ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.13 by jsr166, Wed Jul 22 01:36:51 2009 UTC vs.
Revision 1.59 by dl, Fri Jul 23 14:09:17 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.ArrayList;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Collections;
15 > import java.util.List;
16 > import java.util.concurrent.locks.LockSupport;
17 > import java.util.concurrent.locks.ReentrantLock;
18 > import java.util.concurrent.atomic.AtomicInteger;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
23 < * ForkJoinPool provides the entry point for submissions from
24 < * non-ForkJoinTasks, as well as management and monitoring operations.
25 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
22 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 > * A {@code ForkJoinPool} provides the entry point for submissions
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
28 < * that they provide <em>work-stealing</em>: all threads in the pool
29 < * attempt to find and execute subtasks created by other active tasks
30 < * (eventually blocking if none exist). This makes them efficient when
31 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
32 < * as the mixed execution of some plain Runnable- or Callable- based
33 < * activities along with ForkJoinTasks. When setting
34 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
35 < * use with fine-grained tasks that are never joined. Otherwise, other
33 < * ExecutorService implementations are typically more appropriate
34 < * choices.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>A ForkJoinPool may be constructed with a given parallelism level
38 < * (target pool size), which it attempts to maintain by dynamically
39 < * adding, suspending, or resuming threads, even if some tasks are
40 < * waiting to join others. However, no such adjustments are performed
41 < * in the face of blocked IO or other unmanaged synchronization. The
42 < * nested {@code ManagedBlocker} interface enables extension of
43 < * the kinds of synchronization accommodated.  The target parallelism
44 < * level may also be changed dynamically ({@code setParallelism})
45 < * and thread construction can be limited using methods
45 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
49 < * {@code getStealCount}) that are intended to aid in developing,
49 > * {@link #getStealCount}) that are intended to aid in developing,
50   * tuning, and monitoring fork/join applications. Also, method
51 < * {@code toString} returns indications of pool state in a
51 > * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the follwoing
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 + * used for all parallel task execution in a program or subsystem.
90 + * Otherwise, use would not usually outweigh the construction and
91 + * bookkeeping overhead of creating a large set of threads. For
92 + * example, a common pool could be used for the {@code SortTasks}
93 + * illustrated in {@link RecursiveAction}. Because {@code
94 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 + * daemon} mode, there is typically no need to explicitly {@link
96 + * #shutdown} such a pool upon program exit.
97 + *
98 + * <pre>
99 + * static final ForkJoinPool mainPool = new ForkJoinPool();
100 + * ...
101 + * public void sort(long[] array) {
102 + *   mainPool.invoke(new SortTask(array, 0, array.length));
103 + * }
104 + * </pre>
105 + *
106   * <p><b>Implementation notes</b>: This implementation restricts the
107   * maximum number of running threads to 32767. Attempts to create
108 < * pools with greater than the maximum result in
109 < * IllegalArgumentExceptions.
108 > * pools with greater than the maximum number result in
109 > * {@code IllegalArgumentException}.
110 > *
111 > * <p>This implementation rejects submitted tasks (that is, by throwing
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhuasted.
114   *
115   * @since 1.7
116   * @author Doug Lea
# Line 63 | Line 118 | import java.lang.reflect.*;
118   public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
123 <     */
124 <
125 <    /** Mask for packing and unpacking shorts */
126 <    private static final int  shortMask = 0xffff;
127 <
128 <    /** Max pool size -- must be a power of two minus 1 */
129 <    private static final int MAX_THREADS =  0x7FFF;
130 <
131 <    /**
132 <     * Factory for creating new ForkJoinWorkerThreads.  A
133 <     * ForkJoinWorkerThreadFactory must be defined and used for
134 <     * ForkJoinWorkerThread subclasses that extend base functionality
135 <     * or initialize threads with different contexts.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to arrange tactics for
142 >     * when one worker is waiting to join a task stolen (or always
143 >     * held by) another.  Becauae we are multiplexing many tasks on to
144 >     * a pool of workers, we can't just let them block (as in
145 >     * Thread.join).  We also cannot just reassign the joiner's
146 >     * run-time stack with another and replace it later, which would
147 >     * be a form of "continuation", that even if possible is not
148 >     * necessarily a good idea. Given that the creation costs of most
149 >     * threads on most systems mainly surrounds setting up runtime
150 >     * stacks, thread creation and switching is usually not much more
151 >     * expensive than stack creation and switching, and is more
152 >     * flexible). Instead we combine two tactics:
153 >     *
154 >     *   1. Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   2. Unless there are already enough live threads, creating or
160 >     *      or re-activating a spare thread to compensate for the
161 >     *      (blocked) joiner until it unblocks.  Spares then suspend
162 >     *      at their next opportunity or eventually die if unused for
163 >     *      too long.  See below and the internal documentation
164 >     *      for tryAwaitJoin for more details about compensation
165 >     *      rules.
166 >     *
167 >     * Because the determining existence of conservatively safe
168 >     * helping targets, the availability of already-created spares,
169 >     * and the apparent need to create new spares are all racy and
170 >     * require heuristic guidance, joins (in
171 >     * ForkJoinWorkerThread.joinTask) interleave these options until
172 >     * successful.  Creating a new spare always succeeds, but also
173 >     * increases application footprint, so we try to avoid it, within
174 >     * reason.
175 >     *
176 >     * The ManagedBlocker extension API can't use option (1) so uses a
177 >     * special version of (2) in method awaitBlocker.
178 >     *
179 >     * The main throughput advantages of work-stealing stem from
180 >     * decentralized control -- workers mostly steal tasks from each
181 >     * other. We do not want to negate this by creating bottlenecks
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195 >     *
196 >     * 1. Creating and removing workers. Workers are recorded in the
197 >     * "workers" array. This is an array as opposed to some other data
198 >     * structure to support index-based random steals by workers.
199 >     * Updates to the array recording new workers and unrecording
200 >     * terminated ones are protected from each other by a lock
201 >     * (workerLock) but the array is otherwise concurrently readable,
202 >     * and accessed directly by workers. To simplify index-based
203 >     * operations, the array size is always a power of two, and all
204 >     * readers must tolerate null slots. Currently, all worker thread
205 >     * creation is on-demand, triggered by task submissions,
206 >     * replacement of terminated workers, and/or compensation for
207 >     * blocked workers. However, all other support code is set up to
208 >     * work with other policies.
209 >     *
210 >     * 2. Bookkeeping for dynamically adding and removing workers. We
211 >     * aim to approximately maintain the given level of parallelism.
212 >     * When some workers are known to be blocked (on joins or via
213 >     * ManagedBlocker), we may create or resume others to take their
214 >     * place until they unblock (see below). Implementing this
215 >     * requires counts of the number of "running" threads (i.e., those
216 >     * that are neither blocked nor artifically suspended) as well as
217 >     * the total number.  These two values are packed into one field,
218 >     * "workerCounts" because we need accurate snapshots when deciding
219 >     * to create, resume or suspend.  Note however that the
220 >     * correspondance of these counts to reality is not guaranteed. In
221 >     * particular updates for unblocked threads may lag until they
222 >     * actually wake up.
223 >     *
224 >     * 3. Maintaining global run state. The run state of the pool
225 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
226 >     * those in other Executor implementations, as well as a count of
227 >     * "active" workers -- those that are, or soon will be, or
228 >     * recently were executing tasks. The runLevel and active count
229 >     * are packed together in order to correctly trigger shutdown and
230 >     * termination. Without care, active counts can be subject to very
231 >     * high contention.  We substantially reduce this contention by
232 >     * relaxing update rules.  A worker must claim active status
233 >     * prospectively, by activating if it sees that a submitted or
234 >     * stealable task exists (it may find after activating that the
235 >     * task no longer exists). It stays active while processing this
236 >     * task (if it exists) and any other local subtasks it produces,
237 >     * until it cannot find any other tasks. It then tries
238 >     * inactivating (see method preStep), but upon update contention
239 >     * instead scans for more tasks, later retrying inactivation if it
240 >     * doesn't find any.
241 >     *
242 >     * 4. Managing idle workers waiting for tasks. We cannot let
243 >     * workers spin indefinitely scanning for tasks when none are
244 >     * available. On the other hand, we must quickly prod them into
245 >     * action when new tasks are submitted or generated.  We
246 >     * park/unpark these idle workers using an event-count scheme.
247 >     * Field eventCount is incremented upon events that may enable
248 >     * workers that previously could not find a task to now find one:
249 >     * Submission of a new task to the pool, or another worker pushing
250 >     * a task onto a previously empty queue.  (We also use this
251 >     * mechanism for termination and reconfiguration actions that
252 >     * require wakeups of idle workers).  Each worker maintains its
253 >     * last known event count, and blocks when a scan for work did not
254 >     * find a task AND its lastEventCount matches the current
255 >     * eventCount. Waiting idle workers are recorded in a variant of
256 >     * Treiber stack headed by field eventWaiters which, when nonzero,
257 >     * encodes the thread index and count awaited for by the worker
258 >     * thread most recently calling eventSync. This thread in turn has
259 >     * a record (field nextEventWaiter) for the next waiting worker.
260 >     * In addition to allowing simpler decisions about need for
261 >     * wakeup, the event count bits in eventWaiters serve the role of
262 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
263 >     * in task diffusion, workers not otherwise occupied may invoke
264 >     * method releaseWaiters, that removes and signals (unparks)
265 >     * workers not waiting on current count. To minimize task
266 >     * production stalls associate with signalling, any worker pushing
267 >     * a task on an empty queue invokes the weaker method signalWork,
268 >     * that only releases idle workers until it detects interference
269 >     * by other threads trying to release, and lets them take
270 >     * over. The net effect is a tree-like diffusion of signals, where
271 >     * released threads (and possibly others) help with unparks.  To
272 >     * further reduce contention effects a bit, failed CASes to
273 >     * increment field eventCount are tolerated without retries.
274 >     * Conceptually they are merged into the same event, which is OK
275 >     * when their only purpose is to enable workers to scan for work.
276 >     *
277 >     * 5. Managing suspension of extra workers. When a worker is about
278 >     * to block waiting for a join (or via ManagedBlockers), we may
279 >     * create a new thread to maintain parallelism level, or at least
280 >     * avoid starvation. Usually, extra threads are needed for only
281 >     * very short periods, yet join dependencies are such that we
282 >     * sometimes need them in bursts. Rather than create new threads
283 >     * each time this happens, we suspend no-longer-needed extra ones
284 >     * as "spares". For most purposes, we don't distinguish "extra"
285 >     * spare threads from normal "core" threads: On each call to
286 >     * preStep (the only point at which we can do this) a worker
287 >     * checks to see if there are now too many running workers, and if
288 >     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
289 >     * look for suspended threads to resume before considering
290 >     * creating a new replacement. We don't need a special data
291 >     * structure to maintain spares; simply scanning the workers array
292 >     * looking for worker.isSuspended() is fine because the calling
293 >     * thread is otherwise not doing anything useful anyway; we are at
294 >     * least as happy if after locating a spare, the caller doesn't
295 >     * actually block because the join is ready before we try to
296 >     * adjust and compensate.  Note that this is intrinsically racy.
297 >     * One thread may become a spare at about the same time as another
298 >     * is needlessly being created. We counteract this and related
299 >     * slop in part by requiring resumed spares to immediately recheck
300 >     * (in preStep) to see whether they they should re-suspend. The
301 >     * only effective difference between "extra" and "core" threads is
302 >     * that we allow the "extra" ones to time out and die if they are
303 >     * not resumed within a keep-alive interval of a few seconds. This
304 >     * is implemented mainly within ForkJoinWorkerThread, but requires
305 >     * some coordination (isTrimmed() -- meaning killed while
306 >     * suspended) to correctly maintain pool counts.
307 >     *
308 >     * 6. Deciding when to create new workers. The main dynamic
309 >     * control in this class is deciding when to create extra threads,
310 >     * in methods awaitJoin and awaitBlocker. We always need to create
311 >     * one when the number of running threads would become zero and
312 >     * all workers are busy. However, this is not easy to detect
313 >     * reliably in the presence of transients so we use retries and
314 >     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
315 >     * effectively reduce churn at the price of systematically
316 >     * undershooting target parallelism when many threads are blocked.
317 >     * However, biasing toward undeshooting partially compensates for
318 >     * the above mechanics to suspend extra threads, that normally
319 >     * lead to overshoot because we can only suspend workers
320 >     * in-between top-level actions. It also better copes with the
321 >     * fact that some of the methods in this class tend to never
322 >     * become compiled (but are interpreted), so some components of
323 >     * the entire set of controls might execute many times faster than
324 >     * others. And similarly for cases where the apparent lack of work
325 >     * is just due to GC stalls and other transient system activity.
326 >     *
327 >     * Beware that there is a lot of representation-level coupling
328 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
329 >     * ForkJoinTask.  For example, direct access to "workers" array by
330 >     * workers, and direct access to ForkJoinTask.status by both
331 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
332 >     * trying to reduce this, since any associated future changes in
333 >     * representations will need to be accompanied by algorithmic
334 >     * changes anyway.
335 >     *
336 >     * Style notes: There are lots of inline assignments (of form
337 >     * "while ((local = field) != 0)") which are usually the simplest
338 >     * way to ensure read orderings. Also several occurrences of the
339 >     * unusual "do {} while(!cas...)" which is the simplest way to
340 >     * force an update of a CAS'ed variable. There are also other
341 >     * coding oddities that help some methods perform reasonably even
342 >     * when interpreted (not compiled), at the expense of messiness.
343 >     *
344 >     * The order of declarations in this file is: (1) statics (2)
345 >     * fields (along with constants used when unpacking some of them)
346 >     * (3) internal control methods (4) callbacks and other support
347 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
348 >     * methods (plus a few little helpers).
349 >     */
350 >
351 >    /**
352 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
353 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
354 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
355 >     * functionality or initialize threads with different contexts.
356       */
357      public static interface ForkJoinWorkerThreadFactory {
358          /**
359           * Returns a new worker thread operating in the given pool.
360           *
361           * @param pool the pool this thread works in
362 <         * @throws NullPointerException if pool is null
362 >         * @throws NullPointerException if the pool is null
363           */
364          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
365      }
366  
367      /**
368 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
368 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
369       * new ForkJoinWorkerThread.
370       */
371 <    static class  DefaultForkJoinWorkerThreadFactory
371 >    static class DefaultForkJoinWorkerThreadFactory
372          implements ForkJoinWorkerThreadFactory {
373          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
374 <            try {
100 <                return new ForkJoinWorkerThread(pool);
101 <            } catch (OutOfMemoryError oom)  {
102 <                return null;
103 <            }
374 >            return new ForkJoinWorkerThread(pool);
375          }
376      }
377  
# Line 136 | Line 407 | public class ForkJoinPool extends Abstra
407          new AtomicInteger();
408  
409      /**
410 <     * Array holding all worker threads in the pool. Initialized upon
411 <     * first use. Array size must be a power of two.  Updates and
141 <     * replacements are protected by workerLock, but it is always kept
142 <     * in a consistent enough state to be randomly accessed without
143 <     * locking by workers performing work-stealing.
410 >     * Absolute bound for parallelism level. Twice this number must
411 >     * fit into a 16bit field to enable word-packing for some counts.
412       */
413 <    volatile ForkJoinWorkerThread[] workers;
413 >    private static final int MAX_THREADS = 0x7fff;
414  
415      /**
416 <     * Lock protecting access to workers.
416 >     * Array holding all worker threads in the pool.  Array size must
417 >     * be a power of two.  Updates and replacements are protected by
418 >     * workerLock, but the array is always kept in a consistent enough
419 >     * state to be randomly accessed without locking by workers
420 >     * performing work-stealing, as well as other traversal-based
421 >     * methods in this class. All readers must tolerate that some
422 >     * array slots may be null.
423       */
424 <    private final ReentrantLock workerLock;
424 >    volatile ForkJoinWorkerThread[] workers;
425  
426      /**
427 <     * Condition for awaitTermination.
427 >     * Queue for external submissions.
428       */
429 <    private final Condition termination;
429 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
430  
431      /**
432 <     * The uncaught exception handler used when any worker
159 <     * abruptly terminates
432 >     * Lock protecting updates to workers array.
433       */
434 <    private Thread.UncaughtExceptionHandler ueh;
434 >    private final ReentrantLock workerLock;
435  
436      /**
437 <     * Creation factory for worker threads.
437 >     * Latch released upon termination.
438       */
439 <    private final ForkJoinWorkerThreadFactory factory;
439 >    private final Phaser termination;
440  
441      /**
442 <     * Head of stack of threads that were created to maintain
170 <     * parallelism when other threads blocked, but have since
171 <     * suspended when the parallelism level rose.
442 >     * Creation factory for worker threads.
443       */
444 <    private volatile WaitQueueNode spareStack;
444 >    private final ForkJoinWorkerThreadFactory factory;
445  
446      /**
447       * Sum of per-thread steal counts, updated only when threads are
448       * idle or terminating.
449       */
450 <    private final AtomicLong stealCount;
450 >    private volatile long stealCount;
451  
452      /**
453 <     * Queue for external submissions.
453 >     * Encoded record of top of treiber stack of threads waiting for
454 >     * events. The top 32 bits contain the count being waited for. The
455 >     * bottom word contains one plus the pool index of waiting worker
456 >     * thread.
457       */
458 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
458 >    private volatile long eventWaiters;
459 >
460 >    private static final int  EVENT_COUNT_SHIFT = 32;
461 >    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
462  
463      /**
464 <     * Head of Treiber stack for barrier sync. See below for explanation
464 >     * A counter for events that may wake up worker threads:
465 >     *   - Submission of a new task to the pool
466 >     *   - A worker pushing a task on an empty queue
467 >     *   - termination and reconfiguration
468       */
469 <    private volatile WaitQueueNode syncStack;
469 >    private volatile int eventCount;
470  
471      /**
472 <     * The count for event barrier
473 <     */
474 <    private volatile long eventCount;
472 >     * Lifecycle control. The low word contains the number of workers
473 >     * that are (probably) executing tasks. This value is atomically
474 >     * incremented before a worker gets a task to run, and decremented
475 >     * when worker has no tasks and cannot find any.  Bits 16-18
476 >     * contain runLevel value. When all are zero, the pool is
477 >     * running. Level transitions are monotonic (running -> shutdown
478 >     * -> terminating -> terminated) so each transition adds a bit.
479 >     * These are bundled together to ensure consistent read for
480 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
481 >     * and active threads is zero).
482 >     */
483 >    private volatile int runState;
484 >
485 >    // Note: The order among run level values matters.
486 >    private static final int RUNLEVEL_SHIFT     = 16;
487 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
488 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
489 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
490 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491 >    private static final int ONE_ACTIVE         = 1; // active update delta
492  
493      /**
494 <     * Pool number, just for assigning useful names to worker threads
494 >     * Holds number of total (i.e., created and not yet terminated)
495 >     * and running (i.e., not blocked on joins or other managed sync)
496 >     * threads, packed together to ensure consistent snapshot when
497 >     * making decisions about creating and suspending spare
498 >     * threads. Updated only by CAS. Note that adding a new worker
499 >     * requires incrementing both counts, since workers start off in
500 >     * running state.  This field is also used for memory-fencing
501 >     * configuration parameters.
502       */
503 <    private final int poolNumber;
503 >    private volatile int workerCounts;
504 >
505 >    private static final int TOTAL_COUNT_SHIFT  = 16;
506 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
507 >    private static final int ONE_RUNNING        = 1;
508 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
509  
510      /**
511 <     * The maximum allowed pool size
511 >     * The target parallelism level.
512 >     * Accessed directly by ForkJoinWorkerThreads.
513       */
514 <    private volatile int maxPoolSize;
514 >    final int parallelism;
515  
516      /**
517 <     * The desired parallelism level, updated only under workerLock.
517 >     * True if use local fifo, not default lifo, for local polling
518 >     * Read by, and replicated by ForkJoinWorkerThreads
519       */
520 <    private volatile int parallelism;
520 >    final boolean locallyFifo;
521  
522      /**
523 <     * True if use local fifo, not default lifo, for local polling
523 >     * The uncaught exception handler used when any worker abruptly
524 >     * terminates.
525       */
526 <    private volatile boolean locallyFifo;
526 >    private final Thread.UncaughtExceptionHandler ueh;
527  
528      /**
529 <     * Holds number of total (i.e., created and not yet terminated)
218 <     * and running (i.e., not blocked on joins or other managed sync)
219 <     * threads, packed into one int to ensure consistent snapshot when
220 <     * making decisions about creating and suspending spare
221 <     * threads. Updated only by CAS.  Note: CASes in
222 <     * updateRunningCount and preJoin running active count is in low
223 <     * word, so need to be modified if this changes
529 >     * Pool number, just for assigning useful names to worker threads
530       */
531 <    private volatile int workerCounts;
531 >    private final int poolNumber;
532  
533 <    private static int totalCountOf(int s)           { return s >>> 16;  }
534 <    private static int runningCountOf(int s)         { return s & shortMask; }
229 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
533 >    // Utilities for CASing fields. Note that several of these
534 >    // are manually inlined by callers
535  
536      /**
537 <     * Adds delta (which may be negative) to running count.  This must
233 <     * be called before (with negative arg) and after (with positive)
234 <     * any managed synchronization (i.e., mainly, joins).
235 <     * @param delta the number to add
537 >     * Increments running count.  Also used by ForkJoinTask.
538       */
539 <    final void updateRunningCount(int delta) {
540 <        int s;
541 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
539 >    final void incrementRunningCount() {
540 >        int c;
541 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
542 >                                               c = workerCounts,
543 >                                               c + ONE_RUNNING));
544      }
545  
546      /**
547 <     * Adds delta (which may be negative) to both total and running
244 <     * count.  This must be called upon creation and termination of
245 <     * worker threads.
246 <     * @param delta the number to add
547 >     * Tries to decrement running count unless already zero
548       */
549 <    private void updateWorkerCount(int delta) {
550 <        int d = delta + (delta << 16); // add to both lo and hi parts
551 <        int s;
552 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
549 >    final boolean tryDecrementRunningCount() {
550 >        int wc = workerCounts;
551 >        if ((wc & RUNNING_COUNT_MASK) == 0)
552 >            return false;
553 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
554 >                                        wc, wc - ONE_RUNNING);
555      }
556  
557      /**
558 <     * Lifecycle control. High word contains runState, low word
256 <     * contains the number of workers that are (probably) executing
257 <     * tasks. This value is atomically incremented before a worker
258 <     * gets a task to run, and decremented when worker has no tasks
259 <     * and cannot find any. These two fields are bundled together to
260 <     * support correct termination triggering.  Note: activeCount
261 <     * CAS'es cheat by assuming active count is in low word, so need
262 <     * to be modified if this changes
558 >     * Tries to increment running count
559       */
560 <    private volatile int runControl;
561 <
562 <    // RunState values. Order among values matters
563 <    private static final int RUNNING     = 0;
564 <    private static final int SHUTDOWN    = 1;
269 <    private static final int TERMINATING = 2;
270 <    private static final int TERMINATED  = 3;
271 <
272 <    private static int runStateOf(int c)             { return c >>> 16; }
273 <    private static int activeCountOf(int c)          { return c & shortMask; }
274 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
560 >    final boolean tryIncrementRunningCount() {
561 >        int wc;
562 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
563 >                                        wc = workerCounts, wc + ONE_RUNNING);
564 >    }
565  
566      /**
567 <     * Try incrementing active count; fail on contention. Called by
568 <     * workers before/during executing tasks.
567 >     * Tries incrementing active count; fails on contention.
568 >     * Called by workers before executing tasks.
569 >     *
570       * @return true on success
571       */
572      final boolean tryIncrementActiveCount() {
573 <        int c = runControl;
574 <        return casRunControl(c, c+1);
573 >        int c;
574 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
575 >                                        c = runState, c + ONE_ACTIVE);
576      }
577  
578      /**
579       * Tries decrementing active count; fails on contention.
580 <     * Possibly triggers termination on success.
289 <     * Called by workers when they can't find tasks.
290 <     * @return true on success
580 >     * Called when workers cannot find tasks to run.
581       */
582      final boolean tryDecrementActiveCount() {
583 <        int c = runControl;
584 <        int nextc = c - 1;
585 <        if (!casRunControl(c, nextc))
296 <            return false;
297 <        if (canTerminateOnShutdown(nextc))
298 <            terminateOnShutdown();
299 <        return true;
583 >        int c;
584 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
585 >                                        c = runState, c - ONE_ACTIVE);
586      }
587  
588      /**
589 <     * Returns true if argument represents zero active count and
590 <     * nonzero runstate, which is the triggering condition for
305 <     * terminating on shutdown.
589 >     * Advances to at least the given level. Returns true if not
590 >     * already in at least the given level.
591       */
592 <    private static boolean canTerminateOnShutdown(int c) {
593 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
592 >    private boolean advanceRunLevel(int level) {
593 >        for (;;) {
594 >            int s = runState;
595 >            if ((s & level) != 0)
596 >                return false;
597 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
598 >                return true;
599 >        }
600      }
601  
602 +    // workers array maintenance
603 +
604      /**
605 <     * Transition run state to at least the given state. Return true
313 <     * if not already at least given state.
605 >     * Records and returns a workers array index for new worker.
606       */
607 <    private boolean transitionRunStateTo(int state) {
608 <        for (;;) {
609 <            int c = runControl;
610 <            if (runStateOf(c) >= state)
611 <                return false;
612 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
613 <                return true;
607 >    private int recordWorker(ForkJoinWorkerThread w) {
608 >        // Try using slot totalCount-1. If not available, scan and/or resize
609 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
610 >        final ReentrantLock lock = this.workerLock;
611 >        lock.lock();
612 >        try {
613 >            ForkJoinWorkerThread[] ws = workers;
614 >            int nws = ws.length;
615 >            if (k < 0 || k >= nws || ws[k] != null) {
616 >                for (k = 0; k < nws && ws[k] != null; ++k)
617 >                    ;
618 >                if (k == nws)
619 >                    ws = Arrays.copyOf(ws, nws << 1);
620 >            }
621 >            ws[k] = w;
622 >            workers = ws; // volatile array write ensures slot visibility
623 >        } finally {
624 >            lock.unlock();
625          }
626 +        return k;
627      }
628  
629      /**
630 <     * Controls whether to add spares to maintain parallelism
630 >     * Nulls out record of worker in workers array
631       */
632 <    private volatile boolean maintainsParallelism;
632 >    private void forgetWorker(ForkJoinWorkerThread w) {
633 >        int idx = w.poolIndex;
634 >        // Locking helps method recordWorker avoid unecessary expansion
635 >        final ReentrantLock lock = this.workerLock;
636 >        lock.lock();
637 >        try {
638 >            ForkJoinWorkerThread[] ws = workers;
639 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
640 >                ws[idx] = null;
641 >        } finally {
642 >            lock.unlock();
643 >        }
644 >    }
645  
646 <    // Constructors
646 >    // adding and removing workers
647  
648      /**
649 <     * Creates a ForkJoinPool with a pool size equal to the number of
650 <     * processors available on the system and using the default
651 <     * ForkJoinWorkerThreadFactory,
652 <     * @throws SecurityException if a security manager exists and
653 <     *         the caller is not permitted to modify threads
338 <     *         because it does not hold {@link
339 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
649 >     * Tries to create and add new worker. Assumes that worker counts
650 >     * are already updated to accommodate the worker, so adjusts on
651 >     * failure.
652 >     *
653 >     * @return new worker or null if creation failed
654       */
655 <    public ForkJoinPool() {
656 <        this(Runtime.getRuntime().availableProcessors(),
657 <             defaultForkJoinWorkerThreadFactory);
655 >    private ForkJoinWorkerThread addWorker() {
656 >        ForkJoinWorkerThread w = null;
657 >        try {
658 >            w = factory.newThread(this);
659 >        } finally { // Adjust on either null or exceptional factory return
660 >            if (w == null) {
661 >                onWorkerCreationFailure();
662 >                return null;
663 >            }
664 >        }
665 >        w.start(recordWorker(w), ueh);
666 >        return w;
667      }
668  
669      /**
670 <     * Creates a ForkJoinPool with the indicated parallelism level
348 <     * threads, and using the default ForkJoinWorkerThreadFactory,
349 <     * @param parallelism the number of worker threads
350 <     * @throws IllegalArgumentException if parallelism less than or
351 <     * equal to zero
352 <     * @throws SecurityException if a security manager exists and
353 <     *         the caller is not permitted to modify threads
354 <     *         because it does not hold {@link
355 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
670 >     * Adjusts counts upon failure to create worker
671       */
672 <    public ForkJoinPool(int parallelism) {
673 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
672 >    private void onWorkerCreationFailure() {
673 >        for (;;) {
674 >            int wc = workerCounts;
675 >            if ((wc >>> TOTAL_COUNT_SHIFT) == 0)
676 >                Thread.yield(); // wait for other counts to settle
677 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
678 >                                              wc - (ONE_RUNNING|ONE_TOTAL)))
679 >                break;
680 >        }
681 >        tryTerminate(false); // in case of failure during shutdown
682      }
683  
684      /**
685 <     * Creates a ForkJoinPool with parallelism equal to the number of
686 <     * processors available on the system and using the given
687 <     * ForkJoinWorkerThreadFactory,
688 <     * @param factory the factory for creating new threads
689 <     * @throws NullPointerException if factory is null
690 <     * @throws SecurityException if a security manager exists and
691 <     *         the caller is not permitted to modify threads
692 <     *         because it does not hold {@link
693 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
694 <     */
695 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
696 <        this(Runtime.getRuntime().availableProcessors(), factory);
685 >     * Creates and/or resumes enough workers to establish target
686 >     * parallelism, giving up if terminating or addWorker fails
687 >     *
688 >     * TODO: recast this to support lazier creation and automated
689 >     * parallelism maintenance
690 >     */
691 >    private void ensureEnoughWorkers() {
692 >        while ((runState & TERMINATING) == 0) {
693 >            int pc = parallelism;
694 >            int wc = workerCounts;
695 >            int rc = wc & RUNNING_COUNT_MASK;
696 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
697 >            if (tc < pc) {
698 >                if (UNSAFE.compareAndSwapInt
699 >                    (this, workerCountsOffset,
700 >                     wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
701 >                    addWorker() == null)
702 >                    break;
703 >            }
704 >            else if (tc > pc && rc < pc &&
705 >                     tc > (runState & ACTIVE_COUNT_MASK)) {
706 >                ForkJoinWorkerThread spare = null;
707 >                ForkJoinWorkerThread[] ws = workers;
708 >                int nws = ws.length;
709 >                for (int i = 0; i < nws; ++i) {
710 >                    ForkJoinWorkerThread w = ws[i];
711 >                    if (w != null && w.isSuspended()) {
712 >                        if ((workerCounts & RUNNING_COUNT_MASK) > pc)
713 >                            return;
714 >                        if (w.tryResumeSpare())
715 >                            incrementRunningCount();
716 >                        break;
717 >                    }
718 >                }
719 >            }
720 >            else
721 >                break;
722 >        }
723      }
724  
725      /**
726 <     * Creates a ForkJoinPool with the given parallelism and factory.
726 >     * Final callback from terminating worker.  Removes record of
727 >     * worker from array, and adjusts counts. If pool is shutting
728 >     * down, tries to complete terminatation, else possibly replaces
729 >     * the worker.
730       *
731 <     * @param parallelism the targeted number of worker threads
380 <     * @param factory the factory for creating new threads
381 <     * @throws IllegalArgumentException if parallelism less than or
382 <     * equal to zero, or greater than implementation limit
383 <     * @throws NullPointerException if factory is null
384 <     * @throws SecurityException if a security manager exists and
385 <     *         the caller is not permitted to modify threads
386 <     *         because it does not hold {@link
387 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
731 >     * @param w the worker
732       */
733 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
734 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
735 <            throw new IllegalArgumentException();
736 <        if (factory == null)
737 <            throw new NullPointerException();
738 <        checkPermission();
739 <        this.factory = factory;
740 <        this.parallelism = parallelism;
741 <        this.maxPoolSize = MAX_THREADS;
742 <        this.maintainsParallelism = true;
743 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
744 <        this.workerLock = new ReentrantLock();
745 <        this.termination = workerLock.newCondition();
746 <        this.stealCount = new AtomicLong();
747 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
748 <        // worker array and workers are lazily constructed
733 >    final void workerTerminated(ForkJoinWorkerThread w) {
734 >        if (w.active) { // force inactive
735 >            w.active = false;
736 >            do {} while (!tryDecrementActiveCount());
737 >        }
738 >        forgetWorker(w);
739 >
740 >        // Decrement total count, and if was running, running count
741 >        // Spin (waiting for other updates) if either would be negative
742 >        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
743 >        int unit = ONE_TOTAL + nr;
744 >        for (;;) {
745 >            int wc = workerCounts;
746 >            int rc = wc & RUNNING_COUNT_MASK;
747 >            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
748 >                Thread.yield(); // back off if waiting for other updates
749 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
750 >                                              wc, wc - unit))
751 >                break;
752 >        }
753 >
754 >        accumulateStealCount(w); // collect final count
755 >        if (!tryTerminate(false))
756 >            ensureEnoughWorkers();
757      }
758  
759 +    // Waiting for and signalling events
760 +
761      /**
762 <     * Create new worker using factory.
763 <     * @param index the index to assign worker
764 <     * @return new worker, or null of factory failed
765 <     */
766 <    private ForkJoinWorkerThread createWorker(int index) {
767 <        Thread.UncaughtExceptionHandler h = ueh;
768 <        ForkJoinWorkerThread w = factory.newThread(this);
769 <        if (w != null) {
770 <            w.poolIndex = index;
771 <            w.setDaemon(true);
772 <            w.setAsyncMode(locallyFifo);
773 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
774 <            if (h != null)
775 <                w.setUncaughtExceptionHandler(h);
762 >     * Releases workers blocked on a count not equal to current count.
763 >     * @return true if any released
764 >     */
765 >    private void releaseWaiters() {
766 >        long top;
767 >        while ((top = eventWaiters) != 0L) {
768 >            ForkJoinWorkerThread[] ws = workers;
769 >            int n = ws.length;
770 >            for (;;) {
771 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
772 >                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == eventCount)
773 >                    return;
774 >                ForkJoinWorkerThread w;
775 >                if (i < n && (w = ws[i]) != null &&
776 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
777 >                                              top, w.nextWaiter)) {
778 >                    LockSupport.unpark(w);
779 >                    top = eventWaiters;
780 >                }
781 >                else
782 >                    break;      // possibly stale; reread
783 >            }
784          }
423        return w;
785      }
786  
787      /**
788 <     * Returns a good size for worker array given pool size.
789 <     * Currently requires size to be a power of two.
788 >     * Ensures eventCount on exit is different (mod 2^32) than on
789 >     * entry and wakes up all waiters
790       */
791 <    private static int arraySizeFor(int ps) {
792 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
791 >    private void signalEvent() {
792 >        int c;
793 >        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
794 >                                               c = eventCount, c+1));
795 >        releaseWaiters();
796      }
797  
798      /**
799 <     * Creates or resizes array if necessary to hold newLength.
800 <     * Call only under exclusion or lock.
437 <     * @return the array
799 >     * Advances eventCount and releases waiters until interference by
800 >     * other releasing threads is detected.
801       */
802 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
803 <        ForkJoinWorkerThread[] ws = workers;
804 <        if (ws == null)
805 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
806 <        else if (newLength > ws.length)
807 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
808 <        else
809 <            return ws;
802 >    final void signalWork() {
803 >        int c;
804 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
805 >        long top;
806 >        while ((top = eventWaiters) != 0L) {
807 >            int ec = eventCount;
808 >            ForkJoinWorkerThread[] ws = workers;
809 >            int n = ws.length;
810 >            for (;;) {
811 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
812 >                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
813 >                    return;
814 >                ForkJoinWorkerThread w;
815 >                if (i < n && (w = ws[i]) != null &&
816 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
817 >                                              top, top = w.nextWaiter)) {
818 >                    LockSupport.unpark(w);
819 >                    if (top != eventWaiters) // let someone else take over
820 >                        return;
821 >                }
822 >                else
823 >                    break;      // possibly stale; reread
824 >            }
825 >        }
826      }
827  
828      /**
829 <     * Try to shrink workers into smaller array after one or more terminate
829 >     * If worker is inactive, blocks until terminating or event count
830 >     * advances from last value held by worker; in any case helps
831 >     * release others.
832 >     *
833 >     * @param w the calling worker thread
834 >     * @param retries the number of scans by caller failing to find work
835 >     * @return false if now too many threads running
836       */
837 <    private void tryShrinkWorkerArray() {
838 <        ForkJoinWorkerThread[] ws = workers;
839 <        if (ws != null) {
840 <            int len = ws.length;
841 <            int last = len - 1;
842 <            while (last >= 0 && ws[last] == null)
843 <                --last;
844 <            int newLength = arraySizeFor(last+1);
845 <            if (newLength < len)
846 <                workers = Arrays.copyOf(ws, newLength);
837 >    private boolean eventSync(ForkJoinWorkerThread w, int retries) {
838 >        int wec = w.lastEventCount;
839 >        if (retries > 1) { // can only block after 2nd miss
840 >            long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
841 >                            ((long)(w.poolIndex + 1)));
842 >            long top;
843 >            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
844 >                   (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
845 >                    (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
846 >                   eventCount == wec) {
847 >                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
848 >                                              w.nextWaiter = top, nextTop)) {
849 >                    accumulateStealCount(w); // transfer steals while idle
850 >                    Thread.interrupted();    // clear/ignore interrupt
851 >                    while (eventCount == wec)
852 >                        w.doPark();
853 >                    break;
854 >                }
855 >            }
856 >            wec = eventCount;
857          }
858 +        releaseWaiters();
859 +        int wc = workerCounts;
860 +        if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
861 +            w.lastEventCount = wec;
862 +            return true;
863 +        }
864 +        if (wec != w.lastEventCount) // back up if may re-wait
865 +            w.lastEventCount = wec - (wc >>> TOTAL_COUNT_SHIFT);
866 +        return false;
867      }
868  
869      /**
870 <     * Initialize workers if necessary
870 >     * Callback from workers invoked upon each top-level action (i.e.,
871 >     * stealing a task or taking a submission and running
872 >     * it). Performs one or both of the following:
873 >     *
874 >     * * If the worker cannot find work, updates its active status to
875 >     * inactive and updates activeCount unless there is contention, in
876 >     * which case it may try again (either in this or a subsequent
877 >     * call).  Additionally, awaits the next task event and/or helps
878 >     * wake up other releasable waiters.
879 >     *
880 >     * * If there are too many running threads, suspends this worker
881 >     * (first forcing inactivation if necessary).  If it is not
882 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
883 >     * -- killed while suspended within suspendAsSpare. Otherwise,
884 >     * upon resume it rechecks to make sure that it is still needed.
885 >     *
886 >     * @param w the worker
887 >     * @param retries the number of scans by caller failing to find work
888 >     * find any (in which case it may block waiting for work).
889       */
890 <    final void ensureWorkerInitialization() {
891 <        ForkJoinWorkerThread[] ws = workers;
892 <        if (ws == null) {
893 <            final ReentrantLock lock = this.workerLock;
894 <            lock.lock();
895 <            try {
896 <                ws = workers;
897 <                if (ws == null) {
898 <                    int ps = parallelism;
899 <                    ws = ensureWorkerArrayCapacity(ps);
900 <                    for (int i = 0; i < ps; ++i) {
901 <                        ForkJoinWorkerThread w = createWorker(i);
890 >    final void preStep(ForkJoinWorkerThread w, int retries) {
891 >        boolean active = w.active;
892 >        boolean inactivate = active && retries != 0;
893 >        for (;;) {
894 >            int rs, wc;
895 >            if (inactivate &&
896 >                UNSAFE.compareAndSwapInt(this, runStateOffset,
897 >                                         rs = runState, rs - ONE_ACTIVE))
898 >                inactivate = active = w.active = false;
899 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
900 >                if (active || eventSync(w, retries))
901 >                    break;
902 >            }
903 >            else if (!(inactivate |= active) &&  // must inactivate to suspend
904 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
905 >                                         wc, wc - ONE_RUNNING) &&
906 >                !w.suspendAsSpare())             // false if trimmed
907 >                break;
908 >        }
909 >    }
910 >
911 >    /**
912 >     * Awaits join of the given task if enough threads, or can resume
913 >     * or create a spare. Fails (in which case the given task might
914 >     * not be done) upon contention or lack of decision about
915 >     * blocking. Returns void because caller must check
916 >     * task status on return anyway.
917 >     *
918 >     * We allow blocking if:
919 >     *
920 >     * 1. There would still be at least as many running threads as
921 >     *    parallelism level if this thread blocks.
922 >     *
923 >     * 2. A spare is resumed to replace this worker. We tolerate
924 >     *    slop in the decision to replace if a spare is found without
925 >     *    first decrementing run count.  This may release too many,
926 >     *    but if so, the superfluous ones will re-suspend via
927 >     *    preStep().
928 >     *
929 >     * 3. After #spares repeated checks, there are no fewer than #spare
930 >     *    threads not running. We allow this slack to avoid hysteresis
931 >     *    and as a hedge against lag/uncertainty of running count
932 >     *    estimates when signalling or unblocking stalls.
933 >     *
934 >     * 4. All existing workers are busy (as rechecked via repeated
935 >     *    retries by caller) and a new spare is created.
936 >     *
937 >     * If none of the above hold, we try to escape out by
938 >     * re-incrementing count and returning to caller, which can retry
939 >     * later.
940 >     *
941 >     * @param joinMe the task to join
942 >     * @param retries if negative, then serve only as a precheck
943 >     *   that the thread can be replaced by a spare. Otherwise,
944 >     *   the number of repeated calls to this method returning busy
945 >     * @return true if the call must be retried because there
946 >     *   none of the blocking checks hold
947 >     */
948 >    final boolean tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
949 >        if (joinMe.status < 0) // precheck for cancellation
950 >            return false;
951 >        if ((runState & TERMINATING) != 0) { // shutting down
952 >            joinMe.cancelIgnoringExceptions();
953 >            return false;
954 >        }
955 >
956 >        int pc = parallelism;
957 >        boolean running = true; // false when running count decremented
958 >        outer:for (;;) {
959 >            int wc = workerCounts;
960 >            int rc = wc & RUNNING_COUNT_MASK;
961 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
962 >            if (running) { // replace with spare or decrement count
963 >                if (rc <= pc && tc > pc &&
964 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
965 >                    ForkJoinWorkerThread[] ws = workers;
966 >                    int nws = ws.length;
967 >                    for (int i = 0; i < nws; ++i) { // search for spare
968 >                        ForkJoinWorkerThread w = ws[i];
969                          if (w != null) {
970 <                            ws[i] = w;
971 <                            w.start();
972 <                            updateWorkerCount(1);
970 >                            if (joinMe.status < 0)
971 >                                return false;
972 >                            if (w.isSuspended()) {
973 >                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
974 >                                    w.tryResumeSpare()) {
975 >                                    running = false;
976 >                                    break outer;
977 >                                }
978 >                                continue outer; // rescan
979 >                            }
980                          }
981                      }
982                  }
983 <            } finally {
984 <                lock.unlock();
983 >                if (retries < 0 || // < 0 means replacement check only
984 >                    rc == 0 || joinMe.status < 0 || workerCounts != wc ||
985 >                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
986 >                                              wc, wc - ONE_RUNNING))
987 >                    return false; // done or inconsistent or contended
988 >                running = false;
989 >                if (rc > pc)
990 >                    break;
991 >            }
992 >            else { // allow blocking if enough threads
993 >                if (rc >= pc || joinMe.status < 0)
994 >                    break;
995 >                int sc = tc - pc + 1; // = spare threads, plus the one to add
996 >                if (retries > sc) {
997 >                    if (rc > 0 && rc >= pc - sc) // allow slack
998 >                        break;
999 >                    if (tc < MAX_THREADS &&
1000 >                        tc == (runState & ACTIVE_COUNT_MASK) &&
1001 >                        workerCounts == wc &&
1002 >                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1003 >                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1004 >                        addWorker();
1005 >                        break;
1006 >                    }
1007 >                }
1008 >                if (workerCounts == wc &&        // back out to allow rescan
1009 >                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1010 >                                              wc, wc + ONE_RUNNING)) {
1011 >                    releaseWaiters();            // help others progress
1012 >                    return true;                 // let caller retry
1013 >                }
1014              }
1015          }
1016 +        // arrive here if can block
1017 +        joinMe.internalAwaitDone();
1018 +        int c;                      // to inline incrementRunningCount
1019 +        do {} while (!UNSAFE.compareAndSwapInt
1020 +                     (this, workerCountsOffset,
1021 +                      c = workerCounts, c + ONE_RUNNING));
1022 +        return false;
1023      }
1024  
1025      /**
1026 <     * Worker creation and startup for threads added via setParallelism.
1026 >     * Same idea as (and shares many code snippets with) tryAwaitJoin,
1027 >     * but self-contained because there are no caller retries.
1028 >     * TODO: Rework to use simpler API.
1029       */
1030 <    private void createAndStartAddedWorkers() {
1031 <        resumeAllSpares();  // Allow spares to convert to nonspare
1032 <        int ps = parallelism;
1033 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1034 <        int len = ws.length;
1035 <        // Sweep through slots, to keep lowest indices most populated
1036 <        int k = 0;
1037 <        while (k < len) {
1038 <            if (ws[k] != null) {
1039 <                ++k;
1040 <                continue;
1041 <            }
1042 <            int s = workerCounts;
1043 <            int tc = totalCountOf(s);
1044 <            int rc = runningCountOf(s);
1045 <            if (rc >= ps || tc >= ps)
1046 <                break;
1047 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1048 <                ForkJoinWorkerThread w = createWorker(k);
1049 <                if (w != null) {
1050 <                    ws[k++] = w;
1051 <                    w.start();
1030 >    final void awaitBlocker(ManagedBlocker blocker)
1031 >        throws InterruptedException {
1032 >        boolean done;
1033 >        if (done = blocker.isReleasable())
1034 >            return;
1035 >        int pc = parallelism;
1036 >        int retries = 0;
1037 >        boolean running = true; // false when running count decremented
1038 >        outer:for (;;) {
1039 >            int wc = workerCounts;
1040 >            int rc = wc & RUNNING_COUNT_MASK;
1041 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
1042 >            if (running) {
1043 >                if (rc <= pc && tc > pc &&
1044 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1045 >                    ForkJoinWorkerThread[] ws = workers;
1046 >                    int nws = ws.length;
1047 >                    for (int i = 0; i < nws; ++i) {
1048 >                        ForkJoinWorkerThread w = ws[i];
1049 >                        if (w != null) {
1050 >                            if (done = blocker.isReleasable())
1051 >                                return;
1052 >                            if (w.isSuspended()) {
1053 >                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1054 >                                    w.tryResumeSpare()) {
1055 >                                    running = false;
1056 >                                    break outer;
1057 >                                }
1058 >                                continue outer; // rescan
1059 >                            }
1060 >                        }
1061 >                    }
1062                  }
1063 <                else {
1064 <                    updateWorkerCount(-1); // back out on failed creation
1063 >                if (done = blocker.isReleasable())
1064 >                    return;
1065 >                if (rc == 0 || workerCounts != wc ||
1066 >                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1067 >                                              wc, wc - ONE_RUNNING))
1068 >                    continue;
1069 >                running = false;
1070 >                if (rc > pc)
1071 >                    break;
1072 >            }
1073 >            else {
1074 >                if (rc >= pc || (done = blocker.isReleasable()))
1075                      break;
1076 +                int sc = tc - pc + 1;
1077 +                if (retries++ > sc) {
1078 +                    if (rc > 0 && rc >= pc - sc)
1079 +                        break;
1080 +                    if (tc < MAX_THREADS &&
1081 +                        tc == (runState & ACTIVE_COUNT_MASK) &&
1082 +                        workerCounts == wc &&
1083 +                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1084 +                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1085 +                        addWorker();
1086 +                        break;
1087 +                    }
1088                  }
1089 +                Thread.yield();
1090 +            }
1091 +        }
1092 +
1093 +        try {
1094 +            if (!done)
1095 +                do {} while (!blocker.isReleasable() && !blocker.block());
1096 +        } finally {
1097 +            if (!running) {
1098 +                int c;
1099 +                do {} while (!UNSAFE.compareAndSwapInt
1100 +                             (this, workerCountsOffset,
1101 +                              c = workerCounts, c + ONE_RUNNING));
1102              }
1103          }
1104      }
1105  
1106 +    /**
1107 +     * Possibly initiates and/or completes termination.
1108 +     *
1109 +     * @param now if true, unconditionally terminate, else only
1110 +     * if shutdown and empty queue and no active workers
1111 +     * @return true if now terminating or terminated
1112 +     */
1113 +    private boolean tryTerminate(boolean now) {
1114 +        if (now)
1115 +            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1116 +        else if (runState < SHUTDOWN ||
1117 +                 !submissionQueue.isEmpty() ||
1118 +                 (runState & ACTIVE_COUNT_MASK) != 0)
1119 +            return false;
1120 +
1121 +        if (advanceRunLevel(TERMINATING))
1122 +            startTerminating();
1123 +
1124 +        // Finish now if all threads terminated; else in some subsequent call
1125 +        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1126 +            advanceRunLevel(TERMINATED);
1127 +            termination.arrive();
1128 +        }
1129 +        return true;
1130 +    }
1131 +
1132 +    /**
1133 +     * Actions on transition to TERMINATING
1134 +     */
1135 +    private void startTerminating() {
1136 +        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1137 +            cancelSubmissions();
1138 +            shutdownWorkers();
1139 +            cancelWorkerTasks();
1140 +            signalEvent();
1141 +            interruptWorkers();
1142 +        }
1143 +    }
1144 +
1145 +    /**
1146 +     * Clear out and cancel submissions, ignoring exceptions
1147 +     */
1148 +    private void cancelSubmissions() {
1149 +        ForkJoinTask<?> task;
1150 +        while ((task = submissionQueue.poll()) != null) {
1151 +            try {
1152 +                task.cancel(false);
1153 +            } catch (Throwable ignore) {
1154 +            }
1155 +        }
1156 +    }
1157 +
1158 +    /**
1159 +     * Sets all worker run states to at least shutdown,
1160 +     * also resuming suspended workers
1161 +     */
1162 +    private void shutdownWorkers() {
1163 +        ForkJoinWorkerThread[] ws = workers;
1164 +        int nws = ws.length;
1165 +        for (int i = 0; i < nws; ++i) {
1166 +            ForkJoinWorkerThread w = ws[i];
1167 +            if (w != null)
1168 +                w.shutdown();
1169 +        }
1170 +    }
1171 +
1172 +    /**
1173 +     * Clears out and cancels all locally queued tasks
1174 +     */
1175 +    private void cancelWorkerTasks() {
1176 +        ForkJoinWorkerThread[] ws = workers;
1177 +        int nws = ws.length;
1178 +        for (int i = 0; i < nws; ++i) {
1179 +            ForkJoinWorkerThread w = ws[i];
1180 +            if (w != null)
1181 +                w.cancelTasks();
1182 +        }
1183 +    }
1184 +
1185 +    /**
1186 +     * Unsticks all workers blocked on joins etc
1187 +     */
1188 +    private void interruptWorkers() {
1189 +        ForkJoinWorkerThread[] ws = workers;
1190 +        int nws = ws.length;
1191 +        for (int i = 0; i < nws; ++i) {
1192 +            ForkJoinWorkerThread w = ws[i];
1193 +            if (w != null && !w.isTerminated()) {
1194 +                try {
1195 +                    w.interrupt();
1196 +                } catch (SecurityException ignore) {
1197 +                }
1198 +            }
1199 +        }
1200 +    }
1201 +
1202 +    // misc support for ForkJoinWorkerThread
1203 +
1204 +    /**
1205 +     * Returns pool number
1206 +     */
1207 +    final int getPoolNumber() {
1208 +        return poolNumber;
1209 +    }
1210 +
1211 +    /**
1212 +     * Accumulates steal count from a worker, clearing
1213 +     * the worker's value
1214 +     */
1215 +    final void accumulateStealCount(ForkJoinWorkerThread w) {
1216 +        int sc = w.stealCount;
1217 +        if (sc != 0) {
1218 +            long c;
1219 +            w.stealCount = 0;
1220 +            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1221 +                                                    c = stealCount, c + sc));
1222 +        }
1223 +    }
1224 +
1225 +    /**
1226 +     * Returns the approximate (non-atomic) number of idle threads per
1227 +     * active thread.
1228 +     */
1229 +    final int idlePerActive() {
1230 +        int pc = parallelism; // use parallelism, not rc
1231 +        int ac = runState;    // no mask -- artifically boosts during shutdown
1232 +        // Use exact results for small values, saturate past 4
1233 +        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1234 +    }
1235 +
1236 +    // Public and protected methods
1237 +
1238 +    // Constructors
1239 +
1240 +    /**
1241 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1242 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1243 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1244 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1245 +     *
1246 +     * @throws SecurityException if a security manager exists and
1247 +     *         the caller is not permitted to modify threads
1248 +     *         because it does not hold {@link
1249 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1250 +     */
1251 +    public ForkJoinPool() {
1252 +        this(Runtime.getRuntime().availableProcessors(),
1253 +             defaultForkJoinWorkerThreadFactory, null, false);
1254 +    }
1255 +
1256 +    /**
1257 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1258 +     * level, the {@linkplain
1259 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1260 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1261 +     *
1262 +     * @param parallelism the parallelism level
1263 +     * @throws IllegalArgumentException if parallelism less than or
1264 +     *         equal to zero, or greater than implementation limit
1265 +     * @throws SecurityException if a security manager exists and
1266 +     *         the caller is not permitted to modify threads
1267 +     *         because it does not hold {@link
1268 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1269 +     */
1270 +    public ForkJoinPool(int parallelism) {
1271 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1272 +    }
1273 +
1274 +    /**
1275 +     * Creates a {@code ForkJoinPool} with the given parameters.
1276 +     *
1277 +     * @param parallelism the parallelism level. For default value,
1278 +     * use {@link java.lang.Runtime#availableProcessors}.
1279 +     * @param factory the factory for creating new threads. For default value,
1280 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1281 +     * @param handler the handler for internal worker threads that
1282 +     * terminate due to unrecoverable errors encountered while executing
1283 +     * tasks. For default value, use <code>null</code>.
1284 +     * @param asyncMode if true,
1285 +     * establishes local first-in-first-out scheduling mode for forked
1286 +     * tasks that are never joined. This mode may be more appropriate
1287 +     * than default locally stack-based mode in applications in which
1288 +     * worker threads only process event-style asynchronous tasks.
1289 +     * For default value, use <code>false</code>.
1290 +     * @throws IllegalArgumentException if parallelism less than or
1291 +     *         equal to zero, or greater than implementation limit
1292 +     * @throws NullPointerException if the factory is null
1293 +     * @throws SecurityException if a security manager exists and
1294 +     *         the caller is not permitted to modify threads
1295 +     *         because it does not hold {@link
1296 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1297 +     */
1298 +    public ForkJoinPool(int parallelism,
1299 +                        ForkJoinWorkerThreadFactory factory,
1300 +                        Thread.UncaughtExceptionHandler handler,
1301 +                        boolean asyncMode) {
1302 +        checkPermission();
1303 +        if (factory == null)
1304 +            throw new NullPointerException();
1305 +        if (parallelism <= 0 || parallelism > MAX_THREADS)
1306 +            throw new IllegalArgumentException();
1307 +        this.parallelism = parallelism;
1308 +        this.factory = factory;
1309 +        this.ueh = handler;
1310 +        this.locallyFifo = asyncMode;
1311 +        int arraySize = initialArraySizeFor(parallelism);
1312 +        this.workers = new ForkJoinWorkerThread[arraySize];
1313 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1314 +        this.workerLock = new ReentrantLock();
1315 +        this.termination = new Phaser(1);
1316 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1317 +    }
1318 +
1319 +    /**
1320 +     * Returns initial power of two size for workers array.
1321 +     * @param pc the initial parallelism level
1322 +     */
1323 +    private static int initialArraySizeFor(int pc) {
1324 +        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1325 +        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1326 +        size |= size >>> 1;
1327 +        size |= size >>> 2;
1328 +        size |= size >>> 4;
1329 +        size |= size >>> 8;
1330 +        return size + 1;
1331 +    }
1332 +
1333      // Execution methods
1334  
1335      /**
1336       * Common code for execute, invoke and submit
1337       */
1338      private <T> void doSubmit(ForkJoinTask<T> task) {
1339 <        if (isShutdown())
1339 >        if (task == null)
1340 >            throw new NullPointerException();
1341 >        if (runState >= SHUTDOWN)
1342              throw new RejectedExecutionException();
535        if (workers == null)
536            ensureWorkerInitialization();
1343          submissionQueue.offer(task);
1344 <        signalIdleWorkers();
1344 >        signalEvent();
1345 >        ensureEnoughWorkers();
1346      }
1347  
1348      /**
1349 <     * Performs the given task; returning its result upon completion
1349 >     * Performs the given task, returning its result upon completion.
1350 >     * If the caller is already engaged in a fork/join computation in
1351 >     * the current pool, this method is equivalent in effect to
1352 >     * {@link ForkJoinTask#invoke}.
1353 >     *
1354       * @param task the task
1355       * @return the task's result
1356 <     * @throws NullPointerException if task is null
1357 <     * @throws RejectedExecutionException if pool is shut down
1356 >     * @throws NullPointerException if the task is null
1357 >     * @throws RejectedExecutionException if the task cannot be
1358 >     *         scheduled for execution
1359       */
1360      public <T> T invoke(ForkJoinTask<T> task) {
1361          doSubmit(task);
# Line 552 | Line 1364 | public class ForkJoinPool extends Abstra
1364  
1365      /**
1366       * Arranges for (asynchronous) execution of the given task.
1367 +     * If the caller is already engaged in a fork/join computation in
1368 +     * the current pool, this method is equivalent in effect to
1369 +     * {@link ForkJoinTask#fork}.
1370 +     *
1371       * @param task the task
1372 <     * @throws NullPointerException if task is null
1373 <     * @throws RejectedExecutionException if pool is shut down
1372 >     * @throws NullPointerException if the task is null
1373 >     * @throws RejectedExecutionException if the task cannot be
1374 >     *         scheduled for execution
1375       */
1376 <    public <T> void execute(ForkJoinTask<T> task) {
1376 >    public void execute(ForkJoinTask<?> task) {
1377          doSubmit(task);
1378      }
1379  
1380      // AbstractExecutorService methods
1381  
1382 +    /**
1383 +     * @throws NullPointerException if the task is null
1384 +     * @throws RejectedExecutionException if the task cannot be
1385 +     *         scheduled for execution
1386 +     */
1387      public void execute(Runnable task) {
1388 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1388 >        ForkJoinTask<?> job;
1389 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1390 >            job = (ForkJoinTask<?>) task;
1391 >        else
1392 >            job = ForkJoinTask.adapt(task, null);
1393 >        doSubmit(job);
1394 >    }
1395 >
1396 >    /**
1397 >     * Submits a ForkJoinTask for execution.
1398 >     * If the caller is already engaged in a fork/join computation in
1399 >     * the current pool, this method is equivalent in effect to
1400 >     * {@link ForkJoinTask#fork}.
1401 >     *
1402 >     * @param task the task to submit
1403 >     * @return the task
1404 >     * @throws NullPointerException if the task is null
1405 >     * @throws RejectedExecutionException if the task cannot be
1406 >     *         scheduled for execution
1407 >     */
1408 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1409 >        doSubmit(task);
1410 >        return task;
1411      }
1412  
1413 +    /**
1414 +     * @throws NullPointerException if the task is null
1415 +     * @throws RejectedExecutionException if the task cannot be
1416 +     *         scheduled for execution
1417 +     */
1418      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1419 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1419 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1420          doSubmit(job);
1421          return job;
1422      }
1423  
1424 +    /**
1425 +     * @throws NullPointerException if the task is null
1426 +     * @throws RejectedExecutionException if the task cannot be
1427 +     *         scheduled for execution
1428 +     */
1429      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1430 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1430 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1431          doSubmit(job);
1432          return job;
1433      }
1434  
1435 +    /**
1436 +     * @throws NullPointerException if the task is null
1437 +     * @throws RejectedExecutionException if the task cannot be
1438 +     *         scheduled for execution
1439 +     */
1440      public ForkJoinTask<?> submit(Runnable task) {
1441 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1441 >        ForkJoinTask<?> job;
1442 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1443 >            job = (ForkJoinTask<?>) task;
1444 >        else
1445 >            job = ForkJoinTask.adapt(task, null);
1446          doSubmit(job);
1447          return job;
1448      }
1449  
1450      /**
1451 <     * Adaptor for Runnables. This implements RunnableFuture
1452 <     * to be compliant with AbstractExecutorService constraints
1451 >     * @throws NullPointerException       {@inheritDoc}
1452 >     * @throws RejectedExecutionException {@inheritDoc}
1453       */
591    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
592        implements RunnableFuture<T> {
593        final Runnable runnable;
594        final T resultOnCompletion;
595        T result;
596        AdaptedRunnable(Runnable runnable, T result) {
597            if (runnable == null) throw new NullPointerException();
598            this.runnable = runnable;
599            this.resultOnCompletion = result;
600        }
601        public T getRawResult() { return result; }
602        public void setRawResult(T v) { result = v; }
603        public boolean exec() {
604            runnable.run();
605            result = resultOnCompletion;
606            return true;
607        }
608        public void run() { invoke(); }
609    }
610
611    /**
612     * Adaptor for Callables
613     */
614    static final class AdaptedCallable<T> extends ForkJoinTask<T>
615        implements RunnableFuture<T> {
616        final Callable<T> callable;
617        T result;
618        AdaptedCallable(Callable<T> callable) {
619            if (callable == null) throw new NullPointerException();
620            this.callable = callable;
621        }
622        public T getRawResult() { return result; }
623        public void setRawResult(T v) { result = v; }
624        public boolean exec() {
625            try {
626                result = callable.call();
627                return true;
628            } catch (Error err) {
629                throw err;
630            } catch (RuntimeException rex) {
631                throw rex;
632            } catch (Exception ex) {
633                throw new RuntimeException(ex);
634            }
635        }
636        public void run() { invoke(); }
637    }
638
1454      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1455 <        ArrayList<ForkJoinTask<T>> ts =
1455 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1456              new ArrayList<ForkJoinTask<T>>(tasks.size());
1457 <        for (Callable<T> c : tasks)
1458 <            ts.add(new AdaptedCallable<T>(c));
1459 <        invoke(new InvokeAll<T>(ts));
1460 <        return (List<Future<T>>)(List)ts;
1457 >        for (Callable<T> task : tasks)
1458 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1459 >        invoke(new InvokeAll<T>(forkJoinTasks));
1460 >
1461 >        @SuppressWarnings({"unchecked", "rawtypes"})
1462 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1463 >        return futures;
1464      }
1465  
1466      static final class InvokeAll<T> extends RecursiveAction {
1467          final ArrayList<ForkJoinTask<T>> tasks;
1468          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1469          public void compute() {
1470 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1470 >            try { invokeAll(tasks); }
1471 >            catch (Exception ignore) {}
1472          }
1473 +        private static final long serialVersionUID = -7914297376763021607L;
1474      }
1475  
656    // Configuration and status settings and queries
657
1476      /**
1477 <     * Returns the factory used for constructing new workers
1477 >     * Returns the factory used for constructing new workers.
1478       *
1479       * @return the factory used for constructing new workers
1480       */
# Line 667 | Line 1485 | public class ForkJoinPool extends Abstra
1485      /**
1486       * Returns the handler for internal worker threads that terminate
1487       * due to unrecoverable errors encountered while executing tasks.
670     * @return the handler, or null if none
671     */
672    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
673        Thread.UncaughtExceptionHandler h;
674        final ReentrantLock lock = this.workerLock;
675        lock.lock();
676        try {
677            h = ueh;
678        } finally {
679            lock.unlock();
680        }
681        return h;
682    }
683
684    /**
685     * Sets the handler for internal worker threads that terminate due
686     * to unrecoverable errors encountered while executing tasks.
687     * Unless set, the current default or ThreadGroup handler is used
688     * as handler.
1488       *
1489 <     * @param h the new handler
691 <     * @return the old handler, or null if none
692 <     * @throws SecurityException if a security manager exists and
693 <     *         the caller is not permitted to modify threads
694 <     *         because it does not hold {@link
695 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1489 >     * @return the handler, or {@code null} if none
1490       */
1491 <    public Thread.UncaughtExceptionHandler
1492 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
699 <        checkPermission();
700 <        Thread.UncaughtExceptionHandler old = null;
701 <        final ReentrantLock lock = this.workerLock;
702 <        lock.lock();
703 <        try {
704 <            old = ueh;
705 <            ueh = h;
706 <            ForkJoinWorkerThread[] ws = workers;
707 <            if (ws != null) {
708 <                for (int i = 0; i < ws.length; ++i) {
709 <                    ForkJoinWorkerThread w = ws[i];
710 <                    if (w != null)
711 <                        w.setUncaughtExceptionHandler(h);
712 <                }
713 <            }
714 <        } finally {
715 <            lock.unlock();
716 <        }
717 <        return old;
718 <    }
719 <
720 <
721 <    /**
722 <     * Sets the target parallelism level of this pool.
723 <     * @param parallelism the target parallelism
724 <     * @throws IllegalArgumentException if parallelism less than or
725 <     * equal to zero or greater than maximum size bounds
726 <     * @throws SecurityException if a security manager exists and
727 <     *         the caller is not permitted to modify threads
728 <     *         because it does not hold {@link
729 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
730 <     */
731 <    public void setParallelism(int parallelism) {
732 <        checkPermission();
733 <        if (parallelism <= 0 || parallelism > maxPoolSize)
734 <            throw new IllegalArgumentException();
735 <        final ReentrantLock lock = this.workerLock;
736 <        lock.lock();
737 <        try {
738 <            if (!isTerminating()) {
739 <                int p = this.parallelism;
740 <                this.parallelism = parallelism;
741 <                if (parallelism > p)
742 <                    createAndStartAddedWorkers();
743 <                else
744 <                    trimSpares();
745 <            }
746 <        } finally {
747 <            lock.unlock();
748 <        }
749 <        signalIdleWorkers();
1491 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1492 >        return ueh;
1493      }
1494  
1495      /**
1496 <     * Returns the targeted number of worker threads in this pool.
1496 >     * Returns the targeted parallelism level of this pool.
1497       *
1498 <     * @return the targeted number of worker threads in this pool
1498 >     * @return the targeted parallelism level of this pool
1499       */
1500      public int getParallelism() {
1501          return parallelism;
# Line 761 | Line 1504 | public class ForkJoinPool extends Abstra
1504      /**
1505       * Returns the number of worker threads that have started but not
1506       * yet terminated.  This result returned by this method may differ
1507 <     * from {@code getParallelism} when threads are created to
1507 >     * from {@link #getParallelism} when threads are created to
1508       * maintain parallelism when others are cooperatively blocked.
1509       *
1510       * @return the number of worker threads
1511       */
1512      public int getPoolSize() {
1513 <        return totalCountOf(workerCounts);
771 <    }
772 <
773 <    /**
774 <     * Returns the maximum number of threads allowed to exist in the
775 <     * pool, even if there are insufficient unblocked running threads.
776 <     * @return the maximum
777 <     */
778 <    public int getMaximumPoolSize() {
779 <        return maxPoolSize;
780 <    }
781 <
782 <    /**
783 <     * Sets the maximum number of threads allowed to exist in the
784 <     * pool, even if there are insufficient unblocked running threads.
785 <     * Setting this value has no effect on current pool size. It
786 <     * controls construction of new threads.
787 <     * @throws IllegalArgumentException if negative or greater then
788 <     * internal implementation limit
789 <     */
790 <    public void setMaximumPoolSize(int newMax) {
791 <        if (newMax < 0 || newMax > MAX_THREADS)
792 <            throw new IllegalArgumentException();
793 <        maxPoolSize = newMax;
794 <    }
795 <
796 <
797 <    /**
798 <     * Returns true if this pool dynamically maintains its target
799 <     * parallelism level. If false, new threads are added only to
800 <     * avoid possible starvation.
801 <     * This setting is by default true;
802 <     * @return true if maintains parallelism
803 <     */
804 <    public boolean getMaintainsParallelism() {
805 <        return maintainsParallelism;
806 <    }
807 <
808 <    /**
809 <     * Sets whether this pool dynamically maintains its target
810 <     * parallelism level. If false, new threads are added only to
811 <     * avoid possible starvation.
812 <     * @param enable true to maintains parallelism
813 <     */
814 <    public void setMaintainsParallelism(boolean enable) {
815 <        maintainsParallelism = enable;
1513 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1514      }
1515  
1516      /**
1517 <     * Establishes local first-in-first-out scheduling mode for forked
820 <     * tasks that are never joined. This mode may be more appropriate
821 <     * than default locally stack-based mode in applications in which
822 <     * worker threads only process asynchronous tasks.  This method is
823 <     * designed to be invoked only when pool is quiescent, and
824 <     * typically only before any tasks are submitted. The effects of
825 <     * invocations at other times may be unpredictable.
826 <     *
827 <     * @param async if true, use locally FIFO scheduling
828 <     * @return the previous mode
829 <     */
830 <    public boolean setAsyncMode(boolean async) {
831 <        boolean oldMode = locallyFifo;
832 <        locallyFifo = async;
833 <        ForkJoinWorkerThread[] ws = workers;
834 <        if (ws != null) {
835 <            for (int i = 0; i < ws.length; ++i) {
836 <                ForkJoinWorkerThread t = ws[i];
837 <                if (t != null)
838 <                    t.setAsyncMode(async);
839 <            }
840 <        }
841 <        return oldMode;
842 <    }
843 <
844 <    /**
845 <     * Returns true if this pool uses local first-in-first-out
1517 >     * Returns {@code true} if this pool uses local first-in-first-out
1518       * scheduling mode for forked tasks that are never joined.
1519       *
1520 <     * @return true if this pool uses async mode
1520 >     * @return {@code true} if this pool uses async mode
1521       */
1522      public boolean getAsyncMode() {
1523          return locallyFifo;
# Line 854 | Line 1526 | public class ForkJoinPool extends Abstra
1526      /**
1527       * Returns an estimate of the number of worker threads that are
1528       * not blocked waiting to join tasks or for other managed
1529 <     * synchronization.
1529 >     * synchronization. This method may overestimate the
1530 >     * number of running threads.
1531       *
1532       * @return the number of worker threads
1533       */
1534      public int getRunningThreadCount() {
1535 <        return runningCountOf(workerCounts);
1535 >        return workerCounts & RUNNING_COUNT_MASK;
1536      }
1537  
1538      /**
1539       * Returns an estimate of the number of threads that are currently
1540       * stealing or executing tasks. This method may overestimate the
1541       * number of active threads.
1542 +     *
1543       * @return the number of active threads
1544       */
1545      public int getActiveThreadCount() {
1546 <        return activeCountOf(runControl);
1546 >        return runState & ACTIVE_COUNT_MASK;
1547      }
1548  
1549      /**
1550 <     * Returns an estimate of the number of threads that are currently
1551 <     * idle waiting for tasks. This method may underestimate the
1552 <     * number of idle threads.
1553 <     * @return the number of idle threads
1554 <     */
1555 <    final int getIdleThreadCount() {
1556 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
1557 <        return (c <= 0)? 0 : c;
1558 <    }
885 <
886 <    /**
887 <     * Returns true if all worker threads are currently idle. An idle
888 <     * worker is one that cannot obtain a task to execute because none
889 <     * are available to steal from other threads, and there are no
890 <     * pending submissions to the pool. This method is conservative:
891 <     * It might not return true immediately upon idleness of all
892 <     * threads, but will eventually become true if threads remain
893 <     * inactive.
894 <     * @return true if all threads are currently idle
1550 >     * Returns {@code true} if all worker threads are currently idle.
1551 >     * An idle worker is one that cannot obtain a task to execute
1552 >     * because none are available to steal from other threads, and
1553 >     * there are no pending submissions to the pool. This method is
1554 >     * conservative; it might not return {@code true} immediately upon
1555 >     * idleness of all threads, but will eventually become true if
1556 >     * threads remain inactive.
1557 >     *
1558 >     * @return {@code true} if all threads are currently idle
1559       */
1560      public boolean isQuiescent() {
1561 <        return activeCountOf(runControl) == 0;
1561 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1562      }
1563  
1564      /**
# Line 902 | Line 1566 | public class ForkJoinPool extends Abstra
1566       * one thread's work queue by another. The reported value
1567       * underestimates the actual total number of steals when the pool
1568       * is not quiescent. This value may be useful for monitoring and
1569 <     * tuning fork/join programs: In general, steal counts should be
1569 >     * tuning fork/join programs: in general, steal counts should be
1570       * high enough to keep threads busy, but low enough to avoid
1571       * overhead and contention across threads.
1572 +     *
1573       * @return the number of steals
1574       */
1575      public long getStealCount() {
1576 <        return stealCount.get();
912 <    }
913 <
914 <    /**
915 <     * Accumulate steal count from a worker. Call only
916 <     * when worker known to be idle.
917 <     */
918 <    private void updateStealCount(ForkJoinWorkerThread w) {
919 <        int sc = w.getAndClearStealCount();
920 <        if (sc != 0)
921 <            stealCount.addAndGet(sc);
1576 >        return stealCount;
1577      }
1578  
1579      /**
# Line 928 | Line 1583 | public class ForkJoinPool extends Abstra
1583       * an approximation, obtained by iterating across all threads in
1584       * the pool. This method may be useful for tuning task
1585       * granularities.
1586 +     *
1587       * @return the number of queued tasks
1588       */
1589      public long getQueuedTaskCount() {
1590          long count = 0;
1591          ForkJoinWorkerThread[] ws = workers;
1592 <        if (ws != null) {
1593 <            for (int i = 0; i < ws.length; ++i) {
1594 <                ForkJoinWorkerThread t = ws[i];
1595 <                if (t != null)
1596 <                    count += t.getQueueSize();
941 <            }
1592 >        int nws = ws.length;
1593 >        for (int i = 0; i < nws; ++i) {
1594 >            ForkJoinWorkerThread w = ws[i];
1595 >            if (w != null)
1596 >                count += w.getQueueSize();
1597          }
1598          return count;
1599      }
1600  
1601      /**
1602 <     * Returns an estimate of the number tasks submitted to this pool
1603 <     * that have not yet begun executing. This method takes time
1602 >     * Returns an estimate of the number of tasks submitted to this
1603 >     * pool that have not yet begun executing.  This method takes time
1604       * proportional to the number of submissions.
1605 +     *
1606       * @return the number of queued submissions
1607       */
1608      public int getQueuedSubmissionCount() {
# Line 954 | Line 1610 | public class ForkJoinPool extends Abstra
1610      }
1611  
1612      /**
1613 <     * Returns true if there are any tasks submitted to this pool
1614 <     * that have not yet begun executing.
1613 >     * Returns {@code true} if there are any tasks submitted to this
1614 >     * pool that have not yet begun executing.
1615 >     *
1616       * @return {@code true} if there are any queued submissions
1617       */
1618      public boolean hasQueuedSubmissions() {
# Line 966 | Line 1623 | public class ForkJoinPool extends Abstra
1623       * Removes and returns the next unexecuted submission if one is
1624       * available.  This method may be useful in extensions to this
1625       * class that re-assign work in systems with multiple pools.
1626 <     * @return the next submission, or null if none
1626 >     *
1627 >     * @return the next submission, or {@code null} if none
1628       */
1629      protected ForkJoinTask<?> pollSubmission() {
1630          return submissionQueue.poll();
# Line 976 | Line 1634 | public class ForkJoinPool extends Abstra
1634       * Removes all available unexecuted submitted and forked tasks
1635       * from scheduling queues and adds them to the given collection,
1636       * without altering their execution status. These may include
1637 <     * artificially generated or wrapped tasks. This method is designed
1638 <     * to be invoked only when the pool is known to be
1637 >     * artificially generated or wrapped tasks. This method is
1638 >     * designed to be invoked only when the pool is known to be
1639       * quiescent. Invocations at other times may not remove all
1640       * tasks. A failure encountered while attempting to add elements
1641       * to collection {@code c} may result in elements being in
# Line 985 | Line 1643 | public class ForkJoinPool extends Abstra
1643       * exception is thrown.  The behavior of this operation is
1644       * undefined if the specified collection is modified while the
1645       * operation is in progress.
1646 +     *
1647       * @param c the collection to transfer elements into
1648       * @return the number of elements transferred
1649       */
1650 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1650 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1651          int n = submissionQueue.drainTo(c);
1652          ForkJoinWorkerThread[] ws = workers;
1653 <        if (ws != null) {
1654 <            for (int i = 0; i < ws.length; ++i) {
1655 <                ForkJoinWorkerThread w = ws[i];
1656 <                if (w != null)
1657 <                    n += w.drainTasksTo(c);
999 <            }
1653 >        int nws = ws.length;
1654 >        for (int i = 0; i < nws; ++i) {
1655 >            ForkJoinWorkerThread w = ws[i];
1656 >            if (w != null)
1657 >                n += w.drainTasksTo(c);
1658          }
1659          return n;
1660      }
1661  
1662      /**
1663 +     * Returns count of total parks by existing workers.
1664 +     * Used during development only since not meaningful to users.
1665 +     */
1666 +    private int collectParkCount() {
1667 +        int count = 0;
1668 +        ForkJoinWorkerThread[] ws = workers;
1669 +        int nws = ws.length;
1670 +        for (int i = 0; i < nws; ++i) {
1671 +            ForkJoinWorkerThread w = ws[i];
1672 +            if (w != null)
1673 +                count += w.parkCount;
1674 +        }
1675 +        return count;
1676 +    }
1677 +
1678 +    /**
1679       * Returns a string identifying this pool, as well as its state,
1680       * including indications of run state, parallelism level, and
1681       * worker and task counts.
# Line 1009 | Line 1683 | public class ForkJoinPool extends Abstra
1683       * @return a string identifying this pool, as well as its state
1684       */
1685      public String toString() {
1012        int ps = parallelism;
1013        int wc = workerCounts;
1014        int rc = runControl;
1686          long st = getStealCount();
1687          long qt = getQueuedTaskCount();
1688          long qs = getQueuedSubmissionCount();
1689 +        int wc = workerCounts;
1690 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1691 +        int rc = wc & RUNNING_COUNT_MASK;
1692 +        int pc = parallelism;
1693 +        int rs = runState;
1694 +        int ac = rs & ACTIVE_COUNT_MASK;
1695 +        //        int pk = collectParkCount();
1696          return super.toString() +
1697 <            "[" + runStateToString(runStateOf(rc)) +
1698 <            ", parallelism = " + ps +
1699 <            ", size = " + totalCountOf(wc) +
1700 <            ", active = " + activeCountOf(rc) +
1701 <            ", running = " + runningCountOf(wc) +
1697 >            "[" + runLevelToString(rs) +
1698 >            ", parallelism = " + pc +
1699 >            ", size = " + tc +
1700 >            ", active = " + ac +
1701 >            ", running = " + rc +
1702              ", steals = " + st +
1703              ", tasks = " + qt +
1704              ", submissions = " + qs +
1705 +            //            ", parks = " + pk +
1706              "]";
1707      }
1708  
1709 <    private static String runStateToString(int rs) {
1710 <        switch(rs) {
1711 <        case RUNNING: return "Running";
1712 <        case SHUTDOWN: return "Shutting down";
1713 <        case TERMINATING: return "Terminating";
1035 <        case TERMINATED: return "Terminated";
1036 <        default: throw new Error("Unknown run state");
1037 <        }
1709 >    private static String runLevelToString(int s) {
1710 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1711 >                ((s & TERMINATING) != 0 ? "Terminating" :
1712 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1713 >                  "Running")));
1714      }
1715  
1040    // lifecycle control
1041
1716      /**
1717       * Initiates an orderly shutdown in which previously submitted
1718       * tasks are executed, but no new tasks will be accepted.
1719       * Invocation has no additional effect if already shut down.
1720       * Tasks that are in the process of being submitted concurrently
1721       * during the course of this method may or may not be rejected.
1722 +     *
1723       * @throws SecurityException if a security manager exists and
1724       *         the caller is not permitted to modify threads
1725       *         because it does not hold {@link
1726 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1726 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1727       */
1728      public void shutdown() {
1729          checkPermission();
1730 <        transitionRunStateTo(SHUTDOWN);
1731 <        if (canTerminateOnShutdown(runControl))
1057 <            terminateOnShutdown();
1730 >        advanceRunLevel(SHUTDOWN);
1731 >        tryTerminate(false);
1732      }
1733  
1734      /**
1735 <     * Attempts to stop all actively executing tasks, and cancels all
1736 <     * waiting tasks.  Tasks that are in the process of being
1737 <     * submitted or executed concurrently during the course of this
1738 <     * method may or may not be rejected. Unlike some other executors,
1739 <     * this method cancels rather than collects non-executed tasks
1740 <     * upon termination, so always returns an empty list. However, you
1741 <     * can use method {@code drainTasksTo} before invoking this
1742 <     * method to transfer unexecuted tasks to another collection.
1735 >     * Attempts to cancel and/or stop all tasks, and reject all
1736 >     * subsequently submitted tasks.  Tasks that are in the process of
1737 >     * being submitted or executed concurrently during the course of
1738 >     * this method may or may not be rejected. This method cancels
1739 >     * both existing and unexecuted tasks, in order to permit
1740 >     * termination in the presence of task dependencies. So the method
1741 >     * always returns an empty list (unlike the case for some other
1742 >     * Executors).
1743 >     *
1744       * @return an empty list
1745       * @throws SecurityException if a security manager exists and
1746       *         the caller is not permitted to modify threads
1747       *         because it does not hold {@link
1748 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
1748 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1749       */
1750      public List<Runnable> shutdownNow() {
1751          checkPermission();
1752 <        terminate();
1752 >        tryTerminate(true);
1753          return Collections.emptyList();
1754      }
1755  
# Line 1084 | Line 1759 | public class ForkJoinPool extends Abstra
1759       * @return {@code true} if all tasks have completed following shut down
1760       */
1761      public boolean isTerminated() {
1762 <        return runStateOf(runControl) == TERMINATED;
1762 >        return runState >= TERMINATED;
1763      }
1764  
1765      /**
1766       * Returns {@code true} if the process of termination has
1767 <     * commenced but possibly not yet completed.
1767 >     * commenced but not yet completed.  This method may be useful for
1768 >     * debugging. A return of {@code true} reported a sufficient
1769 >     * period after shutdown may indicate that submitted tasks have
1770 >     * ignored or suppressed interruption, causing this executor not
1771 >     * to properly terminate.
1772       *
1773 <     * @return {@code true} if terminating
1773 >     * @return {@code true} if terminating but not yet terminated
1774       */
1775      public boolean isTerminating() {
1776 <        return runStateOf(runControl) >= TERMINATING;
1776 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1777      }
1778  
1779      /**
# Line 1103 | Line 1782 | public class ForkJoinPool extends Abstra
1782       * @return {@code true} if this pool has been shut down
1783       */
1784      public boolean isShutdown() {
1785 <        return runStateOf(runControl) >= SHUTDOWN;
1785 >        return runState >= SHUTDOWN;
1786      }
1787  
1788      /**
# Line 1119 | Line 1798 | public class ForkJoinPool extends Abstra
1798       */
1799      public boolean awaitTermination(long timeout, TimeUnit unit)
1800          throws InterruptedException {
1122        long nanos = unit.toNanos(timeout);
1123        final ReentrantLock lock = this.workerLock;
1124        lock.lock();
1801          try {
1802 <            for (;;) {
1803 <                if (isTerminated())
1128 <                    return true;
1129 <                if (nanos <= 0)
1130 <                    return false;
1131 <                nanos = termination.awaitNanos(nanos);
1132 <            }
1133 <        } finally {
1134 <            lock.unlock();
1135 <        }
1136 <    }
1137 <
1138 <    // Shutdown and termination support
1139 <
1140 <    /**
1141 <     * Callback from terminating worker. Null out the corresponding
1142 <     * workers slot, and if terminating, try to terminate, else try to
1143 <     * shrink workers array.
1144 <     * @param w the worker
1145 <     */
1146 <    final void workerTerminated(ForkJoinWorkerThread w) {
1147 <        updateStealCount(w);
1148 <        updateWorkerCount(-1);
1149 <        final ReentrantLock lock = this.workerLock;
1150 <        lock.lock();
1151 <        try {
1152 <            ForkJoinWorkerThread[] ws = workers;
1153 <            if (ws != null) {
1154 <                int idx = w.poolIndex;
1155 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1156 <                    ws[idx] = null;
1157 <                if (totalCountOf(workerCounts) == 0) {
1158 <                    terminate(); // no-op if already terminating
1159 <                    transitionRunStateTo(TERMINATED);
1160 <                    termination.signalAll();
1161 <                }
1162 <                else if (!isTerminating()) {
1163 <                    tryShrinkWorkerArray();
1164 <                    tryResumeSpare(true); // allow replacement
1165 <                }
1166 <            }
1167 <        } finally {
1168 <            lock.unlock();
1169 <        }
1170 <        signalIdleWorkers();
1171 <    }
1172 <
1173 <    /**
1174 <     * Initiate termination.
1175 <     */
1176 <    private void terminate() {
1177 <        if (transitionRunStateTo(TERMINATING)) {
1178 <            stopAllWorkers();
1179 <            resumeAllSpares();
1180 <            signalIdleWorkers();
1181 <            cancelQueuedSubmissions();
1182 <            cancelQueuedWorkerTasks();
1183 <            interruptUnterminatedWorkers();
1184 <            signalIdleWorkers(); // resignal after interrupt
1185 <        }
1186 <    }
1187 <
1188 <    /**
1189 <     * Possibly terminates when on shutdown state.
1190 <     */
1191 <    private void terminateOnShutdown() {
1192 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1193 <            terminate();
1194 <    }
1195 <
1196 <    /**
1197 <     * Clears out and cancels submissions.
1198 <     */
1199 <    private void cancelQueuedSubmissions() {
1200 <        ForkJoinTask<?> task;
1201 <        while ((task = pollSubmission()) != null)
1202 <            task.cancel(false);
1203 <    }
1204 <
1205 <    /**
1206 <     * Cleans out worker queues.
1207 <     */
1208 <    private void cancelQueuedWorkerTasks() {
1209 <        final ReentrantLock lock = this.workerLock;
1210 <        lock.lock();
1211 <        try {
1212 <            ForkJoinWorkerThread[] ws = workers;
1213 <            if (ws != null) {
1214 <                for (int i = 0; i < ws.length; ++i) {
1215 <                    ForkJoinWorkerThread t = ws[i];
1216 <                    if (t != null)
1217 <                        t.cancelTasks();
1218 <                }
1219 <            }
1220 <        } finally {
1221 <            lock.unlock();
1222 <        }
1223 <    }
1224 <
1225 <    /**
1226 <     * Sets each worker's status to terminating. Requires lock to avoid
1227 <     * conflicts with add/remove.
1228 <     */
1229 <    private void stopAllWorkers() {
1230 <        final ReentrantLock lock = this.workerLock;
1231 <        lock.lock();
1232 <        try {
1233 <            ForkJoinWorkerThread[] ws = workers;
1234 <            if (ws != null) {
1235 <                for (int i = 0; i < ws.length; ++i) {
1236 <                    ForkJoinWorkerThread t = ws[i];
1237 <                    if (t != null)
1238 <                        t.shutdownNow();
1239 <                }
1240 <            }
1241 <        } finally {
1242 <            lock.unlock();
1243 <        }
1244 <    }
1245 <
1246 <    /**
1247 <     * Interrupts all unterminated workers.  This is not required for
1248 <     * sake of internal control, but may help unstick user code during
1249 <     * shutdown.
1250 <     */
1251 <    private void interruptUnterminatedWorkers() {
1252 <        final ReentrantLock lock = this.workerLock;
1253 <        lock.lock();
1254 <        try {
1255 <            ForkJoinWorkerThread[] ws = workers;
1256 <            if (ws != null) {
1257 <                for (int i = 0; i < ws.length; ++i) {
1258 <                    ForkJoinWorkerThread t = ws[i];
1259 <                    if (t != null && !t.isTerminated()) {
1260 <                        try {
1261 <                            t.interrupt();
1262 <                        } catch (SecurityException ignore) {
1263 <                        }
1264 <                    }
1265 <                }
1266 <            }
1267 <        } finally {
1268 <            lock.unlock();
1269 <        }
1270 <    }
1271 <
1272 <
1273 <    /*
1274 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1275 <     * are basic Treiber stack nodes, also used for spare stack.
1276 <     *
1277 <     * The event barrier has an event count and a wait queue (actually
1278 <     * a Treiber stack).  Workers are enabled to look for work when
1279 <     * the eventCount is incremented. If they fail to find work, they
1280 <     * may wait for next count. Upon release, threads help others wake
1281 <     * up.
1282 <     *
1283 <     * Synchronization events occur only in enough contexts to
1284 <     * maintain overall liveness:
1285 <     *
1286 <     *   - Submission of a new task to the pool
1287 <     *   - Resizes or other changes to the workers array
1288 <     *   - pool termination
1289 <     *   - A worker pushing a task on an empty queue
1290 <     *
1291 <     * The case of pushing a task occurs often enough, and is heavy
1292 <     * enough compared to simple stack pushes, to require special
1293 <     * handling: Method signalWork returns without advancing count if
1294 <     * the queue appears to be empty.  This would ordinarily result in
1295 <     * races causing some queued waiters not to be woken up. To avoid
1296 <     * this, the first worker enqueued in method sync (see
1297 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1298 <     * helps signal if any are found. This works well because the
1299 <     * worker has nothing better to do, and so might as well help
1300 <     * alleviate the overhead and contention on the threads actually
1301 <     * doing work.  Also, since event counts increments on task
1302 <     * availability exist to maintain liveness (rather than to force
1303 <     * refreshes etc), it is OK for callers to exit early if
1304 <     * contending with another signaller.
1305 <     */
1306 <    static final class WaitQueueNode {
1307 <        WaitQueueNode next; // only written before enqueued
1308 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1309 <        final long count; // unused for spare stack
1310 <
1311 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1312 <            count = c;
1313 <            thread = w;
1314 <        }
1315 <
1316 <        /**
1317 <         * Wakes up waiter, returning false if known to already
1318 <         */
1319 <        boolean signal() {
1320 <            ForkJoinWorkerThread t = thread;
1321 <            if (t == null)
1322 <                return false;
1323 <            thread = null;
1324 <            LockSupport.unpark(t);
1325 <            return true;
1326 <        }
1327 <
1328 <        /**
1329 <         * Awaits release on sync.
1330 <         */
1331 <        void awaitSyncRelease(ForkJoinPool p) {
1332 <            while (thread != null && !p.syncIsReleasable(this))
1333 <                LockSupport.park(this);
1334 <        }
1335 <
1336 <        /**
1337 <         * Awaits resumption as spare.
1338 <         */
1339 <        void awaitSpareRelease() {
1340 <            while (thread != null) {
1341 <                if (!Thread.interrupted())
1342 <                    LockSupport.park(this);
1343 <            }
1344 <        }
1345 <    }
1346 <
1347 <    /**
1348 <     * Ensures that no thread is waiting for count to advance from the
1349 <     * current value of eventCount read on entry to this method, by
1350 <     * releasing waiting threads if necessary.
1351 <     * @return the count
1352 <     */
1353 <    final long ensureSync() {
1354 <        long c = eventCount;
1355 <        WaitQueueNode q;
1356 <        while ((q = syncStack) != null && q.count < c) {
1357 <            if (casBarrierStack(q, null)) {
1358 <                do {
1359 <                    q.signal();
1360 <                } while ((q = q.next) != null);
1361 <                break;
1362 <            }
1363 <        }
1364 <        return c;
1365 <    }
1366 <
1367 <    /**
1368 <     * Increments event count and releases waiting threads.
1369 <     */
1370 <    private void signalIdleWorkers() {
1371 <        long c;
1372 <        do;while (!casEventCount(c = eventCount, c+1));
1373 <        ensureSync();
1374 <    }
1375 <
1376 <    /**
1377 <     * Signals threads waiting to poll a task. Because method sync
1378 <     * rechecks availability, it is OK to only proceed if queue
1379 <     * appears to be non-empty, and OK to skip under contention to
1380 <     * increment count (since some other thread succeeded).
1381 <     */
1382 <    final void signalWork() {
1383 <        long c;
1384 <        WaitQueueNode q;
1385 <        if (syncStack != null &&
1386 <            casEventCount(c = eventCount, c+1) &&
1387 <            (((q = syncStack) != null && q.count <= c) &&
1388 <             (!casBarrierStack(q, q.next) || !q.signal())))
1389 <            ensureSync();
1390 <    }
1391 <
1392 <    /**
1393 <     * Waits until event count advances from last value held by
1394 <     * caller, or if excess threads, caller is resumed as spare, or
1395 <     * caller or pool is terminating. Updates caller's event on exit.
1396 <     * @param w the calling worker thread
1397 <     */
1398 <    final void sync(ForkJoinWorkerThread w) {
1399 <        updateStealCount(w); // Transfer w's count while it is idle
1400 <
1401 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1402 <            long prev = w.lastEventCount;
1403 <            WaitQueueNode node = null;
1404 <            WaitQueueNode h;
1405 <            while (eventCount == prev &&
1406 <                   ((h = syncStack) == null || h.count == prev)) {
1407 <                if (node == null)
1408 <                    node = new WaitQueueNode(prev, w);
1409 <                if (casBarrierStack(node.next = h, node)) {
1410 <                    node.awaitSyncRelease(this);
1411 <                    break;
1412 <                }
1413 <            }
1414 <            long ec = ensureSync();
1415 <            if (ec != prev) {
1416 <                w.lastEventCount = ec;
1417 <                break;
1418 <            }
1419 <        }
1420 <    }
1421 <
1422 <    /**
1423 <     * Returns true if worker waiting on sync can proceed:
1424 <     *  - on signal (thread == null)
1425 <     *  - on event count advance (winning race to notify vs signaller)
1426 <     *  - on Interrupt
1427 <     *  - if the first queued node, we find work available
1428 <     * If node was not signalled and event count not advanced on exit,
1429 <     * then we also help advance event count.
1430 <     * @return true if node can be released
1431 <     */
1432 <    final boolean syncIsReleasable(WaitQueueNode node) {
1433 <        long prev = node.count;
1434 <        if (!Thread.interrupted() && node.thread != null &&
1435 <            (node.next != null ||
1436 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1437 <            eventCount == prev)
1438 <            return false;
1439 <        if (node.thread != null) {
1440 <            node.thread = null;
1441 <            long ec = eventCount;
1442 <            if (prev <= ec) // help signal
1443 <                casEventCount(ec, ec+1);
1444 <        }
1445 <        return true;
1446 <    }
1447 <
1448 <    /**
1449 <     * Returns true if a new sync event occurred since last call to
1450 <     * sync or this method, if so, updating caller's count.
1451 <     */
1452 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1453 <        long lc = w.lastEventCount;
1454 <        long ec = ensureSync();
1455 <        if (ec == lc)
1802 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1803 >        } catch(TimeoutException ex) {
1804              return false;
1457        w.lastEventCount = ec;
1458        return true;
1459    }
1460
1461    //  Parallelism maintenance
1462
1463    /**
1464     * Decrements running count; if too low, adds spare.
1465     *
1466     * Conceptually, all we need to do here is add or resume a
1467     * spare thread when one is about to block (and remove or
1468     * suspend it later when unblocked -- see suspendIfSpare).
1469     * However, implementing this idea requires coping with
1470     * several problems: We have imperfect information about the
1471     * states of threads. Some count updates can and usually do
1472     * lag run state changes, despite arrangements to keep them
1473     * accurate (for example, when possible, updating counts
1474     * before signalling or resuming), especially when running on
1475     * dynamic JVMs that don't optimize the infrequent paths that
1476     * update counts. Generating too many threads can make these
1477     * problems become worse, because excess threads are more
1478     * likely to be context-switched with others, slowing them all
1479     * down, especially if there is no work available, so all are
1480     * busy scanning or idling.  Also, excess spare threads can
1481     * only be suspended or removed when they are idle, not
1482     * immediately when they aren't needed. So adding threads will
1483     * raise parallelism level for longer than necessary.  Also,
1484     * FJ applications often encounter highly transient peaks when
1485     * many threads are blocked joining, but for less time than it
1486     * takes to create or resume spares.
1487     *
1488     * @param joinMe if non-null, return early if done
1489     * @param maintainParallelism if true, try to stay within
1490     * target counts, else create only to avoid starvation
1491     * @return true if joinMe known to be done
1492     */
1493    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1494        maintainParallelism &= maintainsParallelism; // overrride
1495        boolean dec = false;  // true when running count decremented
1496        while (spareStack == null || !tryResumeSpare(dec)) {
1497            int counts = workerCounts;
1498            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1499                if (!needSpare(counts, maintainParallelism))
1500                    break;
1501                if (joinMe.status < 0)
1502                    return true;
1503                if (tryAddSpare(counts))
1504                    break;
1505            }
1506        }
1507        return false;
1508    }
1509
1510    /**
1511     * Same idea as preJoin
1512     */
1513    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1514        maintainParallelism &= maintainsParallelism;
1515        boolean dec = false;
1516        while (spareStack == null || !tryResumeSpare(dec)) {
1517            int counts = workerCounts;
1518            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1519                if (!needSpare(counts, maintainParallelism))
1520                    break;
1521                if (blocker.isReleasable())
1522                    return true;
1523                if (tryAddSpare(counts))
1524                    break;
1525            }
1526        }
1527        return false;
1528    }
1529
1530    /**
1531     * Returns true if a spare thread appears to be needed.  If
1532     * maintaining parallelism, returns true when the deficit in
1533     * running threads is more than the surplus of total threads, and
1534     * there is apparently some work to do.  This self-limiting rule
1535     * means that the more threads that have already been added, the
1536     * less parallelism we will tolerate before adding another.
1537     * @param counts current worker counts
1538     * @param maintainParallelism try to maintain parallelism
1539     */
1540    private boolean needSpare(int counts, boolean maintainParallelism) {
1541        int ps = parallelism;
1542        int rc = runningCountOf(counts);
1543        int tc = totalCountOf(counts);
1544        int runningDeficit = ps - rc;
1545        int totalSurplus = tc - ps;
1546        return (tc < maxPoolSize &&
1547                (rc == 0 || totalSurplus < 0 ||
1548                 (maintainParallelism &&
1549                  runningDeficit > totalSurplus &&
1550                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1551    }
1552
1553    /**
1554     * Adds a spare worker if lock available and no more than the
1555     * expected numbers of threads exist.
1556     * @return true if successful
1557     */
1558    private boolean tryAddSpare(int expectedCounts) {
1559        final ReentrantLock lock = this.workerLock;
1560        int expectedRunning = runningCountOf(expectedCounts);
1561        int expectedTotal = totalCountOf(expectedCounts);
1562        boolean success = false;
1563        boolean locked = false;
1564        // confirm counts while locking; CAS after obtaining lock
1565        try {
1566            for (;;) {
1567                int s = workerCounts;
1568                int tc = totalCountOf(s);
1569                int rc = runningCountOf(s);
1570                if (rc > expectedRunning || tc > expectedTotal)
1571                    break;
1572                if (!locked && !(locked = lock.tryLock()))
1573                    break;
1574                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1575                    createAndStartSpare(tc);
1576                    success = true;
1577                    break;
1578                }
1579            }
1580        } finally {
1581            if (locked)
1582                lock.unlock();
1583        }
1584        return success;
1585    }
1586
1587    /**
1588     * Adds the kth spare worker. On entry, pool counts are already
1589     * adjusted to reflect addition.
1590     */
1591    private void createAndStartSpare(int k) {
1592        ForkJoinWorkerThread w = null;
1593        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1594        int len = ws.length;
1595        // Probably, we can place at slot k. If not, find empty slot
1596        if (k < len && ws[k] != null) {
1597            for (k = 0; k < len && ws[k] != null; ++k)
1598                ;
1599        }
1600        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1601            ws[k] = w;
1602            w.start();
1603        }
1604        else
1605            updateWorkerCount(-1); // adjust on failure
1606        signalIdleWorkers();
1607    }
1608
1609    /**
1610     * Suspends calling thread w if there are excess threads.  Called
1611     * only from sync.  Spares are enqueued in a Treiber stack using
1612     * the same WaitQueueNodes as barriers.  They are resumed mainly
1613     * in preJoin, but are also woken on pool events that require all
1614     * threads to check run state.
1615     * @param w the caller
1616     */
1617    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1618        WaitQueueNode node = null;
1619        int s;
1620        while (parallelism < runningCountOf(s = workerCounts)) {
1621            if (node == null)
1622                node = new WaitQueueNode(0, w);
1623            if (casWorkerCounts(s, s-1)) { // representation-dependent
1624                // push onto stack
1625                do;while (!casSpareStack(node.next = spareStack, node));
1626                // block until released by resumeSpare
1627                node.awaitSpareRelease();
1628                return true;
1629            }
1630        }
1631        return false;
1632    }
1633
1634    /**
1635     * Tries to pop and resume a spare thread.
1636     * @param updateCount if true, increment running count on success
1637     * @return true if successful
1638     */
1639    private boolean tryResumeSpare(boolean updateCount) {
1640        WaitQueueNode q;
1641        while ((q = spareStack) != null) {
1642            if (casSpareStack(q, q.next)) {
1643                if (updateCount)
1644                    updateRunningCount(1);
1645                q.signal();
1646                return true;
1647            }
1648        }
1649        return false;
1650    }
1651
1652    /**
1653     * Pops and resumes all spare threads. Same idea as ensureSync.
1654     * @return true if any spares released
1655     */
1656    private boolean resumeAllSpares() {
1657        WaitQueueNode q;
1658        while ( (q = spareStack) != null) {
1659            if (casSpareStack(q, null)) {
1660                do {
1661                    updateRunningCount(1);
1662                    q.signal();
1663                } while ((q = q.next) != null);
1664                return true;
1665            }
1666        }
1667        return false;
1668    }
1669
1670    /**
1671     * Pops and shuts down excessive spare threads. Call only while
1672     * holding lock. This is not guaranteed to eliminate all excess
1673     * threads, only those suspended as spares, which are the ones
1674     * unlikely to be needed in the future.
1675     */
1676    private void trimSpares() {
1677        int surplus = totalCountOf(workerCounts) - parallelism;
1678        WaitQueueNode q;
1679        while (surplus > 0 && (q = spareStack) != null) {
1680            if (casSpareStack(q, null)) {
1681                do {
1682                    updateRunningCount(1);
1683                    ForkJoinWorkerThread w = q.thread;
1684                    if (w != null && surplus > 0 &&
1685                        runningCountOf(workerCounts) > 0 && w.shutdown())
1686                        --surplus;
1687                    q.signal();
1688                } while ((q = q.next) != null);
1689            }
1805          }
1806      }
1807  
1808      /**
1809       * Interface for extending managed parallelism for tasks running
1810 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1811 <     * Method {@code isReleasable} must return true if blocking is not
1812 <     * necessary. Method {@code block} blocks the current thread
1813 <     * if necessary (perhaps internally invoking isReleasable before
1814 <     * actually blocking.).
1810 >     * in {@link ForkJoinPool}s.
1811 >     *
1812 >     * <p>A {@code ManagedBlocker} provides two methods.
1813 >     * Method {@code isReleasable} must return {@code true} if
1814 >     * blocking is not necessary. Method {@code block} blocks the
1815 >     * current thread if necessary (perhaps internally invoking
1816 >     * {@code isReleasable} before actually blocking).
1817 >     *
1818       * <p>For example, here is a ManagedBlocker based on a
1819       * ReentrantLock:
1820 <     * <pre>
1821 <     *   class ManagedLocker implements ManagedBlocker {
1822 <     *     final ReentrantLock lock;
1823 <     *     boolean hasLock = false;
1824 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1825 <     *     public boolean block() {
1826 <     *        if (!hasLock)
1827 <     *           lock.lock();
1828 <     *        return true;
1829 <     *     }
1830 <     *     public boolean isReleasable() {
1831 <     *        return hasLock || (hasLock = lock.tryLock());
1714 <     *     }
1820 >     *  <pre> {@code
1821 >     * class ManagedLocker implements ManagedBlocker {
1822 >     *   final ReentrantLock lock;
1823 >     *   boolean hasLock = false;
1824 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1825 >     *   public boolean block() {
1826 >     *     if (!hasLock)
1827 >     *       lock.lock();
1828 >     *     return true;
1829 >     *   }
1830 >     *   public boolean isReleasable() {
1831 >     *     return hasLock || (hasLock = lock.tryLock());
1832       *   }
1833 <     * </pre>
1833 >     * }}</pre>
1834       */
1835      public static interface ManagedBlocker {
1836          /**
1837           * Possibly blocks the current thread, for example waiting for
1838           * a lock or condition.
1839 <         * @return true if no additional blocking is necessary (i.e.,
1840 <         * if isReleasable would return true)
1839 >         *
1840 >         * @return {@code true} if no additional blocking is necessary
1841 >         * (i.e., if isReleasable would return true)
1842           * @throws InterruptedException if interrupted while waiting
1843 <         * (the method is not required to do so, but is allowed to).
1843 >         * (the method is not required to do so, but is allowed to)
1844           */
1845          boolean block() throws InterruptedException;
1846  
1847          /**
1848 <         * Returns true if blocking is unnecessary.
1848 >         * Returns {@code true} if blocking is unnecessary.
1849           */
1850          boolean isReleasable();
1851      }
1852  
1853      /**
1854       * Blocks in accord with the given blocker.  If the current thread
1855 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1856 <     * spare thread to be activated if necessary to ensure parallelism
1857 <     * while the current thread is blocked.  If
1858 <     * {@code maintainParallelism} is true and the pool supports
1859 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1860 <     * maintain the pool's nominal parallelism. Otherwise if activates
1861 <     * a thread only if necessary to avoid complete starvation. This
1862 <     * option may be preferable when blockages use timeouts, or are
1863 <     * almost always brief.
1864 <     *
1865 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1866 <     * equivalent to
1867 <     * <pre>
1868 <     *   while (!blocker.isReleasable())
1751 <     *      if (blocker.block())
1752 <     *         return;
1753 <     * </pre>
1754 <     * If the caller is a ForkJoinTask, then the pool may first
1755 <     * be expanded to ensure parallelism, and later adjusted.
1855 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1856 >     * arranges for a spare thread to be activated if necessary to
1857 >     * ensure sufficient parallelism while the current thread is blocked.
1858 >     *
1859 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1860 >     * behaviorally equivalent to
1861 >     *  <pre> {@code
1862 >     * while (!blocker.isReleasable())
1863 >     *   if (blocker.block())
1864 >     *     return;
1865 >     * }</pre>
1866 >     *
1867 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1868 >     * first be expanded to ensure parallelism, and later adjusted.
1869       *
1870       * @param blocker the blocker
1758     * @param maintainParallelism if true and supported by this pool,
1759     * attempt to maintain the pool's nominal parallelism; otherwise
1760     * activate a thread only if necessary to avoid complete
1761     * starvation.
1871       * @throws InterruptedException if blocker.block did so
1872       */
1873 <    public static void managedBlock(ManagedBlocker blocker,
1765 <                                    boolean maintainParallelism)
1873 >    public static void managedBlock(ManagedBlocker blocker)
1874          throws InterruptedException {
1875          Thread t = Thread.currentThread();
1876 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1877 <                             ((ForkJoinWorkerThread)t).pool : null);
1878 <        if (!blocker.isReleasable()) {
1879 <            try {
1772 <                if (pool == null ||
1773 <                    !pool.preBlock(blocker, maintainParallelism))
1774 <                    awaitBlocker(blocker);
1775 <            } finally {
1776 <                if (pool != null)
1777 <                    pool.updateRunningCount(1);
1778 <            }
1876 >        if (t instanceof ForkJoinWorkerThread)
1877 >            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1878 >        else {
1879 >            do {} while (!blocker.isReleasable() && !blocker.block());
1880          }
1881      }
1882  
1883 <    private static void awaitBlocker(ManagedBlocker blocker)
1884 <        throws InterruptedException {
1885 <        do;while (!blocker.isReleasable() && !blocker.block());
1785 <    }
1786 <
1787 <    // AbstractExecutorService overrides
1883 >    // AbstractExecutorService overrides.  These rely on undocumented
1884 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1885 >    // implement RunnableFuture.
1886  
1887      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1888 <        return new AdaptedRunnable(runnable, value);
1888 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1889      }
1890  
1891      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1892 <        return new AdaptedCallable(callable);
1892 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1893      }
1894  
1895 +    // Unsafe mechanics
1896 +
1897 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1898 +    private static final long workerCountsOffset =
1899 +        objectFieldOffset("workerCounts", ForkJoinPool.class);
1900 +    private static final long runStateOffset =
1901 +        objectFieldOffset("runState", ForkJoinPool.class);
1902 +    private static final long eventCountOffset =
1903 +        objectFieldOffset("eventCount", ForkJoinPool.class);
1904 +    private static final long eventWaitersOffset =
1905 +        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1906 +    private static final long stealCountOffset =
1907 +        objectFieldOffset("stealCount",ForkJoinPool.class);
1908  
1909 <    // Temporary Unsafe mechanics for preliminary release
1799 <    private static Unsafe getUnsafe() throws Throwable {
1909 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1910          try {
1911 <            return Unsafe.getUnsafe();
1911 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1912 >        } catch (NoSuchFieldException e) {
1913 >            // Convert Exception to corresponding Error
1914 >            NoSuchFieldError error = new NoSuchFieldError(field);
1915 >            error.initCause(e);
1916 >            throw error;
1917 >        }
1918 >    }
1919 >
1920 >    /**
1921 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1922 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1923 >     * into a jdk.
1924 >     *
1925 >     * @return a sun.misc.Unsafe
1926 >     */
1927 >    private static sun.misc.Unsafe getUnsafe() {
1928 >        try {
1929 >            return sun.misc.Unsafe.getUnsafe();
1930          } catch (SecurityException se) {
1931              try {
1932                  return java.security.AccessController.doPrivileged
1933 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1934 <                        public Unsafe run() throws Exception {
1935 <                            return getUnsafePrivileged();
1933 >                    (new java.security
1934 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1935 >                        public sun.misc.Unsafe run() throws Exception {
1936 >                            java.lang.reflect.Field f = sun.misc
1937 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1938 >                            f.setAccessible(true);
1939 >                            return (sun.misc.Unsafe) f.get(null);
1940                          }});
1941              } catch (java.security.PrivilegedActionException e) {
1942 <                throw e.getCause();
1942 >                throw new RuntimeException("Could not initialize intrinsics",
1943 >                                           e.getCause());
1944              }
1945          }
1946      }
1814
1815    private static Unsafe getUnsafePrivileged()
1816            throws NoSuchFieldException, IllegalAccessException {
1817        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1818        f.setAccessible(true);
1819        return (Unsafe) f.get(null);
1820    }
1821
1822    private static long fieldOffset(String fieldName)
1823            throws NoSuchFieldException {
1824        return UNSAFE.objectFieldOffset
1825            (ForkJoinPool.class.getDeclaredField(fieldName));
1826    }
1827
1828    static final Unsafe UNSAFE;
1829    static final long eventCountOffset;
1830    static final long workerCountsOffset;
1831    static final long runControlOffset;
1832    static final long syncStackOffset;
1833    static final long spareStackOffset;
1834
1835    static {
1836        try {
1837            UNSAFE = getUnsafe();
1838            eventCountOffset = fieldOffset("eventCount");
1839            workerCountsOffset = fieldOffset("workerCounts");
1840            runControlOffset = fieldOffset("runControl");
1841            syncStackOffset = fieldOffset("syncStack");
1842            spareStackOffset = fieldOffset("spareStack");
1843        } catch (Throwable e) {
1844            throw new RuntimeException("Could not initialize intrinsics", e);
1845        }
1846    }
1847
1848    private boolean casEventCount(long cmp, long val) {
1849        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1850    }
1851    private boolean casWorkerCounts(int cmp, int val) {
1852        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1853    }
1854    private boolean casRunControl(int cmp, int val) {
1855        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1856    }
1857    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1858        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1859    }
1860    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1861        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1862    }
1947   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines