       * @return the factory used for constructing new workers
2120       */
# Line 664 | Line 2125 | public class ForkJoinPool extends Abstra
2125      /**
2126       * Returns the handler for internal worker threads that terminate
2127       * due to unrecoverable errors encountered while executing tasks.
667     * @return the handler, or null if none
668     */
669    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
670        Thread.UncaughtExceptionHandler h;
671        final ReentrantLock lock = this.workerLock;
672        lock.lock();
673        try {
674            h = ueh;
675        } finally {
676            lock.unlock();
677        }
678        return h;
679    }
680
681    /**
682     * Sets the handler for internal worker threads that terminate due
683     * to unrecoverable errors encountered while executing tasks.
684     * Unless set, the current default or ThreadGroup handler is used
685     * as handler.
2128       *
2129 <     * @param h the new handler
688 <     * @return the old handler, or null if none
689 <     * @throws SecurityException if a security manager exists and
690 <     *         the caller is not permitted to modify threads
691 <     *         because it does not hold {@link
692 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2129 >     * @return the handler, or {@code null} if none
2130       */
2131 <    public Thread.UncaughtExceptionHandler
2132 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
696 <        checkPermission();
697 <        Thread.UncaughtExceptionHandler old = null;
698 <        final ReentrantLock lock = this.workerLock;
699 <        lock.lock();
700 <        try {
701 <            old = ueh;
702 <            ueh = h;
703 <            ForkJoinWorkerThread[] ws = workers;
704 <            if (ws != null) {
705 <                for (int i = 0; i < ws.length; ++i) {
706 <                    ForkJoinWorkerThread w = ws[i];
707 <                    if (w != null)
708 <                        w.setUncaughtExceptionHandler(h);
709 <                }
710 <            }
711 <        } finally {
712 <            lock.unlock();
713 <        }
714 <        return old;
715 <    }
716 <
717 <
718 <    /**
719 <     * Sets the target parallelism level of this pool.
720 <     * @param parallelism the target parallelism
721 <     * @throws IllegalArgumentException if parallelism less than or
722 <     * equal to zero or greater than maximum size bounds
723 <     * @throws SecurityException if a security manager exists and
724 <     *         the caller is not permitted to modify threads
725 <     *         because it does not hold {@link
726 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
727 <     */
728 <    public void setParallelism(int parallelism) {
729 <        checkPermission();
730 <        if (parallelism <= 0 || parallelism > maxPoolSize)
731 <            throw new IllegalArgumentException();
732 <        final ReentrantLock lock = this.workerLock;
733 <        lock.lock();
734 <        try {
735 <            if (!isTerminating()) {
736 <                int p = this.parallelism;
737 <                this.parallelism = parallelism;
738 <                if (parallelism > p)
739 <                    createAndStartAddedWorkers();
740 <                else
741 <                    trimSpares();
742 <            }
743 <        } finally {
744 <            lock.unlock();
745 <        }
746 <        signalIdleWorkers();
2131 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2132 >        return ueh;
2133      }
2134  
2135      /**
2136 <     * Returns the targeted number of worker threads in this pool.
2136 >     * Returns the targeted parallelism level of this pool.
2137       *
2138 <     * @return the targeted number of worker threads in this pool
2138 >     * @return the targeted parallelism level of this pool
2139       */
2140      public int getParallelism() {
2141          return parallelism;
# Line 757 | Line 2143 | public class ForkJoinPool extends Abstra
2143  
2144      /**
2145       * Returns the number of worker threads that have started but not
2146 <     * yet terminated.  This result returned by this method may differ
2147 <     * from {@code getParallelism} when threads are created to
2146 >     * yet terminated.  The result returned by this method may differ
2147 >     * from {@link #getParallelism} when threads are created to
2148       * maintain parallelism when others are cooperatively blocked.
2149       *
2150       * @return the number of worker threads
2151       */
2152      public int getPoolSize() {
2153 <        return totalCountOf(workerCounts);
2153 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2154      }
2155  
2156      /**
2157 <     * Returns the maximum number of threads allowed to exist in the
772 <     * pool, even if there are insufficient unblocked running threads.
773 <     * @return the maximum
774 <     */
775 <    public int getMaximumPoolSize() {
776 <        return maxPoolSize;
777 <    }
778 <
779 <    /**
780 <     * Sets the maximum number of threads allowed to exist in the
781 <     * pool, even if there are insufficient unblocked running threads.
782 <     * Setting this value has no effect on current pool size. It
783 <     * controls construction of new threads.
784 <     * @throws IllegalArgumentException if negative or greater then
785 <     * internal implementation limit
786 <     */
787 <    public void setMaximumPoolSize(int newMax) {
788 <        if (newMax < 0 || newMax > MAX_THREADS)
789 <            throw new IllegalArgumentException();
790 <        maxPoolSize = newMax;
791 <    }
792 <
793 <
794 <    /**
795 <     * Returns true if this pool dynamically maintains its target
796 <     * parallelism level. If false, new threads are added only to
797 <     * avoid possible starvation.
798 <     * This setting is by default true;
799 <     * @return true if maintains parallelism
800 <     */
801 <    public boolean getMaintainsParallelism() {
802 <        return maintainsParallelism;
803 <    }
804 <
805 <    /**
806 <     * Sets whether this pool dynamically maintains its target
807 <     * parallelism level. If false, new threads are added only to
808 <     * avoid possible starvation.
809 <     * @param enable true to maintains parallelism
810 <     */
811 <    public void setMaintainsParallelism(boolean enable) {
812 <        maintainsParallelism = enable;
813 <    }
814 <
815 <    /**
816 <     * Establishes local first-in-first-out scheduling mode for forked
817 <     * tasks that are never joined. This mode may be more appropriate
818 <     * than default locally stack-based mode in applications in which
819 <     * worker threads only process asynchronous tasks.  This method is
820 <     * designed to be invoked only when pool is quiescent, and
821 <     * typically only before any tasks are submitted. The effects of
822 <     * invocations at other times may be unpredictable.
823 <     *
824 <     * @param async if true, use locally FIFO scheduling
825 <     * @return the previous mode
826 <     */
827 <    public boolean setAsyncMode(boolean async) {
828 <        boolean oldMode = locallyFifo;
829 <        locallyFifo = async;
830 <        ForkJoinWorkerThread[] ws = workers;
831 <        if (ws != null) {
832 <            for (int i = 0; i < ws.length; ++i) {
833 <                ForkJoinWorkerThread t = ws[i];
834 <                if (t != null)
835 <                    t.setAsyncMode(async);
836 <            }
837 <        }
838 <        return oldMode;
839 <    }
840 <
841 <    /**
842 <     * Returns true if this pool uses local first-in-first-out
2157 >     * Returns {@code true} if this pool uses local first-in-first-out
2158       * scheduling mode for forked tasks that are never joined.
2159       *
2160 <     * @return true if this pool uses async mode
2160 >     * @return {@code true} if this pool uses async mode
2161       */
2162      public boolean getAsyncMode() {
2163 <        return locallyFifo;
2163 >        return localMode != 0;
2164      }
2165  
2166      /**
2167       * Returns an estimate of the number of worker threads that are
2168       * not blocked waiting to join tasks or for other managed
2169 <     * synchronization.
2169 >     * synchronization. This method may overestimate the
2170 >     * number of running threads.
2171       *
2172       * @return the number of worker threads
2173       */
2174      public int getRunningThreadCount() {
2175 <        return runningCountOf(workerCounts);
2175 >        int rc = 0;
2176 >        WorkQueue[] ws; WorkQueue w;
2177 >        if ((ws = workQueues) != null) {
2178 >            int n = ws.length;
2179 >            for (int i = 1; i < n; i += 2) {
2180 >                Thread.State s; ForkJoinWorkerThread wt;
2181 >                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2182 >                    w.eventCount >= 0 &&
2183 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
2184 >                    s != Thread.State.WAITING &&
2185 >                    s != Thread.State.TIMED_WAITING)
2186 >                    ++rc;
2187 >            }
2188 >        }
2189 >        return rc;
2190      }
2191  
2192      /**
2193       * Returns an estimate of the number of threads that are currently
2194       * stealing or executing tasks. This method may overestimate the
2195       * number of active threads.
2196 +     *
2197       * @return the number of active threads
2198       */
2199      public int getActiveThreadCount() {
2200 <        return activeCountOf(runControl);
2201 <    }
871 <
872 <    /**
873 <     * Returns an estimate of the number of threads that are currently
874 <     * idle waiting for tasks. This method may underestimate the
875 <     * number of idle threads.
876 <     * @return the number of idle threads
877 <     */
878 <    final int getIdleThreadCount() {
879 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
880 <        return (c <= 0)? 0 : c;
2200 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2201 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2202      }
2203  
2204      /**
2205 <     * Returns true if all worker threads are currently idle. An idle
2206 <     * worker is one that cannot obtain a task to execute because none
2207 <     * are available to steal from other threads, and there are no
2208 <     * pending submissions to the pool. This method is conservative:
2209 <     * It might not return true immediately upon idleness of all
2210 <     * threads, but will eventually become true if threads remain
2211 <     * inactive.
2212 <     * @return true if all threads are currently idle
2205 >     * Returns {@code true} if all worker threads are currently idle.
2206 >     * An idle worker is one that cannot obtain a task to execute
2207 >     * because none are available to steal from other threads, and
2208 >     * there are no pending submissions to the pool. This method is
2209 >     * conservative; it might not return {@code true} immediately upon
2210 >     * idleness of all threads, but will eventually become true if
2211 >     * threads remain inactive.
2212 >     *
2213 >     * @return {@code true} if all threads are currently idle
2214       */
2215      public boolean isQuiescent() {
2216 <        return activeCountOf(runControl) == 0;
2216 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2217      }
2218  
2219      /**
# Line 899 | Line 2221 | public class ForkJoinPool extends Abstra
2221       * one thread's work queue by another. The reported value
2222       * underestimates the actual total number of steals when the pool
2223       * is not quiescent. This value may be useful for monitoring and
2224 <     * tuning fork/join programs: In general, steal counts should be
2224 >     * tuning fork/join programs: in general, steal counts should be
2225       * high enough to keep threads busy, but low enough to avoid
2226       * overhead and contention across threads.
2227 +     *
2228       * @return the number of steals
2229       */
2230      public long getStealCount() {
2231 <        return stealCount.get();
2232 <    }
2233 <
2234 <    /**
2235 <     * Accumulate steal count from a worker. Call only
2236 <     * when worker known to be idle.
2237 <     */
2238 <    private void updateStealCount(ForkJoinWorkerThread w) {
2239 <        int sc = w.getAndClearStealCount();
2240 <        if (sc != 0)
918 <            stealCount.addAndGet(sc);
2231 >        long count = stealCount.get();
2232 >        WorkQueue[] ws; WorkQueue w;
2233 >        if ((ws = workQueues) != null) {
2234 >            int n = ws.length;
2235 >            for (int i = 1; i < n; i += 2) {
2236 >                if ((w = ws[i]) != null)
2237 >                    count += w.totalSteals;
2238 >            }
2239 >        }
2240 >        return count;
2241      }
2242  
2243      /**
# Line 925 | Line 2247 | public class ForkJoinPool extends Abstra
2247       * an approximation, obtained by iterating across all threads in
2248       * the pool. This method may be useful for tuning task
2249       * granularities.
2250 +     *
2251       * @return the number of queued tasks
2252       */
2253      public long getQueuedTaskCount() {
2254          long count = 0;
2255 <        ForkJoinWorkerThread[] ws = workers;
2256 <        if (ws != null) {
2257 <            for (int i = 0; i < ws.length; ++i) {
2258 <                ForkJoinWorkerThread t = ws[i];
2259 <                if (t != null)
2260 <                    count += t.getQueueSize();
2255 >        WorkQueue[] ws; WorkQueue w;
2256 >        if ((ws = workQueues) != null) {
2257 >            int n = ws.length;
2258 >            for (int i = 1; i < n; i += 2) {
2259 >                if ((w = ws[i]) != null)
2260 >                    count += w.queueSize();
2261              }
2262          }
2263          return count;
2264      }
2265  
2266      /**
2267 <     * Returns an estimate of the number tasks submitted to this pool
2268 <     * that have not yet begun executing. This method takes time
2269 <     * proportional to the number of submissions.
2267 >     * Returns an estimate of the number of tasks submitted to this
2268 >     * pool that have not yet begun executing.  This method may take
2269 >     * time proportional to the number of submissions.
2270 >     *
2271       * @return the number of queued submissions
2272       */
2273      public int getQueuedSubmissionCount() {
2274 <        return submissionQueue.size();
2274 >        int count = 0;
2275 >        WorkQueue[] ws; WorkQueue w;
2276 >        if ((ws = workQueues) != null) {
2277 >            int n = ws.length;
2278 >            for (int i = 0; i < n; i += 2) {
2279 >                if ((w = ws[i]) != null)
2280 >                    count += w.queueSize();
2281 >            }
2282 >        }
2283 >        return count;
2284      }
2285  
2286      /**
2287 <     * Returns true if there are any tasks submitted to this pool
2288 <     * that have not yet begun executing.
2287 >     * Returns {@code true} if there are any tasks submitted to this
2288 >     * pool that have not yet begun executing.
2289 >     *
2290       * @return {@code true} if there are any queued submissions
2291       */
2292      public boolean hasQueuedSubmissions() {
2293 <        return !submissionQueue.isEmpty();
2293 >        WorkQueue[] ws; WorkQueue w;
2294 >        if ((ws = workQueues) != null) {
2295 >            int n = ws.length;
2296 >            for (int i = 0; i < n; i += 2) {
2297 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2298 >                    return true;
2299 >            }
2300 >        }
2301 >        return false;
2302      }
2303  
2304      /**
2305       * Removes and returns the next unexecuted submission if one is
2306       * available.  This method may be useful in extensions to this
2307       * class that re-assign work in systems with multiple pools.
2308 <     * @return the next submission, or null if none
2308 >     *
2309 >     * @return the next submission, or {@code null} if none
2310       */
2311      protected ForkJoinTask<?> pollSubmission() {
2312 <        return submissionQueue.poll();
2312 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2313 >        if ((ws = workQueues) != null) {
2314 >            int n = ws.length;
2315 >            for (int i = 0; i < n; i += 2) {
2316 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2317 >                    return t;
2318 >            }
2319 >        }
2320 >        return null;
2321      }
2322  
2323      /**
2324       * Removes all available unexecuted submitted and forked tasks
2325       * from scheduling queues and adds them to the given collection,
2326       * without altering their execution status. These may include
2327 <     * artificially generated or wrapped tasks. This method is designed
2328 <     * to be invoked only when the pool is known to be
2327 >     * artificially generated or wrapped tasks. This method is
2328 >     * designed to be invoked only when the pool is known to be
2329       * quiescent. Invocations at other times may not remove all
2330       * tasks. A failure encountered while attempting to add elements
2331       * to collection {@code c} may result in elements being in
# Line 982 | Line 2333 | public class ForkJoinPool extends Abstra
2333       * exception is thrown.  The behavior of this operation is
2334       * undefined if the specified collection is modified while the
2335       * operation is in progress.
2336 +     *
2337       * @param c the collection to transfer elements into
2338       * @return the number of elements transferred
2339       */
2340 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
2341 <        int n = submissionQueue.drainTo(c);
2342 <        ForkJoinWorkerThread[] ws = workers;
2343 <        if (ws != null) {
2344 <            for (int i = 0; i < ws.length; ++i) {
2345 <                ForkJoinWorkerThread w = ws[i];
2346 <                if (w != null)
2347 <                    n += w.drainTasksTo(c);
2340 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2341 >        int count = 0;
2342 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2343 >        if ((ws = workQueues) != null) {
2344 >            int n = ws.length;
2345 >            for (int i = 0; i < n; ++i) {
2346 >                if ((w = ws[i]) != null) {
2347 >                    while ((t = w.poll()) != null) {
2348 >                        c.add(t);
2349 >                        ++count;
2350 >                    }
2351 >                }
2352              }
2353          }
2354 <        return n;
2354 >        return count;
2355      }
2356  
2357      /**
# Line 1006 | Line 2362 | public class ForkJoinPool extends Abstra
2362       * @return a string identifying this pool, as well as its state
2363       */
2364      public String toString() {
1009        int ps = parallelism;
1010        int wc = workerCounts;
1011        int rc = runControl;
2365          long st = getStealCount();
2366          long qt = getQueuedTaskCount();
2367          long qs = getQueuedSubmissionCount();
2368 +        int rc = getRunningThreadCount();
2369 +        int pc = parallelism;
2370 +        long c = ctl;
2371 +        int tc = pc + (short)(c >>> TC_SHIFT);
2372 +        int ac = pc + (int)(c >> AC_SHIFT);
2373 +        if (ac < 0) // ignore transient negative
2374 +            ac = 0;
2375 +        String level;
2376 +        if ((c & STOP_BIT) != 0)
2377 +            level = (tc == 0) ? "Terminated" : "Terminating";
2378 +        else
2379 +            level = runState < 0 ? "Shutting down" : "Running";
2380          return super.toString() +
2381 <            "[" + runStateToString(runStateOf(rc)) +
2382 <            ", parallelism = " + ps +
2383 <            ", size = " + totalCountOf(wc) +
2384 <            ", active = " + activeCountOf(rc) +
2385 <            ", running = " + runningCountOf(wc) +
2381 >            "[" + level +
2382 >            ", parallelism = " + pc +
2383 >            ", size = " + tc +
2384 >            ", active = " + ac +
2385 >            ", running = " + rc +
2386              ", steals = " + st +
2387              ", tasks = " + qt +
2388              ", submissions = " + qs +
2389              "]";
2390      }
2391  
1027    private static String runStateToString(int rs) {
1028        switch(rs) {
1029        case RUNNING: return "Running";
1030        case SHUTDOWN: return "Shutting down";
1031        case TERMINATING: return "Terminating";
1032        case TERMINATED: return "Terminated";
1033        default: throw new Error("Unknown run state");
1034        }
1035    }
1036
1037    // lifecycle control
1038
2392      /**
2393       * Initiates an orderly shutdown in which previously submitted
2394       * tasks are executed, but no new tasks will be accepted.
2395       * Invocation has no additional effect if already shut down.
2396       * Tasks that are in the process of being submitted concurrently
2397       * during the course of this method may or may not be rejected.
2398 +     *
2399       * @throws SecurityException if a security manager exists and
2400       *         the caller is not permitted to modify threads
2401       *         because it does not hold {@link
2402 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2402 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2403       */
2404      public void shutdown() {
2405          checkPermission();
2406 <        transitionRunStateTo(SHUTDOWN);
2407 <        if (canTerminateOnShutdown(runControl))
1054 <            terminateOnShutdown();
2406 >        enableShutdown();
2407 >        tryTerminate(false);
2408      }
2409  
2410      /**
2411 <     * Attempts to stop all actively executing tasks, and cancels all
2412 <     * waiting tasks.  Tasks that are in the process of being
2413 <     * submitted or executed concurrently during the course of this
2414 <     * method may or may not be rejected. Unlike some other executors,
2415 <     * this method cancels rather than collects non-executed tasks
2416 <     * upon termination, so always returns an empty list. However, you
2417 <     * can use method {@code drainTasksTo} before invoking this
2418 <     * method to transfer unexecuted tasks to another collection.
2411 >     * Attempts to cancel and/or stop all tasks, and reject all
2412 >     * subsequently submitted tasks.  Tasks that are in the process of
2413 >     * being submitted or executed concurrently during the course of
2414 >     * this method may or may not be rejected. This method cancels
2415 >     * both existing and unexecuted tasks, in order to permit
2416 >     * termination in the presence of task dependencies. So the method
2417 >     * always returns an empty list (unlike the case for some other
2418 >     * Executors).
2419 >     *
2420       * @return an empty list
2421       * @throws SecurityException if a security manager exists and
2422       *         the caller is not permitted to modify threads
2423       *         because it does not hold {@link
2424 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2424 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2425       */
2426      public List<Runnable> shutdownNow() {
2427          checkPermission();
2428 <        terminate();
2428 >        enableShutdown();
2429 >        tryTerminate(true);
2430          return Collections.emptyList();
2431      }
2432  
# Line 1081 | Line 2436 | public class ForkJoinPool extends Abstra
2436       * @return {@code true} if all tasks have completed following shut down
2437       */
2438      public boolean isTerminated() {
2439 <        return runStateOf(runControl) == TERMINATED;
2439 >        long c = ctl;
2440 >        return ((c & STOP_BIT) != 0L &&
2441 >                (short)(c >>> TC_SHIFT) == -parallelism);
2442      }
2443  
2444      /**
2445       * Returns {@code true} if the process of termination has
2446 <     * commenced but possibly not yet completed.
2446 >     * commenced but not yet completed.  This method may be useful for
2447 >     * debugging. A return of {@code true} reported a sufficient
2448 >     * period after shutdown may indicate that submitted tasks have
2449 >     * ignored or suppressed interruption, or are waiting for IO,
2450 >     * causing this executor not to properly terminate. (See the
2451 >     * advisory notes for class {@link ForkJoinTask} stating that
2452 >     * tasks should not normally entail blocking operations.  But if
2453 >     * they do, they must abort them on interrupt.)
2454       *
2455 <     * @return {@code true} if terminating
2455 >     * @return {@code true} if terminating but not yet terminated
2456       */
2457      public boolean isTerminating() {
2458 <        return runStateOf(runControl) >= TERMINATING;
2458 >        long c = ctl;
2459 >        return ((c & STOP_BIT) != 0L &&
2460 >                (short)(c >>> TC_SHIFT) != -parallelism);
2461      }
2462  
2463      /**
# Line 1100 | Line 2466 | public class ForkJoinPool extends Abstra
2466       * @return {@code true} if this pool has been shut down
2467       */
2468      public boolean isShutdown() {
2469 <        return runStateOf(runControl) >= SHUTDOWN;
2469 >        return runState < 0;
2470      }
2471  
2472      /**
# Line 1117 | Line 2483 | public class ForkJoinPool extends Abstra
2483      public boolean awaitTermination(long timeout, TimeUnit unit)
2484          throws InterruptedException {
2485          long nanos = unit.toNanos(timeout);
2486 <        final ReentrantLock lock = this.workerLock;
2486 >        final ReentrantLock lock = this.lock;
2487          lock.lock();
2488          try {
2489              for (;;) {
# Line 1132 | Line 2498 | public class ForkJoinPool extends Abstra
2498          }
2499      }
2500  
1135    // Shutdown and termination support
1136
1137    /**
1138     * Callback from terminating worker. Null out the corresponding
1139     * workers slot, and if terminating, try to terminate, else try to
1140     * shrink workers array.
1141     * @param w the worker
1142     */
1143    final void workerTerminated(ForkJoinWorkerThread w) {
1144        updateStealCount(w);
1145        updateWorkerCount(-1);
1146        final ReentrantLock lock = this.workerLock;
1147        lock.lock();
1148        try {
1149            ForkJoinWorkerThread[] ws = workers;
1150            if (ws != null) {
1151                int idx = w.poolIndex;
1152                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1153                    ws[idx] = null;
1154                if (totalCountOf(workerCounts) == 0) {
1155                    terminate(); // no-op if already terminating
1156                    transitionRunStateTo(TERMINATED);
1157                    termination.signalAll();
1158                }
1159                else if (!isTerminating()) {
1160                    tryShrinkWorkerArray();
1161                    tryResumeSpare(true); // allow replacement
1162                }
1163            }
1164        } finally {
1165            lock.unlock();
1166        }
1167        signalIdleWorkers();
1168    }
1169
2501      /**
2502 <     * Initiate termination.
2503 <     */
1173 <    private void terminate() {
1174 <        if (transitionRunStateTo(TERMINATING)) {
1175 <            stopAllWorkers();
1176 <            resumeAllSpares();
1177 <            signalIdleWorkers();
1178 <            cancelQueuedSubmissions();
1179 <            cancelQueuedWorkerTasks();
1180 <            interruptUnterminatedWorkers();
1181 <            signalIdleWorkers(); // resignal after interrupt
1182 <        }
1183 <    }
1184 <
1185 <    /**
1186 <     * Possibly terminates when on shutdown state.
1187 <     */
1188 <    private void terminateOnShutdown() {
1189 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1190 <            terminate();
1191 <    }
1192 <
1193 <    /**
1194 <     * Clears out and cancels submissions.
1195 <     */
1196 <    private void cancelQueuedSubmissions() {
1197 <        ForkJoinTask<?> task;
1198 <        while ((task = pollSubmission()) != null)
1199 <            task.cancel(false);
1200 <    }
1201 <
1202 <    /**
1203 <     * Cleans out worker queues.
1204 <     */
1205 <    private void cancelQueuedWorkerTasks() {
1206 <        final ReentrantLock lock = this.workerLock;
1207 <        lock.lock();
1208 <        try {
1209 <            ForkJoinWorkerThread[] ws = workers;
1210 <            if (ws != null) {
1211 <                for (int i = 0; i < ws.length; ++i) {
1212 <                    ForkJoinWorkerThread t = ws[i];
1213 <                    if (t != null)
1214 <                        t.cancelTasks();
1215 <                }
1216 <            }
1217 <        } finally {
1218 <            lock.unlock();
1219 <        }
1220 <    }
1221 <
1222 <    /**
1223 <     * Sets each worker's status to terminating. Requires lock to avoid
1224 <     * conflicts with add/remove.
1225 <     */
1226 <    private void stopAllWorkers() {
1227 <        final ReentrantLock lock = this.workerLock;
1228 <        lock.lock();
1229 <        try {
1230 <            ForkJoinWorkerThread[] ws = workers;
1231 <            if (ws != null) {
1232 <                for (int i = 0; i < ws.length; ++i) {
1233 <                    ForkJoinWorkerThread t = ws[i];
1234 <                    if (t != null)
1235 <                        t.shutdownNow();
1236 <                }
1237 <            }
1238 <        } finally {
1239 <            lock.unlock();
1240 <        }
1241 <    }
1242 <
1243 <    /**
1244 <     * Interrupts all unterminated workers.  This is not required for
1245 <     * sake of internal control, but may help unstick user code during
1246 <     * shutdown.
1247 <     */
1248 <    private void interruptUnterminatedWorkers() {
1249 <        final ReentrantLock lock = this.workerLock;
1250 <        lock.lock();
1251 <        try {
1252 <            ForkJoinWorkerThread[] ws = workers;
1253 <            if (ws != null) {
1254 <                for (int i = 0; i < ws.length; ++i) {
1255 <                    ForkJoinWorkerThread t = ws[i];
1256 <                    if (t != null && !t.isTerminated()) {
1257 <                        try {
1258 <                            t.interrupt();
1259 <                        } catch (SecurityException ignore) {
1260 <                        }
1261 <                    }
1262 <                }
1263 <            }
1264 <        } finally {
1265 <            lock.unlock();
1266 <        }
1267 <    }
1268 <
1269 <
1270 <    /*
1271 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1272 <     * are basic Treiber stack nodes, also used for spare stack.
1273 <     *
1274 <     * The event barrier has an event count and a wait queue (actually
1275 <     * a Treiber stack).  Workers are enabled to look for work when
1276 <     * the eventCount is incremented. If they fail to find work, they
1277 <     * may wait for next count. Upon release, threads help others wake
1278 <     * up.
1279 <     *
1280 <     * Synchronization events occur only in enough contexts to
1281 <     * maintain overall liveness:
1282 <     *
1283 <     *   - Submission of a new task to the pool
1284 <     *   - Resizes or other changes to the workers array
1285 <     *   - pool termination
1286 <     *   - A worker pushing a task on an empty queue
2502 >     * Interface for extending managed parallelism for tasks running
2503 >     * in {@link ForkJoinPool}s.
2504       *
2505 <     * The case of pushing a task occurs often enough, and is heavy
2506 <     * enough compared to simple stack pushes, to require special
2507 <     * handling: Method signalWork returns without advancing count if
2508 <     * the queue appears to be empty.  This would ordinarily result in
2509 <     * races causing some queued waiters not to be woken up. To avoid
2510 <     * this, the first worker enqueued in method sync (see
2511 <     * syncIsReleasable) rescans for tasks after being enqueued, and
2512 <     * helps signal if any are found. This works well because the
2513 <     * worker has nothing better to do, and so might as well help
2514 <     * alleviate the overhead and contention on the threads actually
2515 <     * doing work.  Also, since event counts increments on task
2516 <     * availability exist to maintain liveness (rather than to force
2517 <     * refreshes etc), it is OK for callers to exit early if
1301 <     * contending with another signaller.
1302 <     */
1303 <    static final class WaitQueueNode {
1304 <        WaitQueueNode next; // only written before enqueued
1305 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1306 <        final long count; // unused for spare stack
1307 <
1308 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1309 <            count = c;
1310 <            thread = w;
1311 <        }
1312 <
1313 <        /**
1314 <         * Wakes up waiter, returning false if known to already
1315 <         */
1316 <        boolean signal() {
1317 <            ForkJoinWorkerThread t = thread;
1318 <            if (t == null)
1319 <                return false;
1320 <            thread = null;
1321 <            LockSupport.unpark(t);
1322 <            return true;
1323 <        }
1324 <
1325 <        /**
1326 <         * Awaits release on sync.
1327 <         */
1328 <        void awaitSyncRelease(ForkJoinPool p) {
1329 <            while (thread != null && !p.syncIsReleasable(this))
1330 <                LockSupport.park(this);
1331 <        }
1332 <
1333 <        /**
1334 <         * Awaits resumption as spare.
1335 <         */
1336 <        void awaitSpareRelease() {
1337 <            while (thread != null) {
1338 <                if (!Thread.interrupted())
1339 <                    LockSupport.park(this);
1340 <            }
1341 <        }
1342 <    }
1343 <
1344 <    /**
1345 <     * Ensures that no thread is waiting for count to advance from the
1346 <     * current value of eventCount read on entry to this method, by
1347 <     * releasing waiting threads if necessary.
1348 <     * @return the count
1349 <     */
1350 <    final long ensureSync() {
1351 <        long c = eventCount;
1352 <        WaitQueueNode q;
1353 <        while ((q = syncStack) != null && q.count < c) {
1354 <            if (casBarrierStack(q, null)) {
1355 <                do {
1356 <                    q.signal();
1357 <                } while ((q = q.next) != null);
1358 <                break;
1359 <            }
1360 <        }
1361 <        return c;
1362 <    }
1363 <
1364 <    /**
1365 <     * Increments event count and releases waiting threads.
1366 <     */
1367 <    private void signalIdleWorkers() {
1368 <        long c;
1369 <        do;while (!casEventCount(c = eventCount, c+1));
1370 <        ensureSync();
1371 <    }
1372 <
1373 <    /**
1374 <     * Signals threads waiting to poll a task. Because method sync
1375 <     * rechecks availability, it is OK to only proceed if queue
1376 <     * appears to be non-empty, and OK to skip under contention to
1377 <     * increment count (since some other thread succeeded).
1378 <     */
1379 <    final void signalWork() {
1380 <        long c;
1381 <        WaitQueueNode q;
1382 <        if (syncStack != null &&
1383 <            casEventCount(c = eventCount, c+1) &&
1384 <            (((q = syncStack) != null && q.count <= c) &&
1385 <             (!casBarrierStack(q, q.next) || !q.signal())))
1386 <            ensureSync();
1387 <    }
1388 <
1389 <    /**
1390 <     * Waits until event count advances from last value held by
1391 <     * caller, or if excess threads, caller is resumed as spare, or
1392 <     * caller or pool is terminating. Updates caller's event on exit.
1393 <     * @param w the calling worker thread
1394 <     */
1395 <    final void sync(ForkJoinWorkerThread w) {
1396 <        updateStealCount(w); // Transfer w's count while it is idle
1397 <
1398 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1399 <            long prev = w.lastEventCount;
1400 <            WaitQueueNode node = null;
1401 <            WaitQueueNode h;
1402 <            while (eventCount == prev &&
1403 <                   ((h = syncStack) == null || h.count == prev)) {
1404 <                if (node == null)
1405 <                    node = new WaitQueueNode(prev, w);
1406 <                if (casBarrierStack(node.next = h, node)) {
1407 <                    node.awaitSyncRelease(this);
1408 <                    break;
1409 <                }
1410 <            }
1411 <            long ec = ensureSync();
1412 <            if (ec != prev) {
1413 <                w.lastEventCount = ec;
1414 <                break;
1415 <            }
1416 <        }
1417 <    }
1418 <
1419 <    /**
1420 <     * Returns true if worker waiting on sync can proceed:
1421 <     *  - on signal (thread == null)
1422 <     *  - on event count advance (winning race to notify vs signaller)
1423 <     *  - on Interrupt
1424 <     *  - if the first queued node, we find work available
1425 <     * If node was not signalled and event count not advanced on exit,
1426 <     * then we also help advance event count.
1427 <     * @return true if node can be released
1428 <     */
1429 <    final boolean syncIsReleasable(WaitQueueNode node) {
1430 <        long prev = node.count;
1431 <        if (!Thread.interrupted() && node.thread != null &&
1432 <            (node.next != null ||
1433 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1434 <            eventCount == prev)
1435 <            return false;
1436 <        if (node.thread != null) {
1437 <            node.thread = null;
1438 <            long ec = eventCount;
1439 <            if (prev <= ec) // help signal
1440 <                casEventCount(ec, ec+1);
1441 <        }
1442 <        return true;
1443 <    }
1444 <
1445 <    /**
1446 <     * Returns true if a new sync event occurred since last call to
1447 <     * sync or this method, if so, updating caller's count.
1448 <     */
1449 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1450 <        long lc = w.lastEventCount;
1451 <        long ec = ensureSync();
1452 <        if (ec == lc)
1453 <            return false;
1454 <        w.lastEventCount = ec;
1455 <        return true;
1456 <    }
1457 <
1458 <    //  Parallelism maintenance
1459 <
1460 <    /**
1461 <     * Decrements running count; if too low, adds spare.
2505 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
2506 >     * {@code isReleasable} must return {@code true} if blocking is
2507 >     * not necessary. Method {@code block} blocks the current thread
2508 >     * if necessary (perhaps internally invoking {@code isReleasable}
2509 >     * before actually blocking). These actions are performed by any
2510 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2511 >     * unusual methods in this API accommodate synchronizers that may,
2512 >     * but don't usually, block for long periods. Similarly, they
2513 >     * allow more efficient internal handling of cases in which
2514 >     * additional workers may be, but usually are not, needed to
2515 >     * ensure sufficient parallelism.  Toward this end,
2516 >     * implementations of method {@code isReleasable} must be amenable
2517 >     * to repeated invocation.
2518       *
1463     * Conceptually, all we need to do here is add or resume a
1464     * spare thread when one is about to block (and remove or
1465     * suspend it later when unblocked -- see suspendIfSpare).
1466     * However, implementing this idea requires coping with
1467     * several problems: We have imperfect information about the
1468     * states of threads. Some count updates can and usually do
1469     * lag run state changes, despite arrangements to keep them
1470     * accurate (for example, when possible, updating counts
1471     * before signalling or resuming), especially when running on
1472     * dynamic JVMs that don't optimize the infrequent paths that
1473     * update counts. Generating too many threads can make these
1474     * problems become worse, because excess threads are more
1475     * likely to be context-switched with others, slowing them all
1476     * down, especially if there is no work available, so all are
1477     * busy scanning or idling.  Also, excess spare threads can
1478     * only be suspended or removed when they are idle, not
1479     * immediately when they aren't needed. So adding threads will
1480     * raise parallelism level for longer than necessary.  Also,
1481     * FJ applications often encounter highly transient peaks when
1482     * many threads are blocked joining, but for less time than it
1483     * takes to create or resume spares.
1484     *
1485     * @param joinMe if non-null, return early if done
1486     * @param maintainParallelism if true, try to stay within
1487     * target counts, else create only to avoid starvation
1488     * @return true if joinMe known to be done
1489     */
1490    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1491        maintainParallelism &= maintainsParallelism; // overrride
1492        boolean dec = false;  // true when running count decremented
1493        while (spareStack == null || !tryResumeSpare(dec)) {
1494            int counts = workerCounts;
1495            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1496                if (!needSpare(counts, maintainParallelism))
1497                    break;
1498                if (joinMe.status < 0)
1499                    return true;
1500                if (tryAddSpare(counts))
1501                    break;
1502            }
1503        }
1504        return false;
1505    }
1506
1507    /**
1508     * Same idea as preJoin
1509     */
1510    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1511        maintainParallelism &= maintainsParallelism;
1512        boolean dec = false;
1513        while (spareStack == null || !tryResumeSpare(dec)) {
1514            int counts = workerCounts;
1515            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1516                if (!needSpare(counts, maintainParallelism))
1517                    break;
1518                if (blocker.isReleasable())
1519                    return true;
1520                if (tryAddSpare(counts))
1521                    break;
1522            }
1523        }
1524        return false;
1525    }
1526
1527    /**
1528     * Returns true if a spare thread appears to be needed.  If
1529     * maintaining parallelism, returns true when the deficit in
1530     * running threads is more than the surplus of total threads, and
1531     * there is apparently some work to do.  This self-limiting rule
1532     * means that the more threads that have already been added, the
1533     * less parallelism we will tolerate before adding another.
1534     * @param counts current worker counts
1535     * @param maintainParallelism try to maintain parallelism
1536     */
1537    private boolean needSpare(int counts, boolean maintainParallelism) {
1538        int ps = parallelism;
1539        int rc = runningCountOf(counts);
1540        int tc = totalCountOf(counts);
1541        int runningDeficit = ps - rc;
1542        int totalSurplus = tc - ps;
1543        return (tc < maxPoolSize &&
1544                (rc == 0 || totalSurplus < 0 ||
1545                 (maintainParallelism &&
1546                  runningDeficit > totalSurplus &&
1547                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1548    }
1549
1550    /**
1551     * Adds a spare worker if lock available and no more than the
1552     * expected numbers of threads exist.
1553     * @return true if successful
1554     */
1555    private boolean tryAddSpare(int expectedCounts) {
1556        final ReentrantLock lock = this.workerLock;
1557        int expectedRunning = runningCountOf(expectedCounts);
1558        int expectedTotal = totalCountOf(expectedCounts);
1559        boolean success = false;
1560        boolean locked = false;
1561        // confirm counts while locking; CAS after obtaining lock
1562        try {
1563            for (;;) {
1564                int s = workerCounts;
1565                int tc = totalCountOf(s);
1566                int rc = runningCountOf(s);
1567                if (rc > expectedRunning || tc > expectedTotal)
1568                    break;
1569                if (!locked && !(locked = lock.tryLock()))
1570                    break;
1571                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1572                    createAndStartSpare(tc);
1573                    success = true;
1574                    break;
1575                }
1576            }
1577        } finally {
1578            if (locked)
1579                lock.unlock();
1580        }
1581        return success;
1582    }
1583
1584    /**
1585     * Adds the kth spare worker. On entry, pool counts are already
1586     * adjusted to reflect addition.
1587     */
1588    private void createAndStartSpare(int k) {
1589        ForkJoinWorkerThread w = null;
1590        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1591        int len = ws.length;
1592        // Probably, we can place at slot k. If not, find empty slot
1593        if (k < len && ws[k] != null) {
1594            for (k = 0; k < len && ws[k] != null; ++k)
1595                ;
1596        }
1597        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1598            ws[k] = w;
1599            w.start();
1600        }
1601        else
1602            updateWorkerCount(-1); // adjust on failure
1603        signalIdleWorkers();
1604    }
1605
1606    /**
1607     * Suspends calling thread w if there are excess threads.  Called
1608     * only from sync.  Spares are enqueued in a Treiber stack using
1609     * the same WaitQueueNodes as barriers.  They are resumed mainly
1610     * in preJoin, but are also woken on pool events that require all
1611     * threads to check run state.
1612     * @param w the caller
1613     */
1614    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1615        WaitQueueNode node = null;
1616        int s;
1617        while (parallelism < runningCountOf(s = workerCounts)) {
1618            if (node == null)
1619                node = new WaitQueueNode(0, w);
1620            if (casWorkerCounts(s, s-1)) { // representation-dependent
1621                // push onto stack
1622                do;while (!casSpareStack(node.next = spareStack, node));
1623                // block until released by resumeSpare
1624                node.awaitSpareRelease();
1625                return true;
1626            }
1627        }
1628        return false;
1629    }
1630
1631    /**
1632     * Tries to pop and resume a spare thread.
1633     * @param updateCount if true, increment running count on success
1634     * @return true if successful
1635     */
1636    private boolean tryResumeSpare(boolean updateCount) {
1637        WaitQueueNode q;
1638        while ((q = spareStack) != null) {
1639            if (casSpareStack(q, q.next)) {
1640                if (updateCount)
1641                    updateRunningCount(1);
1642                q.signal();
1643                return true;
1644            }
1645        }
1646        return false;
1647    }
1648
1649    /**
1650     * Pops and resumes all spare threads. Same idea as ensureSync.
1651     * @return true if any spares released
1652     */
1653    private boolean resumeAllSpares() {
1654        WaitQueueNode q;
1655        while ( (q = spareStack) != null) {
1656            if (casSpareStack(q, null)) {
1657                do {
1658                    updateRunningCount(1);
1659                    q.signal();
1660                } while ((q = q.next) != null);
1661                return true;
1662            }
1663        }
1664        return false;
1665    }
1666
1667    /**
1668     * Pops and shuts down excessive spare threads. Call only while
1669     * holding lock. This is not guaranteed to eliminate all excess
1670     * threads, only those suspended as spares, which are the ones
1671     * unlikely to be needed in the future.
1672     */
1673    private void trimSpares() {
1674        int surplus = totalCountOf(workerCounts) - parallelism;
1675        WaitQueueNode q;
1676        while (surplus > 0 && (q = spareStack) != null) {
1677            if (casSpareStack(q, null)) {
1678                do {
1679                    updateRunningCount(1);
1680                    ForkJoinWorkerThread w = q.thread;
1681                    if (w != null && surplus > 0 &&
1682                        runningCountOf(workerCounts) > 0 && w.shutdown())
1683                        --surplus;
1684                    q.signal();
1685                } while ((q = q.next) != null);
1686            }
1687        }
1688    }
1689
1690    /**
1691     * Interface for extending managed parallelism for tasks running
1692     * in ForkJoinPools. A ManagedBlocker provides two methods.
1693     * Method {@code isReleasable} must return true if blocking is not
1694     * necessary. Method {@code block} blocks the current thread
1695     * if necessary (perhaps internally invoking isReleasable before
1696     * actually blocking.).
2519       * <p>For example, here is a ManagedBlocker based on a
2520       * ReentrantLock:
2521 <     * <pre>
2522 <     *   class ManagedLocker implements ManagedBlocker {
2523 <     *     final ReentrantLock lock;
2524 <     *     boolean hasLock = false;
2525 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2526 <     *     public boolean block() {
2527 <     *        if (!hasLock)
2528 <     *           lock.lock();
2529 <     *        return true;
2530 <     *     }
2531 <     *     public boolean isReleasable() {
2532 <     *        return hasLock || (hasLock = lock.tryLock());
1711 <     *     }
2521 >     *  <pre> {@code
2522 >     * class ManagedLocker implements ManagedBlocker {
2523 >     *   final ReentrantLock lock;
2524 >     *   boolean hasLock = false;
2525 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2526 >     *   public boolean block() {
2527 >     *     if (!hasLock)
2528 >     *       lock.lock();
2529 >     *     return true;
2530 >     *   }
2531 >     *   public boolean isReleasable() {
2532 >     *     return hasLock || (hasLock = lock.tryLock());
2533       *   }
2534 <     * </pre>
2534 >     * }}</pre>
2535 >     *
2536 >     * <p>Here is a class that possibly blocks waiting for an
2537 >     * item on a given queue:
2538 >     *  <pre> {@code
2539 >     * class QueueTaker<E> implements ManagedBlocker {
2540 >     *   final BlockingQueue<E> queue;
2541 >     *   volatile E item = null;
2542 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2543 >     *   public boolean block() throws InterruptedException {
2544 >     *     if (item == null)
2545 >     *       item = queue.take();
2546 >     *     return true;
2547 >     *   }
2548 >     *   public boolean isReleasable() {
2549 >     *     return item != null || (item = queue.poll()) != null;
2550 >     *   }
2551 >     *   public E getItem() { // call after pool.managedBlock completes
2552 >     *     return item;
2553 >     *   }
2554 >     * }}</pre>
2555       */
2556      public static interface ManagedBlocker {
2557          /**
2558           * Possibly blocks the current thread, for example waiting for
2559           * a lock or condition.
2560 <         * @return true if no additional blocking is necessary (i.e.,
2561 <         * if isReleasable would return true)
2560 >         *
2561 >         * @return {@code true} if no additional blocking is necessary
2562 >         * (i.e., if isReleasable would return true)
2563           * @throws InterruptedException if interrupted while waiting
2564 <         * (the method is not required to do so, but is allowed to).
2564 >         * (the method is not required to do so, but is allowed to)
2565           */
2566          boolean block() throws InterruptedException;
2567  
2568          /**
2569 <         * Returns true if blocking is unnecessary.
2569 >         * Returns {@code true} if blocking is unnecessary.
2570           */
2571          boolean isReleasable();
2572      }
2573  
2574      /**
2575       * Blocks in accord with the given blocker.  If the current thread
2576 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2577 <     * spare thread to be activated if necessary to ensure parallelism
2578 <     * while the current thread is blocked.  If
2579 <     * {@code maintainParallelism} is true and the pool supports
2580 <     * it ({@link #getMaintainsParallelism}), this method attempts to
2581 <     * maintain the pool's nominal parallelism. Otherwise if activates
2582 <     * a thread only if necessary to avoid complete starvation. This
2583 <     * option may be preferable when blockages use timeouts, or are
2584 <     * almost always brief.
2585 <     *
2586 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2587 <     * equivalent to
2588 <     * <pre>
2589 <     *   while (!blocker.isReleasable())
1748 <     *      if (blocker.block())
1749 <     *         return;
1750 <     * </pre>
1751 <     * If the caller is a ForkJoinTask, then the pool may first
1752 <     * be expanded to ensure parallelism, and later adjusted.
2576 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2577 >     * arranges for a spare thread to be activated if necessary to
2578 >     * ensure sufficient parallelism while the current thread is blocked.
2579 >     *
2580 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2581 >     * behaviorally equivalent to
2582 >     *  <pre> {@code
2583 >     * while (!blocker.isReleasable())
2584 >     *   if (blocker.block())
2585 >     *     return;
2586 >     * }</pre>
2587 >     *
2588 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2589 >     * first be expanded to ensure parallelism, and later adjusted.
2590       *
2591       * @param blocker the blocker
1755     * @param maintainParallelism if true and supported by this pool,
1756     * attempt to maintain the pool's nominal parallelism; otherwise
1757     * activate a thread only if necessary to avoid complete
1758     * starvation.
2592       * @throws InterruptedException if blocker.block did so
2593       */
2594 <    public static void managedBlock(ManagedBlocker blocker,
1762 <                                    boolean maintainParallelism)
2594 >    public static void managedBlock(ManagedBlocker blocker)
2595          throws InterruptedException {
2596          Thread t = Thread.currentThread();
2597 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
2598 <                             ((ForkJoinWorkerThread)t).pool : null);
2599 <        if (!blocker.isReleasable()) {
2600 <            try {
2601 <                if (pool == null ||
2602 <                    !pool.preBlock(blocker, maintainParallelism))
2603 <                    awaitBlocker(blocker);
2604 <            } finally {
2605 <                if (pool != null)
2606 <                    pool.updateRunningCount(1);
2597 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2598 >                          ((ForkJoinWorkerThread)t).pool : null);
2599 >        while (!blocker.isReleasable()) {
2600 >            if (p == null || p.tryCompensate()) {
2601 >                try {
2602 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2603 >                } finally {
2604 >                    if (p != null)
2605 >                        p.incrementActiveCount();
2606 >                }
2607 >                break;
2608              }
2609          }
2610      }
2611  
2612 <    private static void awaitBlocker(ManagedBlocker blocker)
2613 <        throws InterruptedException {
2614 <        do;while (!blocker.isReleasable() && !blocker.block());
1782 <    }
1783 <
1784 <    // AbstractExecutorService overrides
2612 >    // AbstractExecutorService overrides.  These rely on undocumented
2613 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2614 >    // implement RunnableFuture.
2615  
2616      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2617 <        return new AdaptedRunnable(runnable, value);
2617 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2618      }
2619  
2620      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2621 <        return new AdaptedCallable(callable);
2621 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2622      }
2623  
2624 +    // Unsafe mechanics
2625 +    private static final sun.misc.Unsafe U;
2626 +    private static final long CTL;
2627 +    private static final long RUNSTATE;
2628 +    private static final long PARKBLOCKER;
2629  
2630 <    // Temporary Unsafe mechanics for preliminary release
2631 <    private static Unsafe getUnsafe() throws Throwable {
2630 >    static {
2631 >        poolNumberGenerator = new AtomicInteger();
2632 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2633 >        defaultForkJoinWorkerThreadFactory =
2634 >            new DefaultForkJoinWorkerThreadFactory();
2635 >        int s;
2636          try {
2637 <            return Unsafe.getUnsafe();
2637 >            U = getUnsafe();
2638 >            Class<?> k = ForkJoinPool.class;
2639 >            Class<?> tk = Thread.class;
2640 >            CTL = U.objectFieldOffset
2641 >                (k.getDeclaredField("ctl"));
2642 >            RUNSTATE = U.objectFieldOffset
2643 >                (k.getDeclaredField("runState"));
2644 >            PARKBLOCKER = U.objectFieldOffset
2645 >                (tk.getDeclaredField("parkBlocker"));
2646 >        } catch (Exception e) {
2647 >            throw new Error(e);
2648 >        }
2649 >    }
2650 >
2651 >    /**
2652 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2653 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2654 >     * into a jdk.
2655 >     *
2656 >     * @return a sun.misc.Unsafe
2657 >     */
2658 >    private static sun.misc.Unsafe getUnsafe() {
2659 >        try {
2660 >            return sun.misc.Unsafe.getUnsafe();
2661          } catch (SecurityException se) {
2662              try {
2663                  return java.security.AccessController.doPrivileged
2664 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
2665 <                        public Unsafe run() throws Exception {
2666 <                            return getUnsafePrivileged();
2664 >                    (new java.security
2665 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2666 >                        public sun.misc.Unsafe run() throws Exception {
2667 >                            java.lang.reflect.Field f = sun.misc
2668 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2669 >                            f.setAccessible(true);
2670 >                            return (sun.misc.Unsafe) f.get(null);
2671                          }});
2672              } catch (java.security.PrivilegedActionException e) {
2673 <                throw e.getCause();
2673 >                throw new RuntimeException("Could not initialize intrinsics",
2674 >                                           e.getCause());
2675              }
2676          }
2677      }
2678  
1812    private static Unsafe getUnsafePrivileged()
1813            throws NoSuchFieldException, IllegalAccessException {
1814        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1815        f.setAccessible(true);
1816        return (Unsafe) f.get(null);
1817    }
1818
1819    private static long fieldOffset(String fieldName)
1820            throws NoSuchFieldException {
1821        return UNSAFE.objectFieldOffset
1822            (ForkJoinPool.class.getDeclaredField(fieldName));
1823    }
1824
1825    static final Unsafe UNSAFE;
1826    static final long eventCountOffset;
1827    static final long workerCountsOffset;
1828    static final long runControlOffset;
1829    static final long syncStackOffset;
1830    static final long spareStackOffset;
1831
1832    static {
1833        try {
1834            UNSAFE = getUnsafe();
1835            eventCountOffset = fieldOffset("eventCount");
1836            workerCountsOffset = fieldOffset("workerCounts");
1837            runControlOffset = fieldOffset("runControl");
1838            syncStackOffset = fieldOffset("syncStack");
1839            spareStackOffset = fieldOffset("spareStack");
1840        } catch (Throwable e) {
1841            throw new RuntimeException("Could not initialize intrinsics", e);
1842        }
1843    }
1844
1845    private boolean casEventCount(long cmp, long val) {
1846        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1847    }
1848    private boolean casWorkerCounts(int cmp, int val) {
1849        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1850    }
1851    private boolean casRunControl(int cmp, int val) {
1852        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1853    }
1854    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1855        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1856    }
1857    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1858        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1859    }
2679   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines