ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.53 by dl, Mon Apr 5 15:52:26 2010 UTC vs.
Revision 1.135 by dl, Sun Oct 28 22:36:01 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.CountDownLatch;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29   * A {@code ForkJoinPool} provides the entry point for submissions
30 < * from non-{@code ForkJoinTask}s, as well as management and
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31   * monitoring operations.
32   *
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
40 < * execution of some plain {@code Runnable}- or {@code Callable}-
41 < * based activities along with {@code ForkJoinTask}s. When setting
42 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
43 < * also be appropriate for use with fine-grained tasks of any form
44 < * that are never joined. Otherwise, other {@code ExecutorService}
45 < * implementations are typically more appropriate choices.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44 > *
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is constructed upon first
47 > * access, or upon usage by any ForkJoinTask that is not explictly
48 > * submitted to a specified pool. Using the common pool normally
49 > * reduces resource usage (its threads are slowly reclaimed during
50 > * periods of non-use, and reinstated upon subsequent use).  The
51 > * common pool is by default constructed with default parameters, but
52 > * these may be controlled by setting any or all of the three
53 > * properties {@code
54 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
55 > * threadFactory, exceptionHandler}}.
56   *
57 < * <p>A {@code ForkJoinPool} is constructed with a given target
58 < * parallelism level; by default, equal to the number of available
59 < * processors. Unless configured otherwise via {@link
60 < * #setMaintainsParallelism}, the pool attempts to maintain this
61 < * number of active (or available) threads by dynamically adding,
62 < * suspending, or resuming internal worker threads, even if some tasks
63 < * are stalled waiting to join others. However, no such adjustments
64 < * are performed in the face of blocked IO or other unmanaged
65 < * synchronization. The nested {@link ManagedBlocker} interface
66 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
57 > * <p>For applications that require separate or custom pools, a {@code
58 > * ForkJoinPool} may be constructed with a given target parallelism
59 > * level; by default, equal to the number of available processors. The
60 > * pool attempts to maintain enough active (or available) threads by
61 > * dynamically adding, suspending, or resuming internal worker
62 > * threads, even if some tasks are stalled waiting to join
63 > * others. However, no such adjustments are guaranteed in the face of
64 > * blocked IO or other unmanaged synchronization. The nested {@link
65 > * ManagedBlocker} interface enables extension of the kinds of
66 > * synchronization accommodated.
67   *
68   * <p>In addition to execution and lifecycle control methods, this
69   * class provides status check methods (for example
# Line 65 | Line 72 | import java.util.concurrent.CountDownLat
72   * {@link #toString} returns indications of pool state in a
73   * convenient form for informal monitoring.
74   *
75 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
76 < * used for all parallel task execution in a program or subsystem.
77 < * Otherwise, use would not usually outweigh the construction and
78 < * bookkeeping overhead of creating a large set of threads. For
79 < * example, a common pool could be used for the {@code SortTasks}
80 < * illustrated in {@link RecursiveAction}. Because {@code
81 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
82 < * daemon} mode, there is typically no need to explicitly {@link
83 < * #shutdown} such a pool upon program exit.
75 > * <p> As is the case with other ExecutorServices, there are three
76 > * main task execution methods summarized in the following table.
77 > * These are designed to be used primarily by clients not already
78 > * engaged in fork/join computations in the current pool.  The main
79 > * forms of these methods accept instances of {@code ForkJoinTask},
80 > * but overloaded forms also allow mixed execution of plain {@code
81 > * Runnable}- or {@code Callable}- based activities as well.  However,
82 > * tasks that are already executing in a pool should normally instead
83 > * use the within-computation forms listed in the table unless using
84 > * async event-style tasks that are not usually joined, in which case
85 > * there is little difference among choice of methods.
86   *
87 < * <pre>
88 < * static final ForkJoinPool mainPool = new ForkJoinPool();
89 < * ...
90 < * public void sort(long[] array) {
91 < *   mainPool.invoke(new SortTask(array, 0, array.length));
92 < * }
93 < * </pre>
87 > * <table BORDER CELLPADDING=3 CELLSPACING=1>
88 > *  <tr>
89 > *    <td></td>
90 > *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
91 > *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
92 > *  </tr>
93 > *  <tr>
94 > *    <td> <b>Arrange async execution</td>
95 > *    <td> {@link #execute(ForkJoinTask)}</td>
96 > *    <td> {@link ForkJoinTask#fork}</td>
97 > *  </tr>
98 > *  <tr>
99 > *    <td> <b>Await and obtain result</td>
100 > *    <td> {@link #invoke(ForkJoinTask)}</td>
101 > *    <td> {@link ForkJoinTask#invoke}</td>
102 > *  </tr>
103 > *  <tr>
104 > *    <td> <b>Arrange exec and obtain Future</td>
105 > *    <td> {@link #submit(ForkJoinTask)}</td>
106 > *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
107 > *  </tr>
108 > * </table>
109   *
110   * <p><b>Implementation notes</b>: This implementation restricts the
111   * maximum number of running threads to 32767. Attempts to create
# Line 89 | Line 113 | import java.util.concurrent.CountDownLat
113   * {@code IllegalArgumentException}.
114   *
115   * <p>This implementation rejects submitted tasks (that is, by throwing
116 < * {@link RejectedExecutionException}) only when the pool is shut down.
116 > * {@link RejectedExecutionException}) only when the pool is shut down
117 > * or internal resources have been exhausted.
118   *
119   * @since 1.7
120   * @author Doug Lea
# Line 99 | Line 124 | public class ForkJoinPool extends Abstra
124      /*
125       * Implementation Overview
126       *
127 <     * This class provides the central bookkeeping and control for a
128 <     * set of worker threads: Submissions from non-FJ threads enter
129 <     * into a submission queue. Workers take these tasks and typically
130 <     * split them into subtasks that may be stolen by other workers.
131 <     * The main work-stealing mechanics implemented in class
132 <     * ForkJoinWorkerThread give first priority to processing tasks
133 <     * from their own queues (LIFO or FIFO, depending on mode), then
134 <     * to randomized FIFO steals of tasks in other worker queues, and
135 <     * lastly to new submissions. These mechanics do not consider
136 <     * affinities, loads, cache localities, etc, so rarely provide the
137 <     * best possible performance on a given machine, but portably
138 <     * provide good throughput by averaging over these factors.
139 <     * (Further, even if we did try to use such information, we do not
140 <     * usually have a basis for exploiting it. For example, some sets
141 <     * of tasks profit from cache affinities, but others are harmed by
142 <     * cache pollution effects.)
127 >     * This class and its nested classes provide the main
128 >     * functionality and control for a set of worker threads:
129 >     * Submissions from non-FJ threads enter into submission queues.
130 >     * Workers take these tasks and typically split them into subtasks
131 >     * that may be stolen by other workers.  Preference rules give
132 >     * first priority to processing tasks from their own queues (LIFO
133 >     * or FIFO, depending on mode), then to randomized FIFO steals of
134 >     * tasks in other queues.
135 >     *
136 >     * WorkQueues
137 >     * ==========
138 >     *
139 >     * Most operations occur within work-stealing queues (in nested
140 >     * class WorkQueue).  These are special forms of Deques that
141 >     * support only three of the four possible end-operations -- push,
142 >     * pop, and poll (aka steal), under the further constraints that
143 >     * push and pop are called only from the owning thread (or, as
144 >     * extended here, under a lock), while poll may be called from
145 >     * other threads.  (If you are unfamiliar with them, you probably
146 >     * want to read Herlihy and Shavit's book "The Art of
147 >     * Multiprocessor programming", chapter 16 describing these in
148 >     * more detail before proceeding.)  The main work-stealing queue
149 >     * design is roughly similar to those in the papers "Dynamic
150 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
151 >     * (http://research.sun.com/scalable/pubs/index.html) and
152 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 >     * The main differences ultimately stem from GC requirements that
155 >     * we null out taken slots as soon as we can, to maintain as small
156 >     * a footprint as possible even in programs generating huge
157 >     * numbers of tasks. To accomplish this, we shift the CAS
158 >     * arbitrating pop vs poll (steal) from being on the indices
159 >     * ("base" and "top") to the slots themselves.  So, both a
160 >     * successful pop and poll mainly entail a CAS of a slot from
161 >     * non-null to null.  Because we rely on CASes of references, we
162 >     * do not need tag bits on base or top.  They are simple ints as
163 >     * used in any circular array-based queue (see for example
164 >     * ArrayDeque).  Updates to the indices must still be ordered in a
165 >     * way that guarantees that top == base means the queue is empty,
166 >     * but otherwise may err on the side of possibly making the queue
167 >     * appear nonempty when a push, pop, or poll have not fully
168 >     * committed. Note that this means that the poll operation,
169 >     * considered individually, is not wait-free. One thief cannot
170 >     * successfully continue until another in-progress one (or, if
171 >     * previously empty, a push) completes.  However, in the
172 >     * aggregate, we ensure at least probabilistic non-blockingness.
173 >     * If an attempted steal fails, a thief always chooses a different
174 >     * random victim target to try next. So, in order for one thief to
175 >     * progress, it suffices for any in-progress poll or new push on
176 >     * any empty queue to complete. (This is why we normally use
177 >     * method pollAt and its variants that try once at the apparent
178 >     * base index, else consider alternative actions, rather than
179 >     * method poll.)
180 >     *
181 >     * This approach also enables support of a user mode in which local
182 >     * task processing is in FIFO, not LIFO order, simply by using
183 >     * poll rather than pop.  This can be useful in message-passing
184 >     * frameworks in which tasks are never joined.  However neither
185 >     * mode considers affinities, loads, cache localities, etc, so
186 >     * rarely provide the best possible performance on a given
187 >     * machine, but portably provide good throughput by averaging over
188 >     * these factors.  (Further, even if we did try to use such
189 >     * information, we do not usually have a basis for exploiting it.
190 >     * For example, some sets of tasks profit from cache affinities,
191 >     * but others are harmed by cache pollution effects.)
192 >     *
193 >     * WorkQueues are also used in a similar way for tasks submitted
194 >     * to the pool. We cannot mix these tasks in the same queues used
195 >     * for work-stealing (this would contaminate lifo/fifo
196 >     * processing). Instead, we loosely associate submission queues
197 >     * with submitting threads, using a form of hashing.  The
198 >     * ThreadLocal Submitter class contains a value initially used as
199 >     * a hash code for choosing existing queues, but may be randomly
200 >     * repositioned upon contention with other submitters.  In
201 >     * essence, submitters act like workers except that they never
202 >     * take tasks, and they are multiplexed on to a finite number of
203 >     * shared work queues. However, classes are set up so that future
204 >     * extensions could allow submitters to optionally help perform
205 >     * tasks as well. Insertion of tasks in shared mode requires a
206 >     * lock (mainly to protect in the case of resizing) but we use
207 >     * only a simple spinlock (using bits in field runState), because
208 >     * submitters encountering a busy queue move on to try or create
209 >     * other queues -- they block only when creating and registering
210 >     * new queues.
211 >     *
212 >     * Management
213 >     * ==========
214       *
215       * The main throughput advantages of work-stealing stem from
216 <     * decentralized control -- workers mostly steal tasks from each
217 <     * other. We do not want to negate this by creating bottlenecks
218 <     * implementing the management responsibilities of this class. So
219 <     * we use a collection of techniques that avoid, reduce, or cope
220 <     * well with contention. These entail several instances of
221 <     * bit-packing into CASable fields to maintain only the minimally
222 <     * required atomicity. To enable such packing, we restrict maximum
223 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
224 <     * bit field), which is far in excess of normal operating range.
225 <     * Even though updates to some of these bookkeeping fields do
226 <     * sometimes contend with each other, they don't normally
227 <     * cache-contend with updates to others enough to warrant memory
228 <     * padding or isolation. So they are all held as fields of
229 <     * ForkJoinPool objects.  The main capabilities are as follows:
230 <     *
231 <     * 1. Creating and removing workers. Workers are recorded in the
232 <     * "workers" array. This is an array as opposed to some other data
233 <     * structure to support index-based random steals by workers.
234 <     * Updates to the array recording new workers and unrecording
235 <     * terminated ones are protected from each other by a lock
236 <     * (workerLock) but the array is otherwise concurrently readable,
237 <     * and accessed directly by workers. To simplify index-based
216 >     * decentralized control -- workers mostly take tasks from
217 >     * themselves or each other. We cannot negate this in the
218 >     * implementation of other management responsibilities. The main
219 >     * tactic for avoiding bottlenecks is packing nearly all
220 >     * essentially atomic control state into two volatile variables
221 >     * that are by far most often read (not written) as status and
222 >     * consistency checks.
223 >     *
224 >     * Field "ctl" contains 64 bits holding all the information needed
225 >     * to atomically decide to add, inactivate, enqueue (on an event
226 >     * queue), dequeue, and/or re-activate workers.  To enable this
227 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
228 >     * far in excess of normal operating range) to allow ids, counts,
229 >     * and their negations (used for thresholding) to fit into 16bit
230 >     * fields.
231 >     *
232 >     * Field "runState" contains 32 bits needed to register and
233 >     * deregister WorkQueues, as well as to enable shutdown. It is
234 >     * only modified under a lock (normally briefly held, but
235 >     * occasionally protecting allocations and resizings) but even
236 >     * when locked remains available to check consistency.
237 >     *
238 >     * Recording WorkQueues.  WorkQueues are recorded in the
239 >     * "workQueues" array that is created upon pool construction and
240 >     * expanded if necessary.  Updates to the array while recording
241 >     * new workers and unrecording terminated ones are protected from
242 >     * each other by a lock but the array is otherwise concurrently
243 >     * readable, and accessed directly.  To simplify index-based
244       * operations, the array size is always a power of two, and all
245 <     * readers must tolerate null slots. Currently, all but the first
246 <     * worker thread creation is on-demand, triggered by task
245 >     * readers must tolerate null slots. Shared (submission) queues
246 >     * are at even indices, worker queues at odd indices. Grouping
247 >     * them together in this way simplifies and speeds up task
248 >     * scanning.
249 >     *
250 >     * All worker thread creation is on-demand, triggered by task
251       * submissions, replacement of terminated workers, and/or
252       * compensation for blocked workers. However, all other support
253 <     * code is set up to work with other policies.
254 <     *
255 <     * 2. Bookkeeping for dynamically adding and removing workers. We
256 <     * maintain a given level of parallelism (or, if
257 <     * maintainsParallelism is false, at least avoid starvation). When
258 <     * some workers are known to be blocked (on joins or via
259 <     * ManagedBlocker), we may create or resume others to take their
260 <     * place until they unblock (see below). Implementing this
261 <     * requires counts of the number of "running" threads (i.e., those
262 <     * that are neither blocked nor artifically suspended) as well as
263 <     * the total number.  These two values are packed into one field,
264 <     * "workerCounts" because we need accurate snapshots when deciding
265 <     * to create, resume or suspend.  To support these decisions,
266 <     * updates must be prospective (not retrospective).  For example,
267 <     * the running count is decremented before blocking by a thread
268 <     * about to block, but incremented by the thread about to unblock
269 <     * it. (In a few cases, these prospective updates may need to be
270 <     * rolled back, for example when deciding to create a new worker
271 <     * but the thread factory fails or returns null. In these cases,
272 <     * we are no worse off wrt other decisions than we would be
273 <     * otherwise.)  Updates to the workerCounts field sometimes
274 <     * transiently encounter a fair amount of contention when join
275 <     * dependencies are such that many threads block or unblock at
276 <     * about the same time. We alleviate this by sometimes bundling
277 <     * updates (for example blocking one thread on join and resuming a
278 <     * spare cancel each other out), and in most other cases
279 <     * performing an alternative action (like releasing waiters and
280 <     * finding spares; see below) as a more productive form of
281 <     * backoff.
282 <     *
283 <     * 3. Maintaining global run state. The run state of the pool
284 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
285 <     * those in other Executor implementations, as well as a count of
286 <     * "active" workers -- those that are, or soon will be, or
287 <     * recently were executing tasks. The runLevel and active count
288 <     * are packed together in order to correctly trigger shutdown and
289 <     * termination. Without care, active counts can be subject to very
290 <     * high contention.  We substantially reduce this contention by
291 <     * relaxing update rules.  A worker must claim active status
292 <     * prospectively, by activating if it sees that a submitted or
293 <     * stealable task exists (it may find after activating that the
294 <     * task no longer exists). It stays active while processing this
295 <     * task (if it exists) and any other local subtasks it produces,
296 <     * until it cannot find any other tasks. It then tries
297 <     * inactivating (see method preStep), but upon update contention
298 <     * instead scans for more tasks, later retrying inactivation if it
299 <     * doesn't find any.
300 <     *
301 <     * 4. Managing idle workers waiting for tasks. We cannot let
302 <     * workers spin indefinitely scanning for tasks when none are
303 <     * available. On the other hand, we must quickly prod them into
304 <     * action when new tasks are submitted or generated.  We
305 <     * park/unpark these idle workers using an event-count scheme.
306 <     * Field eventCount is incremented upon events that may enable
307 <     * workers that previously could not find a task to now find one:
308 <     * Submission of a new task to the pool, or another worker pushing
309 <     * a task onto a previously empty queue.  (We also use this
310 <     * mechanism for termination and reconfiguration actions that
311 <     * require wakeups of idle workers).  Each worker maintains its
312 <     * last known event count, and blocks when a scan for work did not
313 <     * find a task AND its lastEventCount matches the current
314 <     * eventCount. Waiting idle workers are recorded in a variant of
315 <     * Treiber stack headed by field eventWaiters which, when nonzero,
316 <     * encodes the thread index and count awaited for by the worker
317 <     * thread most recently calling eventSync. This thread in turn has
318 <     * a record (field nextEventWaiter) for the next waiting worker.
319 <     * In addition to allowing simpler decisions about need for
320 <     * wakeup, the event count bits in eventWaiters serve the role of
321 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
322 <     * in task diffusion, workers not otherwise occupied may invoke
323 <     * method releaseWaiters, that removes and signals (unparks)
324 <     * workers not waiting on current count. To minimize task
325 <     * production stalls associate with signalling, any worker pushing
326 <     * a task on an empty queue invokes the weaker method signalWork,
327 <     * that only releases idle workers until it detects interference
328 <     * by other threads trying to release, and lets them take
329 <     * over. The net effect is a tree-like diffusion of signals, where
330 <     * released threads and possibly others) help with unparks.  To
331 <     * further reduce contention effects a bit, failed CASes to
332 <     * increment field eventCount are tolerated without retries.
333 <     * Conceptually they are merged into the same event, which is OK
334 <     * when their only purpose is to enable workers to scan for work.
335 <     *
336 <     * 5. Managing suspension of extra workers. When a worker is about
337 <     * to block waiting for a join (or via ManagedBlockers), we may
338 <     * create a new thread to maintain parallelism level, or at least
339 <     * avoid starvation (see below). Usually, extra threads are needed
340 <     * for only very short periods, yet join dependencies are such
341 <     * that we sometimes need them in bursts. Rather than create new
342 <     * threads each time this happens, we suspend no-longer-needed
343 <     * extra ones as "spares". For most purposes, we don't distinguish
344 <     * "extra" spare threads from normal "core" threads: On each call
345 <     * to preStep (the only point at which we can do this) a worker
346 <     * checks to see if there are now too many running workers, and if
347 <     * so, suspends itself.  Methods preJoin and doBlock look for
348 <     * suspended threads to resume before considering creating a new
349 <     * replacement. We don't need a special data structure to maintain
350 <     * spares; simply scanning the workers array looking for
351 <     * worker.isSuspended() is fine because the calling thread is
352 <     * otherwise not doing anything useful anyway; we are at least as
353 <     * happy if after locating a spare, the caller doesn't actually
354 <     * block because the join is ready before we try to adjust and
355 <     * compensate.  Note that this is intrinsically racy.  One thread
356 <     * may become a spare at about the same time as another is
357 <     * needlessly being created. We counteract this and related slop
358 <     * in part by requiring resumed spares to immediately recheck (in
359 <     * preStep) to see whether they they should re-suspend. The only
360 <     * effective difference between "extra" and "core" threads is that
361 <     * we allow the "extra" ones to time out and die if they are not
362 <     * resumed within a keep-alive interval of a few seconds. This is
363 <     * implemented mainly within ForkJoinWorkerThread, but requires
364 <     * some coordination (isTrimmed() -- meaning killed while
365 <     * suspended) to correctly maintain pool counts.
366 <     *
367 <     * 6. Deciding when to create new workers. The main dynamic
368 <     * control in this class is deciding when to create extra threads,
369 <     * in methods preJoin and doBlock. We always need to create one
370 <     * when the number of running threads becomes zero. But because
371 <     * blocked joins are typically dependent, we don't necessarily
372 <     * need or want one-to-one replacement. Using a one-to-one
373 <     * compensation rule often leads to enough useless overhead
374 <     * creating, suspending, resuming, and/or killing threads to
375 <     * signficantly degrade throughput.  We use a rule reflecting the
376 <     * idea that, the more spare threads you already have, the more
377 <     * evidence you need to create another one; where "evidence" is
378 <     * expressed as the current deficit -- target minus running
379 <     * threads. To reduce flickering and drift around target values,
380 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
381 <     * (where dc is deficit, sc is number of spare threads and pc is
382 <     * target parallelism.)  This effectively reduces churn at the
383 <     * price of systematically undershooting target parallelism when
384 <     * many threads are blocked.  However, biasing toward undeshooting
385 <     * partially compensates for the above mechanics to suspend extra
386 <     * threads, that normally lead to overshoot because we can only
387 <     * suspend workers in-between top-level actions. It also better
388 <     * copes with the fact that some of the methods in this class tend
389 <     * to never become compiled (but are interpreted), so some
390 <     * components of the entire set of controls might execute many
391 <     * times faster than others. And similarly for cases where the
392 <     * apparent lack of work is just due to GC stalls and other
393 <     * transient system activity.
394 <     *
395 <     * 7. Maintaining other configuration parameters and monitoring
396 <     * statistics. Updates to fields controlling parallelism level,
397 <     * max size, etc can only meaningfully take effect for individual
398 <     * threads upon their next top-level actions; i.e., between
399 <     * stealing/running tasks/submission, which are separated by calls
400 <     * to preStep.  Memory ordering for these (assumed infrequent)
401 <     * reconfiguration calls is ensured by using reads and writes to
402 <     * volatile field workerCounts (that must be read in preStep anyway)
403 <     * as "fences" -- user-level reads are preceded by reads of
404 <     * workCounts, and writes are followed by no-op CAS to
405 <     * workerCounts. The values reported by other management and
406 <     * monitoring methods are either computed on demand, or are kept
407 <     * in fields that are only updated when threads are otherwise
408 <     * idle.
253 >     * code is set up to work with other policies.  To ensure that we
254 >     * do not hold on to worker references that would prevent GC, ALL
255 >     * accesses to workQueues are via indices into the workQueues
256 >     * array (which is one source of some of the messy code
257 >     * constructions here). In essence, the workQueues array serves as
258 >     * a weak reference mechanism. Thus for example the wait queue
259 >     * field of ctl stores indices, not references.  Access to the
260 >     * workQueues in associated methods (for example signalWork) must
261 >     * both index-check and null-check the IDs. All such accesses
262 >     * ignore bad IDs by returning out early from what they are doing,
263 >     * since this can only be associated with termination, in which
264 >     * case it is OK to give up.  All uses of the workQueues array
265 >     * also check that it is non-null (even if previously
266 >     * non-null). This allows nulling during termination, which is
267 >     * currently not necessary, but remains an option for
268 >     * resource-revocation-based shutdown schemes. It also helps
269 >     * reduce JIT issuance of uncommon-trap code, which tends to
270 >     * unnecessarily complicate control flow in some methods.
271 >     *
272 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
273 >     * let workers spin indefinitely scanning for tasks when none can
274 >     * be found immediately, and we cannot start/resume workers unless
275 >     * there appear to be tasks available.  On the other hand, we must
276 >     * quickly prod them into action when new tasks are submitted or
277 >     * generated. In many usages, ramp-up time to activate workers is
278 >     * the main limiting factor in overall performance (this is
279 >     * compounded at program start-up by JIT compilation and
280 >     * allocation). So we try to streamline this as much as possible.
281 >     * We park/unpark workers after placing in an event wait queue
282 >     * when they cannot find work. This "queue" is actually a simple
283 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
284 >     * counter value (that reflects the number of times a worker has
285 >     * been inactivated) to avoid ABA effects (we need only as many
286 >     * version numbers as worker threads). Successors are held in
287 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
288 >     * races, mainly that a task-producing thread can miss seeing (and
289 >     * signalling) another thread that gave up looking for work but
290 >     * has not yet entered the wait queue. We solve this by requiring
291 >     * a full sweep of all workers (via repeated calls to method
292 >     * scan()) both before and after a newly waiting worker is added
293 >     * to the wait queue. During a rescan, the worker might release
294 >     * some other queued worker rather than itself, which has the same
295 >     * net effect. Because enqueued workers may actually be rescanning
296 >     * rather than waiting, we set and clear the "parker" field of
297 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
298 >     * requires a secondary recheck to avoid missed signals.)  Note
299 >     * the unusual conventions about Thread.interrupts surrounding
300 >     * parking and other blocking: Because interrupts are used solely
301 >     * to alert threads to check termination, which is checked anyway
302 >     * upon blocking, we clear status (using Thread.interrupted)
303 >     * before any call to park, so that park does not immediately
304 >     * return due to status being set via some other unrelated call to
305 >     * interrupt in user code.
306 >     *
307 >     * Signalling.  We create or wake up workers only when there
308 >     * appears to be at least one task they might be able to find and
309 >     * execute.  When a submission is added or another worker adds a
310 >     * task to a queue that previously had fewer than two tasks, they
311 >     * signal waiting workers (or trigger creation of new ones if
312 >     * fewer than the given parallelism level -- see signalWork).
313 >     * These primary signals are buttressed by signals during rescans;
314 >     * together these cover the signals needed in cases when more
315 >     * tasks are pushed but untaken, and improve performance compared
316 >     * to having one thread wake up all workers.
317 >     *
318 >     * Trimming workers. To release resources after periods of lack of
319 >     * use, a worker starting to wait when the pool is quiescent will
320 >     * time out and terminate if the pool has remained quiescent for a
321 >     * given period -- a short period if there are more threads than
322 >     * parallelism, longer as the number of threads decreases. This
323 >     * will slowly propagate, eventually terminating all workers after
324 >     * periods of non-use.
325 >     *
326 >     * Shutdown and Termination. A call to shutdownNow atomically sets
327 >     * a runState bit and then (non-atomically) sets each worker's
328 >     * runState status, cancels all unprocessed tasks, and wakes up
329 >     * all waiting workers.  Detecting whether termination should
330 >     * commence after a non-abrupt shutdown() call requires more work
331 >     * and bookkeeping. We need consensus about quiescence (i.e., that
332 >     * there is no more work). The active count provides a primary
333 >     * indication but non-abrupt shutdown still requires a rechecking
334 >     * scan for any workers that are inactive but not queued.
335 >     *
336 >     * Joining Tasks
337 >     * =============
338 >     *
339 >     * Any of several actions may be taken when one worker is waiting
340 >     * to join a task stolen (or always held) by another.  Because we
341 >     * are multiplexing many tasks on to a pool of workers, we can't
342 >     * just let them block (as in Thread.join).  We also cannot just
343 >     * reassign the joiner's run-time stack with another and replace
344 >     * it later, which would be a form of "continuation", that even if
345 >     * possible is not necessarily a good idea since we sometimes need
346 >     * both an unblocked task and its continuation to progress.
347 >     * Instead we combine two tactics:
348 >     *
349 >     *   Helping: Arranging for the joiner to execute some task that it
350 >     *      would be running if the steal had not occurred.
351 >     *
352 >     *   Compensating: Unless there are already enough live threads,
353 >     *      method tryCompensate() may create or re-activate a spare
354 >     *      thread to compensate for blocked joiners until they unblock.
355 >     *
356 >     * A third form (implemented in tryRemoveAndExec and
357 >     * tryPollForAndExec) amounts to helping a hypothetical
358 >     * compensator: If we can readily tell that a possible action of a
359 >     * compensator is to steal and execute the task being joined, the
360 >     * joining thread can do so directly, without the need for a
361 >     * compensation thread (although at the expense of larger run-time
362 >     * stacks, but the tradeoff is typically worthwhile).
363 >     *
364 >     * The ManagedBlocker extension API can't use helping so relies
365 >     * only on compensation in method awaitBlocker.
366 >     *
367 >     * The algorithm in tryHelpStealer entails a form of "linear"
368 >     * helping: Each worker records (in field currentSteal) the most
369 >     * recent task it stole from some other worker. Plus, it records
370 >     * (in field currentJoin) the task it is currently actively
371 >     * joining. Method tryHelpStealer uses these markers to try to
372 >     * find a worker to help (i.e., steal back a task from and execute
373 >     * it) that could hasten completion of the actively joined task.
374 >     * In essence, the joiner executes a task that would be on its own
375 >     * local deque had the to-be-joined task not been stolen. This may
376 >     * be seen as a conservative variant of the approach in Wagner &
377 >     * Calder "Leapfrogging: a portable technique for implementing
378 >     * efficient futures" SIGPLAN Notices, 1993
379 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
380 >     * that: (1) We only maintain dependency links across workers upon
381 >     * steals, rather than use per-task bookkeeping.  This sometimes
382 >     * requires a linear scan of workQueues array to locate stealers,
383 >     * but often doesn't because stealers leave hints (that may become
384 >     * stale/wrong) of where to locate them.  A stealHint is only a
385 >     * hint because a worker might have had multiple steals and the
386 >     * hint records only one of them (usually the most current).
387 >     * Hinting isolates cost to when it is needed, rather than adding
388 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
389 >     * and potentially cyclic mutual steals.  (3) It is intentionally
390 >     * racy: field currentJoin is updated only while actively joining,
391 >     * which means that we miss links in the chain during long-lived
392 >     * tasks, GC stalls etc (which is OK since blocking in such cases
393 >     * is usually a good idea).  (4) We bound the number of attempts
394 >     * to find work (see MAX_HELP) and fall back to suspending the
395 >     * worker and if necessary replacing it with another.
396 >     *
397 >     * It is impossible to keep exactly the target parallelism number
398 >     * of threads running at any given time.  Determining the
399 >     * existence of conservatively safe helping targets, the
400 >     * availability of already-created spares, and the apparent need
401 >     * to create new spares are all racy, so we rely on multiple
402 >     * retries of each.  Compensation in the apparent absence of
403 >     * helping opportunities is challenging to control on JVMs, where
404 >     * GC and other activities can stall progress of tasks that in
405 >     * turn stall out many other dependent tasks, without us being
406 >     * able to determine whether they will ever require compensation.
407 >     * Even though work-stealing otherwise encounters little
408 >     * degradation in the presence of more threads than cores,
409 >     * aggressively adding new threads in such cases entails risk of
410 >     * unwanted positive feedback control loops in which more threads
411 >     * cause more dependent stalls (as well as delayed progress of
412 >     * unblocked threads to the point that we know they are available)
413 >     * leading to more situations requiring more threads, and so
414 >     * on. This aspect of control can be seen as an (analytically
415 >     * intractable) game with an opponent that may choose the worst
416 >     * (for us) active thread to stall at any time.  We take several
417 >     * precautions to bound losses (and thus bound gains), mainly in
418 >     * methods tryCompensate and awaitJoin: (1) We only try
419 >     * compensation after attempting enough helping steps (measured
420 >     * via counting and timing) that we have already consumed the
421 >     * estimated cost of creating and activating a new thread.  (2) We
422 >     * allow up to 50% of threads to be blocked before initially
423 >     * adding any others, and unless completely saturated, check that
424 >     * some work is available for a new worker before adding. Also, we
425 >     * create up to only 50% more threads until entering a mode that
426 >     * only adds a thread if all others are possibly blocked.  All
427 >     * together, this means that we might be half as fast to react,
428 >     * and create half as many threads as possible in the ideal case,
429 >     * but present vastly fewer anomalies in all other cases compared
430 >     * to both more aggressive and more conservative alternatives.
431       *
432 <     * Beware that there is a lot of representation-level coupling
432 >     * Style notes: There is a lot of representation-level coupling
433       * among classes ForkJoinPool, ForkJoinWorkerThread, and
434 <     * ForkJoinTask.  For example, direct access to "workers" array by
435 <     * workers, and direct access to ForkJoinTask.status by both
436 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
437 <     * trying to reduce this, since any associated future changes in
438 <     * representations will need to be accompanied by algorithmic
439 <     * changes anyway.
440 <     *
441 <     * Style notes: There are lots of inline assignments (of form
442 <     * "while ((local = field) != 0)") which are usually the simplest
443 <     * way to ensure read orderings. Also several occurrences of the
444 <     * unusual "do {} while(!cas...)" which is the simplest way to
445 <     * force an update of a CAS'ed variable. There are also a few
446 <     * other coding oddities that help some methods perform reasonably
447 <     * even when interpreted (not compiled).
448 <     *
449 <     * The order of declarations in this file is: (1) statics (2)
450 <     * fields (along with constants used when unpacking some of them)
451 <     * (3) internal control methods (4) callbacks and other support
452 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
453 <     * methods (plus a few little helpers).
434 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
435 >     * managed by ForkJoinPool, so are directly accessed.  There is
436 >     * little point trying to reduce this, since any associated future
437 >     * changes in representations will need to be accompanied by
438 >     * algorithmic changes anyway. Several methods intrinsically
439 >     * sprawl because they must accumulate sets of consistent reads of
440 >     * volatiles held in local variables.  Methods signalWork() and
441 >     * scan() are the main bottlenecks, so are especially heavily
442 >     * micro-optimized/mangled.  There are lots of inline assignments
443 >     * (of form "while ((local = field) != 0)") which are usually the
444 >     * simplest way to ensure the required read orderings (which are
445 >     * sometimes critical). This leads to a "C"-like style of listing
446 >     * declarations of these locals at the heads of methods or blocks.
447 >     * There are several occurrences of the unusual "do {} while
448 >     * (!cas...)"  which is the simplest way to force an update of a
449 >     * CAS'ed variable. There are also other coding oddities that help
450 >     * some methods perform reasonably even when interpreted (not
451 >     * compiled).
452 >     *
453 >     * The order of declarations in this file is:
454 >     * (1) Static utility functions
455 >     * (2) Nested (static) classes
456 >     * (3) Static fields
457 >     * (4) Fields, along with constants used when unpacking some of them
458 >     * (5) Internal control methods
459 >     * (6) Callbacks and other support for ForkJoinTask methods
460 >     * (7) Exported methods
461 >     * (8) Static block initializing statics in minimally dependent order
462       */
463  
464 +    // Static utilities
465 +
466 +    /**
467 +     * If there is a security manager, makes sure caller has
468 +     * permission to modify threads.
469 +     */
470 +    private static void checkPermission() {
471 +        SecurityManager security = System.getSecurityManager();
472 +        if (security != null)
473 +            security.checkPermission(modifyThreadPermission);
474 +    }
475 +
476 +    // Nested classes
477 +
478      /**
479       * Factory for creating new {@link ForkJoinWorkerThread}s.
480       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 345 | Line 495 | public class ForkJoinPool extends Abstra
495       * Default ForkJoinWorkerThreadFactory implementation; creates a
496       * new ForkJoinWorkerThread.
497       */
498 <    static class  DefaultForkJoinWorkerThreadFactory
498 >    static class DefaultForkJoinWorkerThreadFactory
499          implements ForkJoinWorkerThreadFactory {
500          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
501              return new ForkJoinWorkerThread(pool);
# Line 353 | Line 503 | public class ForkJoinPool extends Abstra
503      }
504  
505      /**
506 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
507 <     * overridden in ForkJoinPool constructors.
506 >     * A simple non-reentrant lock used for exclusion when managing
507 >     * queues and workers. We use a custom lock so that we can readily
508 >     * probe lock state in constructions that check among alternative
509 >     * actions. The lock is normally only very briefly held, and
510 >     * sometimes treated as a spinlock, but other usages block to
511 >     * reduce overall contention in those cases where locked code
512 >     * bodies perform allocation/resizing.
513 >     */
514 >    static final class Mutex extends AbstractQueuedSynchronizer {
515 >        public final boolean tryAcquire(int ignore) {
516 >            return compareAndSetState(0, 1);
517 >        }
518 >        public final boolean tryRelease(int ignore) {
519 >            setState(0);
520 >            return true;
521 >        }
522 >        public final void lock() { acquire(0); }
523 >        public final void unlock() { release(0); }
524 >        public final boolean isHeldExclusively() { return getState() == 1; }
525 >        public final Condition newCondition() { return new ConditionObject(); }
526 >    }
527 >
528 >    /**
529 >     * Class for artificial tasks that are used to replace the target
530 >     * of local joins if they are removed from an interior queue slot
531 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
532 >     * actually do anything beyond having a unique identity.
533 >     */
534 >    static final class EmptyTask extends ForkJoinTask<Void> {
535 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
536 >        public final Void getRawResult() { return null; }
537 >        public final void setRawResult(Void x) {}
538 >        public final boolean exec() { return true; }
539 >    }
540 >
541 >    /**
542 >     * Queues supporting work-stealing as well as external task
543 >     * submission. See above for main rationale and algorithms.
544 >     * Implementation relies heavily on "Unsafe" intrinsics
545 >     * and selective use of "volatile":
546 >     *
547 >     * Field "base" is the index (mod array.length) of the least valid
548 >     * queue slot, which is always the next position to steal (poll)
549 >     * from if nonempty. Reads and writes require volatile orderings
550 >     * but not CAS, because updates are only performed after slot
551 >     * CASes.
552 >     *
553 >     * Field "top" is the index (mod array.length) of the next queue
554 >     * slot to push to or pop from. It is written only by owner thread
555 >     * for push, or under lock for trySharedPush, and accessed by
556 >     * other threads only after reading (volatile) base.  Both top and
557 >     * base are allowed to wrap around on overflow, but (top - base)
558 >     * (or more commonly -(base - top) to force volatile read of base
559 >     * before top) still estimates size.
560 >     *
561 >     * The array slots are read and written using the emulation of
562 >     * volatiles/atomics provided by Unsafe. Insertions must in
563 >     * general use putOrderedObject as a form of releasing store to
564 >     * ensure that all writes to the task object are ordered before
565 >     * its publication in the queue. (Although we can avoid one case
566 >     * of this when locked in trySharedPush.) All removals entail a
567 >     * CAS to null.  The array is always a power of two. To ensure
568 >     * safety of Unsafe array operations, all accesses perform
569 >     * explicit null checks and implicit bounds checks via
570 >     * power-of-two masking.
571 >     *
572 >     * In addition to basic queuing support, this class contains
573 >     * fields described elsewhere to control execution. It turns out
574 >     * to work better memory-layout-wise to include them in this
575 >     * class rather than a separate class.
576 >     *
577 >     * Performance on most platforms is very sensitive to placement of
578 >     * instances of both WorkQueues and their arrays -- we absolutely
579 >     * do not want multiple WorkQueue instances or multiple queue
580 >     * arrays sharing cache lines. (It would be best for queue objects
581 >     * and their arrays to share, but there is nothing available to
582 >     * help arrange that).  Unfortunately, because they are recorded
583 >     * in a common array, WorkQueue instances are often moved to be
584 >     * adjacent by garbage collectors. To reduce impact, we use field
585 >     * padding that works OK on common platforms; this effectively
586 >     * trades off slightly slower average field access for the sake of
587 >     * avoiding really bad worst-case access. (Until better JVM
588 >     * support is in place, this padding is dependent on transient
589 >     * properties of JVM field layout rules.)  We also take care in
590 >     * allocating, sizing and resizing the array. Non-shared queue
591 >     * arrays are initialized (via method growArray) by workers before
592 >     * use. Others are allocated on first use.
593       */
594 <    public static final ForkJoinWorkerThreadFactory
595 <        defaultForkJoinWorkerThreadFactory =
596 <        new DefaultForkJoinWorkerThreadFactory();
594 >    static final class WorkQueue {
595 >        /**
596 >         * Capacity of work-stealing queue array upon initialization.
597 >         * Must be a power of two; at least 4, but should be larger to
598 >         * reduce or eliminate cacheline sharing among queues.
599 >         * Currently, it is much larger, as a partial workaround for
600 >         * the fact that JVMs often place arrays in locations that
601 >         * share GC bookkeeping (especially cardmarks) such that
602 >         * per-write accesses encounter serious memory contention.
603 >         */
604 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
605  
606 <    /**
607 <     * Permission required for callers of methods that may start or
608 <     * kill threads.
609 <     */
610 <    private static final RuntimePermission modifyThreadPermission =
611 <        new RuntimePermission("modifyThread");
606 >        /**
607 >         * Maximum size for queue arrays. Must be a power of two less
608 >         * than or equal to 1 << (31 - width of array entry) to ensure
609 >         * lack of wraparound of index calculations, but defined to a
610 >         * value a bit less than this to help users trap runaway
611 >         * programs before saturating systems.
612 >         */
613 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
614  
615 <    /**
616 <     * If there is a security manager, makes sure caller has
617 <     * permission to modify threads.
618 <     */
619 <    private static void checkPermission() {
620 <        SecurityManager security = System.getSecurityManager();
621 <        if (security != null)
622 <            security.checkPermission(modifyThreadPermission);
623 <    }
615 >        volatile long totalSteals; // cumulative number of steals
616 >        int seed;                  // for random scanning; initialize nonzero
617 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
618 >        int nextWait;              // encoded record of next event waiter
619 >        int rescans;               // remaining scans until block
620 >        int nsteals;               // top-level task executions since last idle
621 >        final int mode;            // lifo, fifo, or shared
622 >        int poolIndex;             // index of this queue in pool (or 0)
623 >        int stealHint;             // index of most recent known stealer
624 >        volatile int runState;     // 1: locked, -1: terminate; else 0
625 >        volatile int base;         // index of next slot for poll
626 >        int top;                   // index of next slot for push
627 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
628 >        final ForkJoinPool pool;   // the containing pool (may be null)
629 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
630 >        volatile Thread parker;    // == owner during call to park; else null
631 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
632 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
633 >        // Heuristic padding to ameliorate unfortunate memory placements
634 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
635 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
636 >
637 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
638 >            this.mode = mode;
639 >            this.pool = pool;
640 >            this.owner = owner;
641 >            // Place indices in the center of array (that is not yet allocated)
642 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
643 >        }
644  
645 <    /**
646 <     * Generator for assigning sequence numbers as pool names.
647 <     */
648 <    private static final AtomicInteger poolNumberGenerator =
649 <        new AtomicInteger();
645 >        /**
646 >         * Returns the approximate number of tasks in the queue.
647 >         */
648 >        final int queueSize() {
649 >            int n = base - top;       // non-owner callers must read base first
650 >            return (n >= 0) ? 0 : -n; // ignore transient negative
651 >        }
652  
653 <    /**
654 <     * Absolute bound for parallelism level. Twice this number must
655 <     * fit into a 16bit field to enable word-packing for some counts.
656 <     */
657 <    private static final int MAX_THREADS = 0x7fff;
653 >        /**
654 >         * Provides a more accurate estimate of whether this queue has
655 >         * any tasks than does queueSize, by checking whether a
656 >         * near-empty queue has at least one unclaimed task.
657 >         */
658 >        final boolean isEmpty() {
659 >            ForkJoinTask<?>[] a; int m, s;
660 >            int n = base - (s = top);
661 >            return (n >= 0 ||
662 >                    (n == -1 &&
663 >                     ((a = array) == null ||
664 >                      (m = a.length - 1) < 0 ||
665 >                      U.getObjectVolatile
666 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
667 >        }
668  
669 <    /**
670 <     * Array holding all worker threads in the pool.  Array size must
671 <     * be a power of two.  Updates and replacements are protected by
672 <     * workerLock, but the array is always kept in a consistent enough
673 <     * state to be randomly accessed without locking by workers
674 <     * performing work-stealing, as well as other traversal-based
675 <     * methods in this class. All readers must tolerate that some
676 <     * array slots may be null.
677 <     */
678 <    volatile ForkJoinWorkerThread[] workers;
669 >        /**
670 >         * Pushes a task. Call only by owner in unshared queues.
671 >         *
672 >         * @param task the task. Caller must ensure non-null.
673 >         * @throw RejectedExecutionException if array cannot be resized
674 >         */
675 >        final void push(ForkJoinTask<?> task) {
676 >            ForkJoinTask<?>[] a; ForkJoinPool p;
677 >            int s = top, m, n;
678 >            if ((a = array) != null) {    // ignore if queue removed
679 >                U.putOrderedObject
680 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
681 >                if ((n = (top = s + 1) - base) <= 2) {
682 >                    if ((p = pool) != null)
683 >                        p.signalWork();
684 >                }
685 >                else if (n >= m)
686 >                    growArray(true);
687 >            }
688 >        }
689  
690 <    /**
691 <     * Queue for external submissions.
692 <     */
693 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
690 >        /**
691 >         * Pushes a task if lock is free and array is either big
692 >         * enough or can be resized to be big enough.
693 >         *
694 >         * @param task the task. Caller must ensure non-null.
695 >         * @return true if submitted
696 >         */
697 >        final boolean trySharedPush(ForkJoinTask<?> task) {
698 >            boolean submitted = false;
699 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
700 >                ForkJoinTask<?>[] a = array;
701 >                int s = top;
702 >                try {
703 >                    if ((a != null && a.length > s + 1 - base) ||
704 >                        (a = growArray(false)) != null) { // must presize
705 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
706 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
707 >                        top = s + 1;
708 >                        submitted = true;
709 >                    }
710 >                } finally {
711 >                    runState = 0;                         // unlock
712 >                }
713 >            }
714 >            return submitted;
715 >        }
716  
717 <    /**
718 <     * Lock protecting updates to workers array.
719 <     */
720 <    private final ReentrantLock workerLock;
717 >        /**
718 >         * Takes next task, if one exists, in LIFO order.  Call only
719 >         * by owner in unshared queues. (We do not have a shared
720 >         * version of this method because it is never needed.)
721 >         */
722 >        final ForkJoinTask<?> pop() {
723 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
724 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
725 >                for (int s; (s = top - 1) - base >= 0;) {
726 >                    long j = ((m & s) << ASHIFT) + ABASE;
727 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
728 >                        break;
729 >                    if (U.compareAndSwapObject(a, j, t, null)) {
730 >                        top = s;
731 >                        return t;
732 >                    }
733 >                }
734 >            }
735 >            return null;
736 >        }
737  
738 <    /**
739 <     * Latch released upon termination.
740 <     */
741 <    private final CountDownLatch terminationLatch;
738 >        /**
739 >         * Takes a task in FIFO order if b is base of queue and a task
740 >         * can be claimed without contention. Specialized versions
741 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
742 >         */
743 >        final ForkJoinTask<?> pollAt(int b) {
744 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
745 >            if ((a = array) != null) {
746 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
747 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
748 >                    base == b &&
749 >                    U.compareAndSwapObject(a, j, t, null)) {
750 >                    base = b + 1;
751 >                    return t;
752 >                }
753 >            }
754 >            return null;
755 >        }
756  
757 <    /**
758 <     * Creation factory for worker threads.
759 <     */
760 <    private final ForkJoinWorkerThreadFactory factory;
757 >        /**
758 >         * Takes next task, if one exists, in FIFO order.
759 >         */
760 >        final ForkJoinTask<?> poll() {
761 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
762 >            while ((b = base) - top < 0 && (a = array) != null) {
763 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
764 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
765 >                if (t != null) {
766 >                    if (base == b &&
767 >                        U.compareAndSwapObject(a, j, t, null)) {
768 >                        base = b + 1;
769 >                        return t;
770 >                    }
771 >                }
772 >                else if (base == b) {
773 >                    if (b + 1 == top)
774 >                        break;
775 >                    Thread.yield(); // wait for lagging update
776 >                }
777 >            }
778 >            return null;
779 >        }
780  
781 <    /**
782 <     * Sum of per-thread steal counts, updated only when threads are
783 <     * idle or terminating.
784 <     */
785 <    private volatile long stealCount;
781 >        /**
782 >         * Takes next task, if one exists, in order specified by mode.
783 >         */
784 >        final ForkJoinTask<?> nextLocalTask() {
785 >            return mode == 0 ? pop() : poll();
786 >        }
787  
788 <    /**
789 <     * Encoded record of top of treiber stack of threads waiting for
790 <     * events. The top 32 bits contain the count being waited for. The
791 <     * bottom word contains one plus the pool index of waiting worker
792 <     * thread.
793 <     */
794 <    private volatile long eventWaiters;
788 >        /**
789 >         * Returns next task, if one exists, in order specified by mode.
790 >         */
791 >        final ForkJoinTask<?> peek() {
792 >            ForkJoinTask<?>[] a = array; int m;
793 >            if (a == null || (m = a.length - 1) < 0)
794 >                return null;
795 >            int i = mode == 0 ? top - 1 : base;
796 >            int j = ((i & m) << ASHIFT) + ABASE;
797 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
798 >        }
799  
800 <    private static final int  EVENT_COUNT_SHIFT = 32;
801 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
800 >        /**
801 >         * Pops the given task only if it is at the current top.
802 >         */
803 >        final boolean tryUnpush(ForkJoinTask<?> t) {
804 >            ForkJoinTask<?>[] a; int s;
805 >            if ((a = array) != null && (s = top) != base &&
806 >                U.compareAndSwapObject
807 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
808 >                top = s;
809 >                return true;
810 >            }
811 >            return false;
812 >        }
813  
814 <    /**
815 <     * A counter for events that may wake up worker threads:
816 <     *   - Submission of a new task to the pool
817 <     *   - A worker pushing a task on an empty queue
818 <     *   - termination and reconfiguration
819 <     */
820 <    private volatile int eventCount;
814 >        /**
815 >         * Version of tryUnpush for shared queues; called by non-FJ
816 >         * submitters. Conservatively fails to unpush if all workers
817 >         * are active unless there are multiple tasks in queue.
818 >         */
819 >        final boolean trySharedUnpush(ForkJoinTask<?> task, ForkJoinPool p) {
820 >            boolean success = false;
821 >            if (task != null && top != base && runState == 0 &&
822 >                U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
823 >                try {
824 >                    ForkJoinTask<?>[] a; int n, s;
825 >                    if ((a = array) != null && (n = (s = top) - base) > 0 &&
826 >                        (n > 1 || p == null || (int)(p.ctl >> AC_SHIFT) < 0)) {
827 >                        int j = (((a.length - 1) & --s) << ASHIFT) + ABASE;
828 >                        if (U.getObjectVolatile(a, j) == task &&
829 >                            U.compareAndSwapObject(a, j, task, null)) {
830 >                            top = s;
831 >                            success = true;
832 >                        }
833 >                    }
834 >                } finally {
835 >                    runState = 0;                         // unlock
836 >                }
837 >            }
838 >            return success;
839 >        }
840  
841 <    /**
842 <     * Lifecycle control. The low word contains the number of workers
843 <     * that are (probably) executing tasks. This value is atomically
844 <     * incremented before a worker gets a task to run, and decremented
845 <     * when worker has no tasks and cannot find any.  Bits 16-18
846 <     * contain runLevel value. When all are zero, the pool is
847 <     * running. Level transitions are monotonic (running -> shutdown
848 <     * -> terminating -> terminated) so each transition adds a bit.
849 <     * These are bundled together to ensure consistent read for
850 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
851 <     * and active threads is zero).
852 <     */
853 <    private volatile int runState;
841 >        /**
842 >         * Polls the given task only if it is at the current base.
843 >         */
844 >        final boolean pollFor(ForkJoinTask<?> task) {
845 >            ForkJoinTask<?>[] a; int b;
846 >            if ((b = base) - top < 0 && (a = array) != null) {
847 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
848 >                if (U.getObjectVolatile(a, j) == task && base == b &&
849 >                    U.compareAndSwapObject(a, j, task, null)) {
850 >                    base = b + 1;
851 >                    return true;
852 >                }
853 >            }
854 >            return false;
855 >        }
856  
857 <    // Note: The order among run level values matters.
858 <    private static final int RUNLEVEL_SHIFT     = 16;
859 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
860 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
861 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
862 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
863 <    private static final int ONE_ACTIVE         = 1; // active update delta
857 >        /**
858 >         * Initializes or doubles the capacity of array. Call either
859 >         * by owner or with lock held -- it is OK for base, but not
860 >         * top, to move while resizings are in progress.
861 >         *
862 >         * @param rejectOnFailure if true, throw exception if capacity
863 >         * exceeded (relayed ultimately to user); else return null.
864 >         */
865 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
866 >            ForkJoinTask<?>[] oldA = array;
867 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
868 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
869 >                int oldMask, t, b;
870 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
871 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
872 >                    (t = top) - (b = base) > 0) {
873 >                    int mask = size - 1;
874 >                    do {
875 >                        ForkJoinTask<?> x;
876 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
877 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
878 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
879 >                        if (x != null &&
880 >                            U.compareAndSwapObject(oldA, oldj, x, null))
881 >                            U.putObjectVolatile(a, j, x);
882 >                    } while (++b != t);
883 >                }
884 >                return a;
885 >            }
886 >            else if (!rejectOnFailure)
887 >                return null;
888 >            else
889 >                throw new RejectedExecutionException("Queue capacity exceeded");
890 >        }
891  
892 <    /**
893 <     * Holds number of total (i.e., created and not yet terminated)
894 <     * and running (i.e., not blocked on joins or other managed sync)
895 <     * threads, packed together to ensure consistent snapshot when
896 <     * making decisions about creating and suspending spare
897 <     * threads. Updated only by CAS. Note that adding a new worker
898 <     * requires incrementing both counts, since workers start off in
899 <     * running state.  This field is also used for memory-fencing
900 <     * configuration parameters.
479 <     */
480 <    private volatile int workerCounts;
892 >        /**
893 >         * Removes and cancels all known tasks, ignoring any exceptions.
894 >         */
895 >        final void cancelAll() {
896 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
897 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
898 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
899 >                ForkJoinTask.cancelIgnoringExceptions(t);
900 >        }
901  
902 <    private static final int TOTAL_COUNT_SHIFT  = 16;
903 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
904 <    private static final int ONE_RUNNING        = 1;
905 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
902 >        /**
903 >         * Computes next value for random probes.  Scans don't require
904 >         * a very high quality generator, but also not a crummy one.
905 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
906 >         * This is manually inlined in its usages in ForkJoinPool to
907 >         * avoid writes inside busy scan loops.
908 >         */
909 >        final int nextSeed() {
910 >            int r = seed;
911 >            r ^= r << 13;
912 >            r ^= r >>> 17;
913 >            return seed = r ^= r << 5;
914 >        }
915  
916 <    /*
917 <     * Fields parallelism. maxPoolSize, locallyFifo,
918 <     * maintainsParallelism, and ueh are non-volatile, but external
919 <     * reads/writes use workerCount fences to ensure visability.
920 <     */
916 >        // Execution methods
917 >
918 >        /**
919 >         * Pops and runs tasks until empty.
920 >         */
921 >        private void popAndExecAll() {
922 >            // A bit faster than repeated pop calls
923 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
924 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
925 >                   (s = top - 1) - base >= 0 &&
926 >                   (t = ((ForkJoinTask<?>)
927 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
928 >                   != null) {
929 >                if (U.compareAndSwapObject(a, j, t, null)) {
930 >                    top = s;
931 >                    t.doExec();
932 >                }
933 >            }
934 >        }
935 >
936 >        /**
937 >         * Polls and runs tasks until empty.
938 >         */
939 >        private void pollAndExecAll() {
940 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
941 >                t.doExec();
942 >        }
943 >
944 >        /**
945 >         * If present, removes from queue and executes the given task, or
946 >         * any other cancelled task. Returns (true) immediately on any CAS
947 >         * or consistency check failure so caller can retry.
948 >         *
949 >         * @return 0 if no progress can be made, else positive
950 >         * (this unusual convention simplifies use with tryHelpStealer.)
951 >         */
952 >        final int tryRemoveAndExec(ForkJoinTask<?> task) {
953 >            int stat = 1;
954 >            boolean removed = false, empty = true;
955 >            ForkJoinTask<?>[] a; int m, s, b, n;
956 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
957 >                (n = (s = top) - (b = base)) > 0) {
958 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
959 >                    int j = ((--s & m) << ASHIFT) + ABASE;
960 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
961 >                    if (t == null)                    // inconsistent length
962 >                        break;
963 >                    else if (t == task) {
964 >                        if (s + 1 == top) {           // pop
965 >                            if (!U.compareAndSwapObject(a, j, task, null))
966 >                                break;
967 >                            top = s;
968 >                            removed = true;
969 >                        }
970 >                        else if (base == b)           // replace with proxy
971 >                            removed = U.compareAndSwapObject(a, j, task,
972 >                                                             new EmptyTask());
973 >                        break;
974 >                    }
975 >                    else if (t.status >= 0)
976 >                        empty = false;
977 >                    else if (s + 1 == top) {          // pop and throw away
978 >                        if (U.compareAndSwapObject(a, j, t, null))
979 >                            top = s;
980 >                        break;
981 >                    }
982 >                    if (--n == 0) {
983 >                        if (!empty && base == b)
984 >                            stat = 0;
985 >                        break;
986 >                    }
987 >                }
988 >            }
989 >            if (removed)
990 >                task.doExec();
991 >            return stat;
992 >        }
993 >
994 >        /**
995 >         * Executes a top-level task and any local tasks remaining
996 >         * after execution.
997 >         */
998 >        final void runTask(ForkJoinTask<?> t) {
999 >            if (t != null) {
1000 >                currentSteal = t;
1001 >                t.doExec();
1002 >                if (top != base) {       // process remaining local tasks
1003 >                    if (mode == 0)
1004 >                        popAndExecAll();
1005 >                    else
1006 >                        pollAndExecAll();
1007 >                }
1008 >                ++nsteals;
1009 >                currentSteal = null;
1010 >            }
1011 >        }
1012 >
1013 >        /**
1014 >         * Executes a non-top-level (stolen) task.
1015 >         */
1016 >        final void runSubtask(ForkJoinTask<?> t) {
1017 >            if (t != null) {
1018 >                ForkJoinTask<?> ps = currentSteal;
1019 >                currentSteal = t;
1020 >                t.doExec();
1021 >                currentSteal = ps;
1022 >            }
1023 >        }
1024 >
1025 >        /**
1026 >         * Returns true if owned and not known to be blocked.
1027 >         */
1028 >        final boolean isApparentlyUnblocked() {
1029 >            Thread wt; Thread.State s;
1030 >            return (eventCount >= 0 &&
1031 >                    (wt = owner) != null &&
1032 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1033 >                    s != Thread.State.WAITING &&
1034 >                    s != Thread.State.TIMED_WAITING);
1035 >        }
1036 >
1037 >        /**
1038 >         * If this owned and is not already interrupted, try to
1039 >         * interrupt and/or unpark, ignoring exceptions.
1040 >         */
1041 >        final void interruptOwner() {
1042 >            Thread wt, p;
1043 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1044 >                try {
1045 >                    wt.interrupt();
1046 >                } catch (SecurityException ignore) {
1047 >                }
1048 >            }
1049 >            if ((p = parker) != null)
1050 >                U.unpark(p);
1051 >        }
1052 >
1053 >        // Unsafe mechanics
1054 >        private static final sun.misc.Unsafe U;
1055 >        private static final long RUNSTATE;
1056 >        private static final int ABASE;
1057 >        private static final int ASHIFT;
1058 >        static {
1059 >            int s;
1060 >            try {
1061 >                U = getUnsafe();
1062 >                Class<?> k = WorkQueue.class;
1063 >                Class<?> ak = ForkJoinTask[].class;
1064 >                RUNSTATE = U.objectFieldOffset
1065 >                    (k.getDeclaredField("runState"));
1066 >                ABASE = U.arrayBaseOffset(ak);
1067 >                s = U.arrayIndexScale(ak);
1068 >            } catch (Exception e) {
1069 >                throw new Error(e);
1070 >            }
1071 >            if ((s & (s-1)) != 0)
1072 >                throw new Error("data type scale not a power of two");
1073 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1074 >        }
1075 >    }
1076  
1077      /**
1078 <     * The target parallelism level.
1078 >     * Per-thread records for threads that submit to pools. Currently
1079 >     * holds only pseudo-random seed / index that is used to choose
1080 >     * submission queues in method doSubmit. In the future, this may
1081 >     * also incorporate a means to implement different task rejection
1082 >     * and resubmission policies.
1083 >     *
1084 >     * Seeds for submitters and workers/workQueues work in basically
1085 >     * the same way but are initialized and updated using slightly
1086 >     * different mechanics. Both are initialized using the same
1087 >     * approach as in class ThreadLocal, where successive values are
1088 >     * unlikely to collide with previous values. This is done during
1089 >     * registration for workers, but requires a separate AtomicInteger
1090 >     * for submitters. Seeds are then randomly modified upon
1091 >     * collisions using xorshifts, which requires a non-zero seed.
1092       */
1093 <    private int parallelism;
1093 >    static final class Submitter {
1094 >        int seed;
1095 >        Submitter() {
1096 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1097 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1098 >        }
1099 >    }
1100 >
1101 >    /** ThreadLocal class for Submitters */
1102 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1103 >        public Submitter initialValue() { return new Submitter(); }
1104 >    }
1105 >
1106 >    // static fields (initialized in static initializer below)
1107  
1108      /**
1109 <     * The maximum allowed pool size.
1109 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1110 >     * overridden in ForkJoinPool constructors.
1111       */
1112 <    private int maxPoolSize;
1112 >    public static final ForkJoinWorkerThreadFactory
1113 >        defaultForkJoinWorkerThreadFactory;
1114  
1115      /**
1116 <     * True if use local fifo, not default lifo, for local polling
505 <     * Replicated by ForkJoinWorkerThreads
1116 >     * Generator for assigning sequence numbers as pool names.
1117       */
1118 <    private boolean locallyFifo;
1118 >    private static final AtomicInteger poolNumberGenerator;
1119  
1120      /**
1121 <     * Controls whether to add spares to maintain parallelism
1121 >     * Generator for initial hashes/seeds for submitters. Accessed by
1122 >     * Submitter class constructor.
1123       */
1124 <    private boolean maintainsParallelism;
1124 >    static final AtomicInteger nextSubmitterSeed;
1125  
1126      /**
1127 <     * The uncaught exception handler used when any worker
1128 <     * abruptly terminates
1127 >     * Permission required for callers of methods that may start or
1128 >     * kill threads.
1129       */
1130 <    private Thread.UncaughtExceptionHandler ueh;
1130 >    private static final RuntimePermission modifyThreadPermission;
1131  
1132      /**
1133 <     * Pool number, just for assigning useful names to worker threads
1133 >     * Per-thread submission bookkeeping. Shared across all pools
1134 >     * to reduce ThreadLocal pollution and because random motion
1135 >     * to avoid contention in one pool is likely to hold for others.
1136       */
1137 <    private final int poolNumber;
1137 >    private static final ThreadSubmitter submitters;
1138 >
1139 >    /** Common default pool */
1140 >    static volatile ForkJoinPool commonPool;
1141 >
1142 >    // commonPool construction parameters
1143 >    private static final String propPrefix =
1144 >        "java.util.concurrent.ForkJoinPool.common.";
1145 >    private static final Thread.UncaughtExceptionHandler commonPoolUEH;
1146 >    private static final ForkJoinWorkerThreadFactory commonPoolFactory;
1147 >    static final int commonPoolParallelism;
1148  
1149 <    // utilities for updating fields
1149 >    /** Static initialization lock */
1150 >    private static final Mutex initializationLock;
1151 >
1152 >    // static constants
1153  
1154      /**
1155 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
1156 <     *
1157 <     * @param delta the number to add
1155 >     * Initial timeout value (in nanoseconds) for the tread triggering
1156 >     * quiescence to park waiting for new work. On timeout, the thread
1157 >     * will instead try to shrink the number of workers.
1158       */
1159 <    final void updateRunningCount(int delta) {
533 <        int wc;
534 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535 <                                               wc = workerCounts,
536 <                                               wc + delta));
537 <    }
1159 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1160  
1161      /**
1162 <     * Write fence for user modifications of pool parameters
541 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
1162 >     * Timeout value when there are more threads than parallelism level
1163       */
1164 <    private void workerCountWriteFence() {
544 <        int wc;
545 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 <                                 wc = workerCounts, wc);
547 <    }
1164 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1165  
1166      /**
1167 <     * Read fence for external reads of pool parameters
1168 <     * (parallelism. maxPoolSize, etc).
1167 >     * The maximum stolen->joining link depth allowed in method
1168 >     * tryHelpStealer.  Must be a power of two. This value also
1169 >     * controls the maximum number of times to try to help join a task
1170 >     * without any apparent progress or change in pool state before
1171 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1172 >     * chains are unbounded, but we use a fixed constant to avoid
1173 >     * (otherwise unchecked) cycles and to bound staleness of
1174 >     * traversal parameters at the expense of sometimes blocking when
1175 >     * we could be helping.
1176       */
1177 <    private void workerCountReadFence() {
554 <        int ignore = workerCounts;
555 <    }
1177 >    private static final int MAX_HELP = 64;
1178  
1179      /**
1180 <     * Tries incrementing active count; fails on contention.
1181 <     * Called by workers before executing tasks.
1182 <     *
1183 <     * @return true on success
1180 >     * Secondary time-based bound (in nanosecs) for helping attempts
1181 >     * before trying compensated blocking in awaitJoin. Used in
1182 >     * conjunction with MAX_HELP to reduce variance due to different
1183 >     * polling rates associated with different helping options. The
1184 >     * value should roughly approximate the time required to create
1185 >     * and/or activate a worker thread.
1186       */
1187 <    final boolean tryIncrementActiveCount() {
564 <        int c;
565 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
566 <                                        c = runState, c + ONE_ACTIVE);
567 <    }
1187 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1188  
1189      /**
1190 <     * Tries decrementing active count; fails on contention.
1191 <     * Called when workers cannot find tasks to run.
1190 >     * Increment for seed generators. See class ThreadLocal for
1191 >     * explanation.
1192       */
1193 <    final boolean tryDecrementActiveCount() {
574 <        int c;
575 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
576 <                                        c = runState, c - ONE_ACTIVE);
577 <    }
1193 >    private static final int SEED_INCREMENT = 0x61c88647;
1194  
1195      /**
1196 <     * Advances to at least the given level. Returns true if not
1197 <     * already in at least the given level.
1196 >     * Bits and masks for control variables
1197 >     *
1198 >     * Field ctl is a long packed with:
1199 >     * AC: Number of active running workers minus target parallelism (16 bits)
1200 >     * TC: Number of total workers minus target parallelism (16 bits)
1201 >     * ST: true if pool is terminating (1 bit)
1202 >     * EC: the wait count of top waiting thread (15 bits)
1203 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1204 >     *
1205 >     * When convenient, we can extract the upper 32 bits of counts and
1206 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1207 >     * (int)ctl.  The ec field is never accessed alone, but always
1208 >     * together with id and st. The offsets of counts by the target
1209 >     * parallelism and the positionings of fields makes it possible to
1210 >     * perform the most common checks via sign tests of fields: When
1211 >     * ac is negative, there are not enough active workers, when tc is
1212 >     * negative, there are not enough total workers, and when e is
1213 >     * negative, the pool is terminating.  To deal with these possibly
1214 >     * negative fields, we use casts in and out of "short" and/or
1215 >     * signed shifts to maintain signedness.
1216 >     *
1217 >     * When a thread is queued (inactivated), its eventCount field is
1218 >     * set negative, which is the only way to tell if a worker is
1219 >     * prevented from executing tasks, even though it must continue to
1220 >     * scan for them to avoid queuing races. Note however that
1221 >     * eventCount updates lag releases so usage requires care.
1222 >     *
1223 >     * Field runState is an int packed with:
1224 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1225 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1226 >     * INIT: set true after workQueues array construction (1 bit)
1227 >     *
1228 >     * The sequence number enables simple consistency checks:
1229 >     * Staleness of read-only operations on the workQueues array can
1230 >     * be checked by comparing runState before vs after the reads.
1231       */
583    private boolean advanceRunLevel(int level) {
584        for (;;) {
585            int s = runState;
586            if ((s & level) != 0)
587                return false;
588            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
589                return true;
590        }
591    }
1232  
1233 <    // workers array maintenance
1233 >    // bit positions/shifts for fields
1234 >    private static final int  AC_SHIFT   = 48;
1235 >    private static final int  TC_SHIFT   = 32;
1236 >    private static final int  ST_SHIFT   = 31;
1237 >    private static final int  EC_SHIFT   = 16;
1238  
1239 <    /**
1240 <     * Records and returns a workers array index for new worker.
1241 <     */
1242 <    private int recordWorker(ForkJoinWorkerThread w) {
1243 <        // Try using slot totalCount-1. If not available, scan and/or resize
1244 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1245 <        final ReentrantLock lock = this.workerLock;
1246 <        lock.lock();
1239 >    // bounds
1240 >    private static final int  SMASK      = 0xffff;  // short bits
1241 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1242 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1243 >    private static final int  SHORT_SIGN = 1 << 15;
1244 >    private static final int  INT_SIGN   = 1 << 31;
1245 >
1246 >    // masks
1247 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1248 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1249 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1250 >
1251 >    // units for incrementing and decrementing
1252 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1253 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1254 >
1255 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1256 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1257 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1258 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1259 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1260 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1261 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1262 >
1263 >    // masks and units for dealing with e = (int)ctl
1264 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1265 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1266 >
1267 >    // runState bits
1268 >    private static final int SHUTDOWN    = 1 << 31;
1269 >
1270 >    // access mode for WorkQueue
1271 >    static final int LIFO_QUEUE          =  0;
1272 >    static final int FIFO_QUEUE          =  1;
1273 >    static final int SHARED_QUEUE        = -1;
1274 >
1275 >    // Instance fields
1276 >
1277 >    /*
1278 >     * Field layout order in this class tends to matter more than one
1279 >     * would like. Runtime layout order is only loosely related to
1280 >     * declaration order and may differ across JVMs, but the following
1281 >     * empirically works OK on current JVMs.
1282 >     */
1283 >
1284 >    volatile long ctl;                         // main pool control
1285 >    final int parallelism;                     // parallelism level
1286 >    final int localMode;                       // per-worker scheduling mode
1287 >    final int submitMask;                      // submit queue index bound
1288 >    int nextSeed;                              // for initializing worker seeds
1289 >    volatile int runState;                     // shutdown status and seq
1290 >    WorkQueue[] workQueues;                    // main registry
1291 >    final Mutex lock;                          // for registration
1292 >    final Condition termination;               // for awaitTermination
1293 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1294 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1295 >    final AtomicLong stealCount;               // collect counts when terminated
1296 >    final AtomicInteger nextWorkerNumber;      // to create worker name string
1297 >    String workerNamePrefix;                   // to create worker name string
1298 >
1299 >    //  Creating, registering, and deregistering workers
1300 >
1301 >    /**
1302 >     * Tries to create and start a worker
1303 >     */
1304 >    private void addWorker() {
1305 >        Throwable ex = null;
1306 >        ForkJoinWorkerThread wt = null;
1307          try {
1308 <            ForkJoinWorkerThread[] ws = workers;
1309 <            int len = ws.length;
1310 <            if (k < 0 || k >= len || ws[k] != null) {
607 <                for (k = 0; k < len && ws[k] != null; ++k)
608 <                    ;
609 <                if (k == len)
610 <                    ws = Arrays.copyOf(ws, len << 1);
1308 >            if ((wt = factory.newThread(this)) != null) {
1309 >                wt.start();
1310 >                return;
1311              }
1312 <            ws[k] = w;
1313 <            workers = ws; // volatile array write ensures slot visibility
614 <        } finally {
615 <            lock.unlock();
1312 >        } catch (Throwable e) {
1313 >            ex = e;
1314          }
1315 <        return k;
1315 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1316 >    }
1317 >
1318 >    /**
1319 >     * Callback from ForkJoinWorkerThread constructor to assign a
1320 >     * public name. This must be separate from registerWorker because
1321 >     * it is called during the "super" constructor call in
1322 >     * ForkJoinWorkerThread.
1323 >     */
1324 >    final String nextWorkerName() {
1325 >        return workerNamePrefix.concat
1326 >            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1327      }
1328  
1329      /**
1330 <     * Nulls out record of worker in workers array
1330 >     * Callback from ForkJoinWorkerThread constructor to establish its
1331 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1332 >     * to packing entries in front of the workQueues array, we treat
1333 >     * the array as a simple power-of-two hash table using per-thread
1334 >     * seed as hash, expanding as needed.
1335 >     *
1336 >     * @param w the worker's queue
1337       */
1338 <    private void forgetWorker(ForkJoinWorkerThread w) {
1339 <        int idx = w.poolIndex;
625 <        // Locking helps method recordWorker avoid unecessary expansion
626 <        final ReentrantLock lock = this.workerLock;
1338 >    final void registerWorker(WorkQueue w) {
1339 >        Mutex lock = this.lock;
1340          lock.lock();
1341          try {
1342 <            ForkJoinWorkerThread[] ws = workers;
1343 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1344 <                ws[idx] = null;
1342 >            WorkQueue[] ws = workQueues;
1343 >            if (w != null && ws != null) {          // skip on shutdown/failure
1344 >                int rs, n = ws.length, m = n - 1;
1345 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1346 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1347 >                int r = (s << 1) | 1;               // use odd-numbered indices
1348 >                if (ws[r &= m] != null) {           // collision
1349 >                    int probes = 0;                 // step by approx half size
1350 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1351 >                    while (ws[r = (r + step) & m] != null) {
1352 >                        if (++probes >= n) {
1353 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1354 >                            m = n - 1;
1355 >                            probes = 0;
1356 >                        }
1357 >                    }
1358 >                }
1359 >                w.eventCount = w.poolIndex = r;     // establish before recording
1360 >                ws[r] = w;                          // also update seq
1361 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1362 >            }
1363          } finally {
1364              lock.unlock();
1365          }
1366      }
1367  
637    // adding and removing workers
638
1368      /**
1369 <     * Tries to create and add new worker. Assumes that worker counts
1370 <     * are already updated to accommodate the worker, so adjusts on
1371 <     * failure.
1369 >     * Final callback from terminating worker, as well as upon failure
1370 >     * to construct or start a worker in addWorker.  Removes record of
1371 >     * worker from array, and adjusts counts. If pool is shutting
1372 >     * down, tries to complete termination.
1373       *
1374 <     * @return new worker or null if creation failed
1374 >     * @param wt the worker thread or null if addWorker failed
1375 >     * @param ex the exception causing failure, or null if none
1376       */
1377 <    private ForkJoinWorkerThread addWorker() {
1378 <        ForkJoinWorkerThread w = null;
1379 <        try {
1380 <            w = factory.newThread(this);
1381 <        } finally { // Adjust on either null or exceptional factory return
1382 <            if (w == null) {
1383 <                onWorkerCreationFailure();
1384 <                return null;
1377 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1378 >        Mutex lock = this.lock;
1379 >        WorkQueue w = null;
1380 >        if (wt != null && (w = wt.workQueue) != null) {
1381 >            w.runState = -1;                // ensure runState is set
1382 >            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1383 >            int idx = w.poolIndex;
1384 >            lock.lock();
1385 >            try {                           // remove record from array
1386 >                WorkQueue[] ws = workQueues;
1387 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1388 >                    ws[idx] = null;
1389 >            } finally {
1390 >                lock.unlock();
1391              }
1392          }
656        w.start(recordWorker(w), locallyFifo, ueh);
657        return w;
658    }
1393  
1394 <    /**
1395 <     * Adjusts counts upon failure to create worker
1396 <     */
1397 <    private void onWorkerCreationFailure() {
1398 <        int c;
1399 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1400 <                                               c = workerCounts,
1401 <                                               c - (ONE_RUNNING|ONE_TOTAL)));
1402 <        tryTerminate(false); // in case of failure during shutdown
1394 >        long c;                             // adjust ctl counts
1395 >        do {} while (!U.compareAndSwapLong
1396 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1397 >                                           ((c - TC_UNIT) & TC_MASK) |
1398 >                                           (c & ~(AC_MASK|TC_MASK)))));
1399 >
1400 >        if (!tryTerminate(false, false) && w != null) {
1401 >            w.cancelAll();                  // cancel remaining tasks
1402 >            if (w.array != null)            // suppress signal if never ran
1403 >                signalWork();               // wake up or create replacement
1404 >            if (ex == null)                 // help clean refs on way out
1405 >                ForkJoinTask.helpExpungeStaleExceptions();
1406 >        }
1407 >
1408 >        if (ex != null)                     // rethrow
1409 >            U.throwException(ex);
1410 >    }
1411 >
1412 >    // Submissions
1413 >
1414 >    /**
1415 >     * Unless shutting down, adds the given task to a submission queue
1416 >     * at submitter's current queue index (modulo submission
1417 >     * range). If no queue exists at the index, one is created.  If
1418 >     * the queue is busy, another index is randomly chosen. The
1419 >     * submitMask bounds the effective number of queues to the
1420 >     * (nearest power of two for) parallelism level.
1421 >     *
1422 >     * @param task the task. Caller must ensure non-null.
1423 >     */
1424 >    private void doSubmit(ForkJoinTask<?> task) {
1425 >        Submitter s = submitters.get();
1426 >        for (int r = s.seed, m = submitMask;;) {
1427 >            WorkQueue[] ws; WorkQueue q;
1428 >            int k = r & m & SQMASK;          // use only even indices
1429 >            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1430 >                throw new RejectedExecutionException(); // shutting down
1431 >            else if ((q = ws[k]) == null) {  // create new queue
1432 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1433 >                Mutex lock = this.lock;      // construct outside lock
1434 >                lock.lock();
1435 >                try {                        // recheck under lock
1436 >                    int rs = runState;       // to update seq
1437 >                    if (ws == workQueues && ws[k] == null) {
1438 >                        ws[k] = nq;
1439 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1440 >                    }
1441 >                } finally {
1442 >                    lock.unlock();
1443 >                }
1444 >            }
1445 >            else if (q.trySharedPush(task)) {
1446 >                signalWork();
1447 >                return;
1448 >            }
1449 >            else if (m > 1) {                // move to a different index
1450 >                r ^= r << 13;                // same xorshift as WorkQueues
1451 >                r ^= r >>> 17;
1452 >                s.seed = r ^= r << 5;
1453 >            }
1454 >            else
1455 >                Thread.yield();              // yield if no alternatives
1456 >        }
1457      }
1458  
1459      /**
1460 <     * Create enough total workers to establish target parallelism,
673 <     * giving up if terminating or addWorker fails
1460 >     * Submits the given (non-null) task to the common pool, if possible.
1461       */
1462 <    private void ensureEnoughTotalWorkers() {
1463 <        int wc;
1464 <        while (runState < TERMINATING &&
1465 <               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
1466 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
680 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
681 <                 addWorker() == null))
682 <                break;
683 <        }
1462 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1463 >        ForkJoinPool p;
1464 >        if ((p = commonPool) == null)
1465 >            p = ensureCommonPool();
1466 >        p.doSubmit(task);
1467      }
1468  
1469      /**
1470 <     * Final callback from terminating worker.  Removes record of
1471 <     * worker from array, and adjusts counts. If pool is shutting
1472 <     * down, tries to complete terminatation, else possibly replaces
1473 <     * the worker.
1470 >     * Returns true if the given task was submitted to common pool
1471 >     * and has not yet commenced execution, and is available for
1472 >     * removal according to execution policies; if so removing the
1473 >     * submission from the pool.
1474       *
1475 <     * @param w the worker
1475 >     * @param task the task
1476 >     * @return true if successful
1477       */
1478 <    final void workerTerminated(ForkJoinWorkerThread w) {
1479 <        if (w.active) { // force inactive
1480 <            w.active = false;
1481 <            do {} while (!tryDecrementActiveCount());
1482 <        }
1483 <        forgetWorker(w);
1484 <
1485 <        // decrement total count, and if was running, running count
702 <        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703 <        int wc;
704 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705 <                                               wc = workerCounts, wc - unit));
706 <
707 <        accumulateStealCount(w); // collect final count
708 <        if (!tryTerminate(false))
709 <            ensureEnoughTotalWorkers();
1478 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1479 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1480 >        int k = submitters.get().seed & SQMASK;
1481 >        return ((p = commonPool) != null &&
1482 >                (ws = p.workQueues) != null &&
1483 >                ws.length > (k &= p.submitMask) &&
1484 >                (q = ws[k]) != null &&
1485 >                q.trySharedUnpush(task, p));
1486      }
1487  
1488 <    // Waiting for and signalling events
1488 >    // Maintaining ctl counts
1489  
1490      /**
1491 <     * Ensures eventCount on exit is different (mod 2^32) than on
716 <     * entry.  CAS failures are OK -- any change in count suffices.
1491 >     * Increments active count; mainly called upon return from blocking.
1492       */
1493 <    private void advanceEventCount() {
1494 <        int c;
1495 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1493 >    final void incrementActiveCount() {
1494 >        long c;
1495 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1496      }
1497  
1498      /**
1499 <     * Releases workers blocked on a count not equal to current count.
1499 >     * Tries to create one or activate one or more workers if too few are active.
1500       */
1501 <    final void releaseWaiters() {
1502 <        long top;
1503 <        int id;
1504 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
1505 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
1506 <            ForkJoinWorkerThread[] ws = workers;
1507 <            ForkJoinWorkerThread w;
1508 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
1509 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1510 <                                          top, w.nextWaiter))
1511 <                LockSupport.unpark(w);
1501 >    final void signalWork() {
1502 >        long c; int u;
1503 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1504 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1505 >            if ((e = (int)c) > 0) {                     // at least one waiting
1506 >                if (ws != null && (i = e & SMASK) < ws.length &&
1507 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1508 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1509 >                               ((long)(u + UAC_UNIT) << 32));
1510 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1511 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1512 >                        if ((p = w.parker) != null)
1513 >                            U.unpark(p);                // activate and release
1514 >                        break;
1515 >                    }
1516 >                }
1517 >                else
1518 >                    break;
1519 >            }
1520 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1521 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1522 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1523 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1524 >                    addWorker();
1525 >                    break;
1526 >                }
1527 >            }
1528 >            else
1529 >                break;
1530          }
1531      }
1532  
1533 +    // Scanning for tasks
1534 +
1535      /**
1536 <     * Advances eventCount and releases waiters until interference by
742 <     * other releasing threads is detected.
1536 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1537       */
1538 <    final void signalWork() {
1539 <        int ec;
1540 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
1541 <        outer:for (;;) {
1542 <            long top = eventWaiters;
1543 <            ec = eventCount;
1544 <            for (;;) {
1545 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1546 <                int id = (int)(top & WAITER_INDEX_MASK);
1547 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
1548 <                    return;
1549 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
1550 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1551 <                                               top, top = w.nextWaiter))
1552 <                    continue outer;      // possibly stale; reread
1553 <                LockSupport.unpark(w);
1554 <                if (top != eventWaiters) // let someone else take over
1555 <                    return;
1538 >    final void runWorker(WorkQueue w) {
1539 >        w.growArray(false);         // initialize queue array in this thread
1540 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1541 >    }
1542 >
1543 >    /**
1544 >     * Scans for and, if found, returns one task, else possibly
1545 >     * inactivates the worker. This method operates on single reads of
1546 >     * volatile state and is designed to be re-invoked continuously,
1547 >     * in part because it returns upon detecting inconsistencies,
1548 >     * contention, or state changes that indicate possible success on
1549 >     * re-invocation.
1550 >     *
1551 >     * The scan searches for tasks across a random permutation of
1552 >     * queues (starting at a random index and stepping by a random
1553 >     * relative prime, checking each at least once).  The scan
1554 >     * terminates upon either finding a non-empty queue, or completing
1555 >     * the sweep. If the worker is not inactivated, it takes and
1556 >     * returns a task from this queue.  On failure to find a task, we
1557 >     * take one of the following actions, after which the caller will
1558 >     * retry calling this method unless terminated.
1559 >     *
1560 >     * * If pool is terminating, terminate the worker.
1561 >     *
1562 >     * * If not a complete sweep, try to release a waiting worker.  If
1563 >     * the scan terminated because the worker is inactivated, then the
1564 >     * released worker will often be the calling worker, and it can
1565 >     * succeed obtaining a task on the next call. Or maybe it is
1566 >     * another worker, but with same net effect. Releasing in other
1567 >     * cases as well ensures that we have enough workers running.
1568 >     *
1569 >     * * If not already enqueued, try to inactivate and enqueue the
1570 >     * worker on wait queue. Or, if inactivating has caused the pool
1571 >     * to be quiescent, relay to idleAwaitWork to check for
1572 >     * termination and possibly shrink pool.
1573 >     *
1574 >     * * If already inactive, and the caller has run a task since the
1575 >     * last empty scan, return (to allow rescan) unless others are
1576 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1577 >     * scan to ensure eventual inactivation and blocking.
1578 >     *
1579 >     * * If already enqueued and none of the above apply, park
1580 >     * awaiting signal,
1581 >     *
1582 >     * @param w the worker (via its WorkQueue)
1583 >     * @return a task or null if none found
1584 >     */
1585 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1586 >        WorkQueue[] ws;                       // first update random seed
1587 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1588 >        int rs = runState, m;                 // volatile read order matters
1589 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1590 >            int ec = w.eventCount;            // ec is negative if inactive
1591 >            int step = (r >>> 16) | 1;        // relative prime
1592 >            for (int j = (m + 1) << 2; ; r += step) {
1593 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1594 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1595 >                    (a = q.array) != null) {  // probably nonempty
1596 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1597 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1598 >                    if (q.base == b && ec >= 0 && t != null &&
1599 >                        U.compareAndSwapObject(a, i, t, null)) {
1600 >                        if (q.top - (q.base = b + 1) > 0)
1601 >                            signalWork();    // help pushes signal
1602 >                        return t;
1603 >                    }
1604 >                    else if (ec < 0 || j <= m) {
1605 >                        rs = 0;               // mark scan as imcomplete
1606 >                        break;                // caller can retry after release
1607 >                    }
1608 >                }
1609 >                if (--j < 0)
1610 >                    break;
1611 >            }
1612 >
1613 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1614 >            if (e < 0)                        // decode ctl on empty scan
1615 >                w.runState = -1;              // pool is terminating
1616 >            else if (rs == 0 || rs != runState) { // incomplete scan
1617 >                WorkQueue v; Thread p;        // try to release a waiter
1618 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1619 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1620 >                    long nc = ((long)(v.nextWait & E_MASK) |
1621 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1622 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1623 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1624 >                        if ((p = v.parker) != null)
1625 >                            U.unpark(p);
1626 >                    }
1627 >                }
1628 >            }
1629 >            else if (ec >= 0) {               // try to enqueue/inactivate
1630 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1631 >                w.nextWait = e;
1632 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1633 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1634 >                    w.eventCount = ec;        // unmark on CAS failure
1635 >                else {
1636 >                    if ((ns = w.nsteals) != 0) {
1637 >                        w.nsteals = 0;        // set rescans if ran task
1638 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1639 >                        w.totalSteals += ns;
1640 >                    }
1641 >                    if (a == 1 - parallelism) // quiescent
1642 >                        idleAwaitWork(w, nc, c);
1643 >                }
1644 >            }
1645 >            else if (w.eventCount < 0) {      // already queued
1646 >                int ac = a + parallelism;
1647 >                if ((nr = w.rescans) > 0)     // continue rescanning
1648 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1649 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1650 >                    Thread.interrupted();     // clear status
1651 >                    Thread wt = Thread.currentThread();
1652 >                    U.putObject(wt, PARKBLOCKER, this);
1653 >                    w.parker = wt;            // emulate LockSupport.park
1654 >                    if (w.eventCount < 0)     // recheck
1655 >                        U.park(false, 0L);
1656 >                    w.parker = null;
1657 >                    U.putObject(wt, PARKBLOCKER, null);
1658 >                }
1659              }
1660          }
1661 +        return null;
1662      }
1663  
1664      /**
1665 <     * If worker is inactive, blocks until terminating or event count
1666 <     * advances from last value held by worker; in any case helps
1667 <     * release others.
1668 <     *
1669 <     * @param w the calling worker thread
1670 <     */
1671 <    private void eventSync(ForkJoinWorkerThread w) {
1672 <        if (!w.active) {
1673 <            int prev = w.lastEventCount;
1674 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
1675 <                            ((long)(w.poolIndex + 1)));
1676 <            long top;
1677 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1678 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
1679 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
1680 <                   eventCount == prev) {
1681 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1682 <                                              w.nextWaiter = top, nextTop)) {
1683 <                    accumulateStealCount(w); // transfer steals while idle
1684 <                    Thread.interrupted();    // clear/ignore interrupt
1685 <                    while (eventCount == prev)
1686 <                        w.doPark();
1665 >     * If inactivating worker w has caused the pool to become
1666 >     * quiescent, checks for pool termination, and, so long as this is
1667 >     * not the only worker, waits for event for up to a given
1668 >     * duration.  On timeout, if ctl has not changed, terminates the
1669 >     * worker, which will in turn wake up another worker to possibly
1670 >     * repeat this process.
1671 >     *
1672 >     * @param w the calling worker
1673 >     * @param currentCtl the ctl value triggering possible quiescence
1674 >     * @param prevCtl the ctl value to restore if thread is terminated
1675 >     */
1676 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1677 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1678 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1679 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1680 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1681 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1682 >            Thread wt = Thread.currentThread();
1683 >            while (ctl == currentCtl) {
1684 >                Thread.interrupted();  // timed variant of version in scan()
1685 >                U.putObject(wt, PARKBLOCKER, this);
1686 >                w.parker = wt;
1687 >                if (ctl == currentCtl)
1688 >                    U.park(false, parkTime);
1689 >                w.parker = null;
1690 >                U.putObject(wt, PARKBLOCKER, null);
1691 >                if (ctl != currentCtl)
1692 >                    break;
1693 >                if (deadline - System.nanoTime() <= 0L &&
1694 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1695 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1696 >                    w.runState = -1;   // shrink
1697                      break;
1698                  }
1699              }
792            w.lastEventCount = eventCount;
1700          }
794        releaseWaiters();
1701      }
1702  
1703      /**
1704 <     * Callback from workers invoked upon each top-level action (i.e.,
1705 <     * stealing a task or taking a submission and running
1706 <     * it). Performs one or both of the following:
1707 <     *
1708 <     * * If the worker cannot find work, updates its active status to
1709 <     * inactive and updates activeCount unless there is contention, in
1710 <     * which case it may try again (either in this or a subsequent
1711 <     * call).  Additionally, awaits the next task event and/or helps
1712 <     * wake up other releasable waiters.
1713 <     *
1714 <     * * If there are too many running threads, suspends this worker
1715 <     * (first forcing inactivation if necessary).  If it is not
1716 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
1717 <     * -- killed while suspended within suspendAsSpare. Otherwise,
1718 <     * upon resume it rechecks to make sure that it is still needed.
1719 <     *
1720 <     * @param w the worker
1721 <     * @param worked false if the worker scanned for work but didn't
1722 <     * find any (in which case it may block waiting for work).
1723 <     */
1724 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
1725 <        boolean active = w.active;
1726 <        boolean inactivate = !worked & active;
1727 <        for (;;) {
1728 <            if (inactivate) {
1729 <                int c = runState;
1730 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
1731 <                                             c, c - ONE_ACTIVE))
1732 <                    inactivate = active = w.active = false;
1733 <            }
1734 <            int wc = workerCounts;
1735 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
1736 <                if (!worked)
1737 <                    eventSync(w);
1738 <                return;
1704 >     * Tries to locate and execute tasks for a stealer of the given
1705 >     * task, or in turn one of its stealers, Traces currentSteal ->
1706 >     * currentJoin links looking for a thread working on a descendant
1707 >     * of the given task and with a non-empty queue to steal back and
1708 >     * execute tasks from. The first call to this method upon a
1709 >     * waiting join will often entail scanning/search, (which is OK
1710 >     * because the joiner has nothing better to do), but this method
1711 >     * leaves hints in workers to speed up subsequent calls. The
1712 >     * implementation is very branchy to cope with potential
1713 >     * inconsistencies or loops encountering chains that are stale,
1714 >     * unknown, or so long that they are likely cyclic.
1715 >     *
1716 >     * @param joiner the joining worker
1717 >     * @param task the task to join
1718 >     * @return 0 if no progress can be made, negative if task
1719 >     * known complete, else positive
1720 >     */
1721 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1722 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1723 >        if (joiner != null && task != null) {       // hoist null checks
1724 >            restart: for (;;) {
1725 >                ForkJoinTask<?> subtask = task;     // current target
1726 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1727 >                    WorkQueue[] ws; int m, s, h;
1728 >                    if ((s = task.status) < 0) {
1729 >                        stat = s;
1730 >                        break restart;
1731 >                    }
1732 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1733 >                        break restart;              // shutting down
1734 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1735 >                        v.currentSteal != subtask) {
1736 >                        for (int origin = h;;) {    // find stealer
1737 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1738 >                                (subtask.status < 0 || j.currentJoin != subtask))
1739 >                                continue restart;   // occasional staleness check
1740 >                            if ((v = ws[h]) != null &&
1741 >                                v.currentSteal == subtask) {
1742 >                                j.stealHint = h;    // save hint
1743 >                                break;
1744 >                            }
1745 >                            if (h == origin)
1746 >                                break restart;      // cannot find stealer
1747 >                        }
1748 >                    }
1749 >                    for (;;) { // help stealer or descend to its stealer
1750 >                        ForkJoinTask[] a;  int b;
1751 >                        if (subtask.status < 0)     // surround probes with
1752 >                            continue restart;       //   consistency checks
1753 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1754 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1755 >                            ForkJoinTask<?> t =
1756 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1757 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1758 >                                v.currentSteal != subtask)
1759 >                                continue restart;   // stale
1760 >                            stat = 1;               // apparent progress
1761 >                            if (t != null && v.base == b &&
1762 >                                U.compareAndSwapObject(a, i, t, null)) {
1763 >                                v.base = b + 1;     // help stealer
1764 >                                joiner.runSubtask(t);
1765 >                            }
1766 >                            else if (v.base == b && ++steps == MAX_HELP)
1767 >                                break restart;      // v apparently stalled
1768 >                        }
1769 >                        else {                      // empty -- try to descend
1770 >                            ForkJoinTask<?> next = v.currentJoin;
1771 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1772 >                                v.currentSteal != subtask)
1773 >                                continue restart;   // stale
1774 >                            else if (next == null || ++steps == MAX_HELP)
1775 >                                break restart;      // dead-end or maybe cyclic
1776 >                            else {
1777 >                                subtask = next;
1778 >                                j = v;
1779 >                                break;
1780 >                            }
1781 >                        }
1782 >                    }
1783 >                }
1784              }
834            if (!(inactivate |= active) &&  // must inactivate to suspend
835                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836                                         wc, wc - ONE_RUNNING) &&
837                !w.suspendAsSpare())        // false if trimmed
838                return;
1785          }
1786 +        return stat;
1787      }
1788  
1789      /**
1790 <     * Adjusts counts and creates or resumes compensating threads for
1791 <     * a worker about to block on task joinMe, returning early if
1792 <     * joinMe becomes ready. First tries resuming an existing spare
1793 <     * (which usually also avoids any count adjustment), but must then
1794 <     * decrement running count to determine whether a new thread is
1795 <     * needed. See above for fuller explanation.
1796 <     */
1797 <    final void preJoin(ForkJoinTask<?> joinMe) {
1798 <        boolean dec = false;       // true when running count decremented
1799 <        for (;;) {
1800 <            releaseWaiters();      // help other threads progress
1801 <
855 <            if (joinMe.status < 0) // surround spare search with done checks
856 <                return;
857 <            ForkJoinWorkerThread spare = null;
858 <            for (ForkJoinWorkerThread w : workers) {
859 <                if (w != null && w.isSuspended()) {
860 <                    spare = w;
1790 >     * If task is at base of some steal queue, steals and executes it.
1791 >     *
1792 >     * @param joiner the joining worker
1793 >     * @param task the task
1794 >     */
1795 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1796 >        WorkQueue[] ws;
1797 >        if ((ws = workQueues) != null) {
1798 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1799 >                WorkQueue q = ws[j];
1800 >                if (q != null && q.pollFor(task)) {
1801 >                    joiner.runSubtask(task);
1802                      break;
1803                  }
1804              }
1805 <            if (joinMe.status < 0)
1806 <                return;
866 <
867 <            if (spare != null && spare.tryUnsuspend()) {
868 <                if (dec || joinMe.requestSignal() < 0) {
869 <                    int c;
870 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
871 <                                                           workerCountsOffset,
872 <                                                           c = workerCounts,
873 <                                                           c + ONE_RUNNING));
874 <                } // else no net count change
875 <                LockSupport.unpark(spare);
876 <                return;
877 <            }
1805 >        }
1806 >    }
1807  
1808 <            int wc = workerCounts; // decrement running count
1809 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
1810 <                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1811 <                                                wc, wc -= ONE_RUNNING)) &&
1812 <                joinMe.requestSignal() < 0) { // cannot block
1813 <                int c;                        // back out
1814 <                do {} while (!UNSAFE.compareAndSwapInt(this,
1815 <                                                       workerCountsOffset,
1816 <                                                       c = workerCounts,
1817 <                                                       c + ONE_RUNNING));
1818 <                return;
1808 >    /**
1809 >     * Tries to decrement active count (sometimes implicitly) and
1810 >     * possibly release or create a compensating worker in preparation
1811 >     * for blocking. Fails on contention or termination. Otherwise,
1812 >     * adds a new thread if no idle workers are available and either
1813 >     * pool would become completely starved or: (at least half
1814 >     * starved, and fewer than 50% spares exist, and there is at least
1815 >     * one task apparently available). Even though the availability
1816 >     * check requires a full scan, it is worthwhile in reducing false
1817 >     * alarms.
1818 >     *
1819 >     * @param task if non-null, a task being waited for
1820 >     * @param blocker if non-null, a blocker being waited for
1821 >     * @return true if the caller can block, else should recheck and retry
1822 >     */
1823 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1824 >        int pc = parallelism, e;
1825 >        long c = ctl;
1826 >        WorkQueue[] ws = workQueues;
1827 >        if ((e = (int)c) >= 0 && ws != null) {
1828 >            int u, a, ac, hc;
1829 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1830 >            boolean replace = false;
1831 >            if ((a = u >> UAC_SHIFT) <= 0) {
1832 >                if ((ac = a + pc) <= 1)
1833 >                    replace = true;
1834 >                else if ((e > 0 || (task != null &&
1835 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1836 >                    WorkQueue w;
1837 >                    for (int j = 0; j < ws.length; ++j) {
1838 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1839 >                            replace = true;
1840 >                            break;   // in compensation range and tasks available
1841 >                        }
1842 >                    }
1843 >                }
1844              }
1845 <
1846 <            if (dec) {
1847 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
1848 <                int pc = parallelism;
1849 <                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
1850 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
1851 <                                 !maintainsParallelism)) ||
1852 <                    tc >= maxPoolSize) // cannot add
1853 <                    return;
1854 <                if (spare == null &&
1855 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1856 <                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
1857 <                    addWorker();
1858 <                    return;
1845 >            if ((task == null || task.status >= 0) && // recheck need to block
1846 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1847 >                if (!replace) {          // no compensation
1848 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1849 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
1850 >                        return true;
1851 >                }
1852 >                else if (e != 0) {       // release an idle worker
1853 >                    WorkQueue w; Thread p; int i;
1854 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1855 >                        long nc = ((long)(w.nextWait & E_MASK) |
1856 >                                   (c & (AC_MASK|TC_MASK)));
1857 >                        if (w.eventCount == (e | INT_SIGN) &&
1858 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
1859 >                            w.eventCount = (e + E_SEQ) & E_MASK;
1860 >                            if ((p = w.parker) != null)
1861 >                                U.unpark(p);
1862 >                            return true;
1863 >                        }
1864 >                    }
1865 >                }
1866 >                else if (tc < MAX_CAP) { // create replacement
1867 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1868 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1869 >                        addWorker();
1870 >                        return true;
1871 >                    }
1872                  }
1873              }
1874          }
1875 +        return false;
1876      }
1877  
1878      /**
1879 <     * Same idea as preJoin but with too many differing details to
1880 <     * integrate: There are no task-based signal counts, and only one
1881 <     * way to do the actual blocking. So for simplicity it is directly
1882 <     * incorporated into this method.
1879 >     * Helps and/or blocks until the given task is done.
1880 >     *
1881 >     * @param joiner the joining worker
1882 >     * @param task the task
1883 >     * @return task status on exit
1884       */
1885 <    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
1886 <        throws InterruptedException {
1887 <        maintainPar &= maintainsParallelism; // override
1888 <        boolean dec = false;
1889 <        boolean done = false;
1890 <        for (;;) {
1891 <            releaseWaiters();
1892 <            if (done = blocker.isReleasable())
1893 <                break;
1894 <            ForkJoinWorkerThread spare = null;
1895 <            for (ForkJoinWorkerThread w : workers) {
1896 <                if (w != null && w.isSuspended()) {
1897 <                    spare = w;
1898 <                    break;
1899 <                }
1900 <            }
1901 <            if (done = blocker.isReleasable())
1902 <                break;
1903 <            if (spare != null && spare.tryUnsuspend()) {
1904 <                if (dec) {
1905 <                    int c;
1906 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
1907 <                                                           workerCountsOffset,
1908 <                                                           c = workerCounts,
1909 <                                                           c + ONE_RUNNING));
1885 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1886 >        int s;
1887 >        if ((s = task.status) >= 0) {
1888 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1889 >            joiner.currentJoin = task;
1890 >            long startTime = 0L;
1891 >            for (int k = 0;;) {
1892 >                if ((s = (joiner.isEmpty() ?           // try to help
1893 >                          tryHelpStealer(joiner, task) :
1894 >                          joiner.tryRemoveAndExec(task))) == 0 &&
1895 >                    (s = task.status) >= 0) {
1896 >                    if (k == 0) {
1897 >                        startTime = System.nanoTime();
1898 >                        tryPollForAndExec(joiner, task); // check uncommon case
1899 >                    }
1900 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
1901 >                             System.nanoTime() - startTime >=
1902 >                             COMPENSATION_DELAY &&
1903 >                             tryCompensate(task, null)) {
1904 >                        if (task.trySetSignal()) {
1905 >                            synchronized (task) {
1906 >                                if (task.status >= 0) {
1907 >                                    try {                // see ForkJoinTask
1908 >                                        task.wait();     //  for explanation
1909 >                                    } catch (InterruptedException ie) {
1910 >                                    }
1911 >                                }
1912 >                                else
1913 >                                    task.notifyAll();
1914 >                            }
1915 >                        }
1916 >                        long c;                          // re-activate
1917 >                        do {} while (!U.compareAndSwapLong
1918 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1919 >                    }
1920                  }
1921 <                LockSupport.unpark(spare);
1922 <                break;
944 <            }
945 <            int wc = workerCounts;
946 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947 <                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948 <                                               wc, wc -= ONE_RUNNING);
949 <            if (dec) {
950 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
951 <                int pc = parallelism;
952 <                int dc = pc - (wc & RUNNING_COUNT_MASK);
953 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954 <                                 !maintainPar)) ||
955 <                    tc >= maxPoolSize)
956 <                    break;
957 <                if (spare == null &&
958 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959 <                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960 <                    addWorker();
1921 >                if (s < 0 || (s = task.status) < 0) {
1922 >                    joiner.currentJoin = prevJoin;
1923                      break;
1924                  }
1925 +                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1926 +                    Thread.yield();                     // for politeness
1927              }
1928          }
1929 <
966 <        try {
967 <            if (!done)
968 <                do {} while (!blocker.isReleasable() && !blocker.block());
969 <        } finally {
970 <            if (dec) {
971 <                int c;
972 <                do {} while (!UNSAFE.compareAndSwapInt(this,
973 <                                                       workerCountsOffset,
974 <                                                       c = workerCounts,
975 <                                                       c + ONE_RUNNING));
976 <            }
977 <        }
1929 >        return s;
1930      }
1931  
1932      /**
1933 <     * Possibly initiates and/or completes termination.
1933 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1934 >     * to help join only while there is continuous progress. (Caller
1935 >     * will then enter a timed wait.)
1936       *
1937 <     * @param now if true, unconditionally terminate, else only
1938 <     * if shutdown and empty queue and no active workers
1939 <     * @return true if now terminating or terminated
1937 >     * @param joiner the joining worker
1938 >     * @param task the task
1939 >     * @return task status on exit
1940       */
1941 <    private boolean tryTerminate(boolean now) {
1942 <        if (now)
1943 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1944 <        else if (runState < SHUTDOWN ||
1945 <                 !submissionQueue.isEmpty() ||
1946 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1947 <            return false;
1948 <
1949 <        if (advanceRunLevel(TERMINATING))
996 <            startTerminating();
1941 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1942 >        int s;
1943 >        while ((s = task.status) >= 0 &&
1944 >               (joiner.isEmpty() ?
1945 >                tryHelpStealer(joiner, task) :
1946 >                joiner.tryRemoveAndExec(task)) != 0)
1947 >            ;
1948 >        return s;
1949 >    }
1950  
1951 <        // Finish now if all threads terminated; else in some subsequent call
1952 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1953 <            advanceRunLevel(TERMINATED);
1954 <            terminationLatch.countDown();
1951 >    /**
1952 >     * Returns a (probably) non-empty steal queue, if one is found
1953 >     * during a random, then cyclic scan, else null.  This method must
1954 >     * be retried by caller if, by the time it tries to use the queue,
1955 >     * it is empty.
1956 >     */
1957 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1958 >        // Similar to loop in scan(), but ignoring submissions
1959 >        int r;
1960 >        if (w == null) // allow external callers
1961 >            r = ThreadLocalRandom.current().nextInt();
1962 >        else {
1963 >            r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1964 >        }
1965 >        int step = (r >>> 16) | 1;
1966 >        for (WorkQueue[] ws;;) {
1967 >            int rs = runState, m;
1968 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
1969 >                return null;
1970 >            for (int j = (m + 1) << 2; ; r += step) {
1971 >                WorkQueue q = ws[((r << 1) | 1) & m];
1972 >                if (q != null && !q.isEmpty())
1973 >                    return q;
1974 >                else if (--j < 0) {
1975 >                    if (runState == rs)
1976 >                        return null;
1977 >                    break;
1978 >                }
1979 >            }
1980          }
1003        return true;
1981      }
1982  
1983      /**
1984 <     * Actions on transition to TERMINATING
1985 <     */
1986 <    private void startTerminating() {
1987 <        // Clear out and cancel submissions, ignoring exceptions
1988 <        ForkJoinTask<?> task;
1989 <        while ((task = submissionQueue.poll()) != null) {
1990 <            try {
1991 <                task.cancel(false);
1992 <            } catch (Throwable ignore) {
1984 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
1985 >     * active count ctl maintenance, but rather than blocking
1986 >     * when tasks cannot be found, we rescan until all others cannot
1987 >     * find tasks either.
1988 >     */
1989 >    final void helpQuiescePool(WorkQueue w) {
1990 >        for (boolean active = true;;) {
1991 >            ForkJoinTask<?> localTask; // exhaust local queue
1992 >            while ((localTask = w.nextLocalTask()) != null)
1993 >                localTask.doExec();
1994 >            WorkQueue q = findNonEmptyStealQueue(w);
1995 >            if (q != null) {
1996 >                ForkJoinTask<?> t; int b;
1997 >                if (!active) {      // re-establish active count
1998 >                    long c;
1999 >                    active = true;
2000 >                    do {} while (!U.compareAndSwapLong
2001 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2002 >                }
2003 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2004 >                    w.runSubtask(t);
2005              }
2006 <        }
2007 <        // Propagate run level
2008 <        for (ForkJoinWorkerThread w : workers) {
2009 <            if (w != null)
2010 <                w.shutdown();    // also resumes suspended workers
2011 <        }
2012 <        // Ensure no straggling local tasks
2013 <        for (ForkJoinWorkerThread w : workers) {
2014 <            if (w != null)
2015 <                w.cancelTasks();
2016 <        }
2017 <        // Wake up idle workers
2018 <        advanceEventCount();
1030 <        releaseWaiters();
1031 <        // Unstick pending joins
1032 <        for (ForkJoinWorkerThread w : workers) {
1033 <            if (w != null && !w.isTerminated()) {
1034 <                try {
1035 <                    w.interrupt();
1036 <                } catch (SecurityException ignore) {
2006 >            else {
2007 >                long c;
2008 >                if (active) {       // decrement active count without queuing
2009 >                    active = false;
2010 >                    do {} while (!U.compareAndSwapLong
2011 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2012 >                }
2013 >                else
2014 >                    c = ctl;        // re-increment on exit
2015 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2016 >                    do {} while (!U.compareAndSwapLong
2017 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2018 >                    break;
2019                  }
2020              }
2021          }
2022      }
2023  
1042    // misc support for ForkJoinWorkerThread
1043
2024      /**
2025 <     * Returns pool number
2025 >     * Restricted version of helpQuiescePool for non-FJ callers
2026       */
2027 <    final int getPoolNumber() {
2028 <        return poolNumber;
2027 >    static void externalHelpQuiescePool() {
2028 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
2029 >        ForkJoinTask<?> t; int b;
2030 >        int k = submitters.get().seed & SQMASK;
2031 >        if ((p = commonPool) != null &&
2032 >            (ws = p.workQueues) != null &&
2033 >            ws.length > (k &= p.submitMask) &&
2034 >            (w = ws[k]) != null &&
2035 >            (q = p.findNonEmptyStealQueue(w)) != null &&
2036 >            (b = q.base) - q.top < 0 &&
2037 >            (t = q.pollAt(b)) != null)
2038 >            t.doExec();
2039      }
2040  
2041      /**
2042 <     * Accumulates steal count from a worker, clearing
2043 <     * the worker's value
2044 <     */
2045 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
2046 <        int sc = w.stealCount;
2047 <        if (sc != 0) {
2048 <            long c;
2049 <            w.stealCount = 0;
2050 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
2051 <                                                    c = stealCount, c + sc));
2042 >     * Gets and removes a local or stolen task for the given worker.
2043 >     *
2044 >     * @return a task, if available
2045 >     */
2046 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2047 >        for (ForkJoinTask<?> t;;) {
2048 >            WorkQueue q; int b;
2049 >            if ((t = w.nextLocalTask()) != null)
2050 >                return t;
2051 >            if ((q = findNonEmptyStealQueue(w)) == null)
2052 >                return null;
2053 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2054 >                return t;
2055          }
2056      }
2057  
2058      /**
2059       * Returns the approximate (non-atomic) number of idle threads per
2060 <     * active thread.
2060 >     * active thread to offset steal queue size for method
2061 >     * ForkJoinTask.getSurplusQueuedTaskCount().
2062       */
2063      final int idlePerActive() {
2064 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2065 <        int pc = parallelism; // use targeted parallelism, not rc
2066 <        // Use exact results for small values, saturate past 4
2067 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2064 >        // Approximate at powers of two for small values, saturate past 4
2065 >        int p = parallelism;
2066 >        int a = p + (int)(ctl >> AC_SHIFT);
2067 >        return (a > (p >>>= 1) ? 0 :
2068 >                a > (p >>>= 1) ? 1 :
2069 >                a > (p >>>= 1) ? 2 :
2070 >                a > (p >>>= 1) ? 4 :
2071 >                8);
2072      }
2073  
2074      /**
2075 <     * Returns the approximate (non-atomic) difference between running
2076 <     * and active counts.
2075 >     * Returns approximate submission queue length for the given caller
2076 >     */
2077 >    static int getEstimatedSubmitterQueueLength() {
2078 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2079 >        int k = submitters.get().seed & SQMASK;
2080 >        return ((p = commonPool) != null &&
2081 >                p.runState >= 0 &&
2082 >                (ws = p.workQueues) != null &&
2083 >                ws.length > (k &= p.submitMask) &&
2084 >                (q = ws[k]) != null) ?
2085 >            q.queueSize() : 0;
2086 >    }
2087 >
2088 >    //  Termination
2089 >
2090 >    /**
2091 >     * Possibly initiates and/or completes termination.  The caller
2092 >     * triggering termination runs three passes through workQueues:
2093 >     * (0) Setting termination status, followed by wakeups of queued
2094 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2095 >     * threads (likely in external tasks, but possibly also blocked in
2096 >     * joins).  Each pass repeats previous steps because of potential
2097 >     * lagging thread creation.
2098 >     *
2099 >     * @param now if true, unconditionally terminate, else only
2100 >     * if no work and no active workers
2101 >     * @param enable if true, enable shutdown when next possible
2102 >     * @return true if now terminating or terminated
2103       */
2104 <    final int inactiveCount() {
2105 <        return (workerCounts & RUNNING_COUNT_MASK) -
2106 <            (runState & ACTIVE_COUNT_MASK);
2104 >    private boolean tryTerminate(boolean now, boolean enable) {
2105 >        Mutex lock = this.lock;
2106 >        for (long c;;) {
2107 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2108 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2109 >                    lock.lock();                    // don't need try/finally
2110 >                    termination.signalAll();        // signal when 0 workers
2111 >                    lock.unlock();
2112 >                }
2113 >                return true;
2114 >            }
2115 >            if (runState >= 0) {                    // not yet enabled
2116 >                if (!enable)
2117 >                    return false;
2118 >                lock.lock();
2119 >                runState |= SHUTDOWN;
2120 >                lock.unlock();
2121 >            }
2122 >            if (!now) {                             // check if idle & no tasks
2123 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2124 >                    hasQueuedSubmissions())
2125 >                    return false;
2126 >                // Check for unqueued inactive workers. One pass suffices.
2127 >                WorkQueue[] ws = workQueues; WorkQueue w;
2128 >                if (ws != null) {
2129 >                    for (int i = 1; i < ws.length; i += 2) {
2130 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2131 >                            return false;
2132 >                    }
2133 >                }
2134 >            }
2135 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2136 >                for (int pass = 0; pass < 3; ++pass) {
2137 >                    WorkQueue[] ws = workQueues;
2138 >                    if (ws != null) {
2139 >                        WorkQueue w;
2140 >                        int n = ws.length;
2141 >                        for (int i = 0; i < n; ++i) {
2142 >                            if ((w = ws[i]) != null) {
2143 >                                w.runState = -1;
2144 >                                if (pass > 0) {
2145 >                                    w.cancelAll();
2146 >                                    if (pass > 1)
2147 >                                        w.interruptOwner();
2148 >                                }
2149 >                            }
2150 >                        }
2151 >                        // Wake up workers parked on event queue
2152 >                        int i, e; long cc; Thread p;
2153 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2154 >                               (i = e & SMASK) < n &&
2155 >                               (w = ws[i]) != null) {
2156 >                            long nc = ((long)(w.nextWait & E_MASK) |
2157 >                                       ((cc + AC_UNIT) & AC_MASK) |
2158 >                                       (cc & (TC_MASK|STOP_BIT)));
2159 >                            if (w.eventCount == (e | INT_SIGN) &&
2160 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2161 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2162 >                                w.runState = -1;
2163 >                                if ((p = w.parker) != null)
2164 >                                    U.unpark(p);
2165 >                            }
2166 >                        }
2167 >                    }
2168 >                }
2169 >            }
2170 >        }
2171      }
2172  
2173 <    // Public and protected methods
2173 >    // Exported methods
2174  
2175      // Constructors
2176  
2177      /**
2178       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2179 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
2180 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
2179 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2180 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2181 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2182       *
2183       * @throws SecurityException if a security manager exists and
2184       *         the caller is not permitted to modify threads
# Line 1098 | Line 2187 | public class ForkJoinPool extends Abstra
2187       */
2188      public ForkJoinPool() {
2189          this(Runtime.getRuntime().availableProcessors(),
2190 <             defaultForkJoinWorkerThreadFactory);
2190 >             defaultForkJoinWorkerThreadFactory, null, false);
2191      }
2192  
2193      /**
2194       * Creates a {@code ForkJoinPool} with the indicated parallelism
2195 <     * level and using the {@linkplain
2196 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
2195 >     * level, the {@linkplain
2196 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2197 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2198       *
2199       * @param parallelism the parallelism level
2200       * @throws IllegalArgumentException if parallelism less than or
# Line 1115 | Line 2205 | public class ForkJoinPool extends Abstra
2205       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2206       */
2207      public ForkJoinPool(int parallelism) {
2208 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1119 <    }
1120 <
1121 <    /**
1122 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1123 <     * java.lang.Runtime#availableProcessors}, and using the given
1124 <     * thread factory.
1125 <     *
1126 <     * @param factory the factory for creating new threads
1127 <     * @throws NullPointerException if the factory is null
1128 <     * @throws SecurityException if a security manager exists and
1129 <     *         the caller is not permitted to modify threads
1130 <     *         because it does not hold {@link
1131 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1132 <     */
1133 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1134 <        this(Runtime.getRuntime().availableProcessors(), factory);
2208 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2209      }
2210  
2211      /**
2212 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1139 <     * thread factory.
2212 >     * Creates a {@code ForkJoinPool} with the given parameters.
2213       *
2214 <     * @param parallelism the parallelism level
2215 <     * @param factory the factory for creating new threads
2214 >     * @param parallelism the parallelism level. For default value,
2215 >     * use {@link java.lang.Runtime#availableProcessors}.
2216 >     * @param factory the factory for creating new threads. For default value,
2217 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2218 >     * @param handler the handler for internal worker threads that
2219 >     * terminate due to unrecoverable errors encountered while executing
2220 >     * tasks. For default value, use {@code null}.
2221 >     * @param asyncMode if true,
2222 >     * establishes local first-in-first-out scheduling mode for forked
2223 >     * tasks that are never joined. This mode may be more appropriate
2224 >     * than default locally stack-based mode in applications in which
2225 >     * worker threads only process event-style asynchronous tasks.
2226 >     * For default value, use {@code false}.
2227       * @throws IllegalArgumentException if parallelism less than or
2228       *         equal to zero, or greater than implementation limit
2229       * @throws NullPointerException if the factory is null
# Line 1148 | Line 2232 | public class ForkJoinPool extends Abstra
2232       *         because it does not hold {@link
2233       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2234       */
2235 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
2235 >    public ForkJoinPool(int parallelism,
2236 >                        ForkJoinWorkerThreadFactory factory,
2237 >                        Thread.UncaughtExceptionHandler handler,
2238 >                        boolean asyncMode) {
2239          checkPermission();
2240          if (factory == null)
2241              throw new NullPointerException();
2242 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2242 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2243              throw new IllegalArgumentException();
1157        this.poolNumber = poolNumberGenerator.incrementAndGet();
1158        int arraySize = initialArraySizeFor(parallelism);
2244          this.parallelism = parallelism;
2245          this.factory = factory;
2246 <        this.maxPoolSize = MAX_THREADS;
2247 <        this.maintainsParallelism = true;
2248 <        this.workers = new ForkJoinWorkerThread[arraySize];
2249 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2250 <        this.workerLock = new ReentrantLock();
2251 <        this.terminationLatch = new CountDownLatch(1);
2252 <        // Start first worker; remaining workers added upon first submission
2253 <        workerCounts = ONE_RUNNING | ONE_TOTAL;
2254 <        addWorker();
2246 >        this.ueh = handler;
2247 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2248 >        long np = (long)(-parallelism); // offset ctl counts
2249 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2250 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2251 >        int n = parallelism - 1;
2252 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2253 >        int size = (n + 1) << 1;        // #slots = 2*#workers
2254 >        this.submitMask = size - 1;     // room for max # of submit queues
2255 >        this.workQueues = new WorkQueue[size];
2256 >        this.termination = (this.lock = new Mutex()).newCondition();
2257 >        this.stealCount = new AtomicLong();
2258 >        this.nextWorkerNumber = new AtomicInteger();
2259 >        int pn = poolNumberGenerator.incrementAndGet();
2260 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2261 >        sb.append(Integer.toString(pn));
2262 >        sb.append("-worker-");
2263 >        this.workerNamePrefix = sb.toString();
2264 >        lock.lock();
2265 >        this.runState = 1;              // set init flag
2266 >        lock.unlock();
2267      }
2268  
2269      /**
2270 <     * Returns initial power of two size for workers array.
2271 <     * @param pc the initial parallelism level
2272 <     */
2273 <    private static int initialArraySizeFor(int pc) {
2274 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
2275 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
2276 <        size |= size >>> 1;
1180 <        size |= size >>> 2;
1181 <        size |= size >>> 4;
1182 <        size |= size >>> 8;
1183 <        return size + 1;
2270 >     * Returns the common pool instance
2271 >     *
2272 >     * @return the common pool instance
2273 >     */
2274 >    public static ForkJoinPool commonPool() {
2275 >        ForkJoinPool p;
2276 >        return (p = commonPool) != null? p : ensureCommonPool();
2277      }
2278  
2279 <    // Execution methods
2280 <
2281 <    /**
2282 <     * Common code for execute, invoke and submit
2283 <     */
2284 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2285 <        if (task == null)
2286 <            throw new NullPointerException();
2287 <        if (runState >= SHUTDOWN)
2288 <            throw new RejectedExecutionException();
2289 <        submissionQueue.offer(task);
2290 <        advanceEventCount();
2291 <        releaseWaiters();
2292 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
2293 <            ensureEnoughTotalWorkers();
2279 >    private static ForkJoinPool ensureCommonPool() {
2280 >        ForkJoinPool p;
2281 >        if ((p = commonPool) == null) {
2282 >            final Mutex lock = initializationLock;
2283 >            lock.lock();
2284 >            try {
2285 >                if ((p = commonPool) == null) {
2286 >                    p = commonPool = new ForkJoinPool(commonPoolParallelism,
2287 >                                                      commonPoolFactory,
2288 >                                                      commonPoolUEH, false);
2289 >                    // use a more informative name string for workers
2290 >                    p.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2291 >                }
2292 >            } finally {
2293 >                lock.unlock();
2294 >            }
2295 >        }
2296 >        return p;
2297      }
2298  
2299 +    // Execution methods
2300 +
2301      /**
2302       * Performs the given task, returning its result upon completion.
2303 +     * If the computation encounters an unchecked Exception or Error,
2304 +     * it is rethrown as the outcome of this invocation.  Rethrown
2305 +     * exceptions behave in the same way as regular exceptions, but,
2306 +     * when possible, contain stack traces (as displayed for example
2307 +     * using {@code ex.printStackTrace()}) of both the current thread
2308 +     * as well as the thread actually encountering the exception;
2309 +     * minimally only the latter.
2310       *
2311       * @param task the task
2312       * @return the task's result
# Line 1210 | Line 2315 | public class ForkJoinPool extends Abstra
2315       *         scheduled for execution
2316       */
2317      public <T> T invoke(ForkJoinTask<T> task) {
2318 +        if (task == null)
2319 +            throw new NullPointerException();
2320          doSubmit(task);
2321          return task.join();
2322      }
# Line 1223 | Line 2330 | public class ForkJoinPool extends Abstra
2330       *         scheduled for execution
2331       */
2332      public void execute(ForkJoinTask<?> task) {
2333 +        if (task == null)
2334 +            throw new NullPointerException();
2335          doSubmit(task);
2336      }
2337  
# Line 1234 | Line 2343 | public class ForkJoinPool extends Abstra
2343       *         scheduled for execution
2344       */
2345      public void execute(Runnable task) {
2346 +        if (task == null)
2347 +            throw new NullPointerException();
2348          ForkJoinTask<?> job;
2349          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2350              job = (ForkJoinTask<?>) task;
2351          else
2352 <            job = ForkJoinTask.adapt(task, null);
2352 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2353          doSubmit(job);
2354      }
2355  
2356      /**
2357 +     * Submits a ForkJoinTask for execution.
2358 +     *
2359 +     * @param task the task to submit
2360 +     * @return the task
2361 +     * @throws NullPointerException if the task is null
2362 +     * @throws RejectedExecutionException if the task cannot be
2363 +     *         scheduled for execution
2364 +     */
2365 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2366 +        if (task == null)
2367 +            throw new NullPointerException();
2368 +        doSubmit(task);
2369 +        return task;
2370 +    }
2371 +
2372 +    /**
2373       * @throws NullPointerException if the task is null
2374       * @throws RejectedExecutionException if the task cannot be
2375       *         scheduled for execution
2376       */
2377      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2378 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2378 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2379          doSubmit(job);
2380          return job;
2381      }
# Line 1259 | Line 2386 | public class ForkJoinPool extends Abstra
2386       *         scheduled for execution
2387       */
2388      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2389 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2389 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2390          doSubmit(job);
2391          return job;
2392      }
# Line 1270 | Line 2397 | public class ForkJoinPool extends Abstra
2397       *         scheduled for execution
2398       */
2399      public ForkJoinTask<?> submit(Runnable task) {
2400 +        if (task == null)
2401 +            throw new NullPointerException();
2402          ForkJoinTask<?> job;
2403          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2404              job = (ForkJoinTask<?>) task;
2405          else
2406 <            job = ForkJoinTask.adapt(task, null);
2406 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2407          doSubmit(job);
2408          return job;
2409      }
2410  
2411      /**
1283     * Submits a ForkJoinTask for execution.
1284     *
1285     * @param task the task to submit
1286     * @return the task
1287     * @throws NullPointerException if the task is null
1288     * @throws RejectedExecutionException if the task cannot be
1289     *         scheduled for execution
1290     */
1291    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1292        doSubmit(task);
1293        return task;
1294    }
1295
1296    /**
2412       * @throws NullPointerException       {@inheritDoc}
2413       * @throws RejectedExecutionException {@inheritDoc}
2414       */
2415      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2416 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2417 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2418 <        for (Callable<T> task : tasks)
2419 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2420 <        invoke(new InvokeAll<T>(forkJoinTasks));
2421 <
2416 >        // In previous versions of this class, this method constructed
2417 >        // a task to run ForkJoinTask.invokeAll, but now external
2418 >        // invocation of multiple tasks is at least as efficient.
2419 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2420 >        // Workaround needed because method wasn't declared with
2421 >        // wildcards in return type but should have been.
2422          @SuppressWarnings({"unchecked", "rawtypes"})
2423 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1309 <        return futures;
1310 <    }
2423 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2424  
2425 <    static final class InvokeAll<T> extends RecursiveAction {
2426 <        final ArrayList<ForkJoinTask<T>> tasks;
2427 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2428 <        public void compute() {
2429 <            try { invokeAll(tasks); }
2430 <            catch (Exception ignore) {}
2425 >        boolean done = false;
2426 >        try {
2427 >            for (Callable<T> t : tasks) {
2428 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2429 >                doSubmit(f);
2430 >                fs.add(f);
2431 >            }
2432 >            for (ForkJoinTask<T> f : fs)
2433 >                f.quietlyJoin();
2434 >            done = true;
2435 >            return futures;
2436 >        } finally {
2437 >            if (!done)
2438 >                for (ForkJoinTask<T> f : fs)
2439 >                    f.cancel(false);
2440          }
1319        private static final long serialVersionUID = -7914297376763021607L;
2441      }
2442  
2443      /**
# Line 1335 | Line 2456 | public class ForkJoinPool extends Abstra
2456       * @return the handler, or {@code null} if none
2457       */
2458      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1338        workerCountReadFence();
2459          return ueh;
2460      }
2461  
2462      /**
2463 <     * Sets the handler for internal worker threads that terminate due
1344 <     * to unrecoverable errors encountered while executing tasks.
1345 <     * Unless set, the current default or ThreadGroup handler is used
1346 <     * as handler.
1347 <     *
1348 <     * @param h the new handler
1349 <     * @return the old handler, or {@code null} if none
1350 <     * @throws SecurityException if a security manager exists and
1351 <     *         the caller is not permitted to modify threads
1352 <     *         because it does not hold {@link
1353 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1354 <     */
1355 <    public Thread.UncaughtExceptionHandler
1356 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1357 <        checkPermission();
1358 <        workerCountReadFence();
1359 <        Thread.UncaughtExceptionHandler old = ueh;
1360 <        if (h != old) {
1361 <            ueh = h;
1362 <            workerCountWriteFence();
1363 <            for (ForkJoinWorkerThread w : workers) {
1364 <                if (w != null)
1365 <                    w.setUncaughtExceptionHandler(h);
1366 <            }
1367 <        }
1368 <        return old;
1369 <    }
1370 <
1371 <    /**
1372 <     * Sets the target parallelism level of this pool.
2463 >     * Returns the targeted parallelism level of this pool.
2464       *
2465 <     * @param parallelism the target parallelism
1375 <     * @throws IllegalArgumentException if parallelism less than or
1376 <     * equal to zero or greater than maximum size bounds
1377 <     * @throws SecurityException if a security manager exists and
1378 <     *         the caller is not permitted to modify threads
1379 <     *         because it does not hold {@link
1380 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2465 >     * @return the targeted parallelism level of this pool
2466       */
2467 <    public void setParallelism(int parallelism) {
2468 <        checkPermission();
1384 <        if (parallelism <= 0 || parallelism > maxPoolSize)
1385 <            throw new IllegalArgumentException();
1386 <        workerCountReadFence();
1387 <        int pc = this.parallelism;
1388 <        if (pc != parallelism) {
1389 <            this.parallelism = parallelism;
1390 <            workerCountWriteFence();
1391 <            // Release spares. If too many, some will die after re-suspend
1392 <            for (ForkJoinWorkerThread w : workers) {
1393 <                if (w != null && w.tryUnsuspend()) {
1394 <                    updateRunningCount(1);
1395 <                    LockSupport.unpark(w);
1396 <                }
1397 <            }
1398 <            ensureEnoughTotalWorkers();
1399 <            advanceEventCount();
1400 <            releaseWaiters(); // force config recheck by existing workers
1401 <        }
2467 >    public int getParallelism() {
2468 >        return parallelism;
2469      }
2470  
2471      /**
2472 <     * Returns the targeted parallelism level of this pool.
2472 >     * Returns the targeted parallelism level of the common pool.
2473       *
2474 <     * @return the targeted parallelism level of this pool
2474 >     * @return the targeted parallelism level of the common pool
2475       */
2476 <    public int getParallelism() {
2477 <        //        workerCountReadFence(); // inlined below
1411 <        int ignore = workerCounts;
1412 <        return parallelism;
2476 >    public static int getCommonPoolParallelism() {
2477 >        return commonPoolParallelism;
2478      }
2479  
2480      /**
2481       * Returns the number of worker threads that have started but not
2482 <     * yet terminated.  This result returned by this method may differ
2482 >     * yet terminated.  The result returned by this method may differ
2483       * from {@link #getParallelism} when threads are created to
2484       * maintain parallelism when others are cooperatively blocked.
2485       *
2486       * @return the number of worker threads
2487       */
2488      public int getPoolSize() {
2489 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
1425 <    }
1426 <
1427 <    /**
1428 <     * Returns the maximum number of threads allowed to exist in the
1429 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
1430 <     * maximum is an implementation-defined value designed only to
1431 <     * prevent runaway growth.
1432 <     *
1433 <     * @return the maximum
1434 <     */
1435 <    public int getMaximumPoolSize() {
1436 <        workerCountReadFence();
1437 <        return maxPoolSize;
1438 <    }
1439 <
1440 <    /**
1441 <     * Sets the maximum number of threads allowed to exist in the
1442 <     * pool. The given value should normally be greater than or equal
1443 <     * to the {@link #getParallelism parallelism} level. Setting this
1444 <     * value has no effect on current pool size. It controls
1445 <     * construction of new threads.
1446 <     *
1447 <     * @throws IllegalArgumentException if negative or greater than
1448 <     * internal implementation limit
1449 <     */
1450 <    public void setMaximumPoolSize(int newMax) {
1451 <        if (newMax < 0 || newMax > MAX_THREADS)
1452 <            throw new IllegalArgumentException();
1453 <        maxPoolSize = newMax;
1454 <        workerCountWriteFence();
1455 <    }
1456 <
1457 <    /**
1458 <     * Returns {@code true} if this pool dynamically maintains its
1459 <     * target parallelism level. If false, new threads are added only
1460 <     * to avoid possible starvation.  This setting is by default true.
1461 <     *
1462 <     * @return {@code true} if maintains parallelism
1463 <     */
1464 <    public boolean getMaintainsParallelism() {
1465 <        workerCountReadFence();
1466 <        return maintainsParallelism;
1467 <    }
1468 <
1469 <    /**
1470 <     * Sets whether this pool dynamically maintains its target
1471 <     * parallelism level. If false, new threads are added only to
1472 <     * avoid possible starvation.
1473 <     *
1474 <     * @param enable {@code true} to maintain parallelism
1475 <     */
1476 <    public void setMaintainsParallelism(boolean enable) {
1477 <        maintainsParallelism = enable;
1478 <        workerCountWriteFence();
1479 <    }
1480 <
1481 <    /**
1482 <     * Establishes local first-in-first-out scheduling mode for forked
1483 <     * tasks that are never joined. This mode may be more appropriate
1484 <     * than default locally stack-based mode in applications in which
1485 <     * worker threads only process asynchronous tasks.  This method is
1486 <     * designed to be invoked only when the pool is quiescent, and
1487 <     * typically only before any tasks are submitted. The effects of
1488 <     * invocations at other times may be unpredictable.
1489 <     *
1490 <     * @param async if {@code true}, use locally FIFO scheduling
1491 <     * @return the previous mode
1492 <     * @see #getAsyncMode
1493 <     */
1494 <    public boolean setAsyncMode(boolean async) {
1495 <        workerCountReadFence();
1496 <        boolean oldMode = locallyFifo;
1497 <        if (oldMode != async) {
1498 <            locallyFifo = async;
1499 <            workerCountWriteFence();
1500 <            for (ForkJoinWorkerThread w : workers) {
1501 <                if (w != null)
1502 <                    w.setAsyncMode(async);
1503 <            }
1504 <        }
1505 <        return oldMode;
2489 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2490      }
2491  
2492      /**
# Line 1510 | Line 2494 | public class ForkJoinPool extends Abstra
2494       * scheduling mode for forked tasks that are never joined.
2495       *
2496       * @return {@code true} if this pool uses async mode
1513     * @see #setAsyncMode
2497       */
2498      public boolean getAsyncMode() {
2499 <        workerCountReadFence();
1517 <        return locallyFifo;
2499 >        return localMode != 0;
2500      }
2501  
2502      /**
# Line 1526 | Line 2508 | public class ForkJoinPool extends Abstra
2508       * @return the number of worker threads
2509       */
2510      public int getRunningThreadCount() {
2511 <        return workerCounts & RUNNING_COUNT_MASK;
2511 >        int rc = 0;
2512 >        WorkQueue[] ws; WorkQueue w;
2513 >        if ((ws = workQueues) != null) {
2514 >            for (int i = 1; i < ws.length; i += 2) {
2515 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2516 >                    ++rc;
2517 >            }
2518 >        }
2519 >        return rc;
2520      }
2521  
2522      /**
# Line 1537 | Line 2527 | public class ForkJoinPool extends Abstra
2527       * @return the number of active threads
2528       */
2529      public int getActiveThreadCount() {
2530 <        return runState & ACTIVE_COUNT_MASK;
2530 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2531 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2532      }
2533  
2534      /**
# Line 1552 | Line 2543 | public class ForkJoinPool extends Abstra
2543       * @return {@code true} if all threads are currently idle
2544       */
2545      public boolean isQuiescent() {
2546 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2546 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2547      }
2548  
2549      /**
# Line 1567 | Line 2558 | public class ForkJoinPool extends Abstra
2558       * @return the number of steals
2559       */
2560      public long getStealCount() {
2561 <        return stealCount;
2561 >        long count = stealCount.get();
2562 >        WorkQueue[] ws; WorkQueue w;
2563 >        if ((ws = workQueues) != null) {
2564 >            for (int i = 1; i < ws.length; i += 2) {
2565 >                if ((w = ws[i]) != null)
2566 >                    count += w.totalSteals;
2567 >            }
2568 >        }
2569 >        return count;
2570      }
2571  
2572      /**
# Line 1582 | Line 2581 | public class ForkJoinPool extends Abstra
2581       */
2582      public long getQueuedTaskCount() {
2583          long count = 0;
2584 <        for (ForkJoinWorkerThread w : workers) {
2585 <            if (w != null)
2586 <                count += w.getQueueSize();
2584 >        WorkQueue[] ws; WorkQueue w;
2585 >        if ((ws = workQueues) != null) {
2586 >            for (int i = 1; i < ws.length; i += 2) {
2587 >                if ((w = ws[i]) != null)
2588 >                    count += w.queueSize();
2589 >            }
2590          }
2591          return count;
2592      }
2593  
2594      /**
2595       * Returns an estimate of the number of tasks submitted to this
2596 <     * pool that have not yet begun executing.  This method takes time
2597 <     * proportional to the number of submissions.
2596 >     * pool that have not yet begun executing.  This method may take
2597 >     * time proportional to the number of submissions.
2598       *
2599       * @return the number of queued submissions
2600       */
2601      public int getQueuedSubmissionCount() {
2602 <        return submissionQueue.size();
2602 >        int count = 0;
2603 >        WorkQueue[] ws; WorkQueue w;
2604 >        if ((ws = workQueues) != null) {
2605 >            for (int i = 0; i < ws.length; i += 2) {
2606 >                if ((w = ws[i]) != null)
2607 >                    count += w.queueSize();
2608 >            }
2609 >        }
2610 >        return count;
2611      }
2612  
2613      /**
# Line 1607 | Line 2617 | public class ForkJoinPool extends Abstra
2617       * @return {@code true} if there are any queued submissions
2618       */
2619      public boolean hasQueuedSubmissions() {
2620 <        return !submissionQueue.isEmpty();
2620 >        WorkQueue[] ws; WorkQueue w;
2621 >        if ((ws = workQueues) != null) {
2622 >            for (int i = 0; i < ws.length; i += 2) {
2623 >                if ((w = ws[i]) != null && !w.isEmpty())
2624 >                    return true;
2625 >            }
2626 >        }
2627 >        return false;
2628      }
2629  
2630      /**
# Line 1618 | Line 2635 | public class ForkJoinPool extends Abstra
2635       * @return the next submission, or {@code null} if none
2636       */
2637      protected ForkJoinTask<?> pollSubmission() {
2638 <        return submissionQueue.poll();
2638 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2639 >        if ((ws = workQueues) != null) {
2640 >            for (int i = 0; i < ws.length; i += 2) {
2641 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2642 >                    return t;
2643 >            }
2644 >        }
2645 >        return null;
2646      }
2647  
2648      /**
# Line 1639 | Line 2663 | public class ForkJoinPool extends Abstra
2663       * @return the number of elements transferred
2664       */
2665      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2666 <        int n = submissionQueue.drainTo(c);
2667 <        for (ForkJoinWorkerThread w : workers) {
2668 <            if (w != null)
2669 <                n += w.drainTasksTo(c);
2666 >        int count = 0;
2667 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2668 >        if ((ws = workQueues) != null) {
2669 >            for (int i = 0; i < ws.length; ++i) {
2670 >                if ((w = ws[i]) != null) {
2671 >                    while ((t = w.poll()) != null) {
2672 >                        c.add(t);
2673 >                        ++count;
2674 >                    }
2675 >                }
2676 >            }
2677          }
2678 <        return n;
2678 >        return count;
2679      }
2680  
2681      /**
# Line 1655 | Line 2686 | public class ForkJoinPool extends Abstra
2686       * @return a string identifying this pool, as well as its state
2687       */
2688      public String toString() {
2689 <        long st = getStealCount();
2690 <        long qt = getQueuedTaskCount();
2691 <        long qs = getQueuedSubmissionCount();
2692 <        int wc = workerCounts;
2693 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2694 <        int rc = wc & RUNNING_COUNT_MASK;
2689 >        // Use a single pass through workQueues to collect counts
2690 >        long qt = 0L, qs = 0L; int rc = 0;
2691 >        long st = stealCount.get();
2692 >        long c = ctl;
2693 >        WorkQueue[] ws; WorkQueue w;
2694 >        if ((ws = workQueues) != null) {
2695 >            for (int i = 0; i < ws.length; ++i) {
2696 >                if ((w = ws[i]) != null) {
2697 >                    int size = w.queueSize();
2698 >                    if ((i & 1) == 0)
2699 >                        qs += size;
2700 >                    else {
2701 >                        qt += size;
2702 >                        st += w.totalSteals;
2703 >                        if (w.isApparentlyUnblocked())
2704 >                            ++rc;
2705 >                    }
2706 >                }
2707 >            }
2708 >        }
2709          int pc = parallelism;
2710 <        int rs = runState;
2711 <        int ac = rs & ACTIVE_COUNT_MASK;
2710 >        int tc = pc + (short)(c >>> TC_SHIFT);
2711 >        int ac = pc + (int)(c >> AC_SHIFT);
2712 >        if (ac < 0) // ignore transient negative
2713 >            ac = 0;
2714 >        String level;
2715 >        if ((c & STOP_BIT) != 0)
2716 >            level = (tc == 0) ? "Terminated" : "Terminating";
2717 >        else
2718 >            level = runState < 0 ? "Shutting down" : "Running";
2719          return super.toString() +
2720 <            "[" + runLevelToString(rs) +
2720 >            "[" + level +
2721              ", parallelism = " + pc +
2722              ", size = " + tc +
2723              ", active = " + ac +
# Line 1676 | Line 2728 | public class ForkJoinPool extends Abstra
2728              "]";
2729      }
2730  
1679    private static String runLevelToString(int s) {
1680        return ((s & TERMINATED) != 0 ? "Terminated" :
1681                ((s & TERMINATING) != 0 ? "Terminating" :
1682                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1683                  "Running")));
1684    }
1685
2731      /**
2732 <     * Initiates an orderly shutdown in which previously submitted
2733 <     * tasks are executed, but no new tasks will be accepted.
2734 <     * Invocation has no additional effect if already shut down.
2735 <     * Tasks that are in the process of being submitted concurrently
2736 <     * during the course of this method may or may not be rejected.
2732 >     * Possibly initiates an orderly shutdown in which previously
2733 >     * submitted tasks are executed, but no new tasks will be
2734 >     * accepted. Invocation has no effect on execution state if this
2735 >     * is the {@link #commonPool}, and no additional effect if
2736 >     * already shut down.  Tasks that are in the process of being
2737 >     * submitted concurrently during the course of this method may or
2738 >     * may not be rejected.
2739       *
2740       * @throws SecurityException if a security manager exists and
2741       *         the caller is not permitted to modify threads
# Line 1697 | Line 2744 | public class ForkJoinPool extends Abstra
2744       */
2745      public void shutdown() {
2746          checkPermission();
2747 <        advanceRunLevel(SHUTDOWN);
2748 <        tryTerminate(false);
2747 >        if (this != commonPool)
2748 >            tryTerminate(false, true);
2749      }
2750  
2751      /**
2752 <     * Attempts to cancel and/or stop all tasks, and reject all
2753 <     * subsequently submitted tasks.  Tasks that are in the process of
2754 <     * being submitted or executed concurrently during the course of
2755 <     * this method may or may not be rejected. This method cancels
2756 <     * both existing and unexecuted tasks, in order to permit
2757 <     * termination in the presence of task dependencies. So the method
2758 <     * always returns an empty list (unlike the case for some other
2759 <     * Executors).
2752 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2753 >     * all subsequently submitted tasks.  Invocation has no effect on
2754 >     * execution state if this is the {@link #commonPool}, and no
2755 >     * additional effect if already shut down. Otherwise, tasks that
2756 >     * are in the process of being submitted or executed concurrently
2757 >     * during the course of this method may or may not be
2758 >     * rejected. This method cancels both existing and unexecuted
2759 >     * tasks, in order to permit termination in the presence of task
2760 >     * dependencies. So the method always returns an empty list
2761 >     * (unlike the case for some other Executors).
2762       *
2763       * @return an empty list
2764       * @throws SecurityException if a security manager exists and
# Line 1719 | Line 2768 | public class ForkJoinPool extends Abstra
2768       */
2769      public List<Runnable> shutdownNow() {
2770          checkPermission();
2771 <        tryTerminate(true);
2771 >        if (this != commonPool)
2772 >            tryTerminate(true, true);
2773          return Collections.emptyList();
2774      }
2775  
# Line 1729 | Line 2779 | public class ForkJoinPool extends Abstra
2779       * @return {@code true} if all tasks have completed following shut down
2780       */
2781      public boolean isTerminated() {
2782 <        return runState >= TERMINATED;
2782 >        long c = ctl;
2783 >        return ((c & STOP_BIT) != 0L &&
2784 >                (short)(c >>> TC_SHIFT) == -parallelism);
2785      }
2786  
2787      /**
# Line 1737 | Line 2789 | public class ForkJoinPool extends Abstra
2789       * commenced but not yet completed.  This method may be useful for
2790       * debugging. A return of {@code true} reported a sufficient
2791       * period after shutdown may indicate that submitted tasks have
2792 <     * ignored or suppressed interruption, causing this executor not
2793 <     * to properly terminate.
2792 >     * ignored or suppressed interruption, or are waiting for IO,
2793 >     * causing this executor not to properly terminate. (See the
2794 >     * advisory notes for class {@link ForkJoinTask} stating that
2795 >     * tasks should not normally entail blocking operations.  But if
2796 >     * they do, they must abort them on interrupt.)
2797       *
2798       * @return {@code true} if terminating but not yet terminated
2799       */
2800      public boolean isTerminating() {
2801 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
2801 >        long c = ctl;
2802 >        return ((c & STOP_BIT) != 0L &&
2803 >                (short)(c >>> TC_SHIFT) != -parallelism);
2804      }
2805  
2806      /**
# Line 1752 | Line 2809 | public class ForkJoinPool extends Abstra
2809       * @return {@code true} if this pool has been shut down
2810       */
2811      public boolean isShutdown() {
2812 <        return runState >= SHUTDOWN;
2812 >        return runState < 0;
2813      }
2814  
2815      /**
# Line 1768 | Line 2825 | public class ForkJoinPool extends Abstra
2825       */
2826      public boolean awaitTermination(long timeout, TimeUnit unit)
2827          throws InterruptedException {
2828 <        return terminationLatch.await(timeout, unit);
2828 >        long nanos = unit.toNanos(timeout);
2829 >        final Mutex lock = this.lock;
2830 >        lock.lock();
2831 >        try {
2832 >            for (;;) {
2833 >                if (isTerminated())
2834 >                    return true;
2835 >                if (nanos <= 0)
2836 >                    return false;
2837 >                nanos = termination.awaitNanos(nanos);
2838 >            }
2839 >        } finally {
2840 >            lock.unlock();
2841 >        }
2842      }
2843  
2844      /**
2845       * Interface for extending managed parallelism for tasks running
2846       * in {@link ForkJoinPool}s.
2847       *
2848 <     * <p>A {@code ManagedBlocker} provides two methods.
2849 <     * Method {@code isReleasable} must return {@code true} if
2850 <     * blocking is not necessary. Method {@code block} blocks the
2851 <     * current thread if necessary (perhaps internally invoking
2852 <     * {@code isReleasable} before actually blocking).
2848 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
2849 >     * {@code isReleasable} must return {@code true} if blocking is
2850 >     * not necessary. Method {@code block} blocks the current thread
2851 >     * if necessary (perhaps internally invoking {@code isReleasable}
2852 >     * before actually blocking). These actions are performed by any
2853 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
2854 >     * unusual methods in this API accommodate synchronizers that may,
2855 >     * but don't usually, block for long periods. Similarly, they
2856 >     * allow more efficient internal handling of cases in which
2857 >     * additional workers may be, but usually are not, needed to
2858 >     * ensure sufficient parallelism.  Toward this end,
2859 >     * implementations of method {@code isReleasable} must be amenable
2860 >     * to repeated invocation.
2861       *
2862       * <p>For example, here is a ManagedBlocker based on a
2863       * ReentrantLock:
# Line 1797 | Line 2875 | public class ForkJoinPool extends Abstra
2875       *     return hasLock || (hasLock = lock.tryLock());
2876       *   }
2877       * }}</pre>
2878 +     *
2879 +     * <p>Here is a class that possibly blocks waiting for an
2880 +     * item on a given queue:
2881 +     *  <pre> {@code
2882 +     * class QueueTaker<E> implements ManagedBlocker {
2883 +     *   final BlockingQueue<E> queue;
2884 +     *   volatile E item = null;
2885 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2886 +     *   public boolean block() throws InterruptedException {
2887 +     *     if (item == null)
2888 +     *       item = queue.take();
2889 +     *     return true;
2890 +     *   }
2891 +     *   public boolean isReleasable() {
2892 +     *     return item != null || (item = queue.poll()) != null;
2893 +     *   }
2894 +     *   public E getItem() { // call after pool.managedBlock completes
2895 +     *     return item;
2896 +     *   }
2897 +     * }}</pre>
2898       */
2899      public static interface ManagedBlocker {
2900          /**
# Line 1820 | Line 2918 | public class ForkJoinPool extends Abstra
2918       * Blocks in accord with the given blocker.  If the current thread
2919       * is a {@link ForkJoinWorkerThread}, this method possibly
2920       * arranges for a spare thread to be activated if necessary to
2921 <     * ensure parallelism while the current thread is blocked.
1824 <     *
1825 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1826 <     * supports it ({@link #getMaintainsParallelism}), this method
1827 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1828 <     * it activates a thread only if necessary to avoid complete
1829 <     * starvation. This option may be preferable when blockages use
1830 <     * timeouts, or are almost always brief.
2921 >     * ensure sufficient parallelism while the current thread is blocked.
2922       *
2923       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2924       * behaviorally equivalent to
# Line 1841 | Line 2932 | public class ForkJoinPool extends Abstra
2932       * first be expanded to ensure parallelism, and later adjusted.
2933       *
2934       * @param blocker the blocker
1844     * @param maintainParallelism if {@code true} and supported by
1845     * this pool, attempt to maintain the pool's nominal parallelism;
1846     * otherwise activate a thread only if necessary to avoid
1847     * complete starvation.
2935       * @throws InterruptedException if blocker.block did so
2936       */
2937 <    public static void managedBlock(ManagedBlocker blocker,
1851 <                                    boolean maintainParallelism)
2937 >    public static void managedBlock(ManagedBlocker blocker)
2938          throws InterruptedException {
2939          Thread t = Thread.currentThread();
2940 <        if (t instanceof ForkJoinWorkerThread)
2941 <            ((ForkJoinWorkerThread) t).pool.
2942 <                doBlock(blocker, maintainParallelism);
2943 <        else
2944 <            awaitBlocker(blocker);
2945 <    }
2946 <
2947 <    /**
2948 <     * Performs Non-FJ blocking
2949 <     */
2950 <    private static void awaitBlocker(ManagedBlocker blocker)
2951 <        throws InterruptedException {
2952 <        do {} while (!blocker.isReleasable() && !blocker.block());
2940 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
2941 >                          ((ForkJoinWorkerThread)t).pool : null);
2942 >        while (!blocker.isReleasable()) {
2943 >            if (p == null || p.tryCompensate(null, blocker)) {
2944 >                try {
2945 >                    do {} while (!blocker.isReleasable() && !blocker.block());
2946 >                } finally {
2947 >                    if (p != null)
2948 >                        p.incrementActiveCount();
2949 >                }
2950 >                break;
2951 >            }
2952 >        }
2953      }
2954  
2955      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1871 | Line 2957 | public class ForkJoinPool extends Abstra
2957      // implement RunnableFuture.
2958  
2959      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2960 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2960 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
2961      }
2962  
2963      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2964 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2964 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
2965      }
2966  
2967      // Unsafe mechanics
2968 +    private static final sun.misc.Unsafe U;
2969 +    private static final long CTL;
2970 +    private static final long PARKBLOCKER;
2971 +    private static final int ABASE;
2972 +    private static final int ASHIFT;
2973 +
2974 +    static {
2975 +        poolNumberGenerator = new AtomicInteger();
2976 +        nextSubmitterSeed = new AtomicInteger(0x55555555);
2977 +        modifyThreadPermission = new RuntimePermission("modifyThread");
2978 +        defaultForkJoinWorkerThreadFactory =
2979 +            new DefaultForkJoinWorkerThreadFactory();
2980 +        submitters = new ThreadSubmitter();
2981 +        initializationLock = new Mutex();
2982 +        int s;
2983 +        try {
2984 +            U = getUnsafe();
2985 +            Class<?> k = ForkJoinPool.class;
2986 +            Class<?> ak = ForkJoinTask[].class;
2987 +            CTL = U.objectFieldOffset
2988 +                (k.getDeclaredField("ctl"));
2989 +            Class<?> tk = Thread.class;
2990 +            PARKBLOCKER = U.objectFieldOffset
2991 +                (tk.getDeclaredField("parkBlocker"));
2992 +            ABASE = U.arrayBaseOffset(ak);
2993 +            s = U.arrayIndexScale(ak);
2994 +        } catch (Exception e) {
2995 +            throw new Error(e);
2996 +        }
2997 +        if ((s & (s-1)) != 0)
2998 +            throw new Error("data type scale not a power of two");
2999 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3000  
3001 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1884 <    private static final long workerCountsOffset =
1885 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
1886 <    private static final long runStateOffset =
1887 <        objectFieldOffset("runState", ForkJoinPool.class);
1888 <    private static final long eventCountOffset =
1889 <        objectFieldOffset("eventCount", ForkJoinPool.class);
1890 <    private static final long eventWaitersOffset =
1891 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1892 <    private static final long stealCountOffset =
1893 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1894 <
1895 <
1896 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3001 >        // Establish configuration for default pool
3002          try {
3003 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3004 <        } catch (NoSuchFieldException e) {
3005 <            // Convert Exception to corresponding Error
3006 <            NoSuchFieldError error = new NoSuchFieldError(field);
3007 <            error.initCause(e);
3008 <            throw error;
3003 >            String pp = System.getProperty(propPrefix + "parallelism");
3004 >            String fp = System.getProperty(propPrefix + "threadFactory");
3005 >            String up = System.getProperty(propPrefix + "exceptionHandler");
3006 >            int par;
3007 >            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3008 >                par = Runtime.getRuntime().availableProcessors();
3009 >            commonPoolParallelism = par;
3010 >            if (fp != null)
3011 >                commonPoolFactory = (ForkJoinWorkerThreadFactory)
3012 >                    ClassLoader.getSystemClassLoader().loadClass(fp).newInstance();
3013 >            else
3014 >                commonPoolFactory = defaultForkJoinWorkerThreadFactory;
3015 >            if (up != null)
3016 >                commonPoolUEH = (Thread.UncaughtExceptionHandler)
3017 >                    ClassLoader.getSystemClassLoader().loadClass(up).newInstance();
3018 >            else
3019 >                commonPoolUEH = null;
3020 >        } catch (Exception e) {
3021 >            throw new Error(e);
3022          }
3023      }
3024  
# Line 1931 | Line 3049 | public class ForkJoinPool extends Abstra
3049              }
3050          }
3051      }
3052 +
3053   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines