ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.13 by jsr166, Wed Jul 22 01:36:51 2009 UTC vs.
Revision 1.145 by jsr166, Mon Nov 19 01:04:24 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
24 < * ForkJoinPool provides the entry point for submissions from
25 < * non-ForkJoinTasks, as well as management and monitoring operations.
26 < * Normally a single ForkJoinPool is used for a large number of
27 < * submitted tasks. Otherwise, use would not usually outweigh the
28 < * construction and bookkeeping overhead of creating a large set of
29 < * threads.
23 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 > * A {@code ForkJoinPool} provides the entry point for submissions
25 > * from non-{@code ForkJoinTask} clients, as well as management and
26 > * monitoring operations.
27 > *
28 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 > * ExecutorService} mainly by virtue of employing
30 > * <em>work-stealing</em>: all threads in the pool attempt to find and
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39   *
40 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
41 < * that they provide <em>work-stealing</em>: all threads in the pool
42 < * attempt to find and execute subtasks created by other active tasks
43 < * (eventually blocking if none exist). This makes them efficient when
44 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
45 < * as the mixed execution of some plain Runnable- or Callable- based
30 < * activities along with ForkJoinTasks. When setting
31 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
32 < * use with fine-grained tasks that are never joined. Otherwise, other
33 < * ExecutorService implementations are typically more appropriate
34 < * choices.
40 > * <p>A static {@link #commonPool} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A ForkJoinPool may be constructed with a given parallelism level
48 < * (target pool size), which it attempts to maintain by dynamically
49 < * adding, suspending, or resuming threads, even if some tasks are
50 < * waiting to join others. However, no such adjustments are performed
51 < * in the face of blocked IO or other unmanaged synchronization. The
52 < * nested {@code ManagedBlocker} interface enables extension of
53 < * the kinds of synchronization accommodated.  The target parallelism
54 < * level may also be changed dynamically ({@code setParallelism})
55 < * and thread construction can be limited using methods
56 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56 > * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
59   * class provides status check methods (for example
60 < * {@code getStealCount}) that are intended to aid in developing,
60 > * {@link #getStealCount}) that are intended to aid in developing,
61   * tuning, and monitoring fork/join applications. Also, method
62 < * {@code toString} returns indications of pool state in a
62 > * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 + * <p>As is the case with other ExecutorServices, there are three
66 + * main task execution methods summarized in the following table.
67 + * These are designed to be used primarily by clients not already
68 + * engaged in fork/join computations in the current pool.  The main
69 + * forms of these methods accept instances of {@code ForkJoinTask},
70 + * but overloaded forms also allow mixed execution of plain {@code
71 + * Runnable}- or {@code Callable}- based activities as well.  However,
72 + * tasks that are already executing in a pool should normally instead
73 + * use the within-computation forms listed in the table unless using
74 + * async event-style tasks that are not usually joined, in which case
75 + * there is little difference among choice of methods.
76 + *
77 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 + *  <tr>
79 + *    <td></td>
80 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Arrange async execution</td>
85 + *    <td> {@link #execute(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#fork}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Await and obtain result</td>
90 + *    <td> {@link #invoke(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#invoke}</td>
92 + *  </tr>
93 + *  <tr>
94 + *    <td> <b>Arrange exec and obtain Future</td>
95 + *    <td> {@link #submit(ForkJoinTask)}</td>
96 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 + *  </tr>
98 + * </table>
99 + *
100 + * <p>The common pool is by default constructed with default
101 + * parameters, but these may be controlled by setting three {@link
102 + * System#getProperty properties} with prefix {@code
103 + * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 + * an integer greater than zero, {@code threadFactory} -- the class
105 + * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 + * exceptionHandler} -- the class name of a {@link
107 + * java.lang.Thread.UncaughtExceptionHandler
108 + * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 + * these settings, default parameters are used.
110 + *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
113 < * pools with greater than the maximum result in
114 < * IllegalArgumentExceptions.
113 > * pools with greater than the maximum number result in
114 > * {@code IllegalArgumentException}.
115 > *
116 > * <p>This implementation rejects submitted tasks (that is, by throwing
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 63 | Line 123 | import java.lang.reflect.*;
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
126 >     * Implementation Overview
127 >     *
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218 >     *
219 >     * The main throughput advantages of work-stealing stem from
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * blocking when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that is
320 >     * apparently empty, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- see signalWork).  These primary signals are buttressed by
323 >     * signals whenever other threads scan for work or do not have a
324 >     * task to process. On most platforms, signalling (unpark)
325 >     * overhead time is noticeably long, and the time between
326 >     * signalling a thread and it actually making progress can be very
327 >     * noticeably long, so it is worth offloading these delays from
328 >     * critical paths as much as possible.
329 >     *
330 >     * Trimming workers. To release resources after periods of lack of
331 >     * use, a worker starting to wait when the pool is quiescent will
332 >     * time out and terminate if the pool has remained quiescent for a
333 >     * given period -- a short period if there are more threads than
334 >     * parallelism, longer as the number of threads decreases. This
335 >     * will slowly propagate, eventually terminating all workers after
336 >     * periods of non-use.
337 >     *
338 >     * Shutdown and Termination. A call to shutdownNow atomically sets
339 >     * a plock bit and then (non-atomically) sets each worker's
340 >     * qlock status, cancels all unprocessed tasks, and wakes up
341 >     * all waiting workers.  Detecting whether termination should
342 >     * commence after a non-abrupt shutdown() call requires more work
343 >     * and bookkeeping. We need consensus about quiescence (i.e., that
344 >     * there is no more work). The active count provides a primary
345 >     * indication but non-abrupt shutdown still requires a rechecking
346 >     * scan for any workers that are inactive but not queued.
347 >     *
348 >     * Joining Tasks
349 >     * =============
350 >     *
351 >     * Any of several actions may be taken when one worker is waiting
352 >     * to join a task stolen (or always held) by another.  Because we
353 >     * are multiplexing many tasks on to a pool of workers, we can't
354 >     * just let them block (as in Thread.join).  We also cannot just
355 >     * reassign the joiner's run-time stack with another and replace
356 >     * it later, which would be a form of "continuation", that even if
357 >     * possible is not necessarily a good idea since we sometimes need
358 >     * both an unblocked task and its continuation to progress.
359 >     * Instead we combine two tactics:
360 >     *
361 >     *   Helping: Arranging for the joiner to execute some task that it
362 >     *      would be running if the steal had not occurred.
363 >     *
364 >     *   Compensating: Unless there are already enough live threads,
365 >     *      method tryCompensate() may create or re-activate a spare
366 >     *      thread to compensate for blocked joiners until they unblock.
367 >     *
368 >     * A third form (implemented in tryRemoveAndExec) amounts to
369 >     * helping a hypothetical compensator: If we can readily tell that
370 >     * a possible action of a compensator is to steal and execute the
371 >     * task being joined, the joining thread can do so directly,
372 >     * without the need for a compensation thread (although at the
373 >     * expense of larger run-time stacks, but the tradeoff is
374 >     * typically worthwhile).
375 >     *
376 >     * The ManagedBlocker extension API can't use helping so relies
377 >     * only on compensation in method awaitBlocker.
378 >     *
379 >     * The algorithm in tryHelpStealer entails a form of "linear"
380 >     * helping: Each worker records (in field currentSteal) the most
381 >     * recent task it stole from some other worker. Plus, it records
382 >     * (in field currentJoin) the task it is currently actively
383 >     * joining. Method tryHelpStealer uses these markers to try to
384 >     * find a worker to help (i.e., steal back a task from and execute
385 >     * it) that could hasten completion of the actively joined task.
386 >     * In essence, the joiner executes a task that would be on its own
387 >     * local deque had the to-be-joined task not been stolen. This may
388 >     * be seen as a conservative variant of the approach in Wagner &
389 >     * Calder "Leapfrogging: a portable technique for implementing
390 >     * efficient futures" SIGPLAN Notices, 1993
391 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
392 >     * that: (1) We only maintain dependency links across workers upon
393 >     * steals, rather than use per-task bookkeeping.  This sometimes
394 >     * requires a linear scan of workQueues array to locate stealers,
395 >     * but often doesn't because stealers leave hints (that may become
396 >     * stale/wrong) of where to locate them.  A stealHint is only a
397 >     * hint because a worker might have had multiple steals and the
398 >     * hint records only one of them (usually the most current).
399 >     * Hinting isolates cost to when it is needed, rather than adding
400 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
401 >     * and potentially cyclic mutual steals.  (3) It is intentionally
402 >     * racy: field currentJoin is updated only while actively joining,
403 >     * which means that we miss links in the chain during long-lived
404 >     * tasks, GC stalls etc (which is OK since blocking in such cases
405 >     * is usually a good idea).  (4) We bound the number of attempts
406 >     * to find work (see MAX_HELP) and fall back to suspending the
407 >     * worker and if necessary replacing it with another.
408 >     *
409 >     * Helping actions for CountedCompleters are much simpler: Method
410 >     * helpComplete can take and execute any task with the same root
411 >     * as the task being waited on. However, this still entails some
412 >     * traversal of completer chains, so is less efficient than using
413 >     * CountedCompleters without explicit joins.
414 >     *
415 >     * It is impossible to keep exactly the target parallelism number
416 >     * of threads running at any given time.  Determining the
417 >     * existence of conservatively safe helping targets, the
418 >     * availability of already-created spares, and the apparent need
419 >     * to create new spares are all racy, so we rely on multiple
420 >     * retries of each.  Compensation in the apparent absence of
421 >     * helping opportunities is challenging to control on JVMs, where
422 >     * GC and other activities can stall progress of tasks that in
423 >     * turn stall out many other dependent tasks, without us being
424 >     * able to determine whether they will ever require compensation.
425 >     * Even though work-stealing otherwise encounters little
426 >     * degradation in the presence of more threads than cores,
427 >     * aggressively adding new threads in such cases entails risk of
428 >     * unwanted positive feedback control loops in which more threads
429 >     * cause more dependent stalls (as well as delayed progress of
430 >     * unblocked threads to the point that we know they are available)
431 >     * leading to more situations requiring more threads, and so
432 >     * on. This aspect of control can be seen as an (analytically
433 >     * intractable) game with an opponent that may choose the worst
434 >     * (for us) active thread to stall at any time.  We take several
435 >     * precautions to bound losses (and thus bound gains), mainly in
436 >     * methods tryCompensate and awaitJoin.
437 >     *
438 >     * Common Pool
439 >     * ===========
440 >     *
441 >     * The static commonPool always exists after static
442 >     * initialization.  Since it (or any other created pool) need
443 >     * never be used, we minimize initial construction overhead and
444 >     * footprint to the setup of about a dozen fields, with no nested
445 >     * allocation. Most bootstrapping occurs within method
446 >     * fullExternalPush during the first submission to the pool.
447 >     *
448 >     * When external threads submit to the common pool, they can
449 >     * perform some subtask processing (see externalHelpJoin and
450 >     * related methods).  We do not need to record whether these
451 >     * submissions are to the common pool -- if not, externalHelpJoin
452 >     * returns quickly (at the most helping to signal some common pool
453 >     * workers). These submitters would otherwise be blocked waiting
454 >     * for completion, so the extra effort (with liberally sprinkled
455 >     * task status checks) in inapplicable cases amounts to an odd
456 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
457 >     *
458 >     * Style notes
459 >     * ===========
460 >     *
461 >     * There is a lot of representation-level coupling among classes
462 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
463 >     * fields of WorkQueue maintain data structures managed by
464 >     * ForkJoinPool, so are directly accessed.  There is little point
465 >     * trying to reduce this, since any associated future changes in
466 >     * representations will need to be accompanied by algorithmic
467 >     * changes anyway. Several methods intrinsically sprawl because
468 >     * they must accumulate sets of consistent reads of volatiles held
469 >     * in local variables.  Methods signalWork() and scan() are the
470 >     * main bottlenecks, so are especially heavily
471 >     * micro-optimized/mangled.  There are lots of inline assignments
472 >     * (of form "while ((local = field) != 0)") which are usually the
473 >     * simplest way to ensure the required read orderings (which are
474 >     * sometimes critical). This leads to a "C"-like style of listing
475 >     * declarations of these locals at the heads of methods or blocks.
476 >     * There are several occurrences of the unusual "do {} while
477 >     * (!cas...)"  which is the simplest way to force an update of a
478 >     * CAS'ed variable. There are also other coding oddities (including
479 >     * several unnecessary-looking hoisted null checks) that help
480 >     * some methods perform reasonably even when interpreted (not
481 >     * compiled).
482 >     *
483 >     * The order of declarations in this file is:
484 >     * (1) Static utility functions
485 >     * (2) Nested (static) classes
486 >     * (3) Static fields
487 >     * (4) Fields, along with constants used when unpacking some of them
488 >     * (5) Internal control methods
489 >     * (6) Callbacks and other support for ForkJoinTask methods
490 >     * (7) Exported methods
491 >     * (8) Static block initializing statics in minimally dependent order
492       */
493  
494 <    /** Mask for packing and unpacking shorts */
495 <    private static final int  shortMask = 0xffff;
494 >    // Static utilities
495 >
496 >    /**
497 >     * If there is a security manager, makes sure caller has
498 >     * permission to modify threads.
499 >     */
500 >    private static void checkPermission() {
501 >        SecurityManager security = System.getSecurityManager();
502 >        if (security != null)
503 >            security.checkPermission(modifyThreadPermission);
504 >    }
505  
506 <    /** Max pool size -- must be a power of two minus 1 */
74 <    private static final int MAX_THREADS =  0x7FFF;
506 >    // Nested classes
507  
508      /**
509 <     * Factory for creating new ForkJoinWorkerThreads.  A
510 <     * ForkJoinWorkerThreadFactory must be defined and used for
511 <     * ForkJoinWorkerThread subclasses that extend base functionality
512 <     * or initialize threads with different contexts.
509 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
510 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
511 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
512 >     * functionality or initialize threads with different contexts.
513       */
514      public static interface ForkJoinWorkerThreadFactory {
515          /**
516           * Returns a new worker thread operating in the given pool.
517           *
518           * @param pool the pool this thread works in
519 <         * @throws NullPointerException if pool is null
519 >         * @throws NullPointerException if the pool is null
520           */
521          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
522      }
523  
524      /**
525 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
525 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
526       * new ForkJoinWorkerThread.
527       */
528 <    static class  DefaultForkJoinWorkerThreadFactory
528 >    static class DefaultForkJoinWorkerThreadFactory
529          implements ForkJoinWorkerThreadFactory {
530          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
531 +            return new ForkJoinWorkerThread(pool);
532 +        }
533 +    }
534 +
535 +    /**
536 +     * Class for artificial tasks that are used to replace the target
537 +     * of local joins if they are removed from an interior queue slot
538 +     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
539 +     * actually do anything beyond having a unique identity.
540 +     */
541 +    static final class EmptyTask extends ForkJoinTask<Void> {
542 +        private static final long serialVersionUID = -7721805057305804111L;
543 +        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
544 +        public final Void getRawResult() { return null; }
545 +        public final void setRawResult(Void x) {}
546 +        public final boolean exec() { return true; }
547 +    }
548 +
549 +    /**
550 +     * Queues supporting work-stealing as well as external task
551 +     * submission. See above for main rationale and algorithms.
552 +     * Implementation relies heavily on "Unsafe" intrinsics
553 +     * and selective use of "volatile":
554 +     *
555 +     * Field "base" is the index (mod array.length) of the least valid
556 +     * queue slot, which is always the next position to steal (poll)
557 +     * from if nonempty. Reads and writes require volatile orderings
558 +     * but not CAS, because updates are only performed after slot
559 +     * CASes.
560 +     *
561 +     * Field "top" is the index (mod array.length) of the next queue
562 +     * slot to push to or pop from. It is written only by owner thread
563 +     * for push, or under lock for external/shared push, and accessed
564 +     * by other threads only after reading (volatile) base.  Both top
565 +     * and base are allowed to wrap around on overflow, but (top -
566 +     * base) (or more commonly -(base - top) to force volatile read of
567 +     * base before top) still estimates size. The lock ("qlock") is
568 +     * forced to -1 on termination, causing all further lock attempts
569 +     * to fail. (Note: we don't need CAS for termination state because
570 +     * upon pool shutdown, all shared-queues will stop being used
571 +     * anyway.)  Nearly all lock bodies are set up so that exceptions
572 +     * within lock bodies are "impossible" (modulo JVM errors that
573 +     * would cause failure anyway.)
574 +     *
575 +     * The array slots are read and written using the emulation of
576 +     * volatiles/atomics provided by Unsafe. Insertions must in
577 +     * general use putOrderedObject as a form of releasing store to
578 +     * ensure that all writes to the task object are ordered before
579 +     * its publication in the queue.  All removals entail a CAS to
580 +     * null.  The array is always a power of two. To ensure safety of
581 +     * Unsafe array operations, all accesses perform explicit null
582 +     * checks and implicit bounds checks via power-of-two masking.
583 +     *
584 +     * In addition to basic queuing support, this class contains
585 +     * fields described elsewhere to control execution. It turns out
586 +     * to work better memory-layout-wise to include them in this class
587 +     * rather than a separate class.
588 +     *
589 +     * Performance on most platforms is very sensitive to placement of
590 +     * instances of both WorkQueues and their arrays -- we absolutely
591 +     * do not want multiple WorkQueue instances or multiple queue
592 +     * arrays sharing cache lines. (It would be best for queue objects
593 +     * and their arrays to share, but there is nothing available to
594 +     * help arrange that).  Unfortunately, because they are recorded
595 +     * in a common array, WorkQueue instances are often moved to be
596 +     * adjacent by garbage collectors. To reduce impact, we use field
597 +     * padding that works OK on common platforms; this effectively
598 +     * trades off slightly slower average field access for the sake of
599 +     * avoiding really bad worst-case access. (Until better JVM
600 +     * support is in place, this padding is dependent on transient
601 +     * properties of JVM field layout rules.)  We also take care in
602 +     * allocating, sizing and resizing the array. Non-shared queue
603 +     * arrays are initialized by workers before use. Others are
604 +     * allocated on first use.
605 +     */
606 +    static final class WorkQueue {
607 +        /**
608 +         * Capacity of work-stealing queue array upon initialization.
609 +         * Must be a power of two; at least 4, but should be larger to
610 +         * reduce or eliminate cacheline sharing among queues.
611 +         * Currently, it is much larger, as a partial workaround for
612 +         * the fact that JVMs often place arrays in locations that
613 +         * share GC bookkeeping (especially cardmarks) such that
614 +         * per-write accesses encounter serious memory contention.
615 +         */
616 +        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
617 +
618 +        /**
619 +         * Maximum size for queue arrays. Must be a power of two less
620 +         * than or equal to 1 << (31 - width of array entry) to ensure
621 +         * lack of wraparound of index calculations, but defined to a
622 +         * value a bit less than this to help users trap runaway
623 +         * programs before saturating systems.
624 +         */
625 +        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
626 +
627 +        int seed;                  // for random scanning; initialize nonzero
628 +        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
629 +        int nextWait;              // encoded record of next event waiter
630 +        final int mode;            // lifo, fifo, or shared
631 +        int nsteals;               // cumulative number of steals
632 +        int poolIndex;             // index of this queue in pool (or 0)
633 +        int stealHint;             // index of most recent known stealer
634 +        volatile int qlock;        // 1: locked, -1: terminate; else 0
635 +        volatile int base;         // index of next slot for poll
636 +        int top;                   // index of next slot for push
637 +        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
638 +        final ForkJoinPool pool;   // the containing pool (may be null)
639 +        final ForkJoinWorkerThread owner; // owning thread or null if shared
640 +        volatile Thread parker;    // == owner during call to park; else null
641 +        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
642 +        ForkJoinTask<?> currentSteal; // current non-local task being executed
643 +        // Heuristic padding to ameliorate unfortunate memory placements
644 +        Object p00, p01, p02, p03, p04, p05, p06, p07;
645 +        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
646 +
647 +        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
648 +            this.mode = mode;
649 +            this.pool = pool;
650 +            this.owner = owner;
651 +            // Place indices in the center of array (that is not yet allocated)
652 +            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
653 +        }
654 +
655 +        /**
656 +         * Pushes a task. Call only by owner in unshared queues.
657 +         * Cases needing resizing or rejection are relayed to fullPush
658 +         * (that also handles shared queues).
659 +         *
660 +         * @param task the task. Caller must ensure non-null.
661 +         * @throw RejectedExecutionException if array cannot be resized
662 +         */
663 +        final void push(ForkJoinTask<?> task) {
664 +            ForkJoinPool p; ForkJoinTask<?>[] a;
665 +            int s = top, n;
666 +            if ((a = array) != null && a.length > (n = s + 1 - base)) {
667 +                U.putOrderedObject
668 +                    (a, (((a.length - 1) & s) << ASHIFT) + ABASE, task);
669 +                top = s + 1;
670 +                if (n <= 1 && (p = pool) != null)
671 +                    p.signalWork(this, 1);
672 +            }
673 +            else
674 +                fullPush(task, true);
675 +        }
676 +
677 +        /**
678 +         * Pushes a task if lock is free and array is either big
679 +         * enough or can be resized to be big enough. Note: a
680 +         * specialization of a common fast path of this method is in
681 +         * ForkJoinPool.externalPush. When called from a FJWT queue,
682 +         * this can fail only if the pool has been shut down or
683 +         * an out of memory error.
684 +         *
685 +         * @param task the task. Caller must ensure non-null.
686 +         * @param owned if true, throw RJE on failure
687 +         */
688 +        final boolean fullPush(ForkJoinTask<?> task, boolean owned) {
689 +            ForkJoinPool p; ForkJoinTask<?>[] a;
690 +            if (owned) {
691 +                if (qlock < 0) // must be shutting down
692 +                    throw new RejectedExecutionException();
693 +            }
694 +            else if (!U.compareAndSwapInt(this, QLOCK, 0, 1))
695 +                return false;
696              try {
697 <                return new ForkJoinWorkerThread(pool);
698 <            } catch (OutOfMemoryError oom)  {
697 >                int s = top, oldLen, len;
698 >                if ((a = array) == null)
699 >                    a = array = new ForkJoinTask<?>[len=INITIAL_QUEUE_CAPACITY];
700 >                else if ((oldLen = a.length) > s + 1 - base)
701 >                    len = oldLen;
702 >                else if ((len = oldLen << 1) > MAXIMUM_QUEUE_CAPACITY)
703 >                    throw new RejectedExecutionException("Capacity exceeded");
704 >                else {
705 >                    int oldMask, b;
706 >                    ForkJoinTask<?>[] oldA = a;
707 >                    a = array = new ForkJoinTask<?>[len];
708 >                    if ((oldMask = oldLen - 1) >= 0 && s - (b = base) > 0) {
709 >                        int mask = len - 1;
710 >                        do {
711 >                            ForkJoinTask<?> x;
712 >                            int oldj = ((b & oldMask) << ASHIFT) + ABASE;
713 >                            int j    = ((b &    mask) << ASHIFT) + ABASE;
714 >                            x = (ForkJoinTask<?>)
715 >                                U.getObjectVolatile(oldA, oldj);
716 >                            if (x != null &&
717 >                                U.compareAndSwapObject(oldA, oldj, x, null))
718 >                                U.putObjectVolatile(a, j, x);
719 >                        } while (++b != s);
720 >                    }
721 >                }
722 >                U.putOrderedObject
723 >                    (a, (((len - 1) & s) << ASHIFT) + ABASE, task);
724 >                top = s + 1;
725 >            } finally {
726 >                if (!owned)
727 >                    qlock = 0;
728 >            }
729 >            if ((p = pool) != null)
730 >                p.signalWork(this, 1);
731 >            return true;
732 >        }
733 >
734 >        /**
735 >         * Takes next task, if one exists, in LIFO order.  Call only
736 >         * by owner in unshared queues.
737 >         */
738 >        final ForkJoinTask<?> pop() {
739 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
740 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
741 >                for (int s; (s = top - 1) - base >= 0;) {
742 >                    long j = ((m & s) << ASHIFT) + ABASE;
743 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
744 >                        break;
745 >                    if (U.compareAndSwapObject(a, j, t, null)) {
746 >                        top = s;
747 >                        return t;
748 >                    }
749 >                }
750 >            }
751 >            return null;
752 >        }
753 >
754 >        /**
755 >         * Takes a task in FIFO order if b is base of queue and a task
756 >         * can be claimed without contention. Specialized versions
757 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
758 >         */
759 >        final ForkJoinTask<?> pollAt(int b) {
760 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
761 >            if ((a = array) != null) {
762 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
763 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
764 >                    base == b &&
765 >                    U.compareAndSwapObject(a, j, t, null)) {
766 >                    base = b + 1;
767 >                    return t;
768 >                }
769 >            }
770 >            return null;
771 >        }
772 >
773 >        /**
774 >         * Takes next task, if one exists, in FIFO order.
775 >         */
776 >        final ForkJoinTask<?> poll() {
777 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
778 >            while ((b = base) - top < 0 && (a = array) != null) {
779 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
780 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
781 >                if (t != null) {
782 >                    if (base == b &&
783 >                        U.compareAndSwapObject(a, j, t, null)) {
784 >                        base = b + 1;
785 >                        return t;
786 >                    }
787 >                }
788 >                else if (base == b) {
789 >                    if (b + 1 == top)
790 >                        break;
791 >                    Thread.yield(); // wait for lagging update (very rare)
792 >                }
793 >            }
794 >            return null;
795 >        }
796 >
797 >        /**
798 >         * Takes next task, if one exists, in order specified by mode.
799 >         */
800 >        final ForkJoinTask<?> nextLocalTask() {
801 >            return mode == 0 ? pop() : poll();
802 >        }
803 >
804 >        /**
805 >         * Returns next task, if one exists, in order specified by mode.
806 >         */
807 >        final ForkJoinTask<?> peek() {
808 >            ForkJoinTask<?>[] a = array; int m;
809 >            if (a == null || (m = a.length - 1) < 0)
810                  return null;
811 +            int i = mode == 0 ? top - 1 : base;
812 +            int j = ((i & m) << ASHIFT) + ABASE;
813 +            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
814 +        }
815 +
816 +        /**
817 +         * Pops the given task only if it is at the current top.
818 +         * (A shared version is available only via FJP.tryExternalUnpush)
819 +         */
820 +        final boolean tryUnpush(ForkJoinTask<?> t) {
821 +            ForkJoinTask<?>[] a; int s;
822 +            if ((a = array) != null && (s = top) != base &&
823 +                U.compareAndSwapObject
824 +                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
825 +                top = s;
826 +                return true;
827 +            }
828 +            return false;
829 +        }
830 +
831 +        /**
832 +         * Removes and cancels all known tasks, ignoring any exceptions.
833 +         */
834 +        final void cancelAll() {
835 +            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
836 +            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
837 +            for (ForkJoinTask<?> t; (t = poll()) != null; )
838 +                ForkJoinTask.cancelIgnoringExceptions(t);
839 +        }
840 +
841 +        /**
842 +         * Computes next value for random probes.  Scans don't require
843 +         * a very high quality generator, but also not a crummy one.
844 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
845 +         * This is manually inlined in its usages in ForkJoinPool to
846 +         * avoid writes inside busy scan loops.
847 +         */
848 +        final int nextSeed() {
849 +            int r = seed;
850 +            r ^= r << 13;
851 +            r ^= r >>> 17;
852 +            return seed = r ^= r << 5;
853 +        }
854 +
855 +        /**
856 +         * Provides a more accurate estimate of size than (top - base)
857 +         * by ordering reads and checking whether a near-empty queue
858 +         * has at least one unclaimed task.
859 +         */
860 +        final int queueSize() {
861 +            ForkJoinTask<?>[] a; int k, s, n;
862 +            return ((n = base - (s = top)) < 0 &&
863 +                    (n != -1 ||
864 +                     ((a = array) != null && (k = a.length) > 0 &&
865 +                      U.getObject
866 +                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
867 +                -n : 0;
868 +        }
869 +
870 +        // Specialized execution methods
871 +
872 +        /**
873 +         * Pops and runs tasks until empty.
874 +         */
875 +        private void popAndExecAll() {
876 +            // A bit faster than repeated pop calls
877 +            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
878 +            while ((a = array) != null && (m = a.length - 1) >= 0 &&
879 +                   (s = top - 1) - base >= 0 &&
880 +                   (t = ((ForkJoinTask<?>)
881 +                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
882 +                   != null) {
883 +                if (U.compareAndSwapObject(a, j, t, null)) {
884 +                    top = s;
885 +                    t.doExec();
886 +                }
887              }
888          }
889 +
890 +        /**
891 +         * Polls and runs tasks until empty.
892 +         */
893 +        private void pollAndExecAll() {
894 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
895 +                t.doExec();
896 +        }
897 +
898 +        /**
899 +         * If present, removes from queue and executes the given task,
900 +         * or any other cancelled task. Returns (true) on any CAS
901 +         * or consistency check failure so caller can retry.
902 +         *
903 +         * @return false if no progress can be made, else true;
904 +         */
905 +        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
906 +            boolean stat = true, removed = false, empty = true;
907 +            ForkJoinTask<?>[] a; int m, s, b, n;
908 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
909 +                (n = (s = top) - (b = base)) > 0) {
910 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
911 +                    int j = ((--s & m) << ASHIFT) + ABASE;
912 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
913 +                    if (t == null)                    // inconsistent length
914 +                        break;
915 +                    else if (t == task) {
916 +                        if (s + 1 == top) {           // pop
917 +                            if (!U.compareAndSwapObject(a, j, task, null))
918 +                                break;
919 +                            top = s;
920 +                            removed = true;
921 +                        }
922 +                        else if (base == b)           // replace with proxy
923 +                            removed = U.compareAndSwapObject(a, j, task,
924 +                                                             new EmptyTask());
925 +                        break;
926 +                    }
927 +                    else if (t.status >= 0)
928 +                        empty = false;
929 +                    else if (s + 1 == top) {          // pop and throw away
930 +                        if (U.compareAndSwapObject(a, j, t, null))
931 +                            top = s;
932 +                        break;
933 +                    }
934 +                    if (--n == 0) {
935 +                        if (!empty && base == b)
936 +                            stat = false;
937 +                        break;
938 +                    }
939 +                }
940 +            }
941 +            if (removed)
942 +                task.doExec();
943 +            return stat;
944 +        }
945 +
946 +        /**
947 +         * Polls for and executes the given task or any other task in
948 +         * its CountedCompleter computation
949 +         */
950 +        final boolean pollAndExecCC(ForkJoinTask<?> root) {
951 +            ForkJoinTask<?>[] a; int b; Object o;
952 +            outer: while ((b = base) - top < 0 && (a = array) != null) {
953 +                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
954 +                if ((o = U.getObject(a, j)) == null ||
955 +                    !(o instanceof CountedCompleter))
956 +                    break;
957 +                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
958 +                    if (r == root) {
959 +                        if (base == b &&
960 +                            U.compareAndSwapObject(a, j, t, null)) {
961 +                            base = b + 1;
962 +                            t.doExec();
963 +                            return true;
964 +                        }
965 +                        else
966 +                            break; // restart
967 +                    }
968 +                    if ((r = r.completer) == null)
969 +                        break outer; // not part of root computation
970 +                }
971 +            }
972 +            return false;
973 +        }
974 +
975 +        /**
976 +         * Executes a top-level task and any local tasks remaining
977 +         * after execution.
978 +         */
979 +        final void runTask(ForkJoinTask<?> t) {
980 +            if (t != null) {
981 +                (currentSteal = t).doExec();
982 +                currentSteal = null;
983 +                if (++nsteals < 0) {     // spill on overflow
984 +                    ForkJoinPool p;
985 +                    if ((p = pool) != null)
986 +                        p.collectStealCount(this);
987 +                }
988 +                if (top != base) {       // process remaining local tasks
989 +                    if (mode == 0)
990 +                        popAndExecAll();
991 +                    else
992 +                        pollAndExecAll();
993 +                }
994 +            }
995 +        }
996 +
997 +        /**
998 +         * Executes a non-top-level (stolen) task.
999 +         */
1000 +        final void runSubtask(ForkJoinTask<?> t) {
1001 +            if (t != null) {
1002 +                ForkJoinTask<?> ps = currentSteal;
1003 +                (currentSteal = t).doExec();
1004 +                currentSteal = ps;
1005 +            }
1006 +        }
1007 +
1008 +        /**
1009 +         * Returns true if owned and not known to be blocked.
1010 +         */
1011 +        final boolean isApparentlyUnblocked() {
1012 +            Thread wt; Thread.State s;
1013 +            return (eventCount >= 0 &&
1014 +                    (wt = owner) != null &&
1015 +                    (s = wt.getState()) != Thread.State.BLOCKED &&
1016 +                    s != Thread.State.WAITING &&
1017 +                    s != Thread.State.TIMED_WAITING);
1018 +        }
1019 +
1020 +        /**
1021 +         * If this owned and is not already interrupted, try to
1022 +         * interrupt and/or unpark, ignoring exceptions.
1023 +         */
1024 +        final void interruptOwner() {
1025 +            Thread wt, p;
1026 +            if ((wt = owner) != null && !wt.isInterrupted()) {
1027 +                try {
1028 +                    wt.interrupt();
1029 +                } catch (SecurityException ignore) {
1030 +                }
1031 +            }
1032 +            if ((p = parker) != null)
1033 +                U.unpark(p);
1034 +        }
1035 +
1036 +        // Unsafe mechanics
1037 +        private static final sun.misc.Unsafe U;
1038 +        private static final long QLOCK;
1039 +        private static final int ABASE;
1040 +        private static final int ASHIFT;
1041 +        static {
1042 +            int s;
1043 +            try {
1044 +                U = getUnsafe();
1045 +                Class<?> k = WorkQueue.class;
1046 +                Class<?> ak = ForkJoinTask[].class;
1047 +                QLOCK = U.objectFieldOffset
1048 +                    (k.getDeclaredField("qlock"));
1049 +                ABASE = U.arrayBaseOffset(ak);
1050 +                s = U.arrayIndexScale(ak);
1051 +            } catch (Exception e) {
1052 +                throw new Error(e);
1053 +            }
1054 +            if ((s & (s-1)) != 0)
1055 +                throw new Error("data type scale not a power of two");
1056 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1057 +        }
1058      }
1059  
1060      /**
1061 +     * Per-thread records for threads that submit to pools. Currently
1062 +     * holds only pseudo-random seed / index that is used to choose
1063 +     * submission queues in method externalPush. In the future, this may
1064 +     * also incorporate a means to implement different task rejection
1065 +     * and resubmission policies.
1066 +     *
1067 +     * Seeds for submitters and workers/workQueues work in basically
1068 +     * the same way but are initialized and updated using slightly
1069 +     * different mechanics. Both are initialized using the same
1070 +     * approach as in class ThreadLocal, where successive values are
1071 +     * unlikely to collide with previous values. Seeds are then
1072 +     * randomly modified upon collisions using xorshifts, which
1073 +     * requires a non-zero seed.
1074 +     */
1075 +    static final class Submitter {
1076 +        int seed;
1077 +        Submitter(int s) { seed = s; }
1078 +    }
1079 +
1080 +    /** Property prefix for constructing common pool */
1081 +    private static final String propPrefix =
1082 +        "java.util.concurrent.ForkJoinPool.common.";
1083 +
1084 +    // static fields (initialized in static initializer below)
1085 +
1086 +    /**
1087       * Creates a new ForkJoinWorkerThread. This factory is used unless
1088       * overridden in ForkJoinPool constructors.
1089       */
1090      public static final ForkJoinWorkerThreadFactory
1091 <        defaultForkJoinWorkerThreadFactory =
1092 <        new DefaultForkJoinWorkerThreadFactory();
1091 >        defaultForkJoinWorkerThreadFactory;
1092 >
1093 >    /**
1094 >     * Common (static) pool. Non-null for public use unless a static
1095 >     * construction exception, but internal usages null-check on use
1096 >     * to paranoically avoid potential initialization circularities
1097 >     * as well as to simplify generated code.
1098 >     */
1099 >    static final ForkJoinPool commonPool;
1100  
1101      /**
1102       * Permission required for callers of methods that may start or
1103       * kill threads.
1104       */
1105 <    private static final RuntimePermission modifyThreadPermission =
120 <        new RuntimePermission("modifyThread");
1105 >    private static final RuntimePermission modifyThreadPermission;
1106  
1107      /**
1108 <     * If there is a security manager, makes sure caller has
1109 <     * permission to modify threads.
1108 >     * Per-thread submission bookkeeping. Shared across all pools
1109 >     * to reduce ThreadLocal pollution and because random motion
1110 >     * to avoid contention in one pool is likely to hold for others.
1111 >     * Lazily initialized on first submission (but null-checked
1112 >     * in other contexts to avoid unnecessary initialization).
1113       */
1114 <    private static void checkPermission() {
127 <        SecurityManager security = System.getSecurityManager();
128 <        if (security != null)
129 <            security.checkPermission(modifyThreadPermission);
130 <    }
1114 >    static final ThreadLocal<Submitter> submitters;
1115  
1116      /**
1117 <     * Generator for assigning sequence numbers as pool names.
1117 >     * Common pool parallelism. Must equal commonPool.parallelism.
1118       */
1119 <    private static final AtomicInteger poolNumberGenerator =
136 <        new AtomicInteger();
1119 >    static final int commonPoolParallelism;
1120  
1121      /**
1122 <     * Array holding all worker threads in the pool. Initialized upon
140 <     * first use. Array size must be a power of two.  Updates and
141 <     * replacements are protected by workerLock, but it is always kept
142 <     * in a consistent enough state to be randomly accessed without
143 <     * locking by workers performing work-stealing.
1122 >     * Sequence number for creating workerNamePrefix.
1123       */
1124 <    volatile ForkJoinWorkerThread[] workers;
1124 >    private static int poolNumberSequence;
1125  
1126      /**
1127 <     * Lock protecting access to workers.
1127 >     * Return the next sequence number. We don't expect this to
1128 >     * ever contend so use simple builtin sync.
1129       */
1130 <    private final ReentrantLock workerLock;
1130 >    private static final synchronized int nextPoolId() {
1131 >        return ++poolNumberSequence;
1132 >    }
1133 >
1134 >    // static constants
1135  
1136      /**
1137 <     * Condition for awaitTermination.
1137 >     * Initial timeout value (in nanoseconds) for the thread
1138 >     * triggering quiescence to park waiting for new work. On timeout,
1139 >     * the thread will instead try to shrink the number of
1140 >     * workers. The value should be large enough to avoid overly
1141 >     * aggressive shrinkage during most transient stalls (long GCs
1142 >     * etc).
1143       */
1144 <    private final Condition termination;
1144 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1145  
1146      /**
1147 <     * The uncaught exception handler used when any worker
159 <     * abruptly terminates
1147 >     * Timeout value when there are more threads than parallelism level
1148       */
1149 <    private Thread.UncaughtExceptionHandler ueh;
1149 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1150  
1151      /**
1152 <     * Creation factory for worker threads.
1152 >     * The maximum stolen->joining link depth allowed in method
1153 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1154 >     * chains are unbounded, but we use a fixed constant to avoid
1155 >     * (otherwise unchecked) cycles and to bound staleness of
1156 >     * traversal parameters at the expense of sometimes blocking when
1157 >     * we could be helping.
1158       */
1159 <    private final ForkJoinWorkerThreadFactory factory;
1159 >    private static final int MAX_HELP = 64;
1160  
1161      /**
1162 <     * Head of stack of threads that were created to maintain
1163 <     * parallelism when other threads blocked, but have since
171 <     * suspended when the parallelism level rose.
1162 >     * Increment for seed generators. See class ThreadLocal for
1163 >     * explanation.
1164       */
1165 <    private volatile WaitQueueNode spareStack;
1165 >    private static final int SEED_INCREMENT = 0x61c88647;
1166  
1167      /**
1168 <     * Sum of per-thread steal counts, updated only when threads are
1169 <     * idle or terminating.
1168 >     * Bits and masks for control variables
1169 >     *
1170 >     * Field ctl is a long packed with:
1171 >     * AC: Number of active running workers minus target parallelism (16 bits)
1172 >     * TC: Number of total workers minus target parallelism (16 bits)
1173 >     * ST: true if pool is terminating (1 bit)
1174 >     * EC: the wait count of top waiting thread (15 bits)
1175 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1176 >     *
1177 >     * When convenient, we can extract the upper 32 bits of counts and
1178 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1179 >     * (int)ctl.  The ec field is never accessed alone, but always
1180 >     * together with id and st. The offsets of counts by the target
1181 >     * parallelism and the positionings of fields makes it possible to
1182 >     * perform the most common checks via sign tests of fields: When
1183 >     * ac is negative, there are not enough active workers, when tc is
1184 >     * negative, there are not enough total workers, and when e is
1185 >     * negative, the pool is terminating.  To deal with these possibly
1186 >     * negative fields, we use casts in and out of "short" and/or
1187 >     * signed shifts to maintain signedness.
1188 >     *
1189 >     * When a thread is queued (inactivated), its eventCount field is
1190 >     * set negative, which is the only way to tell if a worker is
1191 >     * prevented from executing tasks, even though it must continue to
1192 >     * scan for them to avoid queuing races. Note however that
1193 >     * eventCount updates lag releases so usage requires care.
1194 >     *
1195 >     * Field plock is an int packed with:
1196 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1197 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1198 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1199 >     *
1200 >     * The sequence number enables simple consistency checks:
1201 >     * Staleness of read-only operations on the workQueues array can
1202 >     * be checked by comparing plock before vs after the reads.
1203       */
179    private final AtomicLong stealCount;
1204  
1205 <    /**
1206 <     * Queue for external submissions.
1205 >    // bit positions/shifts for fields
1206 >    private static final int  AC_SHIFT   = 48;
1207 >    private static final int  TC_SHIFT   = 32;
1208 >    private static final int  ST_SHIFT   = 31;
1209 >    private static final int  EC_SHIFT   = 16;
1210 >
1211 >    // bounds
1212 >    private static final int  SMASK      = 0xffff;  // short bits
1213 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1214 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1215 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1216 >    private static final int  SHORT_SIGN = 1 << 15;
1217 >    private static final int  INT_SIGN   = 1 << 31;
1218 >
1219 >    // masks
1220 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1221 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1222 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1223 >
1224 >    // units for incrementing and decrementing
1225 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1226 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1227 >
1228 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1229 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1230 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1231 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1232 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1233 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1234 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1235 >
1236 >    // masks and units for dealing with e = (int)ctl
1237 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1238 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1239 >
1240 >    // plock bits
1241 >    private static final int SHUTDOWN    = 1 << 31;
1242 >    private static final int PL_LOCK     = 2;
1243 >    private static final int PL_SIGNAL   = 1;
1244 >    private static final int PL_SPINS    = 1 << 8;
1245 >
1246 >    // access mode for WorkQueue
1247 >    static final int LIFO_QUEUE          =  0;
1248 >    static final int FIFO_QUEUE          =  1;
1249 >    static final int SHARED_QUEUE        = -1;
1250 >
1251 >    // Instance fields
1252 >
1253 >    /*
1254 >     * Field layout order in this class tends to matter more than one
1255 >     * would like. Runtime layout order is only loosely related to
1256 >     * declaration order and may differ across JVMs, but the following
1257 >     * empirically works OK on current JVMs.
1258 >     */
1259 >    volatile long stealCount;                  // collects worker counts
1260 >    volatile long ctl;                         // main pool control
1261 >    final int parallelism;                     // parallelism level
1262 >    final int localMode;                       // per-worker scheduling mode
1263 >    volatile int indexSeed;                    // worker/submitter index seed
1264 >    volatile int plock;                        // shutdown status and seqLock
1265 >    WorkQueue[] workQueues;                    // main registry
1266 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1267 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1268 >    final String workerNamePrefix;             // to create worker name string
1269 >
1270 >    /*
1271 >     * Acquires the plock lock to protect worker array and related
1272 >     * updates. This method is called only if an initial CAS on plock
1273 >     * fails. This acts as a spinLock for normal cases, but falls back
1274 >     * to builtin monitor to block when (rarely) needed. This would be
1275 >     * a terrible idea for a highly contended lock, but works fine as
1276 >     * a more conservative alternative to a pure spinlock.  See
1277 >     * internal ConcurrentHashMap documentation for further
1278 >     * explanation of nearly the same construction.
1279       */
1280 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1280 >    private int acquirePlock() {
1281 >        int spins = PL_SPINS, r = 0, ps, nps;
1282 >        for (;;) {
1283 >            if (((ps = plock) & PL_LOCK) == 0 &&
1284 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1285 >                return nps;
1286 >            else if (r == 0)
1287 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1288 >            else if (spins >= 0) {
1289 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1290 >                if (r >= 0)
1291 >                    --spins;
1292 >            }
1293 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1294 >                synchronized (this) {
1295 >                    if ((plock & PL_SIGNAL) != 0) {
1296 >                        try {
1297 >                            wait();
1298 >                        } catch (InterruptedException ie) {
1299 >                            try {
1300 >                                Thread.currentThread().interrupt();
1301 >                            } catch (SecurityException ignore) {
1302 >                            }
1303 >                        }
1304 >                    }
1305 >                    else
1306 >                        notifyAll();
1307 >                }
1308 >            }
1309 >        }
1310 >    }
1311  
1312      /**
1313 <     * Head of Treiber stack for barrier sync. See below for explanation
1313 >     * Unlocks and signals any thread waiting for plock. Called only
1314 >     * when CAS of seq value for unlock fails.
1315       */
1316 <    private volatile WaitQueueNode syncStack;
1316 >    private void releasePlock(int ps) {
1317 >        plock = ps;
1318 >        synchronized (this) { notifyAll(); }
1319 >    }
1320 >
1321 >    //  Registering and deregistering workers
1322 >
1323 >    /**
1324 >     * Callback from ForkJoinWorkerThread constructor to establish its
1325 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1326 >     * to packing entries in front of the workQueues array, we treat
1327 >     * the array as a simple power-of-two hash table using per-thread
1328 >     * seed as hash, expanding as needed.
1329 >     *
1330 >     * @param w the worker's queue
1331 >     */
1332 >    final void registerWorker(WorkQueue w) {
1333 >        int s, ps; // generate a rarely colliding candidate index seed
1334 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED,
1335 >                                          s = indexSeed, s += SEED_INCREMENT) ||
1336 >                     s == 0); // skip 0
1337 >        if (((ps = plock) & PL_LOCK) != 0 ||
1338 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1339 >            ps = acquirePlock();
1340 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1341 >        try {
1342 >            WorkQueue[] ws;
1343 >            if (w != null && (ws = workQueues) != null) {
1344 >                w.seed = s;
1345 >                int n = ws.length, m = n - 1;
1346 >                int r = (s << 1) | 1;               // use odd-numbered indices
1347 >                if (ws[r &= m] != null) {           // collision
1348 >                    int probes = 0;                 // step by approx half size
1349 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1350 >                    while (ws[r = (r + step) & m] != null) {
1351 >                        if (++probes >= n) {
1352 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1353 >                            m = n - 1;
1354 >                            probes = 0;
1355 >                        }
1356 >                    }
1357 >                }
1358 >                w.eventCount = w.poolIndex = r;     // establish before recording
1359 >                ws[r] = w;
1360 >            }
1361 >        } finally {
1362 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1363 >                releasePlock(nps);
1364 >        }
1365 >    }
1366  
1367      /**
1368 <     * The count for event barrier
1369 <     */
1370 <    private volatile long eventCount;
1368 >     * Final callback from terminating worker, as well as upon failure
1369 >     * to construct or start a worker.  Removes record of worker from
1370 >     * array, and adjusts counts. If pool is shutting down, tries to
1371 >     * complete termination.
1372 >     *
1373 >     * @param wt the worker thread or null if construction failed
1374 >     * @param ex the exception causing failure, or null if none
1375 >     */
1376 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1377 >        WorkQueue w = null;
1378 >        if (wt != null && (w = wt.workQueue) != null) {
1379 >            int ps;
1380 >            collectStealCount(w);
1381 >            w.qlock = -1;                // ensure set
1382 >            if (((ps = plock) & PL_LOCK) != 0 ||
1383 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1384 >                ps = acquirePlock();
1385 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1386 >            try {
1387 >                int idx = w.poolIndex;
1388 >                WorkQueue[] ws = workQueues;
1389 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1390 >                    ws[idx] = null;
1391 >            } finally {
1392 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1393 >                    releasePlock(nps);
1394 >            }
1395 >        }
1396 >
1397 >        long c;                             // adjust ctl counts
1398 >        do {} while (!U.compareAndSwapLong
1399 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1400 >                                           ((c - TC_UNIT) & TC_MASK) |
1401 >                                           (c & ~(AC_MASK|TC_MASK)))));
1402 >
1403 >        if (!tryTerminate(false, false) && w != null) {
1404 >            w.cancelAll();                  // cancel remaining tasks
1405 >            if (w.array != null)            // suppress signal if never ran
1406 >                signalWork(null, 1);        // wake up or create replacement
1407 >            if (ex == null)                 // help clean refs on way out
1408 >                ForkJoinTask.helpExpungeStaleExceptions();
1409 >        }
1410 >
1411 >        if (ex != null)                     // rethrow
1412 >            ForkJoinTask.rethrow(ex);
1413 >    }
1414  
1415      /**
1416 <     * Pool number, just for assigning useful names to worker threads
1416 >     * Collect worker steal count into total. Called on termination
1417 >     * and upon int overflow of local count. (There is a possible race
1418 >     * in the latter case vs any caller of getStealCount, which can
1419 >     * make its results less accurate than usual.)
1420       */
1421 <    private final int poolNumber;
1421 >    final void collectStealCount(WorkQueue w) {
1422 >        if (w != null) {
1423 >            long sc;
1424 >            int ns = w.nsteals;
1425 >            w.nsteals = 0; // handle overflow
1426 >            long steals = (ns >= 0) ? ns : 1L + (long)(Integer.MAX_VALUE);
1427 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1428 >                                               sc = stealCount, sc + steals));
1429 >        }
1430 >    }
1431 >
1432 >    // Submissions
1433 >
1434 >    /**
1435 >     * Unless shutting down, adds the given task to a submission queue
1436 >     * at submitter's current queue index (modulo submission
1437 >     * range). Only the most common path is directly handled in this
1438 >     * method. All others are relayed to fullExternalPush.
1439 >     *
1440 >     * @param task the task. Caller must ensure non-null.
1441 >     */
1442 >    final void externalPush(ForkJoinTask<?> task) {
1443 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1444 >        if ((z = submitters.get()) != null && plock > 0 &&
1445 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1446 >            (q = ws[m & z.seed & SQMASK]) != null &&
1447 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1448 >            int s = q.top, n;
1449 >            if ((a = q.array) != null && a.length > (n = s + 1 - q.base)) {
1450 >                U.putObject(a, (long)(((a.length - 1) & s) << ASHIFT) + ABASE,
1451 >                            task);
1452 >                q.top = s + 1;                     // push on to deque
1453 >                q.qlock = 0;
1454 >                if (n <= 1)
1455 >                    signalWork(q, 1);
1456 >                return;
1457 >            }
1458 >            q.qlock = 0;
1459 >        }
1460 >        fullExternalPush(task);
1461 >    }
1462 >
1463 >    /**
1464 >     * Full version of externalPush. This method is called, among
1465 >     * other times, upon the first submission of the first task to the
1466 >     * pool, so must perform secondary initialization: creating
1467 >     * workQueue array and setting plock to a valid value. It also
1468 >     * detects first submission by an external thread by looking up
1469 >     * its ThreadLocal, and creates a new shared queue if the one at
1470 >     * index if empty or contended. The lock bodies must be
1471 >     * exception-free (so no try/finally) so we optimistically
1472 >     * allocate new queues/arrays outside the locks and throw them
1473 >     * away if (very rarely) not needed. Note that the plock seq value
1474 >     * can eventually wrap around zero, but if so harmlessly fails to
1475 >     * reinitialize.
1476 >     */
1477 >    private void fullExternalPush(ForkJoinTask<?> task) {
1478 >        for (Submitter z = null;;) {
1479 >            WorkQueue[] ws; WorkQueue q; int ps, m, r, s;
1480 >            if ((ps = plock) < 0)
1481 >                throw new RejectedExecutionException();
1482 >            else if ((ws = workQueues) == null || (m = ws.length - 1) < 0) {
1483 >                int n = parallelism - 1; n |= n >>> 1; n |= n >>> 2;
1484 >                n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1485 >                WorkQueue[] nws = new WorkQueue[(n + 1) << 1]; // power of two
1486 >                if ((ps & PL_LOCK) != 0 ||
1487 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1488 >                    ps = acquirePlock();
1489 >                if ((ws = workQueues) == null)
1490 >                    workQueues = nws;
1491 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1492 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1493 >                    releasePlock(nps);
1494 >            }
1495 >            else if (z == null && (z = submitters.get()) == null) {
1496 >                if (U.compareAndSwapInt(this, INDEXSEED,
1497 >                                        s = indexSeed, s += SEED_INCREMENT) &&
1498 >                    s != 0) // skip 0
1499 >                    submitters.set(z = new Submitter(s));
1500 >            }
1501 >            else {
1502 >                int k = (r = z.seed) & m & SQMASK;
1503 >                if ((q = ws[k]) == null && (ps & PL_LOCK) == 0) {
1504 >                    (q = new WorkQueue(this, null, SHARED_QUEUE)).poolIndex = k;
1505 >                    if (((ps = plock) & PL_LOCK) != 0 ||
1506 >                        !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1507 >                        ps = acquirePlock();
1508 >                    WorkQueue w = null;
1509 >                    if ((ws = workQueues) != null && k < ws.length &&
1510 >                        (w = ws[k]) == null)
1511 >                        ws[k] = q;
1512 >                    else
1513 >                        q = w;
1514 >                    int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1515 >                    if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1516 >                        releasePlock(nps);
1517 >                }
1518 >                if (q != null && q.qlock == 0 && q.fullPush(task, false))
1519 >                    return;
1520 >                r ^= r << 13;                // same xorshift as WorkQueues
1521 >                r ^= r >>> 17;
1522 >                z.seed = r ^= r << 5;        // move to a different index
1523 >            }
1524 >        }
1525 >    }
1526 >
1527 >    // Maintaining ctl counts
1528  
1529      /**
1530 <     * The maximum allowed pool size
1530 >     * Increments active count; mainly called upon return from blocking.
1531       */
1532 <    private volatile int maxPoolSize;
1532 >    final void incrementActiveCount() {
1533 >        long c;
1534 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1535 >    }
1536  
1537      /**
1538 <     * The desired parallelism level, updated only under workerLock.
1539 <     */
1540 <    private volatile int parallelism;
1538 >     * Tries to create (at most one) or activate (possibly several)
1539 >     * workers if too few are active. On contention failure, continues
1540 >     * until at least one worker is signalled or the given queue is
1541 >     * empty or all workers are active.
1542 >     *
1543 >     * @param q if non-null, the queue holding tasks to be signalled
1544 >     * @param signals the target number of signals.
1545 >     */
1546 >    final void signalWork(WorkQueue q, int signals) {
1547 >        long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1548 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1549 >            if ((e = (int)c) > 0) {
1550 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1551 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1552 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1553 >                               ((long)(u + UAC_UNIT) << 32));
1554 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1555 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1556 >                        if ((p = w.parker) != null)
1557 >                            U.unpark(p);
1558 >                        if (--signals <= 0)
1559 >                            break;
1560 >                    }
1561 >                    else
1562 >                        signals = 1;
1563 >                    if ((q != null && q.queueSize() == 0))
1564 >                        break;
1565 >                }
1566 >                else
1567 >                    break;
1568 >            }
1569 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1570 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1571 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1572 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1573 >                    ForkJoinWorkerThread wt = null;
1574 >                    Throwable ex = null;
1575 >                    boolean started = false;
1576 >                    try {
1577 >                        ForkJoinWorkerThreadFactory fac;
1578 >                        if ((fac = factory) != null &&
1579 >                            (wt = fac.newThread(this)) != null) {
1580 >                            wt.start();
1581 >                            started = true;
1582 >                        }
1583 >                    } catch (Throwable rex) {
1584 >                        ex = rex;
1585 >                    }
1586 >                    if (!started)
1587 >                        deregisterWorker(wt, ex); // adjust counts on failure
1588 >                    break;
1589 >                }
1590 >            }
1591 >            else
1592 >                break;
1593 >        }
1594 >    }
1595 >
1596 >    // Scanning for tasks
1597  
1598      /**
1599 <     * True if use local fifo, not default lifo, for local polling
1599 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1600       */
1601 <    private volatile boolean locallyFifo;
1601 >    final void runWorker(WorkQueue w) {
1602 >        // initialize queue array in this thread
1603 >        w.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
1604 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1605 >    }
1606  
1607      /**
1608 <     * Holds number of total (i.e., created and not yet terminated)
1609 <     * and running (i.e., not blocked on joins or other managed sync)
1610 <     * threads, packed into one int to ensure consistent snapshot when
1611 <     * making decisions about creating and suspending spare
1612 <     * threads. Updated only by CAS.  Note: CASes in
1613 <     * updateRunningCount and preJoin running active count is in low
1614 <     * word, so need to be modified if this changes
1608 >     * Scans for and, if found, returns one task, else possibly
1609 >     * inactivates the worker. This method operates on single reads of
1610 >     * volatile state and is designed to be re-invoked continuously,
1611 >     * in part because it returns upon detecting inconsistencies,
1612 >     * contention, or state changes that indicate possible success on
1613 >     * re-invocation.
1614 >     *
1615 >     * The scan searches for tasks across a random permutation of
1616 >     * queues (starting at a random index and stepping by a random
1617 >     * relative prime, checking each at least once).  The scan
1618 >     * terminates upon either finding a non-empty queue, or completing
1619 >     * the sweep. If the worker is not inactivated, it takes and
1620 >     * returns a task from this queue. Otherwise, if not activated, it
1621 >     * signals workers (that may include itself) and returns so caller
1622 >     * can retry. Also returns for trtry if the worker array may have
1623 >     * changed during an empty scan.  On failure to find a task, we
1624 >     * take one of the following actions, after which the caller will
1625 >     * retry calling this method unless terminated.
1626 >     *
1627 >     * * If pool is terminating, terminate the worker.
1628 >     *
1629 >     * * If not already enqueued, try to inactivate and enqueue the
1630 >     * worker on wait queue. Or, if inactivating has caused the pool
1631 >     * to be quiescent, relay to idleAwaitWork to check for
1632 >     * termination and possibly shrink pool.
1633 >     *
1634 >     * * If already enqueued and none of the above apply, possibly
1635 >     * (with 1/2 probability) park awaiting signal, else lingering to
1636 >     * help scan and signal.
1637 >     *
1638 >     * @param w the worker (via its WorkQueue)
1639 >     * @return a task or null if none found
1640 >     */
1641 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1642 >        WorkQueue[] ws; WorkQueue q;           // first update random seed
1643 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1644 >        int ps = plock, m;                     // volatile read order matters
1645 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1646 >            int ec = w.eventCount;             // ec is negative if inactive
1647 >            int step = (r >>> 16) | 1;         // relatively prime
1648 >            for (int j = (m + 1) << 2;  ; --j, r += step) {
1649 >                ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b, n;
1650 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1651 >                    (a = q.array) != null) {   // probably nonempty
1652 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1653 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1654 >                    if (q.base == b && ec >= 0 && t != null &&
1655 >                        U.compareAndSwapObject(a, i, t, null)) {
1656 >                        if ((n = q.top - (q.base = b + 1)) > 0)
1657 >                            signalWork(q, n);
1658 >                        return t;              // taken
1659 >                    }
1660 >                    if (j < m || (ec < 0 && (ec = w.eventCount) < 0)) {
1661 >                        if ((n = q.queueSize() - 1) > 0)
1662 >                            signalWork(q, n);
1663 >                        break;                 // let caller retry after signal
1664 >                    }
1665 >                }
1666 >                else if (j < 0) {              // end of scan
1667 >                    long c = ctl; int e;
1668 >                    if (plock != ps)           // incomplete sweep
1669 >                        break;
1670 >                    if ((e = (int)c) < 0)      // pool is terminating
1671 >                        w.qlock = -1;
1672 >                    else if (ec >= 0) {        // try to enqueue/inactivate
1673 >                        long nc = ((long)ec |
1674 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1675 >                        w.nextWait = e;
1676 >                        w.eventCount = ec | INT_SIGN; // mark as inactive
1677 >                        if (ctl != c ||
1678 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1679 >                            w.eventCount = ec; // unmark on CAS failure
1680 >                        else if ((int)(c >> AC_SHIFT) == 1 - parallelism)
1681 >                            idleAwaitWork(w, nc, c);  // quiescent
1682 >                    }
1683 >                    else if (w.seed >= 0 && w.eventCount < 0) {
1684 >                        Thread wt = Thread.currentThread();
1685 >                        Thread.interrupted();  // clear status
1686 >                        U.putObject(wt, PARKBLOCKER, this);
1687 >                        w.parker = wt;         // emulate LockSupport.park
1688 >                        if (w.eventCount < 0)  // recheck
1689 >                            U.park(false, 0L);
1690 >                        w.parker = null;
1691 >                        U.putObject(wt, PARKBLOCKER, null);
1692 >                    }
1693 >                    break;
1694 >                }
1695 >            }
1696 >        }
1697 >        return null;
1698 >    }
1699 >
1700 >    /**
1701 >     * If inactivating worker w has caused the pool to become
1702 >     * quiescent, checks for pool termination, and, so long as this is
1703 >     * not the only worker, waits for event for up to a given
1704 >     * duration.  On timeout, if ctl has not changed, terminates the
1705 >     * worker, which will in turn wake up another worker to possibly
1706 >     * repeat this process.
1707 >     *
1708 >     * @param w the calling worker
1709 >     * @param currentCtl the ctl value triggering possible quiescence
1710 >     * @param prevCtl the ctl value to restore if thread is terminated
1711 >     */
1712 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1713 >        if (w.eventCount < 0 &&
1714 >            (this == commonPool || !tryTerminate(false, false)) &&
1715 >            (int)prevCtl != 0) {
1716 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1717 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1718 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1719 >            Thread wt = Thread.currentThread();
1720 >            while (ctl == currentCtl) {
1721 >                Thread.interrupted();  // timed variant of version in scan()
1722 >                U.putObject(wt, PARKBLOCKER, this);
1723 >                w.parker = wt;
1724 >                if (ctl == currentCtl)
1725 >                    U.park(false, parkTime);
1726 >                w.parker = null;
1727 >                U.putObject(wt, PARKBLOCKER, null);
1728 >                if (ctl != currentCtl)
1729 >                    break;
1730 >                if (deadline - System.nanoTime() <= 0L &&
1731 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1732 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1733 >                    w.qlock = -1;   // shrink
1734 >                    break;
1735 >                }
1736 >            }
1737 >        }
1738 >    }
1739 >
1740 >    /**
1741 >     * Scans through queues looking for work while joining a task;
1742 >     * if any are present, signals.
1743 >     *
1744 >     * @param task to return early if done
1745 >     * @param origin an index to start scan
1746       */
1747 <    private volatile int workerCounts;
1747 >    final int helpSignal(ForkJoinTask<?> task, int origin) {
1748 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1749 >        if (task != null && (ws = workQueues) != null &&
1750 >            (m = ws.length - 1) >= 0) {
1751 >            for (int i = 0; i <= m; ++i) {
1752 >                if ((s = task.status) < 0)
1753 >                    return s;
1754 >                if ((q = ws[(i + origin) & m]) != null &&
1755 >                    (n = q.queueSize()) > 0) {
1756 >                    signalWork(q, n);
1757 >                    if ((int)(ctl >> AC_SHIFT) >= 0)
1758 >                        break;
1759 >                }
1760 >            }
1761 >        }
1762 >        return 0;
1763 >    }
1764  
1765 <    private static int totalCountOf(int s)           { return s >>> 16;  }
1766 <    private static int runningCountOf(int s)         { return s & shortMask; }
1767 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1765 >    /**
1766 >     * Tries to locate and execute tasks for a stealer of the given
1767 >     * task, or in turn one of its stealers, Traces currentSteal ->
1768 >     * currentJoin links looking for a thread working on a descendant
1769 >     * of the given task and with a non-empty queue to steal back and
1770 >     * execute tasks from. The first call to this method upon a
1771 >     * waiting join will often entail scanning/search, (which is OK
1772 >     * because the joiner has nothing better to do), but this method
1773 >     * leaves hints in workers to speed up subsequent calls. The
1774 >     * implementation is very branchy to cope with potential
1775 >     * inconsistencies or loops encountering chains that are stale,
1776 >     * unknown, or so long that they are likely cyclic.
1777 >     *
1778 >     * @param joiner the joining worker
1779 >     * @param task the task to join
1780 >     * @return 0 if no progress can be made, negative if task
1781 >     * known complete, else positive
1782 >     */
1783 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1784 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1785 >        if (joiner != null && task != null) {       // hoist null checks
1786 >            restart: for (;;) {
1787 >                ForkJoinTask<?> subtask = task;     // current target
1788 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1789 >                    WorkQueue[] ws; int m, s, h;
1790 >                    if ((s = task.status) < 0) {
1791 >                        stat = s;
1792 >                        break restart;
1793 >                    }
1794 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1795 >                        break restart;              // shutting down
1796 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1797 >                        v.currentSteal != subtask) {
1798 >                        for (int origin = h;;) {    // find stealer
1799 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1800 >                                (subtask.status < 0 || j.currentJoin != subtask))
1801 >                                continue restart;   // occasional staleness check
1802 >                            if ((v = ws[h]) != null &&
1803 >                                v.currentSteal == subtask) {
1804 >                                j.stealHint = h;    // save hint
1805 >                                break;
1806 >                            }
1807 >                            if (h == origin)
1808 >                                break restart;      // cannot find stealer
1809 >                        }
1810 >                    }
1811 >                    for (;;) { // help stealer or descend to its stealer
1812 >                        ForkJoinTask[] a;  int b;
1813 >                        if (subtask.status < 0)     // surround probes with
1814 >                            continue restart;       //   consistency checks
1815 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1816 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1817 >                            ForkJoinTask<?> t =
1818 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1819 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1820 >                                v.currentSteal != subtask)
1821 >                                continue restart;   // stale
1822 >                            stat = 1;               // apparent progress
1823 >                            if (t != null && v.base == b &&
1824 >                                U.compareAndSwapObject(a, i, t, null)) {
1825 >                                v.base = b + 1;     // help stealer
1826 >                                joiner.runSubtask(t);
1827 >                            }
1828 >                            else if (v.base == b && ++steps == MAX_HELP)
1829 >                                break restart;      // v apparently stalled
1830 >                        }
1831 >                        else {                      // empty -- try to descend
1832 >                            ForkJoinTask<?> next = v.currentJoin;
1833 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1834 >                                v.currentSteal != subtask)
1835 >                                continue restart;   // stale
1836 >                            else if (next == null || ++steps == MAX_HELP)
1837 >                                break restart;      // dead-end or maybe cyclic
1838 >                            else {
1839 >                                subtask = next;
1840 >                                j = v;
1841 >                                break;
1842 >                            }
1843 >                        }
1844 >                    }
1845 >                }
1846 >            }
1847 >        }
1848 >        return stat;
1849 >    }
1850  
1851      /**
1852 <     * Adds delta (which may be negative) to running count.  This must
1853 <     * be called before (with negative arg) and after (with positive)
1854 <     * any managed synchronization (i.e., mainly, joins).
1855 <     * @param delta the number to add
1852 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1853 >     * and run tasks within the target's computation.
1854 >     *
1855 >     * @param task the task to join
1856 >     * @param mode if shared, exit upon completing any task
1857 >     * if all workers are active
1858 >     *
1859       */
1860 <    final void updateRunningCount(int delta) {
1861 <        int s;
1862 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1860 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1861 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1862 >        if (task != null && (ws = workQueues) != null &&
1863 >            (m = ws.length - 1) >= 0) {
1864 >            for (int j = 1, origin = j;;) {
1865 >                if ((s = task.status) < 0)
1866 >                    return s;
1867 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1868 >                    origin = j;
1869 >                    if (mode == SHARED_QUEUE && (int)(ctl >> AC_SHIFT) >= 0)
1870 >                        break;
1871 >                }
1872 >                else if ((j = (j + 2) & m) == origin)
1873 >                    break;
1874 >            }
1875 >        }
1876 >        return 0;
1877 >    }
1878 >
1879 >    /**
1880 >     * Tries to decrement active count (sometimes implicitly) and
1881 >     * possibly release or create a compensating worker in preparation
1882 >     * for blocking. Fails on contention or termination. Otherwise,
1883 >     * adds a new thread if no idle workers are available and pool
1884 >     * may become starved.
1885 >     */
1886 >    final boolean tryCompensate() {
1887 >        int pc = parallelism, e, u, i, tc; long c;
1888 >        WorkQueue[] ws; WorkQueue w; Thread p;
1889 >        if ((e = (int)(c = ctl)) >= 0 && (ws = workQueues) != null) {
1890 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1891 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1892 >                long nc = ((long)(w.nextWait & E_MASK) |
1893 >                           (c & (AC_MASK|TC_MASK)));
1894 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1895 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1896 >                    if ((p = w.parker) != null)
1897 >                        U.unpark(p);
1898 >                    return true;   // replace with idle worker
1899 >                }
1900 >            }
1901 >            else if ((short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) >= 0 &&
1902 >                     (u >> UAC_SHIFT) + pc > 1) {
1903 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1904 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1905 >                    return true;    // no compensation
1906 >            }
1907 >            else if ((tc = u + pc) < MAX_CAP) {
1908 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1909 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1910 >                    Throwable ex = null;
1911 >                    ForkJoinWorkerThread wt = null;
1912 >                    try {
1913 >                        ForkJoinWorkerThreadFactory fac;
1914 >                        if ((fac = factory) != null &&
1915 >                            (wt = fac.newThread(this)) != null) {
1916 >                            wt.start();
1917 >                            return true;
1918 >                        }
1919 >                    } catch (Throwable rex) {
1920 >                        ex = rex;
1921 >                    }
1922 >                    deregisterWorker(wt, ex); // adjust counts etc
1923 >                }
1924 >            }
1925 >        }
1926 >        return false;
1927      }
1928  
1929      /**
1930 <     * Adds delta (which may be negative) to both total and running
1931 <     * count.  This must be called upon creation and termination of
1932 <     * worker threads.
1933 <     * @param delta the number to add
1930 >     * Helps and/or blocks until the given task is done.
1931 >     *
1932 >     * @param joiner the joining worker
1933 >     * @param task the task
1934 >     * @return task status on exit
1935       */
1936 <    private void updateWorkerCount(int delta) {
1937 <        int d = delta + (delta << 16); // add to both lo and hi parts
1938 <        int s;
1939 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1936 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1937 >        int s = 0;
1938 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1939 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1940 >            joiner.currentJoin = task;
1941 >            do {} while ((s = task.status) >= 0 &&
1942 >                         joiner.queueSize() > 0 &&
1943 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1944 >            if (s >= 0 && (s = task.status) >= 0 &&
1945 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1946 >                (task instanceof CountedCompleter))
1947 >                s = helpComplete(task, LIFO_QUEUE);
1948 >            while (s >= 0 && (s = task.status) >= 0) {
1949 >                if ((joiner.queueSize() > 0 ||           // try helping
1950 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1951 >                    (s = task.status) >= 0 && tryCompensate()) {
1952 >                    if (task.trySetSignal() && (s = task.status) >= 0) {
1953 >                        synchronized (task) {
1954 >                            if (task.status >= 0) {
1955 >                                try {                // see ForkJoinTask
1956 >                                    task.wait();     //  for explanation
1957 >                                } catch (InterruptedException ie) {
1958 >                                }
1959 >                            }
1960 >                            else
1961 >                                task.notifyAll();
1962 >                        }
1963 >                    }
1964 >                    long c;                          // re-activate
1965 >                    do {} while (!U.compareAndSwapLong
1966 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1967 >                }
1968 >            }
1969 >            joiner.currentJoin = prevJoin;
1970 >        }
1971 >        return s;
1972      }
1973  
1974      /**
1975 <     * Lifecycle control. High word contains runState, low word
1976 <     * contains the number of workers that are (probably) executing
1977 <     * tasks. This value is atomically incremented before a worker
1978 <     * gets a task to run, and decremented when worker has no tasks
1979 <     * and cannot find any. These two fields are bundled together to
1980 <     * support correct termination triggering.  Note: activeCount
261 <     * CAS'es cheat by assuming active count is in low word, so need
262 <     * to be modified if this changes
1975 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1976 >     * to help join only while there is continuous progress. (Caller
1977 >     * will then enter a timed wait.)
1978 >     *
1979 >     * @param joiner the joining worker
1980 >     * @param task the task
1981       */
1982 <    private volatile int runControl;
1982 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1983 >        int s;
1984 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1985 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1986 >            joiner.currentJoin = task;
1987 >            do {} while ((s = task.status) >= 0 &&
1988 >                         joiner.queueSize() > 0 &&
1989 >                         joiner.tryRemoveAndExec(task));
1990 >            if (s >= 0 && (s = task.status) >= 0 &&
1991 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1992 >                (task instanceof CountedCompleter))
1993 >                s = helpComplete(task, LIFO_QUEUE);
1994 >            if (s >= 0 && joiner.queueSize() == 0) {
1995 >                do {} while (task.status >= 0 &&
1996 >                             tryHelpStealer(joiner, task) > 0);
1997 >            }
1998 >            joiner.currentJoin = prevJoin;
1999 >        }
2000 >    }
2001  
2002 <    // RunState values. Order among values matters
2003 <    private static final int RUNNING     = 0;
2004 <    private static final int SHUTDOWN    = 1;
2005 <    private static final int TERMINATING = 2;
2006 <    private static final int TERMINATED  = 3;
2002 >    /**
2003 >     * Returns a (probably) non-empty steal queue, if one is found
2004 >     * during a random, then cyclic scan, else null.  This method must
2005 >     * be retried by caller if, by the time it tries to use the queue,
2006 >     * it is empty.
2007 >     * @param r a (random) seed for scanning
2008 >     */
2009 >    private WorkQueue findNonEmptyStealQueue(int r) {
2010 >        int step = (r >>> 16) | 1;
2011 >        for (WorkQueue[] ws;;) {
2012 >            int ps = plock, m;
2013 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2014 >                return null;
2015 >            for (int j = (m + 1) << 2; ; r += step) {
2016 >                WorkQueue q = ws[((r << 1) | 1) & m];
2017 >                if (q != null && q.queueSize() > 0)
2018 >                    return q;
2019 >                else if (--j < 0) {
2020 >                    if (plock == ps)
2021 >                        return null;
2022 >                    break;
2023 >                }
2024 >            }
2025 >        }
2026 >    }
2027  
2028 <    private static int runStateOf(int c)             { return c >>> 16; }
2029 <    private static int activeCountOf(int c)          { return c & shortMask; }
2030 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
2028 >    /**
2029 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2030 >     * active count ctl maintenance, but rather than blocking
2031 >     * when tasks cannot be found, we rescan until all others cannot
2032 >     * find tasks either.
2033 >     */
2034 >    final void helpQuiescePool(WorkQueue w) {
2035 >        for (boolean active = true;;) {
2036 >            ForkJoinTask<?> localTask; // exhaust local queue
2037 >            while ((localTask = w.nextLocalTask()) != null)
2038 >                localTask.doExec();
2039 >            // Similar to loop in scan(), but ignoring submissions
2040 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2041 >            if (q != null) {
2042 >                ForkJoinTask<?> t; int b;
2043 >                if (!active) {      // re-establish active count
2044 >                    long c;
2045 >                    active = true;
2046 >                    do {} while (!U.compareAndSwapLong
2047 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2048 >                }
2049 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2050 >                    w.runSubtask(t);
2051 >            }
2052 >            else {
2053 >                long c;
2054 >                if (active) {       // decrement active count without queuing
2055 >                    active = false;
2056 >                    do {} while (!U.compareAndSwapLong
2057 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2058 >                }
2059 >                else
2060 >                    c = ctl;        // re-increment on exit
2061 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2062 >                    do {} while (!U.compareAndSwapLong
2063 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2064 >                    break;
2065 >                }
2066 >            }
2067 >        }
2068 >    }
2069  
2070      /**
2071 <     * Try incrementing active count; fail on contention. Called by
2072 <     * workers before/during executing tasks.
2073 <     * @return true on success
2071 >     * Gets and removes a local or stolen task for the given worker.
2072 >     *
2073 >     * @return a task, if available
2074       */
2075 <    final boolean tryIncrementActiveCount() {
2076 <        int c = runControl;
2077 <        return casRunControl(c, c+1);
2075 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2076 >        for (ForkJoinTask<?> t;;) {
2077 >            WorkQueue q; int b;
2078 >            if ((t = w.nextLocalTask()) != null)
2079 >                return t;
2080 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2081 >                return null;
2082 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2083 >                return t;
2084 >        }
2085      }
2086  
2087      /**
2088 <     * Tries decrementing active count; fails on contention.
2089 <     * Possibly triggers termination on success.
2090 <     * Called by workers when they can't find tasks.
2091 <     * @return true on success
2088 >     * Returns a cheap heuristic guide for task partitioning when
2089 >     * programmers, frameworks, tools, or languages have little or no
2090 >     * idea about task granularity.  In essence by offering this
2091 >     * method, we ask users only about tradeoffs in overhead vs
2092 >     * expected throughput and its variance, rather than how finely to
2093 >     * partition tasks.
2094 >     *
2095 >     * In a steady state strict (tree-structured) computation, each
2096 >     * thread makes available for stealing enough tasks for other
2097 >     * threads to remain active. Inductively, if all threads play by
2098 >     * the same rules, each thread should make available only a
2099 >     * constant number of tasks.
2100 >     *
2101 >     * The minimum useful constant is just 1. But using a value of 1
2102 >     * would require immediate replenishment upon each steal to
2103 >     * maintain enough tasks, which is infeasible.  Further,
2104 >     * partitionings/granularities of offered tasks should minimize
2105 >     * steal rates, which in general means that threads nearer the top
2106 >     * of computation tree should generate more than those nearer the
2107 >     * bottom. In perfect steady state, each thread is at
2108 >     * approximately the same level of computation tree. However,
2109 >     * producing extra tasks amortizes the uncertainty of progress and
2110 >     * diffusion assumptions.
2111 >     *
2112 >     * So, users will want to use values larger, but not much larger
2113 >     * than 1 to both smooth over transient shortages and hedge
2114 >     * against uneven progress; as traded off against the cost of
2115 >     * extra task overhead. We leave the user to pick a threshold
2116 >     * value to compare with the results of this call to guide
2117 >     * decisions, but recommend values such as 3.
2118 >     *
2119 >     * When all threads are active, it is on average OK to estimate
2120 >     * surplus strictly locally. In steady-state, if one thread is
2121 >     * maintaining say 2 surplus tasks, then so are others. So we can
2122 >     * just use estimated queue length.  However, this strategy alone
2123 >     * leads to serious mis-estimates in some non-steady-state
2124 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2125 >     * many of these by further considering the number of "idle"
2126 >     * threads, that are known to have zero queued tasks, so
2127 >     * compensate by a factor of (#idle/#active) threads.
2128 >     *
2129 >     * Note: The approximation of #busy workers as #active workers is
2130 >     * not very good under current signalling scheme, and should be
2131 >     * improved.
2132 >     */
2133 >    static int getSurplusQueuedTaskCount() {
2134 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2135 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2136 >            int b = (q = (wt = (ForkJoinWorkerThread)t).workQueue).base;
2137 >            int p = (pool = wt.pool).parallelism;
2138 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2139 >            return q.top - b - (a > (p >>>= 1) ? 0 :
2140 >                                a > (p >>>= 1) ? 1 :
2141 >                                a > (p >>>= 1) ? 2 :
2142 >                                a > (p >>>= 1) ? 4 :
2143 >                                8);
2144 >        }
2145 >        return 0;
2146 >    }
2147 >
2148 >    //  Termination
2149 >
2150 >    /**
2151 >     * Possibly initiates and/or completes termination.  The caller
2152 >     * triggering termination runs three passes through workQueues:
2153 >     * (0) Setting termination status, followed by wakeups of queued
2154 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2155 >     * threads (likely in external tasks, but possibly also blocked in
2156 >     * joins).  Each pass repeats previous steps because of potential
2157 >     * lagging thread creation.
2158 >     *
2159 >     * @param now if true, unconditionally terminate, else only
2160 >     * if no work and no active workers
2161 >     * @param enable if true, enable shutdown when next possible
2162 >     * @return true if now terminating or terminated
2163       */
2164 <    final boolean tryDecrementActiveCount() {
2165 <        int c = runControl;
294 <        int nextc = c - 1;
295 <        if (!casRunControl(c, nextc))
2164 >    private boolean tryTerminate(boolean now, boolean enable) {
2165 >        if (this == commonPool)                     // cannot shut down
2166              return false;
2167 <        if (canTerminateOnShutdown(nextc))
2168 <            terminateOnShutdown();
2169 <        return true;
2167 >        for (long c;;) {
2168 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2169 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2170 >                    synchronized (this) {
2171 >                        notifyAll();                // signal when 0 workers
2172 >                    }
2173 >                }
2174 >                return true;
2175 >            }
2176 >            if (plock >= 0) {                       // not yet enabled
2177 >                int ps;
2178 >                if (!enable)
2179 >                    return false;
2180 >                if (((ps = plock) & PL_LOCK) != 0 ||
2181 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2182 >                    ps = acquirePlock();
2183 >                int nps = SHUTDOWN;
2184 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2185 >                    releasePlock(nps);
2186 >            }
2187 >            if (!now) {                             // check if idle & no tasks
2188 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2189 >                    hasQueuedSubmissions())
2190 >                    return false;
2191 >                // Check for unqueued inactive workers. One pass suffices.
2192 >                WorkQueue[] ws = workQueues; WorkQueue w;
2193 >                if (ws != null) {
2194 >                    for (int i = 1; i < ws.length; i += 2) {
2195 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2196 >                            return false;
2197 >                    }
2198 >                }
2199 >            }
2200 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2201 >                for (int pass = 0; pass < 3; ++pass) {
2202 >                    WorkQueue[] ws = workQueues;
2203 >                    if (ws != null) {
2204 >                        WorkQueue w;
2205 >                        int n = ws.length;
2206 >                        for (int i = 0; i < n; ++i) {
2207 >                            if ((w = ws[i]) != null) {
2208 >                                w.qlock = -1;
2209 >                                if (pass > 0) {
2210 >                                    w.cancelAll();
2211 >                                    if (pass > 1)
2212 >                                        w.interruptOwner();
2213 >                                }
2214 >                            }
2215 >                        }
2216 >                        // Wake up workers parked on event queue
2217 >                        int i, e; long cc; Thread p;
2218 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2219 >                               (i = e & SMASK) < n &&
2220 >                               (w = ws[i]) != null) {
2221 >                            long nc = ((long)(w.nextWait & E_MASK) |
2222 >                                       ((cc + AC_UNIT) & AC_MASK) |
2223 >                                       (cc & (TC_MASK|STOP_BIT)));
2224 >                            if (w.eventCount == (e | INT_SIGN) &&
2225 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2226 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2227 >                                w.qlock = -1;
2228 >                                if ((p = w.parker) != null)
2229 >                                    U.unpark(p);
2230 >                            }
2231 >                        }
2232 >                    }
2233 >                }
2234 >            }
2235 >        }
2236      }
2237  
2238 +    // external operations on common pool
2239 +
2240      /**
2241 <     * Returns true if argument represents zero active count and
2242 <     * nonzero runstate, which is the triggering condition for
305 <     * terminating on shutdown.
2241 >     * Returns common pool queue for a thread that has submitted at
2242 >     * least one task.
2243       */
2244 <    private static boolean canTerminateOnShutdown(int c) {
2245 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
2244 >    static WorkQueue commonSubmitterQueue() {
2245 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2246 >        return ((z = submitters.get()) != null &&
2247 >                (p = commonPool) != null &&
2248 >                (ws = p.workQueues) != null &&
2249 >                (m = ws.length - 1) >= 0) ?
2250 >            ws[m & z.seed & SQMASK] : null;
2251      }
2252  
2253      /**
2254 <     * Transition run state to at least the given state. Return true
2255 <     * if not already at least given state.
2256 <     */
2257 <    private boolean transitionRunStateTo(int state) {
2258 <        for (;;) {
2259 <            int c = runControl;
2260 <            if (runStateOf(c) >= state)
2261 <                return false;
2262 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
2254 >     * Tries to pop the given task from submitter's queue in common pool.
2255 >     */
2256 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2257 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2258 >        ForkJoinTask<?>[] a;  int m, s; long j;
2259 >        if ((z = submitters.get()) != null &&
2260 >            (p = commonPool) != null &&
2261 >            (ws = p.workQueues) != null &&
2262 >            (m = ws.length - 1) >= 0 &&
2263 >            (q = ws[m & z.seed & SQMASK]) != null &&
2264 >            (s = q.top) != q.base &&
2265 >            (a = q.array) != null &&
2266 >            U.getObjectVolatile
2267 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2268 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2269 >            if (q.array == a && q.top == s && // recheck
2270 >                U.compareAndSwapObject(a, j, t, null)) {
2271 >                q.top = s - 1;
2272 >                q.qlock = 0;
2273                  return true;
2274 +            }
2275 +            q.qlock = 0;
2276 +        }
2277 +        return false;
2278 +    }
2279 +
2280 +    /**
2281 +     * Tries to pop and run local tasks within the same computation
2282 +     * as the given root. On failure, tries to help complete from
2283 +     * other queues via helpComplete.
2284 +     */
2285 +    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2286 +        ForkJoinTask<?>[] a; int m;
2287 +        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2288 +            root != null && root.status >= 0) {
2289 +            for (;;) {
2290 +                int s; Object o; CountedCompleter<?> task = null;
2291 +                if ((s = q.top) - q.base > 0) {
2292 +                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2293 +                    if ((o = U.getObject(a, j)) != null &&
2294 +                        (o instanceof CountedCompleter)) {
2295 +                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2296 +                        do {
2297 +                            if (r == root) {
2298 +                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2299 +                                    if (q.array == a && q.top == s &&
2300 +                                        U.compareAndSwapObject(a, j, t, null)) {
2301 +                                        q.top = s - 1;
2302 +                                        task = t;
2303 +                                    }
2304 +                                    q.qlock = 0;
2305 +                                }
2306 +                                break;
2307 +                            }
2308 +                        } while ((r = r.completer) != null);
2309 +                    }
2310 +                }
2311 +                if (task != null)
2312 +                    task.doExec();
2313 +                if (root.status < 0 || (int)(ctl >> AC_SHIFT) >= 0)
2314 +                    break;
2315 +                if (task == null) {
2316 +                    if (helpSignal(root, q.poolIndex) >= 0)
2317 +                        helpComplete(root, SHARED_QUEUE);
2318 +                    break;
2319 +                }
2320 +            }
2321          }
2322      }
2323  
2324      /**
2325 <     * Controls whether to add spares to maintain parallelism
2325 >     * Tries to help execute or signal availability of the given task
2326 >     * from submitter's queue in common pool.
2327       */
2328 <    private volatile boolean maintainsParallelism;
2328 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2329 >        // Some hard-to-avoid overlap with tryExternalUnpush
2330 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2331 >        ForkJoinTask<?>[] a;  int m, s, n; long j;
2332 >        if (t != null && t.status >= 0 &&
2333 >            (z = submitters.get()) != null &&
2334 >            (p = commonPool) != null &&
2335 >            (ws = p.workQueues) != null &&
2336 >            (m = ws.length - 1) >= 0 &&
2337 >            (q = ws[m & z.seed & SQMASK]) != null &&
2338 >            (a = q.array) != null) {
2339 >            if ((s = q.top) != q.base &&
2340 >                U.getObjectVolatile
2341 >                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2342 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2343 >                if (q.array == a && q.top == s &&
2344 >                    U.compareAndSwapObject(a, j, t, null)) {
2345 >                    q.top = s - 1;
2346 >                    q.qlock = 0;
2347 >                    t.doExec();
2348 >                }
2349 >                else
2350 >                    q.qlock = 0;
2351 >            }
2352 >            if (t.status >= 0) {
2353 >                if (t instanceof CountedCompleter)
2354 >                    p.externalHelpComplete(q, t);
2355 >                else
2356 >                    p.helpSignal(t, q.poolIndex);
2357 >            }
2358 >        }
2359 >    }
2360 >
2361 >    /**
2362 >     * Restricted version of helpQuiescePool for external callers
2363 >     */
2364 >    static void externalHelpQuiescePool() {
2365 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2366 >        int r = ThreadLocalRandom.current().nextInt();
2367 >        if ((p = commonPool) != null &&
2368 >            (q = p.findNonEmptyStealQueue(r)) != null &&
2369 >            (b = q.base) - q.top < 0 &&
2370 >            (t = q.pollAt(b)) != null)
2371 >            t.doExec();
2372 >    }
2373 >
2374 >    // Exported methods
2375  
2376      // Constructors
2377  
2378      /**
2379 <     * Creates a ForkJoinPool with a pool size equal to the number of
2380 <     * processors available on the system and using the default
2381 <     * ForkJoinWorkerThreadFactory,
2379 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2380 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2381 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2382 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2383 >     *
2384       * @throws SecurityException if a security manager exists and
2385       *         the caller is not permitted to modify threads
2386       *         because it does not hold {@link
2387 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2387 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2388       */
2389      public ForkJoinPool() {
2390          this(Runtime.getRuntime().availableProcessors(),
2391 <             defaultForkJoinWorkerThreadFactory);
2391 >             defaultForkJoinWorkerThreadFactory, null, false);
2392      }
2393  
2394      /**
2395 <     * Creates a ForkJoinPool with the indicated parallelism level
2396 <     * threads, and using the default ForkJoinWorkerThreadFactory,
2397 <     * @param parallelism the number of worker threads
2395 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
2396 >     * level, the {@linkplain
2397 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2398 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2399 >     *
2400 >     * @param parallelism the parallelism level
2401       * @throws IllegalArgumentException if parallelism less than or
2402 <     * equal to zero
2402 >     *         equal to zero, or greater than implementation limit
2403       * @throws SecurityException if a security manager exists and
2404       *         the caller is not permitted to modify threads
2405       *         because it does not hold {@link
2406 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2406 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2407       */
2408      public ForkJoinPool(int parallelism) {
2409 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
359 <    }
360 <
361 <    /**
362 <     * Creates a ForkJoinPool with parallelism equal to the number of
363 <     * processors available on the system and using the given
364 <     * ForkJoinWorkerThreadFactory,
365 <     * @param factory the factory for creating new threads
366 <     * @throws NullPointerException if factory is null
367 <     * @throws SecurityException if a security manager exists and
368 <     *         the caller is not permitted to modify threads
369 <     *         because it does not hold {@link
370 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
371 <     */
372 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
373 <        this(Runtime.getRuntime().availableProcessors(), factory);
2409 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2410      }
2411  
2412      /**
2413 <     * Creates a ForkJoinPool with the given parallelism and factory.
2413 >     * Creates a {@code ForkJoinPool} with the given parameters.
2414       *
2415 <     * @param parallelism the targeted number of worker threads
2416 <     * @param factory the factory for creating new threads
2415 >     * @param parallelism the parallelism level. For default value,
2416 >     * use {@link java.lang.Runtime#availableProcessors}.
2417 >     * @param factory the factory for creating new threads. For default value,
2418 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2419 >     * @param handler the handler for internal worker threads that
2420 >     * terminate due to unrecoverable errors encountered while executing
2421 >     * tasks. For default value, use {@code null}.
2422 >     * @param asyncMode if true,
2423 >     * establishes local first-in-first-out scheduling mode for forked
2424 >     * tasks that are never joined. This mode may be more appropriate
2425 >     * than default locally stack-based mode in applications in which
2426 >     * worker threads only process event-style asynchronous tasks.
2427 >     * For default value, use {@code false}.
2428       * @throws IllegalArgumentException if parallelism less than or
2429 <     * equal to zero, or greater than implementation limit
2430 <     * @throws NullPointerException if factory is null
2429 >     *         equal to zero, or greater than implementation limit
2430 >     * @throws NullPointerException if the factory is null
2431       * @throws SecurityException if a security manager exists and
2432       *         the caller is not permitted to modify threads
2433       *         because it does not hold {@link
2434 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2434 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2435       */
2436 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
2437 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2438 <            throw new IllegalArgumentException();
2436 >    public ForkJoinPool(int parallelism,
2437 >                        ForkJoinWorkerThreadFactory factory,
2438 >                        Thread.UncaughtExceptionHandler handler,
2439 >                        boolean asyncMode) {
2440 >        checkPermission();
2441          if (factory == null)
2442              throw new NullPointerException();
2443 <        checkPermission();
2444 <        this.factory = factory;
2443 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2444 >            throw new IllegalArgumentException();
2445          this.parallelism = parallelism;
2446 <        this.maxPoolSize = MAX_THREADS;
2447 <        this.maintainsParallelism = true;
2448 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2449 <        this.workerLock = new ReentrantLock();
2450 <        this.termination = workerLock.newCondition();
2451 <        this.stealCount = new AtomicLong();
2452 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2453 <        // worker array and workers are lazily constructed
2454 <    }
2455 <
407 <    /**
408 <     * Create new worker using factory.
409 <     * @param index the index to assign worker
410 <     * @return new worker, or null of factory failed
411 <     */
412 <    private ForkJoinWorkerThread createWorker(int index) {
413 <        Thread.UncaughtExceptionHandler h = ueh;
414 <        ForkJoinWorkerThread w = factory.newThread(this);
415 <        if (w != null) {
416 <            w.poolIndex = index;
417 <            w.setDaemon(true);
418 <            w.setAsyncMode(locallyFifo);
419 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
420 <            if (h != null)
421 <                w.setUncaughtExceptionHandler(h);
422 <        }
423 <        return w;
424 <    }
425 <
426 <    /**
427 <     * Returns a good size for worker array given pool size.
428 <     * Currently requires size to be a power of two.
429 <     */
430 <    private static int arraySizeFor(int ps) {
431 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
432 <    }
433 <
434 <    /**
435 <     * Creates or resizes array if necessary to hold newLength.
436 <     * Call only under exclusion or lock.
437 <     * @return the array
438 <     */
439 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
440 <        ForkJoinWorkerThread[] ws = workers;
441 <        if (ws == null)
442 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
443 <        else if (newLength > ws.length)
444 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
445 <        else
446 <            return ws;
447 <    }
448 <
449 <    /**
450 <     * Try to shrink workers into smaller array after one or more terminate
451 <     */
452 <    private void tryShrinkWorkerArray() {
453 <        ForkJoinWorkerThread[] ws = workers;
454 <        if (ws != null) {
455 <            int len = ws.length;
456 <            int last = len - 1;
457 <            while (last >= 0 && ws[last] == null)
458 <                --last;
459 <            int newLength = arraySizeFor(last+1);
460 <            if (newLength < len)
461 <                workers = Arrays.copyOf(ws, newLength);
462 <        }
2446 >        this.factory = factory;
2447 >        this.ueh = handler;
2448 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2449 >        long np = (long)(-parallelism); // offset ctl counts
2450 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2451 >        int pn = nextPoolId();
2452 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2453 >        sb.append(Integer.toString(pn));
2454 >        sb.append("-worker-");
2455 >        this.workerNamePrefix = sb.toString();
2456      }
2457  
2458      /**
2459 <     * Initialize workers if necessary
2460 <     */
2461 <    final void ensureWorkerInitialization() {
2462 <        ForkJoinWorkerThread[] ws = workers;
2463 <        if (ws == null) {
2464 <            final ReentrantLock lock = this.workerLock;
2465 <            lock.lock();
2466 <            try {
2467 <                ws = workers;
2468 <                if (ws == null) {
2469 <                    int ps = parallelism;
2470 <                    ws = ensureWorkerArrayCapacity(ps);
478 <                    for (int i = 0; i < ps; ++i) {
479 <                        ForkJoinWorkerThread w = createWorker(i);
480 <                        if (w != null) {
481 <                            ws[i] = w;
482 <                            w.start();
483 <                            updateWorkerCount(1);
484 <                        }
485 <                    }
486 <                }
487 <            } finally {
488 <                lock.unlock();
489 <            }
490 <        }
2459 >     * Constructor for common pool, suitable only for static initialization.
2460 >     * Basically the same as above, but uses smallest possible initial footprint.
2461 >     */
2462 >    ForkJoinPool(int parallelism, long ctl,
2463 >                 ForkJoinWorkerThreadFactory factory,
2464 >                 Thread.UncaughtExceptionHandler handler) {
2465 >        this.parallelism = parallelism;
2466 >        this.ctl = ctl;
2467 >        this.factory = factory;
2468 >        this.ueh = handler;
2469 >        this.localMode = LIFO_QUEUE;
2470 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2471      }
2472  
2473      /**
2474 <     * Worker creation and startup for threads added via setParallelism.
2474 >     * Returns the common pool instance.
2475 >     *
2476 >     * @return the common pool instance
2477       */
2478 <    private void createAndStartAddedWorkers() {
2479 <        resumeAllSpares();  // Allow spares to convert to nonspare
498 <        int ps = parallelism;
499 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
500 <        int len = ws.length;
501 <        // Sweep through slots, to keep lowest indices most populated
502 <        int k = 0;
503 <        while (k < len) {
504 <            if (ws[k] != null) {
505 <                ++k;
506 <                continue;
507 <            }
508 <            int s = workerCounts;
509 <            int tc = totalCountOf(s);
510 <            int rc = runningCountOf(s);
511 <            if (rc >= ps || tc >= ps)
512 <                break;
513 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
514 <                ForkJoinWorkerThread w = createWorker(k);
515 <                if (w != null) {
516 <                    ws[k++] = w;
517 <                    w.start();
518 <                }
519 <                else {
520 <                    updateWorkerCount(-1); // back out on failed creation
521 <                    break;
522 <                }
523 <            }
524 <        }
2478 >    public static ForkJoinPool commonPool() {
2479 >        return commonPool; // cannot be null (if so, a static init error)
2480      }
2481  
2482      // Execution methods
2483  
2484      /**
2485 <     * Common code for execute, invoke and submit
2486 <     */
2487 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2488 <        if (isShutdown())
2489 <            throw new RejectedExecutionException();
2490 <        if (workers == null)
2491 <            ensureWorkerInitialization();
2492 <        submissionQueue.offer(task);
2493 <        signalIdleWorkers();
539 <    }
540 <
541 <    /**
542 <     * Performs the given task; returning its result upon completion
2485 >     * Performs the given task, returning its result upon completion.
2486 >     * If the computation encounters an unchecked Exception or Error,
2487 >     * it is rethrown as the outcome of this invocation.  Rethrown
2488 >     * exceptions behave in the same way as regular exceptions, but,
2489 >     * when possible, contain stack traces (as displayed for example
2490 >     * using {@code ex.printStackTrace()}) of both the current thread
2491 >     * as well as the thread actually encountering the exception;
2492 >     * minimally only the latter.
2493 >     *
2494       * @param task the task
2495       * @return the task's result
2496 <     * @throws NullPointerException if task is null
2497 <     * @throws RejectedExecutionException if pool is shut down
2496 >     * @throws NullPointerException if the task is null
2497 >     * @throws RejectedExecutionException if the task cannot be
2498 >     *         scheduled for execution
2499       */
2500      public <T> T invoke(ForkJoinTask<T> task) {
2501 <        doSubmit(task);
2501 >        if (task == null)
2502 >            throw new NullPointerException();
2503 >        externalPush(task);
2504          return task.join();
2505      }
2506  
2507      /**
2508       * Arranges for (asynchronous) execution of the given task.
2509 +     *
2510       * @param task the task
2511 <     * @throws NullPointerException if task is null
2512 <     * @throws RejectedExecutionException if pool is shut down
2511 >     * @throws NullPointerException if the task is null
2512 >     * @throws RejectedExecutionException if the task cannot be
2513 >     *         scheduled for execution
2514       */
2515 <    public <T> void execute(ForkJoinTask<T> task) {
2516 <        doSubmit(task);
2515 >    public void execute(ForkJoinTask<?> task) {
2516 >        if (task == null)
2517 >            throw new NullPointerException();
2518 >        externalPush(task);
2519      }
2520  
2521      // AbstractExecutorService methods
2522  
2523 +    /**
2524 +     * @throws NullPointerException if the task is null
2525 +     * @throws RejectedExecutionException if the task cannot be
2526 +     *         scheduled for execution
2527 +     */
2528      public void execute(Runnable task) {
2529 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2529 >        if (task == null)
2530 >            throw new NullPointerException();
2531 >        ForkJoinTask<?> job;
2532 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2533 >            job = (ForkJoinTask<?>) task;
2534 >        else
2535 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2536 >        externalPush(job);
2537      }
2538  
2539 <    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2540 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2541 <        doSubmit(job);
2542 <        return job;
2539 >    /**
2540 >     * Submits a ForkJoinTask for execution.
2541 >     *
2542 >     * @param task the task to submit
2543 >     * @return the task
2544 >     * @throws NullPointerException if the task is null
2545 >     * @throws RejectedExecutionException if the task cannot be
2546 >     *         scheduled for execution
2547 >     */
2548 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2549 >        if (task == null)
2550 >            throw new NullPointerException();
2551 >        externalPush(task);
2552 >        return task;
2553      }
2554  
2555 <    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2556 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2557 <        doSubmit(job);
2555 >    /**
2556 >     * @throws NullPointerException if the task is null
2557 >     * @throws RejectedExecutionException if the task cannot be
2558 >     *         scheduled for execution
2559 >     */
2560 >    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2561 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2562 >        externalPush(job);
2563          return job;
2564      }
2565  
2566 <    public ForkJoinTask<?> submit(Runnable task) {
2567 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2568 <        doSubmit(job);
2566 >    /**
2567 >     * @throws NullPointerException if the task is null
2568 >     * @throws RejectedExecutionException if the task cannot be
2569 >     *         scheduled for execution
2570 >     */
2571 >    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2572 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2573 >        externalPush(job);
2574          return job;
2575      }
2576  
2577      /**
2578 <     * Adaptor for Runnables. This implements RunnableFuture
2579 <     * to be compliant with AbstractExecutorService constraints
2578 >     * @throws NullPointerException if the task is null
2579 >     * @throws RejectedExecutionException if the task cannot be
2580 >     *         scheduled for execution
2581       */
2582 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
2583 <        implements RunnableFuture<T> {
2584 <        final Runnable runnable;
2585 <        final T resultOnCompletion;
2586 <        T result;
2587 <        AdaptedRunnable(Runnable runnable, T result) {
2588 <            if (runnable == null) throw new NullPointerException();
2589 <            this.runnable = runnable;
2590 <            this.resultOnCompletion = result;
2591 <        }
601 <        public T getRawResult() { return result; }
602 <        public void setRawResult(T v) { result = v; }
603 <        public boolean exec() {
604 <            runnable.run();
605 <            result = resultOnCompletion;
606 <            return true;
607 <        }
608 <        public void run() { invoke(); }
2582 >    public ForkJoinTask<?> submit(Runnable task) {
2583 >        if (task == null)
2584 >            throw new NullPointerException();
2585 >        ForkJoinTask<?> job;
2586 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2587 >            job = (ForkJoinTask<?>) task;
2588 >        else
2589 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2590 >        externalPush(job);
2591 >        return job;
2592      }
2593  
2594      /**
2595 <     * Adaptor for Callables
2595 >     * @throws NullPointerException       {@inheritDoc}
2596 >     * @throws RejectedExecutionException {@inheritDoc}
2597       */
614    static final class AdaptedCallable<T> extends ForkJoinTask<T>
615        implements RunnableFuture<T> {
616        final Callable<T> callable;
617        T result;
618        AdaptedCallable(Callable<T> callable) {
619            if (callable == null) throw new NullPointerException();
620            this.callable = callable;
621        }
622        public T getRawResult() { return result; }
623        public void setRawResult(T v) { result = v; }
624        public boolean exec() {
625            try {
626                result = callable.call();
627                return true;
628            } catch (Error err) {
629                throw err;
630            } catch (RuntimeException rex) {
631                throw rex;
632            } catch (Exception ex) {
633                throw new RuntimeException(ex);
634            }
635        }
636        public void run() { invoke(); }
637    }
638
2598      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2599 <        ArrayList<ForkJoinTask<T>> ts =
2600 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2601 <        for (Callable<T> c : tasks)
2602 <            ts.add(new AdaptedCallable<T>(c));
2603 <        invoke(new InvokeAll<T>(ts));
2604 <        return (List<Future<T>>)(List)ts;
2605 <    }
2599 >        // In previous versions of this class, this method constructed
2600 >        // a task to run ForkJoinTask.invokeAll, but now external
2601 >        // invocation of multiple tasks is at least as efficient.
2602 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2603 >        // Workaround needed because method wasn't declared with
2604 >        // wildcards in return type but should have been.
2605 >        @SuppressWarnings({"unchecked", "rawtypes"})
2606 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2607  
2608 <    static final class InvokeAll<T> extends RecursiveAction {
2609 <        final ArrayList<ForkJoinTask<T>> tasks;
2610 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2611 <        public void compute() {
2612 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2608 >        boolean done = false;
2609 >        try {
2610 >            for (Callable<T> t : tasks) {
2611 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2612 >                externalPush(f);
2613 >                fs.add(f);
2614 >            }
2615 >            for (ForkJoinTask<T> f : fs)
2616 >                f.quietlyJoin();
2617 >            done = true;
2618 >            return futures;
2619 >        } finally {
2620 >            if (!done)
2621 >                for (ForkJoinTask<T> f : fs)
2622 >                    f.cancel(false);
2623          }
2624      }
2625  
656    // Configuration and status settings and queries
657
2626      /**
2627 <     * Returns the factory used for constructing new workers
2627 >     * Returns the factory used for constructing new workers.
2628       *
2629       * @return the factory used for constructing new workers
2630       */
# Line 667 | Line 2635 | public class ForkJoinPool extends Abstra
2635      /**
2636       * Returns the handler for internal worker threads that terminate
2637       * due to unrecoverable errors encountered while executing tasks.
2638 <     * @return the handler, or null if none
2638 >     *
2639 >     * @return the handler, or {@code null} if none
2640       */
2641      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2642 <        Thread.UncaughtExceptionHandler h;
674 <        final ReentrantLock lock = this.workerLock;
675 <        lock.lock();
676 <        try {
677 <            h = ueh;
678 <        } finally {
679 <            lock.unlock();
680 <        }
681 <        return h;
2642 >        return ueh;
2643      }
2644  
2645      /**
2646 <     * Sets the handler for internal worker threads that terminate due
686 <     * to unrecoverable errors encountered while executing tasks.
687 <     * Unless set, the current default or ThreadGroup handler is used
688 <     * as handler.
2646 >     * Returns the targeted parallelism level of this pool.
2647       *
2648 <     * @param h the new handler
691 <     * @return the old handler, or null if none
692 <     * @throws SecurityException if a security manager exists and
693 <     *         the caller is not permitted to modify threads
694 <     *         because it does not hold {@link
695 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
696 <     */
697 <    public Thread.UncaughtExceptionHandler
698 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
699 <        checkPermission();
700 <        Thread.UncaughtExceptionHandler old = null;
701 <        final ReentrantLock lock = this.workerLock;
702 <        lock.lock();
703 <        try {
704 <            old = ueh;
705 <            ueh = h;
706 <            ForkJoinWorkerThread[] ws = workers;
707 <            if (ws != null) {
708 <                for (int i = 0; i < ws.length; ++i) {
709 <                    ForkJoinWorkerThread w = ws[i];
710 <                    if (w != null)
711 <                        w.setUncaughtExceptionHandler(h);
712 <                }
713 <            }
714 <        } finally {
715 <            lock.unlock();
716 <        }
717 <        return old;
718 <    }
719 <
720 <
721 <    /**
722 <     * Sets the target parallelism level of this pool.
723 <     * @param parallelism the target parallelism
724 <     * @throws IllegalArgumentException if parallelism less than or
725 <     * equal to zero or greater than maximum size bounds
726 <     * @throws SecurityException if a security manager exists and
727 <     *         the caller is not permitted to modify threads
728 <     *         because it does not hold {@link
729 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2648 >     * @return the targeted parallelism level of this pool
2649       */
2650 <    public void setParallelism(int parallelism) {
2651 <        checkPermission();
733 <        if (parallelism <= 0 || parallelism > maxPoolSize)
734 <            throw new IllegalArgumentException();
735 <        final ReentrantLock lock = this.workerLock;
736 <        lock.lock();
737 <        try {
738 <            if (!isTerminating()) {
739 <                int p = this.parallelism;
740 <                this.parallelism = parallelism;
741 <                if (parallelism > p)
742 <                    createAndStartAddedWorkers();
743 <                else
744 <                    trimSpares();
745 <            }
746 <        } finally {
747 <            lock.unlock();
748 <        }
749 <        signalIdleWorkers();
2650 >    public int getParallelism() {
2651 >        return parallelism;
2652      }
2653  
2654      /**
2655 <     * Returns the targeted number of worker threads in this pool.
2655 >     * Returns the targeted parallelism level of the common pool.
2656       *
2657 <     * @return the targeted number of worker threads in this pool
2657 >     * @return the targeted parallelism level of the common pool
2658       */
2659 <    public int getParallelism() {
2660 <        return parallelism;
2659 >    public static int getCommonPoolParallelism() {
2660 >        return commonPoolParallelism;
2661      }
2662  
2663      /**
2664       * Returns the number of worker threads that have started but not
2665 <     * yet terminated.  This result returned by this method may differ
2666 <     * from {@code getParallelism} when threads are created to
2665 >     * yet terminated.  The result returned by this method may differ
2666 >     * from {@link #getParallelism} when threads are created to
2667       * maintain parallelism when others are cooperatively blocked.
2668       *
2669       * @return the number of worker threads
2670       */
2671      public int getPoolSize() {
2672 <        return totalCountOf(workerCounts);
771 <    }
772 <
773 <    /**
774 <     * Returns the maximum number of threads allowed to exist in the
775 <     * pool, even if there are insufficient unblocked running threads.
776 <     * @return the maximum
777 <     */
778 <    public int getMaximumPoolSize() {
779 <        return maxPoolSize;
2672 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2673      }
2674  
2675      /**
2676 <     * Sets the maximum number of threads allowed to exist in the
784 <     * pool, even if there are insufficient unblocked running threads.
785 <     * Setting this value has no effect on current pool size. It
786 <     * controls construction of new threads.
787 <     * @throws IllegalArgumentException if negative or greater then
788 <     * internal implementation limit
789 <     */
790 <    public void setMaximumPoolSize(int newMax) {
791 <        if (newMax < 0 || newMax > MAX_THREADS)
792 <            throw new IllegalArgumentException();
793 <        maxPoolSize = newMax;
794 <    }
795 <
796 <
797 <    /**
798 <     * Returns true if this pool dynamically maintains its target
799 <     * parallelism level. If false, new threads are added only to
800 <     * avoid possible starvation.
801 <     * This setting is by default true;
802 <     * @return true if maintains parallelism
803 <     */
804 <    public boolean getMaintainsParallelism() {
805 <        return maintainsParallelism;
806 <    }
807 <
808 <    /**
809 <     * Sets whether this pool dynamically maintains its target
810 <     * parallelism level. If false, new threads are added only to
811 <     * avoid possible starvation.
812 <     * @param enable true to maintains parallelism
813 <     */
814 <    public void setMaintainsParallelism(boolean enable) {
815 <        maintainsParallelism = enable;
816 <    }
817 <
818 <    /**
819 <     * Establishes local first-in-first-out scheduling mode for forked
820 <     * tasks that are never joined. This mode may be more appropriate
821 <     * than default locally stack-based mode in applications in which
822 <     * worker threads only process asynchronous tasks.  This method is
823 <     * designed to be invoked only when pool is quiescent, and
824 <     * typically only before any tasks are submitted. The effects of
825 <     * invocations at other times may be unpredictable.
826 <     *
827 <     * @param async if true, use locally FIFO scheduling
828 <     * @return the previous mode
829 <     */
830 <    public boolean setAsyncMode(boolean async) {
831 <        boolean oldMode = locallyFifo;
832 <        locallyFifo = async;
833 <        ForkJoinWorkerThread[] ws = workers;
834 <        if (ws != null) {
835 <            for (int i = 0; i < ws.length; ++i) {
836 <                ForkJoinWorkerThread t = ws[i];
837 <                if (t != null)
838 <                    t.setAsyncMode(async);
839 <            }
840 <        }
841 <        return oldMode;
842 <    }
843 <
844 <    /**
845 <     * Returns true if this pool uses local first-in-first-out
2676 >     * Returns {@code true} if this pool uses local first-in-first-out
2677       * scheduling mode for forked tasks that are never joined.
2678       *
2679 <     * @return true if this pool uses async mode
2679 >     * @return {@code true} if this pool uses async mode
2680       */
2681      public boolean getAsyncMode() {
2682 <        return locallyFifo;
2682 >        return localMode != 0;
2683      }
2684  
2685      /**
2686       * Returns an estimate of the number of worker threads that are
2687       * not blocked waiting to join tasks or for other managed
2688 <     * synchronization.
2688 >     * synchronization. This method may overestimate the
2689 >     * number of running threads.
2690       *
2691       * @return the number of worker threads
2692       */
2693      public int getRunningThreadCount() {
2694 <        return runningCountOf(workerCounts);
2694 >        int rc = 0;
2695 >        WorkQueue[] ws; WorkQueue w;
2696 >        if ((ws = workQueues) != null) {
2697 >            for (int i = 1; i < ws.length; i += 2) {
2698 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2699 >                    ++rc;
2700 >            }
2701 >        }
2702 >        return rc;
2703      }
2704  
2705      /**
2706       * Returns an estimate of the number of threads that are currently
2707       * stealing or executing tasks. This method may overestimate the
2708       * number of active threads.
2709 +     *
2710       * @return the number of active threads
2711       */
2712      public int getActiveThreadCount() {
2713 <        return activeCountOf(runControl);
2714 <    }
874 <
875 <    /**
876 <     * Returns an estimate of the number of threads that are currently
877 <     * idle waiting for tasks. This method may underestimate the
878 <     * number of idle threads.
879 <     * @return the number of idle threads
880 <     */
881 <    final int getIdleThreadCount() {
882 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
883 <        return (c <= 0)? 0 : c;
2713 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2714 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2715      }
2716  
2717      /**
2718 <     * Returns true if all worker threads are currently idle. An idle
2719 <     * worker is one that cannot obtain a task to execute because none
2720 <     * are available to steal from other threads, and there are no
2721 <     * pending submissions to the pool. This method is conservative:
2722 <     * It might not return true immediately upon idleness of all
2723 <     * threads, but will eventually become true if threads remain
2724 <     * inactive.
2725 <     * @return true if all threads are currently idle
2718 >     * Returns {@code true} if all worker threads are currently idle.
2719 >     * An idle worker is one that cannot obtain a task to execute
2720 >     * because none are available to steal from other threads, and
2721 >     * there are no pending submissions to the pool. This method is
2722 >     * conservative; it might not return {@code true} immediately upon
2723 >     * idleness of all threads, but will eventually become true if
2724 >     * threads remain inactive.
2725 >     *
2726 >     * @return {@code true} if all threads are currently idle
2727       */
2728      public boolean isQuiescent() {
2729 <        return activeCountOf(runControl) == 0;
2729 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2730      }
2731  
2732      /**
# Line 902 | Line 2734 | public class ForkJoinPool extends Abstra
2734       * one thread's work queue by another. The reported value
2735       * underestimates the actual total number of steals when the pool
2736       * is not quiescent. This value may be useful for monitoring and
2737 <     * tuning fork/join programs: In general, steal counts should be
2737 >     * tuning fork/join programs: in general, steal counts should be
2738       * high enough to keep threads busy, but low enough to avoid
2739       * overhead and contention across threads.
2740 +     *
2741       * @return the number of steals
2742       */
2743      public long getStealCount() {
2744 <        return stealCount.get();
2745 <    }
2746 <
2747 <    /**
2748 <     * Accumulate steal count from a worker. Call only
2749 <     * when worker known to be idle.
2750 <     */
2751 <    private void updateStealCount(ForkJoinWorkerThread w) {
2752 <        int sc = w.getAndClearStealCount();
920 <        if (sc != 0)
921 <            stealCount.addAndGet(sc);
2744 >        long count = stealCount;
2745 >        WorkQueue[] ws; WorkQueue w;
2746 >        if ((ws = workQueues) != null) {
2747 >            for (int i = 1; i < ws.length; i += 2) {
2748 >                if ((w = ws[i]) != null)
2749 >                    count += w.nsteals;
2750 >            }
2751 >        }
2752 >        return count;
2753      }
2754  
2755      /**
# Line 928 | Line 2759 | public class ForkJoinPool extends Abstra
2759       * an approximation, obtained by iterating across all threads in
2760       * the pool. This method may be useful for tuning task
2761       * granularities.
2762 +     *
2763       * @return the number of queued tasks
2764       */
2765      public long getQueuedTaskCount() {
2766          long count = 0;
2767 <        ForkJoinWorkerThread[] ws = workers;
2768 <        if (ws != null) {
2769 <            for (int i = 0; i < ws.length; ++i) {
2770 <                ForkJoinWorkerThread t = ws[i];
2771 <                if (t != null)
940 <                    count += t.getQueueSize();
2767 >        WorkQueue[] ws; WorkQueue w;
2768 >        if ((ws = workQueues) != null) {
2769 >            for (int i = 1; i < ws.length; i += 2) {
2770 >                if ((w = ws[i]) != null)
2771 >                    count += w.queueSize();
2772              }
2773          }
2774          return count;
2775      }
2776  
2777      /**
2778 <     * Returns an estimate of the number tasks submitted to this pool
2779 <     * that have not yet begun executing. This method takes time
2780 <     * proportional to the number of submissions.
2778 >     * Returns an estimate of the number of tasks submitted to this
2779 >     * pool that have not yet begun executing.  This method may take
2780 >     * time proportional to the number of submissions.
2781 >     *
2782       * @return the number of queued submissions
2783       */
2784      public int getQueuedSubmissionCount() {
2785 <        return submissionQueue.size();
2785 >        int count = 0;
2786 >        WorkQueue[] ws; WorkQueue w;
2787 >        if ((ws = workQueues) != null) {
2788 >            for (int i = 0; i < ws.length; i += 2) {
2789 >                if ((w = ws[i]) != null)
2790 >                    count += w.queueSize();
2791 >            }
2792 >        }
2793 >        return count;
2794      }
2795  
2796      /**
2797 <     * Returns true if there are any tasks submitted to this pool
2798 <     * that have not yet begun executing.
2797 >     * Returns {@code true} if there are any tasks submitted to this
2798 >     * pool that have not yet begun executing.
2799 >     *
2800       * @return {@code true} if there are any queued submissions
2801       */
2802      public boolean hasQueuedSubmissions() {
2803 <        return !submissionQueue.isEmpty();
2803 >        WorkQueue[] ws; WorkQueue w;
2804 >        if ((ws = workQueues) != null) {
2805 >            for (int i = 0; i < ws.length; i += 2) {
2806 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2807 >                    return true;
2808 >            }
2809 >        }
2810 >        return false;
2811      }
2812  
2813      /**
2814       * Removes and returns the next unexecuted submission if one is
2815       * available.  This method may be useful in extensions to this
2816       * class that re-assign work in systems with multiple pools.
2817 <     * @return the next submission, or null if none
2817 >     *
2818 >     * @return the next submission, or {@code null} if none
2819       */
2820      protected ForkJoinTask<?> pollSubmission() {
2821 <        return submissionQueue.poll();
2821 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2822 >        if ((ws = workQueues) != null) {
2823 >            for (int i = 0; i < ws.length; i += 2) {
2824 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2825 >                    return t;
2826 >            }
2827 >        }
2828 >        return null;
2829      }
2830  
2831      /**
2832       * Removes all available unexecuted submitted and forked tasks
2833       * from scheduling queues and adds them to the given collection,
2834       * without altering their execution status. These may include
2835 <     * artificially generated or wrapped tasks. This method is designed
2836 <     * to be invoked only when the pool is known to be
2835 >     * artificially generated or wrapped tasks. This method is
2836 >     * designed to be invoked only when the pool is known to be
2837       * quiescent. Invocations at other times may not remove all
2838       * tasks. A failure encountered while attempting to add elements
2839       * to collection {@code c} may result in elements being in
# Line 985 | Line 2841 | public class ForkJoinPool extends Abstra
2841       * exception is thrown.  The behavior of this operation is
2842       * undefined if the specified collection is modified while the
2843       * operation is in progress.
2844 +     *
2845       * @param c the collection to transfer elements into
2846       * @return the number of elements transferred
2847       */
2848 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
2849 <        int n = submissionQueue.drainTo(c);
2850 <        ForkJoinWorkerThread[] ws = workers;
2851 <        if (ws != null) {
2848 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2849 >        int count = 0;
2850 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2851 >        if ((ws = workQueues) != null) {
2852              for (int i = 0; i < ws.length; ++i) {
2853 <                ForkJoinWorkerThread w = ws[i];
2854 <                if (w != null)
2855 <                    n += w.drainTasksTo(c);
2853 >                if ((w = ws[i]) != null) {
2854 >                    while ((t = w.poll()) != null) {
2855 >                        c.add(t);
2856 >                        ++count;
2857 >                    }
2858 >                }
2859              }
2860          }
2861 <        return n;
2861 >        return count;
2862      }
2863  
2864      /**
# Line 1009 | Line 2869 | public class ForkJoinPool extends Abstra
2869       * @return a string identifying this pool, as well as its state
2870       */
2871      public String toString() {
2872 <        int ps = parallelism;
2873 <        int wc = workerCounts;
2874 <        int rc = runControl;
2875 <        long st = getStealCount();
2876 <        long qt = getQueuedTaskCount();
2877 <        long qs = getQueuedSubmissionCount();
2872 >        // Use a single pass through workQueues to collect counts
2873 >        long qt = 0L, qs = 0L; int rc = 0;
2874 >        long st = stealCount;
2875 >        long c = ctl;
2876 >        WorkQueue[] ws; WorkQueue w;
2877 >        if ((ws = workQueues) != null) {
2878 >            for (int i = 0; i < ws.length; ++i) {
2879 >                if ((w = ws[i]) != null) {
2880 >                    int size = w.queueSize();
2881 >                    if ((i & 1) == 0)
2882 >                        qs += size;
2883 >                    else {
2884 >                        qt += size;
2885 >                        st += w.nsteals;
2886 >                        if (w.isApparentlyUnblocked())
2887 >                            ++rc;
2888 >                    }
2889 >                }
2890 >            }
2891 >        }
2892 >        int pc = parallelism;
2893 >        int tc = pc + (short)(c >>> TC_SHIFT);
2894 >        int ac = pc + (int)(c >> AC_SHIFT);
2895 >        if (ac < 0) // ignore transient negative
2896 >            ac = 0;
2897 >        String level;
2898 >        if ((c & STOP_BIT) != 0)
2899 >            level = (tc == 0) ? "Terminated" : "Terminating";
2900 >        else
2901 >            level = plock < 0 ? "Shutting down" : "Running";
2902          return super.toString() +
2903 <            "[" + runStateToString(runStateOf(rc)) +
2904 <            ", parallelism = " + ps +
2905 <            ", size = " + totalCountOf(wc) +
2906 <            ", active = " + activeCountOf(rc) +
2907 <            ", running = " + runningCountOf(wc) +
2903 >            "[" + level +
2904 >            ", parallelism = " + pc +
2905 >            ", size = " + tc +
2906 >            ", active = " + ac +
2907 >            ", running = " + rc +
2908              ", steals = " + st +
2909              ", tasks = " + qt +
2910              ", submissions = " + qs +
2911              "]";
2912      }
2913  
1030    private static String runStateToString(int rs) {
1031        switch(rs) {
1032        case RUNNING: return "Running";
1033        case SHUTDOWN: return "Shutting down";
1034        case TERMINATING: return "Terminating";
1035        case TERMINATED: return "Terminated";
1036        default: throw new Error("Unknown run state");
1037        }
1038    }
1039
1040    // lifecycle control
1041
2914      /**
2915 <     * Initiates an orderly shutdown in which previously submitted
2916 <     * tasks are executed, but no new tasks will be accepted.
2917 <     * Invocation has no additional effect if already shut down.
2918 <     * Tasks that are in the process of being submitted concurrently
2919 <     * during the course of this method may or may not be rejected.
2915 >     * Possibly initiates an orderly shutdown in which previously
2916 >     * submitted tasks are executed, but no new tasks will be
2917 >     * accepted. Invocation has no effect on execution state if this
2918 >     * is the {@link #commonPool}, and no additional effect if
2919 >     * already shut down.  Tasks that are in the process of being
2920 >     * submitted concurrently during the course of this method may or
2921 >     * may not be rejected.
2922 >     *
2923       * @throws SecurityException if a security manager exists and
2924       *         the caller is not permitted to modify threads
2925       *         because it does not hold {@link
2926 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2926 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2927       */
2928      public void shutdown() {
2929          checkPermission();
2930 <        transitionRunStateTo(SHUTDOWN);
1056 <        if (canTerminateOnShutdown(runControl))
1057 <            terminateOnShutdown();
2930 >        tryTerminate(false, true);
2931      }
2932  
2933      /**
2934 <     * Attempts to stop all actively executing tasks, and cancels all
2935 <     * waiting tasks.  Tasks that are in the process of being
2936 <     * submitted or executed concurrently during the course of this
2937 <     * method may or may not be rejected. Unlike some other executors,
2938 <     * this method cancels rather than collects non-executed tasks
2939 <     * upon termination, so always returns an empty list. However, you
2940 <     * can use method {@code drainTasksTo} before invoking this
2941 <     * method to transfer unexecuted tasks to another collection.
2934 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2935 >     * all subsequently submitted tasks.  Invocation has no effect on
2936 >     * execution state if this is the {@link #commonPool}, and no
2937 >     * additional effect if already shut down. Otherwise, tasks that
2938 >     * are in the process of being submitted or executed concurrently
2939 >     * during the course of this method may or may not be
2940 >     * rejected. This method cancels both existing and unexecuted
2941 >     * tasks, in order to permit termination in the presence of task
2942 >     * dependencies. So the method always returns an empty list
2943 >     * (unlike the case for some other Executors).
2944 >     *
2945       * @return an empty list
2946       * @throws SecurityException if a security manager exists and
2947       *         the caller is not permitted to modify threads
2948       *         because it does not hold {@link
2949 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2949 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2950       */
2951      public List<Runnable> shutdownNow() {
2952          checkPermission();
2953 <        terminate();
2953 >        tryTerminate(true, true);
2954          return Collections.emptyList();
2955      }
2956  
# Line 1084 | Line 2960 | public class ForkJoinPool extends Abstra
2960       * @return {@code true} if all tasks have completed following shut down
2961       */
2962      public boolean isTerminated() {
2963 <        return runStateOf(runControl) == TERMINATED;
2963 >        long c = ctl;
2964 >        return ((c & STOP_BIT) != 0L &&
2965 >                (short)(c >>> TC_SHIFT) == -parallelism);
2966      }
2967  
2968      /**
2969       * Returns {@code true} if the process of termination has
2970 <     * commenced but possibly not yet completed.
2970 >     * commenced but not yet completed.  This method may be useful for
2971 >     * debugging. A return of {@code true} reported a sufficient
2972 >     * period after shutdown may indicate that submitted tasks have
2973 >     * ignored or suppressed interruption, or are waiting for IO,
2974 >     * causing this executor not to properly terminate. (See the
2975 >     * advisory notes for class {@link ForkJoinTask} stating that
2976 >     * tasks should not normally entail blocking operations.  But if
2977 >     * they do, they must abort them on interrupt.)
2978       *
2979 <     * @return {@code true} if terminating
2979 >     * @return {@code true} if terminating but not yet terminated
2980       */
2981      public boolean isTerminating() {
2982 <        return runStateOf(runControl) >= TERMINATING;
2982 >        long c = ctl;
2983 >        return ((c & STOP_BIT) != 0L &&
2984 >                (short)(c >>> TC_SHIFT) != -parallelism);
2985      }
2986  
2987      /**
# Line 1103 | Line 2990 | public class ForkJoinPool extends Abstra
2990       * @return {@code true} if this pool has been shut down
2991       */
2992      public boolean isShutdown() {
2993 <        return runStateOf(runControl) >= SHUTDOWN;
2993 >        return plock < 0;
2994      }
2995  
2996      /**
2997 <     * Blocks until all tasks have completed execution after a shutdown
2998 <     * request, or the timeout occurs, or the current thread is
2999 <     * interrupted, whichever happens first.
2997 >     * Blocks until all tasks have completed execution after a
2998 >     * shutdown request, or the timeout occurs, or the current thread
2999 >     * is interrupted, whichever happens first. Note that the {@link
3000 >     * #commonPool()} never terminates until program shutdown so
3001 >     * this method will always time out.
3002       *
3003       * @param timeout the maximum time to wait
3004       * @param unit the time unit of the timeout argument
# Line 1120 | Line 3009 | public class ForkJoinPool extends Abstra
3009      public boolean awaitTermination(long timeout, TimeUnit unit)
3010          throws InterruptedException {
3011          long nanos = unit.toNanos(timeout);
3012 <        final ReentrantLock lock = this.workerLock;
1124 <        lock.lock();
1125 <        try {
1126 <            for (;;) {
1127 <                if (isTerminated())
1128 <                    return true;
1129 <                if (nanos <= 0)
1130 <                    return false;
1131 <                nanos = termination.awaitNanos(nanos);
1132 <            }
1133 <        } finally {
1134 <            lock.unlock();
1135 <        }
1136 <    }
1137 <
1138 <    // Shutdown and termination support
1139 <
1140 <    /**
1141 <     * Callback from terminating worker. Null out the corresponding
1142 <     * workers slot, and if terminating, try to terminate, else try to
1143 <     * shrink workers array.
1144 <     * @param w the worker
1145 <     */
1146 <    final void workerTerminated(ForkJoinWorkerThread w) {
1147 <        updateStealCount(w);
1148 <        updateWorkerCount(-1);
1149 <        final ReentrantLock lock = this.workerLock;
1150 <        lock.lock();
1151 <        try {
1152 <            ForkJoinWorkerThread[] ws = workers;
1153 <            if (ws != null) {
1154 <                int idx = w.poolIndex;
1155 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1156 <                    ws[idx] = null;
1157 <                if (totalCountOf(workerCounts) == 0) {
1158 <                    terminate(); // no-op if already terminating
1159 <                    transitionRunStateTo(TERMINATED);
1160 <                    termination.signalAll();
1161 <                }
1162 <                else if (!isTerminating()) {
1163 <                    tryShrinkWorkerArray();
1164 <                    tryResumeSpare(true); // allow replacement
1165 <                }
1166 <            }
1167 <        } finally {
1168 <            lock.unlock();
1169 <        }
1170 <        signalIdleWorkers();
1171 <    }
1172 <
1173 <    /**
1174 <     * Initiate termination.
1175 <     */
1176 <    private void terminate() {
1177 <        if (transitionRunStateTo(TERMINATING)) {
1178 <            stopAllWorkers();
1179 <            resumeAllSpares();
1180 <            signalIdleWorkers();
1181 <            cancelQueuedSubmissions();
1182 <            cancelQueuedWorkerTasks();
1183 <            interruptUnterminatedWorkers();
1184 <            signalIdleWorkers(); // resignal after interrupt
1185 <        }
1186 <    }
1187 <
1188 <    /**
1189 <     * Possibly terminates when on shutdown state.
1190 <     */
1191 <    private void terminateOnShutdown() {
1192 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1193 <            terminate();
1194 <    }
1195 <
1196 <    /**
1197 <     * Clears out and cancels submissions.
1198 <     */
1199 <    private void cancelQueuedSubmissions() {
1200 <        ForkJoinTask<?> task;
1201 <        while ((task = pollSubmission()) != null)
1202 <            task.cancel(false);
1203 <    }
1204 <
1205 <    /**
1206 <     * Cleans out worker queues.
1207 <     */
1208 <    private void cancelQueuedWorkerTasks() {
1209 <        final ReentrantLock lock = this.workerLock;
1210 <        lock.lock();
1211 <        try {
1212 <            ForkJoinWorkerThread[] ws = workers;
1213 <            if (ws != null) {
1214 <                for (int i = 0; i < ws.length; ++i) {
1215 <                    ForkJoinWorkerThread t = ws[i];
1216 <                    if (t != null)
1217 <                        t.cancelTasks();
1218 <                }
1219 <            }
1220 <        } finally {
1221 <            lock.unlock();
1222 <        }
1223 <    }
1224 <
1225 <    /**
1226 <     * Sets each worker's status to terminating. Requires lock to avoid
1227 <     * conflicts with add/remove.
1228 <     */
1229 <    private void stopAllWorkers() {
1230 <        final ReentrantLock lock = this.workerLock;
1231 <        lock.lock();
1232 <        try {
1233 <            ForkJoinWorkerThread[] ws = workers;
1234 <            if (ws != null) {
1235 <                for (int i = 0; i < ws.length; ++i) {
1236 <                    ForkJoinWorkerThread t = ws[i];
1237 <                    if (t != null)
1238 <                        t.shutdownNow();
1239 <                }
1240 <            }
1241 <        } finally {
1242 <            lock.unlock();
1243 <        }
1244 <    }
1245 <
1246 <    /**
1247 <     * Interrupts all unterminated workers.  This is not required for
1248 <     * sake of internal control, but may help unstick user code during
1249 <     * shutdown.
1250 <     */
1251 <    private void interruptUnterminatedWorkers() {
1252 <        final ReentrantLock lock = this.workerLock;
1253 <        lock.lock();
1254 <        try {
1255 <            ForkJoinWorkerThread[] ws = workers;
1256 <            if (ws != null) {
1257 <                for (int i = 0; i < ws.length; ++i) {
1258 <                    ForkJoinWorkerThread t = ws[i];
1259 <                    if (t != null && !t.isTerminated()) {
1260 <                        try {
1261 <                            t.interrupt();
1262 <                        } catch (SecurityException ignore) {
1263 <                        }
1264 <                    }
1265 <                }
1266 <            }
1267 <        } finally {
1268 <            lock.unlock();
1269 <        }
1270 <    }
1271 <
1272 <
1273 <    /*
1274 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1275 <     * are basic Treiber stack nodes, also used for spare stack.
1276 <     *
1277 <     * The event barrier has an event count and a wait queue (actually
1278 <     * a Treiber stack).  Workers are enabled to look for work when
1279 <     * the eventCount is incremented. If they fail to find work, they
1280 <     * may wait for next count. Upon release, threads help others wake
1281 <     * up.
1282 <     *
1283 <     * Synchronization events occur only in enough contexts to
1284 <     * maintain overall liveness:
1285 <     *
1286 <     *   - Submission of a new task to the pool
1287 <     *   - Resizes or other changes to the workers array
1288 <     *   - pool termination
1289 <     *   - A worker pushing a task on an empty queue
1290 <     *
1291 <     * The case of pushing a task occurs often enough, and is heavy
1292 <     * enough compared to simple stack pushes, to require special
1293 <     * handling: Method signalWork returns without advancing count if
1294 <     * the queue appears to be empty.  This would ordinarily result in
1295 <     * races causing some queued waiters not to be woken up. To avoid
1296 <     * this, the first worker enqueued in method sync (see
1297 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1298 <     * helps signal if any are found. This works well because the
1299 <     * worker has nothing better to do, and so might as well help
1300 <     * alleviate the overhead and contention on the threads actually
1301 <     * doing work.  Also, since event counts increments on task
1302 <     * availability exist to maintain liveness (rather than to force
1303 <     * refreshes etc), it is OK for callers to exit early if
1304 <     * contending with another signaller.
1305 <     */
1306 <    static final class WaitQueueNode {
1307 <        WaitQueueNode next; // only written before enqueued
1308 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1309 <        final long count; // unused for spare stack
1310 <
1311 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1312 <            count = c;
1313 <            thread = w;
1314 <        }
1315 <
1316 <        /**
1317 <         * Wakes up waiter, returning false if known to already
1318 <         */
1319 <        boolean signal() {
1320 <            ForkJoinWorkerThread t = thread;
1321 <            if (t == null)
1322 <                return false;
1323 <            thread = null;
1324 <            LockSupport.unpark(t);
3012 >        if (isTerminated())
3013              return true;
3014 <        }
3015 <
3016 <        /**
3017 <         * Awaits release on sync.
3018 <         */
3019 <        void awaitSyncRelease(ForkJoinPool p) {
3020 <            while (thread != null && !p.syncIsReleasable(this))
1333 <                LockSupport.park(this);
1334 <        }
1335 <
1336 <        /**
1337 <         * Awaits resumption as spare.
1338 <         */
1339 <        void awaitSpareRelease() {
1340 <            while (thread != null) {
1341 <                if (!Thread.interrupted())
1342 <                    LockSupport.park(this);
1343 <            }
1344 <        }
1345 <    }
1346 <
1347 <    /**
1348 <     * Ensures that no thread is waiting for count to advance from the
1349 <     * current value of eventCount read on entry to this method, by
1350 <     * releasing waiting threads if necessary.
1351 <     * @return the count
1352 <     */
1353 <    final long ensureSync() {
1354 <        long c = eventCount;
1355 <        WaitQueueNode q;
1356 <        while ((q = syncStack) != null && q.count < c) {
1357 <            if (casBarrierStack(q, null)) {
1358 <                do {
1359 <                    q.signal();
1360 <                } while ((q = q.next) != null);
1361 <                break;
1362 <            }
1363 <        }
1364 <        return c;
1365 <    }
1366 <
1367 <    /**
1368 <     * Increments event count and releases waiting threads.
1369 <     */
1370 <    private void signalIdleWorkers() {
1371 <        long c;
1372 <        do;while (!casEventCount(c = eventCount, c+1));
1373 <        ensureSync();
1374 <    }
1375 <
1376 <    /**
1377 <     * Signals threads waiting to poll a task. Because method sync
1378 <     * rechecks availability, it is OK to only proceed if queue
1379 <     * appears to be non-empty, and OK to skip under contention to
1380 <     * increment count (since some other thread succeeded).
1381 <     */
1382 <    final void signalWork() {
1383 <        long c;
1384 <        WaitQueueNode q;
1385 <        if (syncStack != null &&
1386 <            casEventCount(c = eventCount, c+1) &&
1387 <            (((q = syncStack) != null && q.count <= c) &&
1388 <             (!casBarrierStack(q, q.next) || !q.signal())))
1389 <            ensureSync();
1390 <    }
1391 <
1392 <    /**
1393 <     * Waits until event count advances from last value held by
1394 <     * caller, or if excess threads, caller is resumed as spare, or
1395 <     * caller or pool is terminating. Updates caller's event on exit.
1396 <     * @param w the calling worker thread
1397 <     */
1398 <    final void sync(ForkJoinWorkerThread w) {
1399 <        updateStealCount(w); // Transfer w's count while it is idle
1400 <
1401 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1402 <            long prev = w.lastEventCount;
1403 <            WaitQueueNode node = null;
1404 <            WaitQueueNode h;
1405 <            while (eventCount == prev &&
1406 <                   ((h = syncStack) == null || h.count == prev)) {
1407 <                if (node == null)
1408 <                    node = new WaitQueueNode(prev, w);
1409 <                if (casBarrierStack(node.next = h, node)) {
1410 <                    node.awaitSyncRelease(this);
1411 <                    break;
1412 <                }
1413 <            }
1414 <            long ec = ensureSync();
1415 <            if (ec != prev) {
1416 <                w.lastEventCount = ec;
1417 <                break;
1418 <            }
1419 <        }
1420 <    }
1421 <
1422 <    /**
1423 <     * Returns true if worker waiting on sync can proceed:
1424 <     *  - on signal (thread == null)
1425 <     *  - on event count advance (winning race to notify vs signaller)
1426 <     *  - on Interrupt
1427 <     *  - if the first queued node, we find work available
1428 <     * If node was not signalled and event count not advanced on exit,
1429 <     * then we also help advance event count.
1430 <     * @return true if node can be released
1431 <     */
1432 <    final boolean syncIsReleasable(WaitQueueNode node) {
1433 <        long prev = node.count;
1434 <        if (!Thread.interrupted() && node.thread != null &&
1435 <            (node.next != null ||
1436 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1437 <            eventCount == prev)
1438 <            return false;
1439 <        if (node.thread != null) {
1440 <            node.thread = null;
1441 <            long ec = eventCount;
1442 <            if (prev <= ec) // help signal
1443 <                casEventCount(ec, ec+1);
1444 <        }
1445 <        return true;
1446 <    }
1447 <
1448 <    /**
1449 <     * Returns true if a new sync event occurred since last call to
1450 <     * sync or this method, if so, updating caller's count.
1451 <     */
1452 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1453 <        long lc = w.lastEventCount;
1454 <        long ec = ensureSync();
1455 <        if (ec == lc)
1456 <            return false;
1457 <        w.lastEventCount = ec;
1458 <        return true;
1459 <    }
1460 <
1461 <    //  Parallelism maintenance
1462 <
1463 <    /**
1464 <     * Decrements running count; if too low, adds spare.
1465 <     *
1466 <     * Conceptually, all we need to do here is add or resume a
1467 <     * spare thread when one is about to block (and remove or
1468 <     * suspend it later when unblocked -- see suspendIfSpare).
1469 <     * However, implementing this idea requires coping with
1470 <     * several problems: We have imperfect information about the
1471 <     * states of threads. Some count updates can and usually do
1472 <     * lag run state changes, despite arrangements to keep them
1473 <     * accurate (for example, when possible, updating counts
1474 <     * before signalling or resuming), especially when running on
1475 <     * dynamic JVMs that don't optimize the infrequent paths that
1476 <     * update counts. Generating too many threads can make these
1477 <     * problems become worse, because excess threads are more
1478 <     * likely to be context-switched with others, slowing them all
1479 <     * down, especially if there is no work available, so all are
1480 <     * busy scanning or idling.  Also, excess spare threads can
1481 <     * only be suspended or removed when they are idle, not
1482 <     * immediately when they aren't needed. So adding threads will
1483 <     * raise parallelism level for longer than necessary.  Also,
1484 <     * FJ applications often encounter highly transient peaks when
1485 <     * many threads are blocked joining, but for less time than it
1486 <     * takes to create or resume spares.
1487 <     *
1488 <     * @param joinMe if non-null, return early if done
1489 <     * @param maintainParallelism if true, try to stay within
1490 <     * target counts, else create only to avoid starvation
1491 <     * @return true if joinMe known to be done
1492 <     */
1493 <    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1494 <        maintainParallelism &= maintainsParallelism; // overrride
1495 <        boolean dec = false;  // true when running count decremented
1496 <        while (spareStack == null || !tryResumeSpare(dec)) {
1497 <            int counts = workerCounts;
1498 <            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1499 <                if (!needSpare(counts, maintainParallelism))
1500 <                    break;
1501 <                if (joinMe.status < 0)
1502 <                    return true;
1503 <                if (tryAddSpare(counts))
3014 >        long startTime = System.nanoTime();
3015 >        boolean terminated = false;
3016 >        synchronized (this) {
3017 >            for (long waitTime = nanos, millis = 0L;;) {
3018 >                if (terminated = isTerminated() ||
3019 >                    waitTime <= 0L ||
3020 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3021                      break;
3022 +                wait(millis);
3023 +                waitTime = nanos - (System.nanoTime() - startTime);
3024              }
3025          }
3026 <        return false;
1508 <    }
1509 <
1510 <    /**
1511 <     * Same idea as preJoin
1512 <     */
1513 <    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1514 <        maintainParallelism &= maintainsParallelism;
1515 <        boolean dec = false;
1516 <        while (spareStack == null || !tryResumeSpare(dec)) {
1517 <            int counts = workerCounts;
1518 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1519 <                if (!needSpare(counts, maintainParallelism))
1520 <                    break;
1521 <                if (blocker.isReleasable())
1522 <                    return true;
1523 <                if (tryAddSpare(counts))
1524 <                    break;
1525 <            }
1526 <        }
1527 <        return false;
1528 <    }
1529 <
1530 <    /**
1531 <     * Returns true if a spare thread appears to be needed.  If
1532 <     * maintaining parallelism, returns true when the deficit in
1533 <     * running threads is more than the surplus of total threads, and
1534 <     * there is apparently some work to do.  This self-limiting rule
1535 <     * means that the more threads that have already been added, the
1536 <     * less parallelism we will tolerate before adding another.
1537 <     * @param counts current worker counts
1538 <     * @param maintainParallelism try to maintain parallelism
1539 <     */
1540 <    private boolean needSpare(int counts, boolean maintainParallelism) {
1541 <        int ps = parallelism;
1542 <        int rc = runningCountOf(counts);
1543 <        int tc = totalCountOf(counts);
1544 <        int runningDeficit = ps - rc;
1545 <        int totalSurplus = tc - ps;
1546 <        return (tc < maxPoolSize &&
1547 <                (rc == 0 || totalSurplus < 0 ||
1548 <                 (maintainParallelism &&
1549 <                  runningDeficit > totalSurplus &&
1550 <                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1551 <    }
1552 <
1553 <    /**
1554 <     * Adds a spare worker if lock available and no more than the
1555 <     * expected numbers of threads exist.
1556 <     * @return true if successful
1557 <     */
1558 <    private boolean tryAddSpare(int expectedCounts) {
1559 <        final ReentrantLock lock = this.workerLock;
1560 <        int expectedRunning = runningCountOf(expectedCounts);
1561 <        int expectedTotal = totalCountOf(expectedCounts);
1562 <        boolean success = false;
1563 <        boolean locked = false;
1564 <        // confirm counts while locking; CAS after obtaining lock
1565 <        try {
1566 <            for (;;) {
1567 <                int s = workerCounts;
1568 <                int tc = totalCountOf(s);
1569 <                int rc = runningCountOf(s);
1570 <                if (rc > expectedRunning || tc > expectedTotal)
1571 <                    break;
1572 <                if (!locked && !(locked = lock.tryLock()))
1573 <                    break;
1574 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1575 <                    createAndStartSpare(tc);
1576 <                    success = true;
1577 <                    break;
1578 <                }
1579 <            }
1580 <        } finally {
1581 <            if (locked)
1582 <                lock.unlock();
1583 <        }
1584 <        return success;
1585 <    }
1586 <
1587 <    /**
1588 <     * Adds the kth spare worker. On entry, pool counts are already
1589 <     * adjusted to reflect addition.
1590 <     */
1591 <    private void createAndStartSpare(int k) {
1592 <        ForkJoinWorkerThread w = null;
1593 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1594 <        int len = ws.length;
1595 <        // Probably, we can place at slot k. If not, find empty slot
1596 <        if (k < len && ws[k] != null) {
1597 <            for (k = 0; k < len && ws[k] != null; ++k)
1598 <                ;
1599 <        }
1600 <        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1601 <            ws[k] = w;
1602 <            w.start();
1603 <        }
1604 <        else
1605 <            updateWorkerCount(-1); // adjust on failure
1606 <        signalIdleWorkers();
1607 <    }
1608 <
1609 <    /**
1610 <     * Suspends calling thread w if there are excess threads.  Called
1611 <     * only from sync.  Spares are enqueued in a Treiber stack using
1612 <     * the same WaitQueueNodes as barriers.  They are resumed mainly
1613 <     * in preJoin, but are also woken on pool events that require all
1614 <     * threads to check run state.
1615 <     * @param w the caller
1616 <     */
1617 <    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1618 <        WaitQueueNode node = null;
1619 <        int s;
1620 <        while (parallelism < runningCountOf(s = workerCounts)) {
1621 <            if (node == null)
1622 <                node = new WaitQueueNode(0, w);
1623 <            if (casWorkerCounts(s, s-1)) { // representation-dependent
1624 <                // push onto stack
1625 <                do;while (!casSpareStack(node.next = spareStack, node));
1626 <                // block until released by resumeSpare
1627 <                node.awaitSpareRelease();
1628 <                return true;
1629 <            }
1630 <        }
1631 <        return false;
1632 <    }
1633 <
1634 <    /**
1635 <     * Tries to pop and resume a spare thread.
1636 <     * @param updateCount if true, increment running count on success
1637 <     * @return true if successful
1638 <     */
1639 <    private boolean tryResumeSpare(boolean updateCount) {
1640 <        WaitQueueNode q;
1641 <        while ((q = spareStack) != null) {
1642 <            if (casSpareStack(q, q.next)) {
1643 <                if (updateCount)
1644 <                    updateRunningCount(1);
1645 <                q.signal();
1646 <                return true;
1647 <            }
1648 <        }
1649 <        return false;
1650 <    }
1651 <
1652 <    /**
1653 <     * Pops and resumes all spare threads. Same idea as ensureSync.
1654 <     * @return true if any spares released
1655 <     */
1656 <    private boolean resumeAllSpares() {
1657 <        WaitQueueNode q;
1658 <        while ( (q = spareStack) != null) {
1659 <            if (casSpareStack(q, null)) {
1660 <                do {
1661 <                    updateRunningCount(1);
1662 <                    q.signal();
1663 <                } while ((q = q.next) != null);
1664 <                return true;
1665 <            }
1666 <        }
1667 <        return false;
1668 <    }
1669 <
1670 <    /**
1671 <     * Pops and shuts down excessive spare threads. Call only while
1672 <     * holding lock. This is not guaranteed to eliminate all excess
1673 <     * threads, only those suspended as spares, which are the ones
1674 <     * unlikely to be needed in the future.
1675 <     */
1676 <    private void trimSpares() {
1677 <        int surplus = totalCountOf(workerCounts) - parallelism;
1678 <        WaitQueueNode q;
1679 <        while (surplus > 0 && (q = spareStack) != null) {
1680 <            if (casSpareStack(q, null)) {
1681 <                do {
1682 <                    updateRunningCount(1);
1683 <                    ForkJoinWorkerThread w = q.thread;
1684 <                    if (w != null && surplus > 0 &&
1685 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1686 <                        --surplus;
1687 <                    q.signal();
1688 <                } while ((q = q.next) != null);
1689 <            }
1690 <        }
3026 >        return terminated;
3027      }
3028  
3029      /**
3030       * Interface for extending managed parallelism for tasks running
3031 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
3032 <     * Method {@code isReleasable} must return true if blocking is not
3033 <     * necessary. Method {@code block} blocks the current thread
3034 <     * if necessary (perhaps internally invoking isReleasable before
3035 <     * actually blocking.).
3031 >     * in {@link ForkJoinPool}s.
3032 >     *
3033 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3034 >     * {@code isReleasable} must return {@code true} if blocking is
3035 >     * not necessary. Method {@code block} blocks the current thread
3036 >     * if necessary (perhaps internally invoking {@code isReleasable}
3037 >     * before actually blocking). These actions are performed by any
3038 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3039 >     * unusual methods in this API accommodate synchronizers that may,
3040 >     * but don't usually, block for long periods. Similarly, they
3041 >     * allow more efficient internal handling of cases in which
3042 >     * additional workers may be, but usually are not, needed to
3043 >     * ensure sufficient parallelism.  Toward this end,
3044 >     * implementations of method {@code isReleasable} must be amenable
3045 >     * to repeated invocation.
3046 >     *
3047       * <p>For example, here is a ManagedBlocker based on a
3048       * ReentrantLock:
3049 <     * <pre>
3050 <     *   class ManagedLocker implements ManagedBlocker {
3051 <     *     final ReentrantLock lock;
3052 <     *     boolean hasLock = false;
3053 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3054 <     *     public boolean block() {
3055 <     *        if (!hasLock)
3056 <     *           lock.lock();
3057 <     *        return true;
3058 <     *     }
3059 <     *     public boolean isReleasable() {
3060 <     *        return hasLock || (hasLock = lock.tryLock());
3061 <     *     }
3049 >     *  <pre> {@code
3050 >     * class ManagedLocker implements ManagedBlocker {
3051 >     *   final ReentrantLock lock;
3052 >     *   boolean hasLock = false;
3053 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3054 >     *   public boolean block() {
3055 >     *     if (!hasLock)
3056 >     *       lock.lock();
3057 >     *     return true;
3058 >     *   }
3059 >     *   public boolean isReleasable() {
3060 >     *     return hasLock || (hasLock = lock.tryLock());
3061 >     *   }
3062 >     * }}</pre>
3063 >     *
3064 >     * <p>Here is a class that possibly blocks waiting for an
3065 >     * item on a given queue:
3066 >     *  <pre> {@code
3067 >     * class QueueTaker<E> implements ManagedBlocker {
3068 >     *   final BlockingQueue<E> queue;
3069 >     *   volatile E item = null;
3070 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3071 >     *   public boolean block() throws InterruptedException {
3072 >     *     if (item == null)
3073 >     *       item = queue.take();
3074 >     *     return true;
3075       *   }
3076 <     * </pre>
3076 >     *   public boolean isReleasable() {
3077 >     *     return item != null || (item = queue.poll()) != null;
3078 >     *   }
3079 >     *   public E getItem() { // call after pool.managedBlock completes
3080 >     *     return item;
3081 >     *   }
3082 >     * }}</pre>
3083       */
3084      public static interface ManagedBlocker {
3085          /**
3086           * Possibly blocks the current thread, for example waiting for
3087           * a lock or condition.
3088 <         * @return true if no additional blocking is necessary (i.e.,
3089 <         * if isReleasable would return true)
3088 >         *
3089 >         * @return {@code true} if no additional blocking is necessary
3090 >         * (i.e., if isReleasable would return true)
3091           * @throws InterruptedException if interrupted while waiting
3092 <         * (the method is not required to do so, but is allowed to).
3092 >         * (the method is not required to do so, but is allowed to)
3093           */
3094          boolean block() throws InterruptedException;
3095  
3096          /**
3097 <         * Returns true if blocking is unnecessary.
3097 >         * Returns {@code true} if blocking is unnecessary.
3098           */
3099          boolean isReleasable();
3100      }
3101  
3102      /**
3103       * Blocks in accord with the given blocker.  If the current thread
3104 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
3105 <     * spare thread to be activated if necessary to ensure parallelism
3106 <     * while the current thread is blocked.  If
3107 <     * {@code maintainParallelism} is true and the pool supports
3108 <     * it ({@link #getMaintainsParallelism}), this method attempts to
3109 <     * maintain the pool's nominal parallelism. Otherwise if activates
3110 <     * a thread only if necessary to avoid complete starvation. This
3111 <     * option may be preferable when blockages use timeouts, or are
3112 <     * almost always brief.
3113 <     *
3114 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
3115 <     * equivalent to
3116 <     * <pre>
3117 <     *   while (!blocker.isReleasable())
1751 <     *      if (blocker.block())
1752 <     *         return;
1753 <     * </pre>
1754 <     * If the caller is a ForkJoinTask, then the pool may first
1755 <     * be expanded to ensure parallelism, and later adjusted.
3104 >     * is a {@link ForkJoinWorkerThread}, this method possibly
3105 >     * arranges for a spare thread to be activated if necessary to
3106 >     * ensure sufficient parallelism while the current thread is blocked.
3107 >     *
3108 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3109 >     * behaviorally equivalent to
3110 >     *  <pre> {@code
3111 >     * while (!blocker.isReleasable())
3112 >     *   if (blocker.block())
3113 >     *     return;
3114 >     * }</pre>
3115 >     *
3116 >     * If the caller is a {@code ForkJoinTask}, then the pool may
3117 >     * first be expanded to ensure parallelism, and later adjusted.
3118       *
3119       * @param blocker the blocker
1758     * @param maintainParallelism if true and supported by this pool,
1759     * attempt to maintain the pool's nominal parallelism; otherwise
1760     * activate a thread only if necessary to avoid complete
1761     * starvation.
3120       * @throws InterruptedException if blocker.block did so
3121       */
3122 <    public static void managedBlock(ManagedBlocker blocker,
1765 <                                    boolean maintainParallelism)
3122 >    public static void managedBlock(ManagedBlocker blocker)
3123          throws InterruptedException {
3124          Thread t = Thread.currentThread();
3125 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
3126 <                             ((ForkJoinWorkerThread)t).pool : null);
3127 <        if (!blocker.isReleasable()) {
3128 <            try {
3129 <                if (pool == null ||
3130 <                    !pool.preBlock(blocker, maintainParallelism))
3131 <                    awaitBlocker(blocker);
3132 <            } finally {
3133 <                if (pool != null)
3134 <                    pool.updateRunningCount(1);
3125 >        if (t instanceof ForkJoinWorkerThread) {
3126 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3127 >            while (!blocker.isReleasable()) { // variant of helpSignal
3128 >                WorkQueue[] ws; WorkQueue q; int m, n;
3129 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3130 >                    for (int i = 0; i <= m; ++i) {
3131 >                        if (blocker.isReleasable())
3132 >                            return;
3133 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3134 >                            p.signalWork(q, n);
3135 >                            if ((int)(p.ctl >> AC_SHIFT) >= 0)
3136 >                                break;
3137 >                        }
3138 >                    }
3139 >                }
3140 >                if (p.tryCompensate()) {
3141 >                    try {
3142 >                        do {} while (!blocker.isReleasable() &&
3143 >                                     !blocker.block());
3144 >                    } finally {
3145 >                        p.incrementActiveCount();
3146 >                    }
3147 >                    break;
3148 >                }
3149              }
3150          }
3151 +        else {
3152 +            do {} while (!blocker.isReleasable() &&
3153 +                         !blocker.block());
3154 +        }
3155      }
3156  
3157 <    private static void awaitBlocker(ManagedBlocker blocker)
3158 <        throws InterruptedException {
3159 <        do;while (!blocker.isReleasable() && !blocker.block());
1785 <    }
1786 <
1787 <    // AbstractExecutorService overrides
3157 >    // AbstractExecutorService overrides.  These rely on undocumented
3158 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3159 >    // implement RunnableFuture.
3160  
3161      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3162 <        return new AdaptedRunnable(runnable, value);
3162 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3163      }
3164  
3165      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3166 <        return new AdaptedCallable(callable);
3166 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3167      }
3168  
3169 +    // Unsafe mechanics
3170 +    private static final sun.misc.Unsafe U;
3171 +    private static final long CTL;
3172 +    private static final long PARKBLOCKER;
3173 +    private static final int ABASE;
3174 +    private static final int ASHIFT;
3175 +    private static final long STEALCOUNT;
3176 +    private static final long PLOCK;
3177 +    private static final long INDEXSEED;
3178 +    private static final long QLOCK;
3179 +
3180 +    static {
3181 +        // Establish common pool parameters
3182 +        // TBD: limit or report ignored exceptions?
3183 +
3184 +        int par = 0;
3185 +        ForkJoinWorkerThreadFactory fac = null;
3186 +        Thread.UncaughtExceptionHandler handler = null;
3187 +        try {
3188 +            String pp = System.getProperty(propPrefix + "parallelism");
3189 +            String hp = System.getProperty(propPrefix + "exceptionHandler");
3190 +            String fp = System.getProperty(propPrefix + "threadFactory");
3191 +            if (fp != null)
3192 +                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3193 +                       getSystemClassLoader().loadClass(fp).newInstance());
3194 +            if (hp != null)
3195 +                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3196 +                           getSystemClassLoader().loadClass(hp).newInstance());
3197 +            if (pp != null)
3198 +                par = Integer.parseInt(pp);
3199 +        } catch (Exception ignore) {
3200 +        }
3201  
3202 <    // Temporary Unsafe mechanics for preliminary release
1799 <    private static Unsafe getUnsafe() throws Throwable {
3202 >        int s; // initialize field offsets for CAS etc
3203          try {
3204 <            return Unsafe.getUnsafe();
3204 >            U = getUnsafe();
3205 >            Class<?> k = ForkJoinPool.class;
3206 >            CTL = U.objectFieldOffset
3207 >                (k.getDeclaredField("ctl"));
3208 >            STEALCOUNT = U.objectFieldOffset
3209 >                (k.getDeclaredField("stealCount"));
3210 >            PLOCK = U.objectFieldOffset
3211 >                (k.getDeclaredField("plock"));
3212 >            INDEXSEED = U.objectFieldOffset
3213 >                (k.getDeclaredField("indexSeed"));
3214 >            Class<?> tk = Thread.class;
3215 >            PARKBLOCKER = U.objectFieldOffset
3216 >                (tk.getDeclaredField("parkBlocker"));
3217 >            Class<?> wk = WorkQueue.class;
3218 >            QLOCK = U.objectFieldOffset
3219 >                (wk.getDeclaredField("qlock"));
3220 >            Class<?> ak = ForkJoinTask[].class;
3221 >            ABASE = U.arrayBaseOffset(ak);
3222 >            s = U.arrayIndexScale(ak);
3223 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3224 >        } catch (Exception e) {
3225 >            throw new Error(e);
3226 >        }
3227 >        if ((s & (s-1)) != 0)
3228 >            throw new Error("data type scale not a power of two");
3229 >
3230 >        /*
3231 >         * For extra caution, computations to set up pool state are
3232 >         * here; the constructor just assigns these values to fields.
3233 >         */
3234 >        ForkJoinWorkerThreadFactory defaultFac =
3235 >            defaultForkJoinWorkerThreadFactory =
3236 >            new DefaultForkJoinWorkerThreadFactory();
3237 >        if (fac == null)
3238 >            fac = defaultFac;
3239 >        if (par <= 0)
3240 >            par = Runtime.getRuntime().availableProcessors();
3241 >        if (par > MAX_CAP)
3242 >            par = MAX_CAP;
3243 >        long np = (long)(-par); // precompute initial ctl value
3244 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3245 >
3246 >        commonPoolParallelism = par;
3247 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3248 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3249 >        submitters = new ThreadLocal<Submitter>();
3250 >    }
3251 >
3252 >    /**
3253 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
3254 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
3255 >     * into a jdk.
3256 >     *
3257 >     * @return a sun.misc.Unsafe
3258 >     */
3259 >    private static sun.misc.Unsafe getUnsafe() {
3260 >        try {
3261 >            return sun.misc.Unsafe.getUnsafe();
3262          } catch (SecurityException se) {
3263              try {
3264                  return java.security.AccessController.doPrivileged
3265 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
3266 <                        public Unsafe run() throws Exception {
3267 <                            return getUnsafePrivileged();
3265 >                    (new java.security
3266 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3267 >                        public sun.misc.Unsafe run() throws Exception {
3268 >                            java.lang.reflect.Field f = sun.misc
3269 >                                .Unsafe.class.getDeclaredField("theUnsafe");
3270 >                            f.setAccessible(true);
3271 >                            return (sun.misc.Unsafe) f.get(null);
3272                          }});
3273              } catch (java.security.PrivilegedActionException e) {
3274 <                throw e.getCause();
3274 >                throw new RuntimeException("Could not initialize intrinsics",
3275 >                                           e.getCause());
3276              }
3277          }
3278      }
3279  
1815    private static Unsafe getUnsafePrivileged()
1816            throws NoSuchFieldException, IllegalAccessException {
1817        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1818        f.setAccessible(true);
1819        return (Unsafe) f.get(null);
1820    }
1821
1822    private static long fieldOffset(String fieldName)
1823            throws NoSuchFieldException {
1824        return UNSAFE.objectFieldOffset
1825            (ForkJoinPool.class.getDeclaredField(fieldName));
1826    }
1827
1828    static final Unsafe UNSAFE;
1829    static final long eventCountOffset;
1830    static final long workerCountsOffset;
1831    static final long runControlOffset;
1832    static final long syncStackOffset;
1833    static final long spareStackOffset;
1834
1835    static {
1836        try {
1837            UNSAFE = getUnsafe();
1838            eventCountOffset = fieldOffset("eventCount");
1839            workerCountsOffset = fieldOffset("workerCounts");
1840            runControlOffset = fieldOffset("runControl");
1841            syncStackOffset = fieldOffset("syncStack");
1842            spareStackOffset = fieldOffset("spareStack");
1843        } catch (Throwable e) {
1844            throw new RuntimeException("Could not initialize intrinsics", e);
1845        }
1846    }
1847
1848    private boolean casEventCount(long cmp, long val) {
1849        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1850    }
1851    private boolean casWorkerCounts(int cmp, int val) {
1852        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1853    }
1854    private boolean casRunControl(int cmp, int val) {
1855        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1856    }
1857    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1858        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1859    }
1860    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1861        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1862    }
3280   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines