ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.125 by jsr166, Tue Feb 21 00:19:23 2012 UTC vs.
Revision 1.146 by dl, Mon Nov 19 18:12:42 2012 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
13 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 18 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
21 import java.util.concurrent.atomic.AtomicInteger;
22 import java.util.concurrent.atomic.AtomicLong;
23 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 41 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 58 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
65 > * <p>As is the case with other ExecutorServices, there are three
66   * main task execution methods summarized in the following table.
67   * These are designed to be used primarily by clients not already
68   * engaged in fork/join computations in the current pool.  The main
# Line 93 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
110 < *  <pre> {@code
111 < * static final ForkJoinPool mainPool = new ForkJoinPool();
112 < * ...
113 < * public void sort(long[] array) {
110 < *   mainPool.invoke(new SortTask(array, 0, array.length));
111 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > <<<<<<< ForkJoinPool.java
107 > * exceptionHandler} -- the class name of a {@code
108 > =======
109 > * exceptionHandler} -- the class name of a {@link
110 > * java.lang.Thread.UncaughtExceptionHandler
111 > >>>>>>> 1.111
112 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
113 > * these settings, default parameters are used.
114   *
115   * <p><b>Implementation notes</b>: This implementation restricts the
116   * maximum number of running threads to 32767. Attempts to create
# Line 196 | Line 198 | public class ForkJoinPool extends Abstra
198       * WorkQueues are also used in a similar way for tasks submitted
199       * to the pool. We cannot mix these tasks in the same queues used
200       * for work-stealing (this would contaminate lifo/fifo
201 <     * processing). Instead, we loosely associate submission queues
201 >     * processing). Instead, we randomly associate submission queues
202       * with submitting threads, using a form of hashing.  The
203       * ThreadLocal Submitter class contains a value initially used as
204       * a hash code for choosing existing queues, but may be randomly
205       * repositioned upon contention with other submitters.  In
206 <     * essence, submitters act like workers except that they never
207 <     * take tasks, and they are multiplexed on to a finite number of
208 <     * shared work queues. However, classes are set up so that future
209 <     * extensions could allow submitters to optionally help perform
210 <     * tasks as well. Insertion of tasks in shared mode requires a
211 <     * lock (mainly to protect in the case of resizing) but we use
212 <     * only a simple spinlock (using bits in field runState), because
213 <     * submitters encountering a busy queue move on to try or create
214 <     * other queues -- they block only when creating and registering
215 <     * new queues.
206 >     * essence, submitters act like workers except that they are
207 >     * restricted to executing local tasks that they submitted (or in
208 >     * the case of CountedCompleters, others with the same root task).
209 >     * However, because most shared/external queue operations are more
210 >     * expensive than internal, and because, at steady state, external
211 >     * submitters will compete for CPU with workers, ForkJoinTask.join
212 >     * and related methods disable them from repeatedly helping to
213 >     * process tasks if all workers are active.  Insertion of tasks in
214 >     * shared mode requires a lock (mainly to protect in the case of
215 >     * resizing) but we use only a simple spinlock (using bits in
216 >     * field qlock), because submitters encountering a busy queue move
217 >     * on to try or create other queues -- they block only when
218 >     * creating and registering new queues.
219       *
220       * Management
221       * ==========
# Line 232 | Line 237 | public class ForkJoinPool extends Abstra
237       * and their negations (used for thresholding) to fit into 16bit
238       * fields.
239       *
240 <     * Field "runState" contains 32 bits needed to register and
241 <     * deregister WorkQueues, as well as to enable shutdown. It is
242 <     * only modified under a lock (normally briefly held, but
243 <     * occasionally protecting allocations and resizings) but even
244 <     * when locked remains available to check consistency.
240 >     * Field "plock" is a form of sequence lock with a saturating
241 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
242 >     * protecting updates to the workQueues array, as well as to
243 >     * enable shutdown.  When used as a lock, it is normally only very
244 >     * briefly held, so is nearly always available after at most a
245 >     * brief spin, but we use a monitor-based backup strategy to
246 >     * block when needed.
247       *
248       * Recording WorkQueues.  WorkQueues are recorded in the
249 <     * "workQueues" array that is created upon pool construction and
250 <     * expanded if necessary.  Updates to the array while recording
251 <     * new workers and unrecording terminated ones are protected from
252 <     * each other by a lock but the array is otherwise concurrently
253 <     * readable, and accessed directly.  To simplify index-based
254 <     * operations, the array size is always a power of two, and all
255 <     * readers must tolerate null slots. Shared (submission) queues
256 <     * are at even indices, worker queues at odd indices. Grouping
257 <     * them together in this way simplifies and speeds up task
258 <     * scanning.
249 >     * "workQueues" array that is created upon first use and expanded
250 >     * if necessary.  Updates to the array while recording new workers
251 >     * and unrecording terminated ones are protected from each other
252 >     * by a lock but the array is otherwise concurrently readable, and
253 >     * accessed directly.  To simplify index-based operations, the
254 >     * array size is always a power of two, and all readers must
255 >     * tolerate null slots. Worker queues are at odd indices. Shared
256 >     * (submission) queues are at even indices, up to a maximum of 64
257 >     * slots, to limit growth even if array needs to expand to add
258 >     * more workers. Grouping them together in this way simplifies and
259 >     * speeds up task scanning.
260       *
261       * All worker thread creation is on-demand, triggered by task
262       * submissions, replacement of terminated workers, and/or
# Line 309 | Line 317 | public class ForkJoinPool extends Abstra
317       *
318       * Signalling.  We create or wake up workers only when there
319       * appears to be at least one task they might be able to find and
320 <     * execute.  When a submission is added or another worker adds a
321 <     * task to a queue that previously had fewer than two tasks, they
322 <     * signal waiting workers (or trigger creation of new ones if
323 <     * fewer than the given parallelism level -- see signalWork).
324 <     * These primary signals are buttressed by signals during rescans;
325 <     * together these cover the signals needed in cases when more
326 <     * tasks are pushed but untaken, and improve performance compared
327 <     * to having one thread wake up all workers.
320 >     * execute. However, many other threads may notice the same task
321 >     * and each signal to wake up a thread that might take it. So in
322 >     * general, pools will be over-signalled.  When a submission is
323 >     * added or another worker adds a task to a queue that is
324 >     * apparently empty, they signal waiting workers (or trigger
325 >     * creation of new ones if fewer than the given parallelism
326 >     * level).  These primary signals are buttressed by signals
327 >     * whenever other threads scan for work or do not have a task to
328 >     * process (including the case of leaving a hint to unparked
329 >     * threads to help signal others upon wakeup).  On most platforms,
330 >     * signalling (unpark) overhead time is noticeably long, and the
331 >     * time between signalling a thread and it actually making
332 >     * progress can be very noticeably long, so it is worth offloading
333 >     * these delays from critical paths as much as possible.
334       *
335       * Trimming workers. To release resources after periods of lack of
336       * use, a worker starting to wait when the pool is quiescent will
337 <     * time out and terminate if the pool has remained quiescent for
338 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
339 <     * terminating all workers after long periods of non-use.
337 >     * time out and terminate if the pool has remained quiescent for a
338 >     * given period -- a short period if there are more threads than
339 >     * parallelism, longer as the number of threads decreases. This
340 >     * will slowly propagate, eventually terminating all workers after
341 >     * periods of non-use.
342       *
343       * Shutdown and Termination. A call to shutdownNow atomically sets
344 <     * a runState bit and then (non-atomically) sets each worker's
345 <     * runState status, cancels all unprocessed tasks, and wakes up
344 >     * a plock bit and then (non-atomically) sets each worker's
345 >     * qlock status, cancels all unprocessed tasks, and wakes up
346       * all waiting workers.  Detecting whether termination should
347       * commence after a non-abrupt shutdown() call requires more work
348       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 354 | Line 370 | public class ForkJoinPool extends Abstra
370       *      method tryCompensate() may create or re-activate a spare
371       *      thread to compensate for blocked joiners until they unblock.
372       *
373 <     * A third form (implemented in tryRemoveAndExec and
374 <     * tryPollForAndExec) amounts to helping a hypothetical
375 <     * compensator: If we can readily tell that a possible action of a
376 <     * compensator is to steal and execute the task being joined, the
377 <     * joining thread can do so directly, without the need for a
378 <     * compensation thread (although at the expense of larger run-time
379 <     * stacks, but the tradeoff is typically worthwhile).
373 >     * A third form (implemented in tryRemoveAndExec) amounts to
374 >     * helping a hypothetical compensator: If we can readily tell that
375 >     * a possible action of a compensator is to steal and execute the
376 >     * task being joined, the joining thread can do so directly,
377 >     * without the need for a compensation thread (although at the
378 >     * expense of larger run-time stacks, but the tradeoff is
379 >     * typically worthwhile).
380       *
381       * The ManagedBlocker extension API can't use helping so relies
382       * only on compensation in method awaitBlocker.
# Line 382 | Line 398 | public class ForkJoinPool extends Abstra
398       * steals, rather than use per-task bookkeeping.  This sometimes
399       * requires a linear scan of workQueues array to locate stealers,
400       * but often doesn't because stealers leave hints (that may become
401 <     * stale/wrong) of where to locate them.  A stealHint is only a
402 <     * hint because a worker might have had multiple steals and the
403 <     * hint records only one of them (usually the most current).
404 <     * Hinting isolates cost to when it is needed, rather than adding
405 <     * to per-task overhead.  (2) It is "shallow", ignoring nesting
406 <     * and potentially cyclic mutual steals.  (3) It is intentionally
401 >     * stale/wrong) of where to locate them.  It is only a hint
402 >     * because a worker might have had multiple steals and the hint
403 >     * records only one of them (usually the most current).  Hinting
404 >     * isolates cost to when it is needed, rather than adding to
405 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
406 >     * potentially cyclic mutual steals.  (3) It is intentionally
407       * racy: field currentJoin is updated only while actively joining,
408       * which means that we miss links in the chain during long-lived
409       * tasks, GC stalls etc (which is OK since blocking in such cases
# Line 395 | Line 411 | public class ForkJoinPool extends Abstra
411       * to find work (see MAX_HELP) and fall back to suspending the
412       * worker and if necessary replacing it with another.
413       *
414 +     * Helping actions for CountedCompleters are much simpler: Method
415 +     * helpComplete can take and execute any task with the same root
416 +     * as the task being waited on. However, this still entails some
417 +     * traversal of completer chains, so is less efficient than using
418 +     * CountedCompleters without explicit joins.
419 +     *
420       * It is impossible to keep exactly the target parallelism number
421       * of threads running at any given time.  Determining the
422       * existence of conservatively safe helping targets, the
# Line 416 | Line 438 | public class ForkJoinPool extends Abstra
438       * intractable) game with an opponent that may choose the worst
439       * (for us) active thread to stall at any time.  We take several
440       * precautions to bound losses (and thus bound gains), mainly in
441 <     * methods tryCompensate and awaitJoin: (1) We only try
442 <     * compensation after attempting enough helping steps (measured
443 <     * via counting and timing) that we have already consumed the
444 <     * estimated cost of creating and activating a new thread.  (2) We
445 <     * allow up to 50% of threads to be blocked before initially
446 <     * adding any others, and unless completely saturated, check that
447 <     * some work is available for a new worker before adding. Also, we
448 <     * create up to only 50% more threads until entering a mode that
449 <     * only adds a thread if all others are possibly blocked.  All
450 <     * together, this means that we might be half as fast to react,
451 <     * and create half as many threads as possible in the ideal case,
452 <     * but present vastly fewer anomalies in all other cases compared
453 <     * to both more aggressive and more conservative alternatives.
454 <     *
455 <     * Style notes: There is a lot of representation-level coupling
456 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
457 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
458 <     * managed by ForkJoinPool, so are directly accessed.  There is
459 <     * little point trying to reduce this, since any associated future
460 <     * changes in representations will need to be accompanied by
461 <     * algorithmic changes anyway. Several methods intrinsically
462 <     * sprawl because they must accumulate sets of consistent reads of
463 <     * volatiles held in local variables.  Methods signalWork() and
464 <     * scan() are the main bottlenecks, so are especially heavily
441 >     * methods tryCompensate and awaitJoin.
442 >     *
443 >     * Common Pool
444 >     * ===========
445 >     *
446 >     * The static commonPool always exists after static
447 >     * initialization.  Since it (or any other created pool) need
448 >     * never be used, we minimize initial construction overhead and
449 >     * footprint to the setup of about a dozen fields, with no nested
450 >     * allocation. Most bootstrapping occurs within method
451 >     * fullExternalPush during the first submission to the pool.
452 >     *
453 >     * When external threads submit to the common pool, they can
454 >     * perform some subtask processing (see externalHelpJoin and
455 >     * related methods).  We do not need to record whether these
456 >     * submissions are to the common pool -- if not, externalHelpJoin
457 >     * returns quickly (at the most helping to signal some common pool
458 >     * workers). These submitters would otherwise be blocked waiting
459 >     * for completion, so the extra effort (with liberally sprinkled
460 >     * task status checks) in inapplicable cases amounts to an odd
461 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
462 >     *
463 >     * Style notes
464 >     * ===========
465 >     *
466 >     * There is a lot of representation-level coupling among classes
467 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
468 >     * fields of WorkQueue maintain data structures managed by
469 >     * ForkJoinPool, so are directly accessed.  There is little point
470 >     * trying to reduce this, since any associated future changes in
471 >     * representations will need to be accompanied by algorithmic
472 >     * changes anyway. Several methods intrinsically sprawl because
473 >     * they must accumulate sets of consistent reads of volatiles held
474 >     * in local variables.  Methods signalWork() and scan() are the
475 >     * main bottlenecks, so are especially heavily
476       * micro-optimized/mangled.  There are lots of inline assignments
477       * (of form "while ((local = field) != 0)") which are usually the
478       * simplest way to ensure the required read orderings (which are
# Line 447 | Line 480 | public class ForkJoinPool extends Abstra
480       * declarations of these locals at the heads of methods or blocks.
481       * There are several occurrences of the unusual "do {} while
482       * (!cas...)"  which is the simplest way to force an update of a
483 <     * CAS'ed variable. There are also other coding oddities that help
483 >     * CAS'ed variable. There are also other coding oddities (including
484 >     * several unnecessary-looking hoisted null checks) that help
485       * some methods perform reasonably even when interpreted (not
486       * compiled).
487       *
# Line 496 | Line 530 | public class ForkJoinPool extends Abstra
530       * Default ForkJoinWorkerThreadFactory implementation; creates a
531       * new ForkJoinWorkerThread.
532       */
533 <    static class DefaultForkJoinWorkerThreadFactory
533 >    static final class DefaultForkJoinWorkerThreadFactory
534          implements ForkJoinWorkerThreadFactory {
535 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
535 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
536              return new ForkJoinWorkerThread(pool);
537          }
538      }
539  
540      /**
507     * A simple non-reentrant lock used for exclusion when managing
508     * queues and workers. We use a custom lock so that we can readily
509     * probe lock state in constructions that check among alternative
510     * actions. The lock is normally only very briefly held, and
511     * sometimes treated as a spinlock, but other usages block to
512     * reduce overall contention in those cases where locked code
513     * bodies perform allocation/resizing.
514     */
515    static final class Mutex extends AbstractQueuedSynchronizer {
516        public final boolean tryAcquire(int ignore) {
517            return compareAndSetState(0, 1);
518        }
519        public final boolean tryRelease(int ignore) {
520            setState(0);
521            return true;
522        }
523        public final void lock() { acquire(0); }
524        public final void unlock() { release(0); }
525        public final boolean isHeldExclusively() { return getState() == 1; }
526        public final Condition newCondition() { return new ConditionObject(); }
527    }
528
529    /**
541       * Class for artificial tasks that are used to replace the target
542       * of local joins if they are removed from an interior queue slot
543       * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
544       * actually do anything beyond having a unique identity.
545       */
546      static final class EmptyTask extends ForkJoinTask<Void> {
547 +        private static final long serialVersionUID = -7721805057305804111L;
548          EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
549          public final Void getRawResult() { return null; }
550          public final void setRawResult(Void x) {}
# Line 553 | Line 565 | public class ForkJoinPool extends Abstra
565       *
566       * Field "top" is the index (mod array.length) of the next queue
567       * slot to push to or pop from. It is written only by owner thread
568 <     * for push, or under lock for trySharedPush, and accessed by
569 <     * other threads only after reading (volatile) base.  Both top and
570 <     * base are allowed to wrap around on overflow, but (top - base)
571 <     * (or more commonly -(base - top) to force volatile read of base
572 <     * before top) still estimates size.
568 >     * for push, or under lock for external/shared push, and accessed
569 >     * by other threads only after reading (volatile) base.  Both top
570 >     * and base are allowed to wrap around on overflow, but (top -
571 >     * base) (or more commonly -(base - top) to force volatile read of
572 >     * base before top) still estimates size. The lock ("qlock") is
573 >     * forced to -1 on termination, causing all further lock attempts
574 >     * to fail. (Note: we don't need CAS for termination state because
575 >     * upon pool shutdown, all shared-queues will stop being used
576 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
577 >     * within lock bodies are "impossible" (modulo JVM errors that
578 >     * would cause failure anyway.)
579       *
580       * The array slots are read and written using the emulation of
581       * volatiles/atomics provided by Unsafe. Insertions must in
582       * general use putOrderedObject as a form of releasing store to
583       * ensure that all writes to the task object are ordered before
584 <     * its publication in the queue. (Although we can avoid one case
585 <     * of this when locked in trySharedPush.) All removals entail a
586 <     * CAS to null.  The array is always a power of two. To ensure
587 <     * safety of Unsafe array operations, all accesses perform
570 <     * explicit null checks and implicit bounds checks via
571 <     * power-of-two masking.
584 >     * its publication in the queue.  All removals entail a CAS to
585 >     * null.  The array is always a power of two. To ensure safety of
586 >     * Unsafe array operations, all accesses perform explicit null
587 >     * checks and implicit bounds checks via power-of-two masking.
588       *
589       * In addition to basic queuing support, this class contains
590       * fields described elsewhere to control execution. It turns out
591 <     * to work better memory-layout-wise to include them in this
592 <     * class rather than a separate class.
591 >     * to work better memory-layout-wise to include them in this class
592 >     * rather than a separate class.
593       *
594       * Performance on most platforms is very sensitive to placement of
595       * instances of both WorkQueues and their arrays -- we absolutely
# Line 587 | Line 603 | public class ForkJoinPool extends Abstra
603       * trades off slightly slower average field access for the sake of
604       * avoiding really bad worst-case access. (Until better JVM
605       * support is in place, this padding is dependent on transient
606 <     * properties of JVM field layout rules.)  We also take care in
591 <     * allocating, sizing and resizing the array. Non-shared queue
592 <     * arrays are initialized (via method growArray) by workers before
593 <     * use. Others are allocated on first use.
606 >     * properties of JVM field layout rules.)
607       */
608      static final class WorkQueue {
609          /**
# Line 613 | Line 626 | public class ForkJoinPool extends Abstra
626           */
627          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
628  
616        volatile long totalSteals; // cumulative number of steals
629          int seed;                  // for random scanning; initialize nonzero
630          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
631          int nextWait;              // encoded record of next event waiter
632 <        int rescans;               // remaining scans until block
621 <        int nsteals;               // top-level task executions since last idle
622 <        final int mode;            // lifo, fifo, or shared
632 >        int hint;                  // steal or signal hint (index)
633          int poolIndex;             // index of this queue in pool (or 0)
634 <        int stealHint;             // index of most recent known stealer
635 <        volatile int runState;     // 1: locked, -1: terminate; else 0
634 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
635 >        int nsteals;               // number of steals
636 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
637          volatile int base;         // index of next slot for poll
638          int top;                   // index of next slot for push
639          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
640          final ForkJoinPool pool;   // the containing pool (may be null)
641          final ForkJoinWorkerThread owner; // owning thread or null if shared
642          volatile Thread parker;    // == owner during call to park; else null
643 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
643 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
644          ForkJoinTask<?> currentSteal; // current non-local task being executed
645 +
646          // Heuristic padding to ameliorate unfortunate memory placements
647          Object p00, p01, p02, p03, p04, p05, p06, p07;
648 <        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
648 >        Object p08, p09, p0a, p0b, p0c;
649  
650 <        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
651 <            this.mode = mode;
650 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
651 >                  int seed) {
652 >            this.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
653              this.pool = pool;
654              this.owner = owner;
655 <            // Place indices in the center of array (that is not yet allocated)
655 >            this.mode = mode;
656 >            this.seed = seed;
657 >            // Place indices in the center of array
658              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
659          }
660  
661          /**
647         * Returns the approximate number of tasks in the queue.
648         */
649        final int queueSize() {
650            int n = base - top;       // non-owner callers must read base first
651            return (n >= 0) ? 0 : -n; // ignore transient negative
652        }
653
654        /**
655         * Provides a more accurate estimate of whether this queue has
656         * any tasks than does queueSize, by checking whether a
657         * near-empty queue has at least one unclaimed task.
658         */
659        final boolean isEmpty() {
660            ForkJoinTask<?>[] a; int m, s;
661            int n = base - (s = top);
662            return (n >= 0 ||
663                    (n == -1 &&
664                     ((a = array) == null ||
665                      (m = a.length - 1) < 0 ||
666                      U.getObjectVolatile
667                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
668        }
669
670        /**
662           * Pushes a task. Call only by owner in unshared queues.
663 +         * Cases needing resizing or rejection are relayed to fullPush
664 +         * (that also handles shared queues).
665           *
666           * @param task the task. Caller must ensure non-null.
667           * @throw RejectedExecutionException if array cannot be resized
# Line 679 | Line 672 | public class ForkJoinPool extends Abstra
672              if ((a = array) != null) {    // ignore if queue removed
673                  U.putOrderedObject
674                      (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
675 <                if ((n = (top = s + 1) - base) <= 2) {
675 >                if ((n = (top = s + 1) - base) <= 1) {
676                      if ((p = pool) != null)
677 <                        p.signalWork();
677 >                        p.signalWork(this, 0);
678                  }
679                  else if (n >= m)
680 <                    growArray(true);
680 >                    growArray();
681              }
682          }
683  
# Line 697 | Line 690 | public class ForkJoinPool extends Abstra
690           */
691          final boolean trySharedPush(ForkJoinTask<?> task) {
692              boolean submitted = false;
693 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
694 <                ForkJoinTask<?>[] a = array;
693 >            if (qlock == 0 && U.compareAndSwapInt(this, QLOCK, 0, 1)) {
694 >                ForkJoinTask<?>[] a = array;  ForkJoinPool p;
695                  int s = top;
696                  try {
697                      if ((a != null && a.length > s + 1 - base) ||
698 <                        (a = growArray(false)) != null) { // must presize
698 >                        (a = growArray()) != null) {   // must presize
699                          int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
700 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
700 >                        U.putOrderedObject(a, j, task);
701                          top = s + 1;
702                          submitted = true;
703                      }
704                  } finally {
705 <                    runState = 0;                         // unlock
705 >                    qlock = 0;                         // unlock
706                  }
707 +                if (submitted && (p = pool) != null)
708 +                    p.signalWork(this, 0);
709              }
710              return submitted;
711          }
712  
713 +       /**
714 +         * Initializes or doubles the capacity of array. Call either
715 +         * by owner or with lock held -- it is OK for base, but not
716 +         * top, to move while resizings are in progress.
717 +         */
718 +        final ForkJoinTask<?>[] growArray() {
719 +            ForkJoinTask<?>[] oldA = array;
720 +            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
721 +            if (size > MAXIMUM_QUEUE_CAPACITY)
722 +                throw new RejectedExecutionException("Queue capacity exceeded");
723 +            int oldMask, t, b;
724 +            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
725 +            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
726 +                (t = top) - (b = base) > 0) {
727 +                int mask = size - 1;
728 +                do {
729 +                    ForkJoinTask<?> x;
730 +                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
731 +                    int j    = ((b &    mask) << ASHIFT) + ABASE;
732 +                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
733 +                    if (x != null &&
734 +                        U.compareAndSwapObject(oldA, oldj, x, null))
735 +                        U.putObjectVolatile(a, j, x);
736 +                } while (++b != t);
737 +            }
738 +            return a;
739 +        }
740 +
741          /**
742           * Takes next task, if one exists, in LIFO order.  Call only
743 <         * by owner in unshared queues. (We do not have a shared
721 <         * version of this method because it is never needed.)
743 >         * by owner in unshared queues.
744           */
745          final ForkJoinTask<?> pop() {
746 <            ForkJoinTask<?> t; int m;
747 <            ForkJoinTask<?>[] a = array;
726 <            if (a != null && (m = a.length - 1) >= 0) {
746 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
747 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
748                  for (int s; (s = top - 1) - base >= 0;) {
749 <                    int j = ((m & s) << ASHIFT) + ABASE;
750 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
749 >                    long j = ((m & s) << ASHIFT) + ABASE;
750 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
751                          break;
752                      if (U.compareAndSwapObject(a, j, t, null)) {
753                          top = s;
# Line 774 | Line 795 | public class ForkJoinPool extends Abstra
795                  else if (base == b) {
796                      if (b + 1 == top)
797                          break;
798 <                    Thread.yield(); // wait for lagging update
798 >                    Thread.yield(); // wait for lagging update (very rare)
799                  }
800              }
801              return null;
# Line 801 | Line 822 | public class ForkJoinPool extends Abstra
822  
823          /**
824           * Pops the given task only if it is at the current top.
825 +         * (A shared version is available only via FJP.tryExternalUnpush)
826           */
827          final boolean tryUnpush(ForkJoinTask<?> t) {
828              ForkJoinTask<?>[] a; int s;
# Line 814 | Line 836 | public class ForkJoinPool extends Abstra
836          }
837  
838          /**
839 <         * Polls the given task only if it is at the current base.
839 >         * Removes and cancels all known tasks, ignoring any exceptions.
840           */
841 <        final boolean pollFor(ForkJoinTask<?> task) {
842 <            ForkJoinTask<?>[] a; int b;
843 <            if ((b = base) - top < 0 && (a = array) != null) {
844 <                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
845 <                if (U.getObjectVolatile(a, j) == task && base == b &&
846 <                    U.compareAndSwapObject(a, j, task, null)) {
847 <                    base = b + 1;
848 <                    return true;
841 >        final void cancelAll() {
842 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
843 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
844 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
845 >                ForkJoinTask.cancelIgnoringExceptions(t);
846 >        }
847 >
848 >        /**
849 >         * Computes next value for random probes.  Scans don't require
850 >         * a very high quality generator, but also not a crummy one.
851 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
852 >         * This is manually inlined in its usages in ForkJoinPool to
853 >         * avoid writes inside busy scan loops.
854 >         */
855 >        final int nextSeed() {
856 >            int r = seed;
857 >            r ^= r << 13;
858 >            r ^= r >>> 17;
859 >            return seed = r ^= r << 5;
860 >        }
861 >
862 >        /**
863 >         * Provides a more accurate estimate of size than (top - base)
864 >         * by ordering reads and checking whether a near-empty queue
865 >         * has at least one unclaimed task.
866 >         */
867 >        final int queueSize() {
868 >            ForkJoinTask<?>[] a; int k, s, n;
869 >            return ((n = base - (s = top)) < 0 &&
870 >                    (n != -1 ||
871 >                     ((a = array) != null && (k = a.length) > 0 &&
872 >                      U.getObject
873 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
874 >                -n : 0;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893                  }
894              }
829            return false;
895          }
896  
897          /**
898 <         * If present, removes from queue and executes the given task, or
899 <         * any other cancelled task. Returns (true) immediately on any CAS
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908           * or consistency check failure so caller can retry.
909           *
910 <         * @return false if no progress can be made
910 >         * @return false if no progress can be made, else true;
911           */
912          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 <            boolean removed = false, empty = true, progress = true;
913 >            boolean stat = true, removed = false, empty = true;
914              ForkJoinTask<?>[] a; int m, s, b, n;
915              if ((a = array) != null && (m = a.length - 1) >= 0 &&
916                  (n = (s = top) - (b = base)) > 0) {
# Line 867 | Line 940 | public class ForkJoinPool extends Abstra
940                      }
941                      if (--n == 0) {
942                          if (!empty && base == b)
943 <                            progress = false;
943 >                            stat = false;
944                          break;
945                      }
946                  }
947              }
948              if (removed)
949                  task.doExec();
950 <            return progress;
950 >            return stat;
951          }
952  
953          /**
954 <         * Initializes or doubles the capacity of array. Call either
955 <         * by owner or with lock held -- it is OK for base, but not
883 <         * top, to move while resizings are in progress.
884 <         *
885 <         * @param rejectOnFailure if true, throw exception if capacity
886 <         * exceeded (relayed ultimately to user); else return null.
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation
956           */
957 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
958 <            ForkJoinTask<?>[] oldA = array;
959 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
960 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
961 <                int oldMask, t, b;
962 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
963 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
964 <                    (t = top) - (b = base) > 0) {
965 <                    int mask = size - 1;
966 <                    do {
967 <                        ForkJoinTask<?> x;
968 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
969 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
970 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
902 <                        if (x != null &&
903 <                            U.compareAndSwapObject(oldA, oldj, x, null))
904 <                            U.putObjectVolatile(a, j, x);
905 <                    } while (++b != t);
906 <                }
907 <                return a;
908 <            }
909 <            else if (!rejectOnFailure)
910 <                return null;
911 <            else
912 <                throw new RejectedExecutionException("Queue capacity exceeded");
913 <        }
914 <
915 <        /**
916 <         * Removes and cancels all known tasks, ignoring any exceptions.
917 <         */
918 <        final void cancelAll() {
919 <            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
920 <            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
921 <            for (ForkJoinTask<?> t; (t = poll()) != null; )
922 <                ForkJoinTask.cancelIgnoringExceptions(t);
923 <        }
924 <
925 <        /**
926 <         * Computes next value for random probes.  Scans don't require
927 <         * a very high quality generator, but also not a crummy one.
928 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
929 <         * This is manually inlined in its usages in ForkJoinPool to
930 <         * avoid writes inside busy scan loops.
931 <         */
932 <        final int nextSeed() {
933 <            int r = seed;
934 <            r ^= r << 13;
935 <            r ^= r >>> 17;
936 <            return seed = r ^= r << 5;
937 <        }
938 <
939 <        // Execution methods
940 <
941 <        /**
942 <         * Removes and runs tasks until empty, using local mode
943 <         * ordering. Normally called only after checking for apparent
944 <         * non-emptiness.
945 <         */
946 <        final void runLocalTasks() {
947 <            // hoist checks from repeated pop/poll
948 <            ForkJoinTask<?>[] a; int m;
949 <            if ((a = array) != null && (m = a.length - 1) >= 0) {
950 <                if (mode == 0) {
951 <                    for (int s; (s = top - 1) - base >= 0;) {
952 <                        int j = ((m & s) << ASHIFT) + ABASE;
953 <                        ForkJoinTask<?> t =
954 <                            (ForkJoinTask<?>)U.getObjectVolatile(a, j);
955 <                        if (t != null) {
956 <                            if (U.compareAndSwapObject(a, j, t, null)) {
957 <                                top = s;
958 <                                t.doExec();
959 <                            }
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971                          }
972                          else
973 <                            break;
963 <                    }
964 <                }
965 <                else {
966 <                    for (int b; (b = base) - top < 0;) {
967 <                        int j = ((m & b) << ASHIFT) + ABASE;
968 <                        ForkJoinTask<?> t =
969 <                            (ForkJoinTask<?>)U.getObjectVolatile(a, j);
970 <                        if (t != null) {
971 <                            if (base == b &&
972 <                                U.compareAndSwapObject(a, j, t, null)) {
973 <                                base = b + 1;
974 <                                t.doExec();
975 <                            }
976 <                        } else if (base == b) {
977 <                            if (b + 1 == top)
978 <                                break;
979 <                            Thread.yield(); // wait for lagging update
980 <                        }
973 >                            break; // restart
974                      }
975 +                    if ((r = r.completer) == null)
976 +                        break outer; // not part of root computation
977                  }
978              }
979 +            return false;
980          }
981  
982          /**
983           * Executes a top-level task and any local tasks remaining
984           * after execution.
989         *
990         * @return true unless terminating
985           */
986 <        final boolean runTask(ForkJoinTask<?> t) {
993 <            boolean alive = true;
986 >        final void runTask(ForkJoinTask<?> t) {
987              if (t != null) {
988 <                currentSteal = t;
996 <                t.doExec();
997 <                if (top != base)        // conservative guard
998 <                    runLocalTasks();
999 <                ++nsteals;
988 >                (currentSteal = t).doExec();
989                  currentSteal = null;
990 +                ++nsteals;
991 +                if (top != base) {       // process remaining local tasks
992 +                    if (mode == 0)
993 +                        popAndExecAll();
994 +                    else
995 +                        pollAndExecAll();
996 +                }
997              }
1002            else if (runState < 0)      // terminating
1003                alive = false;
1004            return alive;
998          }
999  
1000          /**
# Line 1010 | Line 1003 | public class ForkJoinPool extends Abstra
1003          final void runSubtask(ForkJoinTask<?> t) {
1004              if (t != null) {
1005                  ForkJoinTask<?> ps = currentSteal;
1006 <                currentSteal = t;
1014 <                t.doExec();
1006 >                (currentSteal = t).doExec();
1007                  currentSteal = ps;
1008              }
1009          }
# Line 1046 | Line 1038 | public class ForkJoinPool extends Abstra
1038  
1039          // Unsafe mechanics
1040          private static final sun.misc.Unsafe U;
1041 <        private static final long RUNSTATE;
1041 >        private static final long QLOCK;
1042          private static final int ABASE;
1043          private static final int ASHIFT;
1044          static {
# Line 1055 | Line 1047 | public class ForkJoinPool extends Abstra
1047                  U = getUnsafe();
1048                  Class<?> k = WorkQueue.class;
1049                  Class<?> ak = ForkJoinTask[].class;
1050 <                RUNSTATE = U.objectFieldOffset
1051 <                    (k.getDeclaredField("runState"));
1050 >                QLOCK = U.objectFieldOffset
1051 >                    (k.getDeclaredField("qlock"));
1052                  ABASE = U.arrayBaseOffset(ak);
1053                  s = U.arrayIndexScale(ak);
1054              } catch (Exception e) {
# Line 1068 | Line 1060 | public class ForkJoinPool extends Abstra
1060          }
1061      }
1062  
1063 +    // static fields (initialized in static initializer below)
1064 +
1065 +    /**
1066 +     * Creates a new ForkJoinWorkerThread. This factory is used unless
1067 +     * overridden in ForkJoinPool constructors.
1068 +     */
1069 +    public static final ForkJoinWorkerThreadFactory
1070 +        defaultForkJoinWorkerThreadFactory;
1071 +
1072      /**
1073       * Per-thread records for threads that submit to pools. Currently
1074       * holds only pseudo-random seed / index that is used to choose
1075 <     * submission queues in method doSubmit. In the future, this may
1075 >     * submission queues in method externalPush. In the future, this may
1076       * also incorporate a means to implement different task rejection
1077       * and resubmission policies.
1078       *
# Line 1079 | Line 1080 | public class ForkJoinPool extends Abstra
1080       * the same way but are initialized and updated using slightly
1081       * different mechanics. Both are initialized using the same
1082       * approach as in class ThreadLocal, where successive values are
1083 <     * unlikely to collide with previous values. This is done during
1084 <     * registration for workers, but requires a separate AtomicInteger
1085 <     * for submitters. Seeds are then randomly modified upon
1085 <     * collisions using xorshifts, which requires a non-zero seed.
1083 >     * unlikely to collide with previous values. Seeds are then
1084 >     * randomly modified upon collisions using xorshifts, which
1085 >     * requires a non-zero seed.
1086       */
1087      static final class Submitter {
1088          int seed;
1089 <        Submitter() {
1090 <            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1091 <            seed = (s == 0) ? 1 : s; // ensure non-zero
1092 <        }
1093 <    }
1094 <
1095 <    /** ThreadLocal class for Submitters */
1096 <    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1097 <        public Submitter initialValue() { return new Submitter(); }
1089 >        Submitter(int s) { seed = s; }
1090      }
1091  
1092 <    // static fields (initialized in static initializer below)
1092 >    /**
1093 >     * Per-thread submission bookkeeping. Shared across all pools
1094 >     * to reduce ThreadLocal pollution and because random motion
1095 >     * to avoid contention in one pool is likely to hold for others.
1096 >     * Lazily initialized on first submission (but null-checked
1097 >     * in other contexts to avoid unnecessary initialization).
1098 >     */
1099 >    static final ThreadLocal<Submitter> submitters;
1100  
1101      /**
1102 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
1103 <     * overridden in ForkJoinPool constructors.
1102 >     * Common (static) pool. Non-null for public use unless a static
1103 >     * construction exception, but internal usages null-check on use
1104 >     * to paranoically avoid potential initialization circularities
1105 >     * as well as to simplify generated code.
1106       */
1107 <    public static final ForkJoinWorkerThreadFactory
1107 <        defaultForkJoinWorkerThreadFactory;
1107 >    static final ForkJoinPool commonPool;
1108  
1109      /**
1110 <     * Generator for assigning sequence numbers as pool names.
1110 >     * Permission required for callers of methods that may start or
1111 >     * kill threads.
1112       */
1113 <    private static final AtomicInteger poolNumberGenerator;
1113 >    private static final RuntimePermission modifyThreadPermission;
1114  
1115      /**
1116 <     * Generator for initial hashes/seeds for submitters. Accessed by
1116 <     * Submitter class constructor.
1116 >     * Common pool parallelism. Must equal commonPool.parallelism.
1117       */
1118 <    static final AtomicInteger nextSubmitterSeed;
1118 >    static final int commonPoolParallelism;
1119  
1120      /**
1121 <     * Permission required for callers of methods that may start or
1122 <     * kill threads.
1121 >     * Sequence number for creating workerNamePrefix.
1122       */
1123 <    private static final RuntimePermission modifyThreadPermission;
1123 >    private static int poolNumberSequence;
1124  
1125      /**
1126 <     * Per-thread submission bookeeping. Shared across all pools
1127 <     * to reduce ThreadLocal pollution and because random motion
1129 <     * to avoid contention in one pool is likely to hold for others.
1126 >     * Return the next sequence number. We don't expect this to
1127 >     * ever contend so use simple builtin sync.
1128       */
1129 <    private static final ThreadSubmitter submitters;
1129 >    private static final synchronized int nextPoolId() {
1130 >        return ++poolNumberSequence;
1131 >    }
1132  
1133      // static constants
1134  
1135      /**
1136 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1137 <     * task when the pool is quiescent to instead try to shrink the
1138 <     * number of workers.  The exact value does not matter too
1139 <     * much. It must be short enough to release resources during
1140 <     * sustained periods of idleness, but not so short that threads
1141 <     * are continually re-created.
1136 >     * Initial timeout value (in nanoseconds) for the thread
1137 >     * triggering quiescence to park waiting for new work. On timeout,
1138 >     * the thread will instead try to shrink the number of
1139 >     * workers. The value should be large enough to avoid overly
1140 >     * aggressive shrinkage during most transient stalls (long GCs
1141 >     * etc).
1142       */
1143 <    private static final long SHRINK_RATE =
1144 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1143 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1144  
1145      /**
1146 <     * The timeout value for attempted shrinkage, includes
1148 <     * some slop to cope with system timer imprecision.
1146 >     * Timeout value when there are more threads than parallelism level
1147       */
1148 <    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1148 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1149  
1150      /**
1151       * The maximum stolen->joining link depth allowed in method
1152 <     * tryHelpStealer.  Must be a power of two. This value also
1155 <     * controls the maximum number of times to try to help join a task
1156 <     * without any apparent progress or change in pool state before
1157 <     * giving up and blocking (see awaitJoin).  Depths for legitimate
1152 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1153       * chains are unbounded, but we use a fixed constant to avoid
1154       * (otherwise unchecked) cycles and to bound staleness of
1155       * traversal parameters at the expense of sometimes blocking when
1156       * we could be helping.
1157       */
1158 <    private static final int MAX_HELP = 32;
1164 <
1165 <    /**
1166 <     * Secondary time-based bound (in nanosecs) for helping attempts
1167 <     * before trying compensated blocking in awaitJoin. Used in
1168 <     * conjunction with MAX_HELP to reduce variance due to different
1169 <     * polling rates associated with different helping options. The
1170 <     * value should roughly approximate the time required to create
1171 <     * and/or activate a worker thread.
1172 <     */
1173 <    private static final long COMPENSATION_DELAY = 100L * 1000L; // 0.1 millisec
1158 >    private static final int MAX_HELP = 64;
1159  
1160      /**
1161       * Increment for seed generators. See class ThreadLocal for
# Line 1206 | Line 1191 | public class ForkJoinPool extends Abstra
1191       * scan for them to avoid queuing races. Note however that
1192       * eventCount updates lag releases so usage requires care.
1193       *
1194 <     * Field runState is an int packed with:
1194 >     * Field plock is an int packed with:
1195       * SHUTDOWN: true if shutdown is enabled (1 bit)
1196 <     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1197 <     * INIT: set true after workQueues array construction (1 bit)
1196 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1197 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1198       *
1199       * The sequence number enables simple consistency checks:
1200       * Staleness of read-only operations on the workQueues array can
1201 <     * be checked by comparing runState before vs after the reads.
1201 >     * be checked by comparing plock before vs after the reads.
1202       */
1203  
1204      // bit positions/shifts for fields
# Line 1225 | Line 1210 | public class ForkJoinPool extends Abstra
1210      // bounds
1211      private static final int  SMASK      = 0xffff;  // short bits
1212      private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1213 <    private static final int  SQMASK     = 0xfffe;  // even short bits
1213 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1214 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1215      private static final int  SHORT_SIGN = 1 << 15;
1216      private static final int  INT_SIGN   = 1 << 31;
1217  
# Line 1250 | Line 1236 | public class ForkJoinPool extends Abstra
1236      private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1237      private static final int E_SEQ       = 1 << EC_SHIFT;
1238  
1239 <    // runState bits
1239 >    // plock bits
1240      private static final int SHUTDOWN    = 1 << 31;
1241 +    private static final int PL_LOCK     = 2;
1242 +    private static final int PL_SIGNAL   = 1;
1243 +    private static final int PL_SPINS    = 1 << 8;
1244  
1245      // access mode for WorkQueue
1246      static final int LIFO_QUEUE          =  0;
1247      static final int FIFO_QUEUE          =  1;
1248      static final int SHARED_QUEUE        = -1;
1249  
1250 +    // bounds for #steps in scan loop -- must be power 2 minus 1
1251 +    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1252 +    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1253 +
1254      // Instance fields
1255  
1256      /*
1257 <     * Field layout order in this class tends to matter more than one
1258 <     * would like. Runtime layout order is only loosely related to
1257 >     * Field layout of this class tends to matter more than one would
1258 >     * like. Runtime layout order is only loosely related to
1259       * declaration order and may differ across JVMs, but the following
1260       * empirically works OK on current JVMs.
1261       */
1262 <
1262 >    volatile long stealCount;                  // collects worker counts
1263      volatile long ctl;                         // main pool control
1264 <    final int parallelism;                     // parallelism level
1265 <    final int localMode;                       // per-worker scheduling mode
1266 <    final int submitMask;                      // submit queue index bound
1274 <    int nextSeed;                              // for initializing worker seeds
1275 <    volatile int runState;                     // shutdown status and seq
1264 >    volatile int plock;                        // shutdown status and seqLock
1265 >    volatile int indexSeed;                    // worker/submitter index seed
1266 >    final int config;                          // mode and parallelism level
1267      WorkQueue[] workQueues;                    // main registry
1268 <    final Mutex lock;                          // for registration
1278 <    final Condition termination;               // for awaitTermination
1279 <    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1268 >    final ForkJoinWorkerThreadFactory factory;
1269      final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1281    final AtomicLong stealCount;               // collect counts when terminated
1282    final AtomicInteger nextWorkerNumber;      // to create worker name string
1270      final String workerNamePrefix;             // to create worker name string
1271  
1272 <    //  Creating, registering, and deregistering workers
1272 >    /*
1273 >     * Acquires the plock lock to protect worker array and related
1274 >     * updates. This method is called only if an initial CAS on plock
1275 >     * fails. This acts as a spinLock for normal cases, but falls back
1276 >     * to builtin monitor to block when (rarely) needed. This would be
1277 >     * a terrible idea for a highly contended lock, but works fine as
1278 >     * a more conservative alternative to a pure spinlock.  See
1279 >     * internal ConcurrentHashMap documentation for further
1280 >     * explanation of nearly the same construction.
1281 >     */
1282 >    private int acquirePlock() {
1283 >        int spins = PL_SPINS, r = 0, ps, nps;
1284 >        for (;;) {
1285 >            if (((ps = plock) & PL_LOCK) == 0 &&
1286 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1287 >                return nps;
1288 >            else if (r == 0) { // randomize spins if possible
1289 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1290 >                if ((t instanceof ForkJoinWorkerThread) &&
1291 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1292 >                    r = w.seed;
1293 >                else if ((z = submitters.get()) != null)
1294 >                    r = z.seed;
1295 >                else
1296 >                    r = 1;
1297 >            }
1298 >            else if (spins >= 0) {
1299 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1300 >                if (r >= 0)
1301 >                    --spins;
1302 >            }
1303 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1304 >                synchronized (this) {
1305 >                    if ((plock & PL_SIGNAL) != 0) {
1306 >                        try {
1307 >                            wait();
1308 >                        } catch (InterruptedException ie) {
1309 >                            try {
1310 >                                Thread.currentThread().interrupt();
1311 >                            } catch (SecurityException ignore) {
1312 >                            }
1313 >                        }
1314 >                    }
1315 >                    else
1316 >                        notifyAll();
1317 >                }
1318 >            }
1319 >        }
1320 >    }
1321 >
1322 >    /**
1323 >     * Unlocks and signals any thread waiting for plock. Called only
1324 >     * when CAS of seq value for unlock fails.
1325 >     */
1326 >    private void releasePlock(int ps) {
1327 >        plock = ps;
1328 >        synchronized (this) { notifyAll(); }
1329 >    }
1330  
1331      /**
1332 <     * Tries to create and start a worker
1332 >     * Tries to create and start a worker; adjusts counts etc on failure
1333       */
1334      private void addWorker() {
1291        Throwable ex = null;
1335          ForkJoinWorkerThread wt = null;
1336          try {
1337 <            if ((wt = factory.newThread(this)) != null) {
1338 <                wt.start();
1339 <                return;
1297 <            }
1298 <        } catch (Throwable e) {
1299 <            ex = e;
1337 >            (wt = factory.newThread(this)).start();
1338 >        } catch (Throwable ex) {
1339 >            deregisterWorker(wt, ex); // adjust on failure
1340          }
1301        deregisterWorker(wt, ex); // adjust counts etc on failure
1341      }
1342  
1343      /**
1344 <     * Callback from ForkJoinWorkerThread constructor to assign a
1345 <     * public name. This must be separate from registerWorker because
1346 <     * it is called during the "super" constructor call in
1347 <     * ForkJoinWorkerThread.
1348 <     */
1349 <    final String nextWorkerName() {
1350 <        return workerNamePrefix.concat
1351 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1344 >     * Performs secondary initialization, called when plock is zero.
1345 >     * Creates workQueue array and sets plock to a valid value.  The
1346 >     * lock body must be exception-free (so no try/finally) so we
1347 >     * optimistically allocate new array outside the lock and throw
1348 >     * away if (very rarely) not needed. (A similar tactic is used in
1349 >     * fullExternalPush.)  Because the plock seq value can eventually
1350 >     * wrap around zero, this method harmlessly fails to reinitialize
1351 >     * if workQueues exists, while still advancing plock.
1352 >     */
1353 >    private void initWorkQueuesArray() {
1354 >        WorkQueue[] ws; int ps;
1355 >        int p = config & SMASK;        // find power of two table size
1356 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1357 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1358 >        WorkQueue[] nws = new WorkQueue[(n + 1) << 1];
1359 >        if (((ps = plock) & PL_LOCK) != 0 ||
1360 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1361 >            ps = acquirePlock();
1362 >        if ((ws = workQueues) == null || ws.length == 0)
1363 >            workQueues = nws;
1364 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1365 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1366 >            releasePlock(nps);
1367 >        long c; int u;
1368 >        if ((u = (int)((c = ctl) >>> 32)) < 0 && (int)c == 0) {
1369 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1370 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1371 >            if (U.compareAndSwapLong(this, CTL, c, nc))
1372 >                addWorker();
1373 >        }
1374 >
1375      }
1376  
1377 +    //  Registering and deregistering workers
1378 +
1379      /**
1380 <     * Callback from ForkJoinWorkerThread constructor to establish its
1381 <     * poolIndex and record its WorkQueue. To avoid scanning bias due
1382 <     * to packing entries in front of the workQueues array, we treat
1383 <     * the array as a simple power-of-two hash table using per-thread
1384 <     * seed as hash, expanding as needed.
1380 >     * Callback from ForkJoinWorkerThread to establish and record its
1381 >     * WorkQueue. To avoid scanning bias due to packing entries in
1382 >     * front of the workQueues array, we treat the array as a simple
1383 >     * power-of-two hash table using per-thread seed as hash,
1384 >     * expanding as needed.
1385       *
1386 <     * @param w the worker's queue
1386 >     * @param wt the worker thread
1387       */
1388 <    final void registerWorker(WorkQueue w) {
1389 <        Mutex lock = this.lock;
1390 <        lock.lock();
1391 <        try {
1392 <            WorkQueue[] ws = workQueues;
1393 <            if (w != null && ws != null) {          // skip on shutdown/failure
1394 <                int rs, n;
1395 <                while ((n = ws.length) <            // ensure can hold total
1396 <                       (parallelism + (short)(ctl >>> TC_SHIFT) << 1))
1397 <                    workQueues = ws = Arrays.copyOf(ws, n << 1);
1398 <                int m = n - 1;
1399 <                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1400 <                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1401 <                int r = (s << 1) | 1;               // use odd-numbered indices
1402 <                while (ws[r &= m] != null)          // step by approx half size
1403 <                    r += ((n >>> 1) & SQMASK) + 2;
1404 <                w.eventCount = w.poolIndex = r;     // establish before recording
1405 <                ws[r] = w;                          // also update seq
1406 <                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1388 >    final void registerWorker(ForkJoinWorkerThread wt) {
1389 >        if (wt != null && wt.workQueue == null) {
1390 >            int s, ps;    // generate a rarely colliding candidate index seed
1391 >            do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1392 >                                              s += SEED_INCREMENT) ||
1393 >                         s == 0); // skip 0
1394 >            WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1395 >            if (((ps = plock) & PL_LOCK) != 0 ||
1396 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1397 >                ps = acquirePlock();
1398 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1399 >            try {
1400 >                WorkQueue[] ws;
1401 >                if ((ws = workQueues) != null && wt.workQueue == null) {
1402 >                    int n = ws.length, m = n - 1;
1403 >                    int r = (s << 1) | 1;           // use odd-numbered indices
1404 >                    if (ws[r &= m] != null) {       // collision
1405 >                        int probes = 0;             // step by approx half size
1406 >                        int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1407 >                        while (ws[r = (r + step) & m] != null) {
1408 >                            if (++probes >= n) {
1409 >                                workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1410 >                                m = n - 1;
1411 >                                probes = 0;
1412 >                            }
1413 >                        }
1414 >                    }
1415 >                    w.eventCount = w.poolIndex = r; // volatile write orders
1416 >                    wt.workQueue = ws[r] = w;
1417 >                }
1418 >            } finally {
1419 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1420 >                    releasePlock(nps);
1421              }
1344        } finally {
1345            lock.unlock();
1422          }
1423      }
1424  
1425      /**
1426       * Final callback from terminating worker, as well as upon failure
1427 <     * to construct or start a worker in addWorker.  Removes record of
1428 <     * worker from array, and adjusts counts. If pool is shutting
1429 <     * down, tries to complete termination.
1427 >     * to construct or start a worker.  Removes record of worker from
1428 >     * array, and adjusts counts. If pool is shutting down, tries to
1429 >     * complete termination.
1430       *
1431 <     * @param wt the worker thread or null if addWorker failed
1431 >     * @param wt the worker thread or null if construction failed
1432       * @param ex the exception causing failure, or null if none
1433       */
1434      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1359        Mutex lock = this.lock;
1435          WorkQueue w = null;
1436          if (wt != null && (w = wt.workQueue) != null) {
1437 <            w.runState = -1;                // ensure runState is set
1438 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1439 <            int idx = w.poolIndex;
1440 <            lock.lock();
1441 <            try {                           // remove record from array
1437 >            int ps;
1438 >            w.qlock = -1;                // ensure set
1439 >            long ns = w.nsteals, sc;     // collect steal count
1440 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1441 >                                               sc = stealCount, sc + ns));
1442 >            if (((ps = plock) & PL_LOCK) != 0 ||
1443 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1444 >                ps = acquirePlock();
1445 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1446 >            try {
1447 >                int idx = w.poolIndex;
1448                  WorkQueue[] ws = workQueues;
1449                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1450                      ws[idx] = null;
1451              } finally {
1452 <                lock.unlock();
1452 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1453 >                    releasePlock(nps);
1454              }
1455          }
1456  
# Line 1381 | Line 1463 | public class ForkJoinPool extends Abstra
1463          if (!tryTerminate(false, false) && w != null) {
1464              w.cancelAll();                  // cancel remaining tasks
1465              if (w.array != null)            // suppress signal if never ran
1466 <                signalWork();               // wake up or create replacement
1466 >                helpSignal(null, 0);        // wake up or create replacement
1467              if (ex == null)                 // help clean refs on way out
1468                  ForkJoinTask.helpExpungeStaleExceptions();
1469          }
1470  
1471          if (ex != null)                     // rethrow
1472 <            U.throwException(ex);
1472 >            ForkJoinTask.rethrow(ex);
1473      }
1474  
1393
1475      // Submissions
1476  
1477      /**
1478       * Unless shutting down, adds the given task to a submission queue
1479       * at submitter's current queue index (modulo submission
1480 <     * range). If no queue exists at the index, one is created.  If
1481 <     * the queue is busy, another index is randomly chosen. The
1401 <     * submitMask bounds the effective number of queues to the
1402 <     * (nearest power of two for) parallelism level.
1480 >     * range). Only the most common path is directly handled in this
1481 >     * method. All others are relayed to fullExternalPush.
1482       *
1483       * @param task the task. Caller must ensure non-null.
1484       */
1485 <    private void doSubmit(ForkJoinTask<?> task) {
1486 <        Submitter s = submitters.get();
1487 <        for (int r = s.seed, m = submitMask;;) {
1488 <            WorkQueue[] ws; WorkQueue q;
1489 <            int k = r & m & SQMASK;          // use only even indices
1490 <            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1491 <                throw new RejectedExecutionException(); // shutting down
1492 <            else if ((q = ws[k]) == null) {  // create new queue
1493 <                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1494 <                Mutex lock = this.lock;      // construct outside lock
1495 <                lock.lock();
1496 <                try {                        // recheck under lock
1497 <                    int rs = runState;       // to update seq
1419 <                    if (ws == workQueues && ws[k] == null) {
1420 <                        ws[k] = nq;
1421 <                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1422 <                    }
1423 <                } finally {
1424 <                    lock.unlock();
1425 <                }
1426 <            }
1427 <            else if (q.trySharedPush(task)) {
1428 <                signalWork();
1485 >    final void externalPush(ForkJoinTask<?> task) {
1486 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1487 >        if ((z = submitters.get()) != null && plock > 0 &&
1488 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1489 >            (q = ws[m & z.seed & SQMASK]) != null &&
1490 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1491 >            int b = q.base, s = q.top, n, an;
1492 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1493 >                U.putObject(a, (long)(((an - 1) & s) << ASHIFT) + ABASE, task);
1494 >                q.top = s + 1;                     // push on to deque
1495 >                q.qlock = 0;
1496 >                if (n <= 2)
1497 >                    signalWork(q, 0);
1498                  return;
1499              }
1500 <            else if (m > 1) {                // move to a different index
1500 >            q.qlock = 0;
1501 >        }
1502 >        fullExternalPush(task);
1503 >    }
1504 >
1505 >    /**
1506 >     * Full version of externalPush. This method is called, among
1507 >     * other times, upon the first submission of the first task to the
1508 >     * pool, so must perform secondary initialization (via
1509 >     * initWorkQueuesArray). It also detects first submission by an
1510 >     * external thread by looking up its ThreadLocal, and creates a
1511 >     * new shared queue if the one at index if empty or contended. The
1512 >     * lock body must be exception-free (so no try/finally) so we
1513 >     * optimistically allocate new queues outside the lock and throw
1514 >     * them away if (very rarely) not needed.
1515 >     */
1516 >    private void fullExternalPush(ForkJoinTask<?> task) {
1517 >        int r = 0;
1518 >        for (Submitter z = submitters.get();;) {
1519 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1520 >            if (z == null) {
1521 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1522 >                                        r += SEED_INCREMENT) && r != 0)
1523 >                    submitters.set(z = new Submitter(r));
1524 >            }
1525 >            else if (r == 0) {               // move to a different index
1526 >                r = z.seed;
1527                  r ^= r << 13;                // same xorshift as WorkQueues
1528                  r ^= r >>> 17;
1529 <                s.seed = r ^= r << 5;
1529 >                z.seed = r ^ (r << 5);
1530 >            }
1531 >            else if ((ps = plock) < 0)
1532 >                throw new RejectedExecutionException();
1533 >            else if (ps == 0 || (ws = workQueues) == null ||
1534 >                     (m = ws.length - 1) < 0)
1535 >                initWorkQueuesArray();
1536 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1537 >                if (q.trySharedPush(task))
1538 >                    return;
1539 >                else
1540 >                    r = 0; // move on contention
1541 >            }
1542 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1543 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1544 >                if (((ps = plock) & PL_LOCK) != 0 ||
1545 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1546 >                    ps = acquirePlock();
1547 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1548 >                    ws[k] = q;
1549 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1550 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1551 >                    releasePlock(nps);
1552              }
1553              else
1554 <                Thread.yield();              // yield if no alternatives
1554 >                r = 0; // try elsewhere while lock held
1555          }
1556      }
1557  
# Line 1449 | Line 1566 | public class ForkJoinPool extends Abstra
1566      }
1567  
1568      /**
1569 <     * Tries to activate or create a worker if too few are active.
1570 <     */
1571 <    final void signalWork() {
1572 <        long c; int u;
1573 <        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1574 <            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1575 <            if ((e = (int)c) > 0) {                     // at least one waiting
1576 <                if (ws != null && (i = e & SMASK) < ws.length &&
1569 >     * Tries to create (at most one) or activate (possibly several)
1570 >     * workers if too few are active. On contention failure, continues
1571 >     * until at least one worker is signalled or the given queue is
1572 >     * empty or all workers are active.
1573 >     *
1574 >     * @param q if non-null, the queue holding tasks to be signalled
1575 >     * @param signals the target number of signals (at least one --
1576 >     * if argument is zero also sets signallee hint if parked).
1577 >     */
1578 >    final void signalWork(WorkQueue q, int signals) {
1579 >        long c; int e, u, i, s; WorkQueue[] ws; WorkQueue w; Thread p;
1580 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1581 >            if ((e = (int)c) > 0) {
1582 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1583                      (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1584                      long nc = (((long)(w.nextWait & E_MASK)) |
1585                                 ((long)(u + UAC_UNIT) << 32));
1586                      if (U.compareAndSwapLong(this, CTL, c, nc)) {
1587                          w.eventCount = (e + E_SEQ) & E_MASK;
1588 <                        if ((p = w.parker) != null)
1589 <                            U.unpark(p);                // activate and release
1590 <                        break;
1588 >                        if ((p = w.parker) != null) {
1589 >                            if (q != null && signals == 0)
1590 >                                w.hint = q.poolIndex;
1591 >                            U.unpark(p);
1592 >                        }
1593 >                        if (--signals <= 0)
1594 >                            break;
1595                      }
1596 +                    if (q != null && (s = q.queueSize()) <= signals &&
1597 +                         (signals = s) <= 0)
1598 +                        break;
1599                  }
1600                  else
1601                      break;
1602              }
1603 <            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1603 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1604                  long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1605                                   ((u + UAC_UNIT) & UAC_MASK)) << 32;
1606                  if (U.compareAndSwapLong(this, CTL, c, nc)) {
# Line 1483 | Line 1613 | public class ForkJoinPool extends Abstra
1613          }
1614      }
1615  
1486
1616      // Scanning for tasks
1617  
1618      /**
1619       * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1620       */
1621      final void runWorker(WorkQueue w) {
1622 <        w.growArray(false);         // initialize queue array in this thread
1623 <        do {} while (w.runTask(scan(w)));
1622 >        if (w != null) // skip on initialization failure
1623 >            do { w.runTask(scan(w)); } while (w.qlock >= 0);
1624      }
1625  
1626      /**
# Line 1502 | Line 1631 | public class ForkJoinPool extends Abstra
1631       * contention, or state changes that indicate possible success on
1632       * re-invocation.
1633       *
1634 <     * The scan searches for tasks across a random permutation of
1635 <     * queues (starting at a random index and stepping by a random
1636 <     * relative prime, checking each at least once).  The scan
1637 <     * terminates upon either finding a non-empty queue, or completing
1638 <     * the sweep. If the worker is not inactivated, it takes and
1639 <     * returns a task from this queue.  On failure to find a task, we
1640 <     * take one of the following actions, after which the caller will
1641 <     * retry calling this method unless terminated.
1634 >     * The scan searches for tasks across queues (starting at a random
1635 >     * index, and relying on registerWorker to irregularly scatter
1636 >     * them within array to avoid bias), checking each at least twice.
1637 >     * The scan terminates upon either finding a non-empty queue, or
1638 >     * completing the sweep. If the worker is not inactivated, it
1639 >     * takes and returns a task from this queue. Otherwise, if not
1640 >     * activated, it signals workers (that may include itself) and
1641 >     * returns so caller can retry. Also returns for true if the
1642 >     * worker array may have changed during an empty scan.  On failure
1643 >     * to find a task, we take one of the following actions, after
1644 >     * which the caller will retry calling this method unless
1645 >     * terminated.
1646       *
1647       * * If pool is terminating, terminate the worker.
1648       *
1516     * * If not a complete sweep, try to release a waiting worker.  If
1517     * the scan terminated because the worker is inactivated, then the
1518     * released worker will often be the calling worker, and it can
1519     * succeed obtaining a task on the next call. Or maybe it is
1520     * another worker, but with same net effect. Releasing in other
1521     * cases as well ensures that we have enough workers running.
1522     *
1649       * * If not already enqueued, try to inactivate and enqueue the
1650       * worker on wait queue. Or, if inactivating has caused the pool
1651       * to be quiescent, relay to idleAwaitWork to check for
1652       * termination and possibly shrink pool.
1653       *
1654 <     * * If already inactive, and the caller has run a task since the
1655 <     * last empty scan, return (to allow rescan) unless others are
1656 <     * also inactivated.  Field WorkQueue.rescans counts down on each
1531 <     * scan to ensure eventual inactivation and blocking.
1532 <     *
1533 <     * * If already enqueued and none of the above apply, park
1534 <     * awaiting signal,
1654 >     * * If already enqueued and none of the above apply, possibly
1655 >     * (with 1/2 probability) park awaiting signal, else lingering to
1656 >     * help scan and signal.
1657       *
1658       * @param w the worker (via its WorkQueue)
1659 <     * @return a task or null of none found
1659 >     * @return a task or null if none found
1660       */
1661      private final ForkJoinTask<?> scan(WorkQueue w) {
1662 <        WorkQueue[] ws;                       // first update random seed
1663 <        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1664 <        int rs = runState, m;                 // volatile read order matters
1665 <        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1666 <            int ec = w.eventCount;            // ec is negative if inactive
1667 <            int step = (r >>> 16) | 1;        // relative prime
1668 <            for (int j = (m + 1) << 2; ; r += step) {
1669 <                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1670 <                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1549 <                    (a = q.array) != null) {  // probably nonempty
1662 >        WorkQueue[] ws; int m, hint;
1663 >        int ps = plock;                          // read plock before ws
1664 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1665 >            int ec = w.eventCount;               // ec is negative if inactive
1666 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1667 >            for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; ; --j) {
1668 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1669 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1670 >                    (a = q.array) != null) {     // probably nonempty
1671                      int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1672 <                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1672 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1673 >                        U.getObjectVolatile(a, i);
1674                      if (q.base == b && ec >= 0 && t != null &&
1675                          U.compareAndSwapObject(a, i, t, null)) {
1676 <                        q.base = b + 1;       // specialization of pollAt
1677 <                        return t;
1676 >                        if ((q.base = b + 1) - q.top < 0)
1677 >                            signalWork(q, 0);
1678 >                        return t;                // taken
1679                      }
1680 <                    else if ((t != null || b + 1 != q.top) &&
1681 <                             (ec < 0 || j <= m)) {
1682 <                        rs = 0;               // mark scan as imcomplete
1560 <                        break;                // caller can retry after release
1680 >                    else if (ec < 0 || j < m) {  // cannot take or cannot rescan
1681 >                        w.hint = q.poolIndex;    // use hint below
1682 >                        break;                   // let caller retry after signal
1683                      }
1684                  }
1685 <                if (--j < 0)
1686 <                    break;
1687 <            }
1688 <            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1689 <            if (e < 0)                        // decode ctl on empty scan
1690 <                w.runState = -1;              // pool is terminating
1569 <            else if (rs == 0 || rs != runState) { // incomplete scan
1570 <                WorkQueue v; Thread p;        // try to release a waiter
1571 <                if (e > 0 && a < 0 && w.eventCount == ec &&
1572 <                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1573 <                    long nc = ((long)(v.nextWait & E_MASK) |
1574 <                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1575 <                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1576 <                        v.eventCount = (e + E_SEQ) & E_MASK;
1577 <                        if ((p = v.parker) != null)
1578 <                            U.unpark(p);
1685 >                else if (j < 0) { // end of scan; in loop to simplify code
1686 >                    long c, sc; int e, ns;
1687 >                    if ((ns = w.nsteals) != 0) {
1688 >                        if (U.compareAndSwapLong(this, STEALCOUNT,
1689 >                                                 sc = stealCount, sc + ns))
1690 >                            w.nsteals = 0;       // collect steals
1691                      }
1692 +                    else if (plock != ps)        // ws may have changed
1693 +                        break;
1694 +                    else if ((e = (int)(c = ctl)) < 0)
1695 +                        w.qlock = -1;            // pool is terminating
1696 +                    else if (ec >= 0) {          // try to enqueue/inactivate
1697 +                        long nc = ((long)ec |
1698 +                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1699 +                        w.nextWait = e;          // link and mark inactive
1700 +                        w.hint = -1;             // use hint if set while parked
1701 +                        w.eventCount = ec | INT_SIGN;
1702 +                        if (ctl != c ||
1703 +                            !U.compareAndSwapLong(this, CTL, c, nc))
1704 +                            w.eventCount = ec;  // unmark on CAS failure
1705 +                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1706 +                            idleAwaitWork(w, nc, c);
1707 +                    }
1708 +                    else if (w.eventCount < 0) { // block
1709 +                        Thread wt = Thread.currentThread();
1710 +                        Thread.interrupted();    // clear status
1711 +                        U.putObject(wt, PARKBLOCKER, this);
1712 +                        w.parker = wt;           // emulate LockSupport.park
1713 +                        if (w.eventCount < 0)    // recheck
1714 +                            U.park(false, 0L);
1715 +                        w.parker = null;
1716 +                        U.putObject(wt, PARKBLOCKER, null);
1717 +                    }
1718 +                    break;
1719                  }
1720              }
1721 <            else if (ec >= 0) {               // try to enqueue/inactivate
1722 <                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1723 <                w.nextWait = e;
1724 <                w.eventCount = ec | INT_SIGN; // mark as inactive
1725 <                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1726 <                    w.eventCount = ec;        // unmark on CAS failure
1588 <                else {
1589 <                    if ((ns = w.nsteals) != 0) {
1590 <                        w.nsteals = 0;        // set rescans if ran task
1591 <                        w.rescans = (a > 0) ? 0 : a + parallelism;
1592 <                        w.totalSteals += ns;
1593 <                    }
1594 <                    if (a == 1 - parallelism) // quiescent
1595 <                        idleAwaitWork(w, nc, c);
1596 <                }
1597 <            }
1598 <            else if (w.eventCount < 0) {      // already queued
1599 <                if ((nr = w.rescans) > 0) {   // continue rescanning
1600 <                    int ac = a + parallelism;
1601 <                    if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1602 <                        Thread.yield();       // yield before block
1603 <                }
1604 <                else {
1605 <                    Thread.interrupted();     // clear status
1606 <                    Thread wt = Thread.currentThread();
1607 <                    U.putObject(wt, PARKBLOCKER, this);
1608 <                    w.parker = wt;            // emulate LockSupport.park
1609 <                    if (w.eventCount < 0)     // recheck
1610 <                        U.park(false, 0L);
1611 <                    w.parker = null;
1612 <                    U.putObject(wt, PARKBLOCKER, null);
1613 <                }
1721 >            if ((hint = w.hint) >= 0) {          // help signal
1722 >                WorkQueue[] vs; WorkQueue v; int k;
1723 >                w.hint = -1;                     // suppress resignal
1724 >                if ((vs = workQueues) != null && hint < vs.length &&
1725 >                    (v = vs[hint]) != null && (k = v.base - v.top) < -1)
1726 >                    signalWork(v, 1 - k);
1727              }
1728          }
1729          return null;
# Line 1619 | Line 1732 | public class ForkJoinPool extends Abstra
1732      /**
1733       * If inactivating worker w has caused the pool to become
1734       * quiescent, checks for pool termination, and, so long as this is
1735 <     * not the only worker, waits for event for up to SHRINK_RATE
1736 <     * nanosecs.  On timeout, if ctl has not changed, terminates the
1735 >     * not the only worker, waits for event for up to a given
1736 >     * duration.  On timeout, if ctl has not changed, terminates the
1737       * worker, which will in turn wake up another worker to possibly
1738       * repeat this process.
1739       *
# Line 1629 | Line 1742 | public class ForkJoinPool extends Abstra
1742       * @param prevCtl the ctl value to restore if thread is terminated
1743       */
1744      private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1745 <        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1746 <            (int)prevCtl != 0 && ctl == currentCtl) {
1745 >        if (w != null && w.eventCount < 0 &&
1746 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1747 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1748 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1749 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1750              Thread wt = Thread.currentThread();
1635            Thread.yield();            // yield before block
1751              while (ctl == currentCtl) {
1637                long startTime = System.nanoTime();
1752                  Thread.interrupted();  // timed variant of version in scan()
1753                  U.putObject(wt, PARKBLOCKER, this);
1754                  w.parker = wt;
1755                  if (ctl == currentCtl)
1756 <                    U.park(false, SHRINK_RATE);
1756 >                    U.park(false, parkTime);
1757                  w.parker = null;
1758                  U.putObject(wt, PARKBLOCKER, null);
1759                  if (ctl != currentCtl)
1760                      break;
1761 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1761 >                if (deadline - System.nanoTime() <= 0L &&
1762                      U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1763                      w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1764 <                    w.runState = -1;   // shrink
1764 >                    w.qlock = -1;   // shrink
1765 >                    w.hint = -1;    // suppress helping
1766                      break;
1767                  }
1768              }
# Line 1655 | Line 1770 | public class ForkJoinPool extends Abstra
1770      }
1771  
1772      /**
1773 +     * Scans through queues looking for work (optionally, while
1774 +     * joining a task); if any are present, signals. May return early
1775 +     * if more signalling is detectably unneeded.
1776 +     *
1777 +     * @param task if non-null, return early if done
1778 +     * @param origin an index to start scan
1779 +     */
1780 +    final int helpSignal(ForkJoinTask<?> task, int origin) {
1781 +        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1782 +        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1783 +            for (int i = 0; i <= m; ++i) {
1784 +                if (task != null && (s = task.status) < 0)
1785 +                    return s;
1786 +                if ((q = ws[(i + origin) & m]) != null &&
1787 +                    (n = q.queueSize()) > 0) {
1788 +                    signalWork(q, n);
1789 +                    if ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
1790 +                        break;
1791 +                }
1792 +            }
1793 +        }
1794 +        return 0;
1795 +    }
1796 +
1797 +    /**
1798       * Tries to locate and execute tasks for a stealer of the given
1799       * task, or in turn one of its stealers, Traces currentSteal ->
1800       * currentJoin links looking for a thread working on a descendant
# Line 1665 | Line 1805 | public class ForkJoinPool extends Abstra
1805       * leaves hints in workers to speed up subsequent calls. The
1806       * implementation is very branchy to cope with potential
1807       * inconsistencies or loops encountering chains that are stale,
1808 <     * unknown, or so long that they are likely cyclic.  All of these
1669 <     * cases are dealt with by just retrying by caller.
1808 >     * unknown, or so long that they are likely cyclic.
1809       *
1810       * @param joiner the joining worker
1811       * @param task the task to join
1812 <     * @return true if found or ran a task (and so is immediately retryable)
1812 >     * @return 0 if no progress can be made, negative if task
1813 >     * known complete, else positive
1814       */
1815 <    private boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1816 <        WorkQueue[] ws;
1817 <        int m, depth = MAX_HELP;                // remaining chain depth
1818 <        boolean progress = false;
1819 <        if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1820 <            task.status >= 0) {
1821 <            ForkJoinTask<?> subtask = task;     // current target
1822 <            outer: for (WorkQueue j = joiner;;) {
1823 <                WorkQueue stealer = null;       // find stealer of subtask
1824 <                WorkQueue v = ws[j.stealHint & m]; // try hint
1825 <                if (v != null && v.currentSteal == subtask)
1826 <                    stealer = v;
1827 <                else {                          // scan
1828 <                    for (int i = 1; i <= m; i += 2) {
1829 <                        if ((v = ws[i]) != null && v.currentSteal == subtask &&
1830 <                            v != joiner) {
1831 <                            stealer = v;
1832 <                            j.stealHint = i;    // save hint
1833 <                            break;
1815 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1816 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1817 >        if (joiner != null && task != null) {       // hoist null checks
1818 >            restart: for (;;) {
1819 >                ForkJoinTask<?> subtask = task;     // current target
1820 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1821 >                    WorkQueue[] ws; int m, s, h;
1822 >                    if ((s = task.status) < 0) {
1823 >                        stat = s;
1824 >                        break restart;
1825 >                    }
1826 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1827 >                        break restart;              // shutting down
1828 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1829 >                        v.currentSteal != subtask) {
1830 >                        for (int origin = h;;) {    // find stealer
1831 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1832 >                                (subtask.status < 0 || j.currentJoin != subtask))
1833 >                                continue restart;   // occasional staleness check
1834 >                            if ((v = ws[h]) != null &&
1835 >                                v.currentSteal == subtask) {
1836 >                                j.hint = h;        // save hint
1837 >                                break;
1838 >                            }
1839 >                            if (h == origin)
1840 >                                break restart;      // cannot find stealer
1841                          }
1842                      }
1843 <                    if (stealer == null)
1844 <                        break;
1845 <                }
1846 <
1847 <                for (WorkQueue q = stealer;;) { // try to help stealer
1848 <                    ForkJoinTask[] a; ForkJoinTask<?> t; int b;
1849 <                    if (task.status < 0)
1850 <                        break outer;
1851 <                    if ((b = q.base) - q.top < 0 && (a = q.array) != null) {
1852 <                        progress = true;
1853 <                        int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1854 <                        t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1855 <                        if (subtask.status < 0) // must recheck before taking
1856 <                            break outer;
1857 <                        if (t != null &&
1858 <                            q.base == b &&
1859 <                            U.compareAndSwapObject(a, i, t, null)) {
1860 <                            q.base = b + 1;
1861 <                            joiner.runSubtask(t);
1843 >                    for (;;) { // help stealer or descend to its stealer
1844 >                        ForkJoinTask[] a;  int b;
1845 >                        if (subtask.status < 0)     // surround probes with
1846 >                            continue restart;       //   consistency checks
1847 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1848 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1849 >                            ForkJoinTask<?> t =
1850 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1851 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1852 >                                v.currentSteal != subtask)
1853 >                                continue restart;   // stale
1854 >                            stat = 1;               // apparent progress
1855 >                            if (t != null && v.base == b &&
1856 >                                U.compareAndSwapObject(a, i, t, null)) {
1857 >                                v.base = b + 1;     // help stealer
1858 >                                joiner.runSubtask(t);
1859 >                            }
1860 >                            else if (v.base == b && ++steps == MAX_HELP)
1861 >                                break restart;      // v apparently stalled
1862 >                        }
1863 >                        else {                      // empty -- try to descend
1864 >                            ForkJoinTask<?> next = v.currentJoin;
1865 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1866 >                                v.currentSteal != subtask)
1867 >                                continue restart;   // stale
1868 >                            else if (next == null || ++steps == MAX_HELP)
1869 >                                break restart;      // dead-end or maybe cyclic
1870 >                            else {
1871 >                                subtask = next;
1872 >                                j = v;
1873 >                                break;
1874 >                            }
1875                          }
1716                        else if (q.base == b)
1717                            break outer;        // possibly stalled
1718                    }
1719                    else {                      // descend
1720                        ForkJoinTask<?> next = stealer.currentJoin;
1721                        if (--depth <= 0 || subtask.status < 0 ||
1722                            next == null || next == subtask)
1723                            break outer;        // stale, dead-end, or cyclic
1724                        subtask = next;
1725                        j = stealer;
1726                        break;
1876                      }
1877                  }
1878              }
1879          }
1880 <        return progress;
1880 >        return stat;
1881      }
1882  
1883      /**
1884 <     * If task is at base of some steal queue, steals and executes it.
1884 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1885 >     * and run tasks within the target's computation.
1886 >     *
1887 >     * @param task the task to join
1888 >     * @param mode if shared, exit upon completing any task
1889 >     * if all workers are active
1890       *
1737     * @param joiner the joining worker
1738     * @param task the task
1891       */
1892 <    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1893 <        WorkQueue[] ws;
1894 <        if ((ws = workQueues) != null) {
1895 <            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1896 <                WorkQueue q = ws[j];
1897 <                if (q != null && q.pollFor(task)) {
1898 <                    joiner.runSubtask(task);
1899 <                    break;
1892 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1893 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1894 >        if (task != null && (ws = workQueues) != null &&
1895 >            (m = ws.length - 1) >= 0) {
1896 >            for (int j = 1, origin = j;;) {
1897 >                if ((s = task.status) < 0)
1898 >                    return s;
1899 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1900 >                    origin = j;
1901 >                    if (mode == SHARED_QUEUE &&
1902 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1903 >                        break;
1904                  }
1905 +                else if ((j = (j + 2) & m) == origin)
1906 +                    break;
1907              }
1908          }
1909 +        return 0;
1910      }
1911  
1912      /**
1913       * Tries to decrement active count (sometimes implicitly) and
1914       * possibly release or create a compensating worker in preparation
1915       * for blocking. Fails on contention or termination. Otherwise,
1916 <     * adds a new thread if no idle workers are available and either
1917 <     * pool would become completely starved or: (at least half
1759 <     * starved, and fewer than 50% spares exist, and there is at least
1760 <     * one task apparently available). Even though the availability
1761 <     * check requires a full scan, it is worthwhile in reducing false
1762 <     * alarms.
1763 <     *
1764 <     * @param task if nonnull, a task being waited for
1765 <     * @param blocker if nonnull, a blocker being waited for
1766 <     * @return true if the caller can block, else should recheck and retry
1916 >     * adds a new thread if no idle workers are available and pool
1917 >     * may become starved.
1918       */
1919 <    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1920 <        int pc = parallelism, e;
1921 <        long c = ctl;
1922 <        WorkQueue[] ws = workQueues;
1923 <        if ((e = (int)c) >= 0 && ws != null) {
1924 <            int u, a, ac, hc;
1925 <            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1926 <            boolean replace = false;
1927 <            if ((a = u >> UAC_SHIFT) <= 0) {
1928 <                if ((ac = a + pc) <= 1)
1929 <                    replace = true;
1930 <                else if ((e > 0 || (task != null &&
1931 <                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1781 <                    WorkQueue w;
1782 <                    for (int j = 0; j < ws.length; ++j) {
1783 <                        if ((w = ws[j]) != null && !w.isEmpty()) {
1784 <                            replace = true;
1785 <                            break;   // in compensation range and tasks available
1786 <                        }
1787 <                    }
1919 >    final boolean tryCompensate() {
1920 >        int pc = config & SMASK, e, i, tc; long c;
1921 >        WorkQueue[] ws; WorkQueue w; Thread p;
1922 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1923 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1924 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1925 >                long nc = ((long)(w.nextWait & E_MASK) |
1926 >                           (c & (AC_MASK|TC_MASK)));
1927 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1928 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1929 >                    if ((p = w.parker) != null)
1930 >                        U.unpark(p);
1931 >                    return true;   // replace with idle worker
1932                  }
1933              }
1934 <            if ((task == null || task.status >= 0) && // recheck need to block
1935 <                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1936 <                if (!replace) {          // no compensation
1937 <                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1938 <                    if (U.compareAndSwapLong(this, CTL, c, nc))
1939 <                        return true;
1940 <                }
1941 <                else if (e != 0) {       // release an idle worker
1942 <                    WorkQueue w; Thread p; int i;
1943 <                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1944 <                        long nc = ((long)(w.nextWait & E_MASK) |
1801 <                                   (c & (AC_MASK|TC_MASK)));
1802 <                        if (w.eventCount == (e | INT_SIGN) &&
1803 <                            U.compareAndSwapLong(this, CTL, c, nc)) {
1804 <                            w.eventCount = (e + E_SEQ) & E_MASK;
1805 <                            if ((p = w.parker) != null)
1806 <                                U.unpark(p);
1807 <                            return true;
1808 <                        }
1809 <                    }
1810 <                }
1811 <                else if (tc < MAX_CAP) { // create replacement
1812 <                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1813 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1814 <                        addWorker();
1815 <                        return true;
1816 <                    }
1934 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1935 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1936 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1937 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1938 >                    return true;   // no compensation
1939 >            }
1940 >            else if (tc + pc < MAX_CAP) {
1941 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1942 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1943 >                    addWorker();
1944 >                    return true;
1945                  }
1946              }
1947          }
# Line 1821 | Line 1949 | public class ForkJoinPool extends Abstra
1949      }
1950  
1951      /**
1952 <     * Helps and/or blocks until the given task is done
1952 >     * Helps and/or blocks until the given task is done.
1953       *
1954       * @param joiner the joining worker
1955       * @param task the task
1956       * @return task status on exit
1957       */
1958      final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1959 <        ForkJoinTask<?> prevJoin = joiner.currentJoin;
1960 <        joiner.currentJoin = task;
1961 <        long startTime = 0L;
1962 <        for (int k = 0, s; ; ++k) {
1963 <            if ((joiner.isEmpty() ?                  // try to help
1964 <                 !tryHelpStealer(joiner, task) :
1965 <                 !joiner.tryRemoveAndExec(task))) {
1966 <                if (k == 0) {
1967 <                    startTime = System.nanoTime();
1968 <                    tryPollForAndExec(joiner, task); // check uncommon case
1969 <                }
1970 <                else if ((k & (MAX_HELP - 1)) == 0 &&
1971 <                         System.nanoTime() - startTime >= COMPENSATION_DELAY &&
1972 <                         tryCompensate(task, null)) {
1973 <                    if (task.trySetSignal() && task.status >= 0) {
1974 <                        synchronized (task) {
1975 <                            if (task.status >= 0) {
1976 <                                try {                // see ForkJoinTask
1977 <                                    task.wait();     //  for explanation
1978 <                                } catch (InterruptedException ie) {
1959 >        int s = 0;
1960 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1961 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1962 >            joiner.currentJoin = task;
1963 >            do {} while ((s = task.status) >= 0 &&
1964 >                         joiner.queueSize() > 0 &&
1965 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1966 >            if (s >= 0 && (s = task.status) >= 0 &&
1967 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1968 >                (task instanceof CountedCompleter))
1969 >                s = helpComplete(task, LIFO_QUEUE);
1970 >            int k = 0; // to perform pre-block yield for politeness
1971 >            while (s >= 0 && (s = task.status) >= 0) {
1972 >                if ((joiner.queueSize() > 0 ||           // try helping
1973 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1974 >                    (s = task.status) >= 0) {
1975 >                    if (k < 3) {
1976 >                        if (++k < 3)
1977 >                            s = helpSignal(task, joiner.poolIndex);
1978 >                        else
1979 >                            Thread.yield();
1980 >                    }
1981 >                    else if (!tryCompensate())
1982 >                        k = 0;
1983 >                    else {
1984 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
1985 >                            synchronized (task) {
1986 >                                if (task.status >= 0) {
1987 >                                    try {                // see ForkJoinTask
1988 >                                        task.wait();     //  for explanation
1989 >                                    } catch (InterruptedException ie) {
1990 >                                    }
1991                                  }
1992 +                                else
1993 +                                    task.notifyAll();
1994                              }
1853                            else
1854                                task.notifyAll();
1995                          }
1996 +                        long c;                          // re-activate
1997 +                        do {} while (!U.compareAndSwapLong
1998 +                                     (this, CTL, c = ctl, c + AC_UNIT));
1999                      }
1857                    long c;                          // re-activate
1858                    do {} while (!U.compareAndSwapLong
1859                                 (this, CTL, c = ctl, c + AC_UNIT));
2000                  }
2001              }
2002 <            if ((s = task.status) < 0) {
1863 <                joiner.currentJoin = prevJoin;
1864 <                return s;
1865 <            }
1866 <            else if ((k & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1867 <                Thread.yield();                     // for politeness
2002 >            joiner.currentJoin = prevJoin;
2003          }
2004 +        return s;
2005      }
2006  
2007      /**
# Line 1875 | Line 2011 | public class ForkJoinPool extends Abstra
2011       *
2012       * @param joiner the joining worker
2013       * @param task the task
1878     * @return task status on exit
2014       */
2015 <    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2015 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2016          int s;
2017 <        while ((s = task.status) >= 0 &&
2018 <               (joiner.isEmpty() ?
2019 <                tryHelpStealer(joiner, task) :
2020 <                joiner.tryRemoveAndExec(task)))
2021 <            ;
2022 <        return s;
2017 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2018 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2019 >            joiner.currentJoin = task;
2020 >            do {} while ((s = task.status) >= 0 &&
2021 >                         joiner.queueSize() > 0 &&
2022 >                         joiner.tryRemoveAndExec(task));
2023 >            if (s >= 0 && (s = task.status) >= 0 &&
2024 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
2025 >                (task instanceof CountedCompleter))
2026 >                s = helpComplete(task, LIFO_QUEUE);
2027 >            if (s >= 0 && joiner.queueSize() == 0) {
2028 >                do {} while (task.status >= 0 &&
2029 >                             tryHelpStealer(joiner, task) > 0);
2030 >            }
2031 >            joiner.currentJoin = prevJoin;
2032 >        }
2033      }
2034  
2035      /**
# Line 1892 | Line 2037 | public class ForkJoinPool extends Abstra
2037       * during a random, then cyclic scan, else null.  This method must
2038       * be retried by caller if, by the time it tries to use the queue,
2039       * it is empty.
2040 +     * @param r a (random) seed for scanning
2041       */
2042 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1897 <        // Similar to loop in scan(), but ignoring submissions
1898 <        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1899 <        int step = (r >>> 16) | 1;
2042 >    private WorkQueue findNonEmptyStealQueue(int r) {
2043          for (WorkQueue[] ws;;) {
2044 <            int rs = runState, m;
2044 >            int ps = plock, m, n;
2045              if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2046                  return null;
2047 <            for (int j = (m + 1) << 2; ; r += step) {
2048 <                WorkQueue q = ws[((r << 1) | 1) & m];
2049 <                if (q != null && !q.isEmpty())
2047 >            for (int j = (m + 1) << 2; ;) {
2048 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2049 >                if (q != null && (n = q.queueSize()) > 0) {
2050 >                    if (n > 1)
2051 >                        signalWork(q, 0);
2052                      return q;
2053 +                }
2054                  else if (--j < 0) {
2055 <                    if (runState == rs)
2055 >                    if (plock == ps)
2056                          return null;
2057                      break;
2058                  }
# Line 1922 | Line 2068 | public class ForkJoinPool extends Abstra
2068       */
2069      final void helpQuiescePool(WorkQueue w) {
2070          for (boolean active = true;;) {
2071 <            if (w.base - w.top < 0)
2072 <                w.runLocalTasks();  // exhaust local queue
2073 <            WorkQueue q = findNonEmptyStealQueue(w);
2071 >            ForkJoinTask<?> localTask; // exhaust local queue
2072 >            while ((localTask = w.nextLocalTask()) != null)
2073 >                localTask.doExec();
2074 >            // Similar to loop in scan(), but ignoring submissions
2075 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2076              if (q != null) {
2077                  ForkJoinTask<?> t; int b;
2078                  if (!active) {      // re-establish active count
# Line 1945 | Line 2093 | public class ForkJoinPool extends Abstra
2093                  }
2094                  else
2095                      c = ctl;        // re-increment on exit
2096 <                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2096 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2097                      do {} while (!U.compareAndSwapLong
2098                                   (this, CTL, c = ctl, c + AC_UNIT));
2099                      break;
# Line 1964 | Line 2112 | public class ForkJoinPool extends Abstra
2112              WorkQueue q; int b;
2113              if ((t = w.nextLocalTask()) != null)
2114                  return t;
2115 <            if ((q = findNonEmptyStealQueue(w)) == null)
2115 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2116                  return null;
2117              if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2118                  return t;
# Line 1972 | Line 2120 | public class ForkJoinPool extends Abstra
2120      }
2121  
2122      /**
2123 <     * Returns the approximate (non-atomic) number of idle threads per
2124 <     * active thread to offset steal queue size for method
2125 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2126 <     */
2127 <    final int idlePerActive() {
2128 <        // Approximate at powers of two for small values, saturate past 4
2129 <        int p = parallelism;
2130 <        int a = p + (int)(ctl >> AC_SHIFT);
2131 <        return (a > (p >>>= 1) ? 0 :
2132 <                a > (p >>>= 1) ? 1 :
2133 <                a > (p >>>= 1) ? 2 :
2134 <                a > (p >>>= 1) ? 4 :
2135 <                8);
2123 >     * Returns a cheap heuristic guide for task partitioning when
2124 >     * programmers, frameworks, tools, or languages have little or no
2125 >     * idea about task granularity.  In essence by offering this
2126 >     * method, we ask users only about tradeoffs in overhead vs
2127 >     * expected throughput and its variance, rather than how finely to
2128 >     * partition tasks.
2129 >     *
2130 >     * In a steady state strict (tree-structured) computation, each
2131 >     * thread makes available for stealing enough tasks for other
2132 >     * threads to remain active. Inductively, if all threads play by
2133 >     * the same rules, each thread should make available only a
2134 >     * constant number of tasks.
2135 >     *
2136 >     * The minimum useful constant is just 1. But using a value of 1
2137 >     * would require immediate replenishment upon each steal to
2138 >     * maintain enough tasks, which is infeasible.  Further,
2139 >     * partitionings/granularities of offered tasks should minimize
2140 >     * steal rates, which in general means that threads nearer the top
2141 >     * of computation tree should generate more than those nearer the
2142 >     * bottom. In perfect steady state, each thread is at
2143 >     * approximately the same level of computation tree. However,
2144 >     * producing extra tasks amortizes the uncertainty of progress and
2145 >     * diffusion assumptions.
2146 >     *
2147 >     * So, users will want to use values larger, but not much larger
2148 >     * than 1 to both smooth over transient shortages and hedge
2149 >     * against uneven progress; as traded off against the cost of
2150 >     * extra task overhead. We leave the user to pick a threshold
2151 >     * value to compare with the results of this call to guide
2152 >     * decisions, but recommend values such as 3.
2153 >     *
2154 >     * When all threads are active, it is on average OK to estimate
2155 >     * surplus strictly locally. In steady-state, if one thread is
2156 >     * maintaining say 2 surplus tasks, then so are others. So we can
2157 >     * just use estimated queue length.  However, this strategy alone
2158 >     * leads to serious mis-estimates in some non-steady-state
2159 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2160 >     * many of these by further considering the number of "idle"
2161 >     * threads, that are known to have zero queued tasks, so
2162 >     * compensate by a factor of (#idle/#active) threads.
2163 >     *
2164 >     * Note: The approximation of #busy workers as #active workers is
2165 >     * not very good under current signalling scheme, and should be
2166 >     * improved.
2167 >     */
2168 >    static int getSurplusQueuedTaskCount() {
2169 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2170 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2171 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2172 >            int n = (q = wt.workQueue).top - q.base;
2173 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2174 >            return n - (a > (p >>>= 1) ? 0 :
2175 >                        a > (p >>>= 1) ? 1 :
2176 >                        a > (p >>>= 1) ? 2 :
2177 >                        a > (p >>>= 1) ? 4 :
2178 >                        8);
2179 >        }
2180 >        return 0;
2181      }
2182  
2183      //  Termination
# Line 2004 | Line 2197 | public class ForkJoinPool extends Abstra
2197       * @return true if now terminating or terminated
2198       */
2199      private boolean tryTerminate(boolean now, boolean enable) {
2200 <        Mutex lock = this.lock;
2200 >        if (this == commonPool)                     // cannot shut down
2201 >            return false;
2202          for (long c;;) {
2203              if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2204 <                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2205 <                    lock.lock();                    // don't need try/finally
2206 <                    termination.signalAll();        // signal when 0 workers
2207 <                    lock.unlock();
2204 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2205 >                    synchronized (this) {
2206 >                        notifyAll();                // signal when 0 workers
2207 >                    }
2208                  }
2209                  return true;
2210              }
2211 <            if (runState >= 0) {                    // not yet enabled
2211 >            if (plock >= 0) {                       // not yet enabled
2212 >                int ps;
2213                  if (!enable)
2214                      return false;
2215 <                lock.lock();
2216 <                runState |= SHUTDOWN;
2217 <                lock.unlock();
2215 >                if (((ps = plock) & PL_LOCK) != 0 ||
2216 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2217 >                    ps = acquirePlock();
2218 >                int nps = SHUTDOWN;
2219 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2220 >                    releasePlock(nps);
2221              }
2222              if (!now) {                             // check if idle & no tasks
2223 <                if ((int)(c >> AC_SHIFT) != -parallelism ||
2223 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2224                      hasQueuedSubmissions())
2225                      return false;
2226                  // Check for unqueued inactive workers. One pass suffices.
# Line 2042 | Line 2240 | public class ForkJoinPool extends Abstra
2240                          int n = ws.length;
2241                          for (int i = 0; i < n; ++i) {
2242                              if ((w = ws[i]) != null) {
2243 <                                w.runState = -1;
2243 >                                w.qlock = -1;
2244                                  if (pass > 0) {
2245                                      w.cancelAll();
2246                                      if (pass > 1)
# Line 2061 | Line 2259 | public class ForkJoinPool extends Abstra
2259                              if (w.eventCount == (e | INT_SIGN) &&
2260                                  U.compareAndSwapLong(this, CTL, cc, nc)) {
2261                                  w.eventCount = (e + E_SEQ) & E_MASK;
2262 <                                w.runState = -1;
2262 >                                w.qlock = -1;
2263                                  if ((p = w.parker) != null)
2264                                      U.unpark(p);
2265                              }
# Line 2072 | Line 2270 | public class ForkJoinPool extends Abstra
2270          }
2271      }
2272  
2273 +    // external operations on common pool
2274 +
2275 +    /**
2276 +     * Returns common pool queue for a thread that has submitted at
2277 +     * least one task.
2278 +     */
2279 +    static WorkQueue commonSubmitterQueue() {
2280 +        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2281 +        return ((z = submitters.get()) != null &&
2282 +                (p = commonPool) != null &&
2283 +                (ws = p.workQueues) != null &&
2284 +                (m = ws.length - 1) >= 0) ?
2285 +            ws[m & z.seed & SQMASK] : null;
2286 +    }
2287 +
2288 +    /**
2289 +     * Tries to pop the given task from submitter's queue in common pool.
2290 +     */
2291 +    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2292 +        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2293 +        ForkJoinTask<?>[] a;  int m, s; long j;
2294 +        if ((z = submitters.get()) != null &&
2295 +            (p = commonPool) != null &&
2296 +            (ws = p.workQueues) != null &&
2297 +            (m = ws.length - 1) >= 0 &&
2298 +            (q = ws[m & z.seed & SQMASK]) != null &&
2299 +            (s = q.top) != q.base &&
2300 +            (a = q.array) != null &&
2301 +            U.getObjectVolatile
2302 +            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2303 +            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2304 +            if (q.array == a && q.top == s && // recheck
2305 +                U.compareAndSwapObject(a, j, t, null)) {
2306 +                q.top = s - 1;
2307 +                q.qlock = 0;
2308 +                return true;
2309 +            }
2310 +            q.qlock = 0;
2311 +        }
2312 +        return false;
2313 +    }
2314 +
2315 +    /**
2316 +     * Tries to pop and run local tasks within the same computation
2317 +     * as the given root. On failure, tries to help complete from
2318 +     * other queues via helpComplete.
2319 +     */
2320 +    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2321 +        ForkJoinTask<?>[] a; int m;
2322 +        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2323 +            root != null && root.status >= 0) {
2324 +            for (;;) {
2325 +                int s, u; Object o; CountedCompleter<?> task = null;
2326 +                if ((s = q.top) - q.base > 0) {
2327 +                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2328 +                    if ((o = U.getObject(a, j)) != null &&
2329 +                        (o instanceof CountedCompleter)) {
2330 +                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2331 +                        do {
2332 +                            if (r == root) {
2333 +                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2334 +                                    if (q.array == a && q.top == s &&
2335 +                                        U.compareAndSwapObject(a, j, t, null)) {
2336 +                                        q.top = s - 1;
2337 +                                        task = t;
2338 +                                    }
2339 +                                    q.qlock = 0;
2340 +                                }
2341 +                                break;
2342 +                            }
2343 +                        } while ((r = r.completer) != null);
2344 +                    }
2345 +                }
2346 +                if (task != null)
2347 +                    task.doExec();
2348 +                if (root.status < 0 ||
2349 +                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2350 +                    break;
2351 +                if (task == null) {
2352 +                    if (helpSignal(root, q.poolIndex) >= 0)
2353 +                        helpComplete(root, SHARED_QUEUE);
2354 +                    break;
2355 +                }
2356 +            }
2357 +        }
2358 +    }
2359 +
2360 +    /**
2361 +     * Tries to help execute or signal availability of the given task
2362 +     * from submitter's queue in common pool.
2363 +     */
2364 +    static void externalHelpJoin(ForkJoinTask<?> t) {
2365 +        // Some hard-to-avoid overlap with tryExternalUnpush
2366 +        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2367 +        ForkJoinTask<?>[] a;  int m, s, n; long j;
2368 +        if (t != null &&
2369 +            (z = submitters.get()) != null &&
2370 +            (p = commonPool) != null &&
2371 +            (ws = p.workQueues) != null &&
2372 +            (m = ws.length - 1) >= 0 &&
2373 +            (q = ws[m & z.seed & SQMASK]) != null &&
2374 +            (a = q.array) != null &&
2375 +            t.status >= 0) {
2376 +            if ((s = q.top) != q.base &&
2377 +                U.getObjectVolatile
2378 +                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2379 +                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2380 +                if (q.array == a && q.top == s &&
2381 +                    U.compareAndSwapObject(a, j, t, null)) {
2382 +                    q.top = s - 1;
2383 +                    q.qlock = 0;
2384 +                    t.doExec();
2385 +                }
2386 +                else
2387 +                    q.qlock = 0;
2388 +            }
2389 +            if (t.status >= 0) {
2390 +                if (t instanceof CountedCompleter)
2391 +                    p.externalHelpComplete(q, t);
2392 +                else
2393 +                    p.helpSignal(t, q.poolIndex);
2394 +            }
2395 +        }
2396 +    }
2397 +
2398 +    /**
2399 +     * Restricted version of helpQuiescePool for external callers
2400 +     */
2401 +    static void externalHelpQuiescePool() {
2402 +        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2403 +        if ((p = commonPool) != null &&
2404 +            (q = p.findNonEmptyStealQueue(1)) != null &&
2405 +            (b = q.base) - q.top < 0 &&
2406 +            (t = q.pollAt(b)) != null)
2407 +            t.doExec();
2408 +    }
2409 +
2410      // Exported methods
2411  
2412      // Constructors
# Line 2143 | Line 2478 | public class ForkJoinPool extends Abstra
2478              throw new NullPointerException();
2479          if (parallelism <= 0 || parallelism > MAX_CAP)
2480              throw new IllegalArgumentException();
2146        this.parallelism = parallelism;
2481          this.factory = factory;
2482          this.ueh = handler;
2483 <        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2483 >        this.config = parallelism | (asyncMode? (FIFO_QUEUE << 16) : 0);
2484          long np = (long)(-parallelism); // offset ctl counts
2485          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2486 <        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2153 <        int n = parallelism - 1;
2154 <        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2155 <        int size = (n + 1) << 1;        // #slots = 2*#workers
2156 <        this.submitMask = size - 1;     // room for max # of submit queues
2157 <        this.workQueues = new WorkQueue[size];
2158 <        this.termination = (this.lock = new Mutex()).newCondition();
2159 <        this.stealCount = new AtomicLong();
2160 <        this.nextWorkerNumber = new AtomicInteger();
2161 <        int pn = poolNumberGenerator.incrementAndGet();
2486 >        int pn = nextPoolId();
2487          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2488          sb.append(Integer.toString(pn));
2489          sb.append("-worker-");
2490          this.workerNamePrefix = sb.toString();
2491 <        lock.lock();
2492 <        this.runState = 1;              // set init flag
2493 <        lock.unlock();
2491 >    }
2492 >
2493 >    /**
2494 >     * Constructor for common pool, suitable only for static initialization.
2495 >     * Basically the same as above, but uses smallest possible initial footprint.
2496 >     */
2497 >    ForkJoinPool(int parallelism, long ctl,
2498 >                 ForkJoinWorkerThreadFactory factory,
2499 >                 Thread.UncaughtExceptionHandler handler) {
2500 >        this.config = parallelism;
2501 >        this.ctl = ctl;
2502 >        this.factory = factory;
2503 >        this.ueh = handler;
2504 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2505 >    }
2506 >
2507 >    /**
2508 >     * Returns the common pool instance.
2509 >     *
2510 >     * @return the common pool instance
2511 >     */
2512 >    public static ForkJoinPool commonPool() {
2513 >        // assert commonPool != null : "static init error";
2514 >        return commonPool;
2515      }
2516  
2517      // Execution methods
# Line 2189 | Line 2535 | public class ForkJoinPool extends Abstra
2535      public <T> T invoke(ForkJoinTask<T> task) {
2536          if (task == null)
2537              throw new NullPointerException();
2538 <        doSubmit(task);
2538 >        externalPush(task);
2539          return task.join();
2540      }
2541  
# Line 2204 | Line 2550 | public class ForkJoinPool extends Abstra
2550      public void execute(ForkJoinTask<?> task) {
2551          if (task == null)
2552              throw new NullPointerException();
2553 <        doSubmit(task);
2553 >        externalPush(task);
2554      }
2555  
2556      // AbstractExecutorService methods
# Line 2222 | Line 2568 | public class ForkJoinPool extends Abstra
2568              job = (ForkJoinTask<?>) task;
2569          else
2570              job = new ForkJoinTask.AdaptedRunnableAction(task);
2571 <        doSubmit(job);
2571 >        externalPush(job);
2572      }
2573  
2574      /**
# Line 2237 | Line 2583 | public class ForkJoinPool extends Abstra
2583      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2584          if (task == null)
2585              throw new NullPointerException();
2586 <        doSubmit(task);
2586 >        externalPush(task);
2587          return task;
2588      }
2589  
# Line 2248 | Line 2594 | public class ForkJoinPool extends Abstra
2594       */
2595      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2596          ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2597 <        doSubmit(job);
2597 >        externalPush(job);
2598          return job;
2599      }
2600  
# Line 2259 | Line 2605 | public class ForkJoinPool extends Abstra
2605       */
2606      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2607          ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2608 <        doSubmit(job);
2608 >        externalPush(job);
2609          return job;
2610      }
2611  
# Line 2276 | Line 2622 | public class ForkJoinPool extends Abstra
2622              job = (ForkJoinTask<?>) task;
2623          else
2624              job = new ForkJoinTask.AdaptedRunnableAction(task);
2625 <        doSubmit(job);
2625 >        externalPush(job);
2626          return job;
2627      }
2628  
# Line 2298 | Line 2644 | public class ForkJoinPool extends Abstra
2644          try {
2645              for (Callable<T> t : tasks) {
2646                  ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2647 <                doSubmit(f);
2647 >                externalPush(f);
2648                  fs.add(f);
2649              }
2650              for (ForkJoinTask<T> f : fs)
# Line 2337 | Line 2683 | public class ForkJoinPool extends Abstra
2683       * @return the targeted parallelism level of this pool
2684       */
2685      public int getParallelism() {
2686 <        return parallelism;
2686 >        return config & SMASK;
2687 >    }
2688 >
2689 >    /**
2690 >     * Returns the targeted parallelism level of the common pool.
2691 >     *
2692 >     * @return the targeted parallelism level of the common pool
2693 >     */
2694 >    public static int getCommonPoolParallelism() {
2695 >        return commonPoolParallelism;
2696      }
2697  
2698      /**
# Line 2349 | Line 2704 | public class ForkJoinPool extends Abstra
2704       * @return the number of worker threads
2705       */
2706      public int getPoolSize() {
2707 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2707 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2708      }
2709  
2710      /**
# Line 2359 | Line 2714 | public class ForkJoinPool extends Abstra
2714       * @return {@code true} if this pool uses async mode
2715       */
2716      public boolean getAsyncMode() {
2717 <        return localMode != 0;
2717 >        return (config >>> 16) == FIFO_QUEUE;
2718      }
2719  
2720      /**
# Line 2390 | Line 2745 | public class ForkJoinPool extends Abstra
2745       * @return the number of active threads
2746       */
2747      public int getActiveThreadCount() {
2748 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2748 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2749          return (r <= 0) ? 0 : r; // suppress momentarily negative values
2750      }
2751  
# Line 2406 | Line 2761 | public class ForkJoinPool extends Abstra
2761       * @return {@code true} if all threads are currently idle
2762       */
2763      public boolean isQuiescent() {
2764 <        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2764 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2765      }
2766  
2767      /**
# Line 2421 | Line 2776 | public class ForkJoinPool extends Abstra
2776       * @return the number of steals
2777       */
2778      public long getStealCount() {
2779 <        long count = stealCount.get();
2779 >        long count = stealCount;
2780          WorkQueue[] ws; WorkQueue w;
2781          if ((ws = workQueues) != null) {
2782              for (int i = 1; i < ws.length; i += 2) {
2783                  if ((w = ws[i]) != null)
2784 <                    count += w.totalSteals;
2784 >                    count += w.nsteals;
2785              }
2786          }
2787          return count;
# Line 2483 | Line 2838 | public class ForkJoinPool extends Abstra
2838          WorkQueue[] ws; WorkQueue w;
2839          if ((ws = workQueues) != null) {
2840              for (int i = 0; i < ws.length; i += 2) {
2841 <                if ((w = ws[i]) != null && !w.isEmpty())
2841 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2842                      return true;
2843              }
2844          }
# Line 2551 | Line 2906 | public class ForkJoinPool extends Abstra
2906      public String toString() {
2907          // Use a single pass through workQueues to collect counts
2908          long qt = 0L, qs = 0L; int rc = 0;
2909 <        long st = stealCount.get();
2909 >        long st = stealCount;
2910          long c = ctl;
2911          WorkQueue[] ws; WorkQueue w;
2912          if ((ws = workQueues) != null) {
# Line 2562 | Line 2917 | public class ForkJoinPool extends Abstra
2917                          qs += size;
2918                      else {
2919                          qt += size;
2920 <                        st += w.totalSteals;
2920 >                        st += w.nsteals;
2921                          if (w.isApparentlyUnblocked())
2922                              ++rc;
2923                      }
2924                  }
2925              }
2926          }
2927 <        int pc = parallelism;
2927 >        int pc = (config & SMASK);
2928          int tc = pc + (short)(c >>> TC_SHIFT);
2929          int ac = pc + (int)(c >> AC_SHIFT);
2930          if (ac < 0) // ignore transient negative
# Line 2578 | Line 2933 | public class ForkJoinPool extends Abstra
2933          if ((c & STOP_BIT) != 0)
2934              level = (tc == 0) ? "Terminated" : "Terminating";
2935          else
2936 <            level = runState < 0 ? "Shutting down" : "Running";
2936 >            level = plock < 0 ? "Shutting down" : "Running";
2937          return super.toString() +
2938              "[" + level +
2939              ", parallelism = " + pc +
# Line 2592 | Line 2947 | public class ForkJoinPool extends Abstra
2947      }
2948  
2949      /**
2950 <     * Initiates an orderly shutdown in which previously submitted
2951 <     * tasks are executed, but no new tasks will be accepted.
2952 <     * Invocation has no additional effect if already shut down.
2953 <     * Tasks that are in the process of being submitted concurrently
2954 <     * during the course of this method may or may not be rejected.
2950 >     * Possibly initiates an orderly shutdown in which previously
2951 >     * submitted tasks are executed, but no new tasks will be
2952 >     * accepted. Invocation has no effect on execution state if this
2953 >     * is the {@link #commonPool}, and no additional effect if
2954 >     * already shut down.  Tasks that are in the process of being
2955 >     * submitted concurrently during the course of this method may or
2956 >     * may not be rejected.
2957       *
2958       * @throws SecurityException if a security manager exists and
2959       *         the caller is not permitted to modify threads
# Line 2609 | Line 2966 | public class ForkJoinPool extends Abstra
2966      }
2967  
2968      /**
2969 <     * Attempts to cancel and/or stop all tasks, and reject all
2970 <     * subsequently submitted tasks.  Tasks that are in the process of
2971 <     * being submitted or executed concurrently during the course of
2972 <     * this method may or may not be rejected. This method cancels
2973 <     * both existing and unexecuted tasks, in order to permit
2974 <     * termination in the presence of task dependencies. So the method
2975 <     * always returns an empty list (unlike the case for some other
2976 <     * Executors).
2969 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2970 >     * all subsequently submitted tasks.  Invocation has no effect on
2971 >     * execution state if this is the {@link #commonPool}, and no
2972 >     * additional effect if already shut down. Otherwise, tasks that
2973 >     * are in the process of being submitted or executed concurrently
2974 >     * during the course of this method may or may not be
2975 >     * rejected. This method cancels both existing and unexecuted
2976 >     * tasks, in order to permit termination in the presence of task
2977 >     * dependencies. So the method always returns an empty list
2978 >     * (unlike the case for some other Executors).
2979       *
2980       * @return an empty list
2981       * @throws SecurityException if a security manager exists and
# Line 2638 | Line 2997 | public class ForkJoinPool extends Abstra
2997      public boolean isTerminated() {
2998          long c = ctl;
2999          return ((c & STOP_BIT) != 0L &&
3000 <                (short)(c >>> TC_SHIFT) == -parallelism);
3000 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3001      }
3002  
3003      /**
# Line 2657 | Line 3016 | public class ForkJoinPool extends Abstra
3016      public boolean isTerminating() {
3017          long c = ctl;
3018          return ((c & STOP_BIT) != 0L &&
3019 <                (short)(c >>> TC_SHIFT) != -parallelism);
3019 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3020      }
3021  
3022      /**
# Line 2666 | Line 3025 | public class ForkJoinPool extends Abstra
3025       * @return {@code true} if this pool has been shut down
3026       */
3027      public boolean isShutdown() {
3028 <        return runState < 0;
3028 >        return plock < 0;
3029      }
3030  
3031      /**
3032 <     * Blocks until all tasks have completed execution after a shutdown
3033 <     * request, or the timeout occurs, or the current thread is
3034 <     * interrupted, whichever happens first.
3032 >     * Blocks until all tasks have completed execution after a
3033 >     * shutdown request, or the timeout occurs, or the current thread
3034 >     * is interrupted, whichever happens first. Note that the {@link
3035 >     * #commonPool()} never terminates until program shutdown so
3036 >     * this method will always time out.
3037       *
3038       * @param timeout the maximum time to wait
3039       * @param unit the time unit of the timeout argument
# Line 2683 | Line 3044 | public class ForkJoinPool extends Abstra
3044      public boolean awaitTermination(long timeout, TimeUnit unit)
3045          throws InterruptedException {
3046          long nanos = unit.toNanos(timeout);
3047 <        final Mutex lock = this.lock;
3048 <        lock.lock();
3049 <        try {
3050 <            for (;;) {
3051 <                if (isTerminated())
3052 <                    return true;
3053 <                if (nanos <= 0)
3054 <                    return false;
3055 <                nanos = termination.awaitNanos(nanos);
3047 >        if (isTerminated())
3048 >            return true;
3049 >        long startTime = System.nanoTime();
3050 >        boolean terminated = false;
3051 >        synchronized (this) {
3052 >            for (long waitTime = nanos, millis = 0L;;) {
3053 >                if (terminated = isTerminated() ||
3054 >                    waitTime <= 0L ||
3055 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3056 >                    break;
3057 >                wait(millis);
3058 >                waitTime = nanos - (System.nanoTime() - startTime);
3059              }
2696        } finally {
2697            lock.unlock();
3060          }
3061 +        return terminated;
3062      }
3063  
3064      /**
# Line 2794 | Line 3157 | public class ForkJoinPool extends Abstra
3157      public static void managedBlock(ManagedBlocker blocker)
3158          throws InterruptedException {
3159          Thread t = Thread.currentThread();
3160 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3161 <                          ((ForkJoinWorkerThread)t).pool : null);
3162 <        while (!blocker.isReleasable()) {
3163 <            if (p == null || p.tryCompensate(null, blocker)) {
3164 <                try {
3165 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3166 <                } finally {
3167 <                    if (p != null)
3160 >        if (t instanceof ForkJoinWorkerThread) {
3161 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3162 >            while (!blocker.isReleasable()) { // variant of helpSignal
3163 >                WorkQueue[] ws; WorkQueue q; int m, n, u;
3164 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3165 >                    for (int i = 0; i <= m; ++i) {
3166 >                        if (blocker.isReleasable())
3167 >                            return;
3168 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3169 >                            p.signalWork(q, n);
3170 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3171 >                                (u >> UAC_SHIFT) >= 0)
3172 >                                break;
3173 >                        }
3174 >                    }
3175 >                }
3176 >                if (p.tryCompensate()) {
3177 >                    try {
3178 >                        do {} while (!blocker.isReleasable() &&
3179 >                                     !blocker.block());
3180 >                    } finally {
3181                          p.incrementActiveCount();
3182 +                    }
3183 +                    break;
3184                  }
2807                break;
3185              }
3186          }
3187 +        else {
3188 +            do {} while (!blocker.isReleasable() &&
3189 +                         !blocker.block());
3190 +        }
3191      }
3192  
3193      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2827 | Line 3208 | public class ForkJoinPool extends Abstra
3208      private static final long PARKBLOCKER;
3209      private static final int ABASE;
3210      private static final int ASHIFT;
3211 +    private static final long STEALCOUNT;
3212 +    private static final long PLOCK;
3213 +    private static final long INDEXSEED;
3214 +    private static final long QLOCK;
3215  
3216      static {
3217 <        poolNumberGenerator = new AtomicInteger();
2833 <        nextSubmitterSeed = new AtomicInteger(0x55555555);
2834 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2835 <        defaultForkJoinWorkerThreadFactory =
2836 <            new DefaultForkJoinWorkerThreadFactory();
2837 <        submitters = new ThreadSubmitter();
2838 <        int s;
3217 >        int s; // initialize field offsets for CAS etc
3218          try {
3219              U = getUnsafe();
3220              Class<?> k = ForkJoinPool.class;
2842            Class<?> ak = ForkJoinTask[].class;
3221              CTL = U.objectFieldOffset
3222                  (k.getDeclaredField("ctl"));
3223 +            STEALCOUNT = U.objectFieldOffset
3224 +                (k.getDeclaredField("stealCount"));
3225 +            PLOCK = U.objectFieldOffset
3226 +                (k.getDeclaredField("plock"));
3227 +            INDEXSEED = U.objectFieldOffset
3228 +                (k.getDeclaredField("indexSeed"));
3229              Class<?> tk = Thread.class;
3230              PARKBLOCKER = U.objectFieldOffset
3231                  (tk.getDeclaredField("parkBlocker"));
3232 +            Class<?> wk = WorkQueue.class;
3233 +            QLOCK = U.objectFieldOffset
3234 +                (wk.getDeclaredField("qlock"));
3235 +            Class<?> ak = ForkJoinTask[].class;
3236              ABASE = U.arrayBaseOffset(ak);
3237              s = U.arrayIndexScale(ak);
3238 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3239          } catch (Exception e) {
3240              throw new Error(e);
3241          }
3242          if ((s & (s-1)) != 0)
3243              throw new Error("data type scale not a power of two");
3244 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3244 >
3245 >        submitters = new ThreadLocal<Submitter>();
3246 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3247 >            new DefaultForkJoinWorkerThreadFactory();
3248 >        /*
3249 >         * Establish common pool parameters.  For extra caution,
3250 >         * computations to set up common pool state are here; the
3251 >         * constructor just assigns these values to fields.
3252 >         */
3253 >
3254 >        int par = 0;
3255 >        Thread.UncaughtExceptionHandler handler = null;
3256 >        try {  // TBD: limit or report ignored exceptions?
3257 >            String pp = System.getProperty
3258 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3259 >            String hp = System.getProperty
3260 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3261 >            String fp = System.getProperty
3262 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3263 >            if (fp != null)
3264 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3265 >                       getSystemClassLoader().loadClass(fp).newInstance());
3266 >            if (hp != null)
3267 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3268 >                           getSystemClassLoader().loadClass(hp).newInstance());
3269 >            if (pp != null)
3270 >                par = Integer.parseInt(pp);
3271 >        } catch (Exception ignore) {
3272 >        }
3273 >
3274 >        if (par <= 0)
3275 >            par = Runtime.getRuntime().availableProcessors();
3276 >        if (par > MAX_CAP)
3277 >            par = MAX_CAP;
3278 >        commonPoolParallelism = par;
3279 >        long np = (long)(-par); // precompute initial ctl value
3280 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3281 >
3282 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3283 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3284      }
3285  
3286      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines