ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.11 by jsr166, Tue Jul 21 00:15:13 2009 UTC vs.
Revision 1.135 by dl, Sun Oct 28 22:36:01 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.atomic.AtomicInteger;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
29 < * ForkJoinPool provides the entry point for submissions from
30 < * non-ForkJoinTasks, as well as management and monitoring operations.
31 < * Normally a single ForkJoinPool is used for a large number of
32 < * submitted tasks. Otherwise, use would not usually outweigh the
33 < * construction and bookkeeping overhead of creating a large set of
34 < * threads.
28 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 > * A {@code ForkJoinPool} provides the entry point for submissions
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31 > * monitoring operations.
32 > *
33 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34 > * ExecutorService} mainly by virtue of employing
35 > * <em>work-stealing</em>: all threads in the pool attempt to find and
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
46 < * that they provide <em>work-stealing</em>: all threads in the pool
47 < * attempt to find and execute subtasks created by other active tasks
48 < * (eventually blocking if none exist). This makes them efficient when
49 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
50 < * as the mixed execution of some plain Runnable- or Callable- based
51 < * activities along with ForkJoinTasks. When setting
52 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
53 < * use with fine-grained tasks that are never joined. Otherwise, other
54 < * ExecutorService implementations are typically more appropriate
55 < * choices.
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is constructed upon first
47 > * access, or upon usage by any ForkJoinTask that is not explictly
48 > * submitted to a specified pool. Using the common pool normally
49 > * reduces resource usage (its threads are slowly reclaimed during
50 > * periods of non-use, and reinstated upon subsequent use).  The
51 > * common pool is by default constructed with default parameters, but
52 > * these may be controlled by setting any or all of the three
53 > * properties {@code
54 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
55 > * threadFactory, exceptionHandler}}.
56   *
57 < * <p>A ForkJoinPool may be constructed with a given parallelism level
58 < * (target pool size), which it attempts to maintain by dynamically
59 < * adding, suspending, or resuming threads, even if some tasks are
60 < * waiting to join others. However, no such adjustments are performed
61 < * in the face of blocked IO or other unmanaged synchronization. The
62 < * nested {@code ManagedBlocker} interface enables extension of
63 < * the kinds of synchronization accommodated.  The target parallelism
64 < * level may also be changed dynamically ({@code setParallelism})
65 < * and thread construction can be limited using methods
66 < * {@code setMaximumPoolSize} and/or
46 < * {@code setMaintainsParallelism}.
57 > * <p>For applications that require separate or custom pools, a {@code
58 > * ForkJoinPool} may be constructed with a given target parallelism
59 > * level; by default, equal to the number of available processors. The
60 > * pool attempts to maintain enough active (or available) threads by
61 > * dynamically adding, suspending, or resuming internal worker
62 > * threads, even if some tasks are stalled waiting to join
63 > * others. However, no such adjustments are guaranteed in the face of
64 > * blocked IO or other unmanaged synchronization. The nested {@link
65 > * ManagedBlocker} interface enables extension of the kinds of
66 > * synchronization accommodated.
67   *
68   * <p>In addition to execution and lifecycle control methods, this
69   * class provides status check methods (for example
70 < * {@code getStealCount}) that are intended to aid in developing,
70 > * {@link #getStealCount}) that are intended to aid in developing,
71   * tuning, and monitoring fork/join applications. Also, method
72 < * {@code toString} returns indications of pool state in a
72 > * {@link #toString} returns indications of pool state in a
73   * convenient form for informal monitoring.
74   *
75 + * <p> As is the case with other ExecutorServices, there are three
76 + * main task execution methods summarized in the following table.
77 + * These are designed to be used primarily by clients not already
78 + * engaged in fork/join computations in the current pool.  The main
79 + * forms of these methods accept instances of {@code ForkJoinTask},
80 + * but overloaded forms also allow mixed execution of plain {@code
81 + * Runnable}- or {@code Callable}- based activities as well.  However,
82 + * tasks that are already executing in a pool should normally instead
83 + * use the within-computation forms listed in the table unless using
84 + * async event-style tasks that are not usually joined, in which case
85 + * there is little difference among choice of methods.
86 + *
87 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
88 + *  <tr>
89 + *    <td></td>
90 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
91 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
92 + *  </tr>
93 + *  <tr>
94 + *    <td> <b>Arrange async execution</td>
95 + *    <td> {@link #execute(ForkJoinTask)}</td>
96 + *    <td> {@link ForkJoinTask#fork}</td>
97 + *  </tr>
98 + *  <tr>
99 + *    <td> <b>Await and obtain result</td>
100 + *    <td> {@link #invoke(ForkJoinTask)}</td>
101 + *    <td> {@link ForkJoinTask#invoke}</td>
102 + *  </tr>
103 + *  <tr>
104 + *    <td> <b>Arrange exec and obtain Future</td>
105 + *    <td> {@link #submit(ForkJoinTask)}</td>
106 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
107 + *  </tr>
108 + * </table>
109 + *
110   * <p><b>Implementation notes</b>: This implementation restricts the
111   * maximum number of running threads to 32767. Attempts to create
112 < * pools with greater than the maximum result in
113 < * IllegalArgumentExceptions.
112 > * pools with greater than the maximum number result in
113 > * {@code IllegalArgumentException}.
114 > *
115 > * <p>This implementation rejects submitted tasks (that is, by throwing
116 > * {@link RejectedExecutionException}) only when the pool is shut down
117 > * or internal resources have been exhausted.
118 > *
119 > * @since 1.7
120 > * @author Doug Lea
121   */
122   public class ForkJoinPool extends AbstractExecutorService {
123  
124      /*
125 <     * See the extended comments interspersed below for design,
126 <     * rationale, and walkthroughs.
125 >     * Implementation Overview
126 >     *
127 >     * This class and its nested classes provide the main
128 >     * functionality and control for a set of worker threads:
129 >     * Submissions from non-FJ threads enter into submission queues.
130 >     * Workers take these tasks and typically split them into subtasks
131 >     * that may be stolen by other workers.  Preference rules give
132 >     * first priority to processing tasks from their own queues (LIFO
133 >     * or FIFO, depending on mode), then to randomized FIFO steals of
134 >     * tasks in other queues.
135 >     *
136 >     * WorkQueues
137 >     * ==========
138 >     *
139 >     * Most operations occur within work-stealing queues (in nested
140 >     * class WorkQueue).  These are special forms of Deques that
141 >     * support only three of the four possible end-operations -- push,
142 >     * pop, and poll (aka steal), under the further constraints that
143 >     * push and pop are called only from the owning thread (or, as
144 >     * extended here, under a lock), while poll may be called from
145 >     * other threads.  (If you are unfamiliar with them, you probably
146 >     * want to read Herlihy and Shavit's book "The Art of
147 >     * Multiprocessor programming", chapter 16 describing these in
148 >     * more detail before proceeding.)  The main work-stealing queue
149 >     * design is roughly similar to those in the papers "Dynamic
150 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
151 >     * (http://research.sun.com/scalable/pubs/index.html) and
152 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 >     * The main differences ultimately stem from GC requirements that
155 >     * we null out taken slots as soon as we can, to maintain as small
156 >     * a footprint as possible even in programs generating huge
157 >     * numbers of tasks. To accomplish this, we shift the CAS
158 >     * arbitrating pop vs poll (steal) from being on the indices
159 >     * ("base" and "top") to the slots themselves.  So, both a
160 >     * successful pop and poll mainly entail a CAS of a slot from
161 >     * non-null to null.  Because we rely on CASes of references, we
162 >     * do not need tag bits on base or top.  They are simple ints as
163 >     * used in any circular array-based queue (see for example
164 >     * ArrayDeque).  Updates to the indices must still be ordered in a
165 >     * way that guarantees that top == base means the queue is empty,
166 >     * but otherwise may err on the side of possibly making the queue
167 >     * appear nonempty when a push, pop, or poll have not fully
168 >     * committed. Note that this means that the poll operation,
169 >     * considered individually, is not wait-free. One thief cannot
170 >     * successfully continue until another in-progress one (or, if
171 >     * previously empty, a push) completes.  However, in the
172 >     * aggregate, we ensure at least probabilistic non-blockingness.
173 >     * If an attempted steal fails, a thief always chooses a different
174 >     * random victim target to try next. So, in order for one thief to
175 >     * progress, it suffices for any in-progress poll or new push on
176 >     * any empty queue to complete. (This is why we normally use
177 >     * method pollAt and its variants that try once at the apparent
178 >     * base index, else consider alternative actions, rather than
179 >     * method poll.)
180 >     *
181 >     * This approach also enables support of a user mode in which local
182 >     * task processing is in FIFO, not LIFO order, simply by using
183 >     * poll rather than pop.  This can be useful in message-passing
184 >     * frameworks in which tasks are never joined.  However neither
185 >     * mode considers affinities, loads, cache localities, etc, so
186 >     * rarely provide the best possible performance on a given
187 >     * machine, but portably provide good throughput by averaging over
188 >     * these factors.  (Further, even if we did try to use such
189 >     * information, we do not usually have a basis for exploiting it.
190 >     * For example, some sets of tasks profit from cache affinities,
191 >     * but others are harmed by cache pollution effects.)
192 >     *
193 >     * WorkQueues are also used in a similar way for tasks submitted
194 >     * to the pool. We cannot mix these tasks in the same queues used
195 >     * for work-stealing (this would contaminate lifo/fifo
196 >     * processing). Instead, we loosely associate submission queues
197 >     * with submitting threads, using a form of hashing.  The
198 >     * ThreadLocal Submitter class contains a value initially used as
199 >     * a hash code for choosing existing queues, but may be randomly
200 >     * repositioned upon contention with other submitters.  In
201 >     * essence, submitters act like workers except that they never
202 >     * take tasks, and they are multiplexed on to a finite number of
203 >     * shared work queues. However, classes are set up so that future
204 >     * extensions could allow submitters to optionally help perform
205 >     * tasks as well. Insertion of tasks in shared mode requires a
206 >     * lock (mainly to protect in the case of resizing) but we use
207 >     * only a simple spinlock (using bits in field runState), because
208 >     * submitters encountering a busy queue move on to try or create
209 >     * other queues -- they block only when creating and registering
210 >     * new queues.
211 >     *
212 >     * Management
213 >     * ==========
214 >     *
215 >     * The main throughput advantages of work-stealing stem from
216 >     * decentralized control -- workers mostly take tasks from
217 >     * themselves or each other. We cannot negate this in the
218 >     * implementation of other management responsibilities. The main
219 >     * tactic for avoiding bottlenecks is packing nearly all
220 >     * essentially atomic control state into two volatile variables
221 >     * that are by far most often read (not written) as status and
222 >     * consistency checks.
223 >     *
224 >     * Field "ctl" contains 64 bits holding all the information needed
225 >     * to atomically decide to add, inactivate, enqueue (on an event
226 >     * queue), dequeue, and/or re-activate workers.  To enable this
227 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228 >     * far in excess of normal operating range) to allow ids, counts,
229 >     * and their negations (used for thresholding) to fit into 16bit
230 >     * fields.
231 >     *
232 >     * Field "runState" contains 32 bits needed to register and
233 >     * deregister WorkQueues, as well as to enable shutdown. It is
234 >     * only modified under a lock (normally briefly held, but
235 >     * occasionally protecting allocations and resizings) but even
236 >     * when locked remains available to check consistency.
237 >     *
238 >     * Recording WorkQueues.  WorkQueues are recorded in the
239 >     * "workQueues" array that is created upon pool construction and
240 >     * expanded if necessary.  Updates to the array while recording
241 >     * new workers and unrecording terminated ones are protected from
242 >     * each other by a lock but the array is otherwise concurrently
243 >     * readable, and accessed directly.  To simplify index-based
244 >     * operations, the array size is always a power of two, and all
245 >     * readers must tolerate null slots. Shared (submission) queues
246 >     * are at even indices, worker queues at odd indices. Grouping
247 >     * them together in this way simplifies and speeds up task
248 >     * scanning.
249 >     *
250 >     * All worker thread creation is on-demand, triggered by task
251 >     * submissions, replacement of terminated workers, and/or
252 >     * compensation for blocked workers. However, all other support
253 >     * code is set up to work with other policies.  To ensure that we
254 >     * do not hold on to worker references that would prevent GC, ALL
255 >     * accesses to workQueues are via indices into the workQueues
256 >     * array (which is one source of some of the messy code
257 >     * constructions here). In essence, the workQueues array serves as
258 >     * a weak reference mechanism. Thus for example the wait queue
259 >     * field of ctl stores indices, not references.  Access to the
260 >     * workQueues in associated methods (for example signalWork) must
261 >     * both index-check and null-check the IDs. All such accesses
262 >     * ignore bad IDs by returning out early from what they are doing,
263 >     * since this can only be associated with termination, in which
264 >     * case it is OK to give up.  All uses of the workQueues array
265 >     * also check that it is non-null (even if previously
266 >     * non-null). This allows nulling during termination, which is
267 >     * currently not necessary, but remains an option for
268 >     * resource-revocation-based shutdown schemes. It also helps
269 >     * reduce JIT issuance of uncommon-trap code, which tends to
270 >     * unnecessarily complicate control flow in some methods.
271 >     *
272 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
273 >     * let workers spin indefinitely scanning for tasks when none can
274 >     * be found immediately, and we cannot start/resume workers unless
275 >     * there appear to be tasks available.  On the other hand, we must
276 >     * quickly prod them into action when new tasks are submitted or
277 >     * generated. In many usages, ramp-up time to activate workers is
278 >     * the main limiting factor in overall performance (this is
279 >     * compounded at program start-up by JIT compilation and
280 >     * allocation). So we try to streamline this as much as possible.
281 >     * We park/unpark workers after placing in an event wait queue
282 >     * when they cannot find work. This "queue" is actually a simple
283 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
284 >     * counter value (that reflects the number of times a worker has
285 >     * been inactivated) to avoid ABA effects (we need only as many
286 >     * version numbers as worker threads). Successors are held in
287 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
288 >     * races, mainly that a task-producing thread can miss seeing (and
289 >     * signalling) another thread that gave up looking for work but
290 >     * has not yet entered the wait queue. We solve this by requiring
291 >     * a full sweep of all workers (via repeated calls to method
292 >     * scan()) both before and after a newly waiting worker is added
293 >     * to the wait queue. During a rescan, the worker might release
294 >     * some other queued worker rather than itself, which has the same
295 >     * net effect. Because enqueued workers may actually be rescanning
296 >     * rather than waiting, we set and clear the "parker" field of
297 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
298 >     * requires a secondary recheck to avoid missed signals.)  Note
299 >     * the unusual conventions about Thread.interrupts surrounding
300 >     * parking and other blocking: Because interrupts are used solely
301 >     * to alert threads to check termination, which is checked anyway
302 >     * upon blocking, we clear status (using Thread.interrupted)
303 >     * before any call to park, so that park does not immediately
304 >     * return due to status being set via some other unrelated call to
305 >     * interrupt in user code.
306 >     *
307 >     * Signalling.  We create or wake up workers only when there
308 >     * appears to be at least one task they might be able to find and
309 >     * execute.  When a submission is added or another worker adds a
310 >     * task to a queue that previously had fewer than two tasks, they
311 >     * signal waiting workers (or trigger creation of new ones if
312 >     * fewer than the given parallelism level -- see signalWork).
313 >     * These primary signals are buttressed by signals during rescans;
314 >     * together these cover the signals needed in cases when more
315 >     * tasks are pushed but untaken, and improve performance compared
316 >     * to having one thread wake up all workers.
317 >     *
318 >     * Trimming workers. To release resources after periods of lack of
319 >     * use, a worker starting to wait when the pool is quiescent will
320 >     * time out and terminate if the pool has remained quiescent for a
321 >     * given period -- a short period if there are more threads than
322 >     * parallelism, longer as the number of threads decreases. This
323 >     * will slowly propagate, eventually terminating all workers after
324 >     * periods of non-use.
325 >     *
326 >     * Shutdown and Termination. A call to shutdownNow atomically sets
327 >     * a runState bit and then (non-atomically) sets each worker's
328 >     * runState status, cancels all unprocessed tasks, and wakes up
329 >     * all waiting workers.  Detecting whether termination should
330 >     * commence after a non-abrupt shutdown() call requires more work
331 >     * and bookkeeping. We need consensus about quiescence (i.e., that
332 >     * there is no more work). The active count provides a primary
333 >     * indication but non-abrupt shutdown still requires a rechecking
334 >     * scan for any workers that are inactive but not queued.
335 >     *
336 >     * Joining Tasks
337 >     * =============
338 >     *
339 >     * Any of several actions may be taken when one worker is waiting
340 >     * to join a task stolen (or always held) by another.  Because we
341 >     * are multiplexing many tasks on to a pool of workers, we can't
342 >     * just let them block (as in Thread.join).  We also cannot just
343 >     * reassign the joiner's run-time stack with another and replace
344 >     * it later, which would be a form of "continuation", that even if
345 >     * possible is not necessarily a good idea since we sometimes need
346 >     * both an unblocked task and its continuation to progress.
347 >     * Instead we combine two tactics:
348 >     *
349 >     *   Helping: Arranging for the joiner to execute some task that it
350 >     *      would be running if the steal had not occurred.
351 >     *
352 >     *   Compensating: Unless there are already enough live threads,
353 >     *      method tryCompensate() may create or re-activate a spare
354 >     *      thread to compensate for blocked joiners until they unblock.
355 >     *
356 >     * A third form (implemented in tryRemoveAndExec and
357 >     * tryPollForAndExec) amounts to helping a hypothetical
358 >     * compensator: If we can readily tell that a possible action of a
359 >     * compensator is to steal and execute the task being joined, the
360 >     * joining thread can do so directly, without the need for a
361 >     * compensation thread (although at the expense of larger run-time
362 >     * stacks, but the tradeoff is typically worthwhile).
363 >     *
364 >     * The ManagedBlocker extension API can't use helping so relies
365 >     * only on compensation in method awaitBlocker.
366 >     *
367 >     * The algorithm in tryHelpStealer entails a form of "linear"
368 >     * helping: Each worker records (in field currentSteal) the most
369 >     * recent task it stole from some other worker. Plus, it records
370 >     * (in field currentJoin) the task it is currently actively
371 >     * joining. Method tryHelpStealer uses these markers to try to
372 >     * find a worker to help (i.e., steal back a task from and execute
373 >     * it) that could hasten completion of the actively joined task.
374 >     * In essence, the joiner executes a task that would be on its own
375 >     * local deque had the to-be-joined task not been stolen. This may
376 >     * be seen as a conservative variant of the approach in Wagner &
377 >     * Calder "Leapfrogging: a portable technique for implementing
378 >     * efficient futures" SIGPLAN Notices, 1993
379 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
380 >     * that: (1) We only maintain dependency links across workers upon
381 >     * steals, rather than use per-task bookkeeping.  This sometimes
382 >     * requires a linear scan of workQueues array to locate stealers,
383 >     * but often doesn't because stealers leave hints (that may become
384 >     * stale/wrong) of where to locate them.  A stealHint is only a
385 >     * hint because a worker might have had multiple steals and the
386 >     * hint records only one of them (usually the most current).
387 >     * Hinting isolates cost to when it is needed, rather than adding
388 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
389 >     * and potentially cyclic mutual steals.  (3) It is intentionally
390 >     * racy: field currentJoin is updated only while actively joining,
391 >     * which means that we miss links in the chain during long-lived
392 >     * tasks, GC stalls etc (which is OK since blocking in such cases
393 >     * is usually a good idea).  (4) We bound the number of attempts
394 >     * to find work (see MAX_HELP) and fall back to suspending the
395 >     * worker and if necessary replacing it with another.
396 >     *
397 >     * It is impossible to keep exactly the target parallelism number
398 >     * of threads running at any given time.  Determining the
399 >     * existence of conservatively safe helping targets, the
400 >     * availability of already-created spares, and the apparent need
401 >     * to create new spares are all racy, so we rely on multiple
402 >     * retries of each.  Compensation in the apparent absence of
403 >     * helping opportunities is challenging to control on JVMs, where
404 >     * GC and other activities can stall progress of tasks that in
405 >     * turn stall out many other dependent tasks, without us being
406 >     * able to determine whether they will ever require compensation.
407 >     * Even though work-stealing otherwise encounters little
408 >     * degradation in the presence of more threads than cores,
409 >     * aggressively adding new threads in such cases entails risk of
410 >     * unwanted positive feedback control loops in which more threads
411 >     * cause more dependent stalls (as well as delayed progress of
412 >     * unblocked threads to the point that we know they are available)
413 >     * leading to more situations requiring more threads, and so
414 >     * on. This aspect of control can be seen as an (analytically
415 >     * intractable) game with an opponent that may choose the worst
416 >     * (for us) active thread to stall at any time.  We take several
417 >     * precautions to bound losses (and thus bound gains), mainly in
418 >     * methods tryCompensate and awaitJoin: (1) We only try
419 >     * compensation after attempting enough helping steps (measured
420 >     * via counting and timing) that we have already consumed the
421 >     * estimated cost of creating and activating a new thread.  (2) We
422 >     * allow up to 50% of threads to be blocked before initially
423 >     * adding any others, and unless completely saturated, check that
424 >     * some work is available for a new worker before adding. Also, we
425 >     * create up to only 50% more threads until entering a mode that
426 >     * only adds a thread if all others are possibly blocked.  All
427 >     * together, this means that we might be half as fast to react,
428 >     * and create half as many threads as possible in the ideal case,
429 >     * but present vastly fewer anomalies in all other cases compared
430 >     * to both more aggressive and more conservative alternatives.
431 >     *
432 >     * Style notes: There is a lot of representation-level coupling
433 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
434 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
435 >     * managed by ForkJoinPool, so are directly accessed.  There is
436 >     * little point trying to reduce this, since any associated future
437 >     * changes in representations will need to be accompanied by
438 >     * algorithmic changes anyway. Several methods intrinsically
439 >     * sprawl because they must accumulate sets of consistent reads of
440 >     * volatiles held in local variables.  Methods signalWork() and
441 >     * scan() are the main bottlenecks, so are especially heavily
442 >     * micro-optimized/mangled.  There are lots of inline assignments
443 >     * (of form "while ((local = field) != 0)") which are usually the
444 >     * simplest way to ensure the required read orderings (which are
445 >     * sometimes critical). This leads to a "C"-like style of listing
446 >     * declarations of these locals at the heads of methods or blocks.
447 >     * There are several occurrences of the unusual "do {} while
448 >     * (!cas...)"  which is the simplest way to force an update of a
449 >     * CAS'ed variable. There are also other coding oddities that help
450 >     * some methods perform reasonably even when interpreted (not
451 >     * compiled).
452 >     *
453 >     * The order of declarations in this file is:
454 >     * (1) Static utility functions
455 >     * (2) Nested (static) classes
456 >     * (3) Static fields
457 >     * (4) Fields, along with constants used when unpacking some of them
458 >     * (5) Internal control methods
459 >     * (6) Callbacks and other support for ForkJoinTask methods
460 >     * (7) Exported methods
461 >     * (8) Static block initializing statics in minimally dependent order
462       */
463  
464 <    /** Mask for packing and unpacking shorts */
465 <    private static final int  shortMask = 0xffff;
464 >    // Static utilities
465 >
466 >    /**
467 >     * If there is a security manager, makes sure caller has
468 >     * permission to modify threads.
469 >     */
470 >    private static void checkPermission() {
471 >        SecurityManager security = System.getSecurityManager();
472 >        if (security != null)
473 >            security.checkPermission(modifyThreadPermission);
474 >    }
475  
476 <    /** Max pool size -- must be a power of two minus 1 */
71 <    private static final int MAX_THREADS =  0x7FFF;
476 >    // Nested classes
477  
478      /**
479 <     * Factory for creating new ForkJoinWorkerThreads.  A
480 <     * ForkJoinWorkerThreadFactory must be defined and used for
481 <     * ForkJoinWorkerThread subclasses that extend base functionality
482 <     * or initialize threads with different contexts.
479 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
480 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
481 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
482 >     * functionality or initialize threads with different contexts.
483       */
484      public static interface ForkJoinWorkerThreadFactory {
485          /**
486           * Returns a new worker thread operating in the given pool.
487           *
488           * @param pool the pool this thread works in
489 <         * @throws NullPointerException if pool is null
489 >         * @throws NullPointerException if the pool is null
490           */
491          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
492      }
493  
494      /**
495 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
495 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
496       * new ForkJoinWorkerThread.
497       */
498 <    static class  DefaultForkJoinWorkerThreadFactory
498 >    static class DefaultForkJoinWorkerThreadFactory
499          implements ForkJoinWorkerThreadFactory {
500          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
501 <            try {
502 <                return new ForkJoinWorkerThread(pool);
503 <            } catch (OutOfMemoryError oom)  {
501 >            return new ForkJoinWorkerThread(pool);
502 >        }
503 >    }
504 >
505 >    /**
506 >     * A simple non-reentrant lock used for exclusion when managing
507 >     * queues and workers. We use a custom lock so that we can readily
508 >     * probe lock state in constructions that check among alternative
509 >     * actions. The lock is normally only very briefly held, and
510 >     * sometimes treated as a spinlock, but other usages block to
511 >     * reduce overall contention in those cases where locked code
512 >     * bodies perform allocation/resizing.
513 >     */
514 >    static final class Mutex extends AbstractQueuedSynchronizer {
515 >        public final boolean tryAcquire(int ignore) {
516 >            return compareAndSetState(0, 1);
517 >        }
518 >        public final boolean tryRelease(int ignore) {
519 >            setState(0);
520 >            return true;
521 >        }
522 >        public final void lock() { acquire(0); }
523 >        public final void unlock() { release(0); }
524 >        public final boolean isHeldExclusively() { return getState() == 1; }
525 >        public final Condition newCondition() { return new ConditionObject(); }
526 >    }
527 >
528 >    /**
529 >     * Class for artificial tasks that are used to replace the target
530 >     * of local joins if they are removed from an interior queue slot
531 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
532 >     * actually do anything beyond having a unique identity.
533 >     */
534 >    static final class EmptyTask extends ForkJoinTask<Void> {
535 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
536 >        public final Void getRawResult() { return null; }
537 >        public final void setRawResult(Void x) {}
538 >        public final boolean exec() { return true; }
539 >    }
540 >
541 >    /**
542 >     * Queues supporting work-stealing as well as external task
543 >     * submission. See above for main rationale and algorithms.
544 >     * Implementation relies heavily on "Unsafe" intrinsics
545 >     * and selective use of "volatile":
546 >     *
547 >     * Field "base" is the index (mod array.length) of the least valid
548 >     * queue slot, which is always the next position to steal (poll)
549 >     * from if nonempty. Reads and writes require volatile orderings
550 >     * but not CAS, because updates are only performed after slot
551 >     * CASes.
552 >     *
553 >     * Field "top" is the index (mod array.length) of the next queue
554 >     * slot to push to or pop from. It is written only by owner thread
555 >     * for push, or under lock for trySharedPush, and accessed by
556 >     * other threads only after reading (volatile) base.  Both top and
557 >     * base are allowed to wrap around on overflow, but (top - base)
558 >     * (or more commonly -(base - top) to force volatile read of base
559 >     * before top) still estimates size.
560 >     *
561 >     * The array slots are read and written using the emulation of
562 >     * volatiles/atomics provided by Unsafe. Insertions must in
563 >     * general use putOrderedObject as a form of releasing store to
564 >     * ensure that all writes to the task object are ordered before
565 >     * its publication in the queue. (Although we can avoid one case
566 >     * of this when locked in trySharedPush.) All removals entail a
567 >     * CAS to null.  The array is always a power of two. To ensure
568 >     * safety of Unsafe array operations, all accesses perform
569 >     * explicit null checks and implicit bounds checks via
570 >     * power-of-two masking.
571 >     *
572 >     * In addition to basic queuing support, this class contains
573 >     * fields described elsewhere to control execution. It turns out
574 >     * to work better memory-layout-wise to include them in this
575 >     * class rather than a separate class.
576 >     *
577 >     * Performance on most platforms is very sensitive to placement of
578 >     * instances of both WorkQueues and their arrays -- we absolutely
579 >     * do not want multiple WorkQueue instances or multiple queue
580 >     * arrays sharing cache lines. (It would be best for queue objects
581 >     * and their arrays to share, but there is nothing available to
582 >     * help arrange that).  Unfortunately, because they are recorded
583 >     * in a common array, WorkQueue instances are often moved to be
584 >     * adjacent by garbage collectors. To reduce impact, we use field
585 >     * padding that works OK on common platforms; this effectively
586 >     * trades off slightly slower average field access for the sake of
587 >     * avoiding really bad worst-case access. (Until better JVM
588 >     * support is in place, this padding is dependent on transient
589 >     * properties of JVM field layout rules.)  We also take care in
590 >     * allocating, sizing and resizing the array. Non-shared queue
591 >     * arrays are initialized (via method growArray) by workers before
592 >     * use. Others are allocated on first use.
593 >     */
594 >    static final class WorkQueue {
595 >        /**
596 >         * Capacity of work-stealing queue array upon initialization.
597 >         * Must be a power of two; at least 4, but should be larger to
598 >         * reduce or eliminate cacheline sharing among queues.
599 >         * Currently, it is much larger, as a partial workaround for
600 >         * the fact that JVMs often place arrays in locations that
601 >         * share GC bookkeeping (especially cardmarks) such that
602 >         * per-write accesses encounter serious memory contention.
603 >         */
604 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
605 >
606 >        /**
607 >         * Maximum size for queue arrays. Must be a power of two less
608 >         * than or equal to 1 << (31 - width of array entry) to ensure
609 >         * lack of wraparound of index calculations, but defined to a
610 >         * value a bit less than this to help users trap runaway
611 >         * programs before saturating systems.
612 >         */
613 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
614 >
615 >        volatile long totalSteals; // cumulative number of steals
616 >        int seed;                  // for random scanning; initialize nonzero
617 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
618 >        int nextWait;              // encoded record of next event waiter
619 >        int rescans;               // remaining scans until block
620 >        int nsteals;               // top-level task executions since last idle
621 >        final int mode;            // lifo, fifo, or shared
622 >        int poolIndex;             // index of this queue in pool (or 0)
623 >        int stealHint;             // index of most recent known stealer
624 >        volatile int runState;     // 1: locked, -1: terminate; else 0
625 >        volatile int base;         // index of next slot for poll
626 >        int top;                   // index of next slot for push
627 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
628 >        final ForkJoinPool pool;   // the containing pool (may be null)
629 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
630 >        volatile Thread parker;    // == owner during call to park; else null
631 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
632 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
633 >        // Heuristic padding to ameliorate unfortunate memory placements
634 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
635 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
636 >
637 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
638 >            this.mode = mode;
639 >            this.pool = pool;
640 >            this.owner = owner;
641 >            // Place indices in the center of array (that is not yet allocated)
642 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
643 >        }
644 >
645 >        /**
646 >         * Returns the approximate number of tasks in the queue.
647 >         */
648 >        final int queueSize() {
649 >            int n = base - top;       // non-owner callers must read base first
650 >            return (n >= 0) ? 0 : -n; // ignore transient negative
651 >        }
652 >
653 >        /**
654 >         * Provides a more accurate estimate of whether this queue has
655 >         * any tasks than does queueSize, by checking whether a
656 >         * near-empty queue has at least one unclaimed task.
657 >         */
658 >        final boolean isEmpty() {
659 >            ForkJoinTask<?>[] a; int m, s;
660 >            int n = base - (s = top);
661 >            return (n >= 0 ||
662 >                    (n == -1 &&
663 >                     ((a = array) == null ||
664 >                      (m = a.length - 1) < 0 ||
665 >                      U.getObjectVolatile
666 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
667 >        }
668 >
669 >        /**
670 >         * Pushes a task. Call only by owner in unshared queues.
671 >         *
672 >         * @param task the task. Caller must ensure non-null.
673 >         * @throw RejectedExecutionException if array cannot be resized
674 >         */
675 >        final void push(ForkJoinTask<?> task) {
676 >            ForkJoinTask<?>[] a; ForkJoinPool p;
677 >            int s = top, m, n;
678 >            if ((a = array) != null) {    // ignore if queue removed
679 >                U.putOrderedObject
680 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
681 >                if ((n = (top = s + 1) - base) <= 2) {
682 >                    if ((p = pool) != null)
683 >                        p.signalWork();
684 >                }
685 >                else if (n >= m)
686 >                    growArray(true);
687 >            }
688 >        }
689 >
690 >        /**
691 >         * Pushes a task if lock is free and array is either big
692 >         * enough or can be resized to be big enough.
693 >         *
694 >         * @param task the task. Caller must ensure non-null.
695 >         * @return true if submitted
696 >         */
697 >        final boolean trySharedPush(ForkJoinTask<?> task) {
698 >            boolean submitted = false;
699 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
700 >                ForkJoinTask<?>[] a = array;
701 >                int s = top;
702 >                try {
703 >                    if ((a != null && a.length > s + 1 - base) ||
704 >                        (a = growArray(false)) != null) { // must presize
705 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
706 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
707 >                        top = s + 1;
708 >                        submitted = true;
709 >                    }
710 >                } finally {
711 >                    runState = 0;                         // unlock
712 >                }
713 >            }
714 >            return submitted;
715 >        }
716 >
717 >        /**
718 >         * Takes next task, if one exists, in LIFO order.  Call only
719 >         * by owner in unshared queues. (We do not have a shared
720 >         * version of this method because it is never needed.)
721 >         */
722 >        final ForkJoinTask<?> pop() {
723 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
724 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
725 >                for (int s; (s = top - 1) - base >= 0;) {
726 >                    long j = ((m & s) << ASHIFT) + ABASE;
727 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
728 >                        break;
729 >                    if (U.compareAndSwapObject(a, j, t, null)) {
730 >                        top = s;
731 >                        return t;
732 >                    }
733 >                }
734 >            }
735 >            return null;
736 >        }
737 >
738 >        /**
739 >         * Takes a task in FIFO order if b is base of queue and a task
740 >         * can be claimed without contention. Specialized versions
741 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
742 >         */
743 >        final ForkJoinTask<?> pollAt(int b) {
744 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
745 >            if ((a = array) != null) {
746 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
747 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
748 >                    base == b &&
749 >                    U.compareAndSwapObject(a, j, t, null)) {
750 >                    base = b + 1;
751 >                    return t;
752 >                }
753 >            }
754 >            return null;
755 >        }
756 >
757 >        /**
758 >         * Takes next task, if one exists, in FIFO order.
759 >         */
760 >        final ForkJoinTask<?> poll() {
761 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
762 >            while ((b = base) - top < 0 && (a = array) != null) {
763 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
764 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
765 >                if (t != null) {
766 >                    if (base == b &&
767 >                        U.compareAndSwapObject(a, j, t, null)) {
768 >                        base = b + 1;
769 >                        return t;
770 >                    }
771 >                }
772 >                else if (base == b) {
773 >                    if (b + 1 == top)
774 >                        break;
775 >                    Thread.yield(); // wait for lagging update
776 >                }
777 >            }
778 >            return null;
779 >        }
780 >
781 >        /**
782 >         * Takes next task, if one exists, in order specified by mode.
783 >         */
784 >        final ForkJoinTask<?> nextLocalTask() {
785 >            return mode == 0 ? pop() : poll();
786 >        }
787 >
788 >        /**
789 >         * Returns next task, if one exists, in order specified by mode.
790 >         */
791 >        final ForkJoinTask<?> peek() {
792 >            ForkJoinTask<?>[] a = array; int m;
793 >            if (a == null || (m = a.length - 1) < 0)
794                  return null;
795 +            int i = mode == 0 ? top - 1 : base;
796 +            int j = ((i & m) << ASHIFT) + ABASE;
797 +            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
798 +        }
799 +
800 +        /**
801 +         * Pops the given task only if it is at the current top.
802 +         */
803 +        final boolean tryUnpush(ForkJoinTask<?> t) {
804 +            ForkJoinTask<?>[] a; int s;
805 +            if ((a = array) != null && (s = top) != base &&
806 +                U.compareAndSwapObject
807 +                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
808 +                top = s;
809 +                return true;
810              }
811 +            return false;
812 +        }
813 +
814 +        /**
815 +         * Version of tryUnpush for shared queues; called by non-FJ
816 +         * submitters. Conservatively fails to unpush if all workers
817 +         * are active unless there are multiple tasks in queue.
818 +         */
819 +        final boolean trySharedUnpush(ForkJoinTask<?> task, ForkJoinPool p) {
820 +            boolean success = false;
821 +            if (task != null && top != base && runState == 0 &&
822 +                U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
823 +                try {
824 +                    ForkJoinTask<?>[] a; int n, s;
825 +                    if ((a = array) != null && (n = (s = top) - base) > 0 &&
826 +                        (n > 1 || p == null || (int)(p.ctl >> AC_SHIFT) < 0)) {
827 +                        int j = (((a.length - 1) & --s) << ASHIFT) + ABASE;
828 +                        if (U.getObjectVolatile(a, j) == task &&
829 +                            U.compareAndSwapObject(a, j, task, null)) {
830 +                            top = s;
831 +                            success = true;
832 +                        }
833 +                    }
834 +                } finally {
835 +                    runState = 0;                         // unlock
836 +                }
837 +            }
838 +            return success;
839 +        }
840 +
841 +        /**
842 +         * Polls the given task only if it is at the current base.
843 +         */
844 +        final boolean pollFor(ForkJoinTask<?> task) {
845 +            ForkJoinTask<?>[] a; int b;
846 +            if ((b = base) - top < 0 && (a = array) != null) {
847 +                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
848 +                if (U.getObjectVolatile(a, j) == task && base == b &&
849 +                    U.compareAndSwapObject(a, j, task, null)) {
850 +                    base = b + 1;
851 +                    return true;
852 +                }
853 +            }
854 +            return false;
855 +        }
856 +
857 +        /**
858 +         * Initializes or doubles the capacity of array. Call either
859 +         * by owner or with lock held -- it is OK for base, but not
860 +         * top, to move while resizings are in progress.
861 +         *
862 +         * @param rejectOnFailure if true, throw exception if capacity
863 +         * exceeded (relayed ultimately to user); else return null.
864 +         */
865 +        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
866 +            ForkJoinTask<?>[] oldA = array;
867 +            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
868 +            if (size <= MAXIMUM_QUEUE_CAPACITY) {
869 +                int oldMask, t, b;
870 +                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
871 +                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
872 +                    (t = top) - (b = base) > 0) {
873 +                    int mask = size - 1;
874 +                    do {
875 +                        ForkJoinTask<?> x;
876 +                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
877 +                        int j    = ((b &    mask) << ASHIFT) + ABASE;
878 +                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
879 +                        if (x != null &&
880 +                            U.compareAndSwapObject(oldA, oldj, x, null))
881 +                            U.putObjectVolatile(a, j, x);
882 +                    } while (++b != t);
883 +                }
884 +                return a;
885 +            }
886 +            else if (!rejectOnFailure)
887 +                return null;
888 +            else
889 +                throw new RejectedExecutionException("Queue capacity exceeded");
890 +        }
891 +
892 +        /**
893 +         * Removes and cancels all known tasks, ignoring any exceptions.
894 +         */
895 +        final void cancelAll() {
896 +            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
897 +            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
898 +            for (ForkJoinTask<?> t; (t = poll()) != null; )
899 +                ForkJoinTask.cancelIgnoringExceptions(t);
900 +        }
901 +
902 +        /**
903 +         * Computes next value for random probes.  Scans don't require
904 +         * a very high quality generator, but also not a crummy one.
905 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
906 +         * This is manually inlined in its usages in ForkJoinPool to
907 +         * avoid writes inside busy scan loops.
908 +         */
909 +        final int nextSeed() {
910 +            int r = seed;
911 +            r ^= r << 13;
912 +            r ^= r >>> 17;
913 +            return seed = r ^= r << 5;
914 +        }
915 +
916 +        // Execution methods
917 +
918 +        /**
919 +         * Pops and runs tasks until empty.
920 +         */
921 +        private void popAndExecAll() {
922 +            // A bit faster than repeated pop calls
923 +            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
924 +            while ((a = array) != null && (m = a.length - 1) >= 0 &&
925 +                   (s = top - 1) - base >= 0 &&
926 +                   (t = ((ForkJoinTask<?>)
927 +                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
928 +                   != null) {
929 +                if (U.compareAndSwapObject(a, j, t, null)) {
930 +                    top = s;
931 +                    t.doExec();
932 +                }
933 +            }
934 +        }
935 +
936 +        /**
937 +         * Polls and runs tasks until empty.
938 +         */
939 +        private void pollAndExecAll() {
940 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
941 +                t.doExec();
942 +        }
943 +
944 +        /**
945 +         * If present, removes from queue and executes the given task, or
946 +         * any other cancelled task. Returns (true) immediately on any CAS
947 +         * or consistency check failure so caller can retry.
948 +         *
949 +         * @return 0 if no progress can be made, else positive
950 +         * (this unusual convention simplifies use with tryHelpStealer.)
951 +         */
952 +        final int tryRemoveAndExec(ForkJoinTask<?> task) {
953 +            int stat = 1;
954 +            boolean removed = false, empty = true;
955 +            ForkJoinTask<?>[] a; int m, s, b, n;
956 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
957 +                (n = (s = top) - (b = base)) > 0) {
958 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
959 +                    int j = ((--s & m) << ASHIFT) + ABASE;
960 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
961 +                    if (t == null)                    // inconsistent length
962 +                        break;
963 +                    else if (t == task) {
964 +                        if (s + 1 == top) {           // pop
965 +                            if (!U.compareAndSwapObject(a, j, task, null))
966 +                                break;
967 +                            top = s;
968 +                            removed = true;
969 +                        }
970 +                        else if (base == b)           // replace with proxy
971 +                            removed = U.compareAndSwapObject(a, j, task,
972 +                                                             new EmptyTask());
973 +                        break;
974 +                    }
975 +                    else if (t.status >= 0)
976 +                        empty = false;
977 +                    else if (s + 1 == top) {          // pop and throw away
978 +                        if (U.compareAndSwapObject(a, j, t, null))
979 +                            top = s;
980 +                        break;
981 +                    }
982 +                    if (--n == 0) {
983 +                        if (!empty && base == b)
984 +                            stat = 0;
985 +                        break;
986 +                    }
987 +                }
988 +            }
989 +            if (removed)
990 +                task.doExec();
991 +            return stat;
992 +        }
993 +
994 +        /**
995 +         * Executes a top-level task and any local tasks remaining
996 +         * after execution.
997 +         */
998 +        final void runTask(ForkJoinTask<?> t) {
999 +            if (t != null) {
1000 +                currentSteal = t;
1001 +                t.doExec();
1002 +                if (top != base) {       // process remaining local tasks
1003 +                    if (mode == 0)
1004 +                        popAndExecAll();
1005 +                    else
1006 +                        pollAndExecAll();
1007 +                }
1008 +                ++nsteals;
1009 +                currentSteal = null;
1010 +            }
1011 +        }
1012 +
1013 +        /**
1014 +         * Executes a non-top-level (stolen) task.
1015 +         */
1016 +        final void runSubtask(ForkJoinTask<?> t) {
1017 +            if (t != null) {
1018 +                ForkJoinTask<?> ps = currentSteal;
1019 +                currentSteal = t;
1020 +                t.doExec();
1021 +                currentSteal = ps;
1022 +            }
1023 +        }
1024 +
1025 +        /**
1026 +         * Returns true if owned and not known to be blocked.
1027 +         */
1028 +        final boolean isApparentlyUnblocked() {
1029 +            Thread wt; Thread.State s;
1030 +            return (eventCount >= 0 &&
1031 +                    (wt = owner) != null &&
1032 +                    (s = wt.getState()) != Thread.State.BLOCKED &&
1033 +                    s != Thread.State.WAITING &&
1034 +                    s != Thread.State.TIMED_WAITING);
1035 +        }
1036 +
1037 +        /**
1038 +         * If this owned and is not already interrupted, try to
1039 +         * interrupt and/or unpark, ignoring exceptions.
1040 +         */
1041 +        final void interruptOwner() {
1042 +            Thread wt, p;
1043 +            if ((wt = owner) != null && !wt.isInterrupted()) {
1044 +                try {
1045 +                    wt.interrupt();
1046 +                } catch (SecurityException ignore) {
1047 +                }
1048 +            }
1049 +            if ((p = parker) != null)
1050 +                U.unpark(p);
1051 +        }
1052 +
1053 +        // Unsafe mechanics
1054 +        private static final sun.misc.Unsafe U;
1055 +        private static final long RUNSTATE;
1056 +        private static final int ABASE;
1057 +        private static final int ASHIFT;
1058 +        static {
1059 +            int s;
1060 +            try {
1061 +                U = getUnsafe();
1062 +                Class<?> k = WorkQueue.class;
1063 +                Class<?> ak = ForkJoinTask[].class;
1064 +                RUNSTATE = U.objectFieldOffset
1065 +                    (k.getDeclaredField("runState"));
1066 +                ABASE = U.arrayBaseOffset(ak);
1067 +                s = U.arrayIndexScale(ak);
1068 +            } catch (Exception e) {
1069 +                throw new Error(e);
1070 +            }
1071 +            if ((s & (s-1)) != 0)
1072 +                throw new Error("data type scale not a power of two");
1073 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1074          }
1075      }
1076  
1077      /**
1078 +     * Per-thread records for threads that submit to pools. Currently
1079 +     * holds only pseudo-random seed / index that is used to choose
1080 +     * submission queues in method doSubmit. In the future, this may
1081 +     * also incorporate a means to implement different task rejection
1082 +     * and resubmission policies.
1083 +     *
1084 +     * Seeds for submitters and workers/workQueues work in basically
1085 +     * the same way but are initialized and updated using slightly
1086 +     * different mechanics. Both are initialized using the same
1087 +     * approach as in class ThreadLocal, where successive values are
1088 +     * unlikely to collide with previous values. This is done during
1089 +     * registration for workers, but requires a separate AtomicInteger
1090 +     * for submitters. Seeds are then randomly modified upon
1091 +     * collisions using xorshifts, which requires a non-zero seed.
1092 +     */
1093 +    static final class Submitter {
1094 +        int seed;
1095 +        Submitter() {
1096 +            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1097 +            seed = (s == 0) ? 1 : s; // ensure non-zero
1098 +        }
1099 +    }
1100 +
1101 +    /** ThreadLocal class for Submitters */
1102 +    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1103 +        public Submitter initialValue() { return new Submitter(); }
1104 +    }
1105 +
1106 +    // static fields (initialized in static initializer below)
1107 +
1108 +    /**
1109       * Creates a new ForkJoinWorkerThread. This factory is used unless
1110       * overridden in ForkJoinPool constructors.
1111       */
1112      public static final ForkJoinWorkerThreadFactory
1113 <        defaultForkJoinWorkerThreadFactory =
110 <        new DefaultForkJoinWorkerThreadFactory();
1113 >        defaultForkJoinWorkerThreadFactory;
1114  
1115      /**
1116 <     * Permission required for callers of methods that may start or
114 <     * kill threads.
1116 >     * Generator for assigning sequence numbers as pool names.
1117       */
1118 <    private static final RuntimePermission modifyThreadPermission =
117 <        new RuntimePermission("modifyThread");
1118 >    private static final AtomicInteger poolNumberGenerator;
1119  
1120      /**
1121 <     * If there is a security manager, makes sure caller has
1122 <     * permission to modify threads.
1121 >     * Generator for initial hashes/seeds for submitters. Accessed by
1122 >     * Submitter class constructor.
1123       */
1124 <    private static void checkPermission() {
124 <        SecurityManager security = System.getSecurityManager();
125 <        if (security != null)
126 <            security.checkPermission(modifyThreadPermission);
127 <    }
1124 >    static final AtomicInteger nextSubmitterSeed;
1125  
1126      /**
1127 <     * Generator for assigning sequence numbers as pool names.
1127 >     * Permission required for callers of methods that may start or
1128 >     * kill threads.
1129       */
1130 <    private static final AtomicInteger poolNumberGenerator =
133 <        new AtomicInteger();
1130 >    private static final RuntimePermission modifyThreadPermission;
1131  
1132      /**
1133 <     * Array holding all worker threads in the pool. Initialized upon
1134 <     * first use. Array size must be a power of two.  Updates and
1135 <     * replacements are protected by workerLock, but it is always kept
139 <     * in a consistent enough state to be randomly accessed without
140 <     * locking by workers performing work-stealing.
1133 >     * Per-thread submission bookkeeping. Shared across all pools
1134 >     * to reduce ThreadLocal pollution and because random motion
1135 >     * to avoid contention in one pool is likely to hold for others.
1136       */
1137 <    volatile ForkJoinWorkerThread[] workers;
1137 >    private static final ThreadSubmitter submitters;
1138 >
1139 >    /** Common default pool */
1140 >    static volatile ForkJoinPool commonPool;
1141 >
1142 >    // commonPool construction parameters
1143 >    private static final String propPrefix =
1144 >        "java.util.concurrent.ForkJoinPool.common.";
1145 >    private static final Thread.UncaughtExceptionHandler commonPoolUEH;
1146 >    private static final ForkJoinWorkerThreadFactory commonPoolFactory;
1147 >    static final int commonPoolParallelism;
1148 >
1149 >    /** Static initialization lock */
1150 >    private static final Mutex initializationLock;
1151 >
1152 >    // static constants
1153  
1154      /**
1155 <     * Lock protecting access to workers.
1155 >     * Initial timeout value (in nanoseconds) for the tread triggering
1156 >     * quiescence to park waiting for new work. On timeout, the thread
1157 >     * will instead try to shrink the number of workers.
1158       */
1159 <    private final ReentrantLock workerLock;
1159 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1160  
1161      /**
1162 <     * Condition for awaitTermination.
1162 >     * Timeout value when there are more threads than parallelism level
1163       */
1164 <    private final Condition termination;
1164 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1165  
1166      /**
1167 <     * The uncaught exception handler used when any worker
1168 <     * abruptly terminates
1167 >     * The maximum stolen->joining link depth allowed in method
1168 >     * tryHelpStealer.  Must be a power of two. This value also
1169 >     * controls the maximum number of times to try to help join a task
1170 >     * without any apparent progress or change in pool state before
1171 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1172 >     * chains are unbounded, but we use a fixed constant to avoid
1173 >     * (otherwise unchecked) cycles and to bound staleness of
1174 >     * traversal parameters at the expense of sometimes blocking when
1175 >     * we could be helping.
1176       */
1177 <    private Thread.UncaughtExceptionHandler ueh;
1177 >    private static final int MAX_HELP = 64;
1178  
1179      /**
1180 <     * Creation factory for worker threads.
1180 >     * Secondary time-based bound (in nanosecs) for helping attempts
1181 >     * before trying compensated blocking in awaitJoin. Used in
1182 >     * conjunction with MAX_HELP to reduce variance due to different
1183 >     * polling rates associated with different helping options. The
1184 >     * value should roughly approximate the time required to create
1185 >     * and/or activate a worker thread.
1186       */
1187 <    private final ForkJoinWorkerThreadFactory factory;
1187 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1188  
1189      /**
1190 <     * Head of stack of threads that were created to maintain
1191 <     * parallelism when other threads blocked, but have since
168 <     * suspended when the parallelism level rose.
1190 >     * Increment for seed generators. See class ThreadLocal for
1191 >     * explanation.
1192       */
1193 <    private volatile WaitQueueNode spareStack;
1193 >    private static final int SEED_INCREMENT = 0x61c88647;
1194  
1195      /**
1196 <     * Sum of per-thread steal counts, updated only when threads are
1197 <     * idle or terminating.
1196 >     * Bits and masks for control variables
1197 >     *
1198 >     * Field ctl is a long packed with:
1199 >     * AC: Number of active running workers minus target parallelism (16 bits)
1200 >     * TC: Number of total workers minus target parallelism (16 bits)
1201 >     * ST: true if pool is terminating (1 bit)
1202 >     * EC: the wait count of top waiting thread (15 bits)
1203 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1204 >     *
1205 >     * When convenient, we can extract the upper 32 bits of counts and
1206 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1207 >     * (int)ctl.  The ec field is never accessed alone, but always
1208 >     * together with id and st. The offsets of counts by the target
1209 >     * parallelism and the positionings of fields makes it possible to
1210 >     * perform the most common checks via sign tests of fields: When
1211 >     * ac is negative, there are not enough active workers, when tc is
1212 >     * negative, there are not enough total workers, and when e is
1213 >     * negative, the pool is terminating.  To deal with these possibly
1214 >     * negative fields, we use casts in and out of "short" and/or
1215 >     * signed shifts to maintain signedness.
1216 >     *
1217 >     * When a thread is queued (inactivated), its eventCount field is
1218 >     * set negative, which is the only way to tell if a worker is
1219 >     * prevented from executing tasks, even though it must continue to
1220 >     * scan for them to avoid queuing races. Note however that
1221 >     * eventCount updates lag releases so usage requires care.
1222 >     *
1223 >     * Field runState is an int packed with:
1224 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1225 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1226 >     * INIT: set true after workQueues array construction (1 bit)
1227 >     *
1228 >     * The sequence number enables simple consistency checks:
1229 >     * Staleness of read-only operations on the workQueues array can
1230 >     * be checked by comparing runState before vs after the reads.
1231       */
1232 <    private final AtomicLong stealCount;
1232 >
1233 >    // bit positions/shifts for fields
1234 >    private static final int  AC_SHIFT   = 48;
1235 >    private static final int  TC_SHIFT   = 32;
1236 >    private static final int  ST_SHIFT   = 31;
1237 >    private static final int  EC_SHIFT   = 16;
1238 >
1239 >    // bounds
1240 >    private static final int  SMASK      = 0xffff;  // short bits
1241 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1242 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1243 >    private static final int  SHORT_SIGN = 1 << 15;
1244 >    private static final int  INT_SIGN   = 1 << 31;
1245 >
1246 >    // masks
1247 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1248 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1249 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1250 >
1251 >    // units for incrementing and decrementing
1252 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1253 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1254 >
1255 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1256 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1257 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1258 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1259 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1260 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1261 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1262 >
1263 >    // masks and units for dealing with e = (int)ctl
1264 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1265 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1266 >
1267 >    // runState bits
1268 >    private static final int SHUTDOWN    = 1 << 31;
1269 >
1270 >    // access mode for WorkQueue
1271 >    static final int LIFO_QUEUE          =  0;
1272 >    static final int FIFO_QUEUE          =  1;
1273 >    static final int SHARED_QUEUE        = -1;
1274 >
1275 >    // Instance fields
1276 >
1277 >    /*
1278 >     * Field layout order in this class tends to matter more than one
1279 >     * would like. Runtime layout order is only loosely related to
1280 >     * declaration order and may differ across JVMs, but the following
1281 >     * empirically works OK on current JVMs.
1282 >     */
1283 >
1284 >    volatile long ctl;                         // main pool control
1285 >    final int parallelism;                     // parallelism level
1286 >    final int localMode;                       // per-worker scheduling mode
1287 >    final int submitMask;                      // submit queue index bound
1288 >    int nextSeed;                              // for initializing worker seeds
1289 >    volatile int runState;                     // shutdown status and seq
1290 >    WorkQueue[] workQueues;                    // main registry
1291 >    final Mutex lock;                          // for registration
1292 >    final Condition termination;               // for awaitTermination
1293 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1294 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1295 >    final AtomicLong stealCount;               // collect counts when terminated
1296 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1297 >    String workerNamePrefix;                   // to create worker name string
1298 >
1299 >    //  Creating, registering, and deregistering workers
1300 >
1301 >    /**
1302 >     * Tries to create and start a worker
1303 >     */
1304 >    private void addWorker() {
1305 >        Throwable ex = null;
1306 >        ForkJoinWorkerThread wt = null;
1307 >        try {
1308 >            if ((wt = factory.newThread(this)) != null) {
1309 >                wt.start();
1310 >                return;
1311 >            }
1312 >        } catch (Throwable e) {
1313 >            ex = e;
1314 >        }
1315 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1316 >    }
1317  
1318      /**
1319 <     * Queue for external submissions.
1319 >     * Callback from ForkJoinWorkerThread constructor to assign a
1320 >     * public name. This must be separate from registerWorker because
1321 >     * it is called during the "super" constructor call in
1322 >     * ForkJoinWorkerThread.
1323       */
1324 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1324 >    final String nextWorkerName() {
1325 >        return workerNamePrefix.concat
1326 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1327 >    }
1328  
1329      /**
1330 <     * Head of Treiber stack for barrier sync. See below for explanation
1330 >     * Callback from ForkJoinWorkerThread constructor to establish its
1331 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1332 >     * to packing entries in front of the workQueues array, we treat
1333 >     * the array as a simple power-of-two hash table using per-thread
1334 >     * seed as hash, expanding as needed.
1335 >     *
1336 >     * @param w the worker's queue
1337       */
1338 <    private volatile WaitQueueNode syncStack;
1338 >    final void registerWorker(WorkQueue w) {
1339 >        Mutex lock = this.lock;
1340 >        lock.lock();
1341 >        try {
1342 >            WorkQueue[] ws = workQueues;
1343 >            if (w != null && ws != null) {          // skip on shutdown/failure
1344 >                int rs, n = ws.length, m = n - 1;
1345 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1346 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1347 >                int r = (s << 1) | 1;               // use odd-numbered indices
1348 >                if (ws[r &= m] != null) {           // collision
1349 >                    int probes = 0;                 // step by approx half size
1350 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1351 >                    while (ws[r = (r + step) & m] != null) {
1352 >                        if (++probes >= n) {
1353 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1354 >                            m = n - 1;
1355 >                            probes = 0;
1356 >                        }
1357 >                    }
1358 >                }
1359 >                w.eventCount = w.poolIndex = r;     // establish before recording
1360 >                ws[r] = w;                          // also update seq
1361 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1362 >            }
1363 >        } finally {
1364 >            lock.unlock();
1365 >        }
1366 >    }
1367  
1368      /**
1369 <     * The count for event barrier
1370 <     */
1371 <    private volatile long eventCount;
1369 >     * Final callback from terminating worker, as well as upon failure
1370 >     * to construct or start a worker in addWorker.  Removes record of
1371 >     * worker from array, and adjusts counts. If pool is shutting
1372 >     * down, tries to complete termination.
1373 >     *
1374 >     * @param wt the worker thread or null if addWorker failed
1375 >     * @param ex the exception causing failure, or null if none
1376 >     */
1377 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1378 >        Mutex lock = this.lock;
1379 >        WorkQueue w = null;
1380 >        if (wt != null && (w = wt.workQueue) != null) {
1381 >            w.runState = -1;                // ensure runState is set
1382 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1383 >            int idx = w.poolIndex;
1384 >            lock.lock();
1385 >            try {                           // remove record from array
1386 >                WorkQueue[] ws = workQueues;
1387 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1388 >                    ws[idx] = null;
1389 >            } finally {
1390 >                lock.unlock();
1391 >            }
1392 >        }
1393 >
1394 >        long c;                             // adjust ctl counts
1395 >        do {} while (!U.compareAndSwapLong
1396 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1397 >                                           ((c - TC_UNIT) & TC_MASK) |
1398 >                                           (c & ~(AC_MASK|TC_MASK)))));
1399 >
1400 >        if (!tryTerminate(false, false) && w != null) {
1401 >            w.cancelAll();                  // cancel remaining tasks
1402 >            if (w.array != null)            // suppress signal if never ran
1403 >                signalWork();               // wake up or create replacement
1404 >            if (ex == null)                 // help clean refs on way out
1405 >                ForkJoinTask.helpExpungeStaleExceptions();
1406 >        }
1407 >
1408 >        if (ex != null)                     // rethrow
1409 >            U.throwException(ex);
1410 >    }
1411 >
1412 >    // Submissions
1413 >
1414 >    /**
1415 >     * Unless shutting down, adds the given task to a submission queue
1416 >     * at submitter's current queue index (modulo submission
1417 >     * range). If no queue exists at the index, one is created.  If
1418 >     * the queue is busy, another index is randomly chosen. The
1419 >     * submitMask bounds the effective number of queues to the
1420 >     * (nearest power of two for) parallelism level.
1421 >     *
1422 >     * @param task the task. Caller must ensure non-null.
1423 >     */
1424 >    private void doSubmit(ForkJoinTask<?> task) {
1425 >        Submitter s = submitters.get();
1426 >        for (int r = s.seed, m = submitMask;;) {
1427 >            WorkQueue[] ws; WorkQueue q;
1428 >            int k = r & m & SQMASK;          // use only even indices
1429 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1430 >                throw new RejectedExecutionException(); // shutting down
1431 >            else if ((q = ws[k]) == null) {  // create new queue
1432 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1433 >                Mutex lock = this.lock;      // construct outside lock
1434 >                lock.lock();
1435 >                try {                        // recheck under lock
1436 >                    int rs = runState;       // to update seq
1437 >                    if (ws == workQueues && ws[k] == null) {
1438 >                        ws[k] = nq;
1439 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1440 >                    }
1441 >                } finally {
1442 >                    lock.unlock();
1443 >                }
1444 >            }
1445 >            else if (q.trySharedPush(task)) {
1446 >                signalWork();
1447 >                return;
1448 >            }
1449 >            else if (m > 1) {                // move to a different index
1450 >                r ^= r << 13;                // same xorshift as WorkQueues
1451 >                r ^= r >>> 17;
1452 >                s.seed = r ^= r << 5;
1453 >            }
1454 >            else
1455 >                Thread.yield();              // yield if no alternatives
1456 >        }
1457 >    }
1458  
1459      /**
1460 <     * Pool number, just for assigning useful names to worker threads
1460 >     * Submits the given (non-null) task to the common pool, if possible.
1461       */
1462 <    private final int poolNumber;
1462 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1463 >        ForkJoinPool p;
1464 >        if ((p = commonPool) == null)
1465 >            p = ensureCommonPool();
1466 >        p.doSubmit(task);
1467 >    }
1468  
1469      /**
1470 <     * The maximum allowed pool size
1470 >     * Returns true if the given task was submitted to common pool
1471 >     * and has not yet commenced execution, and is available for
1472 >     * removal according to execution policies; if so removing the
1473 >     * submission from the pool.
1474 >     *
1475 >     * @param task the task
1476 >     * @return true if successful
1477       */
1478 <    private volatile int maxPoolSize;
1478 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1479 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1480 >        int k = submitters.get().seed & SQMASK;
1481 >        return ((p = commonPool) != null &&
1482 >                (ws = p.workQueues) != null &&
1483 >                ws.length > (k &= p.submitMask) &&
1484 >                (q = ws[k]) != null &&
1485 >                q.trySharedUnpush(task, p));
1486 >    }
1487 >
1488 >    // Maintaining ctl counts
1489  
1490      /**
1491 <     * The desired parallelism level, updated only under workerLock.
1491 >     * Increments active count; mainly called upon return from blocking.
1492       */
1493 <    private volatile int parallelism;
1493 >    final void incrementActiveCount() {
1494 >        long c;
1495 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1496 >    }
1497  
1498      /**
1499 <     * True if use local fifo, not default lifo, for local polling
1499 >     * Tries to create one or activate one or more workers if too few are active.
1500       */
1501 <    private volatile boolean locallyFifo;
1501 >    final void signalWork() {
1502 >        long c; int u;
1503 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1504 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1505 >            if ((e = (int)c) > 0) {                     // at least one waiting
1506 >                if (ws != null && (i = e & SMASK) < ws.length &&
1507 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1508 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1509 >                               ((long)(u + UAC_UNIT) << 32));
1510 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1511 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1512 >                        if ((p = w.parker) != null)
1513 >                            U.unpark(p);                // activate and release
1514 >                        break;
1515 >                    }
1516 >                }
1517 >                else
1518 >                    break;
1519 >            }
1520 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1521 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1522 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1523 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1524 >                    addWorker();
1525 >                    break;
1526 >                }
1527 >            }
1528 >            else
1529 >                break;
1530 >        }
1531 >    }
1532 >
1533 >    // Scanning for tasks
1534  
1535      /**
1536 <     * Holds number of total (i.e., created and not yet terminated)
215 <     * and running (i.e., not blocked on joins or other managed sync)
216 <     * threads, packed into one int to ensure consistent snapshot when
217 <     * making decisions about creating and suspending spare
218 <     * threads. Updated only by CAS.  Note: CASes in
219 <     * updateRunningCount and preJoin running active count is in low
220 <     * word, so need to be modified if this changes
1536 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1537       */
1538 <    private volatile int workerCounts;
1538 >    final void runWorker(WorkQueue w) {
1539 >        w.growArray(false);         // initialize queue array in this thread
1540 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1541 >    }
1542 >
1543 >    /**
1544 >     * Scans for and, if found, returns one task, else possibly
1545 >     * inactivates the worker. This method operates on single reads of
1546 >     * volatile state and is designed to be re-invoked continuously,
1547 >     * in part because it returns upon detecting inconsistencies,
1548 >     * contention, or state changes that indicate possible success on
1549 >     * re-invocation.
1550 >     *
1551 >     * The scan searches for tasks across a random permutation of
1552 >     * queues (starting at a random index and stepping by a random
1553 >     * relative prime, checking each at least once).  The scan
1554 >     * terminates upon either finding a non-empty queue, or completing
1555 >     * the sweep. If the worker is not inactivated, it takes and
1556 >     * returns a task from this queue.  On failure to find a task, we
1557 >     * take one of the following actions, after which the caller will
1558 >     * retry calling this method unless terminated.
1559 >     *
1560 >     * * If pool is terminating, terminate the worker.
1561 >     *
1562 >     * * If not a complete sweep, try to release a waiting worker.  If
1563 >     * the scan terminated because the worker is inactivated, then the
1564 >     * released worker will often be the calling worker, and it can
1565 >     * succeed obtaining a task on the next call. Or maybe it is
1566 >     * another worker, but with same net effect. Releasing in other
1567 >     * cases as well ensures that we have enough workers running.
1568 >     *
1569 >     * * If not already enqueued, try to inactivate and enqueue the
1570 >     * worker on wait queue. Or, if inactivating has caused the pool
1571 >     * to be quiescent, relay to idleAwaitWork to check for
1572 >     * termination and possibly shrink pool.
1573 >     *
1574 >     * * If already inactive, and the caller has run a task since the
1575 >     * last empty scan, return (to allow rescan) unless others are
1576 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1577 >     * scan to ensure eventual inactivation and blocking.
1578 >     *
1579 >     * * If already enqueued and none of the above apply, park
1580 >     * awaiting signal,
1581 >     *
1582 >     * @param w the worker (via its WorkQueue)
1583 >     * @return a task or null if none found
1584 >     */
1585 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1586 >        WorkQueue[] ws;                       // first update random seed
1587 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1588 >        int rs = runState, m;                 // volatile read order matters
1589 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1590 >            int ec = w.eventCount;            // ec is negative if inactive
1591 >            int step = (r >>> 16) | 1;        // relative prime
1592 >            for (int j = (m + 1) << 2; ; r += step) {
1593 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1594 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1595 >                    (a = q.array) != null) {  // probably nonempty
1596 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1597 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1598 >                    if (q.base == b && ec >= 0 && t != null &&
1599 >                        U.compareAndSwapObject(a, i, t, null)) {
1600 >                        if (q.top - (q.base = b + 1) > 0)
1601 >                            signalWork();    // help pushes signal
1602 >                        return t;
1603 >                    }
1604 >                    else if (ec < 0 || j <= m) {
1605 >                        rs = 0;               // mark scan as imcomplete
1606 >                        break;                // caller can retry after release
1607 >                    }
1608 >                }
1609 >                if (--j < 0)
1610 >                    break;
1611 >            }
1612  
1613 <    private static int totalCountOf(int s)           { return s >>> 16;  }
1614 <    private static int runningCountOf(int s)         { return s & shortMask; }
1615 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1613 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1614 >            if (e < 0)                        // decode ctl on empty scan
1615 >                w.runState = -1;              // pool is terminating
1616 >            else if (rs == 0 || rs != runState) { // incomplete scan
1617 >                WorkQueue v; Thread p;        // try to release a waiter
1618 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1619 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1620 >                    long nc = ((long)(v.nextWait & E_MASK) |
1621 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1622 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1623 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1624 >                        if ((p = v.parker) != null)
1625 >                            U.unpark(p);
1626 >                    }
1627 >                }
1628 >            }
1629 >            else if (ec >= 0) {               // try to enqueue/inactivate
1630 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1631 >                w.nextWait = e;
1632 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1633 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1634 >                    w.eventCount = ec;        // unmark on CAS failure
1635 >                else {
1636 >                    if ((ns = w.nsteals) != 0) {
1637 >                        w.nsteals = 0;        // set rescans if ran task
1638 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1639 >                        w.totalSteals += ns;
1640 >                    }
1641 >                    if (a == 1 - parallelism) // quiescent
1642 >                        idleAwaitWork(w, nc, c);
1643 >                }
1644 >            }
1645 >            else if (w.eventCount < 0) {      // already queued
1646 >                int ac = a + parallelism;
1647 >                if ((nr = w.rescans) > 0)     // continue rescanning
1648 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1649 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1650 >                    Thread.interrupted();     // clear status
1651 >                    Thread wt = Thread.currentThread();
1652 >                    U.putObject(wt, PARKBLOCKER, this);
1653 >                    w.parker = wt;            // emulate LockSupport.park
1654 >                    if (w.eventCount < 0)     // recheck
1655 >                        U.park(false, 0L);
1656 >                    w.parker = null;
1657 >                    U.putObject(wt, PARKBLOCKER, null);
1658 >                }
1659 >            }
1660 >        }
1661 >        return null;
1662 >    }
1663  
1664      /**
1665 <     * Adds delta (which may be negative) to running count.  This must
1666 <     * be called before (with negative arg) and after (with positive)
1667 <     * any managed synchronization (i.e., mainly, joins).
1668 <     * @param delta the number to add
1665 >     * If inactivating worker w has caused the pool to become
1666 >     * quiescent, checks for pool termination, and, so long as this is
1667 >     * not the only worker, waits for event for up to a given
1668 >     * duration.  On timeout, if ctl has not changed, terminates the
1669 >     * worker, which will in turn wake up another worker to possibly
1670 >     * repeat this process.
1671 >     *
1672 >     * @param w the calling worker
1673 >     * @param currentCtl the ctl value triggering possible quiescence
1674 >     * @param prevCtl the ctl value to restore if thread is terminated
1675 >     */
1676 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1677 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1678 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1679 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1680 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1681 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1682 >            Thread wt = Thread.currentThread();
1683 >            while (ctl == currentCtl) {
1684 >                Thread.interrupted();  // timed variant of version in scan()
1685 >                U.putObject(wt, PARKBLOCKER, this);
1686 >                w.parker = wt;
1687 >                if (ctl == currentCtl)
1688 >                    U.park(false, parkTime);
1689 >                w.parker = null;
1690 >                U.putObject(wt, PARKBLOCKER, null);
1691 >                if (ctl != currentCtl)
1692 >                    break;
1693 >                if (deadline - System.nanoTime() <= 0L &&
1694 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1695 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1696 >                    w.runState = -1;   // shrink
1697 >                    break;
1698 >                }
1699 >            }
1700 >        }
1701 >    }
1702 >
1703 >    /**
1704 >     * Tries to locate and execute tasks for a stealer of the given
1705 >     * task, or in turn one of its stealers, Traces currentSteal ->
1706 >     * currentJoin links looking for a thread working on a descendant
1707 >     * of the given task and with a non-empty queue to steal back and
1708 >     * execute tasks from. The first call to this method upon a
1709 >     * waiting join will often entail scanning/search, (which is OK
1710 >     * because the joiner has nothing better to do), but this method
1711 >     * leaves hints in workers to speed up subsequent calls. The
1712 >     * implementation is very branchy to cope with potential
1713 >     * inconsistencies or loops encountering chains that are stale,
1714 >     * unknown, or so long that they are likely cyclic.
1715 >     *
1716 >     * @param joiner the joining worker
1717 >     * @param task the task to join
1718 >     * @return 0 if no progress can be made, negative if task
1719 >     * known complete, else positive
1720 >     */
1721 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1722 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1723 >        if (joiner != null && task != null) {       // hoist null checks
1724 >            restart: for (;;) {
1725 >                ForkJoinTask<?> subtask = task;     // current target
1726 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1727 >                    WorkQueue[] ws; int m, s, h;
1728 >                    if ((s = task.status) < 0) {
1729 >                        stat = s;
1730 >                        break restart;
1731 >                    }
1732 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1733 >                        break restart;              // shutting down
1734 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1735 >                        v.currentSteal != subtask) {
1736 >                        for (int origin = h;;) {    // find stealer
1737 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1738 >                                (subtask.status < 0 || j.currentJoin != subtask))
1739 >                                continue restart;   // occasional staleness check
1740 >                            if ((v = ws[h]) != null &&
1741 >                                v.currentSteal == subtask) {
1742 >                                j.stealHint = h;    // save hint
1743 >                                break;
1744 >                            }
1745 >                            if (h == origin)
1746 >                                break restart;      // cannot find stealer
1747 >                        }
1748 >                    }
1749 >                    for (;;) { // help stealer or descend to its stealer
1750 >                        ForkJoinTask[] a;  int b;
1751 >                        if (subtask.status < 0)     // surround probes with
1752 >                            continue restart;       //   consistency checks
1753 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1754 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1755 >                            ForkJoinTask<?> t =
1756 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1757 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1758 >                                v.currentSteal != subtask)
1759 >                                continue restart;   // stale
1760 >                            stat = 1;               // apparent progress
1761 >                            if (t != null && v.base == b &&
1762 >                                U.compareAndSwapObject(a, i, t, null)) {
1763 >                                v.base = b + 1;     // help stealer
1764 >                                joiner.runSubtask(t);
1765 >                            }
1766 >                            else if (v.base == b && ++steps == MAX_HELP)
1767 >                                break restart;      // v apparently stalled
1768 >                        }
1769 >                        else {                      // empty -- try to descend
1770 >                            ForkJoinTask<?> next = v.currentJoin;
1771 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1772 >                                v.currentSteal != subtask)
1773 >                                continue restart;   // stale
1774 >                            else if (next == null || ++steps == MAX_HELP)
1775 >                                break restart;      // dead-end or maybe cyclic
1776 >                            else {
1777 >                                subtask = next;
1778 >                                j = v;
1779 >                                break;
1780 >                            }
1781 >                        }
1782 >                    }
1783 >                }
1784 >            }
1785 >        }
1786 >        return stat;
1787 >    }
1788 >
1789 >    /**
1790 >     * If task is at base of some steal queue, steals and executes it.
1791 >     *
1792 >     * @param joiner the joining worker
1793 >     * @param task the task
1794       */
1795 <    final void updateRunningCount(int delta) {
1796 <        int s;
1797 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1795 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1796 >        WorkQueue[] ws;
1797 >        if ((ws = workQueues) != null) {
1798 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1799 >                WorkQueue q = ws[j];
1800 >                if (q != null && q.pollFor(task)) {
1801 >                    joiner.runSubtask(task);
1802 >                    break;
1803 >                }
1804 >            }
1805 >        }
1806 >    }
1807 >
1808 >    /**
1809 >     * Tries to decrement active count (sometimes implicitly) and
1810 >     * possibly release or create a compensating worker in preparation
1811 >     * for blocking. Fails on contention or termination. Otherwise,
1812 >     * adds a new thread if no idle workers are available and either
1813 >     * pool would become completely starved or: (at least half
1814 >     * starved, and fewer than 50% spares exist, and there is at least
1815 >     * one task apparently available). Even though the availability
1816 >     * check requires a full scan, it is worthwhile in reducing false
1817 >     * alarms.
1818 >     *
1819 >     * @param task if non-null, a task being waited for
1820 >     * @param blocker if non-null, a blocker being waited for
1821 >     * @return true if the caller can block, else should recheck and retry
1822 >     */
1823 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1824 >        int pc = parallelism, e;
1825 >        long c = ctl;
1826 >        WorkQueue[] ws = workQueues;
1827 >        if ((e = (int)c) >= 0 && ws != null) {
1828 >            int u, a, ac, hc;
1829 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1830 >            boolean replace = false;
1831 >            if ((a = u >> UAC_SHIFT) <= 0) {
1832 >                if ((ac = a + pc) <= 1)
1833 >                    replace = true;
1834 >                else if ((e > 0 || (task != null &&
1835 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1836 >                    WorkQueue w;
1837 >                    for (int j = 0; j < ws.length; ++j) {
1838 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1839 >                            replace = true;
1840 >                            break;   // in compensation range and tasks available
1841 >                        }
1842 >                    }
1843 >                }
1844 >            }
1845 >            if ((task == null || task.status >= 0) && // recheck need to block
1846 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1847 >                if (!replace) {          // no compensation
1848 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1849 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
1850 >                        return true;
1851 >                }
1852 >                else if (e != 0) {       // release an idle worker
1853 >                    WorkQueue w; Thread p; int i;
1854 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1855 >                        long nc = ((long)(w.nextWait & E_MASK) |
1856 >                                   (c & (AC_MASK|TC_MASK)));
1857 >                        if (w.eventCount == (e | INT_SIGN) &&
1858 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
1859 >                            w.eventCount = (e + E_SEQ) & E_MASK;
1860 >                            if ((p = w.parker) != null)
1861 >                                U.unpark(p);
1862 >                            return true;
1863 >                        }
1864 >                    }
1865 >                }
1866 >                else if (tc < MAX_CAP) { // create replacement
1867 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1868 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1869 >                        addWorker();
1870 >                        return true;
1871 >                    }
1872 >                }
1873 >            }
1874 >        }
1875 >        return false;
1876      }
1877  
1878      /**
1879 <     * Adds delta (which may be negative) to both total and running
1880 <     * count.  This must be called upon creation and termination of
1881 <     * worker threads.
1882 <     * @param delta the number to add
1879 >     * Helps and/or blocks until the given task is done.
1880 >     *
1881 >     * @param joiner the joining worker
1882 >     * @param task the task
1883 >     * @return task status on exit
1884       */
1885 <    private void updateWorkerCount(int delta) {
246 <        int d = delta + (delta << 16); // add to both lo and hi parts
1885 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1886          int s;
1887 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1887 >        if ((s = task.status) >= 0) {
1888 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1889 >            joiner.currentJoin = task;
1890 >            long startTime = 0L;
1891 >            for (int k = 0;;) {
1892 >                if ((s = (joiner.isEmpty() ?           // try to help
1893 >                          tryHelpStealer(joiner, task) :
1894 >                          joiner.tryRemoveAndExec(task))) == 0 &&
1895 >                    (s = task.status) >= 0) {
1896 >                    if (k == 0) {
1897 >                        startTime = System.nanoTime();
1898 >                        tryPollForAndExec(joiner, task); // check uncommon case
1899 >                    }
1900 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
1901 >                             System.nanoTime() - startTime >=
1902 >                             COMPENSATION_DELAY &&
1903 >                             tryCompensate(task, null)) {
1904 >                        if (task.trySetSignal()) {
1905 >                            synchronized (task) {
1906 >                                if (task.status >= 0) {
1907 >                                    try {                // see ForkJoinTask
1908 >                                        task.wait();     //  for explanation
1909 >                                    } catch (InterruptedException ie) {
1910 >                                    }
1911 >                                }
1912 >                                else
1913 >                                    task.notifyAll();
1914 >                            }
1915 >                        }
1916 >                        long c;                          // re-activate
1917 >                        do {} while (!U.compareAndSwapLong
1918 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1919 >                    }
1920 >                }
1921 >                if (s < 0 || (s = task.status) < 0) {
1922 >                    joiner.currentJoin = prevJoin;
1923 >                    break;
1924 >                }
1925 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1926 >                    Thread.yield();                     // for politeness
1927 >            }
1928 >        }
1929 >        return s;
1930      }
1931  
1932      /**
1933 <     * Lifecycle control. High word contains runState, low word
1934 <     * contains the number of workers that are (probably) executing
1935 <     * tasks. This value is atomically incremented before a worker
1936 <     * gets a task to run, and decremented when worker has no tasks
1937 <     * and cannot find any. These two fields are bundled together to
1938 <     * support correct termination triggering.  Note: activeCount
1939 <     * CAS'es cheat by assuming active count is in low word, so need
259 <     * to be modified if this changes
1933 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1934 >     * to help join only while there is continuous progress. (Caller
1935 >     * will then enter a timed wait.)
1936 >     *
1937 >     * @param joiner the joining worker
1938 >     * @param task the task
1939 >     * @return task status on exit
1940       */
1941 <    private volatile int runControl;
1941 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1942 >        int s;
1943 >        while ((s = task.status) >= 0 &&
1944 >               (joiner.isEmpty() ?
1945 >                tryHelpStealer(joiner, task) :
1946 >                joiner.tryRemoveAndExec(task)) != 0)
1947 >            ;
1948 >        return s;
1949 >    }
1950  
1951 <    // RunState values. Order among values matters
1952 <    private static final int RUNNING     = 0;
1953 <    private static final int SHUTDOWN    = 1;
1954 <    private static final int TERMINATING = 2;
1955 <    private static final int TERMINATED  = 3;
1951 >    /**
1952 >     * Returns a (probably) non-empty steal queue, if one is found
1953 >     * during a random, then cyclic scan, else null.  This method must
1954 >     * be retried by caller if, by the time it tries to use the queue,
1955 >     * it is empty.
1956 >     */
1957 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1958 >        // Similar to loop in scan(), but ignoring submissions
1959 >        int r;
1960 >        if (w == null) // allow external callers
1961 >            r = ThreadLocalRandom.current().nextInt();
1962 >        else {
1963 >            r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1964 >        }
1965 >        int step = (r >>> 16) | 1;
1966 >        for (WorkQueue[] ws;;) {
1967 >            int rs = runState, m;
1968 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1969 >                return null;
1970 >            for (int j = (m + 1) << 2; ; r += step) {
1971 >                WorkQueue q = ws[((r << 1) | 1) & m];
1972 >                if (q != null && !q.isEmpty())
1973 >                    return q;
1974 >                else if (--j < 0) {
1975 >                    if (runState == rs)
1976 >                        return null;
1977 >                    break;
1978 >                }
1979 >            }
1980 >        }
1981 >    }
1982  
1983 <    private static int runStateOf(int c)             { return c >>> 16; }
1984 <    private static int activeCountOf(int c)          { return c & shortMask; }
1985 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1983 >    /**
1984 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1985 >     * active count ctl maintenance, but rather than blocking
1986 >     * when tasks cannot be found, we rescan until all others cannot
1987 >     * find tasks either.
1988 >     */
1989 >    final void helpQuiescePool(WorkQueue w) {
1990 >        for (boolean active = true;;) {
1991 >            ForkJoinTask<?> localTask; // exhaust local queue
1992 >            while ((localTask = w.nextLocalTask()) != null)
1993 >                localTask.doExec();
1994 >            WorkQueue q = findNonEmptyStealQueue(w);
1995 >            if (q != null) {
1996 >                ForkJoinTask<?> t; int b;
1997 >                if (!active) {      // re-establish active count
1998 >                    long c;
1999 >                    active = true;
2000 >                    do {} while (!U.compareAndSwapLong
2001 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2002 >                }
2003 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2004 >                    w.runSubtask(t);
2005 >            }
2006 >            else {
2007 >                long c;
2008 >                if (active) {       // decrement active count without queuing
2009 >                    active = false;
2010 >                    do {} while (!U.compareAndSwapLong
2011 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2012 >                }
2013 >                else
2014 >                    c = ctl;        // re-increment on exit
2015 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2016 >                    do {} while (!U.compareAndSwapLong
2017 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2018 >                    break;
2019 >                }
2020 >            }
2021 >        }
2022 >    }
2023  
2024      /**
2025 <     * Try incrementing active count; fail on contention. Called by
275 <     * workers before/during executing tasks.
276 <     * @return true on success
2025 >     * Restricted version of helpQuiescePool for non-FJ callers
2026       */
2027 <    final boolean tryIncrementActiveCount() {
2028 <        int c = runControl;
2029 <        return casRunControl(c, c+1);
2027 >    static void externalHelpQuiescePool() {
2028 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
2029 >        ForkJoinTask<?> t; int b;
2030 >        int k = submitters.get().seed & SQMASK;
2031 >        if ((p = commonPool) != null &&
2032 >            (ws = p.workQueues) != null &&
2033 >            ws.length > (k &= p.submitMask) &&
2034 >            (w = ws[k]) != null &&
2035 >            (q = p.findNonEmptyStealQueue(w)) != null &&
2036 >            (b = q.base) - q.top < 0 &&
2037 >            (t = q.pollAt(b)) != null)
2038 >            t.doExec();
2039 >    }
2040 >
2041 >    /**
2042 >     * Gets and removes a local or stolen task for the given worker.
2043 >     *
2044 >     * @return a task, if available
2045 >     */
2046 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2047 >        for (ForkJoinTask<?> t;;) {
2048 >            WorkQueue q; int b;
2049 >            if ((t = w.nextLocalTask()) != null)
2050 >                return t;
2051 >            if ((q = findNonEmptyStealQueue(w)) == null)
2052 >                return null;
2053 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2054 >                return t;
2055 >        }
2056      }
2057  
2058      /**
2059 <     * Tries decrementing active count; fails on contention.
2060 <     * Possibly triggers termination on success.
2061 <     * Called by workers when they can't find tasks.
287 <     * @return true on success
2059 >     * Returns the approximate (non-atomic) number of idle threads per
2060 >     * active thread to offset steal queue size for method
2061 >     * ForkJoinTask.getSurplusQueuedTaskCount().
2062       */
2063 <    final boolean tryDecrementActiveCount() {
2064 <        int c = runControl;
2065 <        int nextc = c - 1;
2066 <        if (!casRunControl(c, nextc))
2067 <            return false;
2068 <        if (canTerminateOnShutdown(nextc))
2069 <            terminateOnShutdown();
2070 <        return true;
2063 >    final int idlePerActive() {
2064 >        // Approximate at powers of two for small values, saturate past 4
2065 >        int p = parallelism;
2066 >        int a = p + (int)(ctl >> AC_SHIFT);
2067 >        return (a > (p >>>= 1) ? 0 :
2068 >                a > (p >>>= 1) ? 1 :
2069 >                a > (p >>>= 1) ? 2 :
2070 >                a > (p >>>= 1) ? 4 :
2071 >                8);
2072      }
2073  
2074      /**
2075 <     * Returns true if argument represents zero active count and
301 <     * nonzero runstate, which is the triggering condition for
302 <     * terminating on shutdown.
2075 >     * Returns approximate submission queue length for the given caller
2076       */
2077 <    private static boolean canTerminateOnShutdown(int c) {
2078 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
2077 >    static int getEstimatedSubmitterQueueLength() {
2078 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2079 >        int k = submitters.get().seed & SQMASK;
2080 >        return ((p = commonPool) != null &&
2081 >                p.runState >= 0 &&
2082 >                (ws = p.workQueues) != null &&
2083 >                ws.length > (k &= p.submitMask) &&
2084 >                (q = ws[k]) != null) ?
2085 >            q.queueSize() : 0;
2086      }
2087  
2088 +    //  Termination
2089 +
2090      /**
2091 <     * Transition run state to at least the given state. Return true
2092 <     * if not already at least given state.
2091 >     * Possibly initiates and/or completes termination.  The caller
2092 >     * triggering termination runs three passes through workQueues:
2093 >     * (0) Setting termination status, followed by wakeups of queued
2094 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2095 >     * threads (likely in external tasks, but possibly also blocked in
2096 >     * joins).  Each pass repeats previous steps because of potential
2097 >     * lagging thread creation.
2098 >     *
2099 >     * @param now if true, unconditionally terminate, else only
2100 >     * if no work and no active workers
2101 >     * @param enable if true, enable shutdown when next possible
2102 >     * @return true if now terminating or terminated
2103       */
2104 <    private boolean transitionRunStateTo(int state) {
2105 <        for (;;) {
2106 <            int c = runControl;
2107 <            if (runStateOf(c) >= state)
2108 <                return false;
2109 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
2104 >    private boolean tryTerminate(boolean now, boolean enable) {
2105 >        Mutex lock = this.lock;
2106 >        for (long c;;) {
2107 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2108 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2109 >                    lock.lock();                    // don't need try/finally
2110 >                    termination.signalAll();        // signal when 0 workers
2111 >                    lock.unlock();
2112 >                }
2113                  return true;
2114 +            }
2115 +            if (runState >= 0) {                    // not yet enabled
2116 +                if (!enable)
2117 +                    return false;
2118 +                lock.lock();
2119 +                runState |= SHUTDOWN;
2120 +                lock.unlock();
2121 +            }
2122 +            if (!now) {                             // check if idle & no tasks
2123 +                if ((int)(c >> AC_SHIFT) != -parallelism ||
2124 +                    hasQueuedSubmissions())
2125 +                    return false;
2126 +                // Check for unqueued inactive workers. One pass suffices.
2127 +                WorkQueue[] ws = workQueues; WorkQueue w;
2128 +                if (ws != null) {
2129 +                    for (int i = 1; i < ws.length; i += 2) {
2130 +                        if ((w = ws[i]) != null && w.eventCount >= 0)
2131 +                            return false;
2132 +                    }
2133 +                }
2134 +            }
2135 +            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2136 +                for (int pass = 0; pass < 3; ++pass) {
2137 +                    WorkQueue[] ws = workQueues;
2138 +                    if (ws != null) {
2139 +                        WorkQueue w;
2140 +                        int n = ws.length;
2141 +                        for (int i = 0; i < n; ++i) {
2142 +                            if ((w = ws[i]) != null) {
2143 +                                w.runState = -1;
2144 +                                if (pass > 0) {
2145 +                                    w.cancelAll();
2146 +                                    if (pass > 1)
2147 +                                        w.interruptOwner();
2148 +                                }
2149 +                            }
2150 +                        }
2151 +                        // Wake up workers parked on event queue
2152 +                        int i, e; long cc; Thread p;
2153 +                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2154 +                               (i = e & SMASK) < n &&
2155 +                               (w = ws[i]) != null) {
2156 +                            long nc = ((long)(w.nextWait & E_MASK) |
2157 +                                       ((cc + AC_UNIT) & AC_MASK) |
2158 +                                       (cc & (TC_MASK|STOP_BIT)));
2159 +                            if (w.eventCount == (e | INT_SIGN) &&
2160 +                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2161 +                                w.eventCount = (e + E_SEQ) & E_MASK;
2162 +                                w.runState = -1;
2163 +                                if ((p = w.parker) != null)
2164 +                                    U.unpark(p);
2165 +                            }
2166 +                        }
2167 +                    }
2168 +                }
2169 +            }
2170          }
2171      }
2172  
2173 <    /**
323 <     * Controls whether to add spares to maintain parallelism
324 <     */
325 <    private volatile boolean maintainsParallelism;
2173 >    // Exported methods
2174  
2175      // Constructors
2176  
2177      /**
2178 <     * Creates a ForkJoinPool with a pool size equal to the number of
2179 <     * processors available on the system and using the default
2180 <     * ForkJoinWorkerThreadFactory,
2178 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2179 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2180 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2181 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2182 >     *
2183       * @throws SecurityException if a security manager exists and
2184       *         the caller is not permitted to modify threads
2185       *         because it does not hold {@link
2186 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2186 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2187       */
2188      public ForkJoinPool() {
2189          this(Runtime.getRuntime().availableProcessors(),
2190 <             defaultForkJoinWorkerThreadFactory);
2190 >             defaultForkJoinWorkerThreadFactory, null, false);
2191      }
2192  
2193      /**
2194 <     * Creates a ForkJoinPool with the indicated parallelism level
2195 <     * threads, and using the default ForkJoinWorkerThreadFactory,
2196 <     * @param parallelism the number of worker threads
2194 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
2195 >     * level, the {@linkplain
2196 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2197 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2198 >     *
2199 >     * @param parallelism the parallelism level
2200       * @throws IllegalArgumentException if parallelism less than or
2201 <     * equal to zero
2201 >     *         equal to zero, or greater than implementation limit
2202       * @throws SecurityException if a security manager exists and
2203       *         the caller is not permitted to modify threads
2204       *         because it does not hold {@link
2205 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2205 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2206       */
2207      public ForkJoinPool(int parallelism) {
2208 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
2208 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2209      }
2210  
2211      /**
2212 <     * Creates a ForkJoinPool with parallelism equal to the number of
360 <     * processors available on the system and using the given
361 <     * ForkJoinWorkerThreadFactory,
362 <     * @param factory the factory for creating new threads
363 <     * @throws NullPointerException if factory is null
364 <     * @throws SecurityException if a security manager exists and
365 <     *         the caller is not permitted to modify threads
366 <     *         because it does not hold {@link
367 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
368 <     */
369 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
370 <        this(Runtime.getRuntime().availableProcessors(), factory);
371 <    }
372 <
373 <    /**
374 <     * Creates a ForkJoinPool with the given parallelism and factory.
2212 >     * Creates a {@code ForkJoinPool} with the given parameters.
2213       *
2214 <     * @param parallelism the targeted number of worker threads
2215 <     * @param factory the factory for creating new threads
2214 >     * @param parallelism the parallelism level. For default value,
2215 >     * use {@link java.lang.Runtime#availableProcessors}.
2216 >     * @param factory the factory for creating new threads. For default value,
2217 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2218 >     * @param handler the handler for internal worker threads that
2219 >     * terminate due to unrecoverable errors encountered while executing
2220 >     * tasks. For default value, use {@code null}.
2221 >     * @param asyncMode if true,
2222 >     * establishes local first-in-first-out scheduling mode for forked
2223 >     * tasks that are never joined. This mode may be more appropriate
2224 >     * than default locally stack-based mode in applications in which
2225 >     * worker threads only process event-style asynchronous tasks.
2226 >     * For default value, use {@code false}.
2227       * @throws IllegalArgumentException if parallelism less than or
2228 <     * equal to zero, or greater than implementation limit
2229 <     * @throws NullPointerException if factory is null
2228 >     *         equal to zero, or greater than implementation limit
2229 >     * @throws NullPointerException if the factory is null
2230       * @throws SecurityException if a security manager exists and
2231       *         the caller is not permitted to modify threads
2232       *         because it does not hold {@link
2233 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2233 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2234       */
2235 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
2236 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2237 <            throw new IllegalArgumentException();
2235 >    public ForkJoinPool(int parallelism,
2236 >                        ForkJoinWorkerThreadFactory factory,
2237 >                        Thread.UncaughtExceptionHandler handler,
2238 >                        boolean asyncMode) {
2239 >        checkPermission();
2240          if (factory == null)
2241              throw new NullPointerException();
2242 <        checkPermission();
2243 <        this.factory = factory;
2242 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2243 >            throw new IllegalArgumentException();
2244          this.parallelism = parallelism;
2245 <        this.maxPoolSize = MAX_THREADS;
2246 <        this.maintainsParallelism = true;
2247 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2248 <        this.workerLock = new ReentrantLock();
2249 <        this.termination = workerLock.newCondition();
2245 >        this.factory = factory;
2246 >        this.ueh = handler;
2247 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2248 >        long np = (long)(-parallelism); // offset ctl counts
2249 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2250 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2251 >        int n = parallelism - 1;
2252 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2253 >        int size = (n + 1) << 1;        // #slots = 2*#workers
2254 >        this.submitMask = size - 1;     // room for max # of submit queues
2255 >        this.workQueues = new WorkQueue[size];
2256 >        this.termination = (this.lock = new Mutex()).newCondition();
2257          this.stealCount = new AtomicLong();
2258 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2259 <        // worker array and workers are lazily constructed
2260 <    }
2261 <
2262 <    /**
2263 <     * Create new worker using factory.
2264 <     * @param index the index to assign worker
2265 <     * @return new worker, or null of factory failed
2266 <     */
409 <    private ForkJoinWorkerThread createWorker(int index) {
410 <        Thread.UncaughtExceptionHandler h = ueh;
411 <        ForkJoinWorkerThread w = factory.newThread(this);
412 <        if (w != null) {
413 <            w.poolIndex = index;
414 <            w.setDaemon(true);
415 <            w.setAsyncMode(locallyFifo);
416 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
417 <            if (h != null)
418 <                w.setUncaughtExceptionHandler(h);
419 <        }
420 <        return w;
421 <    }
422 <
423 <    /**
424 <     * Returns a good size for worker array given pool size.
425 <     * Currently requires size to be a power of two.
426 <     */
427 <    private static int arraySizeFor(int ps) {
428 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
429 <    }
430 <
431 <    /**
432 <     * Creates or resizes array if necessary to hold newLength.
433 <     * Call only under exclusion or lock.
434 <     * @return the array
435 <     */
436 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
437 <        ForkJoinWorkerThread[] ws = workers;
438 <        if (ws == null)
439 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
440 <        else if (newLength > ws.length)
441 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
442 <        else
443 <            return ws;
2258 >        this.nextWorkerNumber = new AtomicInteger();
2259 >        int pn = poolNumberGenerator.incrementAndGet();
2260 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2261 >        sb.append(Integer.toString(pn));
2262 >        sb.append("-worker-");
2263 >        this.workerNamePrefix = sb.toString();
2264 >        lock.lock();
2265 >        this.runState = 1;              // set init flag
2266 >        lock.unlock();
2267      }
2268  
2269      /**
2270 <     * Try to shrink workers into smaller array after one or more terminate
2270 >     * Returns the common pool instance
2271 >     *
2272 >     * @return the common pool instance
2273       */
2274 <    private void tryShrinkWorkerArray() {
2275 <        ForkJoinWorkerThread[] ws = workers;
2276 <        if (ws != null) {
452 <            int len = ws.length;
453 <            int last = len - 1;
454 <            while (last >= 0 && ws[last] == null)
455 <                --last;
456 <            int newLength = arraySizeFor(last+1);
457 <            if (newLength < len)
458 <                workers = Arrays.copyOf(ws, newLength);
459 <        }
2274 >    public static ForkJoinPool commonPool() {
2275 >        ForkJoinPool p;
2276 >        return (p = commonPool) != null? p : ensureCommonPool();
2277      }
2278  
2279 <    /**
2280 <     * Initialize workers if necessary
2281 <     */
2282 <    final void ensureWorkerInitialization() {
466 <        ForkJoinWorkerThread[] ws = workers;
467 <        if (ws == null) {
468 <            final ReentrantLock lock = this.workerLock;
2279 >    private static ForkJoinPool ensureCommonPool() {
2280 >        ForkJoinPool p;
2281 >        if ((p = commonPool) == null) {
2282 >            final Mutex lock = initializationLock;
2283              lock.lock();
2284              try {
2285 <                ws = workers;
2286 <                if (ws == null) {
2287 <                    int ps = parallelism;
2288 <                    ws = ensureWorkerArrayCapacity(ps);
2289 <                    for (int i = 0; i < ps; ++i) {
2290 <                        ForkJoinWorkerThread w = createWorker(i);
477 <                        if (w != null) {
478 <                            ws[i] = w;
479 <                            w.start();
480 <                            updateWorkerCount(1);
481 <                        }
482 <                    }
2285 >                if ((p = commonPool) == null) {
2286 >                    p = commonPool = new ForkJoinPool(commonPoolParallelism,
2287 >                                                      commonPoolFactory,
2288 >                                                      commonPoolUEH, false);
2289 >                    // use a more informative name string for workers
2290 >                    p.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2291                  }
2292              } finally {
2293                  lock.unlock();
2294              }
2295          }
2296 <    }
489 <
490 <    /**
491 <     * Worker creation and startup for threads added via setParallelism.
492 <     */
493 <    private void createAndStartAddedWorkers() {
494 <        resumeAllSpares();  // Allow spares to convert to nonspare
495 <        int ps = parallelism;
496 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
497 <        int len = ws.length;
498 <        // Sweep through slots, to keep lowest indices most populated
499 <        int k = 0;
500 <        while (k < len) {
501 <            if (ws[k] != null) {
502 <                ++k;
503 <                continue;
504 <            }
505 <            int s = workerCounts;
506 <            int tc = totalCountOf(s);
507 <            int rc = runningCountOf(s);
508 <            if (rc >= ps || tc >= ps)
509 <                break;
510 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
511 <                ForkJoinWorkerThread w = createWorker(k);
512 <                if (w != null) {
513 <                    ws[k++] = w;
514 <                    w.start();
515 <                }
516 <                else {
517 <                    updateWorkerCount(-1); // back out on failed creation
518 <                    break;
519 <                }
520 <            }
521 <        }
2296 >        return p;
2297      }
2298  
2299      // Execution methods
2300  
2301      /**
2302 <     * Common code for execute, invoke and submit
2303 <     */
2304 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2305 <        if (isShutdown())
2306 <            throw new RejectedExecutionException();
2307 <        if (workers == null)
2308 <            ensureWorkerInitialization();
2309 <        submissionQueue.offer(task);
2310 <        signalIdleWorkers();
536 <    }
537 <
538 <    /**
539 <     * Performs the given task; returning its result upon completion
2302 >     * Performs the given task, returning its result upon completion.
2303 >     * If the computation encounters an unchecked Exception or Error,
2304 >     * it is rethrown as the outcome of this invocation.  Rethrown
2305 >     * exceptions behave in the same way as regular exceptions, but,
2306 >     * when possible, contain stack traces (as displayed for example
2307 >     * using {@code ex.printStackTrace()}) of both the current thread
2308 >     * as well as the thread actually encountering the exception;
2309 >     * minimally only the latter.
2310 >     *
2311       * @param task the task
2312       * @return the task's result
2313 <     * @throws NullPointerException if task is null
2314 <     * @throws RejectedExecutionException if pool is shut down
2313 >     * @throws NullPointerException if the task is null
2314 >     * @throws RejectedExecutionException if the task cannot be
2315 >     *         scheduled for execution
2316       */
2317      public <T> T invoke(ForkJoinTask<T> task) {
2318 +        if (task == null)
2319 +            throw new NullPointerException();
2320          doSubmit(task);
2321          return task.join();
2322      }
2323  
2324      /**
2325       * Arranges for (asynchronous) execution of the given task.
2326 +     *
2327       * @param task the task
2328 <     * @throws NullPointerException if task is null
2329 <     * @throws RejectedExecutionException if pool is shut down
2328 >     * @throws NullPointerException if the task is null
2329 >     * @throws RejectedExecutionException if the task cannot be
2330 >     *         scheduled for execution
2331       */
2332 <    public <T> void execute(ForkJoinTask<T> task) {
2332 >    public void execute(ForkJoinTask<?> task) {
2333 >        if (task == null)
2334 >            throw new NullPointerException();
2335          doSubmit(task);
2336      }
2337  
2338      // AbstractExecutorService methods
2339  
2340 +    /**
2341 +     * @throws NullPointerException if the task is null
2342 +     * @throws RejectedExecutionException if the task cannot be
2343 +     *         scheduled for execution
2344 +     */
2345      public void execute(Runnable task) {
2346 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2346 >        if (task == null)
2347 >            throw new NullPointerException();
2348 >        ForkJoinTask<?> job;
2349 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2350 >            job = (ForkJoinTask<?>) task;
2351 >        else
2352 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2353 >        doSubmit(job);
2354 >    }
2355 >
2356 >    /**
2357 >     * Submits a ForkJoinTask for execution.
2358 >     *
2359 >     * @param task the task to submit
2360 >     * @return the task
2361 >     * @throws NullPointerException if the task is null
2362 >     * @throws RejectedExecutionException if the task cannot be
2363 >     *         scheduled for execution
2364 >     */
2365 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2366 >        if (task == null)
2367 >            throw new NullPointerException();
2368 >        doSubmit(task);
2369 >        return task;
2370      }
2371  
2372 +    /**
2373 +     * @throws NullPointerException if the task is null
2374 +     * @throws RejectedExecutionException if the task cannot be
2375 +     *         scheduled for execution
2376 +     */
2377      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2378 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2378 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2379          doSubmit(job);
2380          return job;
2381      }
2382  
2383 +    /**
2384 +     * @throws NullPointerException if the task is null
2385 +     * @throws RejectedExecutionException if the task cannot be
2386 +     *         scheduled for execution
2387 +     */
2388      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2389 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2389 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2390          doSubmit(job);
2391          return job;
2392      }
2393  
2394 +    /**
2395 +     * @throws NullPointerException if the task is null
2396 +     * @throws RejectedExecutionException if the task cannot be
2397 +     *         scheduled for execution
2398 +     */
2399      public ForkJoinTask<?> submit(Runnable task) {
2400 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2400 >        if (task == null)
2401 >            throw new NullPointerException();
2402 >        ForkJoinTask<?> job;
2403 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2404 >            job = (ForkJoinTask<?>) task;
2405 >        else
2406 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2407          doSubmit(job);
2408          return job;
2409      }
2410  
2411      /**
2412 <     * Adaptor for Runnables. This implements RunnableFuture
2413 <     * to be compliant with AbstractExecutorService constraints
2412 >     * @throws NullPointerException       {@inheritDoc}
2413 >     * @throws RejectedExecutionException {@inheritDoc}
2414       */
588    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
589        implements RunnableFuture<T> {
590        final Runnable runnable;
591        final T resultOnCompletion;
592        T result;
593        AdaptedRunnable(Runnable runnable, T result) {
594            if (runnable == null) throw new NullPointerException();
595            this.runnable = runnable;
596            this.resultOnCompletion = result;
597        }
598        public T getRawResult() { return result; }
599        public void setRawResult(T v) { result = v; }
600        public boolean exec() {
601            runnable.run();
602            result = resultOnCompletion;
603            return true;
604        }
605        public void run() { invoke(); }
606    }
607
608    /**
609     * Adaptor for Callables
610     */
611    static final class AdaptedCallable<T> extends ForkJoinTask<T>
612        implements RunnableFuture<T> {
613        final Callable<T> callable;
614        T result;
615        AdaptedCallable(Callable<T> callable) {
616            if (callable == null) throw new NullPointerException();
617            this.callable = callable;
618        }
619        public T getRawResult() { return result; }
620        public void setRawResult(T v) { result = v; }
621        public boolean exec() {
622            try {
623                result = callable.call();
624                return true;
625            } catch (Error err) {
626                throw err;
627            } catch (RuntimeException rex) {
628                throw rex;
629            } catch (Exception ex) {
630                throw new RuntimeException(ex);
631            }
632        }
633        public void run() { invoke(); }
634    }
635
2415      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2416 <        ArrayList<ForkJoinTask<T>> ts =
2417 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2418 <        for (Callable<T> c : tasks)
2419 <            ts.add(new AdaptedCallable<T>(c));
2420 <        invoke(new InvokeAll<T>(ts));
2421 <        return (List<Future<T>>)(List)ts;
2422 <    }
2416 >        // In previous versions of this class, this method constructed
2417 >        // a task to run ForkJoinTask.invokeAll, but now external
2418 >        // invocation of multiple tasks is at least as efficient.
2419 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2420 >        // Workaround needed because method wasn't declared with
2421 >        // wildcards in return type but should have been.
2422 >        @SuppressWarnings({"unchecked", "rawtypes"})
2423 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2424  
2425 <    static final class InvokeAll<T> extends RecursiveAction {
2426 <        final ArrayList<ForkJoinTask<T>> tasks;
2427 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2428 <        public void compute() {
2429 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2425 >        boolean done = false;
2426 >        try {
2427 >            for (Callable<T> t : tasks) {
2428 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2429 >                doSubmit(f);
2430 >                fs.add(f);
2431 >            }
2432 >            for (ForkJoinTask<T> f : fs)
2433 >                f.quietlyJoin();
2434 >            done = true;
2435 >            return futures;
2436 >        } finally {
2437 >            if (!done)
2438 >                for (ForkJoinTask<T> f : fs)
2439 >                    f.cancel(false);
2440          }
2441      }
2442  
653    // Configuration and status settings and queries
654
2443      /**
2444 <     * Returns the factory used for constructing new workers
2444 >     * Returns the factory used for constructing new workers.
2445       *
2446       * @return the factory used for constructing new workers
2447       */
# Line 664 | Line 2452 | public class ForkJoinPool extends Abstra
2452      /**
2453       * Returns the handler for internal worker threads that terminate
2454       * due to unrecoverable errors encountered while executing tasks.
2455 <     * @return the handler, or null if none
2455 >     *
2456 >     * @return the handler, or {@code null} if none
2457       */
2458      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2459 <        Thread.UncaughtExceptionHandler h;
671 <        final ReentrantLock lock = this.workerLock;
672 <        lock.lock();
673 <        try {
674 <            h = ueh;
675 <        } finally {
676 <            lock.unlock();
677 <        }
678 <        return h;
2459 >        return ueh;
2460      }
2461  
2462      /**
2463 <     * Sets the handler for internal worker threads that terminate due
683 <     * to unrecoverable errors encountered while executing tasks.
684 <     * Unless set, the current default or ThreadGroup handler is used
685 <     * as handler.
2463 >     * Returns the targeted parallelism level of this pool.
2464       *
2465 <     * @param h the new handler
688 <     * @return the old handler, or null if none
689 <     * @throws SecurityException if a security manager exists and
690 <     *         the caller is not permitted to modify threads
691 <     *         because it does not hold {@link
692 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2465 >     * @return the targeted parallelism level of this pool
2466       */
2467 <    public Thread.UncaughtExceptionHandler
2468 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
696 <        checkPermission();
697 <        Thread.UncaughtExceptionHandler old = null;
698 <        final ReentrantLock lock = this.workerLock;
699 <        lock.lock();
700 <        try {
701 <            old = ueh;
702 <            ueh = h;
703 <            ForkJoinWorkerThread[] ws = workers;
704 <            if (ws != null) {
705 <                for (int i = 0; i < ws.length; ++i) {
706 <                    ForkJoinWorkerThread w = ws[i];
707 <                    if (w != null)
708 <                        w.setUncaughtExceptionHandler(h);
709 <                }
710 <            }
711 <        } finally {
712 <            lock.unlock();
713 <        }
714 <        return old;
715 <    }
716 <
717 <
718 <    /**
719 <     * Sets the target parallelism level of this pool.
720 <     * @param parallelism the target parallelism
721 <     * @throws IllegalArgumentException if parallelism less than or
722 <     * equal to zero or greater than maximum size bounds
723 <     * @throws SecurityException if a security manager exists and
724 <     *         the caller is not permitted to modify threads
725 <     *         because it does not hold {@link
726 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
727 <     */
728 <    public void setParallelism(int parallelism) {
729 <        checkPermission();
730 <        if (parallelism <= 0 || parallelism > maxPoolSize)
731 <            throw new IllegalArgumentException();
732 <        final ReentrantLock lock = this.workerLock;
733 <        lock.lock();
734 <        try {
735 <            if (!isTerminating()) {
736 <                int p = this.parallelism;
737 <                this.parallelism = parallelism;
738 <                if (parallelism > p)
739 <                    createAndStartAddedWorkers();
740 <                else
741 <                    trimSpares();
742 <            }
743 <        } finally {
744 <            lock.unlock();
745 <        }
746 <        signalIdleWorkers();
2467 >    public int getParallelism() {
2468 >        return parallelism;
2469      }
2470  
2471      /**
2472 <     * Returns the targeted number of worker threads in this pool.
2472 >     * Returns the targeted parallelism level of the common pool.
2473       *
2474 <     * @return the targeted number of worker threads in this pool
2474 >     * @return the targeted parallelism level of the common pool
2475       */
2476 <    public int getParallelism() {
2477 <        return parallelism;
2476 >    public static int getCommonPoolParallelism() {
2477 >        return commonPoolParallelism;
2478      }
2479  
2480      /**
2481       * Returns the number of worker threads that have started but not
2482 <     * yet terminated.  This result returned by this method may differ
2483 <     * from {@code getParallelism} when threads are created to
2482 >     * yet terminated.  The result returned by this method may differ
2483 >     * from {@link #getParallelism} when threads are created to
2484       * maintain parallelism when others are cooperatively blocked.
2485       *
2486       * @return the number of worker threads
2487       */
2488      public int getPoolSize() {
2489 <        return totalCountOf(workerCounts);
2489 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2490      }
2491  
2492      /**
2493 <     * Returns the maximum number of threads allowed to exist in the
772 <     * pool, even if there are insufficient unblocked running threads.
773 <     * @return the maximum
774 <     */
775 <    public int getMaximumPoolSize() {
776 <        return maxPoolSize;
777 <    }
778 <
779 <    /**
780 <     * Sets the maximum number of threads allowed to exist in the
781 <     * pool, even if there are insufficient unblocked running threads.
782 <     * Setting this value has no effect on current pool size. It
783 <     * controls construction of new threads.
784 <     * @throws IllegalArgumentException if negative or greater then
785 <     * internal implementation limit
786 <     */
787 <    public void setMaximumPoolSize(int newMax) {
788 <        if (newMax < 0 || newMax > MAX_THREADS)
789 <            throw new IllegalArgumentException();
790 <        maxPoolSize = newMax;
791 <    }
792 <
793 <
794 <    /**
795 <     * Returns true if this pool dynamically maintains its target
796 <     * parallelism level. If false, new threads are added only to
797 <     * avoid possible starvation.
798 <     * This setting is by default true;
799 <     * @return true if maintains parallelism
800 <     */
801 <    public boolean getMaintainsParallelism() {
802 <        return maintainsParallelism;
803 <    }
804 <
805 <    /**
806 <     * Sets whether this pool dynamically maintains its target
807 <     * parallelism level. If false, new threads are added only to
808 <     * avoid possible starvation.
809 <     * @param enable true to maintains parallelism
810 <     */
811 <    public void setMaintainsParallelism(boolean enable) {
812 <        maintainsParallelism = enable;
813 <    }
814 <
815 <    /**
816 <     * Establishes local first-in-first-out scheduling mode for forked
817 <     * tasks that are never joined. This mode may be more appropriate
818 <     * than default locally stack-based mode in applications in which
819 <     * worker threads only process asynchronous tasks.  This method is
820 <     * designed to be invoked only when pool is quiescent, and
821 <     * typically only before any tasks are submitted. The effects of
822 <     * invocations at other times may be unpredictable.
823 <     *
824 <     * @param async if true, use locally FIFO scheduling
825 <     * @return the previous mode
826 <     */
827 <    public boolean setAsyncMode(boolean async) {
828 <        boolean oldMode = locallyFifo;
829 <        locallyFifo = async;
830 <        ForkJoinWorkerThread[] ws = workers;
831 <        if (ws != null) {
832 <            for (int i = 0; i < ws.length; ++i) {
833 <                ForkJoinWorkerThread t = ws[i];
834 <                if (t != null)
835 <                    t.setAsyncMode(async);
836 <            }
837 <        }
838 <        return oldMode;
839 <    }
840 <
841 <    /**
842 <     * Returns true if this pool uses local first-in-first-out
2493 >     * Returns {@code true} if this pool uses local first-in-first-out
2494       * scheduling mode for forked tasks that are never joined.
2495       *
2496 <     * @return true if this pool uses async mode
2496 >     * @return {@code true} if this pool uses async mode
2497       */
2498      public boolean getAsyncMode() {
2499 <        return locallyFifo;
2499 >        return localMode != 0;
2500      }
2501  
2502      /**
2503       * Returns an estimate of the number of worker threads that are
2504       * not blocked waiting to join tasks or for other managed
2505 <     * synchronization.
2505 >     * synchronization. This method may overestimate the
2506 >     * number of running threads.
2507       *
2508       * @return the number of worker threads
2509       */
2510      public int getRunningThreadCount() {
2511 <        return runningCountOf(workerCounts);
2511 >        int rc = 0;
2512 >        WorkQueue[] ws; WorkQueue w;
2513 >        if ((ws = workQueues) != null) {
2514 >            for (int i = 1; i < ws.length; i += 2) {
2515 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2516 >                    ++rc;
2517 >            }
2518 >        }
2519 >        return rc;
2520      }
2521  
2522      /**
2523       * Returns an estimate of the number of threads that are currently
2524       * stealing or executing tasks. This method may overestimate the
2525       * number of active threads.
2526 +     *
2527       * @return the number of active threads
2528       */
2529      public int getActiveThreadCount() {
2530 <        return activeCountOf(runControl);
2531 <    }
871 <
872 <    /**
873 <     * Returns an estimate of the number of threads that are currently
874 <     * idle waiting for tasks. This method may underestimate the
875 <     * number of idle threads.
876 <     * @return the number of idle threads
877 <     */
878 <    final int getIdleThreadCount() {
879 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
880 <        return (c <= 0)? 0 : c;
2530 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2531 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2532      }
2533  
2534      /**
2535 <     * Returns true if all worker threads are currently idle. An idle
2536 <     * worker is one that cannot obtain a task to execute because none
2537 <     * are available to steal from other threads, and there are no
2538 <     * pending submissions to the pool. This method is conservative:
2539 <     * It might not return true immediately upon idleness of all
2540 <     * threads, but will eventually become true if threads remain
2541 <     * inactive.
2542 <     * @return true if all threads are currently idle
2535 >     * Returns {@code true} if all worker threads are currently idle.
2536 >     * An idle worker is one that cannot obtain a task to execute
2537 >     * because none are available to steal from other threads, and
2538 >     * there are no pending submissions to the pool. This method is
2539 >     * conservative; it might not return {@code true} immediately upon
2540 >     * idleness of all threads, but will eventually become true if
2541 >     * threads remain inactive.
2542 >     *
2543 >     * @return {@code true} if all threads are currently idle
2544       */
2545      public boolean isQuiescent() {
2546 <        return activeCountOf(runControl) == 0;
2546 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2547      }
2548  
2549      /**
# Line 899 | Line 2551 | public class ForkJoinPool extends Abstra
2551       * one thread's work queue by another. The reported value
2552       * underestimates the actual total number of steals when the pool
2553       * is not quiescent. This value may be useful for monitoring and
2554 <     * tuning fork/join programs: In general, steal counts should be
2554 >     * tuning fork/join programs: in general, steal counts should be
2555       * high enough to keep threads busy, but low enough to avoid
2556       * overhead and contention across threads.
2557 +     *
2558       * @return the number of steals
2559       */
2560      public long getStealCount() {
2561 <        return stealCount.get();
2562 <    }
2563 <
2564 <    /**
2565 <     * Accumulate steal count from a worker. Call only
2566 <     * when worker known to be idle.
2567 <     */
2568 <    private void updateStealCount(ForkJoinWorkerThread w) {
2569 <        int sc = w.getAndClearStealCount();
917 <        if (sc != 0)
918 <            stealCount.addAndGet(sc);
2561 >        long count = stealCount.get();
2562 >        WorkQueue[] ws; WorkQueue w;
2563 >        if ((ws = workQueues) != null) {
2564 >            for (int i = 1; i < ws.length; i += 2) {
2565 >                if ((w = ws[i]) != null)
2566 >                    count += w.totalSteals;
2567 >            }
2568 >        }
2569 >        return count;
2570      }
2571  
2572      /**
# Line 925 | Line 2576 | public class ForkJoinPool extends Abstra
2576       * an approximation, obtained by iterating across all threads in
2577       * the pool. This method may be useful for tuning task
2578       * granularities.
2579 +     *
2580       * @return the number of queued tasks
2581       */
2582      public long getQueuedTaskCount() {
2583          long count = 0;
2584 <        ForkJoinWorkerThread[] ws = workers;
2585 <        if (ws != null) {
2586 <            for (int i = 0; i < ws.length; ++i) {
2587 <                ForkJoinWorkerThread t = ws[i];
2588 <                if (t != null)
937 <                    count += t.getQueueSize();
2584 >        WorkQueue[] ws; WorkQueue w;
2585 >        if ((ws = workQueues) != null) {
2586 >            for (int i = 1; i < ws.length; i += 2) {
2587 >                if ((w = ws[i]) != null)
2588 >                    count += w.queueSize();
2589              }
2590          }
2591          return count;
2592      }
2593  
2594      /**
2595 <     * Returns an estimate of the number tasks submitted to this pool
2596 <     * that have not yet begun executing. This method takes time
2597 <     * proportional to the number of submissions.
2595 >     * Returns an estimate of the number of tasks submitted to this
2596 >     * pool that have not yet begun executing.  This method may take
2597 >     * time proportional to the number of submissions.
2598 >     *
2599       * @return the number of queued submissions
2600       */
2601      public int getQueuedSubmissionCount() {
2602 <        return submissionQueue.size();
2602 >        int count = 0;
2603 >        WorkQueue[] ws; WorkQueue w;
2604 >        if ((ws = workQueues) != null) {
2605 >            for (int i = 0; i < ws.length; i += 2) {
2606 >                if ((w = ws[i]) != null)
2607 >                    count += w.queueSize();
2608 >            }
2609 >        }
2610 >        return count;
2611      }
2612  
2613      /**
2614 <     * Returns true if there are any tasks submitted to this pool
2615 <     * that have not yet begun executing.
2614 >     * Returns {@code true} if there are any tasks submitted to this
2615 >     * pool that have not yet begun executing.
2616 >     *
2617       * @return {@code true} if there are any queued submissions
2618       */
2619      public boolean hasQueuedSubmissions() {
2620 <        return !submissionQueue.isEmpty();
2620 >        WorkQueue[] ws; WorkQueue w;
2621 >        if ((ws = workQueues) != null) {
2622 >            for (int i = 0; i < ws.length; i += 2) {
2623 >                if ((w = ws[i]) != null && !w.isEmpty())
2624 >                    return true;
2625 >            }
2626 >        }
2627 >        return false;
2628      }
2629  
2630      /**
2631       * Removes and returns the next unexecuted submission if one is
2632       * available.  This method may be useful in extensions to this
2633       * class that re-assign work in systems with multiple pools.
2634 <     * @return the next submission, or null if none
2634 >     *
2635 >     * @return the next submission, or {@code null} if none
2636       */
2637      protected ForkJoinTask<?> pollSubmission() {
2638 <        return submissionQueue.poll();
2638 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2639 >        if ((ws = workQueues) != null) {
2640 >            for (int i = 0; i < ws.length; i += 2) {
2641 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2642 >                    return t;
2643 >            }
2644 >        }
2645 >        return null;
2646      }
2647  
2648      /**
2649       * Removes all available unexecuted submitted and forked tasks
2650       * from scheduling queues and adds them to the given collection,
2651       * without altering their execution status. These may include
2652 <     * artificially generated or wrapped tasks. This method is designed
2653 <     * to be invoked only when the pool is known to be
2652 >     * artificially generated or wrapped tasks. This method is
2653 >     * designed to be invoked only when the pool is known to be
2654       * quiescent. Invocations at other times may not remove all
2655       * tasks. A failure encountered while attempting to add elements
2656       * to collection {@code c} may result in elements being in
# Line 982 | Line 2658 | public class ForkJoinPool extends Abstra
2658       * exception is thrown.  The behavior of this operation is
2659       * undefined if the specified collection is modified while the
2660       * operation is in progress.
2661 +     *
2662       * @param c the collection to transfer elements into
2663       * @return the number of elements transferred
2664       */
2665 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
2666 <        int n = submissionQueue.drainTo(c);
2667 <        ForkJoinWorkerThread[] ws = workers;
2668 <        if (ws != null) {
2665 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2666 >        int count = 0;
2667 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2668 >        if ((ws = workQueues) != null) {
2669              for (int i = 0; i < ws.length; ++i) {
2670 <                ForkJoinWorkerThread w = ws[i];
2671 <                if (w != null)
2672 <                    n += w.drainTasksTo(c);
2670 >                if ((w = ws[i]) != null) {
2671 >                    while ((t = w.poll()) != null) {
2672 >                        c.add(t);
2673 >                        ++count;
2674 >                    }
2675 >                }
2676              }
2677          }
2678 <        return n;
2678 >        return count;
2679      }
2680  
2681      /**
# Line 1006 | Line 2686 | public class ForkJoinPool extends Abstra
2686       * @return a string identifying this pool, as well as its state
2687       */
2688      public String toString() {
2689 <        int ps = parallelism;
2690 <        int wc = workerCounts;
2691 <        int rc = runControl;
2692 <        long st = getStealCount();
2693 <        long qt = getQueuedTaskCount();
2694 <        long qs = getQueuedSubmissionCount();
2689 >        // Use a single pass through workQueues to collect counts
2690 >        long qt = 0L, qs = 0L; int rc = 0;
2691 >        long st = stealCount.get();
2692 >        long c = ctl;
2693 >        WorkQueue[] ws; WorkQueue w;
2694 >        if ((ws = workQueues) != null) {
2695 >            for (int i = 0; i < ws.length; ++i) {
2696 >                if ((w = ws[i]) != null) {
2697 >                    int size = w.queueSize();
2698 >                    if ((i & 1) == 0)
2699 >                        qs += size;
2700 >                    else {
2701 >                        qt += size;
2702 >                        st += w.totalSteals;
2703 >                        if (w.isApparentlyUnblocked())
2704 >                            ++rc;
2705 >                    }
2706 >                }
2707 >            }
2708 >        }
2709 >        int pc = parallelism;
2710 >        int tc = pc + (short)(c >>> TC_SHIFT);
2711 >        int ac = pc + (int)(c >> AC_SHIFT);
2712 >        if (ac < 0) // ignore transient negative
2713 >            ac = 0;
2714 >        String level;
2715 >        if ((c & STOP_BIT) != 0)
2716 >            level = (tc == 0) ? "Terminated" : "Terminating";
2717 >        else
2718 >            level = runState < 0 ? "Shutting down" : "Running";
2719          return super.toString() +
2720 <            "[" + runStateToString(runStateOf(rc)) +
2721 <            ", parallelism = " + ps +
2722 <            ", size = " + totalCountOf(wc) +
2723 <            ", active = " + activeCountOf(rc) +
2724 <            ", running = " + runningCountOf(wc) +
2720 >            "[" + level +
2721 >            ", parallelism = " + pc +
2722 >            ", size = " + tc +
2723 >            ", active = " + ac +
2724 >            ", running = " + rc +
2725              ", steals = " + st +
2726              ", tasks = " + qt +
2727              ", submissions = " + qs +
2728              "]";
2729      }
2730  
1027    private static String runStateToString(int rs) {
1028        switch(rs) {
1029        case RUNNING: return "Running";
1030        case SHUTDOWN: return "Shutting down";
1031        case TERMINATING: return "Terminating";
1032        case TERMINATED: return "Terminated";
1033        default: throw new Error("Unknown run state");
1034        }
1035    }
1036
1037    // lifecycle control
1038
2731      /**
2732 <     * Initiates an orderly shutdown in which previously submitted
2733 <     * tasks are executed, but no new tasks will be accepted.
2734 <     * Invocation has no additional effect if already shut down.
2735 <     * Tasks that are in the process of being submitted concurrently
2736 <     * during the course of this method may or may not be rejected.
2732 >     * Possibly initiates an orderly shutdown in which previously
2733 >     * submitted tasks are executed, but no new tasks will be
2734 >     * accepted. Invocation has no effect on execution state if this
2735 >     * is the {@link #commonPool}, and no additional effect if
2736 >     * already shut down.  Tasks that are in the process of being
2737 >     * submitted concurrently during the course of this method may or
2738 >     * may not be rejected.
2739 >     *
2740       * @throws SecurityException if a security manager exists and
2741       *         the caller is not permitted to modify threads
2742       *         because it does not hold {@link
2743 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2743 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2744       */
2745      public void shutdown() {
2746          checkPermission();
2747 <        transitionRunStateTo(SHUTDOWN);
2748 <        if (canTerminateOnShutdown(runControl))
1054 <            terminateOnShutdown();
2747 >        if (this != commonPool)
2748 >            tryTerminate(false, true);
2749      }
2750  
2751      /**
2752 <     * Attempts to stop all actively executing tasks, and cancels all
2753 <     * waiting tasks.  Tasks that are in the process of being
2754 <     * submitted or executed concurrently during the course of this
2755 <     * method may or may not be rejected. Unlike some other executors,
2756 <     * this method cancels rather than collects non-executed tasks
2757 <     * upon termination, so always returns an empty list. However, you
2758 <     * can use method {@code drainTasksTo} before invoking this
2759 <     * method to transfer unexecuted tasks to another collection.
2752 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2753 >     * all subsequently submitted tasks.  Invocation has no effect on
2754 >     * execution state if this is the {@link #commonPool}, and no
2755 >     * additional effect if already shut down. Otherwise, tasks that
2756 >     * are in the process of being submitted or executed concurrently
2757 >     * during the course of this method may or may not be
2758 >     * rejected. This method cancels both existing and unexecuted
2759 >     * tasks, in order to permit termination in the presence of task
2760 >     * dependencies. So the method always returns an empty list
2761 >     * (unlike the case for some other Executors).
2762 >     *
2763       * @return an empty list
2764       * @throws SecurityException if a security manager exists and
2765       *         the caller is not permitted to modify threads
2766       *         because it does not hold {@link
2767 <     *         java.lang.RuntimePermission}{@code ("modifyThread")},
2767 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2768       */
2769      public List<Runnable> shutdownNow() {
2770          checkPermission();
2771 <        terminate();
2771 >        if (this != commonPool)
2772 >            tryTerminate(true, true);
2773          return Collections.emptyList();
2774      }
2775  
# Line 1081 | Line 2779 | public class ForkJoinPool extends Abstra
2779       * @return {@code true} if all tasks have completed following shut down
2780       */
2781      public boolean isTerminated() {
2782 <        return runStateOf(runControl) == TERMINATED;
2782 >        long c = ctl;
2783 >        return ((c & STOP_BIT) != 0L &&
2784 >                (short)(c >>> TC_SHIFT) == -parallelism);
2785      }
2786  
2787      /**
2788       * Returns {@code true} if the process of termination has
2789 <     * commenced but possibly not yet completed.
2789 >     * commenced but not yet completed.  This method may be useful for
2790 >     * debugging. A return of {@code true} reported a sufficient
2791 >     * period after shutdown may indicate that submitted tasks have
2792 >     * ignored or suppressed interruption, or are waiting for IO,
2793 >     * causing this executor not to properly terminate. (See the
2794 >     * advisory notes for class {@link ForkJoinTask} stating that
2795 >     * tasks should not normally entail blocking operations.  But if
2796 >     * they do, they must abort them on interrupt.)
2797       *
2798 <     * @return {@code true} if terminating
2798 >     * @return {@code true} if terminating but not yet terminated
2799       */
2800      public boolean isTerminating() {
2801 <        return runStateOf(runControl) >= TERMINATING;
2801 >        long c = ctl;
2802 >        return ((c & STOP_BIT) != 0L &&
2803 >                (short)(c >>> TC_SHIFT) != -parallelism);
2804      }
2805  
2806      /**
# Line 1100 | Line 2809 | public class ForkJoinPool extends Abstra
2809       * @return {@code true} if this pool has been shut down
2810       */
2811      public boolean isShutdown() {
2812 <        return runStateOf(runControl) >= SHUTDOWN;
2812 >        return runState < 0;
2813      }
2814  
2815      /**
# Line 1117 | Line 2826 | public class ForkJoinPool extends Abstra
2826      public boolean awaitTermination(long timeout, TimeUnit unit)
2827          throws InterruptedException {
2828          long nanos = unit.toNanos(timeout);
2829 <        final ReentrantLock lock = this.workerLock;
2829 >        final Mutex lock = this.lock;
2830          lock.lock();
2831          try {
2832              for (;;) {
# Line 1132 | Line 2841 | public class ForkJoinPool extends Abstra
2841          }
2842      }
2843  
1135    // Shutdown and termination support
1136
1137    /**
1138     * Callback from terminating worker. Null out the corresponding
1139     * workers slot, and if terminating, try to terminate, else try to
1140     * shrink workers array.
1141     * @param w the worker
1142     */
1143    final void workerTerminated(ForkJoinWorkerThread w) {
1144        updateStealCount(w);
1145        updateWorkerCount(-1);
1146        final ReentrantLock lock = this.workerLock;
1147        lock.lock();
1148        try {
1149            ForkJoinWorkerThread[] ws = workers;
1150            if (ws != null) {
1151                int idx = w.poolIndex;
1152                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1153                    ws[idx] = null;
1154                if (totalCountOf(workerCounts) == 0) {
1155                    terminate(); // no-op if already terminating
1156                    transitionRunStateTo(TERMINATED);
1157                    termination.signalAll();
1158                }
1159                else if (!isTerminating()) {
1160                    tryShrinkWorkerArray();
1161                    tryResumeSpare(true); // allow replacement
1162                }
1163            }
1164        } finally {
1165            lock.unlock();
1166        }
1167        signalIdleWorkers();
1168    }
1169
1170    /**
1171     * Initiate termination.
1172     */
1173    private void terminate() {
1174        if (transitionRunStateTo(TERMINATING)) {
1175            stopAllWorkers();
1176            resumeAllSpares();
1177            signalIdleWorkers();
1178            cancelQueuedSubmissions();
1179            cancelQueuedWorkerTasks();
1180            interruptUnterminatedWorkers();
1181            signalIdleWorkers(); // resignal after interrupt
1182        }
1183    }
1184
1185    /**
1186     * Possibly terminates when on shutdown state.
1187     */
1188    private void terminateOnShutdown() {
1189        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1190            terminate();
1191    }
1192
1193    /**
1194     * Clears out and cancels submissions.
1195     */
1196    private void cancelQueuedSubmissions() {
1197        ForkJoinTask<?> task;
1198        while ((task = pollSubmission()) != null)
1199            task.cancel(false);
1200    }
1201
1202    /**
1203     * Cleans out worker queues.
1204     */
1205    private void cancelQueuedWorkerTasks() {
1206        final ReentrantLock lock = this.workerLock;
1207        lock.lock();
1208        try {
1209            ForkJoinWorkerThread[] ws = workers;
1210            if (ws != null) {
1211                for (int i = 0; i < ws.length; ++i) {
1212                    ForkJoinWorkerThread t = ws[i];
1213                    if (t != null)
1214                        t.cancelTasks();
1215                }
1216            }
1217        } finally {
1218            lock.unlock();
1219        }
1220    }
1221
1222    /**
1223     * Sets each worker's status to terminating. Requires lock to avoid
1224     * conflicts with add/remove.
1225     */
1226    private void stopAllWorkers() {
1227        final ReentrantLock lock = this.workerLock;
1228        lock.lock();
1229        try {
1230            ForkJoinWorkerThread[] ws = workers;
1231            if (ws != null) {
1232                for (int i = 0; i < ws.length; ++i) {
1233                    ForkJoinWorkerThread t = ws[i];
1234                    if (t != null)
1235                        t.shutdownNow();
1236                }
1237            }
1238        } finally {
1239            lock.unlock();
1240        }
1241    }
1242
2844      /**
2845 <     * Interrupts all unterminated workers.  This is not required for
2846 <     * sake of internal control, but may help unstick user code during
1246 <     * shutdown.
1247 <     */
1248 <    private void interruptUnterminatedWorkers() {
1249 <        final ReentrantLock lock = this.workerLock;
1250 <        lock.lock();
1251 <        try {
1252 <            ForkJoinWorkerThread[] ws = workers;
1253 <            if (ws != null) {
1254 <                for (int i = 0; i < ws.length; ++i) {
1255 <                    ForkJoinWorkerThread t = ws[i];
1256 <                    if (t != null && !t.isTerminated()) {
1257 <                        try {
1258 <                            t.interrupt();
1259 <                        } catch (SecurityException ignore) {
1260 <                        }
1261 <                    }
1262 <                }
1263 <            }
1264 <        } finally {
1265 <            lock.unlock();
1266 <        }
1267 <    }
1268 <
1269 <
1270 <    /*
1271 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1272 <     * are basic Treiber stack nodes, also used for spare stack.
2845 >     * Interface for extending managed parallelism for tasks running
2846 >     * in {@link ForkJoinPool}s.
2847       *
2848 <     * The event barrier has an event count and a wait queue (actually
2849 <     * a Treiber stack).  Workers are enabled to look for work when
2850 <     * the eventCount is incremented. If they fail to find work, they
2851 <     * may wait for next count. Upon release, threads help others wake
2852 <     * up.
2853 <     *
2854 <     * Synchronization events occur only in enough contexts to
2855 <     * maintain overall liveness:
2856 <     *
2857 <     *   - Submission of a new task to the pool
2858 <     *   - Resizes or other changes to the workers array
2859 <     *   - pool termination
2860 <     *   - A worker pushing a task on an empty queue
1287 <     *
1288 <     * The case of pushing a task occurs often enough, and is heavy
1289 <     * enough compared to simple stack pushes, to require special
1290 <     * handling: Method signalWork returns without advancing count if
1291 <     * the queue appears to be empty.  This would ordinarily result in
1292 <     * races causing some queued waiters not to be woken up. To avoid
1293 <     * this, the first worker enqueued in method sync (see
1294 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1295 <     * helps signal if any are found. This works well because the
1296 <     * worker has nothing better to do, and so might as well help
1297 <     * alleviate the overhead and contention on the threads actually
1298 <     * doing work.  Also, since event counts increments on task
1299 <     * availability exist to maintain liveness (rather than to force
1300 <     * refreshes etc), it is OK for callers to exit early if
1301 <     * contending with another signaller.
1302 <     */
1303 <    static final class WaitQueueNode {
1304 <        WaitQueueNode next; // only written before enqueued
1305 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1306 <        final long count; // unused for spare stack
1307 <
1308 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1309 <            count = c;
1310 <            thread = w;
1311 <        }
1312 <
1313 <        /**
1314 <         * Wakes up waiter, returning false if known to already
1315 <         */
1316 <        boolean signal() {
1317 <            ForkJoinWorkerThread t = thread;
1318 <            if (t == null)
1319 <                return false;
1320 <            thread = null;
1321 <            LockSupport.unpark(t);
1322 <            return true;
1323 <        }
1324 <
1325 <        /**
1326 <         * Awaits release on sync.
1327 <         */
1328 <        void awaitSyncRelease(ForkJoinPool p) {
1329 <            while (thread != null && !p.syncIsReleasable(this))
1330 <                LockSupport.park(this);
1331 <        }
1332 <
1333 <        /**
1334 <         * Awaits resumption as spare.
1335 <         */
1336 <        void awaitSpareRelease() {
1337 <            while (thread != null) {
1338 <                if (!Thread.interrupted())
1339 <                    LockSupport.park(this);
1340 <            }
1341 <        }
1342 <    }
1343 <
1344 <    /**
1345 <     * Ensures that no thread is waiting for count to advance from the
1346 <     * current value of eventCount read on entry to this method, by
1347 <     * releasing waiting threads if necessary.
1348 <     * @return the count
1349 <     */
1350 <    final long ensureSync() {
1351 <        long c = eventCount;
1352 <        WaitQueueNode q;
1353 <        while ((q = syncStack) != null && q.count < c) {
1354 <            if (casBarrierStack(q, null)) {
1355 <                do {
1356 <                    q.signal();
1357 <                } while ((q = q.next) != null);
1358 <                break;
1359 <            }
1360 <        }
1361 <        return c;
1362 <    }
1363 <
1364 <    /**
1365 <     * Increments event count and releases waiting threads.
1366 <     */
1367 <    private void signalIdleWorkers() {
1368 <        long c;
1369 <        do;while (!casEventCount(c = eventCount, c+1));
1370 <        ensureSync();
1371 <    }
1372 <
1373 <    /**
1374 <     * Signals threads waiting to poll a task. Because method sync
1375 <     * rechecks availability, it is OK to only proceed if queue
1376 <     * appears to be non-empty, and OK to skip under contention to
1377 <     * increment count (since some other thread succeeded).
1378 <     */
1379 <    final void signalWork() {
1380 <        long c;
1381 <        WaitQueueNode q;
1382 <        if (syncStack != null &&
1383 <            casEventCount(c = eventCount, c+1) &&
1384 <            (((q = syncStack) != null && q.count <= c) &&
1385 <             (!casBarrierStack(q, q.next) || !q.signal())))
1386 <            ensureSync();
1387 <    }
1388 <
1389 <    /**
1390 <     * Waits until event count advances from last value held by
1391 <     * caller, or if excess threads, caller is resumed as spare, or
1392 <     * caller or pool is terminating. Updates caller's event on exit.
1393 <     * @param w the calling worker thread
1394 <     */
1395 <    final void sync(ForkJoinWorkerThread w) {
1396 <        updateStealCount(w); // Transfer w's count while it is idle
1397 <
1398 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1399 <            long prev = w.lastEventCount;
1400 <            WaitQueueNode node = null;
1401 <            WaitQueueNode h;
1402 <            while (eventCount == prev &&
1403 <                   ((h = syncStack) == null || h.count == prev)) {
1404 <                if (node == null)
1405 <                    node = new WaitQueueNode(prev, w);
1406 <                if (casBarrierStack(node.next = h, node)) {
1407 <                    node.awaitSyncRelease(this);
1408 <                    break;
1409 <                }
1410 <            }
1411 <            long ec = ensureSync();
1412 <            if (ec != prev) {
1413 <                w.lastEventCount = ec;
1414 <                break;
1415 <            }
1416 <        }
1417 <    }
1418 <
1419 <    /**
1420 <     * Returns true if worker waiting on sync can proceed:
1421 <     *  - on signal (thread == null)
1422 <     *  - on event count advance (winning race to notify vs signaller)
1423 <     *  - on Interrupt
1424 <     *  - if the first queued node, we find work available
1425 <     * If node was not signalled and event count not advanced on exit,
1426 <     * then we also help advance event count.
1427 <     * @return true if node can be released
1428 <     */
1429 <    final boolean syncIsReleasable(WaitQueueNode node) {
1430 <        long prev = node.count;
1431 <        if (!Thread.interrupted() && node.thread != null &&
1432 <            (node.next != null ||
1433 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1434 <            eventCount == prev)
1435 <            return false;
1436 <        if (node.thread != null) {
1437 <            node.thread = null;
1438 <            long ec = eventCount;
1439 <            if (prev <= ec) // help signal
1440 <                casEventCount(ec, ec+1);
1441 <        }
1442 <        return true;
1443 <    }
1444 <
1445 <    /**
1446 <     * Returns true if a new sync event occurred since last call to
1447 <     * sync or this method, if so, updating caller's count.
1448 <     */
1449 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1450 <        long lc = w.lastEventCount;
1451 <        long ec = ensureSync();
1452 <        if (ec == lc)
1453 <            return false;
1454 <        w.lastEventCount = ec;
1455 <        return true;
1456 <    }
1457 <
1458 <    //  Parallelism maintenance
1459 <
1460 <    /**
1461 <     * Decrements running count; if too low, adds spare.
2848 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
2849 >     * {@code isReleasable} must return {@code true} if blocking is
2850 >     * not necessary. Method {@code block} blocks the current thread
2851 >     * if necessary (perhaps internally invoking {@code isReleasable}
2852 >     * before actually blocking). These actions are performed by any
2853 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2854 >     * unusual methods in this API accommodate synchronizers that may,
2855 >     * but don't usually, block for long periods. Similarly, they
2856 >     * allow more efficient internal handling of cases in which
2857 >     * additional workers may be, but usually are not, needed to
2858 >     * ensure sufficient parallelism.  Toward this end,
2859 >     * implementations of method {@code isReleasable} must be amenable
2860 >     * to repeated invocation.
2861       *
1463     * Conceptually, all we need to do here is add or resume a
1464     * spare thread when one is about to block (and remove or
1465     * suspend it later when unblocked -- see suspendIfSpare).
1466     * However, implementing this idea requires coping with
1467     * several problems: We have imperfect information about the
1468     * states of threads. Some count updates can and usually do
1469     * lag run state changes, despite arrangements to keep them
1470     * accurate (for example, when possible, updating counts
1471     * before signalling or resuming), especially when running on
1472     * dynamic JVMs that don't optimize the infrequent paths that
1473     * update counts. Generating too many threads can make these
1474     * problems become worse, because excess threads are more
1475     * likely to be context-switched with others, slowing them all
1476     * down, especially if there is no work available, so all are
1477     * busy scanning or idling.  Also, excess spare threads can
1478     * only be suspended or removed when they are idle, not
1479     * immediately when they aren't needed. So adding threads will
1480     * raise parallelism level for longer than necessary.  Also,
1481     * FJ applications often encounter highly transient peaks when
1482     * many threads are blocked joining, but for less time than it
1483     * takes to create or resume spares.
1484     *
1485     * @param joinMe if non-null, return early if done
1486     * @param maintainParallelism if true, try to stay within
1487     * target counts, else create only to avoid starvation
1488     * @return true if joinMe known to be done
1489     */
1490    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1491        maintainParallelism &= maintainsParallelism; // overrride
1492        boolean dec = false;  // true when running count decremented
1493        while (spareStack == null || !tryResumeSpare(dec)) {
1494            int counts = workerCounts;
1495            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1496                if (!needSpare(counts, maintainParallelism))
1497                    break;
1498                if (joinMe.status < 0)
1499                    return true;
1500                if (tryAddSpare(counts))
1501                    break;
1502            }
1503        }
1504        return false;
1505    }
1506
1507    /**
1508     * Same idea as preJoin
1509     */
1510    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1511        maintainParallelism &= maintainsParallelism;
1512        boolean dec = false;
1513        while (spareStack == null || !tryResumeSpare(dec)) {
1514            int counts = workerCounts;
1515            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1516                if (!needSpare(counts, maintainParallelism))
1517                    break;
1518                if (blocker.isReleasable())
1519                    return true;
1520                if (tryAddSpare(counts))
1521                    break;
1522            }
1523        }
1524        return false;
1525    }
1526
1527    /**
1528     * Returns true if a spare thread appears to be needed.  If
1529     * maintaining parallelism, returns true when the deficit in
1530     * running threads is more than the surplus of total threads, and
1531     * there is apparently some work to do.  This self-limiting rule
1532     * means that the more threads that have already been added, the
1533     * less parallelism we will tolerate before adding another.
1534     * @param counts current worker counts
1535     * @param maintainParallelism try to maintain parallelism
1536     */
1537    private boolean needSpare(int counts, boolean maintainParallelism) {
1538        int ps = parallelism;
1539        int rc = runningCountOf(counts);
1540        int tc = totalCountOf(counts);
1541        int runningDeficit = ps - rc;
1542        int totalSurplus = tc - ps;
1543        return (tc < maxPoolSize &&
1544                (rc == 0 || totalSurplus < 0 ||
1545                 (maintainParallelism &&
1546                  runningDeficit > totalSurplus &&
1547                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1548    }
1549
1550    /**
1551     * Adds a spare worker if lock available and no more than the
1552     * expected numbers of threads exist.
1553     * @return true if successful
1554     */
1555    private boolean tryAddSpare(int expectedCounts) {
1556        final ReentrantLock lock = this.workerLock;
1557        int expectedRunning = runningCountOf(expectedCounts);
1558        int expectedTotal = totalCountOf(expectedCounts);
1559        boolean success = false;
1560        boolean locked = false;
1561        // confirm counts while locking; CAS after obtaining lock
1562        try {
1563            for (;;) {
1564                int s = workerCounts;
1565                int tc = totalCountOf(s);
1566                int rc = runningCountOf(s);
1567                if (rc > expectedRunning || tc > expectedTotal)
1568                    break;
1569                if (!locked && !(locked = lock.tryLock()))
1570                    break;
1571                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1572                    createAndStartSpare(tc);
1573                    success = true;
1574                    break;
1575                }
1576            }
1577        } finally {
1578            if (locked)
1579                lock.unlock();
1580        }
1581        return success;
1582    }
1583
1584    /**
1585     * Adds the kth spare worker. On entry, pool counts are already
1586     * adjusted to reflect addition.
1587     */
1588    private void createAndStartSpare(int k) {
1589        ForkJoinWorkerThread w = null;
1590        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1591        int len = ws.length;
1592        // Probably, we can place at slot k. If not, find empty slot
1593        if (k < len && ws[k] != null) {
1594            for (k = 0; k < len && ws[k] != null; ++k)
1595                ;
1596        }
1597        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1598            ws[k] = w;
1599            w.start();
1600        }
1601        else
1602            updateWorkerCount(-1); // adjust on failure
1603        signalIdleWorkers();
1604    }
1605
1606    /**
1607     * Suspends calling thread w if there are excess threads.  Called
1608     * only from sync.  Spares are enqueued in a Treiber stack using
1609     * the same WaitQueueNodes as barriers.  They are resumed mainly
1610     * in preJoin, but are also woken on pool events that require all
1611     * threads to check run state.
1612     * @param w the caller
1613     */
1614    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1615        WaitQueueNode node = null;
1616        int s;
1617        while (parallelism < runningCountOf(s = workerCounts)) {
1618            if (node == null)
1619                node = new WaitQueueNode(0, w);
1620            if (casWorkerCounts(s, s-1)) { // representation-dependent
1621                // push onto stack
1622                do;while (!casSpareStack(node.next = spareStack, node));
1623                // block until released by resumeSpare
1624                node.awaitSpareRelease();
1625                return true;
1626            }
1627        }
1628        return false;
1629    }
1630
1631    /**
1632     * Tries to pop and resume a spare thread.
1633     * @param updateCount if true, increment running count on success
1634     * @return true if successful
1635     */
1636    private boolean tryResumeSpare(boolean updateCount) {
1637        WaitQueueNode q;
1638        while ((q = spareStack) != null) {
1639            if (casSpareStack(q, q.next)) {
1640                if (updateCount)
1641                    updateRunningCount(1);
1642                q.signal();
1643                return true;
1644            }
1645        }
1646        return false;
1647    }
1648
1649    /**
1650     * Pops and resumes all spare threads. Same idea as ensureSync.
1651     * @return true if any spares released
1652     */
1653    private boolean resumeAllSpares() {
1654        WaitQueueNode q;
1655        while ( (q = spareStack) != null) {
1656            if (casSpareStack(q, null)) {
1657                do {
1658                    updateRunningCount(1);
1659                    q.signal();
1660                } while ((q = q.next) != null);
1661                return true;
1662            }
1663        }
1664        return false;
1665    }
1666
1667    /**
1668     * Pops and shuts down excessive spare threads. Call only while
1669     * holding lock. This is not guaranteed to eliminate all excess
1670     * threads, only those suspended as spares, which are the ones
1671     * unlikely to be needed in the future.
1672     */
1673    private void trimSpares() {
1674        int surplus = totalCountOf(workerCounts) - parallelism;
1675        WaitQueueNode q;
1676        while (surplus > 0 && (q = spareStack) != null) {
1677            if (casSpareStack(q, null)) {
1678                do {
1679                    updateRunningCount(1);
1680                    ForkJoinWorkerThread w = q.thread;
1681                    if (w != null && surplus > 0 &&
1682                        runningCountOf(workerCounts) > 0 && w.shutdown())
1683                        --surplus;
1684                    q.signal();
1685                } while ((q = q.next) != null);
1686            }
1687        }
1688    }
1689
1690    /**
1691     * Interface for extending managed parallelism for tasks running
1692     * in ForkJoinPools. A ManagedBlocker provides two methods.
1693     * Method {@code isReleasable} must return true if blocking is not
1694     * necessary. Method {@code block} blocks the current thread
1695     * if necessary (perhaps internally invoking isReleasable before
1696     * actually blocking.).
2862       * <p>For example, here is a ManagedBlocker based on a
2863       * ReentrantLock:
2864 <     * <pre>
2865 <     *   class ManagedLocker implements ManagedBlocker {
2866 <     *     final ReentrantLock lock;
2867 <     *     boolean hasLock = false;
2868 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2869 <     *     public boolean block() {
2870 <     *        if (!hasLock)
2871 <     *           lock.lock();
2872 <     *        return true;
2873 <     *     }
2874 <     *     public boolean isReleasable() {
2875 <     *        return hasLock || (hasLock = lock.tryLock());
2876 <     *     }
2864 >     *  <pre> {@code
2865 >     * class ManagedLocker implements ManagedBlocker {
2866 >     *   final ReentrantLock lock;
2867 >     *   boolean hasLock = false;
2868 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
2869 >     *   public boolean block() {
2870 >     *     if (!hasLock)
2871 >     *       lock.lock();
2872 >     *     return true;
2873 >     *   }
2874 >     *   public boolean isReleasable() {
2875 >     *     return hasLock || (hasLock = lock.tryLock());
2876 >     *   }
2877 >     * }}</pre>
2878 >     *
2879 >     * <p>Here is a class that possibly blocks waiting for an
2880 >     * item on a given queue:
2881 >     *  <pre> {@code
2882 >     * class QueueTaker<E> implements ManagedBlocker {
2883 >     *   final BlockingQueue<E> queue;
2884 >     *   volatile E item = null;
2885 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2886 >     *   public boolean block() throws InterruptedException {
2887 >     *     if (item == null)
2888 >     *       item = queue.take();
2889 >     *     return true;
2890 >     *   }
2891 >     *   public boolean isReleasable() {
2892 >     *     return item != null || (item = queue.poll()) != null;
2893       *   }
2894 <     * </pre>
2894 >     *   public E getItem() { // call after pool.managedBlock completes
2895 >     *     return item;
2896 >     *   }
2897 >     * }}</pre>
2898       */
2899      public static interface ManagedBlocker {
2900          /**
2901           * Possibly blocks the current thread, for example waiting for
2902           * a lock or condition.
2903 <         * @return true if no additional blocking is necessary (i.e.,
2904 <         * if isReleasable would return true)
2903 >         *
2904 >         * @return {@code true} if no additional blocking is necessary
2905 >         * (i.e., if isReleasable would return true)
2906           * @throws InterruptedException if interrupted while waiting
2907 <         * (the method is not required to do so, but is allowed to).
2907 >         * (the method is not required to do so, but is allowed to)
2908           */
2909          boolean block() throws InterruptedException;
2910  
2911          /**
2912 <         * Returns true if blocking is unnecessary.
2912 >         * Returns {@code true} if blocking is unnecessary.
2913           */
2914          boolean isReleasable();
2915      }
2916  
2917      /**
2918       * Blocks in accord with the given blocker.  If the current thread
2919 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2920 <     * spare thread to be activated if necessary to ensure parallelism
2921 <     * while the current thread is blocked.  If
2922 <     * {@code maintainParallelism} is true and the pool supports
2923 <     * it ({@link #getMaintainsParallelism}), this method attempts to
2924 <     * maintain the pool's nominal parallelism. Otherwise if activates
2925 <     * a thread only if necessary to avoid complete starvation. This
2926 <     * option may be preferable when blockages use timeouts, or are
2927 <     * almost always brief.
2928 <     *
2929 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2930 <     * equivalent to
2931 <     * <pre>
2932 <     *   while (!blocker.isReleasable())
1748 <     *      if (blocker.block())
1749 <     *         return;
1750 <     * </pre>
1751 <     * If the caller is a ForkJoinTask, then the pool may first
1752 <     * be expanded to ensure parallelism, and later adjusted.
2919 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2920 >     * arranges for a spare thread to be activated if necessary to
2921 >     * ensure sufficient parallelism while the current thread is blocked.
2922 >     *
2923 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2924 >     * behaviorally equivalent to
2925 >     *  <pre> {@code
2926 >     * while (!blocker.isReleasable())
2927 >     *   if (blocker.block())
2928 >     *     return;
2929 >     * }</pre>
2930 >     *
2931 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2932 >     * first be expanded to ensure parallelism, and later adjusted.
2933       *
2934       * @param blocker the blocker
1755     * @param maintainParallelism if true and supported by this pool,
1756     * attempt to maintain the pool's nominal parallelism; otherwise
1757     * activate a thread only if necessary to avoid complete
1758     * starvation.
2935       * @throws InterruptedException if blocker.block did so
2936       */
2937 <    public static void managedBlock(ManagedBlocker blocker,
1762 <                                    boolean maintainParallelism)
2937 >    public static void managedBlock(ManagedBlocker blocker)
2938          throws InterruptedException {
2939          Thread t = Thread.currentThread();
2940 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
2941 <                             ((ForkJoinWorkerThread)t).pool : null);
2942 <        if (!blocker.isReleasable()) {
2943 <            try {
2944 <                if (pool == null ||
2945 <                    !pool.preBlock(blocker, maintainParallelism))
2946 <                    awaitBlocker(blocker);
2947 <            } finally {
2948 <                if (pool != null)
2949 <                    pool.updateRunningCount(1);
2940 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2941 >                          ((ForkJoinWorkerThread)t).pool : null);
2942 >        while (!blocker.isReleasable()) {
2943 >            if (p == null || p.tryCompensate(null, blocker)) {
2944 >                try {
2945 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2946 >                } finally {
2947 >                    if (p != null)
2948 >                        p.incrementActiveCount();
2949 >                }
2950 >                break;
2951              }
2952          }
2953      }
2954  
2955 <    private static void awaitBlocker(ManagedBlocker blocker)
2956 <        throws InterruptedException {
2957 <        do;while (!blocker.isReleasable() && !blocker.block());
1782 <    }
1783 <
1784 <    // AbstractExecutorService overrides
2955 >    // AbstractExecutorService overrides.  These rely on undocumented
2956 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2957 >    // implement RunnableFuture.
2958  
2959      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2960 <        return new AdaptedRunnable(runnable, value);
2960 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2961      }
2962  
2963      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2964 <        return new AdaptedCallable(callable);
2964 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
2965      }
2966  
2967 +    // Unsafe mechanics
2968 +    private static final sun.misc.Unsafe U;
2969 +    private static final long CTL;
2970 +    private static final long PARKBLOCKER;
2971 +    private static final int ABASE;
2972 +    private static final int ASHIFT;
2973  
2974 <    // Temporary Unsafe mechanics for preliminary release
2975 <    private static Unsafe getUnsafe() throws Throwable {
2974 >    static {
2975 >        poolNumberGenerator = new AtomicInteger();
2976 >        nextSubmitterSeed = new AtomicInteger(0x55555555);
2977 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2978 >        defaultForkJoinWorkerThreadFactory =
2979 >            new DefaultForkJoinWorkerThreadFactory();
2980 >        submitters = new ThreadSubmitter();
2981 >        initializationLock = new Mutex();
2982 >        int s;
2983          try {
2984 <            return Unsafe.getUnsafe();
2984 >            U = getUnsafe();
2985 >            Class<?> k = ForkJoinPool.class;
2986 >            Class<?> ak = ForkJoinTask[].class;
2987 >            CTL = U.objectFieldOffset
2988 >                (k.getDeclaredField("ctl"));
2989 >            Class<?> tk = Thread.class;
2990 >            PARKBLOCKER = U.objectFieldOffset
2991 >                (tk.getDeclaredField("parkBlocker"));
2992 >            ABASE = U.arrayBaseOffset(ak);
2993 >            s = U.arrayIndexScale(ak);
2994 >        } catch (Exception e) {
2995 >            throw new Error(e);
2996 >        }
2997 >        if ((s & (s-1)) != 0)
2998 >            throw new Error("data type scale not a power of two");
2999 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3000 >
3001 >        // Establish configuration for default pool
3002 >        try {
3003 >            String pp = System.getProperty(propPrefix + "parallelism");
3004 >            String fp = System.getProperty(propPrefix + "threadFactory");
3005 >            String up = System.getProperty(propPrefix + "exceptionHandler");
3006 >            int par;
3007 >            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3008 >                par = Runtime.getRuntime().availableProcessors();
3009 >            commonPoolParallelism = par;
3010 >            if (fp != null)
3011 >                commonPoolFactory = (ForkJoinWorkerThreadFactory)
3012 >                    ClassLoader.getSystemClassLoader().loadClass(fp).newInstance();
3013 >            else
3014 >                commonPoolFactory = defaultForkJoinWorkerThreadFactory;
3015 >            if (up != null)
3016 >                commonPoolUEH = (Thread.UncaughtExceptionHandler)
3017 >                    ClassLoader.getSystemClassLoader().loadClass(up).newInstance();
3018 >            else
3019 >                commonPoolUEH = null;
3020 >        } catch (Exception e) {
3021 >            throw new Error(e);
3022 >        }
3023 >    }
3024 >
3025 >    /**
3026 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
3027 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
3028 >     * into a jdk.
3029 >     *
3030 >     * @return a sun.misc.Unsafe
3031 >     */
3032 >    private static sun.misc.Unsafe getUnsafe() {
3033 >        try {
3034 >            return sun.misc.Unsafe.getUnsafe();
3035          } catch (SecurityException se) {
3036              try {
3037                  return java.security.AccessController.doPrivileged
3038 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
3039 <                        public Unsafe run() throws Exception {
3040 <                            return getUnsafePrivileged();
3038 >                    (new java.security
3039 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3040 >                        public sun.misc.Unsafe run() throws Exception {
3041 >                            java.lang.reflect.Field f = sun.misc
3042 >                                .Unsafe.class.getDeclaredField("theUnsafe");
3043 >                            f.setAccessible(true);
3044 >                            return (sun.misc.Unsafe) f.get(null);
3045                          }});
3046              } catch (java.security.PrivilegedActionException e) {
3047 <                throw e.getCause();
3047 >                throw new RuntimeException("Could not initialize intrinsics",
3048 >                                           e.getCause());
3049              }
3050          }
3051      }
3052  
1812    private static Unsafe getUnsafePrivileged()
1813            throws NoSuchFieldException, IllegalAccessException {
1814        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1815        f.setAccessible(true);
1816        return (Unsafe) f.get(null);
1817    }
1818
1819    private static long fieldOffset(String fieldName)
1820            throws NoSuchFieldException {
1821        return _unsafe.objectFieldOffset
1822            (ForkJoinPool.class.getDeclaredField(fieldName));
1823    }
1824
1825    static final Unsafe _unsafe;
1826    static final long eventCountOffset;
1827    static final long workerCountsOffset;
1828    static final long runControlOffset;
1829    static final long syncStackOffset;
1830    static final long spareStackOffset;
1831
1832    static {
1833        try {
1834            _unsafe = getUnsafe();
1835            eventCountOffset = fieldOffset("eventCount");
1836            workerCountsOffset = fieldOffset("workerCounts");
1837            runControlOffset = fieldOffset("runControl");
1838            syncStackOffset = fieldOffset("syncStack");
1839            spareStackOffset = fieldOffset("spareStack");
1840        } catch (Throwable e) {
1841            throw new RuntimeException("Could not initialize intrinsics", e);
1842        }
1843    }
1844
1845    private boolean casEventCount(long cmp, long val) {
1846        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1847    }
1848    private boolean casWorkerCounts(int cmp, int val) {
1849        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1850    }
1851    private boolean casRunControl(int cmp, int val) {
1852        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1853    }
1854    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1855        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1856    }
1857    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1858        return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1859    }
3053   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines