ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.5 by jsr166, Thu Mar 19 05:10:42 2009 UTC vs.
Revision 1.120 by jsr166, Tue Jan 31 01:32:25 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.atomic.AtomicInteger;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
29 < * ForkJoinPool provides the entry point for submissions from
30 < * non-ForkJoinTasks, as well as management and monitoring operations.
31 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
28 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 > * A {@code ForkJoinPool} provides the entry point for submissions
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31 > * monitoring operations.
32   *
33 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
34 < * that they provide <em>work-stealing</em>: all threads in the pool
35 < * attempt to find and execute subtasks created by other active tasks
36 < * (eventually blocking if none exist). This makes them efficient when
37 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
38 < * as the mixed execution of some plain Runnable- or Callable- based
39 < * activities along with ForkJoinTasks. Otherwise, other
40 < * ExecutorService implementations are typically more appropriate
41 < * choices.
33 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34 > * ExecutorService} mainly by virtue of employing
35 > * <em>work-stealing</em>: all threads in the pool attempt to find and
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45 < * <p>A ForkJoinPool may be constructed with a given parallelism level
46 < * (target pool size), which it attempts to maintain by dynamically
47 < * adding, suspending, or resuming threads, even if some tasks are
48 < * waiting to join others. However, no such adjustments are performed
49 < * in the face of blocked IO or other unmanaged synchronization. The
50 < * nested <code>ManagedBlocker</code> interface enables extension of
51 < * the kinds of synchronization accommodated.  The target parallelism
52 < * level may also be changed dynamically (<code>setParallelism</code>)
53 < * and dynamically thread construction can be limited using methods
43 < * <code>setMaximumPoolSize</code> and/or
44 < * <code>setMaintainsParallelism</code>.
45 > * <p>A {@code ForkJoinPool} is constructed with a given target
46 > * parallelism level; by default, equal to the number of available
47 > * processors. The pool attempts to maintain enough active (or
48 > * available) threads by dynamically adding, suspending, or resuming
49 > * internal worker threads, even if some tasks are stalled waiting to
50 > * join others. However, no such adjustments are guaranteed in the
51 > * face of blocked IO or other unmanaged synchronization. The nested
52 > * {@link ManagedBlocker} interface enables extension of the kinds of
53 > * synchronization accommodated.
54   *
55   * <p>In addition to execution and lifecycle control methods, this
56   * class provides status check methods (for example
57 < * <code>getStealCount</code>) that are intended to aid in developing,
57 > * {@link #getStealCount}) that are intended to aid in developing,
58   * tuning, and monitoring fork/join applications. Also, method
59 < * <code>toString</code> returns indications of pool state in a
59 > * {@link #toString} returns indications of pool state in a
60   * convenient form for informal monitoring.
61   *
62 + * <p> As is the case with other ExecutorServices, there are three
63 + * main task execution methods summarized in the following table.
64 + * These are designed to be used primarily by clients not already
65 + * engaged in fork/join computations in the current pool.  The main
66 + * forms of these methods accept instances of {@code ForkJoinTask},
67 + * but overloaded forms also allow mixed execution of plain {@code
68 + * Runnable}- or {@code Callable}- based activities as well.  However,
69 + * tasks that are already executing in a pool should normally instead
70 + * use the within-computation forms listed in the table unless using
71 + * async event-style tasks that are not usually joined, in which case
72 + * there is little difference among choice of methods.
73 + *
74 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
75 + *  <tr>
76 + *    <td></td>
77 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
78 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
79 + *  </tr>
80 + *  <tr>
81 + *    <td> <b>Arrange async execution</td>
82 + *    <td> {@link #execute(ForkJoinTask)}</td>
83 + *    <td> {@link ForkJoinTask#fork}</td>
84 + *  </tr>
85 + *  <tr>
86 + *    <td> <b>Await and obtain result</td>
87 + *    <td> {@link #invoke(ForkJoinTask)}</td>
88 + *    <td> {@link ForkJoinTask#invoke}</td>
89 + *  </tr>
90 + *  <tr>
91 + *    <td> <b>Arrange exec and obtain Future</td>
92 + *    <td> {@link #submit(ForkJoinTask)}</td>
93 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
94 + *  </tr>
95 + * </table>
96 + *
97 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
98 + * used for all parallel task execution in a program or subsystem.
99 + * Otherwise, use would not usually outweigh the construction and
100 + * bookkeeping overhead of creating a large set of threads. For
101 + * example, a common pool could be used for the {@code SortTasks}
102 + * illustrated in {@link RecursiveAction}. Because {@code
103 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
104 + * daemon} mode, there is typically no need to explicitly {@link
105 + * #shutdown} such a pool upon program exit.
106 + *
107 + *  <pre> {@code
108 + * static final ForkJoinPool mainPool = new ForkJoinPool();
109 + * ...
110 + * public void sort(long[] array) {
111 + *   mainPool.invoke(new SortTask(array, 0, array.length));
112 + * }}</pre>
113 + *
114   * <p><b>Implementation notes</b>: This implementation restricts the
115   * maximum number of running threads to 32767. Attempts to create
116 < * pools with greater than the maximum result in
117 < * IllegalArgumentExceptions.
116 > * pools with greater than the maximum number result in
117 > * {@code IllegalArgumentException}.
118 > *
119 > * <p>This implementation rejects submitted tasks (that is, by throwing
120 > * {@link RejectedExecutionException}) only when the pool is shut down
121 > * or internal resources have been exhausted.
122 > *
123 > * @since 1.7
124 > * @author Doug Lea
125   */
126   public class ForkJoinPool extends AbstractExecutorService {
127  
128      /*
129 <     * See the extended comments interspersed below for design,
130 <     * rationale, and walkthroughs.
131 <     */
129 >     * Implementation Overview
130 >     *
131 >     * This class and its nested classes provide the main
132 >     * functionality and control for a set of worker threads:
133 >     * Submissions from non-FJ threads enter into submission queues.
134 >     * Workers take these tasks and typically split them into subtasks
135 >     * that may be stolen by other workers.  Preference rules give
136 >     * first priority to processing tasks from their own queues (LIFO
137 >     * or FIFO, depending on mode), then to randomized FIFO steals of
138 >     * tasks in other queues.
139 >     *
140 >     * WorkQueues
141 >     * ==========
142 >     *
143 >     * Most operations occur within work-stealing queues (in nested
144 >     * class WorkQueue).  These are special forms of Deques that
145 >     * support only three of the four possible end-operations -- push,
146 >     * pop, and poll (aka steal), under the further constraints that
147 >     * push and pop are called only from the owning thread (or, as
148 >     * extended here, under a lock), while poll may be called from
149 >     * other threads.  (If you are unfamiliar with them, you probably
150 >     * want to read Herlihy and Shavit's book "The Art of
151 >     * Multiprocessor programming", chapter 16 describing these in
152 >     * more detail before proceeding.)  The main work-stealing queue
153 >     * design is roughly similar to those in the papers "Dynamic
154 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
155 >     * (http://research.sun.com/scalable/pubs/index.html) and
156 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
157 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
158 >     * The main differences ultimately stem from GC requirements that
159 >     * we null out taken slots as soon as we can, to maintain as small
160 >     * a footprint as possible even in programs generating huge
161 >     * numbers of tasks. To accomplish this, we shift the CAS
162 >     * arbitrating pop vs poll (steal) from being on the indices
163 >     * ("base" and "top") to the slots themselves.  So, both a
164 >     * successful pop and poll mainly entail a CAS of a slot from
165 >     * non-null to null.  Because we rely on CASes of references, we
166 >     * do not need tag bits on base or top.  They are simple ints as
167 >     * used in any circular array-based queue (see for example
168 >     * ArrayDeque).  Updates to the indices must still be ordered in a
169 >     * way that guarantees that top == base means the queue is empty,
170 >     * but otherwise may err on the side of possibly making the queue
171 >     * appear nonempty when a push, pop, or poll have not fully
172 >     * committed. Note that this means that the poll operation,
173 >     * considered individually, is not wait-free. One thief cannot
174 >     * successfully continue until another in-progress one (or, if
175 >     * previously empty, a push) completes.  However, in the
176 >     * aggregate, we ensure at least probabilistic non-blockingness.
177 >     * If an attempted steal fails, a thief always chooses a different
178 >     * random victim target to try next. So, in order for one thief to
179 >     * progress, it suffices for any in-progress poll or new push on
180 >     * any empty queue to complete.
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we loosely associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they never
203 >     * take tasks, and they are multiplexed on to a finite number of
204 >     * shared work queues. However, classes are set up so that future
205 >     * extensions could allow submitters to optionally help perform
206 >     * tasks as well. Insertion of tasks in shared mode requires a
207 >     * lock (mainly to protect in the case of resizing) but we use
208 >     * only a simple spinlock (using bits in field runState), because
209 >     * submitters encountering a busy queue move on to try or create
210 >     * other queues, so never block.
211 >     *
212 >     * Management
213 >     * ==========
214 >     *
215 >     * The main throughput advantages of work-stealing stem from
216 >     * decentralized control -- workers mostly take tasks from
217 >     * themselves or each other. We cannot negate this in the
218 >     * implementation of other management responsibilities. The main
219 >     * tactic for avoiding bottlenecks is packing nearly all
220 >     * essentially atomic control state into two volatile variables
221 >     * that are by far most often read (not written) as status and
222 >     * consistency checks.
223 >     *
224 >     * Field "ctl" contains 64 bits holding all the information needed
225 >     * to atomically decide to add, inactivate, enqueue (on an event
226 >     * queue), dequeue, and/or re-activate workers.  To enable this
227 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228 >     * far in excess of normal operating range) to allow ids, counts,
229 >     * and their negations (used for thresholding) to fit into 16bit
230 >     * fields.
231 >     *
232 >     * Field "runState" contains 32 bits needed to register and
233 >     * deregister WorkQueues, as well as to enable shutdown. It is
234 >     * only modified under a lock (normally briefly held, but
235 >     * occasionally protecting allocations and resizings) but even
236 >     * when locked remains available to check consistency. An
237 >     * auxiliary field "growHints", also only modified under lock,
238 >     * contains a candidate index for the next WorkQueue and
239 >     * a mask for submission queue indices.
240 >     *
241 >     * Recording WorkQueues.  WorkQueues are recorded in the
242 >     * "workQueues" array that is created upon pool construction and
243 >     * expanded if necessary.  Updates to the array while recording
244 >     * new workers and unrecording terminated ones are protected from
245 >     * each other by a lock but the array is otherwise concurrently
246 >     * readable, and accessed directly.  To simplify index-based
247 >     * operations, the array size is always a power of two, and all
248 >     * readers must tolerate null slots. Shared (submission) queues
249 >     * are at even indices, worker queues at odd indices. Grouping
250 >     * them together in this way simplifies and speeds up task
251 >     * scanning. To avoid flailing during start-up, the array is
252 >     * presized to hold twice #parallelism workers (which is unlikely
253 >     * to need further resizing during execution). But to avoid
254 >     * dealing with so many null slots, variable runState includes a
255 >     * mask for the nearest power of two that contains all currently
256 >     * used indices.
257 >     *
258 >     * All worker thread creation is on-demand, triggered by task
259 >     * submissions, replacement of terminated workers, and/or
260 >     * compensation for blocked workers. However, all other support
261 >     * code is set up to work with other policies.  To ensure that we
262 >     * do not hold on to worker references that would prevent GC, ALL
263 >     * accesses to workQueues are via indices into the workQueues
264 >     * array (which is one source of some of the messy code
265 >     * constructions here). In essence, the workQueues array serves as
266 >     * a weak reference mechanism. Thus for example the wait queue
267 >     * field of ctl stores indices, not references.  Access to the
268 >     * workQueues in associated methods (for example signalWork) must
269 >     * both index-check and null-check the IDs. All such accesses
270 >     * ignore bad IDs by returning out early from what they are doing,
271 >     * since this can only be associated with termination, in which
272 >     * case it is OK to give up.  All uses of the workQueues array
273 >     * also check that it is non-null (even if previously
274 >     * non-null). This allows nulling during termination, which is
275 >     * currently not necessary, but remains an option for
276 >     * resource-revocation-based shutdown schemes. It also helps
277 >     * reduce JIT issuance of uncommon-trap code, which tends to
278 >     * unnecessarily complicate control flow in some methods.
279 >     *
280 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
281 >     * let workers spin indefinitely scanning for tasks when none can
282 >     * be found immediately, and we cannot start/resume workers unless
283 >     * there appear to be tasks available.  On the other hand, we must
284 >     * quickly prod them into action when new tasks are submitted or
285 >     * generated. In many usages, ramp-up time to activate workers is
286 >     * the main limiting factor in overall performance (this is
287 >     * compounded at program start-up by JIT compilation and
288 >     * allocation). So we try to streamline this as much as possible.
289 >     * We park/unpark workers after placing in an event wait queue
290 >     * when they cannot find work. This "queue" is actually a simple
291 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
292 >     * counter value (that reflects the number of times a worker has
293 >     * been inactivated) to avoid ABA effects (we need only as many
294 >     * version numbers as worker threads). Successors are held in
295 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
296 >     * races, mainly that a task-producing thread can miss seeing (and
297 >     * signalling) another thread that gave up looking for work but
298 >     * has not yet entered the wait queue. We solve this by requiring
299 >     * a full sweep of all workers (via repeated calls to method
300 >     * scan()) both before and after a newly waiting worker is added
301 >     * to the wait queue. During a rescan, the worker might release
302 >     * some other queued worker rather than itself, which has the same
303 >     * net effect. Because enqueued workers may actually be rescanning
304 >     * rather than waiting, we set and clear the "parker" field of
305 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
306 >     * requires a secondary recheck to avoid missed signals.)  Note
307 >     * the unusual conventions about Thread.interrupts surrounding
308 >     * parking and other blocking: Because interrupts are used solely
309 >     * to alert threads to check termination, which is checked anyway
310 >     * upon blocking, we clear status (using Thread.interrupted)
311 >     * before any call to park, so that park does not immediately
312 >     * return due to status being set via some other unrelated call to
313 >     * interrupt in user code.
314 >     *
315 >     * Signalling.  We create or wake up workers only when there
316 >     * appears to be at least one task they might be able to find and
317 >     * execute.  When a submission is added or another worker adds a
318 >     * task to a queue that previously had fewer than two tasks, they
319 >     * signal waiting workers (or trigger creation of new ones if
320 >     * fewer than the given parallelism level -- see signalWork).
321 >     * These primary signals are buttressed by signals during rescans;
322 >     * together these cover the signals needed in cases when more
323 >     * tasks are pushed but untaken, and improve performance compared
324 >     * to having one thread wake up all workers.
325 >     *
326 >     * Trimming workers. To release resources after periods of lack of
327 >     * use, a worker starting to wait when the pool is quiescent will
328 >     * time out and terminate if the pool has remained quiescent for
329 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
330 >     * terminating all workers after long periods of non-use.
331 >     *
332 >     * Shutdown and Termination. A call to shutdownNow atomically sets
333 >     * a runState bit and then (non-atomically) sets each worker's
334 >     * runState status, cancels all unprocessed tasks, and wakes up
335 >     * all waiting workers.  Detecting whether termination should
336 >     * commence after a non-abrupt shutdown() call requires more work
337 >     * and bookkeeping. We need consensus about quiescence (i.e., that
338 >     * there is no more work). The active count provides a primary
339 >     * indication but non-abrupt shutdown still requires a rechecking
340 >     * scan for any workers that are inactive but not queued.
341 >     *
342 >     * Joining Tasks
343 >     * =============
344 >     *
345 >     * Any of several actions may be taken when one worker is waiting
346 >     * to join a task stolen (or always held) by another.  Because we
347 >     * are multiplexing many tasks on to a pool of workers, we can't
348 >     * just let them block (as in Thread.join).  We also cannot just
349 >     * reassign the joiner's run-time stack with another and replace
350 >     * it later, which would be a form of "continuation", that even if
351 >     * possible is not necessarily a good idea since we sometimes need
352 >     * both an unblocked task and its continuation to progress.
353 >     * Instead we combine two tactics:
354 >     *
355 >     *   Helping: Arranging for the joiner to execute some task that it
356 >     *      would be running if the steal had not occurred.
357 >     *
358 >     *   Compensating: Unless there are already enough live threads,
359 >     *      method tryCompensate() may create or re-activate a spare
360 >     *      thread to compensate for blocked joiners until they unblock.
361 >     *
362 >     * A third form (implemented in tryRemoveAndExec and
363 >     * tryPollForAndExec) amounts to helping a hypothetical
364 >     * compensator: If we can readily tell that a possible action of a
365 >     * compensator is to steal and execute the task being joined, the
366 >     * joining thread can do so directly, without the need for a
367 >     * compensation thread (although at the expense of larger run-time
368 >     * stacks, but the tradeoff is typically worthwhile).
369 >     *
370 >     * The ManagedBlocker extension API can't use helping so relies
371 >     * only on compensation in method awaitBlocker.
372 >     *
373 >     * The algorithm in tryHelpStealer entails a form of "linear"
374 >     * helping: Each worker records (in field currentSteal) the most
375 >     * recent task it stole from some other worker. Plus, it records
376 >     * (in field currentJoin) the task it is currently actively
377 >     * joining. Method tryHelpStealer uses these markers to try to
378 >     * find a worker to help (i.e., steal back a task from and execute
379 >     * it) that could hasten completion of the actively joined task.
380 >     * In essence, the joiner executes a task that would be on its own
381 >     * local deque had the to-be-joined task not been stolen. This may
382 >     * be seen as a conservative variant of the approach in Wagner &
383 >     * Calder "Leapfrogging: a portable technique for implementing
384 >     * efficient futures" SIGPLAN Notices, 1993
385 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
386 >     * that: (1) We only maintain dependency links across workers upon
387 >     * steals, rather than use per-task bookkeeping.  This sometimes
388 >     * requires a linear scan of workQueues array to locate stealers, but
389 >     * often doesn't because stealers leave hints (that may become
390 >     * stale/wrong) of where to locate them.  A stealHint is only a
391 >     * hint because a worker might have had multiple steals and the
392 >     * hint records only one of them (usually the most current).
393 >     * Hinting isolates cost to when it is needed, rather than adding
394 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
395 >     * and potentially cyclic mutual steals.  (3) It is intentionally
396 >     * racy: field currentJoin is updated only while actively joining,
397 >     * which means that we miss links in the chain during long-lived
398 >     * tasks, GC stalls etc (which is OK since blocking in such cases
399 >     * is usually a good idea).  (4) We bound the number of attempts
400 >     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
401 >     * the worker and if necessary replacing it with another.
402 >     *
403 >     * It is impossible to keep exactly the target parallelism number
404 >     * of threads running at any given time.  Determining the
405 >     * existence of conservatively safe helping targets, the
406 >     * availability of already-created spares, and the apparent need
407 >     * to create new spares are all racy, so we rely on multiple
408 >     * retries of each.  Currently, in keeping with on-demand
409 >     * signalling policy, we compensate only if blocking would leave
410 >     * less than one active (non-waiting, non-blocked) worker.
411 >     * Additionally, to avoid some false alarms due to GC, lagging
412 >     * counters, system activity, etc, compensated blocking for joins
413 >     * is only attempted after rechecks stabilize in
414 >     * ForkJoinTask.awaitJoin. (Retries are interspersed with
415 >     * Thread.yield, for good citizenship.)
416 >     *
417 >     * Style notes: There is a lot of representation-level coupling
418 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
419 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
420 >     * managed by ForkJoinPool, so are directly accessed.  There is
421 >     * little point trying to reduce this, since any associated future
422 >     * changes in representations will need to be accompanied by
423 >     * algorithmic changes anyway. Several methods intrinsically
424 >     * sprawl because they must accumulate sets of consistent reads of
425 >     * volatiles held in local variables.  Methods signalWork() and
426 >     * scan() are the main bottlenecks, so are especially heavily
427 >     * micro-optimized/mangled.  There are lots of inline assignments
428 >     * (of form "while ((local = field) != 0)") which are usually the
429 >     * simplest way to ensure the required read orderings (which are
430 >     * sometimes critical). This leads to a "C"-like style of listing
431 >     * declarations of these locals at the heads of methods or blocks.
432 >     * There are several occurrences of the unusual "do {} while
433 >     * (!cas...)"  which is the simplest way to force an update of a
434 >     * CAS'ed variable. There are also other coding oddities that help
435 >     * some methods perform reasonably even when interpreted (not
436 >     * compiled).
437 >     *
438 >     * The order of declarations in this file is:
439 >     * (1) Static utility functions
440 >     * (2) Nested (static) classes
441 >     * (3) Static fields
442 >     * (4) Fields, along with constants used when unpacking some of them
443 >     * (5) Internal control methods
444 >     * (6) Callbacks and other support for ForkJoinTask methods
445 >     * (7) Exported methods
446 >     * (8) Static block initializing statics in minimally dependent order
447 >     */
448 >
449 >    // Static utilities
450 >
451 >    /**
452 >     * Computes an initial hash code (also serving as a non-zero
453 >     * random seed) for a thread id. This method is expected to
454 >     * provide higher-quality hash codes than using method hashCode().
455 >     */
456 >    static final int hashId(long id) {
457 >        int h = (int)id ^ (int)(id >>> 32); // Use MurmurHash of thread id
458 >        h ^= h >>> 16; h *= 0x85ebca6b;
459 >        h ^= h >>> 13; h *= 0xc2b2ae35;
460 >        h ^= h >>> 16;
461 >        return (h == 0)? 1 : h; // ensure nonzero
462 >    }
463  
464 <    /** Mask for packing and unpacking shorts */
465 <    private static final int  shortMask = 0xffff;
464 >    /**
465 >     * If there is a security manager, makes sure caller has
466 >     * permission to modify threads.
467 >     */
468 >    private static void checkPermission() {
469 >        SecurityManager security = System.getSecurityManager();
470 >        if (security != null)
471 >            security.checkPermission(modifyThreadPermission);
472 >    }
473  
474 <    /** Max pool size -- must be a power of two minus 1 */
69 <    private static final int MAX_THREADS =  0x7FFF;
474 >    // Nested classes
475  
476      /**
477 <     * Factory for creating new ForkJoinWorkerThreads.  A
478 <     * ForkJoinWorkerThreadFactory must be defined and used for
479 <     * ForkJoinWorkerThread subclasses that extend base functionality
480 <     * or initialize threads with different contexts.
477 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
478 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
479 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
480 >     * functionality or initialize threads with different contexts.
481       */
482      public static interface ForkJoinWorkerThreadFactory {
483          /**
484           * Returns a new worker thread operating in the given pool.
485           *
486           * @param pool the pool this thread works in
487 <         * @throws NullPointerException if pool is null;
487 >         * @throws NullPointerException if the pool is null
488           */
489          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
490      }
491  
492      /**
493 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
493 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
494       * new ForkJoinWorkerThread.
495       */
496 <    static class  DefaultForkJoinWorkerThreadFactory
496 >    static class DefaultForkJoinWorkerThreadFactory
497          implements ForkJoinWorkerThreadFactory {
498          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
499 <            try {
95 <                return new ForkJoinWorkerThread(pool);
96 <            } catch (OutOfMemoryError oom)  {
97 <                return null;
98 <            }
499 >            return new ForkJoinWorkerThread(pool);
500          }
501      }
502  
503      /**
504 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
505 <     * overridden in ForkJoinPool constructors.
506 <     */
507 <    public static final ForkJoinWorkerThreadFactory
508 <        defaultForkJoinWorkerThreadFactory =
509 <        new DefaultForkJoinWorkerThreadFactory();
510 <
110 <    /**
111 <     * Permission required for callers of methods that may start or
112 <     * kill threads.
504 >     * A simple non-reentrant lock used for exclusion when managing
505 >     * queues and workers. We use a custom lock so that we can readily
506 >     * probe lock state in constructions that check among alternative
507 >     * actions. The lock is normally only very briefly held, and
508 >     * sometimes treated as a spinlock, but other usages block to
509 >     * reduce overall contention in those cases where locked code
510 >     * bodies perform allocation/resizing.
511       */
512 <    private static final RuntimePermission modifyThreadPermission =
513 <        new RuntimePermission("modifyThread");
512 >    static final class Mutex extends AbstractQueuedSynchronizer {
513 >        public final boolean tryAcquire(int ignore) {
514 >            return compareAndSetState(0, 1);
515 >        }
516 >        public final boolean tryRelease(int ignore) {
517 >            setState(0);
518 >            return true;
519 >        }
520 >        public final void lock() { acquire(0); }
521 >        public final void unlock() { release(0); }
522 >        public final boolean isHeldExclusively() { return getState() == 1; }
523 >        public final Condition newCondition() { return new ConditionObject(); }
524 >    }
525  
526      /**
527 <     * If there is a security manager, makes sure caller has
528 <     * permission to modify threads.
527 >     * Class for artificial tasks that are used to replace the target
528 >     * of local joins if they are removed from an interior queue slot
529 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
530 >     * actually do anything beyond having a unique identity.
531       */
532 <    private static void checkPermission() {
533 <        SecurityManager security = System.getSecurityManager();
534 <        if (security != null)
535 <            security.checkPermission(modifyThreadPermission);
532 >    static final class EmptyTask extends ForkJoinTask<Void> {
533 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
534 >        public final Void getRawResult() { return null; }
535 >        public final void setRawResult(Void x) {}
536 >        public final boolean exec() { return true; }
537      }
538  
539      /**
540 <     * Generator for assigning sequence numbers as pool names.
540 >     * Queues supporting work-stealing as well as external task
541 >     * submission. See above for main rationale and algorithms.
542 >     * Implementation relies heavily on "Unsafe" intrinsics
543 >     * and selective use of "volatile":
544 >     *
545 >     * Field "base" is the index (mod array.length) of the least valid
546 >     * queue slot, which is always the next position to steal (poll)
547 >     * from if nonempty. Reads and writes require volatile orderings
548 >     * but not CAS, because updates are only performed after slot
549 >     * CASes.
550 >     *
551 >     * Field "top" is the index (mod array.length) of the next queue
552 >     * slot to push to or pop from. It is written only by owner thread
553 >     * for push, or under lock for trySharedPush, and accessed by
554 >     * other threads only after reading (volatile) base.  Both top and
555 >     * base are allowed to wrap around on overflow, but (top - base)
556 >     * (or more commonly -(base - top) to force volatile read of base
557 >     * before top) still estimates size.
558 >     *
559 >     * The array slots are read and written using the emulation of
560 >     * volatiles/atomics provided by Unsafe. Insertions must in
561 >     * general use putOrderedObject as a form of releasing store to
562 >     * ensure that all writes to the task object are ordered before
563 >     * its publication in the queue. (Although we can avoid one case
564 >     * of this when locked in trySharedPush.) All removals entail a
565 >     * CAS to null.  The array is always a power of two. To ensure
566 >     * safety of Unsafe array operations, all accesses perform
567 >     * explicit null checks and implicit bounds checks via
568 >     * power-of-two masking.
569 >     *
570 >     * In addition to basic queuing support, this class contains
571 >     * fields described elsewhere to control execution. It turns out
572 >     * to work better memory-layout-wise to include them in this
573 >     * class rather than a separate class.
574 >     *
575 >     * Performance on most platforms is very sensitive to placement of
576 >     * instances of both WorkQueues and their arrays -- we absolutely
577 >     * do not want multiple WorkQueue instances or multiple queue
578 >     * arrays sharing cache lines. (It would be best for queue objects
579 >     * and their arrays to share, but there is nothing available to
580 >     * help arrange that).  Unfortunately, because they are recorded
581 >     * in a common array, WorkQueue instances are often moved to be
582 >     * adjacent by garbage collectors. To reduce impact, we use field
583 >     * padding that works OK on common platforms; this effectively
584 >     * trades off slightly slower average field access for the sake of
585 >     * avoiding really bad worst-case access. (Until better JVM
586 >     * support is in place, this padding is dependent on transient
587 >     * properties of JVM field layout rules.)  We also take care in
588 >     * allocating, sizing and resizing the array. Non-shared queue
589 >     * arrays are initialized (via method growArray) by workers before
590 >     * use. Others are allocated on first use.
591       */
592 <    private static final AtomicInteger poolNumberGenerator =
593 <        new AtomicInteger();
592 >    static final class WorkQueue {
593 >        /**
594 >         * Capacity of work-stealing queue array upon initialization.
595 >         * Must be a power of two; at least 4, but set larger to
596 >         * reduce cacheline sharing among queues.
597 >         */
598 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
599  
600 <    /**
601 <     * Array holding all worker threads in the pool. Array size must
602 <     * be a power of two.  Updates and replacements are protected by
603 <     * workerLock, but it is always kept in a consistent enough state
604 <     * to be randomly accessed without locking by workers performing
605 <     * work-stealing.
606 <     */
607 <    volatile ForkJoinWorkerThread[] workers;
600 >        /**
601 >         * Maximum size for queue arrays. Must be a power of two less
602 >         * than or equal to 1 << (31 - width of array entry) to ensure
603 >         * lack of wraparound of index calculations, but defined to a
604 >         * value a bit less than this to help users trap runaway
605 >         * programs before saturating systems.
606 >         */
607 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
608  
609 <    /**
610 <     * Lock protecting access to workers.
611 <     */
612 <    private final ReentrantLock workerLock;
609 >        volatile long totalSteals; // cumulative number of steals
610 >        int seed;                  // for random scanning; initialize nonzero
611 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
612 >        int nextWait;              // encoded record of next event waiter
613 >        int rescans;               // remaining scans until block
614 >        int nsteals;               // top-level task executions since last idle
615 >        final int mode;            // lifo, fifo, or shared
616 >        int poolIndex;             // index of this queue in pool (or 0)
617 >        int stealHint;             // index of most recent known stealer
618 >        volatile int runState;     // 1: locked, -1: terminate; else 0
619 >        volatile int base;         // index of next slot for poll
620 >        int top;                   // index of next slot for push
621 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
622 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
623 >        volatile Thread parker;    // == owner during call to park; else null
624 >        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
625 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
626 >        // Heuristic padding to ameliorate unfortunate memory placements
627 >        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
628 >
629 >        WorkQueue(ForkJoinWorkerThread owner, int mode) {
630 >            this.owner = owner;
631 >            this.mode = mode;
632 >            // Place indices in the center of array (that is not yet allocated)
633 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
634 >        }
635  
636 <    /**
637 <     * Condition for awaitTermination.
638 <     */
639 <    private final Condition termination;
636 >        /**
637 >         * Returns number of tasks in the queue.
638 >         */
639 >        final int queueSize() {
640 >            int n = base - top; // non-owner callers must read base first
641 >            return (n >= 0) ? 0 : -n;
642 >        }
643  
644 <    /**
645 <     * The uncaught exception handler used when any worker
646 <     * abrupty terminates
647 <     */
648 <    private Thread.UncaughtExceptionHandler ueh;
644 >        /**
645 >         * Pushes a task. Call only by owner in unshared queues.
646 >         *
647 >         * @param task the task. Caller must ensure non-null.
648 >         * @param p if non-null, pool to signal if necessary
649 >         * @throw RejectedExecutionException if array cannot be resized
650 >         */
651 >        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
652 >            ForkJoinTask<?>[] a;
653 >            int s = top, m, n;
654 >            if ((a = array) != null) {    // ignore if queue removed
655 >                U.putOrderedObject
656 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
657 >                if ((n = (top = s + 1) - base) <= 2) {
658 >                    if (p != null)
659 >                        p.signalWork();
660 >                }
661 >                else if (n >= m)
662 >                    growArray(true);
663 >            }
664 >        }
665  
666 <    /**
667 <     * Creation factory for worker threads.
668 <     */
669 <    private final ForkJoinWorkerThreadFactory factory;
666 >        /**
667 >         * Pushes a task if lock is free and array is either big
668 >         * enough or can be resized to be big enough.
669 >         *
670 >         * @param task the task. Caller must ensure non-null.
671 >         * @return true if submitted
672 >         */
673 >        final boolean trySharedPush(ForkJoinTask<?> task) {
674 >            boolean submitted = false;
675 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
676 >                ForkJoinTask<?>[] a = array;
677 >                int s = top;
678 >                try {
679 >                    if ((a != null && a.length > s + 1 - base) ||
680 >                        (a = growArray(false)) != null) { // must presize
681 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
682 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
683 >                        top = s + 1;
684 >                        submitted = true;
685 >                    }
686 >                } finally {
687 >                    runState = 0;                         // unlock
688 >                }
689 >            }
690 >            return submitted;
691 >        }
692 >
693 >        /**
694 >         * Takes next task, if one exists, in FIFO order.
695 >         */
696 >        final ForkJoinTask<?> poll() {
697 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
698 >            while ((b = base) - top < 0 && (a = array) != null) {
699 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
700 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
701 >                    base == b &&
702 >                    U.compareAndSwapObject(a, j, t, null)) {
703 >                    base = b + 1;
704 >                    return t;
705 >                }
706 >            }
707 >            return null;
708 >        }
709 >
710 >        /**
711 >         * Takes next task, if one exists, in LIFO order.  Call only
712 >         * by owner in unshared queues. (We do not have a shared
713 >         * version of this method because it is never needed.)
714 >         */
715 >        final ForkJoinTask<?> pop() {
716 >            ForkJoinTask<?> t; int m;
717 >            ForkJoinTask<?>[] a = array;
718 >            if (a != null && (m = a.length - 1) >= 0) {
719 >                for (int s; (s = top - 1) - base >= 0;) {
720 >                    int j = ((m & s) << ASHIFT) + ABASE;
721 >                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
722 >                        break;
723 >                    if (U.compareAndSwapObject(a, j, t, null)) {
724 >                        top = s;
725 >                        return t;
726 >                    }
727 >                }
728 >            }
729 >            return null;
730 >        }
731 >
732 >        /**
733 >         * Takes next task, if one exists, in order specified by mode.
734 >         */
735 >        final ForkJoinTask<?> nextLocalTask() {
736 >            return mode == 0 ? pop() : poll();
737 >        }
738 >
739 >        /**
740 >         * Returns next task, if one exists, in order specified by mode.
741 >         */
742 >        final ForkJoinTask<?> peek() {
743 >            ForkJoinTask<?>[] a = array; int m;
744 >            if (a == null || (m = a.length - 1) < 0)
745 >                return null;
746 >            int i = mode == 0 ? top - 1 : base;
747 >            int j = ((i & m) << ASHIFT) + ABASE;
748 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
749 >        }
750 >
751 >        /**
752 >         * Returns task at index b if b is current base of queue.
753 >         */
754 >        final ForkJoinTask<?> pollAt(int b) {
755 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
756 >            if ((a = array) != null) {
757 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
758 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
759 >                    base == b &&
760 >                    U.compareAndSwapObject(a, j, t, null)) {
761 >                    base = b + 1;
762 >                    return t;
763 >                }
764 >            }
765 >            return null;
766 >        }
767 >
768 >        /**
769 >         * Pops the given task only if it is at the current top.
770 >         */
771 >        final boolean tryUnpush(ForkJoinTask<?> t) {
772 >            ForkJoinTask<?>[] a; int s;
773 >            if ((a = array) != null && (s = top) != base &&
774 >                U.compareAndSwapObject
775 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
776 >                top = s;
777 >                return true;
778 >            }
779 >            return false;
780 >        }
781 >
782 >        /**
783 >         * Polls the given task only if it is at the current base.
784 >         */
785 >        final boolean pollFor(ForkJoinTask<?> task) {
786 >            ForkJoinTask<?>[] a; int b;
787 >            if ((b = base) - top < 0 && (a = array) != null) {
788 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
789 >                if (U.getObjectVolatile(a, j) == task && base == b &&
790 >                    U.compareAndSwapObject(a, j, task, null)) {
791 >                    base = b + 1;
792 >                    return true;
793 >                }
794 >            }
795 >            return false;
796 >        }
797 >
798 >        /**
799 >         * If present, removes from queue and executes the given task, or
800 >         * any other cancelled task. Returns (true) immediately on any CAS
801 >         * or consistency check failure so caller can retry.
802 >         *
803 >         * @return false if no progress can be made
804 >         */
805 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
806 >            boolean removed = false, empty = true, progress = true;
807 >            ForkJoinTask<?>[] a; int m, s, b, n;
808 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
809 >                (n = (s = top) - (b = base)) > 0) {
810 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
811 >                    int j = ((--s & m) << ASHIFT) + ABASE;
812 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
813 >                    if (t == null)                    // inconsistent length
814 >                        break;
815 >                    else if (t == task) {
816 >                        if (s + 1 == top) {           // pop
817 >                            if (!U.compareAndSwapObject(a, j, task, null))
818 >                                break;
819 >                            top = s;
820 >                            removed = true;
821 >                        }
822 >                        else if (base == b)           // replace with proxy
823 >                            removed = U.compareAndSwapObject(a, j, task,
824 >                                                             new EmptyTask());
825 >                        break;
826 >                    }
827 >                    else if (t.status >= 0)
828 >                        empty = false;
829 >                    else if (s + 1 == top) {          // pop and throw away
830 >                        if (U.compareAndSwapObject(a, j, t, null))
831 >                            top = s;
832 >                        break;
833 >                    }
834 >                    if (--n == 0) {
835 >                        if (!empty && base == b)
836 >                            progress = false;
837 >                        break;
838 >                    }
839 >                }
840 >            }
841 >            if (removed)
842 >                task.doExec();
843 >            return progress;
844 >        }
845 >
846 >        /**
847 >         * Initializes or doubles the capacity of array. Call either
848 >         * by owner or with lock held -- it is OK for base, but not
849 >         * top, to move while resizings are in progress.
850 >         *
851 >         * @param rejectOnFailure if true, throw exception if capacity
852 >         * exceeded (relayed ultimately to user); else return null.
853 >         */
854 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
855 >            ForkJoinTask<?>[] oldA = array;
856 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
857 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
858 >                int oldMask, t, b;
859 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
860 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
861 >                    (t = top) - (b = base) > 0) {
862 >                    int mask = size - 1;
863 >                    do {
864 >                        ForkJoinTask<?> x;
865 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
866 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
867 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
868 >                        if (x != null &&
869 >                            U.compareAndSwapObject(oldA, oldj, x, null))
870 >                            U.putObjectVolatile(a, j, x);
871 >                    } while (++b != t);
872 >                }
873 >                return a;
874 >            }
875 >            else if (!rejectOnFailure)
876 >                return null;
877 >            else
878 >                throw new RejectedExecutionException("Queue capacity exceeded");
879 >        }
880 >
881 >        /**
882 >         * Removes and cancels all known tasks, ignoring any exceptions.
883 >         */
884 >        final void cancelAll() {
885 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
886 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
887 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
888 >                ForkJoinTask.cancelIgnoringExceptions(t);
889 >        }
890 >
891 >        /**
892 >         * Computes next value for random probes.  Scans don't require
893 >         * a very high quality generator, but also not a crummy one.
894 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
895 >         * This is manually inlined in several usages in ForkJoinPool
896 >         * to avoid writes inside busy scan loops.
897 >         */
898 >        final int nextSeed() {
899 >            int r = seed;
900 >            r ^= r << 13;
901 >            r ^= r >>> 17;
902 >            return seed = r ^= r << 5;
903 >        }
904 >
905 >        // Execution methods
906 >
907 >        /**
908 >         * Removes and runs tasks until empty, using local mode
909 >         * ordering.
910 >         */
911 >        final void runLocalTasks() {
912 >            if (base - top < 0) {
913 >                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
914 >                    t.doExec();
915 >            }
916 >        }
917 >
918 >        /**
919 >         * Executes a top-level task and any local tasks remaining
920 >         * after execution.
921 >         *
922 >         * @return true unless terminating
923 >         */
924 >        final boolean runTask(ForkJoinTask<?> t) {
925 >            boolean alive = true;
926 >            if (t != null) {
927 >                currentSteal = t;
928 >                t.doExec();
929 >                runLocalTasks();
930 >                ++nsteals;
931 >                currentSteal = null;
932 >            }
933 >            else if (runState < 0)            // terminating
934 >                alive = false;
935 >            return alive;
936 >        }
937 >
938 >        /**
939 >         * Executes a non-top-level (stolen) task.
940 >         */
941 >        final void runSubtask(ForkJoinTask<?> t) {
942 >            if (t != null) {
943 >                ForkJoinTask<?> ps = currentSteal;
944 >                currentSteal = t;
945 >                t.doExec();
946 >                currentSteal = ps;
947 >            }
948 >        }
949 >
950 >        /**
951 >         * Returns true if owned and not known to be blocked.
952 >         */
953 >        final boolean isApparentlyUnblocked() {
954 >            Thread wt; Thread.State s;
955 >            return (eventCount >= 0 &&
956 >                    (wt = owner) != null &&
957 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
958 >                    s != Thread.State.WAITING &&
959 >                    s != Thread.State.TIMED_WAITING);
960 >        }
961 >
962 >        /**
963 >         * If this owned and is not already interrupted, try to
964 >         * interrupt and/or unpark, ignoring exceptions.
965 >         */
966 >        final void interruptOwner() {
967 >            Thread wt, p;
968 >            if ((wt = owner) != null && !wt.isInterrupted()) {
969 >                try {
970 >                    wt.interrupt();
971 >                } catch (SecurityException ignore) {
972 >                }
973 >            }
974 >            if ((p = parker) != null)
975 >                U.unpark(p);
976 >        }
977 >
978 >        // Unsafe mechanics
979 >        private static final sun.misc.Unsafe U;
980 >        private static final long RUNSTATE;
981 >        private static final int ABASE;
982 >        private static final int ASHIFT;
983 >        static {
984 >            int s;
985 >            try {
986 >                U = getUnsafe();
987 >                Class<?> k = WorkQueue.class;
988 >                Class<?> ak = ForkJoinTask[].class;
989 >                RUNSTATE = U.objectFieldOffset
990 >                    (k.getDeclaredField("runState"));
991 >                ABASE = U.arrayBaseOffset(ak);
992 >                s = U.arrayIndexScale(ak);
993 >            } catch (Exception e) {
994 >                throw new Error(e);
995 >            }
996 >            if ((s & (s-1)) != 0)
997 >                throw new Error("data type scale not a power of two");
998 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
999 >        }
1000 >    }
1001  
1002      /**
1003 <     * Head of stack of threads that were created to maintain
1004 <     * parallelism when other threads blocked, but have since
1005 <     * suspended when the parallelism level rose.
1003 >     * Per-thread records for threads that submit to pools. Currently
1004 >     * holds only pseudo-random seed / index that is used to choose
1005 >     * submission queues in method doSubmit. In the future, this may
1006 >     * also incorporate a means to implement different task rejection
1007 >     * and resubmission policies.
1008       */
1009 <    private volatile WaitQueueNode spareStack;
1009 >    static final class Submitter {
1010 >        int seed;
1011 >        Submitter() { seed = hashId(Thread.currentThread().getId()); }
1012 >    }
1013 >
1014 >    /** ThreadLocal class for Submitters */
1015 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1016 >        public Submitter initialValue() { return new Submitter(); }
1017 >    }
1018 >
1019 >    // static fields (initialized in static initializer below)
1020  
1021      /**
1022 <     * Sum of per-thread steal counts, updated only when threads are
1023 <     * idle or terminating.
1022 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1023 >     * overridden in ForkJoinPool constructors.
1024       */
1025 <    private final AtomicLong stealCount;
1025 >    public static final ForkJoinWorkerThreadFactory
1026 >        defaultForkJoinWorkerThreadFactory;
1027  
1028      /**
1029 <     * Queue for external submissions.
1029 >     * Generator for assigning sequence numbers as pool names.
1030       */
1031 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1031 >    private static final AtomicInteger poolNumberGenerator;
1032  
1033      /**
1034 <     * Head of Treiber stack for barrier sync. See below for explanation
1034 >     * Permission required for callers of methods that may start or
1035 >     * kill threads.
1036       */
1037 <    private volatile WaitQueueNode syncStack;
1037 >    private static final RuntimePermission modifyThreadPermission;
1038  
1039      /**
1040 <     * The count for event barrier
1040 >     * Per-thread submission bookeeping. Shared across all pools
1041 >     * to reduce ThreadLocal pollution and because random motion
1042 >     * to avoid contention in one pool is likely to hold for others.
1043       */
1044 <    private volatile long eventCount;
1044 >    private static final ThreadSubmitter submitters;
1045 >
1046 >    // static constants
1047  
1048      /**
1049 <     * Pool number, just for assigning useful names to worker threads
1049 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
1050 >     * task when the pool is quiescent to instead try to shrink the
1051 >     * number of workers.  The exact value does not matter too
1052 >     * much. It must be short enough to release resources during
1053 >     * sustained periods of idleness, but not so short that threads
1054 >     * are continually re-created.
1055       */
1056 <    private final int poolNumber;
1056 >    private static final long SHRINK_RATE =
1057 >        4L * 1000L * 1000L * 1000L; // 4 seconds
1058  
1059      /**
1060 <     * The maximum allowed pool size
1060 >     * The timeout value for attempted shrinkage, includes
1061 >     * some slop to cope with system timer imprecision.
1062       */
1063 <    private volatile int maxPoolSize;
1063 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1064  
1065      /**
1066 <     * The desired parallelism level, updated only under workerLock.
1066 >     * The maximum stolen->joining link depth allowed in tryHelpStealer.
1067 >     * Depths for legitimate chains are unbounded, but we use a fixed
1068 >     * constant to avoid (otherwise unchecked) cycles and to bound
1069 >     * staleness of traversal parameters at the expense of sometimes
1070 >     * blocking when we could be helping.
1071       */
1072 <    private volatile int parallelism;
1072 >    private static final int MAX_HELP_DEPTH = 16;
1073  
1074      /**
1075 <     * Holds number of total (i.e., created and not yet terminated)
1076 <     * and running (i.e., not blocked on joins or other managed sync)
1077 <     * threads, packed into one int to ensure consistent snapshot when
1078 <     * making decisions about creating and suspending spare
1079 <     * threads. Updated only by CAS.  Note: CASes in
1080 <     * updateRunningCount and preJoin running active count is in low
1081 <     * word, so need to be modified if this changes
1082 <     */
1083 <    private volatile int workerCounts;
1075 >     * Bits and masks for control variables
1076 >     *
1077 >     * Field ctl is a long packed with:
1078 >     * AC: Number of active running workers minus target parallelism (16 bits)
1079 >     * TC: Number of total workers minus target parallelism (16 bits)
1080 >     * ST: true if pool is terminating (1 bit)
1081 >     * EC: the wait count of top waiting thread (15 bits)
1082 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1083 >     *
1084 >     * When convenient, we can extract the upper 32 bits of counts and
1085 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1086 >     * (int)ctl.  The ec field is never accessed alone, but always
1087 >     * together with id and st. The offsets of counts by the target
1088 >     * parallelism and the positionings of fields makes it possible to
1089 >     * perform the most common checks via sign tests of fields: When
1090 >     * ac is negative, there are not enough active workers, when tc is
1091 >     * negative, there are not enough total workers, and when e is
1092 >     * negative, the pool is terminating.  To deal with these possibly
1093 >     * negative fields, we use casts in and out of "short" and/or
1094 >     * signed shifts to maintain signedness.
1095 >     *
1096 >     * When a thread is queued (inactivated), its eventCount field is
1097 >     * set negative, which is the only way to tell if a worker is
1098 >     * prevented from executing tasks, even though it must continue to
1099 >     * scan for them to avoid queuing races. Note however that
1100 >     * eventCount updates lag releases so usage requires care.
1101 >     *
1102 >     * Field runState is an int packed with:
1103 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1104 >     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
1105 >     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
1106 >     *
1107 >     * The combination of mask and sequence number enables simple
1108 >     * consistency checks: Staleness of read-only operations on the
1109 >     * workQueues array can be checked by comparing runState before vs
1110 >     * after the reads. The low 16 bits (i.e, anding with SMASK) hold
1111 >     * the smallest power of two covering all indices, minus
1112 >     * one.
1113 >     */
1114 >
1115 >    // bit positions/shifts for fields
1116 >    private static final int  AC_SHIFT   = 48;
1117 >    private static final int  TC_SHIFT   = 32;
1118 >    private static final int  ST_SHIFT   = 31;
1119 >    private static final int  EC_SHIFT   = 16;
1120 >
1121 >    // bounds
1122 >    private static final int  POOL_MAX   = 0x7fff;  // max #workers - 1
1123 >    private static final int  SMASK      = 0xffff;  // short bits
1124 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1125 >    private static final int  SHORT_SIGN = 1 << 15;
1126 >    private static final int  INT_SIGN   = 1 << 31;
1127 >
1128 >    // masks
1129 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1130 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1131 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1132 >
1133 >    // units for incrementing and decrementing
1134 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1135 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1136 >
1137 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1138 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1139 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1140 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1141 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1142 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1143 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1144 >
1145 >    // masks and units for dealing with e = (int)ctl
1146 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1147 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1148 >
1149 >    // runState bits
1150 >    private static final int SHUTDOWN    = 1 << 31;
1151 >    private static final int RS_SEQ      = 1 << 16;
1152 >    private static final int RS_SEQ_MASK = 0x7fff0000;
1153 >
1154 >    // access mode for WorkQueue
1155 >    static final int LIFO_QUEUE          =  0;
1156 >    static final int FIFO_QUEUE          =  1;
1157 >    static final int SHARED_QUEUE        = -1;
1158 >
1159 >    // Instance fields
1160  
1161 <    private static int totalCountOf(int s)           { return s >>> 16;  }
1162 <    private static int runningCountOf(int s)         { return s & shortMask; }
1163 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1161 >    /*
1162 >     * Field layout order in this class tends to matter more than one
1163 >     * would like. Runtime layout order is only loosely related to
1164 >     * declaration order and may differ across JVMs, but the following
1165 >     * empirically works OK on current JVMs.
1166 >     */
1167 >
1168 >    volatile long ctl;                         // main pool control
1169 >    final int parallelism;                     // parallelism level
1170 >    final int localMode;                       // per-worker scheduling mode
1171 >    int growHints;                             // for expanding indices/ranges
1172 >    volatile int runState;                     // shutdown status, seq, and mask
1173 >    WorkQueue[] workQueues;                    // main registry
1174 >    final Mutex lock;                          // for registration
1175 >    final Condition termination;               // for awaitTermination
1176 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1177 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1178 >    final AtomicLong stealCount;               // collect counts when terminated
1179 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1180 >    final String workerNamePrefix;             // to create worker name string
1181 >
1182 >    //  Creating, registering, deregistering and running workers
1183 >
1184 >    /**
1185 >     * Tries to create and start a worker
1186 >     */
1187 >    private void addWorker() {
1188 >        Throwable ex = null;
1189 >        ForkJoinWorkerThread wt = null;
1190 >        try {
1191 >            if ((wt = factory.newThread(this)) != null) {
1192 >                wt.start();
1193 >                return;
1194 >            }
1195 >        } catch (Throwable e) {
1196 >            ex = e;
1197 >        }
1198 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1199 >    }
1200  
1201      /**
1202 <     * Add delta (which may be negative) to running count.  This must
1203 <     * be called before (with negative arg) and after (with positive)
1204 <     * any managed synchronization (i.e., mainly, joins)
1205 <     * @param delta the number to add
1202 >     * Callback from ForkJoinWorkerThread constructor to assign a
1203 >     * public name. This must be separate from registerWorker because
1204 >     * it is called during the "super" constructor call in
1205 >     * ForkJoinWorkerThread.
1206       */
1207 <    final void updateRunningCount(int delta) {
1208 <        int s;
1209 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1207 >    final String nextWorkerName() {
1208 >        return workerNamePrefix.concat
1209 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1210      }
1211  
1212      /**
1213 <     * Add delta (which may be negative) to both total and running
1214 <     * count.  This must be called upon creation and termination of
1215 <     * worker threads.
1216 <     * @param delta the number to add
1213 >     * Callback from ForkJoinWorkerThread constructor to establish and
1214 >     * record its WorkQueue.
1215 >     *
1216 >     * @param wt the worker thread
1217       */
1218 <    private void updateWorkerCount(int delta) {
1219 <        int d = delta + (delta << 16); // add to both lo and hi parts
1220 <        int s;
1221 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1218 >    final void registerWorker(ForkJoinWorkerThread wt) {
1219 >        WorkQueue w = wt.workQueue;
1220 >        Mutex lock = this.lock;
1221 >        lock.lock();
1222 >        try {
1223 >            int g = growHints, k = g & SMASK;
1224 >            WorkQueue[] ws = workQueues;
1225 >            if (ws != null) {                       // ignore on shutdown
1226 >                int n = ws.length;
1227 >                if ((k & 1) == 0 || k >= n || ws[k] != null) {
1228 >                    for (k = 1; k < n && ws[k] != null; k += 2)
1229 >                        ;                           // workers are at odd indices
1230 >                    if (k >= n)                     // resize
1231 >                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1232 >                }
1233 >                w.eventCount = w.poolIndex = k;     // establish before recording
1234 >                ws[k] = w;
1235 >                growHints = (g & ~SMASK) | ((k + 2) & SMASK);
1236 >                int rs = runState;
1237 >                int m = rs & SMASK;                 // recalculate runState mask
1238 >                if (k > m)
1239 >                    m = (m << 1) + 1;
1240 >                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1241 >            }
1242 >        } finally {
1243 >            lock.unlock();
1244 >        }
1245      }
1246  
1247      /**
1248 <     * Lifecycle control. High word contains runState, low word
1249 <     * contains the number of workers that are (probably) executing
1250 <     * tasks. This value is atomically incremented before a worker
1251 <     * gets a task to run, and decremented when worker has no tasks
1252 <     * and cannot find any. These two fields are bundled together to
1253 <     * support correct termination triggering.  Note: activeCount
1254 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
1248 >     * Final callback from terminating worker, as well as upon failure
1249 >     * to construct or start a worker in addWorker.  Removes record of
1250 >     * worker from array, and adjusts counts. If pool is shutting
1251 >     * down, tries to complete termination.
1252 >     *
1253 >     * @param wt the worker thread or null if addWorker failed
1254 >     * @param ex the exception causing failure, or null if none
1255       */
1256 <    private volatile int runControl;
1256 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1257 >        WorkQueue w = null;
1258 >        if (wt != null && (w = wt.workQueue) != null) {
1259 >            w.runState = -1;                // ensure runState is set
1260 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1261 >            int idx = w.poolIndex;
1262 >            Mutex lock = this.lock;
1263 >            lock.lock();
1264 >            try {                           // remove record from array
1265 >                WorkQueue[] ws = workQueues;
1266 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) {
1267 >                    ws[idx] = null;
1268 >                    growHints = (growHints & ~SMASK) | idx;
1269 >                }
1270 >            } finally {
1271 >                lock.unlock();
1272 >            }
1273 >        }
1274 >
1275 >        long c;                             // adjust ctl counts
1276 >        do {} while (!U.compareAndSwapLong
1277 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1278 >                                           ((c - TC_UNIT) & TC_MASK) |
1279 >                                           (c & ~(AC_MASK|TC_MASK)))));
1280  
1281 <    // RunState values. Order among values matters
1282 <    private static final int RUNNING     = 0;
1283 <    private static final int SHUTDOWN    = 1;
1284 <    private static final int TERMINATING = 2;
1285 <    private static final int TERMINATED  = 3;
1281 >        if (!tryTerminate(false, false) && w != null) {
1282 >            w.cancelAll();                  // cancel remaining tasks
1283 >            if (w.array != null)            // suppress signal if never ran
1284 >                signalWork();               // wake up or create replacement
1285 >            if (ex == null)                 // help clean refs on way out
1286 >                ForkJoinTask.helpExpungeStaleExceptions();
1287 >        }
1288  
1289 <    private static int runStateOf(int c)             { return c >>> 16; }
1290 <    private static int activeCountOf(int c)          { return c & shortMask; }
1291 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1289 >        if (ex != null)                     // rethrow
1290 >            U.throwException(ex);
1291 >    }
1292  
1293      /**
1294 <     * Try incrementing active count; fail on contention. Called by
268 <     * workers before/during executing tasks.
269 <     * @return true on success;
1294 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1295       */
1296 <    final boolean tryIncrementActiveCount() {
1297 <        int c = runControl;
1298 <        return casRunControl(c, c+1);
1296 >    final void runWorker(ForkJoinWorkerThread wt) {
1297 >        // Initialize queue array and seed in this thread
1298 >        WorkQueue w = wt.workQueue;
1299 >        w.growArray(false);
1300 >        w.seed = hashId(Thread.currentThread().getId());
1301 >
1302 >        do {} while (w.runTask(scan(w)));
1303      }
1304  
1305 +    // Submissions
1306 +
1307      /**
1308 <     * Try decrementing active count; fail on contention.
1309 <     * Possibly trigger termination on success
1310 <     * Called by workers when they can't find tasks.
1311 <     * @return true on success
1308 >     * Unless shutting down, adds the given task to a submission queue
1309 >     * at submitter's current queue index (modulo submission
1310 >     * range). If no queue exists at the index, one is created unless
1311 >     * pool lock is busy.  If the queue and/or lock are busy, another
1312 >     * index is randomly chosen. The mask in growHints controls the
1313 >     * effective index range of queues considered. The mask is
1314 >     * expanded, up to the current workerQueue mask, upon any detected
1315 >     * contention but otherwise remains small to avoid needlessly
1316 >     * creating queues when there is no contention.
1317       */
1318 <    final boolean tryDecrementActiveCount() {
1319 <        int c = runControl;
1320 <        int nextc = c - 1;
1321 <        if (!casRunControl(c, nextc))
1322 <            return false;
1323 <        if (canTerminateOnShutdown(nextc))
1324 <            terminateOnShutdown();
1325 <        return true;
1318 >    private void doSubmit(ForkJoinTask<?> task) {
1319 >        if (task == null)
1320 >            throw new NullPointerException();
1321 >        Submitter s = submitters.get();
1322 >        for (int r = s.seed, m = growHints >>> 16;;) {
1323 >            WorkQueue[] ws; WorkQueue q; Mutex lk;
1324 >            int k = r & m & SQMASK;          // use only even indices
1325 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1326 >                throw new RejectedExecutionException(); // shutting down
1327 >            if ((q = ws[k]) == null && (lk = lock).tryAcquire(0)) {
1328 >                try {                        // try to create new queue
1329 >                    if (ws == workQueues && (q = ws[k]) == null) {
1330 >                        int rs;              // update runState seq
1331 >                        ws[k] = q = new WorkQueue(null, SHARED_QUEUE);
1332 >                        runState = (((rs = runState) & SHUTDOWN) |
1333 >                                    ((rs + RS_SEQ) & ~SHUTDOWN));
1334 >                    }
1335 >                } finally {
1336 >                    lk.unlock();
1337 >                }
1338 >            }
1339 >            if (q != null) {
1340 >                if (q.trySharedPush(task)) {
1341 >                    signalWork();
1342 >                    return;
1343 >                }
1344 >                else if (m < parallelism - 1 && m < (runState & SMASK)) {
1345 >                    Mutex lock = this.lock;
1346 >                    lock.lock();             // block until lock free
1347 >                    int g = growHints;
1348 >                    if (g >>> 16 == m)       // expand range
1349 >                        growHints = (((m << 1) + 1) << 16) | (g & SMASK);
1350 >                    lock.unlock();           // no need for try/finally
1351 >                }
1352 >                else if ((r & m) == 0)
1353 >                    Thread.yield();          // occasionally yield if busy
1354 >            }
1355 >            if (m == (m = growHints >>> 16)) {
1356 >                r ^= r << 13;                // update seed unless new range
1357 >                r ^= r >>> 17;               // same xorshift as WorkQueues
1358 >                s.seed = r ^= r << 5;
1359 >            }
1360 >        }
1361      }
1362  
1363 +    // Maintaining ctl counts
1364 +
1365      /**
1366 <     * Return true if argument represents zero active count and
294 <     * nonzero runstate, which is the triggering condition for
295 <     * terminating on shutdown.
1366 >     * Increments active count; mainly called upon return from blocking.
1367       */
1368 <    private static boolean canTerminateOnShutdown(int c) {
1369 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
1368 >    final void incrementActiveCount() {
1369 >        long c;
1370 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1371      }
1372  
1373      /**
1374 <     * Transition run state to at least the given state. Return true
303 <     * if not already at least given state.
1374 >     * Tries to activate or create a worker if too few are active.
1375       */
1376 <    private boolean transitionRunStateTo(int state) {
1377 <        for (;;) {
1378 <            int c = runControl;
1379 <            if (runStateOf(c) >= state)
1380 <                return false;
1381 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1382 <                return true;
1376 >    final void signalWork() {
1377 >        long c; int u;
1378 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1379 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1380 >            if ((e = (int)c) > 0) {                     // at least one waiting
1381 >                if (ws != null && (i = e & SMASK) < ws.length &&
1382 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1383 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1384 >                               ((long)(u + UAC_UNIT) << 32));
1385 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1386 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1387 >                        if ((p = w.parker) != null)
1388 >                            U.unpark(p);                // activate and release
1389 >                        break;
1390 >                    }
1391 >                }
1392 >                else
1393 >                    break;
1394 >            }
1395 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1396 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1397 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1398 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1399 >                    addWorker();
1400 >                    break;
1401 >                }
1402 >            }
1403 >            else
1404 >                break;
1405          }
1406      }
1407  
1408      /**
1409 <     * Controls whether to add spares to maintain parallelism
1409 >     * Tries to decrement active count (sometimes implicitly) and
1410 >     * possibly release or create a compensating worker in preparation
1411 >     * for blocking. Fails on contention or termination.
1412 >     *
1413 >     * @return true if the caller can block, else should recheck and retry
1414       */
1415 <    private volatile boolean maintainsParallelism;
1415 >    final boolean tryCompensate() {
1416 >        WorkQueue w; Thread p;
1417 >        int pc = parallelism, e, u, ac, tc, i;
1418 >        long c = ctl;
1419 >        WorkQueue[] ws = workQueues;
1420 >        if ((e = (int)c) >= 0) {
1421 >            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1422 >                e != 0 && ws != null && (i = e & SMASK) < ws.length &&
1423 >                (w = ws[i]) != null) {
1424 >                long nc = (long)(w.nextWait & E_MASK) | (c & (AC_MASK|TC_MASK));
1425 >                if (w.eventCount == (e | INT_SIGN) &&
1426 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1427 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1428 >                    if ((p = w.parker) != null)
1429 >                        U.unpark(p);
1430 >                    return true;             // release an idle worker
1431 >                }
1432 >            }
1433 >            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1434 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1435 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1436 >                    return true;             // no compensation needed
1437 >            }
1438 >            else if (tc + pc < POOL_MAX) {
1439 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1440 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1441 >                    addWorker();
1442 >                    return true;             // create replacement
1443 >                }
1444 >            }
1445 >        }
1446 >        return false;
1447 >    }
1448  
1449 <    // Constructors
1449 >    // Scanning for tasks
1450  
1451      /**
1452 <     * Creates a ForkJoinPool with a pool size equal to the number of
1453 <     * processors available on the system and using the default
1454 <     * ForkJoinWorkerThreadFactory,
1455 <     * @throws SecurityException if a security manager exists and
1456 <     *         the caller is not permitted to modify threads
1457 <     *         because it does not hold {@link
1458 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1452 >     * Scans for and, if found, returns one task, else possibly
1453 >     * inactivates the worker. This method operates on single reads of
1454 >     * volatile state and is designed to be re-invoked continuously in
1455 >     * part because it returns upon detecting inconsistencies,
1456 >     * contention, or state changes that indicate possible success on
1457 >     * re-invocation.
1458 >     *
1459 >     * The scan searches for tasks across queues, randomly selecting
1460 >     * the first #queues probes, favoring steals over submissions
1461 >     * (by exploiting even/odd indexing), and then performing a
1462 >     * circular sweep of all queues.  The scan terminates upon either
1463 >     * finding a non-empty queue, or completing a full sweep. If the
1464 >     * worker is not inactivated, it takes and returns a task from
1465 >     * this queue.  On failure to find a task, we take one of the
1466 >     * following actions, after which the caller will retry calling
1467 >     * this method unless terminated.
1468 >     *
1469 >     * * If pool is terminating, terminate the worker.
1470 >     *
1471 >     * * If not a complete sweep, try to release a waiting worker.  If
1472 >     * the scan terminated because the worker is inactivated, then the
1473 >     * released worker will often be the calling worker, and it can
1474 >     * succeed obtaining a task on the next call. Or maybe it is
1475 >     * another worker, but with same net effect. Releasing in other
1476 >     * cases as well ensures that we have enough workers running.
1477 >     *
1478 >     * * If the caller has run a task since the last empty scan,
1479 >     * return (to allow rescan) if other workers are not also yet
1480 >     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1481 >     * ensure eventual inactivation and blocking.
1482 >     *
1483 >     * * If not already enqueued, try to inactivate and enqueue the
1484 >     * worker on wait queue.
1485 >     *
1486 >     * * If already enqueued and none of the above apply, either park
1487 >     * awaiting signal, or if this is the most recent waiter and pool
1488 >     * is quiescent, relay to idleAwaitWork to check for termination
1489 >     * and possibly shrink pool.
1490 >     *
1491 >     * @param w the worker (via its WorkQueue)
1492 >     * @return a task or null of none found
1493       */
1494 <    public ForkJoinPool() {
1495 <        this(Runtime.getRuntime().availableProcessors(),
1496 <             defaultForkJoinWorkerThreadFactory);
1494 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1495 >        boolean swept = false;               // true after full empty scan
1496 >        WorkQueue[] ws;                      // volatile read order matters
1497 >        int r = w.seed, ec = w.eventCount;   // ec is negative if inactive
1498 >        int rs = runState, m = rs & SMASK;
1499 >        if ((ws = workQueues) != null && ws.length > m) { // consistency check
1500 >            for (int k = 0, j = -1 - m; ; ++j) {
1501 >                WorkQueue q; int b;
1502 >                if (j < 0) {                 // random probes while j negative
1503 >                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1504 >                }                            // worker (not submit) for odd j
1505 >                else                         // cyclic scan when j >= 0
1506 >                    k += 7;                  // step 7 reduces array packing bias
1507 >                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1508 >                    ForkJoinTask<?> t = (ec >= 0) ? q.pollAt(b) : null;
1509 >                    w.seed = r;              // save seed for next scan
1510 >                    if (t != null)
1511 >                        return t;
1512 >                    break;
1513 >                }
1514 >                else if (j - m > m) {
1515 >                    if (rs == runState)      // staleness check
1516 >                        swept = true;
1517 >                    break;
1518 >                }
1519 >            }
1520 >
1521 >            // Decode ctl on empty scan
1522 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1523 >            if (e < 0)                       // pool is terminating
1524 >                w.runState = -1;
1525 >            else if (!swept) {               // try to release a waiter
1526 >                WorkQueue v; Thread p;
1527 >                if (e > 0 && a < 0 && (v = ws[e & m]) != null &&
1528 >                    v.eventCount == (e | INT_SIGN)) {
1529 >                    long nc = ((long)(v.nextWait & E_MASK) |
1530 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1531 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1532 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1533 >                        if ((p = v.parker) != null)
1534 >                            U.unpark(p);
1535 >                    }
1536 >                }
1537 >            }
1538 >            else if ((nr = w.rescans) > 0) { // continue rescanning
1539 >                int ac = a + parallelism;
1540 >                if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0 &&
1541 >                    w.eventCount == ec)
1542 >                    Thread.yield();          // occasionally yield
1543 >            }
1544 >            else if (ec >= 0) {              // try to enqueue
1545 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1546 >                w.nextWait = e;
1547 >                w.eventCount = ec | INT_SIGN;// mark as inactive
1548 >                if (!U.compareAndSwapLong(this, CTL, c, nc))
1549 >                    w.eventCount = ec;       // unmark on CAS failure
1550 >                else if ((ns = w.nsteals) != 0) {
1551 >                    w.nsteals = 0;           // set rescans if ran task
1552 >                    w.rescans = a + parallelism;
1553 >                    w.totalSteals += ns;
1554 >                }
1555 >            }
1556 >            else{                            // already queued
1557 >                if (parallelism == -a)
1558 >                    idleAwaitWork(w);        // quiescent
1559 >                if (w.eventCount == ec) {
1560 >                    Thread.interrupted();    // clear status
1561 >                    ForkJoinWorkerThread wt = w.owner;
1562 >                    U.putObject(wt, PARKBLOCKER, this);
1563 >                    w.parker = wt;           // emulate LockSupport.park
1564 >                    if (w.eventCount == ec)  // recheck
1565 >                        U.park(false, 0L);   // block
1566 >                    w.parker = null;
1567 >                    U.putObject(wt, PARKBLOCKER, null);
1568 >                }
1569 >            }
1570 >        }
1571 >        return null;
1572      }
1573  
1574      /**
1575 <     * Creates a ForkJoinPool with the indicated parellelism level
1576 <     * threads, and using the default ForkJoinWorkerThreadFactory,
1577 <     * @param parallelism the number of worker threads
1578 <     * @throws IllegalArgumentException if parallelism less than or
1579 <     * equal to zero
1580 <     * @throws SecurityException if a security manager exists and
1581 <     *         the caller is not permitted to modify threads
1582 <     *         because it does not hold {@link
345 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1575 >     * If inactivating worker w has caused pool to become quiescent,
1576 >     * checks for pool termination, and, so long as this is not the
1577 >     * only worker, waits for event for up to SHRINK_RATE nanosecs.
1578 >     * On timeout, if ctl has not changed, terminates the worker,
1579 >     * which will in turn wake up another worker to possibly repeat
1580 >     * this process.
1581 >     *
1582 >     * @param w the calling worker
1583       */
1584 <    public ForkJoinPool(int parallelism) {
1585 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1584 >    private void idleAwaitWork(WorkQueue w) {
1585 >        long c; int nw, ec;
1586 >        if (!tryTerminate(false, false) &&
1587 >            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1588 >            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1589 >            (nw = w.nextWait) != 0) {
1590 >            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1591 >                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1592 >            ForkJoinWorkerThread wt = w.owner;
1593 >            while (ctl == c) {
1594 >                long startTime = System.nanoTime();
1595 >                Thread.interrupted();  // timed variant of version in scan()
1596 >                U.putObject(wt, PARKBLOCKER, this);
1597 >                w.parker = wt;
1598 >                if (ctl == c)
1599 >                    U.park(false, SHRINK_RATE);
1600 >                w.parker = null;
1601 >                U.putObject(wt, PARKBLOCKER, null);
1602 >                if (ctl != c)
1603 >                    break;
1604 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1605 >                    U.compareAndSwapLong(this, CTL, c, nc)) {
1606 >                    w.eventCount = (ec + E_SEQ) | E_MASK;
1607 >                    w.runState = -1;          // shrink
1608 >                    break;
1609 >                }
1610 >            }
1611 >        }
1612      }
1613  
1614      /**
1615 <     * Creates a ForkJoinPool with parallelism equal to the number of
1616 <     * processors available on the system and using the given
1617 <     * ForkJoinWorkerThreadFactory,
1618 <     * @param factory the factory for creating new threads
1619 <     * @throws NullPointerException if factory is null
1620 <     * @throws SecurityException if a security manager exists and
1621 <     *         the caller is not permitted to modify threads
1622 <     *         because it does not hold {@link
1623 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1624 <     */
1625 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1626 <        this(Runtime.getRuntime().availableProcessors(), factory);
1615 >     * Tries to locate and execute tasks for a stealer of the given
1616 >     * task, or in turn one of its stealers, Traces currentSteal ->
1617 >     * currentJoin links looking for a thread working on a descendant
1618 >     * of the given task and with a non-empty queue to steal back and
1619 >     * execute tasks from. The first call to this method upon a
1620 >     * waiting join will often entail scanning/search, (which is OK
1621 >     * because the joiner has nothing better to do), but this method
1622 >     * leaves hints in workers to speed up subsequent calls. The
1623 >     * implementation is very branchy to cope with potential
1624 >     * inconsistencies or loops encountering chains that are stale,
1625 >     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1626 >     * of these cases are dealt with by just retrying by caller.
1627 >     *
1628 >     * @param joiner the joining worker
1629 >     * @param task the task to join
1630 >     * @return true if found or ran a task (and so is immediately retryable)
1631 >     */
1632 >    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1633 >        ForkJoinTask<?> subtask;    // current target
1634 >        boolean progress = false;
1635 >        int depth = 0;              // current chain depth
1636 >        int m = runState & SMASK;
1637 >        WorkQueue[] ws = workQueues;
1638 >
1639 >        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1640 >            outer:for (WorkQueue j = joiner;;) {
1641 >                // Try to find the stealer of subtask, by first using hint
1642 >                WorkQueue stealer = null;
1643 >                WorkQueue v = ws[j.stealHint & m];
1644 >                if (v != null && v.currentSteal == subtask)
1645 >                    stealer = v;
1646 >                else {
1647 >                    for (int i = 1; i <= m; i += 2) {
1648 >                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1649 >                            stealer = v;
1650 >                            j.stealHint = i; // save hint
1651 >                            break;
1652 >                        }
1653 >                    }
1654 >                    if (stealer == null)
1655 >                        break;
1656 >                }
1657 >
1658 >                for (WorkQueue q = stealer;;) { // Try to help stealer
1659 >                    ForkJoinTask<?> t; int b;
1660 >                    if (task.status < 0)
1661 >                        break outer;
1662 >                    if ((b = q.base) - q.top < 0) {
1663 >                        progress = true;
1664 >                        if (subtask.status < 0)
1665 >                            break outer;               // stale
1666 >                        if ((t = q.pollAt(b)) != null) {
1667 >                            stealer.stealHint = joiner.poolIndex;
1668 >                            joiner.runSubtask(t);
1669 >                        }
1670 >                    }
1671 >                    else { // empty - try to descend to find stealer's stealer
1672 >                        ForkJoinTask<?> next = stealer.currentJoin;
1673 >                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1674 >                            next == null || next == subtask)
1675 >                            break outer;  // max depth, stale, dead-end, cyclic
1676 >                        subtask = next;
1677 >                        j = stealer;
1678 >                        break;
1679 >                    }
1680 >                }
1681 >            }
1682 >        }
1683 >        return progress;
1684      }
1685  
1686      /**
1687 <     * Creates a ForkJoinPool with the given parallelism and factory.
1687 >     * If task is at base of some steal queue, steals and executes it.
1688       *
1689 <     * @param parallelism the targeted number of worker threads
1690 <     * @param factory the factory for creating new threads
371 <     * @throws IllegalArgumentException if parallelism less than or
372 <     * equal to zero, or greater than implementation limit.
373 <     * @throws NullPointerException if factory is null
374 <     * @throws SecurityException if a security manager exists and
375 <     *         the caller is not permitted to modify threads
376 <     *         because it does not hold {@link
377 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1689 >     * @param joiner the joining worker
1690 >     * @param task the task
1691       */
1692 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1693 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1694 <            throw new IllegalArgumentException();
1695 <        if (factory == null)
1696 <            throw new NullPointerException();
1697 <        checkPermission();
1698 <        this.factory = factory;
1699 <        this.parallelism = parallelism;
1700 <        this.maxPoolSize = MAX_THREADS;
1701 <        this.maintainsParallelism = true;
1702 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1703 <        this.workerLock = new ReentrantLock();
391 <        this.termination = workerLock.newCondition();
392 <        this.stealCount = new AtomicLong();
393 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
394 <        createAndStartInitialWorkers(parallelism);
1692 >    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1693 >        WorkQueue[] ws;
1694 >        int m = runState & SMASK;
1695 >        if ((ws = workQueues) != null && ws.length > m) {
1696 >            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1697 >                WorkQueue q = ws[j];
1698 >                if (q != null && q.pollFor(task)) {
1699 >                    joiner.runSubtask(task);
1700 >                    break;
1701 >                }
1702 >            }
1703 >        }
1704      }
1705  
1706      /**
1707 <     * Create new worker using factory.
1708 <     * @param index the index to assign worker
1709 <     * @return new worker, or null of factory failed
1710 <     */
1711 <    private ForkJoinWorkerThread createWorker(int index) {
1712 <        Thread.UncaughtExceptionHandler h = ueh;
1713 <        ForkJoinWorkerThread w = factory.newThread(this);
1714 <        if (w != null) {
1715 <            w.poolIndex = index;
1716 <            w.setDaemon(true);
1717 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1718 <            if (h != null)
1719 <                w.setUncaughtExceptionHandler(h);
1707 >     * Returns a non-empty steal queue, if one is found during a random,
1708 >     * then cyclic scan, else null.  This method must be retried by
1709 >     * caller if, by the time it tries to use the queue, it is empty.
1710 >     */
1711 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1712 >        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1713 >        for (WorkQueue[] ws;;) {
1714 >            int m = runState & SMASK;
1715 >            if ((ws = workQueues) == null)
1716 >                return null;
1717 >            if (ws.length > m) {
1718 >                WorkQueue q;
1719 >                for (int k = 0, j = -1 - m;; ++j) {
1720 >                    if (j < 0) {
1721 >                        r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1722 >                    }
1723 >                    else
1724 >                        k += 7;
1725 >                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1726 >                        w.seed = r;
1727 >                        return q;
1728 >                    }
1729 >                    else if (j - m > m)
1730 >                        return null;
1731 >                }
1732 >            }
1733          }
412        return w;
1734      }
1735  
1736      /**
1737 <     * Return a good size for worker array given pool size.
1738 <     * Currently requires size to be a power of two.
1739 <     */
1740 <    private static int arraySizeFor(int ps) {
1741 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1737 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1738 >     * active count ctl maintenance, but rather than blocking
1739 >     * when tasks cannot be found, we rescan until all others cannot
1740 >     * find tasks either.
1741 >     */
1742 >    final void helpQuiescePool(WorkQueue w) {
1743 >        for (boolean active = true;;) {
1744 >            w.runLocalTasks();      // exhaust local queue
1745 >            WorkQueue q = findNonEmptyStealQueue(w);
1746 >            if (q != null) {
1747 >                ForkJoinTask<?> t;
1748 >                if (!active) {      // re-establish active count
1749 >                    long c;
1750 >                    active = true;
1751 >                    do {} while (!U.compareAndSwapLong
1752 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1753 >                }
1754 >                if ((t = q.poll()) != null)
1755 >                    w.runSubtask(t);
1756 >            }
1757 >            else {
1758 >                long c;
1759 >                if (active) {       // decrement active count without queuing
1760 >                    active = false;
1761 >                    do {} while (!U.compareAndSwapLong
1762 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1763 >                }
1764 >                else
1765 >                    c = ctl;        // re-increment on exit
1766 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1767 >                    do {} while (!U.compareAndSwapLong
1768 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1769 >                    break;
1770 >                }
1771 >            }
1772 >        }
1773      }
1774  
1775      /**
1776 <     * Create or resize array if necessary to hold newLength
1777 <     * @return the array
1776 >     * Gets and removes a local or stolen task for the given worker.
1777 >     *
1778 >     * @return a task, if available
1779       */
1780 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1781 <        ForkJoinWorkerThread[] ws = workers;
1782 <        if (ws == null)
1783 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1784 <        else if (newLength > ws.length)
1785 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1786 <        else
1787 <            return ws;
1780 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1781 >        for (ForkJoinTask<?> t;;) {
1782 >            WorkQueue q;
1783 >            if ((t = w.nextLocalTask()) != null)
1784 >                return t;
1785 >            if ((q = findNonEmptyStealQueue(w)) == null)
1786 >                return null;
1787 >            if ((t = q.poll()) != null)
1788 >                return t;
1789 >        }
1790      }
1791  
1792      /**
1793 <     * Try to shrink workers into smaller array after one or more terminate
1793 >     * Returns the approximate (non-atomic) number of idle threads per
1794 >     * active thread to offset steal queue size for method
1795 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1796       */
1797 <    private void tryShrinkWorkerArray() {
1798 <        ForkJoinWorkerThread[] ws = workers;
1799 <        int len = ws.length;
1800 <        int last = len - 1;
1801 <        while (last >= 0 && ws[last] == null)
1802 <            --last;
1803 <        int newLength = arraySizeFor(last+1);
1804 <        if (newLength < len)
1805 <            workers = Arrays.copyOf(ws, newLength);
1797 >    final int idlePerActive() {
1798 >        // Approximate at powers of two for small values, saturate past 4
1799 >        int p = parallelism;
1800 >        int a = p + (int)(ctl >> AC_SHIFT);
1801 >        return (a > (p >>>= 1) ? 0 :
1802 >                a > (p >>>= 1) ? 1 :
1803 >                a > (p >>>= 1) ? 2 :
1804 >                a > (p >>>= 1) ? 4 :
1805 >                8);
1806      }
1807  
1808 +    //  Termination
1809 +
1810      /**
1811 <     * Initial worker array and worker creation and startup. (This
1812 <     * must be done under lock to avoid interference by some of the
1813 <     * newly started threads while creating others.)
1814 <     */
1815 <    private void createAndStartInitialWorkers(int ps) {
1816 <        final ReentrantLock lock = this.workerLock;
1817 <        lock.lock();
1818 <        try {
1819 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1820 <            for (int i = 0; i < ps; ++i) {
1821 <                ForkJoinWorkerThread w = createWorker(i);
1822 <                if (w != null) {
1823 <                    ws[i] = w;
1824 <                    w.start();
1825 <                    updateWorkerCount(1);
1811 >     * Possibly initiates and/or completes termination.  The caller
1812 >     * triggering termination runs three passes through workQueues:
1813 >     * (0) Setting termination status, followed by wakeups of queued
1814 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
1815 >     * threads (likely in external tasks, but possibly also blocked in
1816 >     * joins).  Each pass repeats previous steps because of potential
1817 >     * lagging thread creation.
1818 >     *
1819 >     * @param now if true, unconditionally terminate, else only
1820 >     * if no work and no active workers
1821 >     * @param enable if true, enable shutdown when next possible
1822 >     * @return true if now terminating or terminated
1823 >     */
1824 >    private boolean tryTerminate(boolean now, boolean enable) {
1825 >        Mutex lock = this.lock;
1826 >        for (long c;;) {
1827 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
1828 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
1829 >                    lock.lock();                    // don't need try/finally
1830 >                    termination.signalAll();        // signal when 0 workers
1831 >                    lock.unlock();
1832 >                }
1833 >                return true;
1834 >            }
1835 >            if (runState >= 0) {                    // not yet enabled
1836 >                if (!enable)
1837 >                    return false;
1838 >                lock.lock();
1839 >                runState |= SHUTDOWN;
1840 >                lock.unlock();
1841 >            }
1842 >            if (!now) {                             // check if idle & no tasks
1843 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
1844 >                    hasQueuedSubmissions())
1845 >                    return false;
1846 >                // Check for unqueued inactive workers. One pass suffices.
1847 >                WorkQueue[] ws = workQueues; WorkQueue w;
1848 >                if (ws != null) {
1849 >                    for (int i = 1; i < ws.length; i += 2) {
1850 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
1851 >                            return false;
1852 >                    }
1853 >                }
1854 >            }
1855 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
1856 >                for (int pass = 0; pass < 3; ++pass) {
1857 >                    WorkQueue[] ws = workQueues;
1858 >                    if (ws != null) {
1859 >                        WorkQueue w;
1860 >                        int n = ws.length;
1861 >                        for (int i = 0; i < n; ++i) {
1862 >                            if ((w = ws[i]) != null) {
1863 >                                w.runState = -1;
1864 >                                if (pass > 0) {
1865 >                                    w.cancelAll();
1866 >                                    if (pass > 1)
1867 >                                        w.interruptOwner();
1868 >                                }
1869 >                            }
1870 >                        }
1871 >                        // Wake up workers parked on event queue
1872 >                        int i, e; long cc; Thread p;
1873 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
1874 >                               (i = e & SMASK) < n &&
1875 >                               (w = ws[i]) != null) {
1876 >                            long nc = ((long)(w.nextWait & E_MASK) |
1877 >                                       ((cc + AC_UNIT) & AC_MASK) |
1878 >                                       (cc & (TC_MASK|STOP_BIT)));
1879 >                            if (w.eventCount == (e | INT_SIGN) &&
1880 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
1881 >                                w.eventCount = (e + E_SEQ) & E_MASK;
1882 >                                w.runState = -1;
1883 >                                if ((p = w.parker) != null)
1884 >                                    U.unpark(p);
1885 >                            }
1886 >                        }
1887 >                    }
1888                  }
1889              }
469        } finally {
470            lock.unlock();
1890          }
1891      }
1892  
1893 +    // Exported methods
1894 +
1895 +    // Constructors
1896 +
1897      /**
1898 <     * Worker creation and startup for threads added via setParallelism.
1898 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1899 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1900 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1901 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1902 >     *
1903 >     * @throws SecurityException if a security manager exists and
1904 >     *         the caller is not permitted to modify threads
1905 >     *         because it does not hold {@link
1906 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1907       */
1908 <    private void createAndStartAddedWorkers() {
1909 <        resumeAllSpares();  // Allow spares to convert to nonspare
1910 <        int ps = parallelism;
480 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
481 <        int len = ws.length;
482 <        // Sweep through slots, to keep lowest indices most populated
483 <        int k = 0;
484 <        while (k < len) {
485 <            if (ws[k] != null) {
486 <                ++k;
487 <                continue;
488 <            }
489 <            int s = workerCounts;
490 <            int tc = totalCountOf(s);
491 <            int rc = runningCountOf(s);
492 <            if (rc >= ps || tc >= ps)
493 <                break;
494 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
495 <                ForkJoinWorkerThread w = createWorker(k);
496 <                if (w != null) {
497 <                    ws[k++] = w;
498 <                    w.start();
499 <                }
500 <                else {
501 <                    updateWorkerCount(-1); // back out on failed creation
502 <                    break;
503 <                }
504 <            }
505 <        }
1908 >    public ForkJoinPool() {
1909 >        this(Runtime.getRuntime().availableProcessors(),
1910 >             defaultForkJoinWorkerThreadFactory, null, false);
1911      }
1912  
1913 <    // Execution methods
1913 >    /**
1914 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1915 >     * level, the {@linkplain
1916 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1917 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1918 >     *
1919 >     * @param parallelism the parallelism level
1920 >     * @throws IllegalArgumentException if parallelism less than or
1921 >     *         equal to zero, or greater than implementation limit
1922 >     * @throws SecurityException if a security manager exists and
1923 >     *         the caller is not permitted to modify threads
1924 >     *         because it does not hold {@link
1925 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1926 >     */
1927 >    public ForkJoinPool(int parallelism) {
1928 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1929 >    }
1930  
1931      /**
1932 <     * Common code for execute, invoke and submit
1932 >     * Creates a {@code ForkJoinPool} with the given parameters.
1933 >     *
1934 >     * @param parallelism the parallelism level. For default value,
1935 >     * use {@link java.lang.Runtime#availableProcessors}.
1936 >     * @param factory the factory for creating new threads. For default value,
1937 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1938 >     * @param handler the handler for internal worker threads that
1939 >     * terminate due to unrecoverable errors encountered while executing
1940 >     * tasks. For default value, use {@code null}.
1941 >     * @param asyncMode if true,
1942 >     * establishes local first-in-first-out scheduling mode for forked
1943 >     * tasks that are never joined. This mode may be more appropriate
1944 >     * than default locally stack-based mode in applications in which
1945 >     * worker threads only process event-style asynchronous tasks.
1946 >     * For default value, use {@code false}.
1947 >     * @throws IllegalArgumentException if parallelism less than or
1948 >     *         equal to zero, or greater than implementation limit
1949 >     * @throws NullPointerException if the factory is null
1950 >     * @throws SecurityException if a security manager exists and
1951 >     *         the caller is not permitted to modify threads
1952 >     *         because it does not hold {@link
1953 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1954       */
1955 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1956 <        if (isShutdown())
1957 <            throw new RejectedExecutionException();
1958 <        submissionQueue.offer(task);
1959 <        signalIdleWorkers();
1955 >    public ForkJoinPool(int parallelism,
1956 >                        ForkJoinWorkerThreadFactory factory,
1957 >                        Thread.UncaughtExceptionHandler handler,
1958 >                        boolean asyncMode) {
1959 >        checkPermission();
1960 >        if (factory == null)
1961 >            throw new NullPointerException();
1962 >        if (parallelism <= 0 || parallelism > POOL_MAX)
1963 >            throw new IllegalArgumentException();
1964 >        this.parallelism = parallelism;
1965 >        this.factory = factory;
1966 >        this.ueh = handler;
1967 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1968 >        this.growHints = 1;
1969 >        long np = (long)(-parallelism); // offset ctl counts
1970 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1971 >        // initialize workQueues array with room for 2*parallelism if possible
1972 >        int n = parallelism << 1;
1973 >        if (n >= POOL_MAX)
1974 >            n = POOL_MAX;
1975 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1976 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1977 >        }
1978 >        this.workQueues = new WorkQueue[(n + 1) << 1]; // #slots = 2 * #workers
1979 >        this.termination = (this.lock = new Mutex()).newCondition();
1980 >        this.stealCount = new AtomicLong();
1981 >        this.nextWorkerNumber = new AtomicInteger();
1982 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1983 >        sb.append(poolNumberGenerator.incrementAndGet());
1984 >        sb.append("-worker-");
1985 >        this.workerNamePrefix = sb.toString();
1986      }
1987  
1988 +    // Execution methods
1989 +
1990      /**
1991 <     * Performs the given task; returning its result upon completion
1991 >     * Performs the given task, returning its result upon completion.
1992 >     * If the computation encounters an unchecked Exception or Error,
1993 >     * it is rethrown as the outcome of this invocation.  Rethrown
1994 >     * exceptions behave in the same way as regular exceptions, but,
1995 >     * when possible, contain stack traces (as displayed for example
1996 >     * using {@code ex.printStackTrace()}) of both the current thread
1997 >     * as well as the thread actually encountering the exception;
1998 >     * minimally only the latter.
1999 >     *
2000       * @param task the task
2001       * @return the task's result
2002 <     * @throws NullPointerException if task is null
2003 <     * @throws RejectedExecutionException if pool is shut down
2002 >     * @throws NullPointerException if the task is null
2003 >     * @throws RejectedExecutionException if the task cannot be
2004 >     *         scheduled for execution
2005       */
2006      public <T> T invoke(ForkJoinTask<T> task) {
2007          doSubmit(task);
# Line 531 | Line 2010 | public class ForkJoinPool extends Abstra
2010  
2011      /**
2012       * Arranges for (asynchronous) execution of the given task.
2013 +     *
2014       * @param task the task
2015 <     * @throws NullPointerException if task is null
2016 <     * @throws RejectedExecutionException if pool is shut down
2015 >     * @throws NullPointerException if the task is null
2016 >     * @throws RejectedExecutionException if the task cannot be
2017 >     *         scheduled for execution
2018       */
2019 <    public <T> void execute(ForkJoinTask<T> task) {
2019 >    public void execute(ForkJoinTask<?> task) {
2020          doSubmit(task);
2021      }
2022  
2023      // AbstractExecutorService methods
2024  
2025 +    /**
2026 +     * @throws NullPointerException if the task is null
2027 +     * @throws RejectedExecutionException if the task cannot be
2028 +     *         scheduled for execution
2029 +     */
2030      public void execute(Runnable task) {
2031 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2031 >        if (task == null)
2032 >            throw new NullPointerException();
2033 >        ForkJoinTask<?> job;
2034 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2035 >            job = (ForkJoinTask<?>) task;
2036 >        else
2037 >            job = ForkJoinTask.adapt(task, null);
2038 >        doSubmit(job);
2039 >    }
2040 >
2041 >    /**
2042 >     * Submits a ForkJoinTask for execution.
2043 >     *
2044 >     * @param task the task to submit
2045 >     * @return the task
2046 >     * @throws NullPointerException if the task is null
2047 >     * @throws RejectedExecutionException if the task cannot be
2048 >     *         scheduled for execution
2049 >     */
2050 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2051 >        doSubmit(task);
2052 >        return task;
2053      }
2054  
2055 +    /**
2056 +     * @throws NullPointerException if the task is null
2057 +     * @throws RejectedExecutionException if the task cannot be
2058 +     *         scheduled for execution
2059 +     */
2060      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2061 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2061 >        if (task == null)
2062 >            throw new NullPointerException();
2063 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2064          doSubmit(job);
2065          return job;
2066      }
2067  
2068 +    /**
2069 +     * @throws NullPointerException if the task is null
2070 +     * @throws RejectedExecutionException if the task cannot be
2071 +     *         scheduled for execution
2072 +     */
2073      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2074 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2074 >        if (task == null)
2075 >            throw new NullPointerException();
2076 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2077          doSubmit(job);
2078          return job;
2079      }
2080  
2081 +    /**
2082 +     * @throws NullPointerException if the task is null
2083 +     * @throws RejectedExecutionException if the task cannot be
2084 +     *         scheduled for execution
2085 +     */
2086      public ForkJoinTask<?> submit(Runnable task) {
2087 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2087 >        if (task == null)
2088 >            throw new NullPointerException();
2089 >        ForkJoinTask<?> job;
2090 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2091 >            job = (ForkJoinTask<?>) task;
2092 >        else
2093 >            job = ForkJoinTask.adapt(task, null);
2094          doSubmit(job);
2095          return job;
2096      }
2097  
2098      /**
2099 <     * Adaptor for Runnables. This implements RunnableFuture
2100 <     * to be compliant with AbstractExecutorService constraints
569 <     */
570 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
571 <        implements RunnableFuture<T> {
572 <        final Runnable runnable;
573 <        final T resultOnCompletion;
574 <        T result;
575 <        AdaptedRunnable(Runnable runnable, T result) {
576 <            if (runnable == null) throw new NullPointerException();
577 <            this.runnable = runnable;
578 <            this.resultOnCompletion = result;
579 <        }
580 <        public T getRawResult() { return result; }
581 <        public void setRawResult(T v) { result = v; }
582 <        public boolean exec() {
583 <            runnable.run();
584 <            result = resultOnCompletion;
585 <            return true;
586 <        }
587 <        public void run() { invoke(); }
588 <    }
589 <
590 <    /**
591 <     * Adaptor for Callables
2099 >     * @throws NullPointerException       {@inheritDoc}
2100 >     * @throws RejectedExecutionException {@inheritDoc}
2101       */
593    static final class AdaptedCallable<T> extends ForkJoinTask<T>
594        implements RunnableFuture<T> {
595        final Callable<T> callable;
596        T result;
597        AdaptedCallable(Callable<T> callable) {
598            if (callable == null) throw new NullPointerException();
599            this.callable = callable;
600        }
601        public T getRawResult() { return result; }
602        public void setRawResult(T v) { result = v; }
603        public boolean exec() {
604            try {
605                result = callable.call();
606                return true;
607            } catch (Error err) {
608                throw err;
609            } catch (RuntimeException rex) {
610                throw rex;
611            } catch (Exception ex) {
612                throw new RuntimeException(ex);
613            }
614        }
615        public void run() { invoke(); }
616    }
617
2102      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2103 <        ArrayList<ForkJoinTask<T>> ts =
2104 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2105 <        for (Callable<T> c : tasks)
2106 <            ts.add(new AdaptedCallable<T>(c));
2107 <        invoke(new InvokeAll<T>(ts));
2108 <        return (List<Future<T>>)(List)ts;
2109 <    }
2103 >        // In previous versions of this class, this method constructed
2104 >        // a task to run ForkJoinTask.invokeAll, but now external
2105 >        // invocation of multiple tasks is at least as efficient.
2106 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2107 >        // Workaround needed because method wasn't declared with
2108 >        // wildcards in return type but should have been.
2109 >        @SuppressWarnings({"unchecked", "rawtypes"})
2110 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2111  
2112 <    static final class InvokeAll<T> extends RecursiveAction {
2113 <        final ArrayList<ForkJoinTask<T>> tasks;
2114 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2115 <        public void compute() {
2116 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2112 >        boolean done = false;
2113 >        try {
2114 >            for (Callable<T> t : tasks) {
2115 >                ForkJoinTask<T> f = ForkJoinTask.adapt(t);
2116 >                doSubmit(f);
2117 >                fs.add(f);
2118 >            }
2119 >            for (ForkJoinTask<T> f : fs)
2120 >                f.quietlyJoin();
2121 >            done = true;
2122 >            return futures;
2123 >        } finally {
2124 >            if (!done)
2125 >                for (ForkJoinTask<T> f : fs)
2126 >                    f.cancel(false);
2127          }
2128      }
2129  
635    // Configuration and status settings and queries
636
2130      /**
2131 <     * Returns the factory used for constructing new workers
2131 >     * Returns the factory used for constructing new workers.
2132       *
2133       * @return the factory used for constructing new workers
2134       */
# Line 646 | Line 2139 | public class ForkJoinPool extends Abstra
2139      /**
2140       * Returns the handler for internal worker threads that terminate
2141       * due to unrecoverable errors encountered while executing tasks.
649     * @return the handler, or null if none
650     */
651    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
652        Thread.UncaughtExceptionHandler h;
653        final ReentrantLock lock = this.workerLock;
654        lock.lock();
655        try {
656            h = ueh;
657        } finally {
658            lock.unlock();
659        }
660        return h;
661    }
662
663    /**
664     * Sets the handler for internal worker threads that terminate due
665     * to unrecoverable errors encountered while executing tasks.
666     * Unless set, the current default or ThreadGroup handler is used
667     * as handler.
2142       *
2143 <     * @param h the new handler
670 <     * @return the old handler, or null if none
671 <     * @throws SecurityException if a security manager exists and
672 <     *         the caller is not permitted to modify threads
673 <     *         because it does not hold {@link
674 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2143 >     * @return the handler, or {@code null} if none
2144       */
2145 <    public Thread.UncaughtExceptionHandler
2146 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
678 <        checkPermission();
679 <        Thread.UncaughtExceptionHandler old = null;
680 <        final ReentrantLock lock = this.workerLock;
681 <        lock.lock();
682 <        try {
683 <            old = ueh;
684 <            ueh = h;
685 <            ForkJoinWorkerThread[] ws = workers;
686 <            for (int i = 0; i < ws.length; ++i) {
687 <                ForkJoinWorkerThread w = ws[i];
688 <                if (w != null)
689 <                    w.setUncaughtExceptionHandler(h);
690 <            }
691 <        } finally {
692 <            lock.unlock();
693 <        }
694 <        return old;
695 <    }
696 <
697 <
698 <    /**
699 <     * Sets the target paralleism level of this pool.
700 <     * @param parallelism the target parallelism
701 <     * @throws IllegalArgumentException if parallelism less than or
702 <     * equal to zero or greater than maximum size bounds.
703 <     * @throws SecurityException if a security manager exists and
704 <     *         the caller is not permitted to modify threads
705 <     *         because it does not hold {@link
706 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
707 <     */
708 <    public void setParallelism(int parallelism) {
709 <        checkPermission();
710 <        if (parallelism <= 0 || parallelism > maxPoolSize)
711 <            throw new IllegalArgumentException();
712 <        final ReentrantLock lock = this.workerLock;
713 <        lock.lock();
714 <        try {
715 <            if (!isTerminating()) {
716 <                int p = this.parallelism;
717 <                this.parallelism = parallelism;
718 <                if (parallelism > p)
719 <                    createAndStartAddedWorkers();
720 <                else
721 <                    trimSpares();
722 <            }
723 <        } finally {
724 <            lock.unlock();
725 <        }
726 <        signalIdleWorkers();
2145 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2146 >        return ueh;
2147      }
2148  
2149      /**
2150 <     * Returns the targeted number of worker threads in this pool.
2150 >     * Returns the targeted parallelism level of this pool.
2151       *
2152 <     * @return the targeted number of worker threads in this pool
2152 >     * @return the targeted parallelism level of this pool
2153       */
2154      public int getParallelism() {
2155          return parallelism;
# Line 737 | Line 2157 | public class ForkJoinPool extends Abstra
2157  
2158      /**
2159       * Returns the number of worker threads that have started but not
2160 <     * yet terminated.  This result returned by this method may differ
2161 <     * from <code>getParallelism</code> when threads are created to
2160 >     * yet terminated.  The result returned by this method may differ
2161 >     * from {@link #getParallelism} when threads are created to
2162       * maintain parallelism when others are cooperatively blocked.
2163       *
2164       * @return the number of worker threads
2165       */
2166      public int getPoolSize() {
2167 <        return totalCountOf(workerCounts);
2167 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2168      }
2169  
2170      /**
2171 <     * Returns the maximum number of threads allowed to exist in the
2172 <     * pool, even if there are insufficient unblocked running threads.
2173 <     * @return the maximum
2174 <     */
755 <    public int getMaximumPoolSize() {
756 <        return maxPoolSize;
757 <    }
758 <
759 <    /**
760 <     * Sets the maximum number of threads allowed to exist in the
761 <     * pool, even if there are insufficient unblocked running threads.
762 <     * Setting this value has no effect on current pool size. It
763 <     * controls construction of new threads.
764 <     * @throws IllegalArgumentException if negative or greater then
765 <     * internal implementation limit.
766 <     */
767 <    public void setMaximumPoolSize(int newMax) {
768 <        if (newMax < 0 || newMax > MAX_THREADS)
769 <            throw new IllegalArgumentException();
770 <        maxPoolSize = newMax;
771 <    }
772 <
773 <
774 <    /**
775 <     * Returns true if this pool dynamically maintains its target
776 <     * parallelism level. If false, new threads are added only to
777 <     * avoid possible starvation.
778 <     * This setting is by default true;
779 <     * @return true if maintains parallelism
780 <     */
781 <    public boolean getMaintainsParallelism() {
782 <        return maintainsParallelism;
783 <    }
784 <
785 <    /**
786 <     * Sets whether this pool dynamically maintains its target
787 <     * parallelism level. If false, new threads are added only to
788 <     * avoid possible starvation.
789 <     * @param enable true to maintains parallelism
2171 >     * Returns {@code true} if this pool uses local first-in-first-out
2172 >     * scheduling mode for forked tasks that are never joined.
2173 >     *
2174 >     * @return {@code true} if this pool uses async mode
2175       */
2176 <    public void setMaintainsParallelism(boolean enable) {
2177 <        maintainsParallelism = enable;
2176 >    public boolean getAsyncMode() {
2177 >        return localMode != 0;
2178      }
2179  
2180      /**
2181       * Returns an estimate of the number of worker threads that are
2182       * not blocked waiting to join tasks or for other managed
2183 <     * synchronization.
2183 >     * synchronization. This method may overestimate the
2184 >     * number of running threads.
2185       *
2186       * @return the number of worker threads
2187       */
2188      public int getRunningThreadCount() {
2189 <        return runningCountOf(workerCounts);
2189 >        int rc = 0;
2190 >        WorkQueue[] ws; WorkQueue w;
2191 >        if ((ws = workQueues) != null) {
2192 >            for (int i = 1; i < ws.length; i += 2) {
2193 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2194 >                    ++rc;
2195 >            }
2196 >        }
2197 >        return rc;
2198      }
2199  
2200      /**
2201       * Returns an estimate of the number of threads that are currently
2202       * stealing or executing tasks. This method may overestimate the
2203       * number of active threads.
2204 <     * @return the number of active threads.
2204 >     *
2205 >     * @return the number of active threads
2206       */
2207      public int getActiveThreadCount() {
2208 <        return activeCountOf(runControl);
2209 <    }
815 <
816 <    /**
817 <     * Returns an estimate of the number of threads that are currently
818 <     * idle waiting for tasks. This method may underestimate the
819 <     * number of idle threads.
820 <     * @return the number of idle threads.
821 <     */
822 <    final int getIdleThreadCount() {
823 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
824 <        return (c <= 0)? 0 : c;
2208 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2209 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2210      }
2211  
2212      /**
2213 <     * Returns true if all worker threads are currently idle. An idle
2214 <     * worker is one that cannot obtain a task to execute because none
2215 <     * are available to steal from other threads, and there are no
2216 <     * pending submissions to the pool. This method is conservative:
2217 <     * It might not return true immediately upon idleness of all
2218 <     * threads, but will eventually become true if threads remain
2219 <     * inactive.
2220 <     * @return true if all threads are currently idle
2213 >     * Returns {@code true} if all worker threads are currently idle.
2214 >     * An idle worker is one that cannot obtain a task to execute
2215 >     * because none are available to steal from other threads, and
2216 >     * there are no pending submissions to the pool. This method is
2217 >     * conservative; it might not return {@code true} immediately upon
2218 >     * idleness of all threads, but will eventually become true if
2219 >     * threads remain inactive.
2220 >     *
2221 >     * @return {@code true} if all threads are currently idle
2222       */
2223      public boolean isQuiescent() {
2224 <        return activeCountOf(runControl) == 0;
2224 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2225      }
2226  
2227      /**
# Line 843 | Line 2229 | public class ForkJoinPool extends Abstra
2229       * one thread's work queue by another. The reported value
2230       * underestimates the actual total number of steals when the pool
2231       * is not quiescent. This value may be useful for monitoring and
2232 <     * tuning fork/join programs: In general, steal counts should be
2232 >     * tuning fork/join programs: in general, steal counts should be
2233       * high enough to keep threads busy, but low enough to avoid
2234       * overhead and contention across threads.
2235 <     * @return the number of steals.
2235 >     *
2236 >     * @return the number of steals
2237       */
2238      public long getStealCount() {
2239 <        return stealCount.get();
2240 <    }
2241 <
2242 <    /**
2243 <     * Accumulate steal count from a worker. Call only
2244 <     * when worker known to be idle.
2245 <     */
2246 <    private void updateStealCount(ForkJoinWorkerThread w) {
2247 <        int sc = w.getAndClearStealCount();
861 <        if (sc != 0)
862 <            stealCount.addAndGet(sc);
2239 >        long count = stealCount.get();
2240 >        WorkQueue[] ws; WorkQueue w;
2241 >        if ((ws = workQueues) != null) {
2242 >            for (int i = 1; i < ws.length; i += 2) {
2243 >                if ((w = ws[i]) != null)
2244 >                    count += w.totalSteals;
2245 >            }
2246 >        }
2247 >        return count;
2248      }
2249  
2250      /**
# Line 869 | Line 2254 | public class ForkJoinPool extends Abstra
2254       * an approximation, obtained by iterating across all threads in
2255       * the pool. This method may be useful for tuning task
2256       * granularities.
2257 <     * @return the number of queued tasks.
2257 >     *
2258 >     * @return the number of queued tasks
2259       */
2260      public long getQueuedTaskCount() {
2261          long count = 0;
2262 <        ForkJoinWorkerThread[] ws = workers;
2263 <        for (int i = 0; i < ws.length; ++i) {
2264 <            ForkJoinWorkerThread t = ws[i];
2265 <            if (t != null)
2266 <                count += t.getQueueSize();
2262 >        WorkQueue[] ws; WorkQueue w;
2263 >        if ((ws = workQueues) != null) {
2264 >            for (int i = 1; i < ws.length; i += 2) {
2265 >                if ((w = ws[i]) != null)
2266 >                    count += w.queueSize();
2267 >            }
2268          }
2269          return count;
2270      }
2271  
2272      /**
2273 <     * Returns an estimate of the number tasks submitted to this pool
2274 <     * that have not yet begun executing. This method takes time
2275 <     * proportional to the number of submissions.
2276 <     * @return the number of queued submissions.
2273 >     * Returns an estimate of the number of tasks submitted to this
2274 >     * pool that have not yet begun executing.  This method may take
2275 >     * time proportional to the number of submissions.
2276 >     *
2277 >     * @return the number of queued submissions
2278       */
2279      public int getQueuedSubmissionCount() {
2280 <        return submissionQueue.size();
2280 >        int count = 0;
2281 >        WorkQueue[] ws; WorkQueue w;
2282 >        if ((ws = workQueues) != null) {
2283 >            for (int i = 0; i < ws.length; i += 2) {
2284 >                if ((w = ws[i]) != null)
2285 >                    count += w.queueSize();
2286 >            }
2287 >        }
2288 >        return count;
2289      }
2290  
2291      /**
2292 <     * Returns true if there are any tasks submitted to this pool
2293 <     * that have not yet begun executing.
2294 <     * @return <code>true</code> if there are any queued submissions.
2292 >     * Returns {@code true} if there are any tasks submitted to this
2293 >     * pool that have not yet begun executing.
2294 >     *
2295 >     * @return {@code true} if there are any queued submissions
2296       */
2297      public boolean hasQueuedSubmissions() {
2298 <        return !submissionQueue.isEmpty();
2298 >        WorkQueue[] ws; WorkQueue w;
2299 >        if ((ws = workQueues) != null) {
2300 >            for (int i = 0; i < ws.length; i += 2) {
2301 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2302 >                    return true;
2303 >            }
2304 >        }
2305 >        return false;
2306      }
2307  
2308      /**
2309       * Removes and returns the next unexecuted submission if one is
2310       * available.  This method may be useful in extensions to this
2311       * class that re-assign work in systems with multiple pools.
2312 <     * @return the next submission, or null if none
2312 >     *
2313 >     * @return the next submission, or {@code null} if none
2314       */
2315      protected ForkJoinTask<?> pollSubmission() {
2316 <        return submissionQueue.poll();
2316 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2317 >        if ((ws = workQueues) != null) {
2318 >            for (int i = 0; i < ws.length; i += 2) {
2319 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2320 >                    return t;
2321 >            }
2322 >        }
2323 >        return null;
2324 >    }
2325 >
2326 >    /**
2327 >     * Removes all available unexecuted submitted and forked tasks
2328 >     * from scheduling queues and adds them to the given collection,
2329 >     * without altering their execution status. These may include
2330 >     * artificially generated or wrapped tasks. This method is
2331 >     * designed to be invoked only when the pool is known to be
2332 >     * quiescent. Invocations at other times may not remove all
2333 >     * tasks. A failure encountered while attempting to add elements
2334 >     * to collection {@code c} may result in elements being in
2335 >     * neither, either or both collections when the associated
2336 >     * exception is thrown.  The behavior of this operation is
2337 >     * undefined if the specified collection is modified while the
2338 >     * operation is in progress.
2339 >     *
2340 >     * @param c the collection to transfer elements into
2341 >     * @return the number of elements transferred
2342 >     */
2343 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2344 >        int count = 0;
2345 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2346 >        if ((ws = workQueues) != null) {
2347 >            for (int i = 0; i < ws.length; ++i) {
2348 >                if ((w = ws[i]) != null) {
2349 >                    while ((t = w.poll()) != null) {
2350 >                        c.add(t);
2351 >                        ++count;
2352 >                    }
2353 >                }
2354 >            }
2355 >        }
2356 >        return count;
2357      }
2358  
2359      /**
# Line 919 | Line 2364 | public class ForkJoinPool extends Abstra
2364       * @return a string identifying this pool, as well as its state
2365       */
2366      public String toString() {
2367 <        int ps = parallelism;
2368 <        int wc = workerCounts;
2369 <        int rc = runControl;
2370 <        long st = getStealCount();
2371 <        long qt = getQueuedTaskCount();
2372 <        long qs = getQueuedSubmissionCount();
2367 >        // Use a single pass through workQueues to collect counts
2368 >        long qt = 0L, qs = 0L; int rc = 0;
2369 >        long st = stealCount.get();
2370 >        long c = ctl;
2371 >        WorkQueue[] ws; WorkQueue w;
2372 >        if ((ws = workQueues) != null) {
2373 >            for (int i = 0; i < ws.length; ++i) {
2374 >                if ((w = ws[i]) != null) {
2375 >                    int size = w.queueSize();
2376 >                    if ((i & 1) == 0)
2377 >                        qs += size;
2378 >                    else {
2379 >                        qt += size;
2380 >                        st += w.totalSteals;
2381 >                        if (w.isApparentlyUnblocked())
2382 >                            ++rc;
2383 >                    }
2384 >                }
2385 >            }
2386 >        }
2387 >        int pc = parallelism;
2388 >        int tc = pc + (short)(c >>> TC_SHIFT);
2389 >        int ac = pc + (int)(c >> AC_SHIFT);
2390 >        if (ac < 0) // ignore transient negative
2391 >            ac = 0;
2392 >        String level;
2393 >        if ((c & STOP_BIT) != 0)
2394 >            level = (tc == 0) ? "Terminated" : "Terminating";
2395 >        else
2396 >            level = runState < 0 ? "Shutting down" : "Running";
2397          return super.toString() +
2398 <            "[" + runStateToString(runStateOf(rc)) +
2399 <            ", parallelism = " + ps +
2400 <            ", size = " + totalCountOf(wc) +
2401 <            ", active = " + activeCountOf(rc) +
2402 <            ", running = " + runningCountOf(wc) +
2398 >            "[" + level +
2399 >            ", parallelism = " + pc +
2400 >            ", size = " + tc +
2401 >            ", active = " + ac +
2402 >            ", running = " + rc +
2403              ", steals = " + st +
2404              ", tasks = " + qt +
2405              ", submissions = " + qs +
2406              "]";
2407      }
2408  
940    private static String runStateToString(int rs) {
941        switch(rs) {
942        case RUNNING: return "Running";
943        case SHUTDOWN: return "Shutting down";
944        case TERMINATING: return "Terminating";
945        case TERMINATED: return "Terminated";
946        default: throw new Error("Unknown run state");
947        }
948    }
949
950    // lifecycle control
951
2409      /**
2410       * Initiates an orderly shutdown in which previously submitted
2411       * tasks are executed, but no new tasks will be accepted.
2412       * Invocation has no additional effect if already shut down.
2413       * Tasks that are in the process of being submitted concurrently
2414       * during the course of this method may or may not be rejected.
2415 +     *
2416       * @throws SecurityException if a security manager exists and
2417       *         the caller is not permitted to modify threads
2418       *         because it does not hold {@link
2419 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2419 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2420       */
2421      public void shutdown() {
2422          checkPermission();
2423 <        transitionRunStateTo(SHUTDOWN);
966 <        if (canTerminateOnShutdown(runControl))
967 <            terminateOnShutdown();
2423 >        tryTerminate(false, true);
2424      }
2425  
2426      /**
2427 <     * Attempts to stop all actively executing tasks, and cancels all
2428 <     * waiting tasks.  Tasks that are in the process of being
2429 <     * submitted or executed concurrently during the course of this
2430 <     * method may or may not be rejected. Unlike some other executors,
2431 <     * this method cancels rather than collects non-executed tasks,
2432 <     * so always returns an empty list.
2427 >     * Attempts to cancel and/or stop all tasks, and reject all
2428 >     * subsequently submitted tasks.  Tasks that are in the process of
2429 >     * being submitted or executed concurrently during the course of
2430 >     * this method may or may not be rejected. This method cancels
2431 >     * both existing and unexecuted tasks, in order to permit
2432 >     * termination in the presence of task dependencies. So the method
2433 >     * always returns an empty list (unlike the case for some other
2434 >     * Executors).
2435 >     *
2436       * @return an empty list
2437       * @throws SecurityException if a security manager exists and
2438       *         the caller is not permitted to modify threads
2439       *         because it does not hold {@link
2440 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2440 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2441       */
2442      public List<Runnable> shutdownNow() {
2443          checkPermission();
2444 <        terminate();
2444 >        tryTerminate(true, true);
2445          return Collections.emptyList();
2446      }
2447  
2448      /**
2449 <     * Returns <code>true</code> if all tasks have completed following shut down.
2449 >     * Returns {@code true} if all tasks have completed following shut down.
2450       *
2451 <     * @return <code>true</code> if all tasks have completed following shut down
2451 >     * @return {@code true} if all tasks have completed following shut down
2452       */
2453      public boolean isTerminated() {
2454 <        return runStateOf(runControl) == TERMINATED;
2454 >        long c = ctl;
2455 >        return ((c & STOP_BIT) != 0L &&
2456 >                (short)(c >>> TC_SHIFT) == -parallelism);
2457      }
2458  
2459      /**
2460 <     * Returns <code>true</code> if the process of termination has
2461 <     * commenced but possibly not yet completed.
2460 >     * Returns {@code true} if the process of termination has
2461 >     * commenced but not yet completed.  This method may be useful for
2462 >     * debugging. A return of {@code true} reported a sufficient
2463 >     * period after shutdown may indicate that submitted tasks have
2464 >     * ignored or suppressed interruption, or are waiting for IO,
2465 >     * causing this executor not to properly terminate. (See the
2466 >     * advisory notes for class {@link ForkJoinTask} stating that
2467 >     * tasks should not normally entail blocking operations.  But if
2468 >     * they do, they must abort them on interrupt.)
2469       *
2470 <     * @return <code>true</code> if terminating
2470 >     * @return {@code true} if terminating but not yet terminated
2471       */
2472      public boolean isTerminating() {
2473 <        return runStateOf(runControl) >= TERMINATING;
2473 >        long c = ctl;
2474 >        return ((c & STOP_BIT) != 0L &&
2475 >                (short)(c >>> TC_SHIFT) != -parallelism);
2476      }
2477  
2478      /**
2479 <     * Returns <code>true</code> if this pool has been shut down.
2479 >     * Returns {@code true} if this pool has been shut down.
2480       *
2481 <     * @return <code>true</code> if this pool has been shut down
2481 >     * @return {@code true} if this pool has been shut down
2482       */
2483      public boolean isShutdown() {
2484 <        return runStateOf(runControl) >= SHUTDOWN;
2484 >        return runState < 0;
2485      }
2486  
2487      /**
# Line 1021 | Line 2491 | public class ForkJoinPool extends Abstra
2491       *
2492       * @param timeout the maximum time to wait
2493       * @param unit the time unit of the timeout argument
2494 <     * @return <code>true</code> if this executor terminated and
2495 <     *         <code>false</code> if the timeout elapsed before termination
2494 >     * @return {@code true} if this executor terminated and
2495 >     *         {@code false} if the timeout elapsed before termination
2496       * @throws InterruptedException if interrupted while waiting
2497       */
2498      public boolean awaitTermination(long timeout, TimeUnit unit)
2499          throws InterruptedException {
2500          long nanos = unit.toNanos(timeout);
2501 <        final ReentrantLock lock = this.workerLock;
2501 >        final Mutex lock = this.lock;
2502          lock.lock();
2503          try {
2504              for (;;) {
# Line 1043 | Line 2513 | public class ForkJoinPool extends Abstra
2513          }
2514      }
2515  
1046    // Shutdown and termination support
1047
2516      /**
2517 <     * Callback from terminating worker. Null out the corresponding
2518 <     * workers slot, and if terminating, try to terminate, else try to
1051 <     * shrink workers array.
1052 <     * @param w the worker
1053 <     */
1054 <    final void workerTerminated(ForkJoinWorkerThread w) {
1055 <        updateStealCount(w);
1056 <        updateWorkerCount(-1);
1057 <        final ReentrantLock lock = this.workerLock;
1058 <        lock.lock();
1059 <        try {
1060 <            ForkJoinWorkerThread[] ws = workers;
1061 <            int idx = w.poolIndex;
1062 <            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1063 <                ws[idx] = null;
1064 <            if (totalCountOf(workerCounts) == 0) {
1065 <                terminate(); // no-op if already terminating
1066 <                transitionRunStateTo(TERMINATED);
1067 <                termination.signalAll();
1068 <            }
1069 <            else if (!isTerminating()) {
1070 <                tryShrinkWorkerArray();
1071 <                tryResumeSpare(true); // allow replacement
1072 <            }
1073 <        } finally {
1074 <            lock.unlock();
1075 <        }
1076 <        signalIdleWorkers();
1077 <    }
1078 <
1079 <    /**
1080 <     * Initiate termination.
1081 <     */
1082 <    private void terminate() {
1083 <        if (transitionRunStateTo(TERMINATING)) {
1084 <            stopAllWorkers();
1085 <            resumeAllSpares();
1086 <            signalIdleWorkers();
1087 <            cancelQueuedSubmissions();
1088 <            cancelQueuedWorkerTasks();
1089 <            interruptUnterminatedWorkers();
1090 <            signalIdleWorkers(); // resignal after interrupt
1091 <        }
1092 <    }
1093 <
1094 <    /**
1095 <     * Possibly terminate when on shutdown state
1096 <     */
1097 <    private void terminateOnShutdown() {
1098 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1099 <            terminate();
1100 <    }
1101 <
1102 <    /**
1103 <     * Clear out and cancel submissions
1104 <     */
1105 <    private void cancelQueuedSubmissions() {
1106 <        ForkJoinTask<?> task;
1107 <        while ((task = pollSubmission()) != null)
1108 <            task.cancel(false);
1109 <    }
1110 <
1111 <    /**
1112 <     * Clean out worker queues.
1113 <     */
1114 <    private void cancelQueuedWorkerTasks() {
1115 <        final ReentrantLock lock = this.workerLock;
1116 <        lock.lock();
1117 <        try {
1118 <            ForkJoinWorkerThread[] ws = workers;
1119 <            for (int i = 0; i < ws.length; ++i) {
1120 <                ForkJoinWorkerThread t = ws[i];
1121 <                if (t != null)
1122 <                    t.cancelTasks();
1123 <            }
1124 <        } finally {
1125 <            lock.unlock();
1126 <        }
1127 <    }
1128 <
1129 <    /**
1130 <     * Set each worker's status to terminating. Requires lock to avoid
1131 <     * conflicts with add/remove
1132 <     */
1133 <    private void stopAllWorkers() {
1134 <        final ReentrantLock lock = this.workerLock;
1135 <        lock.lock();
1136 <        try {
1137 <            ForkJoinWorkerThread[] ws = workers;
1138 <            for (int i = 0; i < ws.length; ++i) {
1139 <                ForkJoinWorkerThread t = ws[i];
1140 <                if (t != null)
1141 <                    t.shutdownNow();
1142 <            }
1143 <        } finally {
1144 <            lock.unlock();
1145 <        }
1146 <    }
1147 <
1148 <    /**
1149 <     * Interrupt all unterminated workers.  This is not required for
1150 <     * sake of internal control, but may help unstick user code during
1151 <     * shutdown.
1152 <     */
1153 <    private void interruptUnterminatedWorkers() {
1154 <        final ReentrantLock lock = this.workerLock;
1155 <        lock.lock();
1156 <        try {
1157 <            ForkJoinWorkerThread[] ws = workers;
1158 <            for (int i = 0; i < ws.length; ++i) {
1159 <                ForkJoinWorkerThread t = ws[i];
1160 <                if (t != null && !t.isTerminated()) {
1161 <                    try {
1162 <                        t.interrupt();
1163 <                    } catch (SecurityException ignore) {
1164 <                    }
1165 <                }
1166 <            }
1167 <        } finally {
1168 <            lock.unlock();
1169 <        }
1170 <    }
1171 <
1172 <
1173 <    /*
1174 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1175 <     * are basic Treiber stack nodes, also used for spare stack.
2517 >     * Interface for extending managed parallelism for tasks running
2518 >     * in {@link ForkJoinPool}s.
2519       *
2520 <     * The event barrier has an event count and a wait queue (actually
2521 <     * a Treiber stack).  Workers are enabled to look for work when
2522 <     * the eventCount is incremented. If they fail to find work, they
2523 <     * may wait for next count. Upon release, threads help others wake
2524 <     * up.
2525 <     *
2526 <     * Synchronization events occur only in enough contexts to
2527 <     * maintain overall liveness:
2528 <     *
2529 <     *   - Submission of a new task to the pool
2530 <     *   - Resizes or other changes to the workers array
2531 <     *   - pool termination
2532 <     *   - A worker pushing a task on an empty queue
1190 <     *
1191 <     * The case of pushing a task occurs often enough, and is heavy
1192 <     * enough compared to simple stack pushes, to require special
1193 <     * handling: Method signalWork returns without advancing count if
1194 <     * the queue appears to be empty.  This would ordinarily result in
1195 <     * races causing some queued waiters not to be woken up. To avoid
1196 <     * this, the first worker enqueued in method sync (see
1197 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1198 <     * helps signal if any are found. This works well because the
1199 <     * worker has nothing better to do, and so might as well help
1200 <     * alleviate the overhead and contention on the threads actually
1201 <     * doing work.  Also, since event counts increments on task
1202 <     * availability exist to maintain liveness (rather than to force
1203 <     * refreshes etc), it is OK for callers to exit early if
1204 <     * contending with another signaller.
1205 <     */
1206 <    static final class WaitQueueNode {
1207 <        WaitQueueNode next; // only written before enqueued
1208 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1209 <        final long count; // unused for spare stack
1210 <
1211 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1212 <            count = c;
1213 <            thread = w;
1214 <        }
1215 <
1216 <        /**
1217 <         * Wake up waiter, returning false if known to already
1218 <         */
1219 <        boolean signal() {
1220 <            ForkJoinWorkerThread t = thread;
1221 <            if (t == null)
1222 <                return false;
1223 <            thread = null;
1224 <            LockSupport.unpark(t);
1225 <            return true;
1226 <        }
1227 <
1228 <        /**
1229 <         * Await release on sync
1230 <         */
1231 <        void awaitSyncRelease(ForkJoinPool p) {
1232 <            while (thread != null && !p.syncIsReleasable(this))
1233 <                LockSupport.park(this);
1234 <        }
1235 <
1236 <        /**
1237 <         * Await resumption as spare
1238 <         */
1239 <        void awaitSpareRelease() {
1240 <            while (thread != null) {
1241 <                if (!Thread.interrupted())
1242 <                    LockSupport.park(this);
1243 <            }
1244 <        }
1245 <    }
1246 <
1247 <    /**
1248 <     * Ensures that no thread is waiting for count to advance from the
1249 <     * current value of eventCount read on entry to this method, by
1250 <     * releasing waiting threads if necessary.
1251 <     * @return the count
1252 <     */
1253 <    final long ensureSync() {
1254 <        long c = eventCount;
1255 <        WaitQueueNode q;
1256 <        while ((q = syncStack) != null && q.count < c) {
1257 <            if (casBarrierStack(q, null)) {
1258 <                do {
1259 <                    q.signal();
1260 <                } while ((q = q.next) != null);
1261 <                break;
1262 <            }
1263 <        }
1264 <        return c;
1265 <    }
1266 <
1267 <    /**
1268 <     * Increments event count and releases waiting threads.
1269 <     */
1270 <    private void signalIdleWorkers() {
1271 <        long c;
1272 <        do;while (!casEventCount(c = eventCount, c+1));
1273 <        ensureSync();
1274 <    }
1275 <
1276 <    /**
1277 <     * Signal threads waiting to poll a task. Because method sync
1278 <     * rechecks availability, it is OK to only proceed if queue
1279 <     * appears to be non-empty, and OK to skip under contention to
1280 <     * increment count (since some other thread succeeded).
1281 <     */
1282 <    final void signalWork() {
1283 <        long c;
1284 <        WaitQueueNode q;
1285 <        if (syncStack != null &&
1286 <            casEventCount(c = eventCount, c+1) &&
1287 <            (((q = syncStack) != null && q.count <= c) &&
1288 <             (!casBarrierStack(q, q.next) || !q.signal())))
1289 <            ensureSync();
1290 <    }
1291 <
1292 <    /**
1293 <     * Waits until event count advances from last value held by
1294 <     * caller, or if excess threads, caller is resumed as spare, or
1295 <     * caller or pool is terminating. Updates caller's event on exit.
1296 <     * @param w the calling worker thread
1297 <     */
1298 <    final void sync(ForkJoinWorkerThread w) {
1299 <        updateStealCount(w); // Transfer w's count while it is idle
1300 <
1301 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1302 <            long prev = w.lastEventCount;
1303 <            WaitQueueNode node = null;
1304 <            WaitQueueNode h;
1305 <            while (eventCount == prev &&
1306 <                   ((h = syncStack) == null || h.count == prev)) {
1307 <                if (node == null)
1308 <                    node = new WaitQueueNode(prev, w);
1309 <                if (casBarrierStack(node.next = h, node)) {
1310 <                    node.awaitSyncRelease(this);
1311 <                    break;
1312 <                }
1313 <            }
1314 <            long ec = ensureSync();
1315 <            if (ec != prev) {
1316 <                w.lastEventCount = ec;
1317 <                break;
1318 <            }
1319 <        }
1320 <    }
1321 <
1322 <    /**
1323 <     * Returns true if worker waiting on sync can proceed:
1324 <     *  - on signal (thread == null)
1325 <     *  - on event count advance (winning race to notify vs signaller)
1326 <     *  - on Interrupt
1327 <     *  - if the first queued node, we find work available
1328 <     * If node was not signalled and event count not advanced on exit,
1329 <     * then we also help advance event count.
1330 <     * @return true if node can be released
1331 <     */
1332 <    final boolean syncIsReleasable(WaitQueueNode node) {
1333 <        long prev = node.count;
1334 <        if (!Thread.interrupted() && node.thread != null &&
1335 <            (node.next != null ||
1336 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1337 <            eventCount == prev)
1338 <            return false;
1339 <        if (node.thread != null) {
1340 <            node.thread = null;
1341 <            long ec = eventCount;
1342 <            if (prev <= ec) // help signal
1343 <                casEventCount(ec, ec+1);
1344 <        }
1345 <        return true;
1346 <    }
1347 <
1348 <    /**
1349 <     * Returns true if a new sync event occurred since last call to
1350 <     * sync or this method, if so, updating caller's count.
1351 <     */
1352 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1353 <        long lc = w.lastEventCount;
1354 <        long ec = ensureSync();
1355 <        if (ec == lc)
1356 <            return false;
1357 <        w.lastEventCount = ec;
1358 <        return true;
1359 <    }
1360 <
1361 <    //  Parallelism maintenance
1362 <
1363 <    /**
1364 <     * Decrement running count; if too low, add spare.
2520 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
2521 >     * {@code isReleasable} must return {@code true} if blocking is
2522 >     * not necessary. Method {@code block} blocks the current thread
2523 >     * if necessary (perhaps internally invoking {@code isReleasable}
2524 >     * before actually blocking). These actions are performed by any
2525 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2526 >     * unusual methods in this API accommodate synchronizers that may,
2527 >     * but don't usually, block for long periods. Similarly, they
2528 >     * allow more efficient internal handling of cases in which
2529 >     * additional workers may be, but usually are not, needed to
2530 >     * ensure sufficient parallelism.  Toward this end,
2531 >     * implementations of method {@code isReleasable} must be amenable
2532 >     * to repeated invocation.
2533       *
1366     * Conceptually, all we need to do here is add or resume a
1367     * spare thread when one is about to block (and remove or
1368     * suspend it later when unblocked -- see suspendIfSpare).
1369     * However, implementing this idea requires coping with
1370     * several problems: We have imperfect information about the
1371     * states of threads. Some count updates can and usually do
1372     * lag run state changes, despite arrangements to keep them
1373     * accurate (for example, when possible, updating counts
1374     * before signalling or resuming), especially when running on
1375     * dynamic JVMs that don't optimize the infrequent paths that
1376     * update counts. Generating too many threads can make these
1377     * problems become worse, because excess threads are more
1378     * likely to be context-switched with others, slowing them all
1379     * down, especially if there is no work available, so all are
1380     * busy scanning or idling.  Also, excess spare threads can
1381     * only be suspended or removed when they are idle, not
1382     * immediately when they aren't needed. So adding threads will
1383     * raise parallelism level for longer than necessary.  Also,
1384     * FJ applications often enounter highly transient peaks when
1385     * many threads are blocked joining, but for less time than it
1386     * takes to create or resume spares.
1387     *
1388     * @param joinMe if non-null, return early if done
1389     * @param maintainParallelism if true, try to stay within
1390     * target counts, else create only to avoid starvation
1391     * @return true if joinMe known to be done
1392     */
1393    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1394        maintainParallelism &= maintainsParallelism; // overrride
1395        boolean dec = false;  // true when running count decremented
1396        while (spareStack == null || !tryResumeSpare(dec)) {
1397            int counts = workerCounts;
1398            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1399                if (!needSpare(counts, maintainParallelism))
1400                    break;
1401                if (joinMe.status < 0)
1402                    return true;
1403                if (tryAddSpare(counts))
1404                    break;
1405            }
1406        }
1407        return false;
1408    }
1409
1410    /**
1411     * Same idea as preJoin
1412     */
1413    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1414        maintainParallelism &= maintainsParallelism;
1415        boolean dec = false;
1416        while (spareStack == null || !tryResumeSpare(dec)) {
1417            int counts = workerCounts;
1418            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1419                if (!needSpare(counts, maintainParallelism))
1420                    break;
1421                if (blocker.isReleasable())
1422                    return true;
1423                if (tryAddSpare(counts))
1424                    break;
1425            }
1426        }
1427        return false;
1428    }
1429
1430    /**
1431     * Returns true if a spare thread appears to be needed.  If
1432     * maintaining parallelism, returns true when the deficit in
1433     * running threads is more than the surplus of total threads, and
1434     * there is apparently some work to do.  This self-limiting rule
1435     * means that the more threads that have already been added, the
1436     * less parallelism we will tolerate before adding another.
1437     * @param counts current worker counts
1438     * @param maintainParallelism try to maintain parallelism
1439     */
1440    private boolean needSpare(int counts, boolean maintainParallelism) {
1441        int ps = parallelism;
1442        int rc = runningCountOf(counts);
1443        int tc = totalCountOf(counts);
1444        int runningDeficit = ps - rc;
1445        int totalSurplus = tc - ps;
1446        return (tc < maxPoolSize &&
1447                (rc == 0 || totalSurplus < 0 ||
1448                 (maintainParallelism &&
1449                  runningDeficit > totalSurplus &&
1450                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1451    }
1452
1453    /**
1454     * Add a spare worker if lock available and no more than the
1455     * expected numbers of threads exist
1456     * @return true if successful
1457     */
1458    private boolean tryAddSpare(int expectedCounts) {
1459        final ReentrantLock lock = this.workerLock;
1460        int expectedRunning = runningCountOf(expectedCounts);
1461        int expectedTotal = totalCountOf(expectedCounts);
1462        boolean success = false;
1463        boolean locked = false;
1464        // confirm counts while locking; CAS after obtaining lock
1465        try {
1466            for (;;) {
1467                int s = workerCounts;
1468                int tc = totalCountOf(s);
1469                int rc = runningCountOf(s);
1470                if (rc > expectedRunning || tc > expectedTotal)
1471                    break;
1472                if (!locked && !(locked = lock.tryLock()))
1473                    break;
1474                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1475                    createAndStartSpare(tc);
1476                    success = true;
1477                    break;
1478                }
1479            }
1480        } finally {
1481            if (locked)
1482                lock.unlock();
1483        }
1484        return success;
1485    }
1486
1487    /**
1488     * Add the kth spare worker. On entry, pool coounts are already
1489     * adjusted to reflect addition.
1490     */
1491    private void createAndStartSpare(int k) {
1492        ForkJoinWorkerThread w = null;
1493        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1494        int len = ws.length;
1495        // Probably, we can place at slot k. If not, find empty slot
1496        if (k < len && ws[k] != null) {
1497            for (k = 0; k < len && ws[k] != null; ++k)
1498                ;
1499        }
1500        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1501            ws[k] = w;
1502            w.start();
1503        }
1504        else
1505            updateWorkerCount(-1); // adjust on failure
1506        signalIdleWorkers();
1507    }
1508
1509    /**
1510     * Suspend calling thread w if there are excess threads.  Called
1511     * only from sync.  Spares are enqueued in a Treiber stack
1512     * using the same WaitQueueNodes as barriers.  They are resumed
1513     * mainly in preJoin, but are also woken on pool events that
1514     * require all threads to check run state.
1515     * @param w the caller
1516     */
1517    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1518        WaitQueueNode node = null;
1519        int s;
1520        while (parallelism < runningCountOf(s = workerCounts)) {
1521            if (node == null)
1522                node = new WaitQueueNode(0, w);
1523            if (casWorkerCounts(s, s-1)) { // representation-dependent
1524                // push onto stack
1525                do;while (!casSpareStack(node.next = spareStack, node));
1526                // block until released by resumeSpare
1527                node.awaitSpareRelease();
1528                return true;
1529            }
1530        }
1531        return false;
1532    }
1533
1534    /**
1535     * Try to pop and resume a spare thread.
1536     * @param updateCount if true, increment running count on success
1537     * @return true if successful
1538     */
1539    private boolean tryResumeSpare(boolean updateCount) {
1540        WaitQueueNode q;
1541        while ((q = spareStack) != null) {
1542            if (casSpareStack(q, q.next)) {
1543                if (updateCount)
1544                    updateRunningCount(1);
1545                q.signal();
1546                return true;
1547            }
1548        }
1549        return false;
1550    }
1551
1552    /**
1553     * Pop and resume all spare threads. Same idea as ensureSync.
1554     * @return true if any spares released
1555     */
1556    private boolean resumeAllSpares() {
1557        WaitQueueNode q;
1558        while ( (q = spareStack) != null) {
1559            if (casSpareStack(q, null)) {
1560                do {
1561                    updateRunningCount(1);
1562                    q.signal();
1563                } while ((q = q.next) != null);
1564                return true;
1565            }
1566        }
1567        return false;
1568    }
1569
1570    /**
1571     * Pop and shutdown excessive spare threads. Call only while
1572     * holding lock. This is not guaranteed to eliminate all excess
1573     * threads, only those suspended as spares, which are the ones
1574     * unlikely to be needed in the future.
1575     */
1576    private void trimSpares() {
1577        int surplus = totalCountOf(workerCounts) - parallelism;
1578        WaitQueueNode q;
1579        while (surplus > 0 && (q = spareStack) != null) {
1580            if (casSpareStack(q, null)) {
1581                do {
1582                    updateRunningCount(1);
1583                    ForkJoinWorkerThread w = q.thread;
1584                    if (w != null && surplus > 0 &&
1585                        runningCountOf(workerCounts) > 0 && w.shutdown())
1586                        --surplus;
1587                    q.signal();
1588                } while ((q = q.next) != null);
1589            }
1590        }
1591    }
1592
1593    /**
1594     * Interface for extending managed parallelism for tasks running
1595     * in ForkJoinPools. A ManagedBlocker provides two methods.
1596     * Method <code>isReleasable</code> must return true if blocking is not
1597     * necessary. Method <code>block</code> blocks the current thread
1598     * if necessary (perhaps internally invoking isReleasable before
1599     * actually blocking.).
2534       * <p>For example, here is a ManagedBlocker based on a
2535       * ReentrantLock:
2536 <     * <pre>
2537 <     *   class ManagedLocker implements ManagedBlocker {
2538 <     *     final ReentrantLock lock;
2539 <     *     boolean hasLock = false;
2540 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2541 <     *     public boolean block() {
2542 <     *        if (!hasLock)
2543 <     *           lock.lock();
2544 <     *        return true;
2545 <     *     }
2546 <     *     public boolean isReleasable() {
2547 <     *        return hasLock || (hasLock = lock.tryLock());
2548 <     *     }
2536 >     *  <pre> {@code
2537 >     * class ManagedLocker implements ManagedBlocker {
2538 >     *   final ReentrantLock lock;
2539 >     *   boolean hasLock = false;
2540 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2541 >     *   public boolean block() {
2542 >     *     if (!hasLock)
2543 >     *       lock.lock();
2544 >     *     return true;
2545 >     *   }
2546 >     *   public boolean isReleasable() {
2547 >     *     return hasLock || (hasLock = lock.tryLock());
2548 >     *   }
2549 >     * }}</pre>
2550 >     *
2551 >     * <p>Here is a class that possibly blocks waiting for an
2552 >     * item on a given queue:
2553 >     *  <pre> {@code
2554 >     * class QueueTaker<E> implements ManagedBlocker {
2555 >     *   final BlockingQueue<E> queue;
2556 >     *   volatile E item = null;
2557 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2558 >     *   public boolean block() throws InterruptedException {
2559 >     *     if (item == null)
2560 >     *       item = queue.take();
2561 >     *     return true;
2562 >     *   }
2563 >     *   public boolean isReleasable() {
2564 >     *     return item != null || (item = queue.poll()) != null;
2565       *   }
2566 <     * </pre>
2566 >     *   public E getItem() { // call after pool.managedBlock completes
2567 >     *     return item;
2568 >     *   }
2569 >     * }}</pre>
2570       */
2571      public static interface ManagedBlocker {
2572          /**
2573           * Possibly blocks the current thread, for example waiting for
2574           * a lock or condition.
2575 <         * @return true if no additional blocking is necessary (i.e.,
2576 <         * if isReleasable would return true).
2575 >         *
2576 >         * @return {@code true} if no additional blocking is necessary
2577 >         * (i.e., if isReleasable would return true)
2578           * @throws InterruptedException if interrupted while waiting
2579 <         * (the method is not required to do so, but is allowe to).
2579 >         * (the method is not required to do so, but is allowed to)
2580           */
2581          boolean block() throws InterruptedException;
2582  
2583          /**
2584 <         * Returns true if blocking is unnecessary.
2584 >         * Returns {@code true} if blocking is unnecessary.
2585           */
2586          boolean isReleasable();
2587      }
2588  
2589      /**
2590       * Blocks in accord with the given blocker.  If the current thread
2591 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2592 <     * spare thread to be activated if necessary to ensure parallelism
2593 <     * while the current thread is blocked.  If
2594 <     * <code>maintainParallelism</code> is true and the pool supports
2595 <     * it ({@link #getMaintainsParallelism}), this method attempts to
2596 <     * maintain the pool's nominal parallelism. Otherwise if activates
2597 <     * a thread only if necessary to avoid complete starvation. This
2598 <     * option may be preferable when blockages use timeouts, or are
2599 <     * almost always brief.
2600 <     *
2601 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2602 <     * equivalent to
2603 <     * <pre>
2604 <     *   while (!blocker.isReleasable())
1651 <     *      if (blocker.block())
1652 <     *         return;
1653 <     * </pre>
1654 <     * If the caller is a ForkJoinTask, then the pool may first
1655 <     * be expanded to ensure parallelism, and later adjusted.
2591 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2592 >     * arranges for a spare thread to be activated if necessary to
2593 >     * ensure sufficient parallelism while the current thread is blocked.
2594 >     *
2595 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2596 >     * behaviorally equivalent to
2597 >     *  <pre> {@code
2598 >     * while (!blocker.isReleasable())
2599 >     *   if (blocker.block())
2600 >     *     return;
2601 >     * }</pre>
2602 >     *
2603 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2604 >     * first be expanded to ensure parallelism, and later adjusted.
2605       *
2606       * @param blocker the blocker
2607 <     * @param maintainParallelism if true and supported by this pool,
1659 <     * attempt to maintain the pool's nominal parallelism; otherwise
1660 <     * activate a thread only if necessary to avoid complete
1661 <     * starvation.
1662 <     * @throws InterruptedException if blocker.block did so.
2607 >     * @throws InterruptedException if blocker.block did so
2608       */
2609 <    public static void managedBlock(ManagedBlocker blocker,
1665 <                                    boolean maintainParallelism)
2609 >    public static void managedBlock(ManagedBlocker blocker)
2610          throws InterruptedException {
2611          Thread t = Thread.currentThread();
2612 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
2613 <                             ((ForkJoinWorkerThread)t).pool : null);
2614 <        if (!blocker.isReleasable()) {
2615 <            try {
2616 <                if (pool == null ||
2617 <                    !pool.preBlock(blocker, maintainParallelism))
2618 <                    awaitBlocker(blocker);
2619 <            } finally {
2620 <                if (pool != null)
2621 <                    pool.updateRunningCount(1);
2612 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2613 >                          ((ForkJoinWorkerThread)t).pool : null);
2614 >        while (!blocker.isReleasable()) {
2615 >            if (p == null || p.tryCompensate()) {
2616 >                try {
2617 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2618 >                } finally {
2619 >                    if (p != null)
2620 >                        p.incrementActiveCount();
2621 >                }
2622 >                break;
2623              }
2624          }
2625      }
2626  
2627 <    private static void awaitBlocker(ManagedBlocker blocker)
2628 <        throws InterruptedException {
2629 <        do;while (!blocker.isReleasable() && !blocker.block());
1685 <    }
1686 <
1687 <    // AbstractExecutorService overrides
2627 >    // AbstractExecutorService overrides.  These rely on undocumented
2628 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2629 >    // implement RunnableFuture.
2630  
2631      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2632 <        return new AdaptedRunnable(runnable, value);
2632 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2633      }
2634  
2635      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2636 <        return new AdaptedCallable(callable);
2636 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2637      }
2638  
2639 +    // Unsafe mechanics
2640 +    private static final sun.misc.Unsafe U;
2641 +    private static final long CTL;
2642 +    private static final long PARKBLOCKER;
2643  
2644 <    // Temporary Unsafe mechanics for preliminary release
2645 <    private static Unsafe getUnsafe() throws Throwable {
2644 >    static {
2645 >        poolNumberGenerator = new AtomicInteger();
2646 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2647 >        defaultForkJoinWorkerThreadFactory =
2648 >            new DefaultForkJoinWorkerThreadFactory();
2649 >        submitters = new ThreadSubmitter();
2650 >        try {
2651 >            U = getUnsafe();
2652 >            Class<?> k = ForkJoinPool.class;
2653 >            CTL = U.objectFieldOffset
2654 >                (k.getDeclaredField("ctl"));
2655 >            Class<?> tk = Thread.class;
2656 >            PARKBLOCKER = U.objectFieldOffset
2657 >                (tk.getDeclaredField("parkBlocker"));
2658 >        } catch (Exception e) {
2659 >            throw new Error(e);
2660 >        }
2661 >    }
2662 >
2663 >    /**
2664 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2665 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2666 >     * into a jdk.
2667 >     *
2668 >     * @return a sun.misc.Unsafe
2669 >     */
2670 >    private static sun.misc.Unsafe getUnsafe() {
2671          try {
2672 <            return Unsafe.getUnsafe();
2672 >            return sun.misc.Unsafe.getUnsafe();
2673          } catch (SecurityException se) {
2674              try {
2675                  return java.security.AccessController.doPrivileged
2676 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
2677 <                        public Unsafe run() throws Exception {
2678 <                            return getUnsafePrivileged();
2676 >                    (new java.security
2677 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2678 >                        public sun.misc.Unsafe run() throws Exception {
2679 >                            java.lang.reflect.Field f = sun.misc
2680 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2681 >                            f.setAccessible(true);
2682 >                            return (sun.misc.Unsafe) f.get(null);
2683                          }});
2684              } catch (java.security.PrivilegedActionException e) {
2685 <                throw e.getCause();
2685 >                throw new RuntimeException("Could not initialize intrinsics",
2686 >                                           e.getCause());
2687              }
2688          }
2689      }
2690  
1715    private static Unsafe getUnsafePrivileged()
1716            throws NoSuchFieldException, IllegalAccessException {
1717        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1718        f.setAccessible(true);
1719        return (Unsafe) f.get(null);
1720    }
1721
1722    private static long fieldOffset(String fieldName)
1723            throws NoSuchFieldException {
1724        return _unsafe.objectFieldOffset
1725            (ForkJoinPool.class.getDeclaredField(fieldName));
1726    }
1727
1728    static final Unsafe _unsafe;
1729    static final long eventCountOffset;
1730    static final long workerCountsOffset;
1731    static final long runControlOffset;
1732    static final long syncStackOffset;
1733    static final long spareStackOffset;
1734
1735    static {
1736        try {
1737            _unsafe = getUnsafe();
1738            eventCountOffset = fieldOffset("eventCount");
1739            workerCountsOffset = fieldOffset("workerCounts");
1740            runControlOffset = fieldOffset("runControl");
1741            syncStackOffset = fieldOffset("syncStack");
1742            spareStackOffset = fieldOffset("spareStack");
1743        } catch (Throwable e) {
1744            throw new RuntimeException("Could not initialize intrinsics", e);
1745        }
1746    }
1747
1748    private boolean casEventCount(long cmp, long val) {
1749        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1750    }
1751    private boolean casWorkerCounts(int cmp, int val) {
1752        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1753    }
1754    private boolean casRunControl(int cmp, int val) {
1755        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1756    }
1757    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1758        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1759    }
1760    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1761        return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1762    }
2691   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines