ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.3 by dl, Wed Jan 7 19:12:36 2009 UTC vs.
Revision 1.123 by dl, Mon Feb 20 18:20:06 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 > import java.util.ArrayList;
9 > import java.util.Arrays;
10 > import java.util.Collection;
11 > import java.util.Collections;
12 > import java.util.List;
13 > import java.util.Random;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21 > import java.util.concurrent.atomic.AtomicInteger;
22 > import java.util.concurrent.atomic.AtomicLong;
23 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24 > import java.util.concurrent.locks.Condition;
25  
26   /**
27 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
28 < * ForkJoinPool provides the entry point for submissions from
29 < * non-ForkJoinTasks, as well as management and monitoring operations.
30 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
27 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28 > * A {@code ForkJoinPool} provides the entry point for submissions
29 > * from non-{@code ForkJoinTask} clients, as well as management and
30 > * monitoring operations.
31   *
32 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
33 < * that they provide <em>work-stealing</em>: all threads in the pool
34 < * attempt to find and execute subtasks created by other active tasks
35 < * (eventually blocking if none exist). This makes them efficient when
36 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
37 < * as the mixed execution of some plain Runnable- or Callable- based
38 < * activities along with ForkJoinTasks. Otherwise, other
39 < * ExecutorService implementations are typically more appropriate
40 < * choices.
32 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
33 > * ExecutorService} mainly by virtue of employing
34 > * <em>work-stealing</em>: all threads in the pool attempt to find and
35 > * execute tasks submitted to the pool and/or created by other active
36 > * tasks (eventually blocking waiting for work if none exist). This
37 > * enables efficient processing when most tasks spawn other subtasks
38 > * (as do most {@code ForkJoinTask}s), as well as when many small
39 > * tasks are submitted to the pool from external clients.  Especially
40 > * when setting <em>asyncMode</em> to true in constructors, {@code
41 > * ForkJoinPool}s may also be appropriate for use with event-style
42 > * tasks that are never joined.
43   *
44 < * <p>A ForkJoinPool may be constructed with a given parallelism level
45 < * (target pool size), which it attempts to maintain by dynamically
46 < * adding, suspending, or resuming threads, even if some tasks are
47 < * waiting to join others. However, no such adjustments are performed
48 < * in the face of blocked IO or other unmanaged synchronization. The
49 < * nested <code>ManagedBlocker</code> interface enables extension of
50 < * the kinds of synchronization accommodated.  The target parallelism
51 < * level may also be changed dynamically (<code>setParallelism</code>)
52 < * and dynamically thread construction can be limited using methods
43 < * <code>setMaximumPoolSize</code> and/or
44 < * <code>setMaintainsParallelism</code>.
44 > * <p>A {@code ForkJoinPool} is constructed with a given target
45 > * parallelism level; by default, equal to the number of available
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
56 < * <code>getStealCount</code>) that are intended to aid in developing,
56 > * {@link #getStealCount}) that are intended to aid in developing,
57   * tuning, and monitoring fork/join applications. Also, method
58 < * <code>toString</code> returns indications of pool state in a
58 > * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following table.
63 + * These are designed to be used primarily by clients not already
64 + * engaged in fork/join computations in the current pool.  The main
65 + * forms of these methods accept instances of {@code ForkJoinTask},
66 + * but overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally instead
69 + * use the within-computation forms listed in the table unless using
70 + * async event-style tasks that are not usually joined, in which case
71 + * there is little difference among choice of methods.
72 + *
73 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
74 + *  <tr>
75 + *    <td></td>
76 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
77 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
78 + *  </tr>
79 + *  <tr>
80 + *    <td> <b>Arrange async execution</td>
81 + *    <td> {@link #execute(ForkJoinTask)}</td>
82 + *    <td> {@link ForkJoinTask#fork}</td>
83 + *  </tr>
84 + *  <tr>
85 + *    <td> <b>Await and obtain result</td>
86 + *    <td> {@link #invoke(ForkJoinTask)}</td>
87 + *    <td> {@link ForkJoinTask#invoke}</td>
88 + *  </tr>
89 + *  <tr>
90 + *    <td> <b>Arrange exec and obtain Future</td>
91 + *    <td> {@link #submit(ForkJoinTask)}</td>
92 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
93 + *  </tr>
94 + * </table>
95 + *
96 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
97 + * used for all parallel task execution in a program or subsystem.
98 + * Otherwise, use would not usually outweigh the construction and
99 + * bookkeeping overhead of creating a large set of threads. For
100 + * example, a common pool could be used for the {@code SortTasks}
101 + * illustrated in {@link RecursiveAction}. Because {@code
102 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
103 + * daemon} mode, there is typically no need to explicitly {@link
104 + * #shutdown} such a pool upon program exit.
105 + *
106 + *  <pre> {@code
107 + * static final ForkJoinPool mainPool = new ForkJoinPool();
108 + * ...
109 + * public void sort(long[] array) {
110 + *   mainPool.invoke(new SortTask(array, 0, array.length));
111 + * }}</pre>
112 + *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
116 < * IllegalArgumentExceptions.
115 > * pools with greater than the maximum number result in
116 > * {@code IllegalArgumentException}.
117 > *
118 > * <p>This implementation rejects submitted tasks (that is, by throwing
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121 > *
122 > * @since 1.7
123 > * @author Doug Lea
124   */
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class and its nested classes provide the main
131 >     * functionality and control for a set of worker threads:
132 >     * Submissions from non-FJ threads enter into submission queues.
133 >     * Workers take these tasks and typically split them into subtasks
134 >     * that may be stolen by other workers.  Preference rules give
135 >     * first priority to processing tasks from their own queues (LIFO
136 >     * or FIFO, depending on mode), then to randomized FIFO steals of
137 >     * tasks in other queues.
138 >     *
139 >     * WorkQueues
140 >     * ==========
141 >     *
142 >     * Most operations occur within work-stealing queues (in nested
143 >     * class WorkQueue).  These are special forms of Deques that
144 >     * support only three of the four possible end-operations -- push,
145 >     * pop, and poll (aka steal), under the further constraints that
146 >     * push and pop are called only from the owning thread (or, as
147 >     * extended here, under a lock), while poll may be called from
148 >     * other threads.  (If you are unfamiliar with them, you probably
149 >     * want to read Herlihy and Shavit's book "The Art of
150 >     * Multiprocessor programming", chapter 16 describing these in
151 >     * more detail before proceeding.)  The main work-stealing queue
152 >     * design is roughly similar to those in the papers "Dynamic
153 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
154 >     * (http://research.sun.com/scalable/pubs/index.html) and
155 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
156 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
157 >     * The main differences ultimately stem from GC requirements that
158 >     * we null out taken slots as soon as we can, to maintain as small
159 >     * a footprint as possible even in programs generating huge
160 >     * numbers of tasks. To accomplish this, we shift the CAS
161 >     * arbitrating pop vs poll (steal) from being on the indices
162 >     * ("base" and "top") to the slots themselves.  So, both a
163 >     * successful pop and poll mainly entail a CAS of a slot from
164 >     * non-null to null.  Because we rely on CASes of references, we
165 >     * do not need tag bits on base or top.  They are simple ints as
166 >     * used in any circular array-based queue (see for example
167 >     * ArrayDeque).  Updates to the indices must still be ordered in a
168 >     * way that guarantees that top == base means the queue is empty,
169 >     * but otherwise may err on the side of possibly making the queue
170 >     * appear nonempty when a push, pop, or poll have not fully
171 >     * committed. Note that this means that the poll operation,
172 >     * considered individually, is not wait-free. One thief cannot
173 >     * successfully continue until another in-progress one (or, if
174 >     * previously empty, a push) completes.  However, in the
175 >     * aggregate, we ensure at least probabilistic non-blockingness.
176 >     * If an attempted steal fails, a thief always chooses a different
177 >     * random victim target to try next. So, in order for one thief to
178 >     * progress, it suffices for any in-progress poll or new push on
179 >     * any empty queue to complete. (This is why we normally use
180 >     * method pollAt and its variants that try once at the apparent
181 >     * base index, else consider alternative actions, rather than
182 >     * method poll.)
183 >     *
184 >     * This approach also enables support of a user mode in which local
185 >     * task processing is in FIFO, not LIFO order, simply by using
186 >     * poll rather than pop.  This can be useful in message-passing
187 >     * frameworks in which tasks are never joined.  However neither
188 >     * mode considers affinities, loads, cache localities, etc, so
189 >     * rarely provide the best possible performance on a given
190 >     * machine, but portably provide good throughput by averaging over
191 >     * these factors.  (Further, even if we did try to use such
192 >     * information, we do not usually have a basis for exploiting it.
193 >     * For example, some sets of tasks profit from cache affinities,
194 >     * but others are harmed by cache pollution effects.)
195 >     *
196 >     * WorkQueues are also used in a similar way for tasks submitted
197 >     * to the pool. We cannot mix these tasks in the same queues used
198 >     * for work-stealing (this would contaminate lifo/fifo
199 >     * processing). Instead, we loosely associate submission queues
200 >     * with submitting threads, using a form of hashing.  The
201 >     * ThreadLocal Submitter class contains a value initially used as
202 >     * a hash code for choosing existing queues, but may be randomly
203 >     * repositioned upon contention with other submitters.  In
204 >     * essence, submitters act like workers except that they never
205 >     * take tasks, and they are multiplexed on to a finite number of
206 >     * shared work queues. However, classes are set up so that future
207 >     * extensions could allow submitters to optionally help perform
208 >     * tasks as well. Insertion of tasks in shared mode requires a
209 >     * lock (mainly to protect in the case of resizing) but we use
210 >     * only a simple spinlock (using bits in field runState), because
211 >     * submitters encountering a busy queue move on to try or create
212 >     * other queues -- they block only when creating and registering
213 >     * new queues.
214 >     *
215 >     * Management
216 >     * ==========
217 >     *
218 >     * The main throughput advantages of work-stealing stem from
219 >     * decentralized control -- workers mostly take tasks from
220 >     * themselves or each other. We cannot negate this in the
221 >     * implementation of other management responsibilities. The main
222 >     * tactic for avoiding bottlenecks is packing nearly all
223 >     * essentially atomic control state into two volatile variables
224 >     * that are by far most often read (not written) as status and
225 >     * consistency checks.
226 >     *
227 >     * Field "ctl" contains 64 bits holding all the information needed
228 >     * to atomically decide to add, inactivate, enqueue (on an event
229 >     * queue), dequeue, and/or re-activate workers.  To enable this
230 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
231 >     * far in excess of normal operating range) to allow ids, counts,
232 >     * and their negations (used for thresholding) to fit into 16bit
233 >     * fields.
234 >     *
235 >     * Field "runState" contains 32 bits needed to register and
236 >     * deregister WorkQueues, as well as to enable shutdown. It is
237 >     * only modified under a lock (normally briefly held, but
238 >     * occasionally protecting allocations and resizings) but even
239 >     * when locked remains available to check consistency.
240 >     *
241 >     * Recording WorkQueues.  WorkQueues are recorded in the
242 >     * "workQueues" array that is created upon pool construction and
243 >     * expanded if necessary.  Updates to the array while recording
244 >     * new workers and unrecording terminated ones are protected from
245 >     * each other by a lock but the array is otherwise concurrently
246 >     * readable, and accessed directly.  To simplify index-based
247 >     * operations, the array size is always a power of two, and all
248 >     * readers must tolerate null slots. Shared (submission) queues
249 >     * are at even indices, worker queues at odd indices. Grouping
250 >     * them together in this way simplifies and speeds up task
251 >     * scanning.
252 >     *
253 >     * All worker thread creation is on-demand, triggered by task
254 >     * submissions, replacement of terminated workers, and/or
255 >     * compensation for blocked workers. However, all other support
256 >     * code is set up to work with other policies.  To ensure that we
257 >     * do not hold on to worker references that would prevent GC, ALL
258 >     * accesses to workQueues are via indices into the workQueues
259 >     * array (which is one source of some of the messy code
260 >     * constructions here). In essence, the workQueues array serves as
261 >     * a weak reference mechanism. Thus for example the wait queue
262 >     * field of ctl stores indices, not references.  Access to the
263 >     * workQueues in associated methods (for example signalWork) must
264 >     * both index-check and null-check the IDs. All such accesses
265 >     * ignore bad IDs by returning out early from what they are doing,
266 >     * since this can only be associated with termination, in which
267 >     * case it is OK to give up.  All uses of the workQueues array
268 >     * also check that it is non-null (even if previously
269 >     * non-null). This allows nulling during termination, which is
270 >     * currently not necessary, but remains an option for
271 >     * resource-revocation-based shutdown schemes. It also helps
272 >     * reduce JIT issuance of uncommon-trap code, which tends to
273 >     * unnecessarily complicate control flow in some methods.
274 >     *
275 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
276 >     * let workers spin indefinitely scanning for tasks when none can
277 >     * be found immediately, and we cannot start/resume workers unless
278 >     * there appear to be tasks available.  On the other hand, we must
279 >     * quickly prod them into action when new tasks are submitted or
280 >     * generated. In many usages, ramp-up time to activate workers is
281 >     * the main limiting factor in overall performance (this is
282 >     * compounded at program start-up by JIT compilation and
283 >     * allocation). So we try to streamline this as much as possible.
284 >     * We park/unpark workers after placing in an event wait queue
285 >     * when they cannot find work. This "queue" is actually a simple
286 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
287 >     * counter value (that reflects the number of times a worker has
288 >     * been inactivated) to avoid ABA effects (we need only as many
289 >     * version numbers as worker threads). Successors are held in
290 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
291 >     * races, mainly that a task-producing thread can miss seeing (and
292 >     * signalling) another thread that gave up looking for work but
293 >     * has not yet entered the wait queue. We solve this by requiring
294 >     * a full sweep of all workers (via repeated calls to method
295 >     * scan()) both before and after a newly waiting worker is added
296 >     * to the wait queue. During a rescan, the worker might release
297 >     * some other queued worker rather than itself, which has the same
298 >     * net effect. Because enqueued workers may actually be rescanning
299 >     * rather than waiting, we set and clear the "parker" field of
300 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
301 >     * requires a secondary recheck to avoid missed signals.)  Note
302 >     * the unusual conventions about Thread.interrupts surrounding
303 >     * parking and other blocking: Because interrupts are used solely
304 >     * to alert threads to check termination, which is checked anyway
305 >     * upon blocking, we clear status (using Thread.interrupted)
306 >     * before any call to park, so that park does not immediately
307 >     * return due to status being set via some other unrelated call to
308 >     * interrupt in user code.
309 >     *
310 >     * Signalling.  We create or wake up workers only when there
311 >     * appears to be at least one task they might be able to find and
312 >     * execute.  When a submission is added or another worker adds a
313 >     * task to a queue that previously had fewer than two tasks, they
314 >     * signal waiting workers (or trigger creation of new ones if
315 >     * fewer than the given parallelism level -- see signalWork).
316 >     * These primary signals are buttressed by signals during rescans;
317 >     * together these cover the signals needed in cases when more
318 >     * tasks are pushed but untaken, and improve performance compared
319 >     * to having one thread wake up all workers.
320 >     *
321 >     * Trimming workers. To release resources after periods of lack of
322 >     * use, a worker starting to wait when the pool is quiescent will
323 >     * time out and terminate if the pool has remained quiescent for
324 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
325 >     * terminating all workers after long periods of non-use.
326 >     *
327 >     * Shutdown and Termination. A call to shutdownNow atomically sets
328 >     * a runState bit and then (non-atomically) sets each worker's
329 >     * runState status, cancels all unprocessed tasks, and wakes up
330 >     * all waiting workers.  Detecting whether termination should
331 >     * commence after a non-abrupt shutdown() call requires more work
332 >     * and bookkeeping. We need consensus about quiescence (i.e., that
333 >     * there is no more work). The active count provides a primary
334 >     * indication but non-abrupt shutdown still requires a rechecking
335 >     * scan for any workers that are inactive but not queued.
336 >     *
337 >     * Joining Tasks
338 >     * =============
339 >     *
340 >     * Any of several actions may be taken when one worker is waiting
341 >     * to join a task stolen (or always held) by another.  Because we
342 >     * are multiplexing many tasks on to a pool of workers, we can't
343 >     * just let them block (as in Thread.join).  We also cannot just
344 >     * reassign the joiner's run-time stack with another and replace
345 >     * it later, which would be a form of "continuation", that even if
346 >     * possible is not necessarily a good idea since we sometimes need
347 >     * both an unblocked task and its continuation to progress.
348 >     * Instead we combine two tactics:
349 >     *
350 >     *   Helping: Arranging for the joiner to execute some task that it
351 >     *      would be running if the steal had not occurred.
352 >     *
353 >     *   Compensating: Unless there are already enough live threads,
354 >     *      method tryCompensate() may create or re-activate a spare
355 >     *      thread to compensate for blocked joiners until they unblock.
356 >     *
357 >     * A third form (implemented in tryRemoveAndExec and
358 >     * tryPollForAndExec) amounts to helping a hypothetical
359 >     * compensator: If we can readily tell that a possible action of a
360 >     * compensator is to steal and execute the task being joined, the
361 >     * joining thread can do so directly, without the need for a
362 >     * compensation thread (although at the expense of larger run-time
363 >     * stacks, but the tradeoff is typically worthwhile).
364 >     *
365 >     * The ManagedBlocker extension API can't use helping so relies
366 >     * only on compensation in method awaitBlocker.
367 >     *
368 >     * The algorithm in tryHelpStealer entails a form of "linear"
369 >     * helping: Each worker records (in field currentSteal) the most
370 >     * recent task it stole from some other worker. Plus, it records
371 >     * (in field currentJoin) the task it is currently actively
372 >     * joining. Method tryHelpStealer uses these markers to try to
373 >     * find a worker to help (i.e., steal back a task from and execute
374 >     * it) that could hasten completion of the actively joined task.
375 >     * In essence, the joiner executes a task that would be on its own
376 >     * local deque had the to-be-joined task not been stolen. This may
377 >     * be seen as a conservative variant of the approach in Wagner &
378 >     * Calder "Leapfrogging: a portable technique for implementing
379 >     * efficient futures" SIGPLAN Notices, 1993
380 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
381 >     * that: (1) We only maintain dependency links across workers upon
382 >     * steals, rather than use per-task bookkeeping.  This sometimes
383 >     * requires a linear scan of workQueues array to locate stealers,
384 >     * but often doesn't because stealers leave hints (that may become
385 >     * stale/wrong) of where to locate them.  A stealHint is only a
386 >     * hint because a worker might have had multiple steals and the
387 >     * hint records only one of them (usually the most current).
388 >     * Hinting isolates cost to when it is needed, rather than adding
389 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
390 >     * and potentially cyclic mutual steals.  (3) It is intentionally
391 >     * racy: field currentJoin is updated only while actively joining,
392 >     * which means that we miss links in the chain during long-lived
393 >     * tasks, GC stalls etc (which is OK since blocking in such cases
394 >     * is usually a good idea).  (4) We bound the number of attempts
395 >     * to find work (see MAX_HELP) and fall back to suspending the
396 >     * worker and if necessary replacing it with another.
397 >     *
398 >     * It is impossible to keep exactly the target parallelism number
399 >     * of threads running at any given time.  Determining the
400 >     * existence of conservatively safe helping targets, the
401 >     * availability of already-created spares, and the apparent need
402 >     * to create new spares are all racy, so we rely on multiple
403 >     * retries of each.  Compensation in the apparent absence of
404 >     * helping opportunities is challenging to control on JVMs, where
405 >     * GC and other activities can stall progress of tasks that in
406 >     * turn stall out many other dependent tasks, without us being
407 >     * able to determine whether they will ever require compensation.
408 >     * Even though work-stealing otherwise encounters little
409 >     * degradation in the presence of more threads than cores,
410 >     * aggressively adding new threads in such cases entails risk of
411 >     * unwanted positive feedback control loops in which more threads
412 >     * cause more dependent stalls (as well as delayed progress of
413 >     * unblocked threads to the point that we know they are available)
414 >     * leading to more situations requiring more threads, and so
415 >     * on. This aspect of control can be seen as an (analytically
416 >     * intractible) game with an opponent that may choose the worst
417 >     * (for us) active thread to stall at any time.  We take several
418 >     * precautions to bound losses (and thus bound gains), mainly in
419 >     * methods tryCompensate and awaitJoin: (1) We only try
420 >     * compensation after attempting enough helping steps (measured
421 >     * via counting and timing) that we have already consumed the
422 >     * estimated cost of creating and activating a new thread.  (2) We
423 >     * allow up to 50% of threads to be blocked before initially
424 >     * adding any others, and unless completely saturated, check that
425 >     * some work is available for a new worker before adding. Also, we
426 >     * create up to only 50% more threads until entering a mode that
427 >     * only adds a thread if all others are possibly blocked.  All
428 >     * together, this means that we might be half as fast to react,
429 >     * and create half as many threads as possible in the ideal case,
430 >     * but present vastly fewer anomalies in all other cases compared
431 >     * to both more aggressive and more conservative alternatives.
432 >     *
433 >     * Style notes: There is a lot of representation-level coupling
434 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
435 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
436 >     * managed by ForkJoinPool, so are directly accessed.  There is
437 >     * little point trying to reduce this, since any associated future
438 >     * changes in representations will need to be accompanied by
439 >     * algorithmic changes anyway. Several methods intrinsically
440 >     * sprawl because they must accumulate sets of consistent reads of
441 >     * volatiles held in local variables.  Methods signalWork() and
442 >     * scan() are the main bottlenecks, so are especially heavily
443 >     * micro-optimized/mangled.  There are lots of inline assignments
444 >     * (of form "while ((local = field) != 0)") which are usually the
445 >     * simplest way to ensure the required read orderings (which are
446 >     * sometimes critical). This leads to a "C"-like style of listing
447 >     * declarations of these locals at the heads of methods or blocks.
448 >     * There are several occurrences of the unusual "do {} while
449 >     * (!cas...)"  which is the simplest way to force an update of a
450 >     * CAS'ed variable. There are also other coding oddities that help
451 >     * some methods perform reasonably even when interpreted (not
452 >     * compiled).
453 >     *
454 >     * The order of declarations in this file is:
455 >     * (1) Static utility functions
456 >     * (2) Nested (static) classes
457 >     * (3) Static fields
458 >     * (4) Fields, along with constants used when unpacking some of them
459 >     * (5) Internal control methods
460 >     * (6) Callbacks and other support for ForkJoinTask methods
461 >     * (7) Exported methods
462 >     * (8) Static block initializing statics in minimally dependent order
463       */
464  
465 <    /** Mask for packing and unpacking shorts */
466 <    private static final int  shortMask = 0xffff;
465 >    // Static utilities
466 >
467 >    /**
468 >     * If there is a security manager, makes sure caller has
469 >     * permission to modify threads.
470 >     */
471 >    private static void checkPermission() {
472 >        SecurityManager security = System.getSecurityManager();
473 >        if (security != null)
474 >            security.checkPermission(modifyThreadPermission);
475 >    }
476  
477 <    /** Max pool size -- must be a power of two minus 1 */
69 <    private static final int MAX_THREADS =  0x7FFF;
477 >    // Nested classes
478  
479      /**
480 <     * Factory for creating new ForkJoinWorkerThreads.  A
481 <     * ForkJoinWorkerThreadFactory must be defined and used for
482 <     * ForkJoinWorkerThread subclasses that extend base functionality
483 <     * or initialize threads with different contexts.
480 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
481 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
482 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
483 >     * functionality or initialize threads with different contexts.
484       */
485      public static interface ForkJoinWorkerThreadFactory {
486          /**
487           * Returns a new worker thread operating in the given pool.
488           *
489           * @param pool the pool this thread works in
490 <         * @throws NullPointerException if pool is null;
490 >         * @throws NullPointerException if the pool is null
491           */
492          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
493      }
494  
495      /**
496 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
496 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
497       * new ForkJoinWorkerThread.
498       */
499 <    static class  DefaultForkJoinWorkerThreadFactory
499 >    static class DefaultForkJoinWorkerThreadFactory
500          implements ForkJoinWorkerThreadFactory {
501          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
502 <            try {
95 <                return new ForkJoinWorkerThread(pool);
96 <            } catch (OutOfMemoryError oom)  {
97 <                return null;
98 <            }
502 >            return new ForkJoinWorkerThread(pool);
503          }
504      }
505  
506      /**
507 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
508 <     * overridden in ForkJoinPool constructors.
507 >     * A simple non-reentrant lock used for exclusion when managing
508 >     * queues and workers. We use a custom lock so that we can readily
509 >     * probe lock state in constructions that check among alternative
510 >     * actions. The lock is normally only very briefly held, and
511 >     * sometimes treated as a spinlock, but other usages block to
512 >     * reduce overall contention in those cases where locked code
513 >     * bodies perform allocation/resizing.
514       */
515 <    public static final ForkJoinWorkerThreadFactory
516 <        defaultForkJoinWorkerThreadFactory =
517 <        new DefaultForkJoinWorkerThreadFactory();
515 >    static final class Mutex extends AbstractQueuedSynchronizer {
516 >        public final boolean tryAcquire(int ignore) {
517 >            return compareAndSetState(0, 1);
518 >        }
519 >        public final boolean tryRelease(int ignore) {
520 >            setState(0);
521 >            return true;
522 >        }
523 >        public final void lock() { acquire(0); }
524 >        public final void unlock() { release(0); }
525 >        public final boolean isHeldExclusively() { return getState() == 1; }
526 >        public final Condition newCondition() { return new ConditionObject(); }
527 >    }
528  
529      /**
530 <     * Permission required for callers of methods that may start or
531 <     * kill threads.
530 >     * Class for artificial tasks that are used to replace the target
531 >     * of local joins if they are removed from an interior queue slot
532 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
533 >     * actually do anything beyond having a unique identity.
534       */
535 <    private static final RuntimePermission modifyThreadPermission =
536 <        new RuntimePermission("modifyThread");
535 >    static final class EmptyTask extends ForkJoinTask<Void> {
536 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
537 >        public final Void getRawResult() { return null; }
538 >        public final void setRawResult(Void x) {}
539 >        public final boolean exec() { return true; }
540 >    }
541  
542      /**
543 <     * If there is a security manager, makes sure caller has
544 <     * permission to modify threads.
543 >     * Queues supporting work-stealing as well as external task
544 >     * submission. See above for main rationale and algorithms.
545 >     * Implementation relies heavily on "Unsafe" intrinsics
546 >     * and selective use of "volatile":
547 >     *
548 >     * Field "base" is the index (mod array.length) of the least valid
549 >     * queue slot, which is always the next position to steal (poll)
550 >     * from if nonempty. Reads and writes require volatile orderings
551 >     * but not CAS, because updates are only performed after slot
552 >     * CASes.
553 >     *
554 >     * Field "top" is the index (mod array.length) of the next queue
555 >     * slot to push to or pop from. It is written only by owner thread
556 >     * for push, or under lock for trySharedPush, and accessed by
557 >     * other threads only after reading (volatile) base.  Both top and
558 >     * base are allowed to wrap around on overflow, but (top - base)
559 >     * (or more commonly -(base - top) to force volatile read of base
560 >     * before top) still estimates size.
561 >     *
562 >     * The array slots are read and written using the emulation of
563 >     * volatiles/atomics provided by Unsafe. Insertions must in
564 >     * general use putOrderedObject as a form of releasing store to
565 >     * ensure that all writes to the task object are ordered before
566 >     * its publication in the queue. (Although we can avoid one case
567 >     * of this when locked in trySharedPush.) All removals entail a
568 >     * CAS to null.  The array is always a power of two. To ensure
569 >     * safety of Unsafe array operations, all accesses perform
570 >     * explicit null checks and implicit bounds checks via
571 >     * power-of-two masking.
572 >     *
573 >     * In addition to basic queuing support, this class contains
574 >     * fields described elsewhere to control execution. It turns out
575 >     * to work better memory-layout-wise to include them in this
576 >     * class rather than a separate class.
577 >     *
578 >     * Performance on most platforms is very sensitive to placement of
579 >     * instances of both WorkQueues and their arrays -- we absolutely
580 >     * do not want multiple WorkQueue instances or multiple queue
581 >     * arrays sharing cache lines. (It would be best for queue objects
582 >     * and their arrays to share, but there is nothing available to
583 >     * help arrange that).  Unfortunately, because they are recorded
584 >     * in a common array, WorkQueue instances are often moved to be
585 >     * adjacent by garbage collectors. To reduce impact, we use field
586 >     * padding that works OK on common platforms; this effectively
587 >     * trades off slightly slower average field access for the sake of
588 >     * avoiding really bad worst-case access. (Until better JVM
589 >     * support is in place, this padding is dependent on transient
590 >     * properties of JVM field layout rules.)  We also take care in
591 >     * allocating, sizing and resizing the array. Non-shared queue
592 >     * arrays are initialized (via method growArray) by workers before
593 >     * use. Others are allocated on first use.
594       */
595 <    private static void checkPermission() {
596 <        SecurityManager security = System.getSecurityManager();
597 <        if (security != null)
598 <            security.checkPermission(modifyThreadPermission);
595 >    static final class WorkQueue {
596 >        /**
597 >         * Capacity of work-stealing queue array upon initialization.
598 >         * Must be a power of two; at least 4, but should be larger to
599 >         * reduce or eliminate cacheline sharing among queues.
600 >         * Currently, it is much larger, as a partial workaround for
601 >         * the fact that JVMs often place arrays in locations that
602 >         * share GC bookkeeping (especially cardmarks) such that
603 >         * per-write accesses encounter serious memory contention.
604 >         */
605 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
606 >
607 >        /**
608 >         * Maximum size for queue arrays. Must be a power of two less
609 >         * than or equal to 1 << (31 - width of array entry) to ensure
610 >         * lack of wraparound of index calculations, but defined to a
611 >         * value a bit less than this to help users trap runaway
612 >         * programs before saturating systems.
613 >         */
614 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
615 >
616 >        volatile long totalSteals; // cumulative number of steals
617 >        int seed;                  // for random scanning; initialize nonzero
618 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
619 >        int nextWait;              // encoded record of next event waiter
620 >        int rescans;               // remaining scans until block
621 >        int nsteals;               // top-level task executions since last idle
622 >        final int mode;            // lifo, fifo, or shared
623 >        int poolIndex;             // index of this queue in pool (or 0)
624 >        int stealHint;             // index of most recent known stealer
625 >        volatile int runState;     // 1: locked, -1: terminate; else 0
626 >        volatile int base;         // index of next slot for poll
627 >        int top;                   // index of next slot for push
628 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
629 >        final ForkJoinPool pool;   // the containing pool (may be null)
630 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
631 >        volatile Thread parker;    // == owner during call to park; else null
632 >        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
633 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
634 >        // Heuristic padding to ameliorate unfortunate memory placements
635 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
636 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
637 >
638 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
639 >            this.mode = mode;
640 >            this.pool = pool;
641 >            this.owner = owner;
642 >            // Place indices in the center of array (that is not yet allocated)
643 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
644 >        }
645 >
646 >        /**
647 >         * Returns the approximate number of tasks in the queue.
648 >         */
649 >        final int queueSize() {
650 >            int n = base - top;       // non-owner callers must read base first
651 >            return (n >= 0) ? 0 : -n; // ignore transient negative
652 >        }
653 >
654 >        /**
655 >         * Provides a more accurate estimate of whether this queue has
656 >         * any tasks than does queueSize, by checking whether a
657 >         * near-empty queue has at least one unclaimed task.
658 >         */
659 >        final boolean isEmpty() {
660 >            ForkJoinTask<?>[] a; int m, s;
661 >            int n = base - (s = top);
662 >            return (n >= 0 ||
663 >                    (n == -1 &&
664 >                     ((a = array) == null ||
665 >                      (m = a.length - 1) < 0 ||
666 >                      U.getObjectVolatile
667 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
668 >        }
669 >
670 >        /**
671 >         * Pushes a task. Call only by owner in unshared queues.
672 >         *
673 >         * @param task the task. Caller must ensure non-null.
674 >         * @throw RejectedExecutionException if array cannot be resized
675 >         */
676 >        final void push(ForkJoinTask<?> task) {
677 >            ForkJoinTask<?>[] a; ForkJoinPool p;
678 >            int s = top, m, n;
679 >            if ((a = array) != null) {    // ignore if queue removed
680 >                U.putOrderedObject
681 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
682 >                if ((n = (top = s + 1) - base) <= 2) {
683 >                    if ((p = pool) != null)
684 >                        p.signalWork();
685 >                }
686 >                else if (n >= m)
687 >                    growArray(true);
688 >            }
689 >        }
690 >
691 >        /**
692 >         * Pushes a task if lock is free and array is either big
693 >         * enough or can be resized to be big enough.
694 >         *
695 >         * @param task the task. Caller must ensure non-null.
696 >         * @return true if submitted
697 >         */
698 >        final boolean trySharedPush(ForkJoinTask<?> task) {
699 >            boolean submitted = false;
700 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
701 >                ForkJoinTask<?>[] a = array;
702 >                int s = top;
703 >                try {
704 >                    if ((a != null && a.length > s + 1 - base) ||
705 >                        (a = growArray(false)) != null) { // must presize
706 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
707 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
708 >                        top = s + 1;
709 >                        submitted = true;
710 >                    }
711 >                } finally {
712 >                    runState = 0;                         // unlock
713 >                }
714 >            }
715 >            return submitted;
716 >        }
717 >
718 >        /**
719 >         * Takes next task, if one exists, in LIFO order.  Call only
720 >         * by owner in unshared queues. (We do not have a shared
721 >         * version of this method because it is never needed.)
722 >         */
723 >        final ForkJoinTask<?> pop() {
724 >            ForkJoinTask<?> t; int m;
725 >            ForkJoinTask<?>[] a = array;
726 >            if (a != null && (m = a.length - 1) >= 0) {
727 >                for (int s; (s = top - 1) - base >= 0;) {
728 >                    int j = ((m & s) << ASHIFT) + ABASE;
729 >                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
730 >                        break;
731 >                    if (U.compareAndSwapObject(a, j, t, null)) {
732 >                        top = s;
733 >                        return t;
734 >                    }
735 >                }
736 >            }
737 >            return null;
738 >        }
739 >
740 >        /**
741 >         * Takes a task in FIFO order if b is base of queue and a task
742 >         * can be claimed without contention. Specialized versions
743 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
744 >         */
745 >        final ForkJoinTask<?> pollAt(int b) {
746 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
747 >            if ((a = array) != null) {
748 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
749 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
750 >                    base == b &&
751 >                    U.compareAndSwapObject(a, j, t, null)) {
752 >                    base = b + 1;
753 >                    return t;
754 >                }
755 >            }
756 >            return null;
757 >        }
758 >
759 >        /**
760 >         * Takes next task, if one exists, in FIFO order.
761 >         */
762 >        final ForkJoinTask<?> poll() {
763 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
764 >            while ((b = base) - top < 0 && (a = array) != null) {
765 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
767 >                if (t != null) {
768 >                    if (base == b &&
769 >                        U.compareAndSwapObject(a, j, t, null)) {
770 >                        base = b + 1;
771 >                        return t;
772 >                    }
773 >                }
774 >                else if (base == b) {
775 >                    if (b + 1 == top)
776 >                        break;
777 >                    Thread.yield(); // wait for lagging update
778 >                }
779 >            }
780 >            return null;
781 >        }
782 >
783 >        /**
784 >         * Takes next task, if one exists, in order specified by mode.
785 >         */
786 >        final ForkJoinTask<?> nextLocalTask() {
787 >            return mode == 0 ? pop() : poll();
788 >        }
789 >
790 >        /**
791 >         * Returns next task, if one exists, in order specified by mode.
792 >         */
793 >        final ForkJoinTask<?> peek() {
794 >            ForkJoinTask<?>[] a = array; int m;
795 >            if (a == null || (m = a.length - 1) < 0)
796 >                return null;
797 >            int i = mode == 0 ? top - 1 : base;
798 >            int j = ((i & m) << ASHIFT) + ABASE;
799 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
800 >        }
801 >
802 >        /**
803 >         * Pops the given task only if it is at the current top.
804 >         */
805 >        final boolean tryUnpush(ForkJoinTask<?> t) {
806 >            ForkJoinTask<?>[] a; int s;
807 >            if ((a = array) != null && (s = top) != base &&
808 >                U.compareAndSwapObject
809 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
810 >                top = s;
811 >                return true;
812 >            }
813 >            return false;
814 >        }
815 >
816 >        /**
817 >         * Polls the given task only if it is at the current base.
818 >         */
819 >        final boolean pollFor(ForkJoinTask<?> task) {
820 >            ForkJoinTask<?>[] a; int b;
821 >            if ((b = base) - top < 0 && (a = array) != null) {
822 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
823 >                if (U.getObjectVolatile(a, j) == task && base == b &&
824 >                    U.compareAndSwapObject(a, j, task, null)) {
825 >                    base = b + 1;
826 >                    return true;
827 >                }
828 >            }
829 >            return false;
830 >        }
831 >
832 >        /**
833 >         * If present, removes from queue and executes the given task, or
834 >         * any other cancelled task. Returns (true) immediately on any CAS
835 >         * or consistency check failure so caller can retry.
836 >         *
837 >         * @return false if no progress can be made
838 >         */
839 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
840 >            boolean removed = false, empty = true, progress = true;
841 >            ForkJoinTask<?>[] a; int m, s, b, n;
842 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
843 >                (n = (s = top) - (b = base)) > 0) {
844 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
845 >                    int j = ((--s & m) << ASHIFT) + ABASE;
846 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
847 >                    if (t == null)                    // inconsistent length
848 >                        break;
849 >                    else if (t == task) {
850 >                        if (s + 1 == top) {           // pop
851 >                            if (!U.compareAndSwapObject(a, j, task, null))
852 >                                break;
853 >                            top = s;
854 >                            removed = true;
855 >                        }
856 >                        else if (base == b)           // replace with proxy
857 >                            removed = U.compareAndSwapObject(a, j, task,
858 >                                                             new EmptyTask());
859 >                        break;
860 >                    }
861 >                    else if (t.status >= 0)
862 >                        empty = false;
863 >                    else if (s + 1 == top) {          // pop and throw away
864 >                        if (U.compareAndSwapObject(a, j, t, null))
865 >                            top = s;
866 >                        break;
867 >                    }
868 >                    if (--n == 0) {
869 >                        if (!empty && base == b)
870 >                            progress = false;
871 >                        break;
872 >                    }
873 >                }
874 >            }
875 >            if (removed)
876 >                task.doExec();
877 >            return progress;
878 >        }
879 >
880 >        /**
881 >         * Initializes or doubles the capacity of array. Call either
882 >         * by owner or with lock held -- it is OK for base, but not
883 >         * top, to move while resizings are in progress.
884 >         *
885 >         * @param rejectOnFailure if true, throw exception if capacity
886 >         * exceeded (relayed ultimately to user); else return null.
887 >         */
888 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
889 >            ForkJoinTask<?>[] oldA = array;
890 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
891 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
892 >                int oldMask, t, b;
893 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
894 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
895 >                    (t = top) - (b = base) > 0) {
896 >                    int mask = size - 1;
897 >                    do {
898 >                        ForkJoinTask<?> x;
899 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
900 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
901 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
902 >                        if (x != null &&
903 >                            U.compareAndSwapObject(oldA, oldj, x, null))
904 >                            U.putObjectVolatile(a, j, x);
905 >                    } while (++b != t);
906 >                }
907 >                return a;
908 >            }
909 >            else if (!rejectOnFailure)
910 >                return null;
911 >            else
912 >                throw new RejectedExecutionException("Queue capacity exceeded");
913 >        }
914 >
915 >        /**
916 >         * Removes and cancels all known tasks, ignoring any exceptions.
917 >         */
918 >        final void cancelAll() {
919 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
920 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
921 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
922 >                ForkJoinTask.cancelIgnoringExceptions(t);
923 >        }
924 >
925 >        /**
926 >         * Computes next value for random probes.  Scans don't require
927 >         * a very high quality generator, but also not a crummy one.
928 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
929 >         * This is manually inlined in its usages in ForkJoinPool to
930 >         * avoid writes inside busy scan loops.
931 >         */
932 >        final int nextSeed() {
933 >            int r = seed;
934 >            r ^= r << 13;
935 >            r ^= r >>> 17;
936 >            return seed = r ^= r << 5;
937 >        }
938 >
939 >        // Execution methods
940 >
941 >        /**
942 >         * Removes and runs tasks until empty, using local mode
943 >         * ordering. Normally called only after checking for apparent
944 >         * non-emptiness.
945 >         */
946 >        final void runLocalTasks() {
947 >            // hoist checks from repeated pop/poll
948 >            ForkJoinTask<?>[] a; int m;
949 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
950 >                if (mode == 0) {
951 >                    for (int s; (s = top - 1) - base >= 0;) {
952 >                        int j = ((m & s) << ASHIFT) + ABASE;
953 >                        ForkJoinTask<?> t =
954 >                            (ForkJoinTask<?>)U.getObjectVolatile(a, j);
955 >                        if (t != null) {
956 >                            if (U.compareAndSwapObject(a, j, t, null)) {
957 >                                top = s;
958 >                                t.doExec();
959 >                            }
960 >                        }
961 >                        else
962 >                            break;
963 >                    }
964 >                }
965 >                else {
966 >                    for (int b; (b = base) - top < 0;) {
967 >                        int j = ((m & b) << ASHIFT) + ABASE;
968 >                        ForkJoinTask<?> t =
969 >                            (ForkJoinTask<?>)U.getObjectVolatile(a, j);
970 >                        if (t != null) {
971 >                            if (base == b &&
972 >                                U.compareAndSwapObject(a, j, t, null)) {
973 >                                base = b + 1;
974 >                                t.doExec();
975 >                            }
976 >                        } else if (base == b) {
977 >                            if (b + 1 == top)
978 >                                break;
979 >                            Thread.yield(); // wait for lagging update
980 >                        }
981 >                    }
982 >                }
983 >            }
984 >        }
985 >
986 >        /**
987 >         * Executes a top-level task and any local tasks remaining
988 >         * after execution.
989 >         *
990 >         * @return true unless terminating
991 >         */
992 >        final boolean runTask(ForkJoinTask<?> t) {
993 >            boolean alive = true;
994 >            if (t != null) {
995 >                currentSteal = t;
996 >                t.doExec();
997 >                if (top != base)        // conservative guard
998 >                    runLocalTasks();
999 >                ++nsteals;
1000 >                currentSteal = null;
1001 >            }
1002 >            else if (runState < 0)      // terminating
1003 >                alive = false;
1004 >            return alive;
1005 >        }
1006 >
1007 >        /**
1008 >         * Executes a non-top-level (stolen) task.
1009 >         */
1010 >        final void runSubtask(ForkJoinTask<?> t) {
1011 >            if (t != null) {
1012 >                ForkJoinTask<?> ps = currentSteal;
1013 >                currentSteal = t;
1014 >                t.doExec();
1015 >                currentSteal = ps;
1016 >            }
1017 >        }
1018 >
1019 >        /**
1020 >         * Returns true if owned and not known to be blocked.
1021 >         */
1022 >        final boolean isApparentlyUnblocked() {
1023 >            Thread wt; Thread.State s;
1024 >            return (eventCount >= 0 &&
1025 >                    (wt = owner) != null &&
1026 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1027 >                    s != Thread.State.WAITING &&
1028 >                    s != Thread.State.TIMED_WAITING);
1029 >        }
1030 >
1031 >        /**
1032 >         * If this owned and is not already interrupted, try to
1033 >         * interrupt and/or unpark, ignoring exceptions.
1034 >         */
1035 >        final void interruptOwner() {
1036 >            Thread wt, p;
1037 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1038 >                try {
1039 >                    wt.interrupt();
1040 >                } catch (SecurityException ignore) {
1041 >                }
1042 >            }
1043 >            if ((p = parker) != null)
1044 >                U.unpark(p);
1045 >        }
1046 >
1047 >        // Unsafe mechanics
1048 >        private static final sun.misc.Unsafe U;
1049 >        private static final long RUNSTATE;
1050 >        private static final int ABASE;
1051 >        private static final int ASHIFT;
1052 >        static {
1053 >            int s;
1054 >            try {
1055 >                U = getUnsafe();
1056 >                Class<?> k = WorkQueue.class;
1057 >                Class<?> ak = ForkJoinTask[].class;
1058 >                RUNSTATE = U.objectFieldOffset
1059 >                    (k.getDeclaredField("runState"));
1060 >                ABASE = U.arrayBaseOffset(ak);
1061 >                s = U.arrayIndexScale(ak);
1062 >            } catch (Exception e) {
1063 >                throw new Error(e);
1064 >            }
1065 >            if ((s & (s-1)) != 0)
1066 >                throw new Error("data type scale not a power of two");
1067 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1068 >        }
1069      }
1070  
1071      /**
1072 <     * Generator for assigning sequence numbers as pool names.
1072 >     * Per-thread records for threads that submit to pools. Currently
1073 >     * holds only pseudo-random seed / index that is used to choose
1074 >     * submission queues in method doSubmit. In the future, this may
1075 >     * also incorporate a means to implement different task rejection
1076 >     * and resubmission policies.
1077 >     *
1078 >     * Seeds for submitters and workers/workQueues work in basically
1079 >     * the same way but are initialized and updated using slightly
1080 >     * different mechanics. Both are initialized using the same
1081 >     * approach as in class ThreadLocal, where successive values are
1082 >     * unlikely to collide with previous values. This is done during
1083 >     * registration for workers, but requires a separate AtomicInteger
1084 >     * for submitters. Seeds are then randomly modified upon
1085 >     * collisions using xorshifts, which requires a non-zero seed.
1086       */
1087 <    private static final AtomicInteger poolNumberGenerator =
1088 <        new AtomicInteger();
1087 >    static final class Submitter {
1088 >        int seed;
1089 >        Submitter() {
1090 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1091 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1092 >        }
1093 >    }
1094  
1095 <    /**
1096 <     * Array holding all worker threads in the pool. Array size must
1097 <     * be a power of two.  Updates and replacements are protected by
1098 <     * workerLock, but it is always kept in a consistent enough state
137 <     * to be randomly accessed without locking by workers performing
138 <     * work-stealing.
139 <     */
140 <    volatile ForkJoinWorkerThread[] workers;
1095 >    /** ThreadLocal class for Submitters */
1096 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1097 >        public Submitter initialValue() { return new Submitter(); }
1098 >    }
1099  
1100 <    /**
143 <     * Lock protecting access to workers.
144 <     */
145 <    private final ReentrantLock workerLock;
1100 >    // static fields (initialized in static initializer below)
1101  
1102      /**
1103 <     * Condition for awaitTermination.
1103 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1104 >     * overridden in ForkJoinPool constructors.
1105       */
1106 <    private final Condition termination;
1106 >    public static final ForkJoinWorkerThreadFactory
1107 >        defaultForkJoinWorkerThreadFactory;
1108  
1109      /**
1110 <     * The uncaught exception handler used when any worker
154 <     * abrupty terminates
1110 >     * Generator for assigning sequence numbers as pool names.
1111       */
1112 <    private Thread.UncaughtExceptionHandler ueh;
1112 >    private static final AtomicInteger poolNumberGenerator;
1113  
1114      /**
1115 <     * Creation factory for worker threads.
1115 >     * Generator for initial hashes/seeds for submitters. Accessed by
1116 >     * Submitter class constructor.
1117       */
1118 <    private final ForkJoinWorkerThreadFactory factory;
1118 >    static final AtomicInteger nextSubmitterSeed;
1119  
1120      /**
1121 <     * Head of stack of threads that were created to maintain
1122 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
1121 >     * Permission required for callers of methods that may start or
1122 >     * kill threads.
1123       */
1124 <    private volatile WaitQueueNode spareStack;
1124 >    private static final RuntimePermission modifyThreadPermission;
1125  
1126      /**
1127 <     * Sum of per-thread steal counts, updated only when threads are
1128 <     * idle or terminating.
1127 >     * Per-thread submission bookeeping. Shared across all pools
1128 >     * to reduce ThreadLocal pollution and because random motion
1129 >     * to avoid contention in one pool is likely to hold for others.
1130       */
1131 <    private final AtomicLong stealCount;
1131 >    private static final ThreadSubmitter submitters;
1132  
1133 <    /**
177 <     * Queue for external submissions.
178 <     */
179 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1133 >    // static constants
1134  
1135      /**
1136 <     * Head of Treiber stack for barrier sync. See below for explanation
1136 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
1137 >     * task when the pool is quiescent to instead try to shrink the
1138 >     * number of workers.  The exact value does not matter too
1139 >     * much. It must be short enough to release resources during
1140 >     * sustained periods of idleness, but not so short that threads
1141 >     * are continually re-created.
1142       */
1143 <    private volatile WaitQueueNode barrierStack;
1143 >    private static final long SHRINK_RATE =
1144 >        4L * 1000L * 1000L * 1000L; // 4 seconds
1145  
1146      /**
1147 <     * The count for event barrier
1147 >     * The timeout value for attempted shrinkage, includes
1148 >     * some slop to cope with system timer imprecision.
1149       */
1150 <    private volatile long eventCount;
1150 >    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1151  
1152      /**
1153 <     * Pool number, just for assigning useful names to worker threads
1153 >     * The maximum stolen->joining link depth allowed in method
1154 >     * tryHelpStealer.  Must be a power of two. This value also
1155 >     * controls the maximum number of times to try to help join a task
1156 >     * without any apparent progress or change in pool state before
1157 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1158 >     * chains are unbounded, but we use a fixed constant to avoid
1159 >     * (otherwise unchecked) cycles and to bound staleness of
1160 >     * traversal parameters at the expense of sometimes blocking when
1161 >     * we could be helping.
1162       */
1163 <    private final int poolNumber;
1163 >    private static final int MAX_HELP = 32;
1164  
1165      /**
1166 <     * The maximum allowed pool size
1166 >     * Secondary time-based bound (in nanosecs) for helping attempts
1167 >     * before trying compensated blocking in awaitJoin. Used in
1168 >     * conjunction with MAX_HELP to reduce variance due to different
1169 >     * polling rates associated with different helping options. The
1170 >     * value should roughly approximate the time required to create
1171 >     * and/or activate a worker thread.
1172       */
1173 <    private volatile int maxPoolSize;
1173 >    private static final long COMPENSATION_DELAY = 100L * 1000L; // 0.1 millisec
1174  
1175      /**
1176 <     * The desired parallelism level, updated only under workerLock.
1176 >     * Increment for seed generators. See class ThreadLocal for
1177 >     * explanation.
1178       */
1179 <    private volatile int parallelism;
1179 >    private static final int SEED_INCREMENT = 0x61c88647;
1180  
1181      /**
1182 <     * Holds number of total (i.e., created and not yet terminated)
1183 <     * and running (i.e., not blocked on joins or other managed sync)
1184 <     * threads, packed into one int to ensure consistent snapshot when
1185 <     * making decisions about creating and suspending spare
1186 <     * threads. Updated only by CAS.  Note: CASes in
1187 <     * updateRunningCount and preJoin running active count is in low
1188 <     * word, so need to be modified if this changes
1189 <     */
1190 <    private volatile int workerCounts;
1182 >     * Bits and masks for control variables
1183 >     *
1184 >     * Field ctl is a long packed with:
1185 >     * AC: Number of active running workers minus target parallelism (16 bits)
1186 >     * TC: Number of total workers minus target parallelism (16 bits)
1187 >     * ST: true if pool is terminating (1 bit)
1188 >     * EC: the wait count of top waiting thread (15 bits)
1189 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1190 >     *
1191 >     * When convenient, we can extract the upper 32 bits of counts and
1192 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1193 >     * (int)ctl.  The ec field is never accessed alone, but always
1194 >     * together with id and st. The offsets of counts by the target
1195 >     * parallelism and the positionings of fields makes it possible to
1196 >     * perform the most common checks via sign tests of fields: When
1197 >     * ac is negative, there are not enough active workers, when tc is
1198 >     * negative, there are not enough total workers, and when e is
1199 >     * negative, the pool is terminating.  To deal with these possibly
1200 >     * negative fields, we use casts in and out of "short" and/or
1201 >     * signed shifts to maintain signedness.
1202 >     *
1203 >     * When a thread is queued (inactivated), its eventCount field is
1204 >     * set negative, which is the only way to tell if a worker is
1205 >     * prevented from executing tasks, even though it must continue to
1206 >     * scan for them to avoid queuing races. Note however that
1207 >     * eventCount updates lag releases so usage requires care.
1208 >     *
1209 >     * Field runState is an int packed with:
1210 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1211 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1212 >     * INIT: set true after workQueues array construction (1 bit)
1213 >     *
1214 >     * The sequence number enables simple consistency checks:
1215 >     * Staleness of read-only operations on the workQueues array can
1216 >     * be checked by comparing runState before vs after the reads.
1217 >     */
1218 >
1219 >    // bit positions/shifts for fields
1220 >    private static final int  AC_SHIFT   = 48;
1221 >    private static final int  TC_SHIFT   = 32;
1222 >    private static final int  ST_SHIFT   = 31;
1223 >    private static final int  EC_SHIFT   = 16;
1224 >
1225 >    // bounds
1226 >    private static final int  SMASK      = 0xffff;  // short bits
1227 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1228 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1229 >    private static final int  SHORT_SIGN = 1 << 15;
1230 >    private static final int  INT_SIGN   = 1 << 31;
1231 >
1232 >    // masks
1233 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1234 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1235 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1236 >
1237 >    // units for incrementing and decrementing
1238 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1239 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1240 >
1241 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1242 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1243 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1244 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1245 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1246 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1247 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1248 >
1249 >    // masks and units for dealing with e = (int)ctl
1250 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1251 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1252 >
1253 >    // runState bits
1254 >    private static final int SHUTDOWN    = 1 << 31;
1255 >
1256 >    // access mode for WorkQueue
1257 >    static final int LIFO_QUEUE          =  0;
1258 >    static final int FIFO_QUEUE          =  1;
1259 >    static final int SHARED_QUEUE        = -1;
1260  
1261 <    private static int totalCountOf(int s)           { return s >>> 16;  }
1262 <    private static int runningCountOf(int s)         { return s & shortMask; }
1263 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1261 >    // Instance fields
1262 >
1263 >    /*
1264 >     * Field layout order in this class tends to matter more than one
1265 >     * would like. Runtime layout order is only loosely related to
1266 >     * declaration order and may differ across JVMs, but the following
1267 >     * empirically works OK on current JVMs.
1268 >     */
1269 >
1270 >    volatile long ctl;                         // main pool control
1271 >    final int parallelism;                     // parallelism level
1272 >    final int localMode;                       // per-worker scheduling mode
1273 >    final int submitMask;                      // submit queue index bound
1274 >    int nextSeed;                              // for initializing worker seeds
1275 >    volatile int runState;                     // shutdown status and seq
1276 >    WorkQueue[] workQueues;                    // main registry
1277 >    final Mutex lock;                          // for registration
1278 >    final Condition termination;               // for awaitTermination
1279 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1280 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1281 >    final AtomicLong stealCount;               // collect counts when terminated
1282 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1283 >    final String workerNamePrefix;             // to create worker name string
1284 >
1285 >    //  Creating, registering, and deregistering workers
1286 >
1287 >    /**
1288 >     * Tries to create and start a worker
1289 >     */
1290 >    private void addWorker() {
1291 >        Throwable ex = null;
1292 >        ForkJoinWorkerThread wt = null;
1293 >        try {
1294 >            if ((wt = factory.newThread(this)) != null) {
1295 >                wt.start();
1296 >                return;
1297 >            }
1298 >        } catch (Throwable e) {
1299 >            ex = e;
1300 >        }
1301 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1302 >    }
1303  
1304      /**
1305 <     * Add delta (which may be negative) to running count.  This must
1306 <     * be called before (with negative arg) and after (with positive)
1307 <     * any managed synchronization (i.e., mainly, joins)
1308 <     * @param delta the number to add
1305 >     * Callback from ForkJoinWorkerThread constructor to assign a
1306 >     * public name. This must be separate from registerWorker because
1307 >     * it is called during the "super" constructor call in
1308 >     * ForkJoinWorkerThread.
1309       */
1310 <    final void updateRunningCount(int delta) {
1311 <        int s;
1312 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1310 >    final String nextWorkerName() {
1311 >        return workerNamePrefix.concat
1312 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1313      }
1314  
1315      /**
1316 <     * Add delta (which may be negative) to both total and running
1317 <     * count.  This must be called upon creation and termination of
1318 <     * worker threads.
1319 <     * @param delta the number to add
1316 >     * Callback from ForkJoinWorkerThread constructor to establish its
1317 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1318 >     * to packing entries in front of the workQueues array, we treat
1319 >     * the array as a simple power-of-two hash table using per-thread
1320 >     * seed as hash, expanding as needed.
1321 >     *
1322 >     * @param w the worker's queue
1323       */
1324 <    private void updateWorkerCount(int delta) {
1325 <        int d = delta + (delta << 16); // add to both lo and hi parts
1326 <        int s;
1327 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1324 >    final void registerWorker(WorkQueue w) {
1325 >        Mutex lock = this.lock;
1326 >        lock.lock();
1327 >        try {
1328 >            WorkQueue[] ws = workQueues;
1329 >            if (w != null && ws != null) {          // skip on shutdown/failure
1330 >                int rs, n;
1331 >                while ((n = ws.length) <            // ensure can hold total
1332 >                       (parallelism + (short)(ctl >>> TC_SHIFT) << 1))
1333 >                    workQueues = ws = Arrays.copyOf(ws, n << 1);
1334 >                int m = n - 1;
1335 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1336 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1337 >                int r = (s << 1) | 1;               // use odd-numbered indices
1338 >                while (ws[r &= m] != null)          // step by approx half size
1339 >                    r += ((n >>> 1) & SQMASK) + 2;
1340 >                w.eventCount = w.poolIndex = r;     // establish before recording
1341 >                ws[r] = w;                          // also update seq
1342 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1343 >            }
1344 >        } finally {
1345 >            lock.unlock();
1346 >        }
1347      }
1348  
1349      /**
1350 <     * Lifecycle control. High word contains runState, low word
1351 <     * contains the number of workers that are (probably) executing
1352 <     * tasks. This value is atomically incremented before a worker
1353 <     * gets a task to run, and decremented when worker has no tasks
1354 <     * and cannot find any. These two fields are bundled together to
1355 <     * support correct termination triggering.  Note: activeCount
1356 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
1350 >     * Final callback from terminating worker, as well as upon failure
1351 >     * to construct or start a worker in addWorker.  Removes record of
1352 >     * worker from array, and adjusts counts. If pool is shutting
1353 >     * down, tries to complete termination.
1354 >     *
1355 >     * @param wt the worker thread or null if addWorker failed
1356 >     * @param ex the exception causing failure, or null if none
1357       */
1358 <    private volatile int runControl;
1358 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1359 >        Mutex lock = this.lock;
1360 >        WorkQueue w = null;
1361 >        if (wt != null && (w = wt.workQueue) != null) {
1362 >            w.runState = -1;                // ensure runState is set
1363 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1364 >            int idx = w.poolIndex;
1365 >            lock.lock();
1366 >            try {                           // remove record from array
1367 >                WorkQueue[] ws = workQueues;
1368 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1369 >                    ws[idx] = null;
1370 >            } finally {
1371 >                lock.unlock();
1372 >            }
1373 >        }
1374  
1375 <    // RunState values. Order among values matters
1376 <    private static final int RUNNING     = 0;
1377 <    private static final int SHUTDOWN    = 1;
1378 <    private static final int TERMINATING = 2;
1379 <    private static final int TERMINATED  = 3;
1375 >        long c;                             // adjust ctl counts
1376 >        do {} while (!U.compareAndSwapLong
1377 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1378 >                                           ((c - TC_UNIT) & TC_MASK) |
1379 >                                           (c & ~(AC_MASK|TC_MASK)))));
1380  
1381 <    private static int runStateOf(int c)             { return c >>> 16; }
1382 <    private static int activeCountOf(int c)          { return c & shortMask; }
1383 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1381 >        if (!tryTerminate(false, false) && w != null) {
1382 >            w.cancelAll();                  // cancel remaining tasks
1383 >            if (w.array != null)            // suppress signal if never ran
1384 >                signalWork();               // wake up or create replacement
1385 >            if (ex == null)                 // help clean refs on way out
1386 >                ForkJoinTask.helpExpungeStaleExceptions();
1387 >        }
1388  
1389 <    /**
1390 <     * Increment active count. Called by workers before/during
268 <     * executing tasks.
269 <     */
270 <    final void incrementActiveCount() {
271 <        int c;
272 <        do;while (!casRunControl(c = runControl, c+1));
1389 >        if (ex != null)                     // rethrow
1390 >            U.throwException(ex);
1391      }
1392  
1393 +
1394 +    // Submissions
1395 +
1396      /**
1397 <     * Decrement active count; possibly trigger termination.
1398 <     * Called by workers when they can't find tasks.
1397 >     * Unless shutting down, adds the given task to a submission queue
1398 >     * at submitter's current queue index (modulo submission
1399 >     * range). If no queue exists at the index, one is created.  If
1400 >     * the queue is busy, another index is randomly chosen. The
1401 >     * submitMask bounds the effective number of queues to the
1402 >     * (nearest poswer of two for) parallelism level.
1403 >     *
1404 >     * @param task the task. Caller must ensure non-null.
1405       */
1406 <    final void decrementActiveCount() {
1407 <        int c, nextc;
1408 <        do;while (!casRunControl(c = runControl, nextc = c-1));
1409 <        if (canTerminateOnShutdown(nextc))
1410 <            terminateOnShutdown();
1406 >    private void doSubmit(ForkJoinTask<?> task) {
1407 >        Submitter s = submitters.get();
1408 >        for (int r = s.seed, m = submitMask;;) {
1409 >            WorkQueue[] ws; WorkQueue q;
1410 >            int k = r & m & SQMASK;          // use only even indices
1411 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1412 >                throw new RejectedExecutionException(); // shutting down
1413 >            else if ((q = ws[k]) == null) {  // create new queue
1414 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1415 >                Mutex lock = this.lock;      // construct outside lock
1416 >                lock.lock();
1417 >                try {                        // recheck under lock
1418 >                    int rs = runState;       // to update seq
1419 >                    if (ws == workQueues && ws[k] == null) {
1420 >                        ws[k] = nq;
1421 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1422 >                    }
1423 >                } finally {
1424 >                    lock.unlock();
1425 >                }
1426 >            }
1427 >            else if (q.trySharedPush(task)) {
1428 >                signalWork();
1429 >                return;
1430 >            }
1431 >            else if (m > 1) {                // move to a different index
1432 >                r ^= r << 13;                // same xorshift as WorkQueues
1433 >                r ^= r >>> 17;
1434 >                s.seed = r ^= r << 5;
1435 >            }
1436 >            else
1437 >                Thread.yield();              // yield if no alternatives
1438 >        }
1439      }
1440  
1441 +    // Maintaining ctl counts
1442 +
1443      /**
1444 <     * Return true if argument represents zero active count and
288 <     * nonzero runstate, which is the triggering condition for
289 <     * terminating on shutdown.
1444 >     * Increments active count; mainly called upon return from blocking.
1445       */
1446 <    private static boolean canTerminateOnShutdown(int c) {
1447 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
1446 >    final void incrementActiveCount() {
1447 >        long c;
1448 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1449      }
1450  
1451      /**
1452 <     * Transition run state to at least the given state. Return true
297 <     * if not already at least given state.
1452 >     * Tries to activate or create a worker if too few are active.
1453       */
1454 <    private boolean transitionRunStateTo(int state) {
1455 <        for (;;) {
1456 <            int c = runControl;
1457 <            if (runStateOf(c) >= state)
1458 <                return false;
1459 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1460 <                return true;
1454 >    final void signalWork() {
1455 >        long c; int u;
1456 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1457 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1458 >            if ((e = (int)c) > 0) {                     // at least one waiting
1459 >                if (ws != null && (i = e & SMASK) < ws.length &&
1460 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1461 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1462 >                               ((long)(u + UAC_UNIT) << 32));
1463 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1464 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1465 >                        if ((p = w.parker) != null)
1466 >                            U.unpark(p);                // activate and release
1467 >                        break;
1468 >                    }
1469 >                }
1470 >                else
1471 >                    break;
1472 >            }
1473 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1474 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1475 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1476 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1477 >                    addWorker();
1478 >                    break;
1479 >                }
1480 >            }
1481 >            else
1482 >                break;
1483          }
1484      }
1485  
309    /**
310     * Controls whether to add spares to maintain parallelism
311     */
312    private volatile boolean maintainsParallelism;
1486  
1487 <    // Constructors
1487 >    // Scanning for tasks
1488  
1489      /**
1490 <     * Creates a ForkJoinPool with a pool size equal to the number of
318 <     * processors available on the system and using the default
319 <     * ForkJoinWorkerThreadFactory,
320 <     * @throws SecurityException if a security manager exists and
321 <     *         the caller is not permitted to modify threads
322 <     *         because it does not hold {@link
323 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1490 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1491       */
1492 <    public ForkJoinPool() {
1493 <        this(Runtime.getRuntime().availableProcessors(),
1494 <             defaultForkJoinWorkerThreadFactory);
1492 >    final void runWorker(WorkQueue w) {
1493 >        w.growArray(false);         // initialize queue array in this thread
1494 >        do {} while (w.runTask(scan(w)));
1495      }
1496  
1497      /**
1498 <     * Creates a ForkJoinPool with the indicated parellelism level
1499 <     * threads, and using the default ForkJoinWorkerThreadFactory,
1500 <     * @param parallelism the number of worker threads
1501 <     * @throws IllegalArgumentException if parallelism less than or
1502 <     * equal to zero
1503 <     * @throws SecurityException if a security manager exists and
1504 <     *         the caller is not permitted to modify threads
1505 <     *         because it does not hold {@link
1506 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1498 >     * Scans for and, if found, returns one task, else possibly
1499 >     * inactivates the worker. This method operates on single reads of
1500 >     * volatile state and is designed to be re-invoked continuously,
1501 >     * in part because it returns upon detecting inconsistencies,
1502 >     * contention, or state changes that indicate possible success on
1503 >     * re-invocation.
1504 >     *
1505 >     * The scan searches for tasks across a random permutation of
1506 >     * queues (starting at a random index and stepping by a random
1507 >     * relative prime, checking each at least once).  The scan
1508 >     * terminates upon either finding a non-empty queue, or completing
1509 >     * the sweep. If the worker is not inactivated, it takes and
1510 >     * returns a task from this queue.  On failure to find a task, we
1511 >     * take one of the following actions, after which the caller will
1512 >     * retry calling this method unless terminated.
1513 >     *
1514 >     * * If pool is terminating, terminate the worker.
1515 >     *
1516 >     * * If not a complete sweep, try to release a waiting worker.  If
1517 >     * the scan terminated because the worker is inactivated, then the
1518 >     * released worker will often be the calling worker, and it can
1519 >     * succeed obtaining a task on the next call. Or maybe it is
1520 >     * another worker, but with same net effect. Releasing in other
1521 >     * cases as well ensures that we have enough workers running.
1522 >     *
1523 >     * * If not already enqueued, try to inactivate and enqueue the
1524 >     * worker on wait queue. Or, if inactivating has caused the pool
1525 >     * to be quiescent, relay to idleAwaitWork to check for
1526 >     * termination and possibly shrink pool.
1527 >     *
1528 >     * * If already inactive, and the caller has run a task since the
1529 >     * last empty scan, return (to allow rescan) unless others are
1530 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1531 >     * scan to ensure eventual inactivation and blocking.
1532 >     *
1533 >     * * If already enqueued and none of the above apply, park
1534 >     * awaiting signal,
1535 >     *
1536 >     * @param w the worker (via its WorkQueue)
1537 >     * @return a task or null of none found
1538       */
1539 <    public ForkJoinPool(int parallelism) {
1540 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1539 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1540 >        WorkQueue[] ws;                       // first update random seed
1541 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1542 >        int rs = runState, m;                 // volatile read order matters
1543 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1544 >            int ec = w.eventCount;            // ec is negative if inactive
1545 >            int step = (r >>> 16) | 1;        // relative prime
1546 >            for (int j = (m + 1) << 2; ; r += step) {
1547 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1548 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1549 >                    (a = q.array) != null) {  // probably nonempty
1550 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1551 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1552 >                    if (q.base == b && ec >= 0 && t != null &&
1553 >                        U.compareAndSwapObject(a, i, t, null)) {
1554 >                        q.base = b + 1;       // specialization of pollAt
1555 >                        return t;
1556 >                    }
1557 >                    else if ((t != null || b + 1 != q.top) &&
1558 >                             (ec < 0 || j <= m)) {
1559 >                        rs = 0;               // mark scan as imcomplete
1560 >                        break;                // caller can retry after release
1561 >                    }
1562 >                }
1563 >                if (--j < 0)
1564 >                    break;
1565 >            }
1566 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1567 >            if (e < 0)                        // decode ctl on empty scan
1568 >                w.runState = -1;              // pool is terminating
1569 >            else if (rs == 0 || rs != runState) { // incomplete scan
1570 >                WorkQueue v; Thread p;        // try to release a waiter
1571 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1572 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1573 >                    long nc = ((long)(v.nextWait & E_MASK) |
1574 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1575 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1576 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1577 >                        if ((p = v.parker) != null)
1578 >                            U.unpark(p);
1579 >                    }
1580 >                }
1581 >            }
1582 >            else if (ec >= 0) {               // try to enqueue/inactivate
1583 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1584 >                w.nextWait = e;
1585 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1586 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1587 >                    w.eventCount = ec;        // unmark on CAS failure
1588 >                else {
1589 >                    if ((ns = w.nsteals) != 0) {
1590 >                        w.nsteals = 0;        // set rescans if ran task
1591 >                        w.rescans = (a > 0)? 0 : a + parallelism;
1592 >                        w.totalSteals += ns;
1593 >                    }
1594 >                    if (a == 1 - parallelism) // quiescent
1595 >                        idleAwaitWork(w, nc, c);
1596 >                }
1597 >            }
1598 >            else if (w.eventCount < 0) {      // already queued
1599 >                if ((nr = w.rescans) > 0) {   // continue rescanning
1600 >                    int ac = a + parallelism;
1601 >                    if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1602 >                        Thread.yield();       // yield before block
1603 >                }
1604 >                else {
1605 >                    Thread.interrupted();     // clear status
1606 >                    Thread wt = Thread.currentThread();
1607 >                    U.putObject(wt, PARKBLOCKER, this);
1608 >                    w.parker = wt;            // emulate LockSupport.park
1609 >                    if (w.eventCount < 0)     // recheck
1610 >                        U.park(false, 0L);
1611 >                    w.parker = null;
1612 >                    U.putObject(wt, PARKBLOCKER, null);
1613 >                }
1614 >            }
1615 >        }
1616 >        return null;
1617      }
1618  
1619      /**
1620 <     * Creates a ForkJoinPool with parallelism equal to the number of
1621 <     * processors available on the system and using the given
1622 <     * ForkJoinWorkerThreadFactory,
1623 <     * @param factory the factory for creating new threads
1624 <     * @throws NullPointerException if factory is null
1625 <     * @throws SecurityException if a security manager exists and
1626 <     *         the caller is not permitted to modify threads
1627 <     *         because it does not hold {@link
1628 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1629 <     */
1630 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1631 <        this(Runtime.getRuntime().availableProcessors(), factory);
1620 >     * If inactivating worker w has caused the pool to become
1621 >     * quiescent, checks for pool termination, and, so long as this is
1622 >     * not the only worker, waits for event for up to SHRINK_RATE
1623 >     * nanosecs.  On timeout, if ctl has not changed, terminates the
1624 >     * worker, which will in turn wake up another worker to possibly
1625 >     * repeat this process.
1626 >     *
1627 >     * @param w the calling worker
1628 >     * @param currentCtl the ctl value triggering possible quiescence
1629 >     * @param prevCtl the ctl value to restore if thread is terminated
1630 >     */
1631 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1632 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1633 >            (int)prevCtl != 0 && ctl == currentCtl) {
1634 >            Thread wt = Thread.currentThread();
1635 >            Thread.yield();            // yield before block
1636 >            while (ctl == currentCtl) {
1637 >                long startTime = System.nanoTime();
1638 >                Thread.interrupted();  // timed variant of version in scan()
1639 >                U.putObject(wt, PARKBLOCKER, this);
1640 >                w.parker = wt;
1641 >                if (ctl == currentCtl)
1642 >                    U.park(false, SHRINK_RATE);
1643 >                w.parker = null;
1644 >                U.putObject(wt, PARKBLOCKER, null);
1645 >                if (ctl != currentCtl)
1646 >                    break;
1647 >                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1648 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1649 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1650 >                    w.runState = -1;   // shrink
1651 >                    break;
1652 >                }
1653 >            }
1654 >        }
1655      }
1656  
1657      /**
1658 <     * Creates a ForkJoinPool with the given parallelism and factory.
1658 >     * Tries to locate and execute tasks for a stealer of the given
1659 >     * task, or in turn one of its stealers, Traces currentSteal ->
1660 >     * currentJoin links looking for a thread working on a descendant
1661 >     * of the given task and with a non-empty queue to steal back and
1662 >     * execute tasks from. The first call to this method upon a
1663 >     * waiting join will often entail scanning/search, (which is OK
1664 >     * because the joiner has nothing better to do), but this method
1665 >     * leaves hints in workers to speed up subsequent calls. The
1666 >     * implementation is very branchy to cope with potential
1667 >     * inconsistencies or loops encountering chains that are stale,
1668 >     * unknown, or so long that they are likely cyclic.  All of these
1669 >     * cases are dealt with by just retrying by caller.
1670       *
1671 <     * @param parallelism the targeted number of worker threads
1672 <     * @param factory the factory for creating new threads
1673 <     * @throws IllegalArgumentException if parallelism less than or
1674 <     * equal to zero, or greater than implementation limit.
1675 <     * @throws NullPointerException if factory is null
1676 <     * @throws SecurityException if a security manager exists and
1677 <     *         the caller is not permitted to modify threads
1678 <     *         because it does not hold {@link
1679 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1680 <     */
1681 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1682 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1683 <            throw new IllegalArgumentException();
1684 <        if (factory == null)
1685 <            throw new NullPointerException();
1686 <        checkPermission();
1687 <        this.factory = factory;
1688 <        this.parallelism = parallelism;
1689 <        this.maxPoolSize = MAX_THREADS;
1690 <        this.maintainsParallelism = true;
1691 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1692 <        this.workerLock = new ReentrantLock();
1693 <        this.termination = workerLock.newCondition();
1694 <        this.stealCount = new AtomicLong();
1695 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1696 <        createAndStartInitialWorkers(parallelism);
1671 >     * @param joiner the joining worker
1672 >     * @param task the task to join
1673 >     * @return true if found or ran a task (and so is immediately retryable)
1674 >     */
1675 >    private boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1676 >        WorkQueue[] ws;
1677 >        int m, depth = MAX_HELP;                // remaining chain depth
1678 >        boolean progress = false;
1679 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1680 >            task.status >= 0) {
1681 >            ForkJoinTask<?> subtask = task;     // current target
1682 >            outer: for (WorkQueue j = joiner;;) {
1683 >                WorkQueue stealer = null;       // find stealer of subtask
1684 >                WorkQueue v = ws[j.stealHint & m]; // try hint
1685 >                if (v != null && v.currentSteal == subtask)
1686 >                    stealer = v;
1687 >                else {                          // scan
1688 >                    for (int i = 1; i <= m; i += 2) {
1689 >                        if ((v = ws[i]) != null && v.currentSteal == subtask &&
1690 >                            v != joiner) {
1691 >                            stealer = v;
1692 >                            j.stealHint = i;    // save hint
1693 >                            break;
1694 >                        }
1695 >                    }
1696 >                    if (stealer == null)
1697 >                        break;
1698 >                }
1699 >
1700 >                for (WorkQueue q = stealer;;) { // try to help stealer
1701 >                    ForkJoinTask[] a; ForkJoinTask<?> t; int b;
1702 >                    if (task.status < 0)
1703 >                        break outer;
1704 >                    if ((b = q.base) - q.top < 0 && (a = q.array) != null) {
1705 >                        progress = true;
1706 >                        int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1707 >                        t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1708 >                        if (subtask.status < 0) // must recheck before taking
1709 >                            break outer;
1710 >                        if (t != null &&
1711 >                            q.base == b &&
1712 >                            U.compareAndSwapObject(a, i, t, null)) {
1713 >                            q.base = b + 1;
1714 >                            joiner.runSubtask(t);
1715 >                        }
1716 >                        else if (q.base == b)
1717 >                            break outer;        // possibly stalled
1718 >                    }
1719 >                    else {                      // descend
1720 >                        ForkJoinTask<?> next = stealer.currentJoin;
1721 >                        if (--depth <= 0 || subtask.status < 0 ||
1722 >                            next == null || next == subtask)
1723 >                            break outer;        // stale, dead-end, or cyclic
1724 >                        subtask = next;
1725 >                        j = stealer;
1726 >                        break;
1727 >                    }
1728 >                }
1729 >            }
1730 >        }
1731 >        return progress;
1732      }
1733  
1734      /**
1735 <     * Create new worker using factory.
1736 <     * @param index the index to assign worker
1737 <     * @return new worker, or null of factory failed
1735 >     * If task is at base of some steal queue, steals and executes it.
1736 >     *
1737 >     * @param joiner the joining worker
1738 >     * @param task the task
1739       */
1740 <    private ForkJoinWorkerThread createWorker(int index) {
1741 <        Thread.UncaughtExceptionHandler h = ueh;
1742 <        ForkJoinWorkerThread w = factory.newThread(this);
1743 <        if (w != null) {
1744 <            w.poolIndex = index;
1745 <            w.setDaemon(true);
1746 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1747 <            if (h != null)
1748 <                w.setUncaughtExceptionHandler(h);
1740 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1741 >        WorkQueue[] ws;
1742 >        if ((ws = workQueues) != null) {
1743 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1744 >                WorkQueue q = ws[j];
1745 >                if (q != null && q.pollFor(task)) {
1746 >                    joiner.runSubtask(task);
1747 >                    break;
1748 >                }
1749 >            }
1750          }
406        return w;
1751      }
1752  
1753      /**
1754 <     * Return a good size for worker array given pool size.
1755 <     * Currently requires size to be a power of two.
1756 <     */
1757 <    private static int arraySizeFor(int ps) {
1758 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1754 >     * Tries to decrement active count (sometimes implicitly) and
1755 >     * possibly release or create a compensating worker in preparation
1756 >     * for blocking. Fails on contention or termination. Otherwise,
1757 >     * adds a new thread if no idle workers are available and either
1758 >     * pool would become completely starved or: (at least half
1759 >     * starved, and fewer than 50% spares exist, and there is at least
1760 >     * one task apparently available). Even though the availablity
1761 >     * check requires a full scan, it is worthwhile in reducing false
1762 >     * alarms.
1763 >     *
1764 >     * @param task if nonnull, a task being waited for
1765 >     * @param blocker if nonnull, a blocker being waited for
1766 >     * @return true if the caller can block, else should recheck and retry
1767 >     */
1768 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1769 >        int pc = parallelism, e;
1770 >        long c = ctl;
1771 >        WorkQueue[] ws = workQueues;
1772 >        if ((e = (int)c) >= 0 && ws != null) {
1773 >            int u, a, ac, hc;
1774 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1775 >            boolean replace = false;
1776 >            if ((a = u >> UAC_SHIFT) <= 0) {
1777 >                if ((ac = a + pc) <= 1)
1778 >                    replace = true;
1779 >                else if ((e > 0 || (task != null &&
1780 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1781 >                    WorkQueue w;
1782 >                    for (int j = 0; j < ws.length; ++j) {
1783 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1784 >                            replace = true;
1785 >                            break;   // in compensation range and tasks available
1786 >                        }
1787 >                    }
1788 >                }
1789 >            }
1790 >            if ((task == null || task.status >= 0) && // recheck need to block
1791 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1792 >                if (!replace) {          // no compensation
1793 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1794 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
1795 >                        return true;
1796 >                }
1797 >                else if (e != 0) {       // release an idle worker
1798 >                    WorkQueue w; Thread p; int i;
1799 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1800 >                        long nc = ((long)(w.nextWait & E_MASK) |
1801 >                                   (c & (AC_MASK|TC_MASK)));
1802 >                        if (w.eventCount == (e | INT_SIGN) &&
1803 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
1804 >                            w.eventCount = (e + E_SEQ) & E_MASK;
1805 >                            if ((p = w.parker) != null)
1806 >                                U.unpark(p);
1807 >                            return true;
1808 >                        }
1809 >                    }
1810 >                }
1811 >                else if (tc < MAX_CAP) { // create replacement
1812 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1813 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1814 >                        addWorker();
1815 >                        return true;
1816 >                    }
1817 >                }
1818 >            }
1819 >        }
1820 >        return false;
1821      }
1822  
1823      /**
1824 <     * Create or resize array if necessary to hold newLength
1825 <     * @return the array
1824 >     * Helps and/or blocks until the given task is done
1825 >     *
1826 >     * @param joiner the joining worker
1827 >     * @param task the task
1828 >     * @return task status on exit
1829       */
1830 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1831 <        ForkJoinWorkerThread[] ws = workers;
1832 <        if (ws == null)
1833 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1834 <        else if (newLength > ws.length)
1835 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1836 <        else
1837 <            return ws;
1830 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1831 >        ForkJoinTask<?> prevJoin = joiner.currentJoin;
1832 >        joiner.currentJoin = task;
1833 >        long startTime = 0L;
1834 >        for (int k = 0, s; ; ++k) {
1835 >            if ((joiner.isEmpty() ?                  // try to help
1836 >                 !tryHelpStealer(joiner, task) :
1837 >                 !joiner.tryRemoveAndExec(task))) {
1838 >                if (k == 0) {
1839 >                    startTime = System.nanoTime();
1840 >                    tryPollForAndExec(joiner, task); // check uncommon case
1841 >                }
1842 >                else if ((k & (MAX_HELP - 1)) == 0 &&
1843 >                         System.nanoTime() - startTime >= COMPENSATION_DELAY &&
1844 >                         tryCompensate(task, null)) {
1845 >                    if (task.trySetSignal() && task.status >= 0) {
1846 >                        synchronized (task) {
1847 >                            if (task.status >= 0) {
1848 >                                try {                // see ForkJoinTask
1849 >                                    task.wait();     //  for explanation
1850 >                                } catch (InterruptedException ie) {
1851 >                                }
1852 >                            }
1853 >                            else
1854 >                                task.notifyAll();
1855 >                        }
1856 >                    }
1857 >                    long c;                          // re-activate
1858 >                    do {} while (!U.compareAndSwapLong
1859 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1860 >                }
1861 >            }
1862 >            if ((s = task.status) < 0) {
1863 >                joiner.currentJoin = prevJoin;
1864 >                return s;
1865 >            }
1866 >            else if ((k & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1867 >                Thread.yield();                     // for politeness
1868 >        }
1869      }
1870  
1871      /**
1872 <     * Try to shrink workers into smaller array after one or more terminate
1872 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1873 >     * to help join only while there is continuous progress. (Caller
1874 >     * will then enter a timed wait.)
1875 >     *
1876 >     * @param joiner the joining worker
1877 >     * @param task the task
1878 >     * @return task status on exit
1879       */
1880 <    private void tryShrinkWorkerArray() {
1881 <        ForkJoinWorkerThread[] ws = workers;
1882 <        int len = ws.length;
1883 <        int last = len - 1;
1884 <        while (last >= 0 && ws[last] == null)
1885 <            --last;
1886 <        int newLength = arraySizeFor(last+1);
1887 <        if (newLength < len)
442 <            workers = Arrays.copyOf(ws, newLength);
1880 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1881 >        int s;
1882 >        while ((s = task.status) >= 0 &&
1883 >               (joiner.isEmpty() ?
1884 >                tryHelpStealer(joiner, task) :
1885 >                joiner.tryRemoveAndExec(task)))
1886 >            ;
1887 >        return s;
1888      }
1889  
1890      /**
1891 <     * Initial worker array and worker creation and startup. (This
1892 <     * must be done under lock to avoid interference by some of the
1893 <     * newly started threads while creating others.)
1894 <     */
1895 <    private void createAndStartInitialWorkers(int ps) {
1896 <        final ReentrantLock lock = this.workerLock;
1897 <        lock.lock();
1898 <        try {
1899 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1900 <            for (int i = 0; i < ps; ++i) {
1901 <                ForkJoinWorkerThread w = createWorker(i);
1902 <                if (w != null) {
1903 <                    ws[i] = w;
1904 <                    w.start();
1905 <                    updateWorkerCount(1);
1891 >     * Returns a (probably) non-empty steal queue, if one is found
1892 >     * during a random, then cyclic scan, else null.  This method must
1893 >     * be retried by caller if, by the time it tries to use the queue,
1894 >     * it is empty.
1895 >     */
1896 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1897 >        // Similar to loop in scan(), but ignoring submissions
1898 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1899 >        int step = (r >>> 16) | 1;
1900 >        for (WorkQueue[] ws;;) {
1901 >            int rs = runState, m;
1902 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1903 >                return null;
1904 >            for (int j = (m + 1) << 2; ; r += step) {
1905 >                WorkQueue q = ws[((r << 1) | 1) & m];
1906 >                if (q != null && !q.isEmpty())
1907 >                    return q;
1908 >                else if (--j < 0) {
1909 >                    if (runState == rs)
1910 >                        return null;
1911 >                    break;
1912                  }
1913              }
463        } finally {
464            lock.unlock();
1914          }
1915      }
1916  
1917      /**
1918 <     * Worker creation and startup for threads added via setParallelism.
1919 <     */
1920 <    private void createAndStartAddedWorkers() {
1921 <        resumeAllSpares();  // Allow spares to convert to nonspare
1922 <        int ps = parallelism;
1923 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1924 <        int len = ws.length;
1925 <        // Sweep through slots, to keep lowest indices most populated
1926 <        int k = 0;
1927 <        while (k < len) {
1928 <            if (ws[k] != null) {
1929 <                ++k;
1930 <                continue;
1931 <            }
1932 <            int s = workerCounts;
1933 <            int tc = totalCountOf(s);
1934 <            int rc = runningCountOf(s);
486 <            if (rc >= ps || tc >= ps)
487 <                break;
488 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
489 <                ForkJoinWorkerThread w = createWorker(k);
490 <                if (w != null) {
491 <                    ws[k++] = w;
492 <                    w.start();
1918 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1919 >     * active count ctl maintenance, but rather than blocking
1920 >     * when tasks cannot be found, we rescan until all others cannot
1921 >     * find tasks either.
1922 >     */
1923 >    final void helpQuiescePool(WorkQueue w) {
1924 >        for (boolean active = true;;) {
1925 >            if (w.base - w.top < 0)
1926 >                w.runLocalTasks();  // exhaust local queue
1927 >            WorkQueue q = findNonEmptyStealQueue(w);
1928 >            if (q != null) {
1929 >                ForkJoinTask<?> t; int b;
1930 >                if (!active) {      // re-establish active count
1931 >                    long c;
1932 >                    active = true;
1933 >                    do {} while (!U.compareAndSwapLong
1934 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1935                  }
1936 <                else {
1937 <                    updateWorkerCount(-1); // back out on failed creation
1936 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1937 >                    w.runSubtask(t);
1938 >            }
1939 >            else {
1940 >                long c;
1941 >                if (active) {       // decrement active count without queuing
1942 >                    active = false;
1943 >                    do {} while (!U.compareAndSwapLong
1944 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
1945 >                }
1946 >                else
1947 >                    c = ctl;        // re-increment on exit
1948 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1949 >                    do {} while (!U.compareAndSwapLong
1950 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1951                      break;
1952                  }
1953              }
1954          }
1955      }
1956  
1957 <    // Execution methods
1957 >    /**
1958 >     * Gets and removes a local or stolen task for the given worker.
1959 >     *
1960 >     * @return a task, if available
1961 >     */
1962 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
1963 >        for (ForkJoinTask<?> t;;) {
1964 >            WorkQueue q; int b;
1965 >            if ((t = w.nextLocalTask()) != null)
1966 >                return t;
1967 >            if ((q = findNonEmptyStealQueue(w)) == null)
1968 >                return null;
1969 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
1970 >                return t;
1971 >        }
1972 >    }
1973  
1974      /**
1975 <     * Common code for execute, invoke and submit
1975 >     * Returns the approximate (non-atomic) number of idle threads per
1976 >     * active thread to offset steal queue size for method
1977 >     * ForkJoinTask.getSurplusQueuedTaskCount().
1978       */
1979 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1980 <        if (isShutdown())
1981 <            throw new RejectedExecutionException();
1982 <        submissionQueue.offer(task);
1983 <        signalIdleWorkers(true);
1979 >    final int idlePerActive() {
1980 >        // Approximate at powers of two for small values, saturate past 4
1981 >        int p = parallelism;
1982 >        int a = p + (int)(ctl >> AC_SHIFT);
1983 >        return (a > (p >>>= 1) ? 0 :
1984 >                a > (p >>>= 1) ? 1 :
1985 >                a > (p >>>= 1) ? 2 :
1986 >                a > (p >>>= 1) ? 4 :
1987 >                8);
1988      }
1989  
1990 +    //  Termination
1991 +
1992      /**
1993 <     * Performs the given task; returning its result upon completion
1993 >     * Possibly initiates and/or completes termination.  The caller
1994 >     * triggering termination runs three passes through workQueues:
1995 >     * (0) Setting termination status, followed by wakeups of queued
1996 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
1997 >     * threads (likely in external tasks, but possibly also blocked in
1998 >     * joins).  Each pass repeats previous steps because of potential
1999 >     * lagging thread creation.
2000 >     *
2001 >     * @param now if true, unconditionally terminate, else only
2002 >     * if no work and no active workers
2003 >     * @param enable if true, enable shutdown when next possible
2004 >     * @return true if now terminating or terminated
2005 >     */
2006 >    private boolean tryTerminate(boolean now, boolean enable) {
2007 >        Mutex lock = this.lock;
2008 >        for (long c;;) {
2009 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2010 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2011 >                    lock.lock();                    // don't need try/finally
2012 >                    termination.signalAll();        // signal when 0 workers
2013 >                    lock.unlock();
2014 >                }
2015 >                return true;
2016 >            }
2017 >            if (runState >= 0) {                    // not yet enabled
2018 >                if (!enable)
2019 >                    return false;
2020 >                lock.lock();
2021 >                runState |= SHUTDOWN;
2022 >                lock.unlock();
2023 >            }
2024 >            if (!now) {                             // check if idle & no tasks
2025 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2026 >                    hasQueuedSubmissions())
2027 >                    return false;
2028 >                // Check for unqueued inactive workers. One pass suffices.
2029 >                WorkQueue[] ws = workQueues; WorkQueue w;
2030 >                if (ws != null) {
2031 >                    for (int i = 1; i < ws.length; i += 2) {
2032 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2033 >                            return false;
2034 >                    }
2035 >                }
2036 >            }
2037 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2038 >                for (int pass = 0; pass < 3; ++pass) {
2039 >                    WorkQueue[] ws = workQueues;
2040 >                    if (ws != null) {
2041 >                        WorkQueue w;
2042 >                        int n = ws.length;
2043 >                        for (int i = 0; i < n; ++i) {
2044 >                            if ((w = ws[i]) != null) {
2045 >                                w.runState = -1;
2046 >                                if (pass > 0) {
2047 >                                    w.cancelAll();
2048 >                                    if (pass > 1)
2049 >                                        w.interruptOwner();
2050 >                                }
2051 >                            }
2052 >                        }
2053 >                        // Wake up workers parked on event queue
2054 >                        int i, e; long cc; Thread p;
2055 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2056 >                               (i = e & SMASK) < n &&
2057 >                               (w = ws[i]) != null) {
2058 >                            long nc = ((long)(w.nextWait & E_MASK) |
2059 >                                       ((cc + AC_UNIT) & AC_MASK) |
2060 >                                       (cc & (TC_MASK|STOP_BIT)));
2061 >                            if (w.eventCount == (e | INT_SIGN) &&
2062 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2063 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2064 >                                w.runState = -1;
2065 >                                if ((p = w.parker) != null)
2066 >                                    U.unpark(p);
2067 >                            }
2068 >                        }
2069 >                    }
2070 >                }
2071 >            }
2072 >        }
2073 >    }
2074 >
2075 >    // Exported methods
2076 >
2077 >    // Constructors
2078 >
2079 >    /**
2080 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2081 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2082 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2083 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2084 >     *
2085 >     * @throws SecurityException if a security manager exists and
2086 >     *         the caller is not permitted to modify threads
2087 >     *         because it does not hold {@link
2088 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2089 >     */
2090 >    public ForkJoinPool() {
2091 >        this(Runtime.getRuntime().availableProcessors(),
2092 >             defaultForkJoinWorkerThreadFactory, null, false);
2093 >    }
2094 >
2095 >    /**
2096 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
2097 >     * level, the {@linkplain
2098 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2099 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2100 >     *
2101 >     * @param parallelism the parallelism level
2102 >     * @throws IllegalArgumentException if parallelism less than or
2103 >     *         equal to zero, or greater than implementation limit
2104 >     * @throws SecurityException if a security manager exists and
2105 >     *         the caller is not permitted to modify threads
2106 >     *         because it does not hold {@link
2107 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2108 >     */
2109 >    public ForkJoinPool(int parallelism) {
2110 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2111 >    }
2112 >
2113 >    /**
2114 >     * Creates a {@code ForkJoinPool} with the given parameters.
2115 >     *
2116 >     * @param parallelism the parallelism level. For default value,
2117 >     * use {@link java.lang.Runtime#availableProcessors}.
2118 >     * @param factory the factory for creating new threads. For default value,
2119 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2120 >     * @param handler the handler for internal worker threads that
2121 >     * terminate due to unrecoverable errors encountered while executing
2122 >     * tasks. For default value, use {@code null}.
2123 >     * @param asyncMode if true,
2124 >     * establishes local first-in-first-out scheduling mode for forked
2125 >     * tasks that are never joined. This mode may be more appropriate
2126 >     * than default locally stack-based mode in applications in which
2127 >     * worker threads only process event-style asynchronous tasks.
2128 >     * For default value, use {@code false}.
2129 >     * @throws IllegalArgumentException if parallelism less than or
2130 >     *         equal to zero, or greater than implementation limit
2131 >     * @throws NullPointerException if the factory is null
2132 >     * @throws SecurityException if a security manager exists and
2133 >     *         the caller is not permitted to modify threads
2134 >     *         because it does not hold {@link
2135 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2136 >     */
2137 >    public ForkJoinPool(int parallelism,
2138 >                        ForkJoinWorkerThreadFactory factory,
2139 >                        Thread.UncaughtExceptionHandler handler,
2140 >                        boolean asyncMode) {
2141 >        checkPermission();
2142 >        if (factory == null)
2143 >            throw new NullPointerException();
2144 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2145 >            throw new IllegalArgumentException();
2146 >        this.parallelism = parallelism;
2147 >        this.factory = factory;
2148 >        this.ueh = handler;
2149 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2150 >        long np = (long)(-parallelism); // offset ctl counts
2151 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2152 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2153 >        int n = parallelism - 1;
2154 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2155 >        int size = (n + 1) << 1;        // #slots = 2*#workers
2156 >        this.submitMask = size - 1;     // room for max # of submit queues
2157 >        this.workQueues = new WorkQueue[size];
2158 >        this.termination = (this.lock = new Mutex()).newCondition();
2159 >        this.stealCount = new AtomicLong();
2160 >        this.nextWorkerNumber = new AtomicInteger();
2161 >        int pn = poolNumberGenerator.incrementAndGet();
2162 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2163 >        sb.append(Integer.toString(pn));
2164 >        sb.append("-worker-");
2165 >        this.workerNamePrefix = sb.toString();
2166 >        lock.lock();
2167 >        this.runState = 1;              // set init flag
2168 >        lock.unlock();
2169 >    }
2170 >
2171 >    // Execution methods
2172 >
2173 >    /**
2174 >     * Performs the given task, returning its result upon completion.
2175 >     * If the computation encounters an unchecked Exception or Error,
2176 >     * it is rethrown as the outcome of this invocation.  Rethrown
2177 >     * exceptions behave in the same way as regular exceptions, but,
2178 >     * when possible, contain stack traces (as displayed for example
2179 >     * using {@code ex.printStackTrace()}) of both the current thread
2180 >     * as well as the thread actually encountering the exception;
2181 >     * minimally only the latter.
2182 >     *
2183       * @param task the task
2184       * @return the task's result
2185 <     * @throws NullPointerException if task is null
2186 <     * @throws RejectedExecutionException if pool is shut down
2185 >     * @throws NullPointerException if the task is null
2186 >     * @throws RejectedExecutionException if the task cannot be
2187 >     *         scheduled for execution
2188       */
2189      public <T> T invoke(ForkJoinTask<T> task) {
2190 +        if (task == null)
2191 +            throw new NullPointerException();
2192          doSubmit(task);
2193          return task.join();
2194      }
2195  
2196      /**
2197       * Arranges for (asynchronous) execution of the given task.
2198 +     *
2199       * @param task the task
2200 <     * @throws NullPointerException if task is null
2201 <     * @throws RejectedExecutionException if pool is shut down
2200 >     * @throws NullPointerException if the task is null
2201 >     * @throws RejectedExecutionException if the task cannot be
2202 >     *         scheduled for execution
2203       */
2204 <    public <T> void execute(ForkJoinTask<T> task) {
2204 >    public void execute(ForkJoinTask<?> task) {
2205 >        if (task == null)
2206 >            throw new NullPointerException();
2207          doSubmit(task);
2208      }
2209  
2210      // AbstractExecutorService methods
2211  
2212 +    /**
2213 +     * @throws NullPointerException if the task is null
2214 +     * @throws RejectedExecutionException if the task cannot be
2215 +     *         scheduled for execution
2216 +     */
2217      public void execute(Runnable task) {
2218 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2218 >        if (task == null)
2219 >            throw new NullPointerException();
2220 >        ForkJoinTask<?> job;
2221 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2222 >            job = (ForkJoinTask<?>) task;
2223 >        else
2224 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2225 >        doSubmit(job);
2226 >    }
2227 >
2228 >    /**
2229 >     * Submits a ForkJoinTask for execution.
2230 >     *
2231 >     * @param task the task to submit
2232 >     * @return the task
2233 >     * @throws NullPointerException if the task is null
2234 >     * @throws RejectedExecutionException if the task cannot be
2235 >     *         scheduled for execution
2236 >     */
2237 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2238 >        if (task == null)
2239 >            throw new NullPointerException();
2240 >        doSubmit(task);
2241 >        return task;
2242      }
2243  
2244 +    /**
2245 +     * @throws NullPointerException if the task is null
2246 +     * @throws RejectedExecutionException if the task cannot be
2247 +     *         scheduled for execution
2248 +     */
2249      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2250 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2250 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2251          doSubmit(job);
2252          return job;
2253      }
2254  
2255 +    /**
2256 +     * @throws NullPointerException if the task is null
2257 +     * @throws RejectedExecutionException if the task cannot be
2258 +     *         scheduled for execution
2259 +     */
2260      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2261 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2261 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2262          doSubmit(job);
2263          return job;
2264      }
2265  
2266 +    /**
2267 +     * @throws NullPointerException if the task is null
2268 +     * @throws RejectedExecutionException if the task cannot be
2269 +     *         scheduled for execution
2270 +     */
2271      public ForkJoinTask<?> submit(Runnable task) {
2272 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2272 >        if (task == null)
2273 >            throw new NullPointerException();
2274 >        ForkJoinTask<?> job;
2275 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2276 >            job = (ForkJoinTask<?>) task;
2277 >        else
2278 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2279          doSubmit(job);
2280          return job;
2281      }
2282  
2283      /**
2284 <     * Adaptor for Runnables. This implements RunnableFuture
2285 <     * to be compliant with AbstractExecutorService constraints
2284 >     * @throws NullPointerException       {@inheritDoc}
2285 >     * @throws RejectedExecutionException {@inheritDoc}
2286       */
564    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
565        implements RunnableFuture<T> {
566        final Runnable runnable;
567        final T resultOnCompletion;
568        T result;
569        AdaptedRunnable(Runnable runnable, T result) {
570            if (runnable == null) throw new NullPointerException();
571            this.runnable = runnable;
572            this.resultOnCompletion = result;
573        }
574        public T getRawResult() { return result; }
575        public void setRawResult(T v) { result = v; }
576        public boolean exec() {
577            runnable.run();
578            result = resultOnCompletion;
579            return true;
580        }
581        public void run() { invoke(); }
582    }
583
584    /**
585     * Adaptor for Callables
586     */
587    static final class AdaptedCallable<T> extends ForkJoinTask<T>
588        implements RunnableFuture<T> {
589        final Callable<T> callable;
590        T result;
591        AdaptedCallable(Callable<T> callable) {
592            if (callable == null) throw new NullPointerException();
593            this.callable = callable;
594        }
595        public T getRawResult() { return result; }
596        public void setRawResult(T v) { result = v; }
597        public boolean exec() {
598            try {
599                result = callable.call();
600                return true;
601            } catch (Error err) {
602                throw err;
603            } catch (RuntimeException rex) {
604                throw rex;
605            } catch (Exception ex) {
606                throw new RuntimeException(ex);
607            }
608        }
609        public void run() { invoke(); }
610    }
611
2287      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2288 <        ArrayList<ForkJoinTask<T>> ts =
2289 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2290 <        for (Callable<T> c : tasks)
2291 <            ts.add(new AdaptedCallable<T>(c));
2292 <        invoke(new InvokeAll<T>(ts));
2293 <        return (List<Future<T>>)(List)ts;
2294 <    }
2288 >        // In previous versions of this class, this method constructed
2289 >        // a task to run ForkJoinTask.invokeAll, but now external
2290 >        // invocation of multiple tasks is at least as efficient.
2291 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2292 >        // Workaround needed because method wasn't declared with
2293 >        // wildcards in return type but should have been.
2294 >        @SuppressWarnings({"unchecked", "rawtypes"})
2295 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2296  
2297 <    static final class InvokeAll<T> extends RecursiveAction {
2298 <        final ArrayList<ForkJoinTask<T>> tasks;
2299 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2300 <        public void compute() {
2301 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2297 >        boolean done = false;
2298 >        try {
2299 >            for (Callable<T> t : tasks) {
2300 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2301 >                doSubmit(f);
2302 >                fs.add(f);
2303 >            }
2304 >            for (ForkJoinTask<T> f : fs)
2305 >                f.quietlyJoin();
2306 >            done = true;
2307 >            return futures;
2308 >        } finally {
2309 >            if (!done)
2310 >                for (ForkJoinTask<T> f : fs)
2311 >                    f.cancel(false);
2312          }
2313      }
2314  
629    // Configuration and status settings and queries
630
2315      /**
2316 <     * Returns the factory used for constructing new workers
2316 >     * Returns the factory used for constructing new workers.
2317       *
2318       * @return the factory used for constructing new workers
2319       */
# Line 640 | Line 2324 | public class ForkJoinPool extends Abstra
2324      /**
2325       * Returns the handler for internal worker threads that terminate
2326       * due to unrecoverable errors encountered while executing tasks.
643     * @return the handler, or null if none
644     */
645    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
646        Thread.UncaughtExceptionHandler h;
647        final ReentrantLock lock = this.workerLock;
648        lock.lock();
649        try {
650            h = ueh;
651        } finally {
652            lock.unlock();
653        }
654        return h;
655    }
656
657    /**
658     * Sets the handler for internal worker threads that terminate due
659     * to unrecoverable errors encountered while executing tasks.
660     * Unless set, the current default or ThreadGroup handler is used
661     * as handler.
2327       *
2328 <     * @param h the new handler
664 <     * @return the old handler, or null if none
665 <     * @throws SecurityException if a security manager exists and
666 <     *         the caller is not permitted to modify threads
667 <     *         because it does not hold {@link
668 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2328 >     * @return the handler, or {@code null} if none
2329       */
2330 <    public Thread.UncaughtExceptionHandler
2331 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
672 <        checkPermission();
673 <        Thread.UncaughtExceptionHandler old = null;
674 <        final ReentrantLock lock = this.workerLock;
675 <        lock.lock();
676 <        try {
677 <            old = ueh;
678 <            ueh = h;
679 <            ForkJoinWorkerThread[] ws = workers;
680 <            for (int i = 0; i < ws.length; ++i) {
681 <                ForkJoinWorkerThread w = ws[i];
682 <                if (w != null)
683 <                    w.setUncaughtExceptionHandler(h);
684 <            }
685 <        } finally {
686 <            lock.unlock();
687 <        }
688 <        return old;
689 <    }
690 <
691 <
692 <    /**
693 <     * Sets the target paralleism level of this pool.
694 <     * @param parallelism the target parallelism
695 <     * @throws IllegalArgumentException if parallelism less than or
696 <     * equal to zero or greater than maximum size bounds.
697 <     * @throws SecurityException if a security manager exists and
698 <     *         the caller is not permitted to modify threads
699 <     *         because it does not hold {@link
700 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
701 <     */
702 <    public void setParallelism(int parallelism) {
703 <        checkPermission();
704 <        if (parallelism <= 0 || parallelism > maxPoolSize)
705 <            throw new IllegalArgumentException();
706 <        final ReentrantLock lock = this.workerLock;
707 <        lock.lock();
708 <        try {
709 <            if (!isTerminating()) {
710 <                int p = this.parallelism;
711 <                this.parallelism = parallelism;
712 <                if (parallelism > p)
713 <                    createAndStartAddedWorkers();
714 <                else
715 <                    trimSpares();
716 <            }
717 <        } finally {
718 <            lock.unlock();
719 <        }
720 <        signalIdleWorkers(false);
2330 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2331 >        return ueh;
2332      }
2333  
2334      /**
2335 <     * Returns the targeted number of worker threads in this pool.
2335 >     * Returns the targeted parallelism level of this pool.
2336       *
2337 <     * @return the targeted number of worker threads in this pool
2337 >     * @return the targeted parallelism level of this pool
2338       */
2339      public int getParallelism() {
2340          return parallelism;
# Line 731 | Line 2342 | public class ForkJoinPool extends Abstra
2342  
2343      /**
2344       * Returns the number of worker threads that have started but not
2345 <     * yet terminated.  This result returned by this method may differ
2346 <     * from <code>getParallelism</code> when threads are created to
2345 >     * yet terminated.  The result returned by this method may differ
2346 >     * from {@link #getParallelism} when threads are created to
2347       * maintain parallelism when others are cooperatively blocked.
2348       *
2349       * @return the number of worker threads
2350       */
2351      public int getPoolSize() {
2352 <        return totalCountOf(workerCounts);
742 <    }
743 <
744 <    /**
745 <     * Returns the maximum number of threads allowed to exist in the
746 <     * pool, even if there are insufficient unblocked running threads.
747 <     * @return the maximum
748 <     */
749 <    public int getMaximumPoolSize() {
750 <        return maxPoolSize;
751 <    }
752 <
753 <    /**
754 <     * Sets the maximum number of threads allowed to exist in the
755 <     * pool, even if there are insufficient unblocked running threads.
756 <     * Setting this value has no effect on current pool size. It
757 <     * controls construction of new threads.
758 <     * @throws IllegalArgumentException if negative or greater then
759 <     * internal implementation limit.
760 <     */
761 <    public void setMaximumPoolSize(int newMax) {
762 <        if (newMax < 0 || newMax > MAX_THREADS)
763 <            throw new IllegalArgumentException();
764 <        maxPoolSize = newMax;
765 <    }
766 <
767 <
768 <    /**
769 <     * Returns true if this pool dynamically maintains its target
770 <     * parallelism level. If false, new threads are added only to
771 <     * avoid possible starvation.
772 <     * This setting is by default true;
773 <     * @return true if maintains parallelism
774 <     */
775 <    public boolean getMaintainsParallelism() {
776 <        return maintainsParallelism;
2352 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2353      }
2354  
2355      /**
2356 <     * Sets whether this pool dynamically maintains its target
2357 <     * parallelism level. If false, new threads are added only to
2358 <     * avoid possible starvation.
2359 <     * @param enable true to maintains parallelism
2356 >     * Returns {@code true} if this pool uses local first-in-first-out
2357 >     * scheduling mode for forked tasks that are never joined.
2358 >     *
2359 >     * @return {@code true} if this pool uses async mode
2360       */
2361 <    public void setMaintainsParallelism(boolean enable) {
2362 <        maintainsParallelism = enable;
2361 >    public boolean getAsyncMode() {
2362 >        return localMode != 0;
2363      }
2364  
2365      /**
2366       * Returns an estimate of the number of worker threads that are
2367       * not blocked waiting to join tasks or for other managed
2368 <     * synchronization.
2368 >     * synchronization. This method may overestimate the
2369 >     * number of running threads.
2370       *
2371       * @return the number of worker threads
2372       */
2373      public int getRunningThreadCount() {
2374 <        return runningCountOf(workerCounts);
2374 >        int rc = 0;
2375 >        WorkQueue[] ws; WorkQueue w;
2376 >        if ((ws = workQueues) != null) {
2377 >            for (int i = 1; i < ws.length; i += 2) {
2378 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2379 >                    ++rc;
2380 >            }
2381 >        }
2382 >        return rc;
2383      }
2384  
2385      /**
2386       * Returns an estimate of the number of threads that are currently
2387       * stealing or executing tasks. This method may overestimate the
2388       * number of active threads.
2389 <     * @return the number of active threads.
2389 >     *
2390 >     * @return the number of active threads
2391       */
2392      public int getActiveThreadCount() {
2393 <        return activeCountOf(runControl);
2393 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2394 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2395      }
2396  
2397      /**
2398 <     * Returns an estimate of the number of threads that are currently
2399 <     * idle waiting for tasks. This method may underestimate the
2400 <     * number of idle threads.
2401 <     * @return the number of idle threads.
2402 <     */
2403 <    final int getIdleThreadCount() {
2404 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
2405 <        return (c <= 0)? 0 : c;
2406 <    }
820 <
821 <    /**
822 <     * Returns true if all worker threads are currently idle. An idle
823 <     * worker is one that cannot obtain a task to execute because none
824 <     * are available to steal from other threads, and there are no
825 <     * pending submissions to the pool. This method is conservative:
826 <     * It might not return true immediately upon idleness of all
827 <     * threads, but will eventually become true if threads remain
828 <     * inactive.
829 <     * @return true if all threads are currently idle
2398 >     * Returns {@code true} if all worker threads are currently idle.
2399 >     * An idle worker is one that cannot obtain a task to execute
2400 >     * because none are available to steal from other threads, and
2401 >     * there are no pending submissions to the pool. This method is
2402 >     * conservative; it might not return {@code true} immediately upon
2403 >     * idleness of all threads, but will eventually become true if
2404 >     * threads remain inactive.
2405 >     *
2406 >     * @return {@code true} if all threads are currently idle
2407       */
2408      public boolean isQuiescent() {
2409 <        return activeCountOf(runControl) == 0;
2409 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2410      }
2411  
2412      /**
# Line 837 | Line 2414 | public class ForkJoinPool extends Abstra
2414       * one thread's work queue by another. The reported value
2415       * underestimates the actual total number of steals when the pool
2416       * is not quiescent. This value may be useful for monitoring and
2417 <     * tuning fork/join programs: In general, steal counts should be
2417 >     * tuning fork/join programs: in general, steal counts should be
2418       * high enough to keep threads busy, but low enough to avoid
2419       * overhead and contention across threads.
2420 <     * @return the number of steals.
2420 >     *
2421 >     * @return the number of steals
2422       */
2423      public long getStealCount() {
2424 <        return stealCount.get();
2425 <    }
2426 <
2427 <    /**
2428 <     * Accumulate steal count from a worker. Call only
2429 <     * when worker known to be idle.
2430 <     */
2431 <    private void updateStealCount(ForkJoinWorkerThread w) {
2432 <        int sc = w.getAndClearStealCount();
855 <        if (sc != 0)
856 <            stealCount.addAndGet(sc);
2424 >        long count = stealCount.get();
2425 >        WorkQueue[] ws; WorkQueue w;
2426 >        if ((ws = workQueues) != null) {
2427 >            for (int i = 1; i < ws.length; i += 2) {
2428 >                if ((w = ws[i]) != null)
2429 >                    count += w.totalSteals;
2430 >            }
2431 >        }
2432 >        return count;
2433      }
2434  
2435      /**
# Line 863 | Line 2439 | public class ForkJoinPool extends Abstra
2439       * an approximation, obtained by iterating across all threads in
2440       * the pool. This method may be useful for tuning task
2441       * granularities.
2442 <     * @return the number of queued tasks.
2442 >     *
2443 >     * @return the number of queued tasks
2444       */
2445      public long getQueuedTaskCount() {
2446          long count = 0;
2447 <        ForkJoinWorkerThread[] ws = workers;
2448 <        for (int i = 0; i < ws.length; ++i) {
2449 <            ForkJoinWorkerThread t = ws[i];
2450 <            if (t != null)
2451 <                count += t.getQueueSize();
2447 >        WorkQueue[] ws; WorkQueue w;
2448 >        if ((ws = workQueues) != null) {
2449 >            for (int i = 1; i < ws.length; i += 2) {
2450 >                if ((w = ws[i]) != null)
2451 >                    count += w.queueSize();
2452 >            }
2453          }
2454          return count;
2455      }
2456  
2457      /**
2458 <     * Returns an estimate of the number tasks submitted to this pool
2459 <     * that have not yet begun executing. This method takes time
2460 <     * proportional to the number of submissions.
2461 <     * @return the number of queued submissions.
2458 >     * Returns an estimate of the number of tasks submitted to this
2459 >     * pool that have not yet begun executing.  This method may take
2460 >     * time proportional to the number of submissions.
2461 >     *
2462 >     * @return the number of queued submissions
2463       */
2464      public int getQueuedSubmissionCount() {
2465 <        return submissionQueue.size();
2465 >        int count = 0;
2466 >        WorkQueue[] ws; WorkQueue w;
2467 >        if ((ws = workQueues) != null) {
2468 >            for (int i = 0; i < ws.length; i += 2) {
2469 >                if ((w = ws[i]) != null)
2470 >                    count += w.queueSize();
2471 >            }
2472 >        }
2473 >        return count;
2474      }
2475  
2476      /**
2477 <     * Returns true if there are any tasks submitted to this pool
2478 <     * that have not yet begun executing.
2479 <     * @return <code>true</code> if there are any queued submissions.
2477 >     * Returns {@code true} if there are any tasks submitted to this
2478 >     * pool that have not yet begun executing.
2479 >     *
2480 >     * @return {@code true} if there are any queued submissions
2481       */
2482      public boolean hasQueuedSubmissions() {
2483 <        return !submissionQueue.isEmpty();
2483 >        WorkQueue[] ws; WorkQueue w;
2484 >        if ((ws = workQueues) != null) {
2485 >            for (int i = 0; i < ws.length; i += 2) {
2486 >                if ((w = ws[i]) != null && !w.isEmpty())
2487 >                    return true;
2488 >            }
2489 >        }
2490 >        return false;
2491      }
2492  
2493      /**
2494       * Removes and returns the next unexecuted submission if one is
2495       * available.  This method may be useful in extensions to this
2496       * class that re-assign work in systems with multiple pools.
2497 <     * @return the next submission, or null if none
2497 >     *
2498 >     * @return the next submission, or {@code null} if none
2499       */
2500      protected ForkJoinTask<?> pollSubmission() {
2501 <        return submissionQueue.poll();
2501 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2502 >        if ((ws = workQueues) != null) {
2503 >            for (int i = 0; i < ws.length; i += 2) {
2504 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2505 >                    return t;
2506 >            }
2507 >        }
2508 >        return null;
2509 >    }
2510 >
2511 >    /**
2512 >     * Removes all available unexecuted submitted and forked tasks
2513 >     * from scheduling queues and adds them to the given collection,
2514 >     * without altering their execution status. These may include
2515 >     * artificially generated or wrapped tasks. This method is
2516 >     * designed to be invoked only when the pool is known to be
2517 >     * quiescent. Invocations at other times may not remove all
2518 >     * tasks. A failure encountered while attempting to add elements
2519 >     * to collection {@code c} may result in elements being in
2520 >     * neither, either or both collections when the associated
2521 >     * exception is thrown.  The behavior of this operation is
2522 >     * undefined if the specified collection is modified while the
2523 >     * operation is in progress.
2524 >     *
2525 >     * @param c the collection to transfer elements into
2526 >     * @return the number of elements transferred
2527 >     */
2528 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2529 >        int count = 0;
2530 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2531 >        if ((ws = workQueues) != null) {
2532 >            for (int i = 0; i < ws.length; ++i) {
2533 >                if ((w = ws[i]) != null) {
2534 >                    while ((t = w.poll()) != null) {
2535 >                        c.add(t);
2536 >                        ++count;
2537 >                    }
2538 >                }
2539 >            }
2540 >        }
2541 >        return count;
2542      }
2543  
2544      /**
# Line 913 | Line 2549 | public class ForkJoinPool extends Abstra
2549       * @return a string identifying this pool, as well as its state
2550       */
2551      public String toString() {
2552 <        int ps = parallelism;
2553 <        int wc = workerCounts;
2554 <        int rc = runControl;
2555 <        long st = getStealCount();
2556 <        long qt = getQueuedTaskCount();
2557 <        long qs = getQueuedSubmissionCount();
2552 >        // Use a single pass through workQueues to collect counts
2553 >        long qt = 0L, qs = 0L; int rc = 0;
2554 >        long st = stealCount.get();
2555 >        long c = ctl;
2556 >        WorkQueue[] ws; WorkQueue w;
2557 >        if ((ws = workQueues) != null) {
2558 >            for (int i = 0; i < ws.length; ++i) {
2559 >                if ((w = ws[i]) != null) {
2560 >                    int size = w.queueSize();
2561 >                    if ((i & 1) == 0)
2562 >                        qs += size;
2563 >                    else {
2564 >                        qt += size;
2565 >                        st += w.totalSteals;
2566 >                        if (w.isApparentlyUnblocked())
2567 >                            ++rc;
2568 >                    }
2569 >                }
2570 >            }
2571 >        }
2572 >        int pc = parallelism;
2573 >        int tc = pc + (short)(c >>> TC_SHIFT);
2574 >        int ac = pc + (int)(c >> AC_SHIFT);
2575 >        if (ac < 0) // ignore transient negative
2576 >            ac = 0;
2577 >        String level;
2578 >        if ((c & STOP_BIT) != 0)
2579 >            level = (tc == 0) ? "Terminated" : "Terminating";
2580 >        else
2581 >            level = runState < 0 ? "Shutting down" : "Running";
2582          return super.toString() +
2583 <            "[" + runStateToString(runStateOf(rc)) +
2584 <            ", parallelism = " + ps +
2585 <            ", size = " + totalCountOf(wc) +
2586 <            ", active = " + activeCountOf(rc) +
2587 <            ", running = " + runningCountOf(wc) +
2583 >            "[" + level +
2584 >            ", parallelism = " + pc +
2585 >            ", size = " + tc +
2586 >            ", active = " + ac +
2587 >            ", running = " + rc +
2588              ", steals = " + st +
2589              ", tasks = " + qt +
2590              ", submissions = " + qs +
2591              "]";
2592      }
2593  
934    private static String runStateToString(int rs) {
935        switch(rs) {
936        case RUNNING: return "Running";
937        case SHUTDOWN: return "Shutting down";
938        case TERMINATING: return "Terminating";
939        case TERMINATED: return "Terminated";
940        default: throw new Error("Unknown run state");
941        }
942    }
943
944    // lifecycle control
945
2594      /**
2595       * Initiates an orderly shutdown in which previously submitted
2596       * tasks are executed, but no new tasks will be accepted.
2597       * Invocation has no additional effect if already shut down.
2598       * Tasks that are in the process of being submitted concurrently
2599       * during the course of this method may or may not be rejected.
2600 +     *
2601       * @throws SecurityException if a security manager exists and
2602       *         the caller is not permitted to modify threads
2603       *         because it does not hold {@link
2604 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2604 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2605       */
2606      public void shutdown() {
2607          checkPermission();
2608 <        transitionRunStateTo(SHUTDOWN);
960 <        if (canTerminateOnShutdown(runControl))
961 <            terminateOnShutdown();
2608 >        tryTerminate(false, true);
2609      }
2610  
2611      /**
2612 <     * Attempts to stop all actively executing tasks, and cancels all
2613 <     * waiting tasks.  Tasks that are in the process of being
2614 <     * submitted or executed concurrently during the course of this
2615 <     * method may or may not be rejected. Unlike some other executors,
2616 <     * this method cancels rather than collects non-executed tasks,
2617 <     * so always returns an empty list.
2612 >     * Attempts to cancel and/or stop all tasks, and reject all
2613 >     * subsequently submitted tasks.  Tasks that are in the process of
2614 >     * being submitted or executed concurrently during the course of
2615 >     * this method may or may not be rejected. This method cancels
2616 >     * both existing and unexecuted tasks, in order to permit
2617 >     * termination in the presence of task dependencies. So the method
2618 >     * always returns an empty list (unlike the case for some other
2619 >     * Executors).
2620 >     *
2621       * @return an empty list
2622       * @throws SecurityException if a security manager exists and
2623       *         the caller is not permitted to modify threads
2624       *         because it does not hold {@link
2625 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2625 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2626       */
2627      public List<Runnable> shutdownNow() {
2628          checkPermission();
2629 <        terminate();
2629 >        tryTerminate(true, true);
2630          return Collections.emptyList();
2631      }
2632  
2633      /**
2634 <     * Returns <code>true</code> if all tasks have completed following shut down.
2634 >     * Returns {@code true} if all tasks have completed following shut down.
2635       *
2636 <     * @return <code>true</code> if all tasks have completed following shut down
2636 >     * @return {@code true} if all tasks have completed following shut down
2637       */
2638      public boolean isTerminated() {
2639 <        return runStateOf(runControl) == TERMINATED;
2639 >        long c = ctl;
2640 >        return ((c & STOP_BIT) != 0L &&
2641 >                (short)(c >>> TC_SHIFT) == -parallelism);
2642      }
2643  
2644      /**
2645 <     * Returns <code>true</code> if the process of termination has
2646 <     * commenced but possibly not yet completed.
2645 >     * Returns {@code true} if the process of termination has
2646 >     * commenced but not yet completed.  This method may be useful for
2647 >     * debugging. A return of {@code true} reported a sufficient
2648 >     * period after shutdown may indicate that submitted tasks have
2649 >     * ignored or suppressed interruption, or are waiting for IO,
2650 >     * causing this executor not to properly terminate. (See the
2651 >     * advisory notes for class {@link ForkJoinTask} stating that
2652 >     * tasks should not normally entail blocking operations.  But if
2653 >     * they do, they must abort them on interrupt.)
2654       *
2655 <     * @return <code>true</code> if terminating
2655 >     * @return {@code true} if terminating but not yet terminated
2656       */
2657      public boolean isTerminating() {
2658 <        return runStateOf(runControl) >= TERMINATING;
2658 >        long c = ctl;
2659 >        return ((c & STOP_BIT) != 0L &&
2660 >                (short)(c >>> TC_SHIFT) != -parallelism);
2661      }
2662  
2663      /**
2664 <     * Returns <code>true</code> if this pool has been shut down.
2664 >     * Returns {@code true} if this pool has been shut down.
2665       *
2666 <     * @return <code>true</code> if this pool has been shut down
2666 >     * @return {@code true} if this pool has been shut down
2667       */
2668      public boolean isShutdown() {
2669 <        return runStateOf(runControl) >= SHUTDOWN;
2669 >        return runState < 0;
2670      }
2671  
2672      /**
# Line 1015 | Line 2676 | public class ForkJoinPool extends Abstra
2676       *
2677       * @param timeout the maximum time to wait
2678       * @param unit the time unit of the timeout argument
2679 <     * @return <code>true</code> if this executor terminated and
2680 <     *         <code>false</code> if the timeout elapsed before termination
2679 >     * @return {@code true} if this executor terminated and
2680 >     *         {@code false} if the timeout elapsed before termination
2681       * @throws InterruptedException if interrupted while waiting
2682       */
2683      public boolean awaitTermination(long timeout, TimeUnit unit)
2684          throws InterruptedException {
2685          long nanos = unit.toNanos(timeout);
2686 <        final ReentrantLock lock = this.workerLock;
2686 >        final Mutex lock = this.lock;
2687          lock.lock();
2688          try {
2689              for (;;) {
# Line 1037 | Line 2698 | public class ForkJoinPool extends Abstra
2698          }
2699      }
2700  
1040    // Shutdown and termination support
1041
1042    /**
1043     * Callback from terminating worker. Null out the corresponding
1044     * workers slot, and if terminating, try to terminate, else try to
1045     * shrink workers array.
1046     * @param w the worker
1047     */
1048    final void workerTerminated(ForkJoinWorkerThread w) {
1049        updateStealCount(w);
1050        updateWorkerCount(-1);
1051        final ReentrantLock lock = this.workerLock;
1052        lock.lock();
1053        try {
1054            ForkJoinWorkerThread[] ws = workers;
1055            int idx = w.poolIndex;
1056            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1057                ws[idx] = null;
1058            if (totalCountOf(workerCounts) == 0) {
1059                terminate(); // no-op if already terminating
1060                transitionRunStateTo(TERMINATED);
1061                termination.signalAll();
1062            }
1063            else if (!isTerminating()) {
1064                tryShrinkWorkerArray();
1065                tryResumeSpare(true); // allow replacement
1066            }
1067        } finally {
1068            lock.unlock();
1069        }
1070        signalIdleWorkers(false);
1071    }
1072
1073    /**
1074     * Initiate termination.
1075     */
1076    private void terminate() {
1077        if (transitionRunStateTo(TERMINATING)) {
1078            stopAllWorkers();
1079            resumeAllSpares();
1080            signalIdleWorkers(true);
1081            cancelQueuedSubmissions();
1082            cancelQueuedWorkerTasks();
1083            interruptUnterminatedWorkers();
1084            signalIdleWorkers(true); // resignal after interrupt
1085        }
1086    }
1087
1088    /**
1089     * Possibly terminate when on shutdown state
1090     */
1091    private void terminateOnShutdown() {
1092        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1093            terminate();
1094    }
1095
1096    /**
1097     * Clear out and cancel submissions
1098     */
1099    private void cancelQueuedSubmissions() {
1100        ForkJoinTask<?> task;
1101        while ((task = pollSubmission()) != null)
1102            task.cancel(false);
1103    }
1104
1105    /**
1106     * Clean out worker queues.
1107     */
1108    private void cancelQueuedWorkerTasks() {
1109        final ReentrantLock lock = this.workerLock;
1110        lock.lock();
1111        try {
1112            ForkJoinWorkerThread[] ws = workers;
1113            for (int i = 0; i < ws.length; ++i) {
1114                ForkJoinWorkerThread t = ws[i];
1115                if (t != null)
1116                    t.cancelTasks();
1117            }
1118        } finally {
1119            lock.unlock();
1120        }
1121    }
1122
1123    /**
1124     * Set each worker's status to terminating. Requires lock to avoid
1125     * conflicts with add/remove
1126     */
1127    private void stopAllWorkers() {
1128        final ReentrantLock lock = this.workerLock;
1129        lock.lock();
1130        try {
1131            ForkJoinWorkerThread[] ws = workers;
1132            for (int i = 0; i < ws.length; ++i) {
1133                ForkJoinWorkerThread t = ws[i];
1134                if (t != null)
1135                    t.shutdownNow();
1136            }
1137        } finally {
1138            lock.unlock();
1139        }
1140    }
1141
1142    /**
1143     * Interrupt all unterminated workers.  This is not required for
1144     * sake of internal control, but may help unstick user code during
1145     * shutdown.
1146     */
1147    private void interruptUnterminatedWorkers() {
1148        final ReentrantLock lock = this.workerLock;
1149        lock.lock();
1150        try {
1151            ForkJoinWorkerThread[] ws = workers;
1152            for (int i = 0; i < ws.length; ++i) {
1153                ForkJoinWorkerThread t = ws[i];
1154                if (t != null && !t.isTerminated()) {
1155                    try {
1156                        t.interrupt();
1157                    } catch (SecurityException ignore) {
1158                    }
1159                }
1160            }
1161        } finally {
1162            lock.unlock();
1163        }
1164    }
1165
1166
1167    /*
1168     * Nodes for event barrier to manage idle threads.
1169     *
1170     * The event barrier has an event count and a wait queue (actually
1171     * a Treiber stack).  Workers are enabled to look for work when
1172     * the eventCount is incremented. If they fail to find some,
1173     * they may wait for next count. Synchronization events occur only
1174     * in enough contexts to maintain overall liveness:
1175     *
1176     *   - Submission of a new task to the pool
1177     *   - Creation or termination of a worker
1178     *   - pool termination
1179     *   - A worker pushing a task on an empty queue
1180     *
1181     * The last case (pushing a task) occurs often enough, and is
1182     * heavy enough compared to simple stack pushes to require some
1183     * special handling: Method signalNonEmptyWorkerQueue returns
1184     * without advancing count if the queue appears to be empty.  This
1185     * would ordinarily result in races causing some queued waiters
1186     * not to be woken up. To avoid this, a worker in sync
1187     * rescans for tasks after being enqueued if it was the first to
1188     * enqueue, and aborts the wait if finding one, also helping to
1189     * signal others. This works well because the worker has nothing
1190     * better to do anyway, and so might as well help alleviate the
1191     * overhead and contention on the threads actually doing work.
1192     *
1193     * Queue nodes are basic Treiber stack nodes, also used for spare
1194     * stack.
1195     */
1196    static final class WaitQueueNode {
1197        WaitQueueNode next; // only written before enqueued
1198        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1199        final long count; // unused for spare stack
1200        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1201            count = c;
1202            thread = w;
1203        }
1204        final boolean signal() {
1205            ForkJoinWorkerThread t = thread;
1206            thread = null;
1207            if (t != null) {
1208                LockSupport.unpark(t);
1209                return true;
1210            }
1211            return false;
1212        }
1213    }
1214
1215    /**
1216     * Release at least one thread waiting for event count to advance,
1217     * if one exists. If initial attempt fails, release all threads.
1218     * @param all if false, at first try to only release one thread
1219     * @return current event
1220     */
1221    private long releaseIdleWorkers(boolean all) {
1222        long c;
1223        for (;;) {
1224            WaitQueueNode q = barrierStack;
1225            c = eventCount;
1226            long qc;
1227            if (q == null || (qc = q.count) >= c)
1228                break;
1229            if (!all) {
1230                if (casBarrierStack(q, q.next) && q.signal())
1231                    break;
1232                all = true;
1233            }
1234            else if (casBarrierStack(q, null)) {
1235                do {
1236                 q.signal();
1237                } while ((q = q.next) != null);
1238                break;
1239            }
1240        }
1241        return c;
1242    }
1243
1244    /**
1245     * Returns current barrier event count
1246     * @return current barrier event count
1247     */
1248    final long getEventCount() {
1249        long ec = eventCount;
1250        releaseIdleWorkers(true); // release to ensure accurate result
1251        return ec;
1252    }
1253
1254    /**
1255     * Increment event count and release at least one waiting thread,
1256     * if one exists (released threads will in turn wake up others).
1257     * @param all if true, try to wake up all
1258     */
1259    final void signalIdleWorkers(boolean all) {
1260        long c;
1261        do;while (!casEventCount(c = eventCount, c+1));
1262        releaseIdleWorkers(all);
1263    }
1264
1265    /**
1266     * Wake up threads waiting to steal a task. Because method
1267     * sync rechecks availability, it is OK to only proceed if
1268     * queue appears to be non-empty.
1269     */
1270    final void signalNonEmptyWorkerQueue() {
1271        // If CAS fails another signaller must have succeeded
1272        long c;
1273        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1274            releaseIdleWorkers(false);
1275    }
1276
1277    /**
1278     * Waits until event count advances from count, or some thread is
1279     * waiting on a previous count, or there is stealable work
1280     * available. Help wake up others on release.
1281     * @param w the calling worker thread
1282     * @param prev previous value returned by sync (or 0)
1283     * @return current event count
1284     */
1285    final long sync(ForkJoinWorkerThread w, long prev) {
1286        updateStealCount(w);
1287
1288        while (!w.isShutdown() && !isTerminating() &&
1289               (parallelism >= runningCountOf(workerCounts) ||
1290                !suspendIfSpare(w))) { // prefer suspend to waiting here
1291            WaitQueueNode node = null;
1292            boolean queued = false;
1293            for (;;) {
1294                if (!queued) {
1295                    if (eventCount != prev)
1296                        break;
1297                    WaitQueueNode h = barrierStack;
1298                    if (h != null && h.count != prev)
1299                        break; // release below and maybe retry
1300                    if (node == null)
1301                        node = new WaitQueueNode(w, prev);
1302                    queued = casBarrierStack(node.next = h, node);
1303                }
1304                else if (Thread.interrupted() ||
1305                         node.thread == null ||
1306                         (node.next == null && w.prescan()) ||
1307                         eventCount != prev) {
1308                    node.thread = null;
1309                    if (eventCount == prev) // help trigger
1310                        casEventCount(prev, prev+1);
1311                    break;
1312                }
1313                else
1314                    LockSupport.park(this);
1315            }
1316            long ec = eventCount;
1317            if (releaseIdleWorkers(false) != prev)
1318                return ec;
1319        }
1320        return prev; // return old count if aborted
1321    }
1322
1323    //  Parallelism maintenance
1324
1325    /**
1326     * Decrement running count; if too low, add spare.
1327     *
1328     * Conceptually, all we need to do here is add or resume a
1329     * spare thread when one is about to block (and remove or
1330     * suspend it later when unblocked -- see suspendIfSpare).
1331     * However, implementing this idea requires coping with
1332     * several problems: We have imperfect information about the
1333     * states of threads. Some count updates can and usually do
1334     * lag run state changes, despite arrangements to keep them
1335     * accurate (for example, when possible, updating counts
1336     * before signalling or resuming), especially when running on
1337     * dynamic JVMs that don't optimize the infrequent paths that
1338     * update counts. Generating too many threads can make these
1339     * problems become worse, because excess threads are more
1340     * likely to be context-switched with others, slowing them all
1341     * down, especially if there is no work available, so all are
1342     * busy scanning or idling.  Also, excess spare threads can
1343     * only be suspended or removed when they are idle, not
1344     * immediately when they aren't needed. So adding threads will
1345     * raise parallelism level for longer than necessary.  Also,
1346     * FJ applications often enounter highly transient peaks when
1347     * many threads are blocked joining, but for less time than it
1348     * takes to create or resume spares.
1349     *
1350     * @param joinMe if non-null, return early if done
1351     * @param maintainParallelism if true, try to stay within
1352     * target counts, else create only to avoid starvation
1353     * @return true if joinMe known to be done
1354     */
1355    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1356        maintainParallelism &= maintainsParallelism; // overrride
1357        boolean dec = false;  // true when running count decremented
1358        while (spareStack == null || !tryResumeSpare(dec)) {
1359            int counts = workerCounts;
1360            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1361                if (!needSpare(counts, maintainParallelism))
1362                    break;
1363                if (joinMe.status < 0)
1364                    return true;
1365                if (tryAddSpare(counts))
1366                    break;
1367            }
1368        }
1369        return false;
1370    }
1371
1372    /**
1373     * Same idea as preJoin
1374     */
1375    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1376        maintainParallelism &= maintainsParallelism;
1377        boolean dec = false;
1378        while (spareStack == null || !tryResumeSpare(dec)) {
1379            int counts = workerCounts;
1380            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1381                if (!needSpare(counts, maintainParallelism))
1382                    break;
1383                if (blocker.isReleasable())
1384                    return true;
1385                if (tryAddSpare(counts))
1386                    break;
1387            }
1388        }
1389        return false;
1390    }
1391
1392    /**
1393     * Returns true if a spare thread appears to be needed.  If
1394     * maintaining parallelism, returns true when the deficit in
1395     * running threads is more than the surplus of total threads, and
1396     * there is apparently some work to do.  This self-limiting rule
1397     * means that the more threads that have already been added, the
1398     * less parallelism we will tolerate before adding another.
1399     * @param counts current worker counts
1400     * @param maintainParallelism try to maintain parallelism
1401     */
1402    private boolean needSpare(int counts, boolean maintainParallelism) {
1403        int ps = parallelism;
1404        int rc = runningCountOf(counts);
1405        int tc = totalCountOf(counts);
1406        int runningDeficit = ps - rc;
1407        int totalSurplus = tc - ps;
1408        return (tc < maxPoolSize &&
1409                (rc == 0 || totalSurplus < 0 ||
1410                 (maintainParallelism &&
1411                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1412    }
1413
1414    /**
1415     * Returns true if at least one worker queue appears to be
1416     * nonempty. This is expensive but not often called. It is not
1417     * critical that this be accurate, but if not, more or fewer
1418     * running threads than desired might be maintained.
1419     */
1420    private boolean mayHaveQueuedWork() {
1421        ForkJoinWorkerThread[] ws = workers;
1422        int len = ws.length;
1423        ForkJoinWorkerThread v;
1424        for (int i = 0; i < len; ++i) {
1425            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1426                releaseIdleWorkers(false); // help wake up stragglers
1427                return true;
1428            }
1429        }
1430        return false;
1431    }
1432
1433    /**
1434     * Add a spare worker if lock available and no more than the
1435     * expected numbers of threads exist
1436     * @return true if successful
1437     */
1438    private boolean tryAddSpare(int expectedCounts) {
1439        final ReentrantLock lock = this.workerLock;
1440        int expectedRunning = runningCountOf(expectedCounts);
1441        int expectedTotal = totalCountOf(expectedCounts);
1442        boolean success = false;
1443        boolean locked = false;
1444        // confirm counts while locking; CAS after obtaining lock
1445        try {
1446            for (;;) {
1447                int s = workerCounts;
1448                int tc = totalCountOf(s);
1449                int rc = runningCountOf(s);
1450                if (rc > expectedRunning || tc > expectedTotal)
1451                    break;
1452                if (!locked && !(locked = lock.tryLock()))
1453                    break;
1454                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1455                    createAndStartSpare(tc);
1456                    success = true;
1457                    break;
1458                }
1459            }
1460        } finally {
1461            if (locked)
1462                lock.unlock();
1463        }
1464        return success;
1465    }
1466
1467    /**
1468     * Add the kth spare worker. On entry, pool coounts are already
1469     * adjusted to reflect addition.
1470     */
1471    private void createAndStartSpare(int k) {
1472        ForkJoinWorkerThread w = null;
1473        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1474        int len = ws.length;
1475        // Probably, we can place at slot k. If not, find empty slot
1476        if (k < len && ws[k] != null) {
1477            for (k = 0; k < len && ws[k] != null; ++k)
1478                ;
1479        }
1480        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1481            ws[k] = w;
1482            w.start();
1483        }
1484        else
1485            updateWorkerCount(-1); // adjust on failure
1486        signalIdleWorkers(false);
1487    }
1488
1489    /**
1490     * Suspend calling thread w if there are excess threads.  Called
1491     * only from sync.  Spares are enqueued in a Treiber stack
1492     * using the same WaitQueueNodes as barriers.  They are resumed
1493     * mainly in preJoin, but are also woken on pool events that
1494     * require all threads to check run state.
1495     * @param w the caller
1496     */
1497    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1498        WaitQueueNode node = null;
1499        int s;
1500        while (parallelism < runningCountOf(s = workerCounts)) {
1501            if (node == null)
1502                node = new WaitQueueNode(w, 0);
1503            if (casWorkerCounts(s, s-1)) { // representation-dependent
1504                // push onto stack
1505                do;while (!casSpareStack(node.next = spareStack, node));
1506
1507                // block until released by resumeSpare
1508                while (node.thread != null) {
1509                    if (!Thread.interrupted())
1510                        LockSupport.park(this);
1511                }
1512                w.activate(); // help warm up
1513                return true;
1514            }
1515        }
1516        return false;
1517    }
1518
1519    /**
1520     * Try to pop and resume a spare thread.
1521     * @param updateCount if true, increment running count on success
1522     * @return true if successful
1523     */
1524    private boolean tryResumeSpare(boolean updateCount) {
1525        WaitQueueNode q;
1526        while ((q = spareStack) != null) {
1527            if (casSpareStack(q, q.next)) {
1528                if (updateCount)
1529                    updateRunningCount(1);
1530                q.signal();
1531                return true;
1532            }
1533        }
1534        return false;
1535    }
1536
1537    /**
1538     * Pop and resume all spare threads. Same idea as
1539     * releaseIdleWorkers.
1540     * @return true if any spares released
1541     */
1542    private boolean resumeAllSpares() {
1543        WaitQueueNode q;
1544        while ( (q = spareStack) != null) {
1545            if (casSpareStack(q, null)) {
1546                do {
1547                    updateRunningCount(1);
1548                    q.signal();
1549                } while ((q = q.next) != null);
1550                return true;
1551            }
1552        }
1553        return false;
1554    }
1555
1556    /**
1557     * Pop and shutdown excessive spare threads. Call only while
1558     * holding lock. This is not guaranteed to eliminate all excess
1559     * threads, only those suspended as spares, which are the ones
1560     * unlikely to be needed in the future.
1561     */
1562    private void trimSpares() {
1563        int surplus = totalCountOf(workerCounts) - parallelism;
1564        WaitQueueNode q;
1565        while (surplus > 0 && (q = spareStack) != null) {
1566            if (casSpareStack(q, null)) {
1567                do {
1568                    updateRunningCount(1);
1569                    ForkJoinWorkerThread w = q.thread;
1570                    if (w != null && surplus > 0 &&
1571                        runningCountOf(workerCounts) > 0 && w.shutdown())
1572                        --surplus;
1573                    q.signal();
1574                } while ((q = q.next) != null);
1575            }
1576        }
1577    }
1578
1579    /**
1580     * Returns approximate number of spares, just for diagnostics.
1581     */
1582    private int countSpares() {
1583        int sum = 0;
1584        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1585            ++sum;
1586        return sum;
1587    }
1588
2701      /**
2702       * Interface for extending managed parallelism for tasks running
2703 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
2704 <     * Method <code>isReleasable</code> must return true if blocking is not
2705 <     * necessary. Method <code>block</code> blocks the current thread
2706 <     * if necessary (perhaps internally invoking isReleasable before
2707 <     * actually blocking.).
2703 >     * in {@link ForkJoinPool}s.
2704 >     *
2705 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
2706 >     * {@code isReleasable} must return {@code true} if blocking is
2707 >     * not necessary. Method {@code block} blocks the current thread
2708 >     * if necessary (perhaps internally invoking {@code isReleasable}
2709 >     * before actually blocking). These actions are performed by any
2710 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2711 >     * unusual methods in this API accommodate synchronizers that may,
2712 >     * but don't usually, block for long periods. Similarly, they
2713 >     * allow more efficient internal handling of cases in which
2714 >     * additional workers may be, but usually are not, needed to
2715 >     * ensure sufficient parallelism.  Toward this end,
2716 >     * implementations of method {@code isReleasable} must be amenable
2717 >     * to repeated invocation.
2718 >     *
2719       * <p>For example, here is a ManagedBlocker based on a
2720       * ReentrantLock:
2721 <     * <pre>
2722 <     *   class ManagedLocker implements ManagedBlocker {
2723 <     *     final ReentrantLock lock;
2724 <     *     boolean hasLock = false;
2725 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2726 <     *     public boolean block() {
2727 <     *        if (!hasLock)
2728 <     *           lock.lock();
2729 <     *        return true;
2730 <     *     }
2731 <     *     public boolean isReleasable() {
2732 <     *        return hasLock || (hasLock = lock.tryLock());
1610 <     *     }
2721 >     *  <pre> {@code
2722 >     * class ManagedLocker implements ManagedBlocker {
2723 >     *   final ReentrantLock lock;
2724 >     *   boolean hasLock = false;
2725 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2726 >     *   public boolean block() {
2727 >     *     if (!hasLock)
2728 >     *       lock.lock();
2729 >     *     return true;
2730 >     *   }
2731 >     *   public boolean isReleasable() {
2732 >     *     return hasLock || (hasLock = lock.tryLock());
2733       *   }
2734 <     * </pre>
2734 >     * }}</pre>
2735 >     *
2736 >     * <p>Here is a class that possibly blocks waiting for an
2737 >     * item on a given queue:
2738 >     *  <pre> {@code
2739 >     * class QueueTaker<E> implements ManagedBlocker {
2740 >     *   final BlockingQueue<E> queue;
2741 >     *   volatile E item = null;
2742 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2743 >     *   public boolean block() throws InterruptedException {
2744 >     *     if (item == null)
2745 >     *       item = queue.take();
2746 >     *     return true;
2747 >     *   }
2748 >     *   public boolean isReleasable() {
2749 >     *     return item != null || (item = queue.poll()) != null;
2750 >     *   }
2751 >     *   public E getItem() { // call after pool.managedBlock completes
2752 >     *     return item;
2753 >     *   }
2754 >     * }}</pre>
2755       */
2756      public static interface ManagedBlocker {
2757          /**
2758           * Possibly blocks the current thread, for example waiting for
2759           * a lock or condition.
2760 <         * @return true if no additional blocking is necessary (i.e.,
2761 <         * if isReleasable would return true).
2760 >         *
2761 >         * @return {@code true} if no additional blocking is necessary
2762 >         * (i.e., if isReleasable would return true)
2763           * @throws InterruptedException if interrupted while waiting
2764 <         * (the method is not required to do so, but is allowe to).
2764 >         * (the method is not required to do so, but is allowed to)
2765           */
2766          boolean block() throws InterruptedException;
2767  
2768          /**
2769 <         * Returns true if blocking is unnecessary.
2769 >         * Returns {@code true} if blocking is unnecessary.
2770           */
2771          boolean isReleasable();
2772      }
2773  
2774      /**
2775       * Blocks in accord with the given blocker.  If the current thread
2776 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2777 <     * spare thread to be activated if necessary to ensure parallelism
2778 <     * while the current thread is blocked.  If
2779 <     * <code>maintainParallelism</code> is true and the pool supports
2780 <     * it ({@link #getMaintainsParallelism}), this method attempts to
2781 <     * maintain the pool's nominal parallelism. Otherwise if activates
2782 <     * a thread only if necessary to avoid complete starvation. This
2783 <     * option may be preferable when blockages use timeouts, or are
2784 <     * almost always brief.
2785 <     *
2786 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2787 <     * equivalent to
2788 <     * <pre>
2789 <     *   while (!blocker.isReleasable())
1647 <     *      if (blocker.block())
1648 <     *         return;
1649 <     * </pre>
1650 <     * If the caller is a ForkJoinTask, then the pool may first
1651 <     * be expanded to ensure parallelism, and later adjusted.
2776 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2777 >     * arranges for a spare thread to be activated if necessary to
2778 >     * ensure sufficient parallelism while the current thread is blocked.
2779 >     *
2780 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2781 >     * behaviorally equivalent to
2782 >     *  <pre> {@code
2783 >     * while (!blocker.isReleasable())
2784 >     *   if (blocker.block())
2785 >     *     return;
2786 >     * }</pre>
2787 >     *
2788 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2789 >     * first be expanded to ensure parallelism, and later adjusted.
2790       *
2791       * @param blocker the blocker
2792 <     * @param maintainParallelism if true and supported by this pool,
1655 <     * attempt to maintain the pool's nominal parallelism; otherwise
1656 <     * activate a thread only if necessary to avoid complete
1657 <     * starvation.
1658 <     * @throws InterruptedException if blocker.block did so.
2792 >     * @throws InterruptedException if blocker.block did so
2793       */
2794 <    public static void managedBlock(ManagedBlocker blocker,
1661 <                                    boolean maintainParallelism)
2794 >    public static void managedBlock(ManagedBlocker blocker)
2795          throws InterruptedException {
2796          Thread t = Thread.currentThread();
2797 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
2798 <                             ((ForkJoinWorkerThread)t).pool : null);
2799 <        if (!blocker.isReleasable()) {
2800 <            try {
2801 <                if (pool == null ||
2802 <                    !pool.preBlock(blocker, maintainParallelism))
2803 <                    awaitBlocker(blocker);
2804 <            } finally {
2805 <                if (pool != null)
2806 <                    pool.updateRunningCount(1);
2797 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2798 >                          ((ForkJoinWorkerThread)t).pool : null);
2799 >        while (!blocker.isReleasable()) {
2800 >            if (p == null || p.tryCompensate(null, blocker)) {
2801 >                try {
2802 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2803 >                } finally {
2804 >                    if (p != null)
2805 >                        p.incrementActiveCount();
2806 >                }
2807 >                break;
2808              }
2809          }
2810      }
2811  
2812 <    private static void awaitBlocker(ManagedBlocker blocker)
2813 <        throws InterruptedException {
2814 <        do;while (!blocker.isReleasable() && !blocker.block());
1681 <    }
1682 <
1683 <    // AbstractExecutorService overrides
2812 >    // AbstractExecutorService overrides.  These rely on undocumented
2813 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2814 >    // implement RunnableFuture.
2815  
2816      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2817 <        return new AdaptedRunnable(runnable, value);
2817 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2818      }
2819  
2820      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2821 <        return new AdaptedCallable(callable);
2821 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
2822      }
2823  
2824 <
2825 <    // Temporary Unsafe mechanics for preliminary release
2826 <
2827 <    static final Unsafe _unsafe;
2828 <    static final long eventCountOffset;
2829 <    static final long workerCountsOffset;
1699 <    static final long runControlOffset;
1700 <    static final long barrierStackOffset;
1701 <    static final long spareStackOffset;
2824 >    // Unsafe mechanics
2825 >    private static final sun.misc.Unsafe U;
2826 >    private static final long CTL;
2827 >    private static final long PARKBLOCKER;
2828 >    private static final int ABASE;
2829 >    private static final int ASHIFT;
2830  
2831      static {
2832 +        poolNumberGenerator = new AtomicInteger();
2833 +        nextSubmitterSeed = new AtomicInteger(0x55555555);
2834 +        modifyThreadPermission = new RuntimePermission("modifyThread");
2835 +        defaultForkJoinWorkerThreadFactory =
2836 +            new DefaultForkJoinWorkerThreadFactory();
2837 +        submitters = new ThreadSubmitter();
2838 +        int s;
2839          try {
2840 <            if (ForkJoinPool.class.getClassLoader() != null) {
2841 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
2842 <                f.setAccessible(true);
2843 <                _unsafe = (Unsafe)f.get(null);
2844 <            }
2845 <            else
2846 <                _unsafe = Unsafe.getUnsafe();
2847 <            eventCountOffset = _unsafe.objectFieldOffset
2848 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
2849 <            workerCountsOffset = _unsafe.objectFieldOffset
1715 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
1716 <            runControlOffset = _unsafe.objectFieldOffset
1717 <                (ForkJoinPool.class.getDeclaredField("runControl"));
1718 <            barrierStackOffset = _unsafe.objectFieldOffset
1719 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
1720 <            spareStackOffset = _unsafe.objectFieldOffset
1721 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
2840 >            U = getUnsafe();
2841 >            Class<?> k = ForkJoinPool.class;
2842 >            Class<?> ak = ForkJoinTask[].class;
2843 >            CTL = U.objectFieldOffset
2844 >                (k.getDeclaredField("ctl"));
2845 >            Class<?> tk = Thread.class;
2846 >            PARKBLOCKER = U.objectFieldOffset
2847 >                (tk.getDeclaredField("parkBlocker"));
2848 >            ABASE = U.arrayBaseOffset(ak);
2849 >            s = U.arrayIndexScale(ak);
2850          } catch (Exception e) {
2851 <            throw new RuntimeException("Could not initialize intrinsics", e);
2851 >            throw new Error(e);
2852          }
2853 +        if ((s & (s-1)) != 0)
2854 +            throw new Error("data type scale not a power of two");
2855 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2856      }
2857  
2858 <    private boolean casEventCount(long cmp, long val) {
2859 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
2860 <    }
2861 <    private boolean casWorkerCounts(int cmp, int val) {
2862 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
2863 <    }
2864 <    private boolean casRunControl(int cmp, int val) {
2865 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
2866 <    }
2867 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
2868 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
2869 <    }
2870 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
2871 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
2858 >    /**
2859 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2860 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2861 >     * into a jdk.
2862 >     *
2863 >     * @return a sun.misc.Unsafe
2864 >     */
2865 >    private static sun.misc.Unsafe getUnsafe() {
2866 >        try {
2867 >            return sun.misc.Unsafe.getUnsafe();
2868 >        } catch (SecurityException se) {
2869 >            try {
2870 >                return java.security.AccessController.doPrivileged
2871 >                    (new java.security
2872 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2873 >                        public sun.misc.Unsafe run() throws Exception {
2874 >                            java.lang.reflect.Field f = sun.misc
2875 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2876 >                            f.setAccessible(true);
2877 >                            return (sun.misc.Unsafe) f.get(null);
2878 >                        }});
2879 >            } catch (java.security.PrivilegedActionException e) {
2880 >                throw new RuntimeException("Could not initialize intrinsics",
2881 >                                           e.getCause());
2882 >            }
2883 >        }
2884      }
2885 +
2886   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines