ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.61 by dl, Wed Aug 11 18:45:12 2010 UTC vs.
Revision 1.137 by dl, Tue Oct 30 14:23:11 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22   import java.util.concurrent.atomic.AtomicInteger;
23 < import java.util.concurrent.CountDownLatch;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 33 | import java.util.concurrent.CountDownLat
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34   * ExecutorService} mainly by virtue of employing
35   * <em>work-stealing</em>: all threads in the pool attempt to find and
36 < * execute subtasks created by other active tasks (eventually blocking
37 < * waiting for work if none exist). This enables efficient processing
38 < * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 < * with event-style tasks that are never joined.
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44 > *
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is used by any ForkJoinTask that
47 > * is not explicitly submitted to a specified pool. Using the common
48 > * pool normally reduces resource usage (its threads are slowly
49 > * reclaimed during periods of non-use, and reinstated upon subsequent
50 > * use).  The common pool is by default constructed with default
51 > * parameters, but these may be controlled by setting any or all of
52 > * the three properties {@code
53 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
54 > * threadFactory, exceptionHandler}}.
55   *
56 < * <p>A {@code ForkJoinPool} is constructed with a given target
57 < * parallelism level; by default, equal to the number of available
58 < * processors. The pool attempts to maintain enough active (or
59 < * available) threads by dynamically adding, suspending, or resuming
60 < * internal worker threads, even if some tasks are stalled waiting to
61 < * join others. However, no such adjustments are guaranteed in the
62 < * face of blocked IO or other unmanaged synchronization. The nested
63 < * {@link ManagedBlocker} interface enables extension of the kinds of
56 > * <p>For applications that require separate or custom pools, a {@code
57 > * ForkJoinPool} may be constructed with a given target parallelism
58 > * level; by default, equal to the number of available processors. The
59 > * pool attempts to maintain enough active (or available) threads by
60 > * dynamically adding, suspending, or resuming internal worker
61 > * threads, even if some tasks are stalled waiting to join
62 > * others. However, no such adjustments are guaranteed in the face of
63 > * blocked IO or other unmanaged synchronization. The nested {@link
64 > * ManagedBlocker} interface enables extension of the kinds of
65   * synchronization accommodated.
66   *
67   * <p>In addition to execution and lifecycle control methods, this
# Line 52 | Line 72 | import java.util.concurrent.CountDownLat
72   * convenient form for informal monitoring.
73   *
74   * <p> As is the case with other ExecutorServices, there are three
75 < * main task execution methods summarized in the following
76 < * table. These are designed to be used by clients not already engaged
77 < * in fork/join computations in the current pool.  The main forms of
78 < * these methods accept instances of {@code ForkJoinTask}, but
79 < * overloaded forms also allow mixed execution of plain {@code
75 > * main task execution methods summarized in the following table.
76 > * These are designed to be used primarily by clients not already
77 > * engaged in fork/join computations in the current pool.  The main
78 > * forms of these methods accept instances of {@code ForkJoinTask},
79 > * but overloaded forms also allow mixed execution of plain {@code
80   * Runnable}- or {@code Callable}- based activities as well.  However,
81 < * tasks that are already executing in a pool should normally
82 < * <em>NOT</em> use these pool execution methods, but instead use the
83 < * within-computation forms listed in the table.
81 > * tasks that are already executing in a pool should normally instead
82 > * use the within-computation forms listed in the table unless using
83 > * async event-style tasks that are not usually joined, in which case
84 > * there is little difference among choice of methods.
85   *
86   * <table BORDER CELLPADDING=3 CELLSPACING=1>
87   *  <tr>
# Line 69 | Line 90 | import java.util.concurrent.CountDownLat
90   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
91   *  </tr>
92   *  <tr>
93 < *    <td> <b>Arange async execution</td>
93 > *    <td> <b>Arrange async execution</td>
94   *    <td> {@link #execute(ForkJoinTask)}</td>
95   *    <td> {@link ForkJoinTask#fork}</td>
96   *  </tr>
# Line 85 | Line 106 | import java.util.concurrent.CountDownLat
106   *  </tr>
107   * </table>
108   *
88 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 * used for all parallel task execution in a program or subsystem.
90 * Otherwise, use would not usually outweigh the construction and
91 * bookkeeping overhead of creating a large set of threads. For
92 * example, a common pool could be used for the {@code SortTasks}
93 * illustrated in {@link RecursiveAction}. Because {@code
94 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 * daemon} mode, there is typically no need to explicitly {@link
96 * #shutdown} such a pool upon program exit.
97 *
98 * <pre>
99 * static final ForkJoinPool mainPool = new ForkJoinPool();
100 * ...
101 * public void sort(long[] array) {
102 *   mainPool.invoke(new SortTask(array, 0, array.length));
103 * }
104 * </pre>
105 *
109   * <p><b>Implementation notes</b>: This implementation restricts the
110   * maximum number of running threads to 32767. Attempts to create
111   * pools with greater than the maximum number result in
# Line 110 | Line 113 | import java.util.concurrent.CountDownLat
113   *
114   * <p>This implementation rejects submitted tasks (that is, by throwing
115   * {@link RejectedExecutionException}) only when the pool is shut down
116 < * or internal resources have been exhuasted.
116 > * or internal resources have been exhausted.
117   *
118   * @since 1.7
119   * @author Doug Lea
# Line 120 | Line 123 | public class ForkJoinPool extends Abstra
123      /*
124       * Implementation Overview
125       *
126 <     * This class provides the central bookkeeping and control for a
127 <     * set of worker threads: Submissions from non-FJ threads enter
128 <     * into a submission queue. Workers take these tasks and typically
129 <     * split them into subtasks that may be stolen by other workers.
130 <     * The main work-stealing mechanics implemented in class
131 <     * ForkJoinWorkerThread give first priority to processing tasks
132 <     * from their own queues (LIFO or FIFO, depending on mode), then
133 <     * to randomized FIFO steals of tasks in other worker queues, and
134 <     * lastly to new submissions. These mechanics do not consider
135 <     * affinities, loads, cache localities, etc, so rarely provide the
136 <     * best possible performance on a given machine, but portably
137 <     * provide good throughput by averaging over these factors.
138 <     * (Further, even if we did try to use such information, we do not
139 <     * usually have a basis for exploiting it. For example, some sets
140 <     * of tasks profit from cache affinities, but others are harmed by
141 <     * cache pollution effects.)
142 <     *
143 <     * Beyond work-stealing support and essential bookkeeping, the
144 <     * main responsibility of this framework is to take actions when
145 <     * one worker is waiting to join a task stolen (or always held by)
146 <     * another.  Becauae we are multiplexing many tasks on to a pool
147 <     * of workers, we can't just let them block (as in Thread.join).
148 <     * We also cannot just reassign the joiner's run-time stack with
149 <     * another and replace it later, which would be a form of
150 <     * "continuation", that even if possible is not necessarily a good
151 <     * idea. Given that the creation costs of most threads on most
152 <     * systems mainly surrounds setting up runtime stacks, thread
153 <     * creation and switching is usually not much more expensive than
154 <     * stack creation and switching, and is more flexible). Instead we
155 <     * combine two tactics:
126 >     * This class and its nested classes provide the main
127 >     * functionality and control for a set of worker threads:
128 >     * Submissions from non-FJ threads enter into submission queues.
129 >     * Workers take these tasks and typically split them into subtasks
130 >     * that may be stolen by other workers.  Preference rules give
131 >     * first priority to processing tasks from their own queues (LIFO
132 >     * or FIFO, depending on mode), then to randomized FIFO steals of
133 >     * tasks in other queues.
134 >     *
135 >     * WorkQueues
136 >     * ==========
137 >     *
138 >     * Most operations occur within work-stealing queues (in nested
139 >     * class WorkQueue).  These are special forms of Deques that
140 >     * support only three of the four possible end-operations -- push,
141 >     * pop, and poll (aka steal), under the further constraints that
142 >     * push and pop are called only from the owning thread (or, as
143 >     * extended here, under a lock), while poll may be called from
144 >     * other threads.  (If you are unfamiliar with them, you probably
145 >     * want to read Herlihy and Shavit's book "The Art of
146 >     * Multiprocessor programming", chapter 16 describing these in
147 >     * more detail before proceeding.)  The main work-stealing queue
148 >     * design is roughly similar to those in the papers "Dynamic
149 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
150 >     * (http://research.sun.com/scalable/pubs/index.html) and
151 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 >     * The main differences ultimately stem from GC requirements that
154 >     * we null out taken slots as soon as we can, to maintain as small
155 >     * a footprint as possible even in programs generating huge
156 >     * numbers of tasks. To accomplish this, we shift the CAS
157 >     * arbitrating pop vs poll (steal) from being on the indices
158 >     * ("base" and "top") to the slots themselves.  So, both a
159 >     * successful pop and poll mainly entail a CAS of a slot from
160 >     * non-null to null.  Because we rely on CASes of references, we
161 >     * do not need tag bits on base or top.  They are simple ints as
162 >     * used in any circular array-based queue (see for example
163 >     * ArrayDeque).  Updates to the indices must still be ordered in a
164 >     * way that guarantees that top == base means the queue is empty,
165 >     * but otherwise may err on the side of possibly making the queue
166 >     * appear nonempty when a push, pop, or poll have not fully
167 >     * committed. Note that this means that the poll operation,
168 >     * considered individually, is not wait-free. One thief cannot
169 >     * successfully continue until another in-progress one (or, if
170 >     * previously empty, a push) completes.  However, in the
171 >     * aggregate, we ensure at least probabilistic non-blockingness.
172 >     * If an attempted steal fails, a thief always chooses a different
173 >     * random victim target to try next. So, in order for one thief to
174 >     * progress, it suffices for any in-progress poll or new push on
175 >     * any empty queue to complete. (This is why we normally use
176 >     * method pollAt and its variants that try once at the apparent
177 >     * base index, else consider alternative actions, rather than
178 >     * method poll.)
179 >     *
180 >     * This approach also enables support of a user mode in which local
181 >     * task processing is in FIFO, not LIFO order, simply by using
182 >     * poll rather than pop.  This can be useful in message-passing
183 >     * frameworks in which tasks are never joined.  However neither
184 >     * mode considers affinities, loads, cache localities, etc, so
185 >     * rarely provide the best possible performance on a given
186 >     * machine, but portably provide good throughput by averaging over
187 >     * these factors.  (Further, even if we did try to use such
188 >     * information, we do not usually have a basis for exploiting it.
189 >     * For example, some sets of tasks profit from cache affinities,
190 >     * but others are harmed by cache pollution effects.)
191 >     *
192 >     * WorkQueues are also used in a similar way for tasks submitted
193 >     * to the pool. We cannot mix these tasks in the same queues used
194 >     * for work-stealing (this would contaminate lifo/fifo
195 >     * processing). Instead, we loosely associate submission queues
196 >     * with submitting threads, using a form of hashing.  The
197 >     * ThreadLocal Submitter class contains a value initially used as
198 >     * a hash code for choosing existing queues, but may be randomly
199 >     * repositioned upon contention with other submitters.  In
200 >     * essence, submitters act like workers except that they never
201 >     * take tasks, and they are multiplexed on to a finite number of
202 >     * shared work queues. However, classes are set up so that future
203 >     * extensions could allow submitters to optionally help perform
204 >     * tasks as well. Insertion of tasks in shared mode requires a
205 >     * lock (mainly to protect in the case of resizing) but we use
206 >     * only a simple spinlock (using bits in field runState), because
207 >     * submitters encountering a busy queue move on to try or create
208 >     * other queues -- they block only when creating and registering
209 >     * new queues.
210 >     *
211 >     * Management
212 >     * ==========
213 >     *
214 >     * The main throughput advantages of work-stealing stem from
215 >     * decentralized control -- workers mostly take tasks from
216 >     * themselves or each other. We cannot negate this in the
217 >     * implementation of other management responsibilities. The main
218 >     * tactic for avoiding bottlenecks is packing nearly all
219 >     * essentially atomic control state into two volatile variables
220 >     * that are by far most often read (not written) as status and
221 >     * consistency checks.
222 >     *
223 >     * Field "ctl" contains 64 bits holding all the information needed
224 >     * to atomically decide to add, inactivate, enqueue (on an event
225 >     * queue), dequeue, and/or re-activate workers.  To enable this
226 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227 >     * far in excess of normal operating range) to allow ids, counts,
228 >     * and their negations (used for thresholding) to fit into 16bit
229 >     * fields.
230 >     *
231 >     * Field "runState" contains 32 bits needed to register and
232 >     * deregister WorkQueues, as well as to enable shutdown. It is
233 >     * only modified under a lock (normally briefly held, but
234 >     * occasionally protecting allocations and resizings) but even
235 >     * when locked remains available to check consistency.
236 >     *
237 >     * Recording WorkQueues.  WorkQueues are recorded in the
238 >     * "workQueues" array that is created upon first use and expanded
239 >     * if necessary.  Updates to the array while recording new workers
240 >     * and unrecording terminated ones are protected from each other
241 >     * by a lock but the array is otherwise concurrently readable, and
242 >     * accessed directly.  To simplify index-based operations, the
243 >     * array size is always a power of two, and all readers must
244 >     * tolerate null slots. Shared (submission) queues are at even
245 >     * indices, worker queues at odd indices. Grouping them together
246 >     * in this way simplifies and speeds up task scanning.
247 >     *
248 >     * All worker thread creation is on-demand, triggered by task
249 >     * submissions, replacement of terminated workers, and/or
250 >     * compensation for blocked workers. However, all other support
251 >     * code is set up to work with other policies.  To ensure that we
252 >     * do not hold on to worker references that would prevent GC, ALL
253 >     * accesses to workQueues are via indices into the workQueues
254 >     * array (which is one source of some of the messy code
255 >     * constructions here). In essence, the workQueues array serves as
256 >     * a weak reference mechanism. Thus for example the wait queue
257 >     * field of ctl stores indices, not references.  Access to the
258 >     * workQueues in associated methods (for example signalWork) must
259 >     * both index-check and null-check the IDs. All such accesses
260 >     * ignore bad IDs by returning out early from what they are doing,
261 >     * since this can only be associated with termination, in which
262 >     * case it is OK to give up.  All uses of the workQueues array
263 >     * also check that it is non-null (even if previously
264 >     * non-null). This allows nulling during termination, which is
265 >     * currently not necessary, but remains an option for
266 >     * resource-revocation-based shutdown schemes. It also helps
267 >     * reduce JIT issuance of uncommon-trap code, which tends to
268 >     * unnecessarily complicate control flow in some methods.
269 >     *
270 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
271 >     * let workers spin indefinitely scanning for tasks when none can
272 >     * be found immediately, and we cannot start/resume workers unless
273 >     * there appear to be tasks available.  On the other hand, we must
274 >     * quickly prod them into action when new tasks are submitted or
275 >     * generated. In many usages, ramp-up time to activate workers is
276 >     * the main limiting factor in overall performance (this is
277 >     * compounded at program start-up by JIT compilation and
278 >     * allocation). So we try to streamline this as much as possible.
279 >     * We park/unpark workers after placing in an event wait queue
280 >     * when they cannot find work. This "queue" is actually a simple
281 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
282 >     * counter value (that reflects the number of times a worker has
283 >     * been inactivated) to avoid ABA effects (we need only as many
284 >     * version numbers as worker threads). Successors are held in
285 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
286 >     * races, mainly that a task-producing thread can miss seeing (and
287 >     * signalling) another thread that gave up looking for work but
288 >     * has not yet entered the wait queue. We solve this by requiring
289 >     * a full sweep of all workers (via repeated calls to method
290 >     * scan()) both before and after a newly waiting worker is added
291 >     * to the wait queue. During a rescan, the worker might release
292 >     * some other queued worker rather than itself, which has the same
293 >     * net effect. Because enqueued workers may actually be rescanning
294 >     * rather than waiting, we set and clear the "parker" field of
295 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
296 >     * requires a secondary recheck to avoid missed signals.)  Note
297 >     * the unusual conventions about Thread.interrupts surrounding
298 >     * parking and other blocking: Because interrupts are used solely
299 >     * to alert threads to check termination, which is checked anyway
300 >     * upon blocking, we clear status (using Thread.interrupted)
301 >     * before any call to park, so that park does not immediately
302 >     * return due to status being set via some other unrelated call to
303 >     * interrupt in user code.
304 >     *
305 >     * Signalling.  We create or wake up workers only when there
306 >     * appears to be at least one task they might be able to find and
307 >     * execute.  When a submission is added or another worker adds a
308 >     * task to a queue that previously had fewer than two tasks, they
309 >     * signal waiting workers (or trigger creation of new ones if
310 >     * fewer than the given parallelism level -- see signalWork).
311 >     * These primary signals are buttressed by signals during rescans;
312 >     * together these cover the signals needed in cases when more
313 >     * tasks are pushed but untaken, and improve performance compared
314 >     * to having one thread wake up all workers.
315 >     *
316 >     * Trimming workers. To release resources after periods of lack of
317 >     * use, a worker starting to wait when the pool is quiescent will
318 >     * time out and terminate if the pool has remained quiescent for a
319 >     * given period -- a short period if there are more threads than
320 >     * parallelism, longer as the number of threads decreases. This
321 >     * will slowly propagate, eventually terminating all workers after
322 >     * periods of non-use.
323 >     *
324 >     * Shutdown and Termination. A call to shutdownNow atomically sets
325 >     * a runState bit and then (non-atomically) sets each worker's
326 >     * runState status, cancels all unprocessed tasks, and wakes up
327 >     * all waiting workers.  Detecting whether termination should
328 >     * commence after a non-abrupt shutdown() call requires more work
329 >     * and bookkeeping. We need consensus about quiescence (i.e., that
330 >     * there is no more work). The active count provides a primary
331 >     * indication but non-abrupt shutdown still requires a rechecking
332 >     * scan for any workers that are inactive but not queued.
333 >     *
334 >     * Joining Tasks
335 >     * =============
336 >     *
337 >     * Any of several actions may be taken when one worker is waiting
338 >     * to join a task stolen (or always held) by another.  Because we
339 >     * are multiplexing many tasks on to a pool of workers, we can't
340 >     * just let them block (as in Thread.join).  We also cannot just
341 >     * reassign the joiner's run-time stack with another and replace
342 >     * it later, which would be a form of "continuation", that even if
343 >     * possible is not necessarily a good idea since we sometimes need
344 >     * both an unblocked task and its continuation to progress.
345 >     * Instead we combine two tactics:
346       *
347       *   Helping: Arranging for the joiner to execute some task that it
348 <     *      would be running if the steal had not occurred.  Method
156 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 <     *      links to try to find such a task.
348 >     *      would be running if the steal had not occurred.
349       *
350       *   Compensating: Unless there are already enough live threads,
351 <     *      method helpMaintainParallelism() may create or or
352 <     *      re-activate a spare thread to compensate for blocked
353 <     *      joiners until they unblock.
354 <     *
355 <     * Because the determining existence of conservatively safe
356 <     * helping targets, the availability of already-created spares,
357 <     * and the apparent need to create new spares are all racy and
358 <     * require heuristic guidance, we rely on multiple retries of
359 <     * each. Further, because it is impossible to keep exactly the
360 <     * target (parallelism) number of threads running at any given
170 <     * time, we allow compensation during joins to fail, and enlist
171 <     * all other threads to help out whenever they are not otherwise
172 <     * occupied (i.e., mainly in method preStep).
351 >     *      method tryCompensate() may create or re-activate a spare
352 >     *      thread to compensate for blocked joiners until they unblock.
353 >     *
354 >     * A third form (implemented in tryRemoveAndExec and
355 >     * tryPollForAndExec) amounts to helping a hypothetical
356 >     * compensator: If we can readily tell that a possible action of a
357 >     * compensator is to steal and execute the task being joined, the
358 >     * joining thread can do so directly, without the need for a
359 >     * compensation thread (although at the expense of larger run-time
360 >     * stacks, but the tradeoff is typically worthwhile).
361       *
362       * The ManagedBlocker extension API can't use helping so relies
363       * only on compensation in method awaitBlocker.
364       *
365 <     * The main throughput advantages of work-stealing stem from
366 <     * decentralized control -- workers mostly steal tasks from each
367 <     * other. We do not want to negate this by creating bottlenecks
368 <     * implementing other management responsibilities. So we use a
369 <     * collection of techniques that avoid, reduce, or cope well with
370 <     * contention. These entail several instances of bit-packing into
371 <     * CASable fields to maintain only the minimally required
372 <     * atomicity. To enable such packing, we restrict maximum
373 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
374 <     * unbalanced increments and decrements) to fit into a 16 bit
375 <     * field, which is far in excess of normal operating range.  Even
376 <     * though updates to some of these bookkeeping fields do sometimes
377 <     * contend with each other, they don't normally cache-contend with
378 <     * updates to others enough to warrant memory padding or
379 <     * isolation. So they are all held as fields of ForkJoinPool
380 <     * objects.  The main capabilities are as follows:
381 <     *
382 <     * 1. Creating and removing workers. Workers are recorded in the
383 <     * "workers" array. This is an array as opposed to some other data
384 <     * structure to support index-based random steals by workers.
385 <     * Updates to the array recording new workers and unrecording
386 <     * terminated ones are protected from each other by a lock
387 <     * (workerLock) but the array is otherwise concurrently readable,
388 <     * and accessed directly by workers. To simplify index-based
389 <     * operations, the array size is always a power of two, and all
390 <     * readers must tolerate null slots. Currently, all worker thread
391 <     * creation is on-demand, triggered by task submissions,
392 <     * replacement of terminated workers, and/or compensation for
393 <     * blocked workers. However, all other support code is set up to
394 <     * work with other policies.
395 <     *
396 <     * To ensure that we do not hold on to worker references that
397 <     * would prevent GC, ALL accesses to workers are via indices into
398 <     * the workers array (which is one source of some of the unusual
399 <     * code constructions here). In essence, the workers array serves
400 <     * as a WeakReference mechanism. Thus for example the event queue
401 <     * stores worker indices, not worker references. Access to the
402 <     * workers in associated methods (for example releaseEventWaiters)
403 <     * must both index-check and null-check the IDs. All such accesses
404 <     * ignore bad IDs by returning out early from what they are doing,
405 <     * since this can only be associated with shutdown, in which case
406 <     * it is OK to give up. On termination, we just clobber these
407 <     * data structures without trying to use them.
408 <     *
409 <     * 2. Bookkeeping for dynamically adding and removing workers. We
410 <     * aim to approximately maintain the given level of parallelism.
411 <     * When some workers are known to be blocked (on joins or via
412 <     * ManagedBlocker), we may create or resume others to take their
413 <     * place until they unblock (see below). Implementing this
414 <     * requires counts of the number of "running" threads (i.e., those
415 <     * that are neither blocked nor artifically suspended) as well as
416 <     * the total number.  These two values are packed into one field,
417 <     * "workerCounts" because we need accurate snapshots when deciding
418 <     * to create, resume or suspend.  Note however that the
419 <     * correspondance of these counts to reality is not guaranteed. In
420 <     * particular updates for unblocked threads may lag until they
421 <     * actually wake up.
422 <     *
423 <     * 3. Maintaining global run state. The run state of the pool
424 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
425 <     * those in other Executor implementations, as well as a count of
426 <     * "active" workers -- those that are, or soon will be, or
427 <     * recently were executing tasks. The runLevel and active count
428 <     * are packed together in order to correctly trigger shutdown and
241 <     * termination. Without care, active counts can be subject to very
242 <     * high contention.  We substantially reduce this contention by
243 <     * relaxing update rules.  A worker must claim active status
244 <     * prospectively, by activating if it sees that a submitted or
245 <     * stealable task exists (it may find after activating that the
246 <     * task no longer exists). It stays active while processing this
247 <     * task (if it exists) and any other local subtasks it produces,
248 <     * until it cannot find any other tasks. It then tries
249 <     * inactivating (see method preStep), but upon update contention
250 <     * instead scans for more tasks, later retrying inactivation if it
251 <     * doesn't find any.
252 <     *
253 <     * 4. Managing idle workers waiting for tasks. We cannot let
254 <     * workers spin indefinitely scanning for tasks when none are
255 <     * available. On the other hand, we must quickly prod them into
256 <     * action when new tasks are submitted or generated.  We
257 <     * park/unpark these idle workers using an event-count scheme.
258 <     * Field eventCount is incremented upon events that may enable
259 <     * workers that previously could not find a task to now find one:
260 <     * Submission of a new task to the pool, or another worker pushing
261 <     * a task onto a previously empty queue.  (We also use this
262 <     * mechanism for termination actions that require wakeups of idle
263 <     * workers).  Each worker maintains its last known event count,
264 <     * and blocks when a scan for work did not find a task AND its
265 <     * lastEventCount matches the current eventCount. Waiting idle
266 <     * workers are recorded in a variant of Treiber stack headed by
267 <     * field eventWaiters which, when nonzero, encodes the thread
268 <     * index and count awaited for by the worker thread most recently
269 <     * calling eventSync. This thread in turn has a record (field
270 <     * nextEventWaiter) for the next waiting worker.  In addition to
271 <     * allowing simpler decisions about need for wakeup, the event
272 <     * count bits in eventWaiters serve the role of tags to avoid ABA
273 <     * errors in Treiber stacks.  To reduce delays in task diffusion,
274 <     * workers not otherwise occupied may invoke method
275 <     * releaseEventWaiters, that removes and signals (unparks) workers
276 <     * not waiting on current count. To reduce stalls, To minimize
277 <     * task production stalls associate with signalling, any worker
278 <     * pushing a task on an empty queue invokes the weaker method
279 <     * signalWork, that only releases idle workers until it detects
280 <     * interference by other threads trying to release, and lets them
281 <     * take over.  The net effect is a tree-like diffusion of signals,
282 <     * where released threads (and possibly others) help with unparks.
283 <     * To further reduce contention effects a bit, failed CASes to
284 <     * increment field eventCount are tolerated without retries.
285 <     * Conceptually they are merged into the same event, which is OK
286 <     * when their only purpose is to enable workers to scan for work.
287 <     *
288 <     * 5. Managing suspension of extra workers. When a worker is about
289 <     * to block waiting for a join (or via ManagedBlockers), we may
290 <     * create a new thread to maintain parallelism level, or at least
291 <     * avoid starvation. Usually, extra threads are needed for only
292 <     * very short periods, yet join dependencies are such that we
293 <     * sometimes need them in bursts. Rather than create new threads
294 <     * each time this happens, we suspend no-longer-needed extra ones
295 <     * as "spares". For most purposes, we don't distinguish "extra"
296 <     * spare threads from normal "core" threads: On each call to
297 <     * preStep (the only point at which we can do this) a worker
298 <     * checks to see if there are now too many running workers, and if
299 <     * so, suspends itself.  Method helpMaintainParallelism looks for
300 <     * suspended threads to resume before considering creating a new
301 <     * replacement. The spares themselves are encoded on another
302 <     * variant of a Treiber Stack, headed at field "spareWaiters".
303 <     * Note that the use of spares is intrinsically racy.  One thread
304 <     * may become a spare at about the same time as another is
305 <     * needlessly being created. We counteract this and related slop
306 <     * in part by requiring resumed spares to immediately recheck (in
307 <     * preStep) to see whether they they should re-suspend.  To avoid
308 <     * long-term build-up of spares, the oldest spare (see
309 <     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
310 <     * not signalled and calls tryTrimSpare, which uses two different
311 <     * thresholds: Always killing if the number of spares is greater
312 <     * that 25% of total, and killing others only at a slower rate
313 <     * (UNUSED_SPARE_TRIM_RATE_NANOS).
314 <     *
315 <     * 6. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads
317 <     * in method helpMaintainParallelism. We would like to keep
318 <     * exactly #parallelism threads running, which is an impossble
319 <     * task. We always need to create one when the number of running
320 <     * threads would become zero and all workers are busy. Beyond
321 <     * this, we must rely on heuristics that work well in the the
322 <     * presence of transients phenomena such as GC stalls, dynamic
323 <     * compilation, and wake-up lags. These transients are extremely
324 <     * common -- we are normally trying to fully saturate the CPUs on
325 <     * a machine, so almost any activity other than running tasks
326 <     * impedes accuracy. Our main defense is to allow some slack in
327 <     * creation thresholds, using rules that reflect the fact that the
328 <     * more threads we have running, the more likely that we are
329 <     * underestimating the number running threads. The rules also
330 <     * better cope with the fact that some of the methods in this
331 <     * class tend to never become compiled (but are interpreted), so
332 <     * some components of the entire set of controls might execute 100
333 <     * times faster than others. And similarly for cases where the
334 <     * apparent lack of work is just due to GC stalls and other
335 <     * transient system activity.
365 >     * The algorithm in tryHelpStealer entails a form of "linear"
366 >     * helping: Each worker records (in field currentSteal) the most
367 >     * recent task it stole from some other worker. Plus, it records
368 >     * (in field currentJoin) the task it is currently actively
369 >     * joining. Method tryHelpStealer uses these markers to try to
370 >     * find a worker to help (i.e., steal back a task from and execute
371 >     * it) that could hasten completion of the actively joined task.
372 >     * In essence, the joiner executes a task that would be on its own
373 >     * local deque had the to-be-joined task not been stolen. This may
374 >     * be seen as a conservative variant of the approach in Wagner &
375 >     * Calder "Leapfrogging: a portable technique for implementing
376 >     * efficient futures" SIGPLAN Notices, 1993
377 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378 >     * that: (1) We only maintain dependency links across workers upon
379 >     * steals, rather than use per-task bookkeeping.  This sometimes
380 >     * requires a linear scan of workQueues array to locate stealers,
381 >     * but often doesn't because stealers leave hints (that may become
382 >     * stale/wrong) of where to locate them.  A stealHint is only a
383 >     * hint because a worker might have had multiple steals and the
384 >     * hint records only one of them (usually the most current).
385 >     * Hinting isolates cost to when it is needed, rather than adding
386 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
387 >     * and potentially cyclic mutual steals.  (3) It is intentionally
388 >     * racy: field currentJoin is updated only while actively joining,
389 >     * which means that we miss links in the chain during long-lived
390 >     * tasks, GC stalls etc (which is OK since blocking in such cases
391 >     * is usually a good idea).  (4) We bound the number of attempts
392 >     * to find work (see MAX_HELP) and fall back to suspending the
393 >     * worker and if necessary replacing it with another.
394 >     *
395 >     * It is impossible to keep exactly the target parallelism number
396 >     * of threads running at any given time.  Determining the
397 >     * existence of conservatively safe helping targets, the
398 >     * availability of already-created spares, and the apparent need
399 >     * to create new spares are all racy, so we rely on multiple
400 >     * retries of each.  Compensation in the apparent absence of
401 >     * helping opportunities is challenging to control on JVMs, where
402 >     * GC and other activities can stall progress of tasks that in
403 >     * turn stall out many other dependent tasks, without us being
404 >     * able to determine whether they will ever require compensation.
405 >     * Even though work-stealing otherwise encounters little
406 >     * degradation in the presence of more threads than cores,
407 >     * aggressively adding new threads in such cases entails risk of
408 >     * unwanted positive feedback control loops in which more threads
409 >     * cause more dependent stalls (as well as delayed progress of
410 >     * unblocked threads to the point that we know they are available)
411 >     * leading to more situations requiring more threads, and so
412 >     * on. This aspect of control can be seen as an (analytically
413 >     * intractable) game with an opponent that may choose the worst
414 >     * (for us) active thread to stall at any time.  We take several
415 >     * precautions to bound losses (and thus bound gains), mainly in
416 >     * methods tryCompensate and awaitJoin: (1) We only try
417 >     * compensation after attempting enough helping steps (measured
418 >     * via counting and timing) that we have already consumed the
419 >     * estimated cost of creating and activating a new thread.  (2) We
420 >     * allow up to 50% of threads to be blocked before initially
421 >     * adding any others, and unless completely saturated, check that
422 >     * some work is available for a new worker before adding. Also, we
423 >     * create up to only 50% more threads until entering a mode that
424 >     * only adds a thread if all others are possibly blocked.  All
425 >     * together, this means that we might be half as fast to react,
426 >     * and create half as many threads as possible in the ideal case,
427 >     * but present vastly fewer anomalies in all other cases compared
428 >     * to both more aggressive and more conservative alternatives.
429       *
430 <     * Beware that there is a lot of representation-level coupling
430 >     * Style notes: There is a lot of representation-level coupling
431       * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 <     * ForkJoinTask.  For example, direct access to "workers" array by
433 <     * workers, and direct access to ForkJoinTask.status by both
434 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
435 <     * trying to reduce this, since any associated future changes in
436 <     * representations will need to be accompanied by algorithmic
437 <     * changes anyway.
438 <     *
439 <     * Style notes: There are lots of inline assignments (of form
440 <     * "while ((local = field) != 0)") which are usually the simplest
441 <     * way to ensure the required read orderings (which are sometimes
442 <     * critical). Also several occurrences of the unusual "do {}
443 <     * while(!cas...)" which is the simplest way to force an update of
444 <     * a CAS'ed variable. There are also other coding oddities that
445 <     * help some methods perform reasonably even when interpreted (not
446 <     * compiled), at the expense of some messy constructions that
447 <     * reduce byte code counts.
448 <     *
449 <     * The order of declarations in this file is: (1) statics (2)
450 <     * fields (along with constants used when unpacking some of them)
451 <     * (3) internal control methods (4) callbacks and other support
452 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
453 <     * methods (plus a few little helpers).
432 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
433 >     * managed by ForkJoinPool, so are directly accessed.  There is
434 >     * little point trying to reduce this, since any associated future
435 >     * changes in representations will need to be accompanied by
436 >     * algorithmic changes anyway. Several methods intrinsically
437 >     * sprawl because they must accumulate sets of consistent reads of
438 >     * volatiles held in local variables.  Methods signalWork() and
439 >     * scan() are the main bottlenecks, so are especially heavily
440 >     * micro-optimized/mangled.  There are lots of inline assignments
441 >     * (of form "while ((local = field) != 0)") which are usually the
442 >     * simplest way to ensure the required read orderings (which are
443 >     * sometimes critical). This leads to a "C"-like style of listing
444 >     * declarations of these locals at the heads of methods or blocks.
445 >     * There are several occurrences of the unusual "do {} while
446 >     * (!cas...)"  which is the simplest way to force an update of a
447 >     * CAS'ed variable. There are also other coding oddities that help
448 >     * some methods perform reasonably even when interpreted (not
449 >     * compiled).
450 >     *
451 >     * The order of declarations in this file is:
452 >     * (1) Static utility functions
453 >     * (2) Nested (static) classes
454 >     * (3) Static fields
455 >     * (4) Fields, along with constants used when unpacking some of them
456 >     * (5) Internal control methods
457 >     * (6) Callbacks and other support for ForkJoinTask methods
458 >     * (7) Exported methods
459 >     * (8) Static block initializing statics in minimally dependent order
460       */
461  
462 +    // Static utilities
463 +
464 +    /**
465 +     * If there is a security manager, makes sure caller has
466 +     * permission to modify threads.
467 +     */
468 +    private static void checkPermission() {
469 +        SecurityManager security = System.getSecurityManager();
470 +        if (security != null)
471 +            security.checkPermission(modifyThreadPermission);
472 +    }
473 +
474 +    // Nested classes
475 +
476      /**
477       * Factory for creating new {@link ForkJoinWorkerThread}s.
478       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 388 | Line 501 | public class ForkJoinPool extends Abstra
501      }
502  
503      /**
504 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
505 <     * overridden in ForkJoinPool constructors.
504 >     * Class for artificial tasks that are used to replace the target
505 >     * of local joins if they are removed from an interior queue slot
506 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507 >     * actually do anything beyond having a unique identity.
508 >     */
509 >    static final class EmptyTask extends ForkJoinTask<Void> {
510 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511 >        public final Void getRawResult() { return null; }
512 >        public final void setRawResult(Void x) {}
513 >        public final boolean exec() { return true; }
514 >    }
515 >
516 >    /**
517 >     * Queues supporting work-stealing as well as external task
518 >     * submission. See above for main rationale and algorithms.
519 >     * Implementation relies heavily on "Unsafe" intrinsics
520 >     * and selective use of "volatile":
521 >     *
522 >     * Field "base" is the index (mod array.length) of the least valid
523 >     * queue slot, which is always the next position to steal (poll)
524 >     * from if nonempty. Reads and writes require volatile orderings
525 >     * but not CAS, because updates are only performed after slot
526 >     * CASes.
527 >     *
528 >     * Field "top" is the index (mod array.length) of the next queue
529 >     * slot to push to or pop from. It is written only by owner thread
530 >     * for push, or under lock for trySharedPush, and accessed by
531 >     * other threads only after reading (volatile) base.  Both top and
532 >     * base are allowed to wrap around on overflow, but (top - base)
533 >     * (or more commonly -(base - top) to force volatile read of base
534 >     * before top) still estimates size.
535 >     *
536 >     * The array slots are read and written using the emulation of
537 >     * volatiles/atomics provided by Unsafe. Insertions must in
538 >     * general use putOrderedObject as a form of releasing store to
539 >     * ensure that all writes to the task object are ordered before
540 >     * its publication in the queue. (Although we can avoid one case
541 >     * of this when locked in trySharedPush.) All removals entail a
542 >     * CAS to null.  The array is always a power of two. To ensure
543 >     * safety of Unsafe array operations, all accesses perform
544 >     * explicit null checks and implicit bounds checks via
545 >     * power-of-two masking.
546 >     *
547 >     * In addition to basic queuing support, this class contains
548 >     * fields described elsewhere to control execution. It turns out
549 >     * to work better memory-layout-wise to include them in this
550 >     * class rather than a separate class.
551 >     *
552 >     * Performance on most platforms is very sensitive to placement of
553 >     * instances of both WorkQueues and their arrays -- we absolutely
554 >     * do not want multiple WorkQueue instances or multiple queue
555 >     * arrays sharing cache lines. (It would be best for queue objects
556 >     * and their arrays to share, but there is nothing available to
557 >     * help arrange that).  Unfortunately, because they are recorded
558 >     * in a common array, WorkQueue instances are often moved to be
559 >     * adjacent by garbage collectors. To reduce impact, we use field
560 >     * padding that works OK on common platforms; this effectively
561 >     * trades off slightly slower average field access for the sake of
562 >     * avoiding really bad worst-case access. (Until better JVM
563 >     * support is in place, this padding is dependent on transient
564 >     * properties of JVM field layout rules.)  We also take care in
565 >     * allocating, sizing and resizing the array. Non-shared queue
566 >     * arrays are initialized (via method growArray) by workers before
567 >     * use. Others are allocated on first use.
568       */
569 <    public static final ForkJoinWorkerThreadFactory
570 <        defaultForkJoinWorkerThreadFactory =
571 <        new DefaultForkJoinWorkerThreadFactory();
569 >    static final class WorkQueue {
570 >        /**
571 >         * Capacity of work-stealing queue array upon initialization.
572 >         * Must be a power of two; at least 4, but should be larger to
573 >         * reduce or eliminate cacheline sharing among queues.
574 >         * Currently, it is much larger, as a partial workaround for
575 >         * the fact that JVMs often place arrays in locations that
576 >         * share GC bookkeeping (especially cardmarks) such that
577 >         * per-write accesses encounter serious memory contention.
578 >         */
579 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580  
581 <    /**
582 <     * Permission required for callers of methods that may start or
583 <     * kill threads.
584 <     */
585 <    private static final RuntimePermission modifyThreadPermission =
586 <        new RuntimePermission("modifyThread");
581 >        /**
582 >         * Maximum size for queue arrays. Must be a power of two less
583 >         * than or equal to 1 << (31 - width of array entry) to ensure
584 >         * lack of wraparound of index calculations, but defined to a
585 >         * value a bit less than this to help users trap runaway
586 >         * programs before saturating systems.
587 >         */
588 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
589 >
590 >        volatile long totalSteals; // cumulative number of steals
591 >        int seed;                  // for random scanning; initialize nonzero
592 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
593 >        int nextWait;              // encoded record of next event waiter
594 >        int rescans;               // remaining scans until block
595 >        int nsteals;               // top-level task executions since last idle
596 >        final int mode;            // lifo, fifo, or shared
597 >        int poolIndex;             // index of this queue in pool (or 0)
598 >        int stealHint;             // index of most recent known stealer
599 >        volatile int runState;     // 1: locked, -1: terminate; else 0
600 >        volatile int base;         // index of next slot for poll
601 >        int top;                   // index of next slot for push
602 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
603 >        final ForkJoinPool pool;   // the containing pool (may be null)
604 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
605 >        volatile Thread parker;    // == owner during call to park; else null
606 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
607 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
608 >        // Heuristic padding to ameliorate unfortunate memory placements
609 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
610 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611 >
612 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613 >            this.mode = mode;
614 >            this.pool = pool;
615 >            this.owner = owner;
616 >            // Place indices in the center of array (that is not yet allocated)
617 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618 >        }
619 >
620 >        /**
621 >         * Returns the approximate number of tasks in the queue.
622 >         */
623 >        final int queueSize() {
624 >            int n = base - top;       // non-owner callers must read base first
625 >            return (n >= 0) ? 0 : -n; // ignore transient negative
626 >        }
627 >
628 >        /**
629 >         * Provides a more accurate estimate of whether this queue has
630 >         * any tasks than does queueSize, by checking whether a
631 >         * near-empty queue has at least one unclaimed task.
632 >         */
633 >        final boolean isEmpty() {
634 >            ForkJoinTask<?>[] a; int m, s;
635 >            int n = base - (s = top);
636 >            return (n >= 0 ||
637 >                    (n == -1 &&
638 >                     ((a = array) == null ||
639 >                      (m = a.length - 1) < 0 ||
640 >                      U.getObjectVolatile
641 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642 >        }
643 >
644 >        /**
645 >         * Pushes a task. Call only by owner in unshared queues.
646 >         *
647 >         * @param task the task. Caller must ensure non-null.
648 >         * @throw RejectedExecutionException if array cannot be resized
649 >         */
650 >        final void push(ForkJoinTask<?> task) {
651 >            ForkJoinTask<?>[] a; ForkJoinPool p;
652 >            int s = top, m, n;
653 >            if ((a = array) != null) {    // ignore if queue removed
654 >                U.putOrderedObject
655 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656 >                if ((n = (top = s + 1) - base) <= 2) {
657 >                    if ((p = pool) != null)
658 >                        p.signalWork();
659 >                }
660 >                else if (n >= m)
661 >                    growArray(true);
662 >            }
663 >        }
664 >
665 >        /**
666 >         * Pushes a task if lock is free and array is either big
667 >         * enough or can be resized to be big enough.
668 >         *
669 >         * @param task the task. Caller must ensure non-null.
670 >         * @return true if submitted
671 >         */
672 >        final boolean trySharedPush(ForkJoinTask<?> task) {
673 >            boolean submitted = false;
674 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675 >                ForkJoinTask<?>[] a = array;
676 >                int s = top;
677 >                try {
678 >                    if ((a != null && a.length > s + 1 - base) ||
679 >                        (a = growArray(false)) != null) { // must presize
680 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
682 >                        top = s + 1;
683 >                        submitted = true;
684 >                    }
685 >                } finally {
686 >                    runState = 0;                         // unlock
687 >                }
688 >            }
689 >            return submitted;
690 >        }
691 >
692 >        /**
693 >         * Takes next task, if one exists, in LIFO order.  Call only
694 >         * by owner in unshared queues.
695 >         */
696 >        final ForkJoinTask<?> pop() {
697 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
698 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
699 >                for (int s; (s = top - 1) - base >= 0;) {
700 >                    long j = ((m & s) << ASHIFT) + ABASE;
701 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
702 >                        break;
703 >                    if (U.compareAndSwapObject(a, j, t, null)) {
704 >                        top = s;
705 >                        return t;
706 >                    }
707 >                }
708 >            }
709 >            return null;
710 >        }
711 >
712 >        final ForkJoinTask<?> sharedPop() {
713 >            ForkJoinTask<?> task = null;
714 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
715 >                try {
716 >                    ForkJoinTask<?>[] a; int m;
717 >                    if ((a = array) != null && (m = a.length - 1) >= 0) {
718 >                        for (int s; (s = top - 1) - base >= 0;) {
719 >                            long j = ((m & s) << ASHIFT) + ABASE;
720 >                            ForkJoinTask<?> t =
721 >                                (ForkJoinTask<?>)U.getObject(a, j);
722 >                            if (t == null)
723 >                                break;
724 >                            if (U.compareAndSwapObject(a, j, t, null)) {
725 >                                top = s;
726 >                                task = t;
727 >                                break;
728 >                            }
729 >                        }
730 >                    }
731 >                } finally {
732 >                    runState = 0;
733 >                }
734 >            }
735 >            return task;
736 >        }
737 >
738 >        /**
739 >         * Version of pop that takes top element only if it
740 >         * its root is the given CountedCompleter.
741 >         */
742 >        final ForkJoinTask<?> popCC(CountedCompleter<?> root) {
743 >            ForkJoinTask<?>[] a; int m;
744 >            if (root != null && (a = array) != null && (m = a.length - 1) >= 0) {
745 >                for (int s; (s = top - 1) - base >= 0;) {
746 >                    long j = ((m & s) << ASHIFT) + ABASE;
747 >                    ForkJoinTask<?> t =
748 >                        (ForkJoinTask<?>)U.getObject(a, j);
749 >                    if (t == null || !(t instanceof CountedCompleter) ||
750 >                        ((CountedCompleter<?>)t).getRoot() != root)
751 >                        break;
752 >                    if (U.compareAndSwapObject(a, j, t, null)) {
753 >                        top = s;
754 >                        return t;
755 >                    }
756 >                    if (root.status < 0)
757 >                        break;
758 >                }
759 >            }
760 >            return null;
761 >        }
762 >
763 >        /**
764 >         * Shared version of popCC
765 >         */
766 >        final ForkJoinTask<?> sharedPopCC(CountedCompleter<?> root) {
767 >            ForkJoinTask<?> task = null;
768 >            if (root != null &&
769 >                runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
770 >                try {
771 >                    ForkJoinTask<?>[] a; int m;
772 >                    if ((a = array) != null && (m = a.length - 1) >= 0) {
773 >                        for (int s; (s = top - 1) - base >= 0;) {
774 >                            long j = ((m & s) << ASHIFT) + ABASE;
775 >                            ForkJoinTask<?> t =
776 >                                (ForkJoinTask<?>)U.getObject(a, j);
777 >                            if (t == null || !(t instanceof CountedCompleter) ||
778 >                                ((CountedCompleter<?>)t).getRoot() != root)
779 >                                break;
780 >                            if (U.compareAndSwapObject(a, j, t, null)) {
781 >                                top = s;
782 >                                task = t;
783 >                                break;
784 >                            }
785 >                            if (root.status < 0)
786 >                                break;
787 >                        }
788 >                    }
789 >                } finally {
790 >                    runState = 0;
791 >                }
792 >            }
793 >            return task;
794 >        }
795 >
796 >        /**
797 >         * Takes a task in FIFO order if b is base of queue and a task
798 >         * can be claimed without contention. Specialized versions
799 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
800 >         */
801 >        final ForkJoinTask<?> pollAt(int b) {
802 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
803 >            if ((a = array) != null) {
804 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
805 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
806 >                    base == b &&
807 >                    U.compareAndSwapObject(a, j, t, null)) {
808 >                    base = b + 1;
809 >                    return t;
810 >                }
811 >            }
812 >            return null;
813 >        }
814 >
815 >        /**
816 >         * Takes next task, if one exists, in FIFO order.
817 >         */
818 >        final ForkJoinTask<?> poll() {
819 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
820 >            while ((b = base) - top < 0 && (a = array) != null) {
821 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
822 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
823 >                if (t != null) {
824 >                    if (base == b &&
825 >                        U.compareAndSwapObject(a, j, t, null)) {
826 >                        base = b + 1;
827 >                        return t;
828 >                    }
829 >                }
830 >                else if (base == b) {
831 >                    if (b + 1 == top)
832 >                        break;
833 >                    Thread.yield(); // wait for lagging update
834 >                }
835 >            }
836 >            return null;
837 >        }
838 >
839 >        /**
840 >         * Takes next task, if one exists, in order specified by mode.
841 >         */
842 >        final ForkJoinTask<?> nextLocalTask() {
843 >            return mode == 0 ? pop() : poll();
844 >        }
845 >
846 >        /**
847 >         * Returns next task, if one exists, in order specified by mode.
848 >         */
849 >        final ForkJoinTask<?> peek() {
850 >            ForkJoinTask<?>[] a = array; int m;
851 >            if (a == null || (m = a.length - 1) < 0)
852 >                return null;
853 >            int i = mode == 0 ? top - 1 : base;
854 >            int j = ((i & m) << ASHIFT) + ABASE;
855 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
856 >        }
857 >
858 >        /**
859 >         * Pops the given task only if it is at the current top.
860 >         */
861 >        final boolean tryUnpush(ForkJoinTask<?> t) {
862 >            ForkJoinTask<?>[] a; int s;
863 >            if ((a = array) != null && (s = top) != base &&
864 >                U.compareAndSwapObject
865 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
866 >                top = s;
867 >                return true;
868 >            }
869 >            return false;
870 >        }
871 >
872 >        /**
873 >         * Version of tryUnpush for shared queues; called by non-FJ
874 >         * submitters after prechecking that task probably exists.
875 >         */
876 >        final boolean trySharedUnpush(ForkJoinTask<?> t) {
877 >            boolean success = false;
878 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
879 >                try {
880 >                    ForkJoinTask<?>[] a; int s;
881 >                    if ((a = array) != null && (s = top) != base &&
882 >                        U.compareAndSwapObject
883 >                        (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
884 >                        top = s;
885 >                        success = true;
886 >                    }
887 >                } finally {
888 >                    runState = 0;                         // unlock
889 >                }
890 >            }
891 >            return success;
892 >        }
893 >
894 >        /**
895 >         * Polls the given task only if it is at the current base.
896 >         */
897 >        final boolean pollFor(ForkJoinTask<?> task) {
898 >            ForkJoinTask<?>[] a; int b;
899 >            if ((b = base) - top < 0 && (a = array) != null) {
900 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
901 >                if (U.getObjectVolatile(a, j) == task && base == b &&
902 >                    U.compareAndSwapObject(a, j, task, null)) {
903 >                    base = b + 1;
904 >                    return true;
905 >                }
906 >            }
907 >            return false;
908 >        }
909 >
910 >        /**
911 >         * Initializes or doubles the capacity of array. Call either
912 >         * by owner or with lock held -- it is OK for base, but not
913 >         * top, to move while resizings are in progress.
914 >         *
915 >         * @param rejectOnFailure if true, throw exception if capacity
916 >         * exceeded (relayed ultimately to user); else return null.
917 >         */
918 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
919 >            ForkJoinTask<?>[] oldA = array;
920 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
921 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
922 >                int oldMask, t, b;
923 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
924 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
925 >                    (t = top) - (b = base) > 0) {
926 >                    int mask = size - 1;
927 >                    do {
928 >                        ForkJoinTask<?> x;
929 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
930 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
931 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
932 >                        if (x != null &&
933 >                            U.compareAndSwapObject(oldA, oldj, x, null))
934 >                            U.putObjectVolatile(a, j, x);
935 >                    } while (++b != t);
936 >                }
937 >                return a;
938 >            }
939 >            else if (!rejectOnFailure)
940 >                return null;
941 >            else
942 >                throw new RejectedExecutionException("Queue capacity exceeded");
943 >        }
944 >
945 >        /**
946 >         * Removes and cancels all known tasks, ignoring any exceptions.
947 >         */
948 >        final void cancelAll() {
949 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
950 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
951 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
952 >                ForkJoinTask.cancelIgnoringExceptions(t);
953 >        }
954 >
955 >        /**
956 >         * Computes next value for random probes.  Scans don't require
957 >         * a very high quality generator, but also not a crummy one.
958 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
959 >         * This is manually inlined in its usages in ForkJoinPool to
960 >         * avoid writes inside busy scan loops.
961 >         */
962 >        final int nextSeed() {
963 >            int r = seed;
964 >            r ^= r << 13;
965 >            r ^= r >>> 17;
966 >            return seed = r ^= r << 5;
967 >        }
968 >
969 >        // Execution methods
970 >
971 >        /**
972 >         * Pops and runs tasks until empty.
973 >         */
974 >        private void popAndExecAll() {
975 >            // A bit faster than repeated pop calls
976 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
977 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
978 >                   (s = top - 1) - base >= 0 &&
979 >                   (t = ((ForkJoinTask<?>)
980 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
981 >                   != null) {
982 >                if (U.compareAndSwapObject(a, j, t, null)) {
983 >                    top = s;
984 >                    t.doExec();
985 >                }
986 >            }
987 >        }
988 >
989 >        /**
990 >         * Polls and runs tasks until empty.
991 >         */
992 >        private void pollAndExecAll() {
993 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
994 >                t.doExec();
995 >        }
996 >
997 >        /**
998 >         * If present, removes from queue and executes the given task, or
999 >         * any other cancelled task. Returns (true) immediately on any CAS
1000 >         * or consistency check failure so caller can retry.
1001 >         *
1002 >         * @return 0 if no progress can be made, else positive
1003 >         * (this unusual convention simplifies use with tryHelpStealer.)
1004 >         */
1005 >        final int tryRemoveAndExec(ForkJoinTask<?> task) {
1006 >            int stat = 1;
1007 >            boolean removed = false, empty = true;
1008 >            ForkJoinTask<?>[] a; int m, s, b, n;
1009 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
1010 >                (n = (s = top) - (b = base)) > 0) {
1011 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
1012 >                    int j = ((--s & m) << ASHIFT) + ABASE;
1013 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
1014 >                    if (t == null)                    // inconsistent length
1015 >                        break;
1016 >                    else if (t == task) {
1017 >                        if (s + 1 == top) {           // pop
1018 >                            if (!U.compareAndSwapObject(a, j, task, null))
1019 >                                break;
1020 >                            top = s;
1021 >                            removed = true;
1022 >                        }
1023 >                        else if (base == b)           // replace with proxy
1024 >                            removed = U.compareAndSwapObject(a, j, task,
1025 >                                                             new EmptyTask());
1026 >                        break;
1027 >                    }
1028 >                    else if (t.status >= 0)
1029 >                        empty = false;
1030 >                    else if (s + 1 == top) {          // pop and throw away
1031 >                        if (U.compareAndSwapObject(a, j, t, null))
1032 >                            top = s;
1033 >                        break;
1034 >                    }
1035 >                    if (--n == 0) {
1036 >                        if (!empty && base == b)
1037 >                            stat = 0;
1038 >                        break;
1039 >                    }
1040 >                }
1041 >            }
1042 >            if (removed)
1043 >                task.doExec();
1044 >            return stat;
1045 >        }
1046 >
1047 >        /**
1048 >         * Executes a top-level task and any local tasks remaining
1049 >         * after execution.
1050 >         */
1051 >        final void runTask(ForkJoinTask<?> t) {
1052 >            if (t != null) {
1053 >                currentSteal = t;
1054 >                t.doExec();
1055 >                if (top != base) {       // process remaining local tasks
1056 >                    if (mode == 0)
1057 >                        popAndExecAll();
1058 >                    else
1059 >                        pollAndExecAll();
1060 >                }
1061 >                ++nsteals;
1062 >                currentSteal = null;
1063 >            }
1064 >        }
1065 >
1066 >        /**
1067 >         * Executes a non-top-level (stolen) task.
1068 >         */
1069 >        final void runSubtask(ForkJoinTask<?> t) {
1070 >            if (t != null) {
1071 >                ForkJoinTask<?> ps = currentSteal;
1072 >                currentSteal = t;
1073 >                t.doExec();
1074 >                currentSteal = ps;
1075 >            }
1076 >        }
1077 >
1078 >        /**
1079 >         * Returns true if owned and not known to be blocked.
1080 >         */
1081 >        final boolean isApparentlyUnblocked() {
1082 >            Thread wt; Thread.State s;
1083 >            return (eventCount >= 0 &&
1084 >                    (wt = owner) != null &&
1085 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1086 >                    s != Thread.State.WAITING &&
1087 >                    s != Thread.State.TIMED_WAITING);
1088 >        }
1089 >
1090 >        /**
1091 >         * If this owned and is not already interrupted, try to
1092 >         * interrupt and/or unpark, ignoring exceptions.
1093 >         */
1094 >        final void interruptOwner() {
1095 >            Thread wt, p;
1096 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1097 >                try {
1098 >                    wt.interrupt();
1099 >                } catch (SecurityException ignore) {
1100 >                }
1101 >            }
1102 >            if ((p = parker) != null)
1103 >                U.unpark(p);
1104 >        }
1105 >
1106 >        // Unsafe mechanics
1107 >        private static final sun.misc.Unsafe U;
1108 >        private static final long RUNSTATE;
1109 >        private static final int ABASE;
1110 >        private static final int ASHIFT;
1111 >        static {
1112 >            int s;
1113 >            try {
1114 >                U = getUnsafe();
1115 >                Class<?> k = WorkQueue.class;
1116 >                Class<?> ak = ForkJoinTask[].class;
1117 >                RUNSTATE = U.objectFieldOffset
1118 >                    (k.getDeclaredField("runState"));
1119 >                ABASE = U.arrayBaseOffset(ak);
1120 >                s = U.arrayIndexScale(ak);
1121 >            } catch (Exception e) {
1122 >                throw new Error(e);
1123 >            }
1124 >            if ((s & (s-1)) != 0)
1125 >                throw new Error("data type scale not a power of two");
1126 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1127 >        }
1128 >    }
1129  
1130      /**
1131 <     * If there is a security manager, makes sure caller has
1132 <     * permission to modify threads.
1131 >     * Per-thread records for threads that submit to pools. Currently
1132 >     * holds only pseudo-random seed / index that is used to choose
1133 >     * submission queues in method doSubmit. In the future, this may
1134 >     * also incorporate a means to implement different task rejection
1135 >     * and resubmission policies.
1136 >     *
1137 >     * Seeds for submitters and workers/workQueues work in basically
1138 >     * the same way but are initialized and updated using slightly
1139 >     * different mechanics. Both are initialized using the same
1140 >     * approach as in class ThreadLocal, where successive values are
1141 >     * unlikely to collide with previous values. This is done during
1142 >     * registration for workers, but requires a separate AtomicInteger
1143 >     * for submitters. Seeds are then randomly modified upon
1144 >     * collisions using xorshifts, which requires a non-zero seed.
1145       */
1146 <    private static void checkPermission() {
1147 <        SecurityManager security = System.getSecurityManager();
1148 <        if (security != null)
1149 <            security.checkPermission(modifyThreadPermission);
1146 >    static final class Submitter {
1147 >        int seed;
1148 >        Submitter() {
1149 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1150 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1151 >        }
1152 >    }
1153 >
1154 >    /** ThreadLocal class for Submitters */
1155 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1156 >        public Submitter initialValue() { return new Submitter(); }
1157      }
1158  
1159 +    // static fields (initialized in static initializer below)
1160 +
1161      /**
1162 <     * Generator for assigning sequence numbers as pool names.
1162 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1163 >     * overridden in ForkJoinPool constructors.
1164       */
1165 <    private static final AtomicInteger poolNumberGenerator =
1166 <        new AtomicInteger();
1165 >    public static final ForkJoinWorkerThreadFactory
1166 >        defaultForkJoinWorkerThreadFactory;
1167 >
1168 >
1169 >    /** Property prefix for constructing common pool */
1170 >    private static final String propPrefix =
1171 >        "java.util.concurrent.ForkJoinPool.common.";
1172  
1173      /**
1174 <     * Absolute bound for parallelism level. Twice this number plus
1175 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
1176 <     * word-packing for some counts and indices.
1174 >     * Common (static) pool. Non-null for public use unless a static
1175 >     * construction exception, but internal usages must null-check on
1176 >     * use.
1177       */
1178 <    private static final int MAX_WORKERS   = 0x7fff;
1178 >    static final ForkJoinPool commonPool;
1179  
1180      /**
1181 <     * Array holding all worker threads in the pool.  Array size must
430 <     * be a power of two.  Updates and replacements are protected by
431 <     * workerLock, but the array is always kept in a consistent enough
432 <     * state to be randomly accessed without locking by workers
433 <     * performing work-stealing, as well as other traversal-based
434 <     * methods in this class. All readers must tolerate that some
435 <     * array slots may be null.
1181 >     * Common pool parallelism. Must equal commonPool.parallelism.
1182       */
1183 <    volatile ForkJoinWorkerThread[] workers;
1183 >    static final int commonPoolParallelism;
1184  
1185      /**
1186 <     * Queue for external submissions.
1186 >     * Generator for assigning sequence numbers as pool names.
1187       */
1188 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1188 >    private static final AtomicInteger poolNumberGenerator;
1189  
1190      /**
1191 <     * Lock protecting updates to workers array.
1191 >     * Generator for initial hashes/seeds for submitters. Accessed by
1192 >     * Submitter class constructor.
1193       */
1194 <    private final ReentrantLock workerLock;
1194 >    static final AtomicInteger nextSubmitterSeed;
1195  
1196      /**
1197 <     * Latch released upon termination.
1197 >     * Permission required for callers of methods that may start or
1198 >     * kill threads.
1199       */
1200 <    private final Phaser termination;
1200 >    private static final RuntimePermission modifyThreadPermission;
1201  
1202      /**
1203 <     * Creation factory for worker threads.
1203 >     * Per-thread submission bookkeeping. Shared across all pools
1204 >     * to reduce ThreadLocal pollution and because random motion
1205 >     * to avoid contention in one pool is likely to hold for others.
1206       */
1207 <    private final ForkJoinWorkerThreadFactory factory;
1207 >    private static final ThreadSubmitter submitters;
1208 >
1209 >    // static constants
1210  
1211      /**
1212 <     * Sum of per-thread steal counts, updated only when threads are
1213 <     * idle or terminating.
1212 >     * Initial timeout value (in nanoseconds) for the thread triggering
1213 >     * quiescence to park waiting for new work. On timeout, the thread
1214 >     * will instead try to shrink the number of workers.
1215       */
1216 <    private volatile long stealCount;
1216 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1217  
1218      /**
1219 <     * The last nanoTime that a spare thread was trimmed
1219 >     * Timeout value when there are more threads than parallelism level
1220       */
1221 <    private volatile long trimTime;
1221 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1222  
1223      /**
1224 <     * The rate at which to trim unused spares
1224 >     * The maximum stolen->joining link depth allowed in method
1225 >     * tryHelpStealer.  Must be a power of two. This value also
1226 >     * controls the maximum number of times to try to help join a task
1227 >     * without any apparent progress or change in pool state before
1228 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1229 >     * chains are unbounded, but we use a fixed constant to avoid
1230 >     * (otherwise unchecked) cycles and to bound staleness of
1231 >     * traversal parameters at the expense of sometimes blocking when
1232 >     * we could be helping.
1233       */
1234 <    static final long UNUSED_SPARE_TRIM_RATE_NANOS =
474 <        1000L * 1000L * 1000L; // 1 sec
1234 >    private static final int MAX_HELP = 64;
1235  
1236      /**
1237 <     * Encoded record of top of treiber stack of threads waiting for
1238 <     * events. The top 32 bits contain the count being waited for. The
1239 <     * bottom 16 bits contains one plus the pool index of waiting
1240 <     * worker thread. (Bits 16-31 are unused.)
1237 >     * Secondary time-based bound (in nanosecs) for helping attempts
1238 >     * before trying compensated blocking in awaitJoin. Used in
1239 >     * conjunction with MAX_HELP to reduce variance due to different
1240 >     * polling rates associated with different helping options. The
1241 >     * value should roughly approximate the time required to create
1242 >     * and/or activate a worker thread.
1243       */
1244 <    private volatile long eventWaiters;
483 <
484 <    private static final int  EVENT_COUNT_SHIFT = 32;
485 <    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
1244 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1245  
1246      /**
1247 <     * A counter for events that may wake up worker threads:
1248 <     *   - Submission of a new task to the pool
490 <     *   - A worker pushing a task on an empty queue
491 <     *   - termination
1247 >     * Increment for seed generators. See class ThreadLocal for
1248 >     * explanation.
1249       */
1250 <    private volatile int eventCount;
1250 >    private static final int SEED_INCREMENT = 0x61c88647;
1251  
1252      /**
1253 <     * Encoded record of top of treiber stack of spare threads waiting
1254 <     * for resumption. The top 16 bits contain an arbitrary count to
1255 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
1256 <     * index of waiting worker thread.
1253 >     * Bits and masks for control variables
1254 >     *
1255 >     * Field ctl is a long packed with:
1256 >     * AC: Number of active running workers minus target parallelism (16 bits)
1257 >     * TC: Number of total workers minus target parallelism (16 bits)
1258 >     * ST: true if pool is terminating (1 bit)
1259 >     * EC: the wait count of top waiting thread (15 bits)
1260 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1261 >     *
1262 >     * When convenient, we can extract the upper 32 bits of counts and
1263 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1264 >     * (int)ctl.  The ec field is never accessed alone, but always
1265 >     * together with id and st. The offsets of counts by the target
1266 >     * parallelism and the positionings of fields makes it possible to
1267 >     * perform the most common checks via sign tests of fields: When
1268 >     * ac is negative, there are not enough active workers, when tc is
1269 >     * negative, there are not enough total workers, and when e is
1270 >     * negative, the pool is terminating.  To deal with these possibly
1271 >     * negative fields, we use casts in and out of "short" and/or
1272 >     * signed shifts to maintain signedness.
1273 >     *
1274 >     * When a thread is queued (inactivated), its eventCount field is
1275 >     * set negative, which is the only way to tell if a worker is
1276 >     * prevented from executing tasks, even though it must continue to
1277 >     * scan for them to avoid queuing races. Note however that
1278 >     * eventCount updates lag releases so usage requires care.
1279 >     *
1280 >     * Field runState is an int packed with:
1281 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1282 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1283 >     * INIT: set true after workQueues array construction (1 bit)
1284 >     *
1285 >     * The sequence number enables simple consistency checks:
1286 >     * Staleness of read-only operations on the workQueues array can
1287 >     * be checked by comparing runState before vs after the reads.
1288       */
501    private volatile int spareWaiters;
1289  
1290 <    private static final int SPARE_COUNT_SHIFT = 16;
1291 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
1290 >    // bit positions/shifts for fields
1291 >    private static final int  AC_SHIFT   = 48;
1292 >    private static final int  TC_SHIFT   = 32;
1293 >    private static final int  ST_SHIFT   = 31;
1294 >    private static final int  EC_SHIFT   = 16;
1295  
1296 <    /**
1297 <     * Lifecycle control. The low word contains the number of workers
1298 <     * that are (probably) executing tasks. This value is atomically
1299 <     * incremented before a worker gets a task to run, and decremented
1300 <     * when worker has no tasks and cannot find any.  Bits 16-18
1301 <     * contain runLevel value. When all are zero, the pool is
512 <     * running. Level transitions are monotonic (running -> shutdown
513 <     * -> terminating -> terminated) so each transition adds a bit.
514 <     * These are bundled together to ensure consistent read for
515 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
516 <     * and active threads is zero).
517 <     */
518 <    private volatile int runState;
1296 >    // bounds
1297 >    private static final int  SMASK      = 0xffff;  // short bits
1298 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1299 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1300 >    private static final int  SHORT_SIGN = 1 << 15;
1301 >    private static final int  INT_SIGN   = 1 << 31;
1302  
1303 <    // Note: The order among run level values matters.
1304 <    private static final int RUNLEVEL_SHIFT     = 16;
1305 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
1306 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
524 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
525 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
526 <    private static final int ONE_ACTIVE         = 1; // active update delta
1303 >    // masks
1304 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1305 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1306 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1307  
1308 <    /**
1309 <     * Holds number of total (i.e., created and not yet terminated)
1310 <     * and running (i.e., not blocked on joins or other managed sync)
531 <     * threads, packed together to ensure consistent snapshot when
532 <     * making decisions about creating and suspending spare
533 <     * threads. Updated only by CAS. Note that adding a new worker
534 <     * requires incrementing both counts, since workers start off in
535 <     * running state.
536 <     */
537 <    private volatile int workerCounts;
1308 >    // units for incrementing and decrementing
1309 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1310 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1311  
1312 <    private static final int TOTAL_COUNT_SHIFT  = 16;
1313 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
1314 <    private static final int ONE_RUNNING        = 1;
1315 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
1312 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1313 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1314 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1315 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1316 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1317 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1318 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1319  
1320 <    /**
1321 <     * The target parallelism level.
1322 <     * Accessed directly by ForkJoinWorkerThreads.
547 <     */
548 <    final int parallelism;
1320 >    // masks and units for dealing with e = (int)ctl
1321 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1322 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1323  
1324 <    /**
1325 <     * True if use local fifo, not default lifo, for local polling
552 <     * Read by, and replicated by ForkJoinWorkerThreads
553 <     */
554 <    final boolean locallyFifo;
1324 >    // runState bits
1325 >    private static final int SHUTDOWN    = 1 << 31;
1326  
1327 <    /**
1328 <     * The uncaught exception handler used when any worker abruptly
1329 <     * terminates.
1330 <     */
560 <    private final Thread.UncaughtExceptionHandler ueh;
1327 >    // access mode for WorkQueue
1328 >    static final int LIFO_QUEUE          =  0;
1329 >    static final int FIFO_QUEUE          =  1;
1330 >    static final int SHARED_QUEUE        = -1;
1331  
1332 <    /**
1333 <     * Pool number, just for assigning useful names to worker threads
1334 <     */
1335 <    private final int poolNumber;
1332 >    // Instance fields
1333 >
1334 >    /*
1335 >     * Field layout order in this class tends to matter more than one
1336 >     * would like. Runtime layout order is only loosely related to
1337 >     * declaration order and may differ across JVMs, but the following
1338 >     * empirically works OK on current JVMs.
1339 >     */
1340 >
1341 >    volatile long stealCount;                  // collects worker counts
1342 >    volatile long ctl;                         // main pool control
1343 >    final int parallelism;                     // parallelism level
1344 >    final int localMode;                       // per-worker scheduling mode
1345 >    volatile int nextWorkerNumber;             // to create worker name string
1346 >    final int submitMask;                      // submit queue index bound
1347 >    int nextSeed;                              // for initializing worker seeds
1348 >    volatile int mainLock;                     // spinlock for array updates
1349 >    volatile int runState;                     // shutdown status and seq
1350 >    WorkQueue[] workQueues;                    // main registry
1351 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1352 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1353 >    final String workerNamePrefix;             // to create worker name string
1354  
1355 +    /*
1356 +     * Mechanics for main lock protecting worker array updates.  Uses
1357 +     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1358 +     * normal cases, but falling back to builtin lock when (rarely)
1359 +     * needed.  See internal ConcurrentHashMap documentation for
1360 +     * explanation.
1361 +     */
1362 +
1363 +    static final int LOCK_WAITING = 2; // bit to indicate need for signal
1364 +    static final int MAX_LOCK_SPINS = 1 << 8;
1365 +
1366 +    private void tryAwaitMainLock() {
1367 +        int spins = MAX_LOCK_SPINS, r = 0, h;
1368 +        while (((h = mainLock) & 1) != 0) {
1369 +            if (r == 0)
1370 +                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1371 +            else if (spins >= 0) {
1372 +                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1373 +                if (r >= 0)
1374 +                    --spins;
1375 +            }
1376 +            else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1377 +                synchronized (this) {
1378 +                    if ((mainLock & LOCK_WAITING) != 0) {
1379 +                        try {
1380 +                            wait();
1381 +                        } catch (InterruptedException ie) {
1382 +                            Thread.currentThread().interrupt();
1383 +                        }
1384 +                    }
1385 +                    else
1386 +                        notifyAll(); // possibly won race vs signaller
1387 +                }
1388 +                break;
1389 +            }
1390 +        }
1391 +    }
1392  
1393 <    // Utilities for CASing fields. Note that several of these
569 <    // are manually inlined by callers
1393 >    //  Creating, registering, and deregistering workers
1394  
1395      /**
1396 <     * Increments running count part of workerCounts
1396 >     * Tries to create and start a worker
1397       */
1398 <    final void incrementRunningCount() {
1399 <        int c;
1400 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1401 <                                               c = workerCounts,
1402 <                                               c + ONE_RUNNING));
1398 >    private void addWorker() {
1399 >        Throwable ex = null;
1400 >        ForkJoinWorkerThread wt = null;
1401 >        try {
1402 >            if ((wt = factory.newThread(this)) != null) {
1403 >                wt.start();
1404 >                return;
1405 >            }
1406 >        } catch (Throwable e) {
1407 >            ex = e;
1408 >        }
1409 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1410      }
1411  
1412      /**
1413 <     * Tries to decrement running count unless already zero
1413 >     * Callback from ForkJoinWorkerThread constructor to assign a
1414 >     * public name. This must be separate from registerWorker because
1415 >     * it is called during the "super" constructor call in
1416 >     * ForkJoinWorkerThread.
1417       */
1418 <    final boolean tryDecrementRunningCount() {
1419 <        int wc = workerCounts;
1420 <        if ((wc & RUNNING_COUNT_MASK) == 0)
1421 <            return false;
1422 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
589 <                                        wc, wc - ONE_RUNNING);
1418 >    final String nextWorkerName() {
1419 >        int n;
1420 >        do {} while(!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1421 >                                         n = nextWorkerNumber, ++n));
1422 >        return workerNamePrefix.concat(Integer.toString(n));
1423      }
1424  
1425      /**
1426 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
1427 <     * (rarely) necessary when other count updates lag.
1426 >     * Callback from ForkJoinWorkerThread constructor to establish its
1427 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1428 >     * to packing entries in front of the workQueues array, we treat
1429 >     * the array as a simple power-of-two hash table using per-thread
1430 >     * seed as hash, expanding as needed.
1431       *
1432 <     * @param dr -- either zero or ONE_RUNNING
1433 <     * @param dt == either zero or ONE_TOTAL
1434 <     */
1435 <    private void decrementWorkerCounts(int dr, int dt) {
1436 <        for (;;) {
1437 <            int wc = workerCounts;
1438 <            if (wc == 0 && (runState & TERMINATED) != 0)
1439 <                return; // lagging termination on a backout
1440 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
1441 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
1442 <                Thread.yield();
1443 <            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1444 <                                         wc, wc - (dr + dt)))
1445 <                return;
1432 >     * @param w the worker's queue
1433 >     */
1434 >    final void registerWorker(WorkQueue w) {
1435 >        while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1436 >            tryAwaitMainLock();
1437 >        try {
1438 >            WorkQueue[] ws;
1439 >            if ((ws = workQueues) == null)
1440 >                ws = workQueues = new WorkQueue[submitMask + 1];
1441 >            if (w != null) {
1442 >                int rs, n =  ws.length, m = n - 1;
1443 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1444 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1445 >                int r = (s << 1) | 1;               // use odd-numbered indices
1446 >                if (ws[r &= m] != null) {           // collision
1447 >                    int probes = 0;                 // step by approx half size
1448 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1449 >                    while (ws[r = (r + step) & m] != null) {
1450 >                        if (++probes >= n) {
1451 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1452 >                            m = n - 1;
1453 >                            probes = 0;
1454 >                        }
1455 >                    }
1456 >                }
1457 >                w.eventCount = w.poolIndex = r;     // establish before recording
1458 >                ws[r] = w;                          // also update seq
1459 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1460 >            }
1461 >        } finally {
1462 >            if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1463 >                mainLock = 0;
1464 >                synchronized (this) { notifyAll(); };
1465 >            }
1466          }
611    }
1467  
613    /**
614     * Increments event count
615     */
616    private void advanceEventCount() {
617        int c;
618        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
619                                              c = eventCount, c+1));
1468      }
1469  
1470      /**
1471 <     * Tries incrementing active count; fails on contention.
1472 <     * Called by workers before executing tasks.
1471 >     * Final callback from terminating worker, as well as upon failure
1472 >     * to construct or start a worker in addWorker.  Removes record of
1473 >     * worker from array, and adjusts counts. If pool is shutting
1474 >     * down, tries to complete termination.
1475       *
1476 <     * @return true on success
1476 >     * @param wt the worker thread or null if addWorker failed
1477 >     * @param ex the exception causing failure, or null if none
1478       */
1479 <    final boolean tryIncrementActiveCount() {
1480 <        int c;
1481 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
1482 <                                        c = runState, c + ONE_ACTIVE);
1479 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1480 >        WorkQueue w = null;
1481 >        if (wt != null && (w = wt.workQueue) != null) {
1482 >            w.runState = -1;                // ensure runState is set
1483 >            long steals = w.totalSteals + w.nsteals, sc;
1484 >            do {} while(!U.compareAndSwapLong(this, STEALCOUNT,
1485 >                                              sc = stealCount, sc + steals));
1486 >            int idx = w.poolIndex;
1487 >            while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1488 >                tryAwaitMainLock();
1489 >            try {
1490 >                WorkQueue[] ws = workQueues;
1491 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1492 >                    ws[idx] = null;
1493 >            } finally {
1494 >                if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1495 >                    mainLock = 0;
1496 >                    synchronized (this) { notifyAll(); };
1497 >                }
1498 >            }
1499 >        }
1500 >
1501 >        long c;                             // adjust ctl counts
1502 >        do {} while (!U.compareAndSwapLong
1503 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1504 >                                           ((c - TC_UNIT) & TC_MASK) |
1505 >                                           (c & ~(AC_MASK|TC_MASK)))));
1506 >
1507 >        if (!tryTerminate(false, false) && w != null) {
1508 >            w.cancelAll();                  // cancel remaining tasks
1509 >            if (w.array != null)            // suppress signal if never ran
1510 >                signalWork();               // wake up or create replacement
1511 >            if (ex == null)                 // help clean refs on way out
1512 >                ForkJoinTask.helpExpungeStaleExceptions();
1513 >        }
1514 >
1515 >        if (ex != null)                     // rethrow
1516 >            U.throwException(ex);
1517 >    }
1518 >
1519 >    // Submissions
1520 >
1521 >    /**
1522 >     * Unless shutting down, adds the given task to a submission queue
1523 >     * at submitter's current queue index (modulo submission
1524 >     * range). If no queue exists at the index, one is created.  If
1525 >     * the queue is busy, another index is randomly chosen. The
1526 >     * submitMask bounds the effective number of queues to the
1527 >     * (nearest power of two for) parallelism level.
1528 >     *
1529 >     * @param task the task. Caller must ensure non-null.
1530 >     */
1531 >    private void doSubmit(ForkJoinTask<?> task) {
1532 >        Submitter s = submitters.get();
1533 >        for (int r = s.seed, m = submitMask;;) {
1534 >            WorkQueue[] ws; WorkQueue q;
1535 >            int k = r & m & SQMASK;          // use only even indices
1536 >            if (runState < 0)
1537 >                throw new RejectedExecutionException(); // shutting down
1538 >            else if ((ws = workQueues) == null || ws.length <= k) {
1539 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1540 >                    tryAwaitMainLock();
1541 >                try {
1542 >                    if (workQueues == null)
1543 >                        workQueues = new WorkQueue[submitMask + 1];
1544 >                } finally {
1545 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1546 >                        mainLock = 0;
1547 >                        synchronized (this) { notifyAll(); };
1548 >                    }
1549 >                }
1550 >            }
1551 >            else if ((q = ws[k]) == null) {  // create new queue
1552 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1553 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1554 >                    tryAwaitMainLock();
1555 >                try {
1556 >                    int rs = runState;       // to update seq
1557 >                    if (ws == workQueues && ws[k] == null) {
1558 >                        ws[k] = nq;
1559 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1560 >                    }
1561 >                } finally {
1562 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1563 >                        mainLock = 0;
1564 >                        synchronized (this) { notifyAll(); };
1565 >                    }
1566 >                }
1567 >            }
1568 >            else if (q.trySharedPush(task)) {
1569 >                signalWork();
1570 >                return;
1571 >            }
1572 >            else if (m > 1) {                // move to a different index
1573 >                r ^= r << 13;                // same xorshift as WorkQueues
1574 >                r ^= r >>> 17;
1575 >                s.seed = r ^= r << 5;
1576 >            }
1577 >            else
1578 >                Thread.yield();              // yield if no alternatives
1579 >        }
1580      }
1581  
1582      /**
1583 <     * Tries decrementing active count; fails on contention.
636 <     * Called when workers cannot find tasks to run.
1583 >     * Submits the given (non-null) task to the common pool, if possible.
1584       */
1585 <    final boolean tryDecrementActiveCount() {
1586 <        int c;
1587 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
1588 <                                        c = runState, c - ONE_ACTIVE);
1585 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1586 >        ForkJoinPool p;
1587 >        if ((p = commonPool) == null)
1588 >            throw new RejectedExecutionException("Common Pool Unavailable");
1589 >        p.doSubmit(task);
1590      }
1591  
1592      /**
1593 <     * Advances to at least the given level. Returns true if not
1594 <     * already in at least the given level.
1593 >     * Returns true if caller is (or may be) submitter to the common
1594 >     * pool, and not all workers are active, and there appear to be
1595 >     * tasks in the associated submission queue.
1596       */
1597 <    private boolean advanceRunLevel(int level) {
1598 <        for (;;) {
1599 <            int s = runState;
1600 <            if ((s & level) != 0)
1601 <                return false;
1602 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1603 <                return true;
1604 <        }
1597 >    static boolean canHelpCommonPool() {
1598 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1599 >        int k = submitters.get().seed & SQMASK;
1600 >        return ((p = commonPool) != null &&
1601 >                (int)(p.ctl >> AC_SHIFT) < 0 &&
1602 >                (ws = p.workQueues) != null &&
1603 >                ws.length > (k &= p.submitMask) &&
1604 >                (q = ws[k]) != null &&
1605 >                q.top - q.base > 0);
1606      }
1607  
658    // workers array maintenance
659
1608      /**
1609 <     * Records and returns a workers array index for new worker.
1609 >     * Returns true if the given task was submitted to common pool
1610 >     * and has not yet commenced execution, and is available for
1611 >     * removal according to execution policies; if so removing the
1612 >     * submission from the pool.
1613 >     *
1614 >     * @param task the task
1615 >     * @return true if successful
1616       */
1617 <    private int recordWorker(ForkJoinWorkerThread w) {
1618 <        // Try using slot totalCount-1. If not available, scan and/or resize
1619 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1620 <        final ReentrantLock lock = this.workerLock;
1621 <        lock.lock();
1622 <        try {
1623 <            ForkJoinWorkerThread[] ws = workers;
1624 <            int n = ws.length;
1625 <            if (k < 0 || k >= n || ws[k] != null) {
1626 <                for (k = 0; k < n && ws[k] != null; ++k)
1627 <                    ;
1628 <                if (k == n)
1629 <                    ws = Arrays.copyOf(ws, n << 1);
1630 <            }
1631 <            ws[k] = w;
1632 <            workers = ws; // volatile array write ensures slot visibility
679 <        } finally {
680 <            lock.unlock();
681 <        }
682 <        return k;
1617 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1618 >        // Peek, looking for task and eligibility before
1619 >        // using trySharedUnpush to actually take it under lock
1620 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1621 >        ForkJoinTask<?>[] a; int s;
1622 >        int k = submitters.get().seed & SQMASK;
1623 >        return ((p = commonPool) != null &&
1624 >                (int)(p.ctl >> AC_SHIFT) < 0 &&
1625 >                (ws = p.workQueues) != null &&
1626 >                ws.length > (k &= p.submitMask) &&
1627 >                (q = ws[k]) != null &&
1628 >                (a = q.array) != null &&
1629 >                (s = q.top - 1) - q.base >= 0 &&
1630 >                s >= 0 && s < a.length &&
1631 >                a[s] == task &&
1632 >                q.trySharedUnpush(task));
1633      }
1634  
1635      /**
1636 <     * Nulls out record of worker in workers array
1636 >     * Tries to pop a task from common pool with given root
1637       */
1638 <    private void forgetWorker(ForkJoinWorkerThread w) {
1639 <        int idx = w.poolIndex;
1640 <        // Locking helps method recordWorker avoid unecessary expansion
1641 <        final ReentrantLock lock = this.workerLock;
1642 <        lock.lock();
1643 <        try {
1644 <            ForkJoinWorkerThread[] ws = workers;
1645 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1646 <                ws[idx] = null;
1647 <        } finally {
1648 <            lock.unlock();
1649 <        }
1638 >    static ForkJoinTask<?> popCCFromCommonPool(CountedCompleter<?> root) {
1639 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
1640 >        ForkJoinTask<?> t;
1641 >        int k = submitters.get().seed & SQMASK;
1642 >        if (root != null &&
1643 >            (p = commonPool) != null &&
1644 >            (int)(p.ctl >> AC_SHIFT) < 0 &&
1645 >            (ws = p.workQueues) != null &&
1646 >            ws.length > (k &= p.submitMask) &&
1647 >            (q = ws[k]) != null && q.top - q.base > 0 &&
1648 >            root.status < 0 &&
1649 >            (t = q.sharedPopCC(root)) != null)
1650 >            return t;
1651 >        return null;
1652      }
1653  
1654 <    // adding and removing workers
1654 >
1655 >    // Maintaining ctl counts
1656  
1657      /**
1658 <     * Tries to create and add new worker. Assumes that worker counts
706 <     * are already updated to accommodate the worker, so adjusts on
707 <     * failure.
1658 >     * Increments active count; mainly called upon return from blocking.
1659       */
1660 <    private void addWorker() {
1661 <        ForkJoinWorkerThread w = null;
1662 <        try {
712 <            w = factory.newThread(this);
713 <        } finally { // Adjust on either null or exceptional factory return
714 <            if (w == null) {
715 <                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
716 <                tryTerminate(false); // in case of failure during shutdown
717 <            }
718 <        }
719 <        if (w != null)
720 <            w.start(recordWorker(w), ueh);
1660 >    final void incrementActiveCount() {
1661 >        long c;
1662 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1663      }
1664  
1665      /**
1666 <     * Final callback from terminating worker.  Removes record of
725 <     * worker from array, and adjusts counts. If pool is shutting
726 <     * down, tries to complete terminatation.
727 <     *
728 <     * @param w the worker
1666 >     * Tries to create one or activate one or more workers if too few are active.
1667       */
1668 <    final void workerTerminated(ForkJoinWorkerThread w) {
1669 <        forgetWorker(w);
1670 <        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
1671 <        while (w.stealCount != 0) // collect final count
1672 <            tryAccumulateStealCount(w);
1673 <        tryTerminate(false);
1674 <    }
1675 <
1676 <    // Waiting for and signalling events
1677 <
1678 <    /**
1679 <     * Releases workers blocked on a count not equal to current count.
1680 <     * Normally called after precheck that eventWaiters isn't zero to
1681 <     * avoid wasted array checks.
1682 <     *
1683 <     * @param signalling true if caller is a signalling worker so can
1684 <     * exit upon (conservatively) detected contention by other threads
1685 <     * who will continue to release
1686 <     */
1687 <    private void releaseEventWaiters(boolean signalling) {
1688 <        ForkJoinWorkerThread[] ws = workers;
1689 <        int n = ws.length;
1690 <        long h; // head of stack
1691 <        ForkJoinWorkerThread w; int id, ec;
1692 <        while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
1693 <               (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
1694 <               id < n && (w = ws[id]) != null) {
1695 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
758 <                                          h, h = w.nextWaiter))
759 <                LockSupport.unpark(w);
760 <            if (signalling && (eventCount != ec || eventWaiters != h))
1668 >    final void signalWork() {
1669 >        long c; int u;
1670 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1671 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1672 >            if ((e = (int)c) > 0) {                     // at least one waiting
1673 >                if (ws != null && (i = e & SMASK) < ws.length &&
1674 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1675 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1676 >                               ((long)(u + UAC_UNIT) << 32));
1677 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1678 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1679 >                        if ((p = w.parker) != null)
1680 >                            U.unpark(p);                // activate and release
1681 >                        break;
1682 >                    }
1683 >                }
1684 >                else
1685 >                    break;
1686 >            }
1687 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1688 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1689 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1690 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1691 >                    addWorker();
1692 >                    break;
1693 >                }
1694 >            }
1695 >            else
1696                  break;
1697          }
1698      }
1699  
1700 +    // Scanning for tasks
1701 +
1702      /**
1703 <     * Tries to advance eventCount and releases waiters. Called only
767 <     * from workers.
1703 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1704       */
1705 <    final void signalWork() {
1706 <        int c; // try to increment event count -- CAS failure OK
1707 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1708 <        if (eventWaiters != 0L)
1709 <            releaseEventWaiters(true);
1710 <    }
1705 >    final void runWorker(WorkQueue w) {
1706 >        w.growArray(false);         // initialize queue array in this thread
1707 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1708 >    }
1709 >
1710 >    /**
1711 >     * Scans for and, if found, returns one task, else possibly
1712 >     * inactivates the worker. This method operates on single reads of
1713 >     * volatile state and is designed to be re-invoked continuously,
1714 >     * in part because it returns upon detecting inconsistencies,
1715 >     * contention, or state changes that indicate possible success on
1716 >     * re-invocation.
1717 >     *
1718 >     * The scan searches for tasks across a random permutation of
1719 >     * queues (starting at a random index and stepping by a random
1720 >     * relative prime, checking each at least once).  The scan
1721 >     * terminates upon either finding a non-empty queue, or completing
1722 >     * the sweep. If the worker is not inactivated, it takes and
1723 >     * returns a task from this queue.  On failure to find a task, we
1724 >     * take one of the following actions, after which the caller will
1725 >     * retry calling this method unless terminated.
1726 >     *
1727 >     * * If pool is terminating, terminate the worker.
1728 >     *
1729 >     * * If not a complete sweep, try to release a waiting worker.  If
1730 >     * the scan terminated because the worker is inactivated, then the
1731 >     * released worker will often be the calling worker, and it can
1732 >     * succeed obtaining a task on the next call. Or maybe it is
1733 >     * another worker, but with same net effect. Releasing in other
1734 >     * cases as well ensures that we have enough workers running.
1735 >     *
1736 >     * * If not already enqueued, try to inactivate and enqueue the
1737 >     * worker on wait queue. Or, if inactivating has caused the pool
1738 >     * to be quiescent, relay to idleAwaitWork to check for
1739 >     * termination and possibly shrink pool.
1740 >     *
1741 >     * * If already inactive, and the caller has run a task since the
1742 >     * last empty scan, return (to allow rescan) unless others are
1743 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1744 >     * scan to ensure eventual inactivation and blocking.
1745 >     *
1746 >     * * If already enqueued and none of the above apply, park
1747 >     * awaiting signal,
1748 >     *
1749 >     * @param w the worker (via its WorkQueue)
1750 >     * @return a task or null if none found
1751 >     */
1752 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1753 >        WorkQueue[] ws;                       // first update random seed
1754 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1755 >        int rs = runState, m;                 // volatile read order matters
1756 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1757 >            int ec = w.eventCount;            // ec is negative if inactive
1758 >            int step = (r >>> 16) | 1;        // relative prime
1759 >            for (int j = (m + 1) << 2; ; r += step) {
1760 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1761 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1762 >                    (a = q.array) != null) {  // probably nonempty
1763 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1764 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1765 >                    if (q.base == b && ec >= 0 && t != null &&
1766 >                        U.compareAndSwapObject(a, i, t, null)) {
1767 >                        if (q.top - (q.base = b + 1) > 0)
1768 >                            signalWork();    // help pushes signal
1769 >                        return t;
1770 >                    }
1771 >                    else if (ec < 0 || j <= m) {
1772 >                        rs = 0;               // mark scan as imcomplete
1773 >                        break;                // caller can retry after release
1774 >                    }
1775 >                }
1776 >                if (--j < 0)
1777 >                    break;
1778 >            }
1779  
1780 <    /**
1781 <     * Blocks worker until terminating or event count
1782 <     * advances from last value held by worker
1783 <     *
1784 <     * @param w the calling worker thread
1785 <     */
1786 <    private void eventSync(ForkJoinWorkerThread w) {
1787 <        int wec = w.lastEventCount;
1788 <        long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
1789 <        long h;
1790 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1791 <               ((h = eventWaiters) == 0L ||
1792 <                (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
1793 <               eventCount == wec) {
1794 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1795 <                                          w.nextWaiter = h, nh)) {
1796 <                while (runState < TERMINATING && eventCount == wec) {
1797 <                    if (!tryAccumulateStealCount(w))  // transfer while idle
1798 <                        continue;
1799 <                    Thread.interrupted();             // clear/ignore interrupt
1800 <                    if (eventCount != wec)
1801 <                        break;
1802 <                    LockSupport.park(w);
1780 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1781 >            if (e < 0)                        // decode ctl on empty scan
1782 >                w.runState = -1;              // pool is terminating
1783 >            else if (rs == 0 || rs != runState) { // incomplete scan
1784 >                WorkQueue v; Thread p;        // try to release a waiter
1785 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1786 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1787 >                    long nc = ((long)(v.nextWait & E_MASK) |
1788 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1789 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1790 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1791 >                        if ((p = v.parker) != null)
1792 >                            U.unpark(p);
1793 >                    }
1794 >                }
1795 >            }
1796 >            else if (ec >= 0) {               // try to enqueue/inactivate
1797 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1798 >                w.nextWait = e;
1799 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1800 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1801 >                    w.eventCount = ec;        // unmark on CAS failure
1802 >                else {
1803 >                    if ((ns = w.nsteals) != 0) {
1804 >                        w.nsteals = 0;        // set rescans if ran task
1805 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1806 >                        w.totalSteals += ns;
1807 >                    }
1808 >                    if (a == 1 - parallelism) // quiescent
1809 >                        idleAwaitWork(w, nc, c);
1810 >                }
1811 >            }
1812 >            else if (w.eventCount < 0) {      // already queued
1813 >                int ac = a + parallelism;
1814 >                if ((nr = w.rescans) > 0)     // continue rescanning
1815 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1816 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1817 >                    Thread.interrupted();     // clear status
1818 >                    Thread wt = Thread.currentThread();
1819 >                    U.putObject(wt, PARKBLOCKER, this);
1820 >                    w.parker = wt;            // emulate LockSupport.park
1821 >                    if (w.eventCount < 0)     // recheck
1822 >                        U.park(false, 0L);
1823 >                    w.parker = null;
1824 >                    U.putObject(wt, PARKBLOCKER, null);
1825                  }
800                break;
1826              }
1827          }
1828 <        w.lastEventCount = eventCount;
1828 >        return null;
1829      }
1830  
806    // Maintaining spares
807
1831      /**
1832 <     * Pushes worker onto the spare stack
1833 <     */
1834 <    final void pushSpare(ForkJoinWorkerThread w) {
1835 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
1836 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1837 <                                               w.nextSpare = spareWaiters,ns));
1832 >     * If inactivating worker w has caused the pool to become
1833 >     * quiescent, checks for pool termination, and, so long as this is
1834 >     * not the only worker, waits for event for up to a given
1835 >     * duration.  On timeout, if ctl has not changed, terminates the
1836 >     * worker, which will in turn wake up another worker to possibly
1837 >     * repeat this process.
1838 >     *
1839 >     * @param w the calling worker
1840 >     * @param currentCtl the ctl value triggering possible quiescence
1841 >     * @param prevCtl the ctl value to restore if thread is terminated
1842 >     */
1843 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1844 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1845 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1846 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1847 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1848 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1849 >            Thread wt = Thread.currentThread();
1850 >            while (ctl == currentCtl) {
1851 >                Thread.interrupted();  // timed variant of version in scan()
1852 >                U.putObject(wt, PARKBLOCKER, this);
1853 >                w.parker = wt;
1854 >                if (ctl == currentCtl)
1855 >                    U.park(false, parkTime);
1856 >                w.parker = null;
1857 >                U.putObject(wt, PARKBLOCKER, null);
1858 >                if (ctl != currentCtl)
1859 >                    break;
1860 >                if (deadline - System.nanoTime() <= 0L &&
1861 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1862 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1863 >                    w.runState = -1;   // shrink
1864 >                    break;
1865 >                }
1866 >            }
1867 >        }
1868      }
1869  
1870      /**
1871 <     * Tries (once) to resume a spare if running count is less than
1872 <     * target parallelism. Fails on contention or stale workers.
1873 <     */
1874 <    private void tryResumeSpare() {
1875 <        int sw, id;
1876 <        ForkJoinWorkerThread w;
1877 <        ForkJoinWorkerThread[] ws;
1878 <        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
1879 <            id < (ws = workers).length && (w = ws[id]) != null &&
1880 <            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
1881 <            eventWaiters == 0L &&
1882 <            spareWaiters == sw &&
1883 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1884 <                                     sw, w.nextSpare) &&
1885 <            w.tryUnsuspend()) {
1886 <            int c; // try increment; if contended, finish after unpark
1887 <            boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1888 <                                                   c = workerCounts,
1889 <                                                   c + ONE_RUNNING);
1890 <            LockSupport.unpark(w);
1891 <            if (!inc) {
1892 <                do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1893 <                                                      c = workerCounts,
1894 <                                                      c + ONE_RUNNING));
1871 >     * Tries to locate and execute tasks for a stealer of the given
1872 >     * task, or in turn one of its stealers, Traces currentSteal ->
1873 >     * currentJoin links looking for a thread working on a descendant
1874 >     * of the given task and with a non-empty queue to steal back and
1875 >     * execute tasks from. The first call to this method upon a
1876 >     * waiting join will often entail scanning/search, (which is OK
1877 >     * because the joiner has nothing better to do), but this method
1878 >     * leaves hints in workers to speed up subsequent calls. The
1879 >     * implementation is very branchy to cope with potential
1880 >     * inconsistencies or loops encountering chains that are stale,
1881 >     * unknown, or so long that they are likely cyclic.
1882 >     *
1883 >     * @param joiner the joining worker
1884 >     * @param task the task to join
1885 >     * @return 0 if no progress can be made, negative if task
1886 >     * known complete, else positive
1887 >     */
1888 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1889 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1890 >        if (joiner != null && task != null) {       // hoist null checks
1891 >            restart: for (;;) {
1892 >                ForkJoinTask<?> subtask = task;     // current target
1893 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1894 >                    WorkQueue[] ws; int m, s, h;
1895 >                    if ((s = task.status) < 0) {
1896 >                        stat = s;
1897 >                        break restart;
1898 >                    }
1899 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1900 >                        break restart;              // shutting down
1901 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1902 >                        v.currentSteal != subtask) {
1903 >                        for (int origin = h;;) {    // find stealer
1904 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1905 >                                (subtask.status < 0 || j.currentJoin != subtask))
1906 >                                continue restart;   // occasional staleness check
1907 >                            if ((v = ws[h]) != null &&
1908 >                                v.currentSteal == subtask) {
1909 >                                j.stealHint = h;    // save hint
1910 >                                break;
1911 >                            }
1912 >                            if (h == origin)
1913 >                                break restart;      // cannot find stealer
1914 >                        }
1915 >                    }
1916 >                    for (;;) { // help stealer or descend to its stealer
1917 >                        ForkJoinTask[] a;  int b;
1918 >                        if (subtask.status < 0)     // surround probes with
1919 >                            continue restart;       //   consistency checks
1920 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1921 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1922 >                            ForkJoinTask<?> t =
1923 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1924 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1925 >                                v.currentSteal != subtask)
1926 >                                continue restart;   // stale
1927 >                            stat = 1;               // apparent progress
1928 >                            if (t != null && v.base == b &&
1929 >                                U.compareAndSwapObject(a, i, t, null)) {
1930 >                                v.base = b + 1;     // help stealer
1931 >                                joiner.runSubtask(t);
1932 >                            }
1933 >                            else if (v.base == b && ++steps == MAX_HELP)
1934 >                                break restart;      // v apparently stalled
1935 >                        }
1936 >                        else {                      // empty -- try to descend
1937 >                            ForkJoinTask<?> next = v.currentJoin;
1938 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1939 >                                v.currentSteal != subtask)
1940 >                                continue restart;   // stale
1941 >                            else if (next == null || ++steps == MAX_HELP)
1942 >                                break restart;      // dead-end or maybe cyclic
1943 >                            else {
1944 >                                subtask = next;
1945 >                                j = v;
1946 >                                break;
1947 >                            }
1948 >                        }
1949 >                    }
1950 >                }
1951              }
1952          }
1953 +        return stat;
1954      }
1955  
1956      /**
1957 <     * Callback from oldest spare occasionally waking up.  Tries
848 <     * (once) to shutdown a spare if more than 25% spare overage, or
849 <     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
850 <     * least #parallelism running threads. Note that we don't need CAS
851 <     * or locks here because the method is called only from the oldest
852 <     * suspended spare occasionally waking (and even misfires are OK).
1957 >     * If task is at base of some steal queue, steals and executes it.
1958       *
1959 <     * @param now the wake up nanoTime of caller
1960 <     */
856 <    final void tryTrimSpare(long now) {
857 <        long lastTrim = trimTime;
858 <        trimTime = now;
859 <        helpMaintainParallelism(); // first, help wake up any needed spares
860 <        int sw, id;
861 <        ForkJoinWorkerThread w;
862 <        ForkJoinWorkerThread[] ws;
863 <        int pc = parallelism;
864 <        int wc = workerCounts;
865 <        if ((wc & RUNNING_COUNT_MASK) >= pc &&
866 <            (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
867 <             now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
868 <            (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
869 <            id < (ws = workers).length && (w = ws[id]) != null &&
870 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
871 <                                     sw, w.nextSpare))
872 <            w.shutdown(false);
873 <    }
874 <
875 <    /**
876 <     * Does at most one of:
877 <     *
878 <     * 1. Help wake up existing workers waiting for work via
879 <     *    releaseEventWaiters. (If any exist, then it probably doesn't
880 <     *    matter right now if under target parallelism level.)
881 <     *
882 <     * 2. If below parallelism level and a spare exists, try (once)
883 <     *    to resume it via tryResumeSpare.
884 <     *
885 <     * 3. If neither of the above, tries (once) to add a new
886 <     *    worker if either there are not enough total, or if all
887 <     *    existing workers are busy, there are either no running
888 <     *    workers or the deficit is at least twice the surplus.
889 <     */
890 <    private void helpMaintainParallelism() {
891 <        // uglified to work better when not compiled
892 <        int pc, wc, rc, tc, rs; long h;
893 <        if ((h = eventWaiters) != 0L) {
894 <            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
895 <                releaseEventWaiters(false); // avoid useless call
896 <        }
897 <        else if ((pc = parallelism) >
898 <                 (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
899 <            if (spareWaiters != 0)
900 <                tryResumeSpare();
901 <            else if ((rs = runState) < TERMINATING &&
902 <                     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
903 <                      (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
904 <                       (rc == 0 ||                       // must add
905 <                        rc < pc - ((tc - pc) << 1)) &&   // within slack
906 <                       tc < MAX_WORKERS && runState == rs)) && // recheck busy
907 <                     workerCounts == wc &&
908 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
909 <                                              wc + (ONE_RUNNING|ONE_TOTAL)))
910 <                addWorker();
911 <        }
912 <    }
913 <
914 <    /**
915 <     * Callback from workers invoked upon each top-level action (i.e.,
916 <     * stealing a task or taking a submission and running
917 <     * it). Performs one or more of the following:
918 <     *
919 <     * 1. If the worker cannot find work (misses > 0), updates its
920 <     *    active status to inactive and updates activeCount unless
921 <     *    this is the first miss and there is contention, in which
922 <     *    case it may try again (either in this or a subsequent
923 <     *    call).
924 <     *
925 <     * 2. If there are at least 2 misses, awaits the next task event
926 <     *    via eventSync
927 <     *
928 <     * 3. If there are too many running threads, suspends this worker
929 <     *    (first forcing inactivation if necessary).  If it is not
930 <     *    needed, it may be killed while suspended via
931 <     *    tryTrimSpare. Otherwise, upon resume it rechecks to make
932 <     *    sure that it is still needed.
933 <     *
934 <     * 4. Helps release and/or reactivate other workers via
935 <     *    helpMaintainParallelism
936 <     *
937 <     * @param w the worker
938 <     * @param misses the number of scans by caller failing to find work
939 <     * (saturating at 2 just to avoid wraparound)
1959 >     * @param joiner the joining worker
1960 >     * @param task the task
1961       */
1962 <    final void preStep(ForkJoinWorkerThread w, int misses) {
1963 <        boolean active = w.active;
1964 <        int pc = parallelism;
1965 <        for (;;) {
1966 <            int wc = workerCounts;
1967 <            int rc = wc & RUNNING_COUNT_MASK;
1968 <            if (active && (misses > 0 || rc > pc)) {
948 <                int rs;                      // try inactivate
949 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
950 <                                             rs = runState, rs - ONE_ACTIVE))
951 <                    active = w.active = false;
952 <                else if (misses > 1 || rc > pc ||
953 <                         (rs & ACTIVE_COUNT_MASK) >= pc)
954 <                    continue;                // force inactivate
955 <            }
956 <            if (misses > 1) {
957 <                misses = 0;                  // don't re-sync
958 <                eventSync(w);                // continue loop to recheck rc
959 <            }
960 <            else if (rc > pc) {
961 <                if (workerCounts == wc &&   // try to suspend as spare
962 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
963 <                                             wc, wc - ONE_RUNNING) &&
964 <                    !w.suspendAsSpare())    // false if killed
1962 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1963 >        WorkQueue[] ws;
1964 >        if ((ws = workQueues) != null) {
1965 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1966 >                WorkQueue q = ws[j];
1967 >                if (q != null && q.pollFor(task)) {
1968 >                    joiner.runSubtask(task);
1969                      break;
1970 <            }
967 <            else {
968 <                if (rc < pc || eventWaiters != 0L)
969 <                    helpMaintainParallelism();
970 <                break;
1970 >                }
1971              }
1972          }
1973      }
1974  
1975      /**
1976 <     * Helps and/or blocks awaiting join of the given task.
1977 <     * Alternates between helpJoinTask() and helpMaintainParallelism()
1978 <     * as many times as there is a deficit in running count (or longer
1979 <     * if running count would become zero), then blocks if task still
1980 <     * not done.
1981 <     *
1982 <     * @param joinMe the task to join
1983 <     */
1984 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1985 <        int threshold = parallelism;         // descend blocking thresholds
1986 <        while (joinMe.status >= 0) {
1987 <            boolean block; int wc;
1988 <            worker.helpJoinTask(joinMe);
1989 <            if (joinMe.status < 0)
1990 <                break;
1991 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1992 <                if (threshold > 0)
1993 <                    --threshold;
1994 <                else
1995 <                    advanceEventCount(); // force release
1996 <                block = false;
1976 >     * Tries to decrement active count (sometimes implicitly) and
1977 >     * possibly release or create a compensating worker in preparation
1978 >     * for blocking. Fails on contention or termination. Otherwise,
1979 >     * adds a new thread if no idle workers are available and either
1980 >     * pool would become completely starved or: (at least half
1981 >     * starved, and fewer than 50% spares exist, and there is at least
1982 >     * one task apparently available). Even though the availability
1983 >     * check requires a full scan, it is worthwhile in reducing false
1984 >     * alarms.
1985 >     *
1986 >     * @param task if non-null, a task being waited for
1987 >     * @param blocker if non-null, a blocker being waited for
1988 >     * @return true if the caller can block, else should recheck and retry
1989 >     */
1990 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1991 >        int pc = parallelism, e;
1992 >        long c = ctl;
1993 >        WorkQueue[] ws = workQueues;
1994 >        if ((e = (int)c) >= 0 && ws != null) {
1995 >            int u, a, ac, hc;
1996 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1997 >            boolean replace = false;
1998 >            if ((a = u >> UAC_SHIFT) <= 0) {
1999 >                if ((ac = a + pc) <= 1)
2000 >                    replace = true;
2001 >                else if ((e > 0 || (task != null &&
2002 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
2003 >                    WorkQueue w;
2004 >                    for (int j = 0; j < ws.length; ++j) {
2005 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
2006 >                            replace = true;
2007 >                            break;   // in compensation range and tasks available
2008 >                        }
2009 >                    }
2010 >                }
2011              }
2012 <            else
2013 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
2014 <                                                 wc, wc - ONE_RUNNING);
2015 <            helpMaintainParallelism();
2016 <            if (block) {
2017 <                int c;
2018 <                joinMe.internalAwaitDone();
2019 <                do {} while (!UNSAFE.compareAndSwapInt
2020 <                             (this, workerCountsOffset,
2021 <                              c = workerCounts, c + ONE_RUNNING));
2022 <                break;
2012 >            if ((task == null || task.status >= 0) && // recheck need to block
2013 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
2014 >                if (!replace) {          // no compensation
2015 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2016 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
2017 >                        return true;
2018 >                }
2019 >                else if (e != 0) {       // release an idle worker
2020 >                    WorkQueue w; Thread p; int i;
2021 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
2022 >                        long nc = ((long)(w.nextWait & E_MASK) |
2023 >                                   (c & (AC_MASK|TC_MASK)));
2024 >                        if (w.eventCount == (e | INT_SIGN) &&
2025 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
2026 >                            w.eventCount = (e + E_SEQ) & E_MASK;
2027 >                            if ((p = w.parker) != null)
2028 >                                U.unpark(p);
2029 >                            return true;
2030 >                        }
2031 >                    }
2032 >                }
2033 >                else if (tc < MAX_CAP) { // create replacement
2034 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2035 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2036 >                        addWorker();
2037 >                        return true;
2038 >                    }
2039 >                }
2040              }
2041          }
2042 +        return false;
2043      }
2044  
2045      /**
2046 <     * Same idea as awaitJoin, but no helping
2046 >     * Helps and/or blocks until the given task is done.
2047 >     *
2048 >     * @param joiner the joining worker
2049 >     * @param task the task
2050 >     * @return task status on exit
2051       */
2052 <    final void awaitBlocker(ManagedBlocker blocker)
2053 <        throws InterruptedException {
2054 <        int threshold = parallelism;
2055 <        while (!blocker.isReleasable()) {
2056 <            boolean block; int wc;
2057 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
2058 <                if (threshold > 0)
2059 <                    --threshold;
2060 <                else
2061 <                    advanceEventCount();
2062 <                block = false;
2063 <            }
2064 <            else
2065 <                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
2066 <                                                 wc, wc - ONE_RUNNING);
2067 <            helpMaintainParallelism();
2068 <            if (block) {
2069 <                try {
2070 <                    do {} while (!blocker.isReleasable() && !blocker.block());
2071 <                } finally {
2072 <                    int c;
2073 <                    do {} while (!UNSAFE.compareAndSwapInt
2074 <                                 (this, workerCountsOffset,
2075 <                                  c = workerCounts, c + ONE_RUNNING));
2052 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2053 >        int s;
2054 >        if ((s = task.status) >= 0) {
2055 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2056 >            joiner.currentJoin = task;
2057 >            long startTime = 0L;
2058 >            for (int k = 0;;) {
2059 >                if ((s = (joiner.isEmpty() ?           // try to help
2060 >                          tryHelpStealer(joiner, task) :
2061 >                          joiner.tryRemoveAndExec(task))) == 0 &&
2062 >                    (s = task.status) >= 0) {
2063 >                    if (k == 0) {
2064 >                        startTime = System.nanoTime();
2065 >                        tryPollForAndExec(joiner, task); // check uncommon case
2066 >                    }
2067 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
2068 >                             System.nanoTime() - startTime >=
2069 >                             COMPENSATION_DELAY &&
2070 >                             tryCompensate(task, null)) {
2071 >                        if (task.trySetSignal()) {
2072 >                            synchronized (task) {
2073 >                                if (task.status >= 0) {
2074 >                                    try {                // see ForkJoinTask
2075 >                                        task.wait();     //  for explanation
2076 >                                    } catch (InterruptedException ie) {
2077 >                                    }
2078 >                                }
2079 >                                else
2080 >                                    task.notifyAll();
2081 >                            }
2082 >                        }
2083 >                        long c;                          // re-activate
2084 >                        do {} while (!U.compareAndSwapLong
2085 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2086 >                    }
2087                  }
2088 <                break;
2088 >                if (s < 0 || (s = task.status) < 0) {
2089 >                    joiner.currentJoin = prevJoin;
2090 >                    break;
2091 >                }
2092 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
2093 >                    Thread.yield();                     // for politeness
2094              }
2095          }
2096 +        return s;
2097      }
2098  
2099      /**
2100 <     * Possibly initiates and/or completes termination.
2100 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2101 >     * to help join only while there is continuous progress. (Caller
2102 >     * will then enter a timed wait.)
2103       *
2104 <     * @param now if true, unconditionally terminate, else only
2105 <     * if shutdown and empty queue and no active workers
2106 <     * @return true if now terminating or terminated
2104 >     * @param joiner the joining worker
2105 >     * @param task the task
2106 >     * @return task status on exit
2107       */
2108 <    private boolean tryTerminate(boolean now) {
2109 <        if (now)
2110 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
2111 <        else if (runState < SHUTDOWN ||
2112 <                 !submissionQueue.isEmpty() ||
2113 <                 (runState & ACTIVE_COUNT_MASK) != 0)
2114 <            return false;
2115 <
1061 <        if (advanceRunLevel(TERMINATING))
1062 <            startTerminating();
1063 <
1064 <        // Finish now if all threads terminated; else in some subsequent call
1065 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1066 <            advanceRunLevel(TERMINATED);
1067 <            termination.arrive();
1068 <        }
1069 <        return true;
2108 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2109 >        int s;
2110 >        while ((s = task.status) >= 0 &&
2111 >               (joiner.isEmpty() ?
2112 >                tryHelpStealer(joiner, task) :
2113 >                joiner.tryRemoveAndExec(task)) != 0)
2114 >            ;
2115 >        return s;
2116      }
2117  
2118      /**
2119 <     * Actions on transition to TERMINATING
2120 <     *
2121 <     * Runs up to four passes through workers: (0) shutting down each
2122 <     * quietly (without waking up if parked) to quickly spread
2123 <     * notifications without unnecessary bouncing around event queues
2124 <     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
2125 <     * races with interrupted workers
2126 <     */
2127 <    private void startTerminating() {
2128 <        cancelSubmissions();
2129 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
2130 <            advanceEventCount();
2131 <            eventWaiters = 0L; // clobber lists
2132 <            spareWaiters = 0;
2133 <            ForkJoinWorkerThread[] ws = workers;
2134 <            int n = ws.length;
2135 <            for (int i = 0; i < n; ++i) {
2136 <                ForkJoinWorkerThread w = ws[i];
2137 <                if (w != null) {
2138 <                    w.shutdown(true);
2139 <                    if (passes > 0 && !w.isTerminated()) {
1094 <                        w.cancelTasks();
1095 <                        LockSupport.unpark(w);
1096 <                        if (passes > 1) {
1097 <                            try {
1098 <                                w.interrupt();
1099 <                            } catch (SecurityException ignore) {
1100 <                            }
1101 <                        }
1102 <                    }
2119 >     * Returns a (probably) non-empty steal queue, if one is found
2120 >     * during a random, then cyclic scan, else null.  This method must
2121 >     * be retried by caller if, by the time it tries to use the queue,
2122 >     * it is empty.
2123 >     */
2124 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2125 >        // Similar to loop in scan(), but ignoring submissions
2126 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2127 >        int step = (r >>> 16) | 1;
2128 >        for (WorkQueue[] ws;;) {
2129 >            int rs = runState, m;
2130 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2131 >                return null;
2132 >            for (int j = (m + 1) << 2; ; r += step) {
2133 >                WorkQueue q = ws[((r << 1) | 1) & m];
2134 >                if (q != null && !q.isEmpty())
2135 >                    return q;
2136 >                else if (--j < 0) {
2137 >                    if (runState == rs)
2138 >                        return null;
2139 >                    break;
2140                  }
2141              }
2142          }
2143      }
2144  
2145      /**
2146 <     * Clear out and cancel submissions, ignoring exceptions
2147 <     */
2148 <    private void cancelSubmissions() {
2149 <        ForkJoinTask<?> task;
2150 <        while ((task = submissionQueue.poll()) != null) {
2151 <            try {
2152 <                task.cancel(false);
2153 <            } catch (Throwable ignore) {
2146 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2147 >     * active count ctl maintenance, but rather than blocking
2148 >     * when tasks cannot be found, we rescan until all others cannot
2149 >     * find tasks either.
2150 >     */
2151 >    final void helpQuiescePool(WorkQueue w) {
2152 >        for (boolean active = true;;) {
2153 >            ForkJoinTask<?> localTask; // exhaust local queue
2154 >            while ((localTask = w.nextLocalTask()) != null)
2155 >                localTask.doExec();
2156 >            WorkQueue q = findNonEmptyStealQueue(w);
2157 >            if (q != null) {
2158 >                ForkJoinTask<?> t; int b;
2159 >                if (!active) {      // re-establish active count
2160 >                    long c;
2161 >                    active = true;
2162 >                    do {} while (!U.compareAndSwapLong
2163 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2164 >                }
2165 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2166 >                    w.runSubtask(t);
2167 >            }
2168 >            else {
2169 >                long c;
2170 >                if (active) {       // decrement active count without queuing
2171 >                    active = false;
2172 >                    do {} while (!U.compareAndSwapLong
2173 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2174 >                }
2175 >                else
2176 >                    c = ctl;        // re-increment on exit
2177 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2178 >                    do {} while (!U.compareAndSwapLong
2179 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2180 >                    break;
2181 >                }
2182              }
2183          }
2184      }
2185  
1121    // misc support for ForkJoinWorkerThread
1122
2186      /**
2187 <     * Returns pool number
2187 >     * Restricted version of helpQuiescePool for non-FJ callers
2188       */
2189 <    final int getPoolNumber() {
2190 <        return poolNumber;
2189 >    static void externalHelpQuiescePool() {
2190 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, sq;
2191 >        ForkJoinTask<?>[] a; int b;
2192 >        ForkJoinTask<?> t = null;
2193 >        int k = submitters.get().seed & SQMASK;
2194 >        if ((p = commonPool) != null &&
2195 >            (int)(p.ctl >> AC_SHIFT) < 0 &&
2196 >            (ws = p.workQueues) != null &&
2197 >            ws.length > (k &= p.submitMask) &&
2198 >            (q = ws[k]) != null) {
2199 >            while (q.top - q.base > 0) {
2200 >                if ((t = q.sharedPop()) != null)
2201 >                    break;
2202 >            }
2203 >            if (t == null && (sq = p.findNonEmptyStealQueue(q)) != null &&
2204 >                (b = sq.base) - sq.top < 0)
2205 >                t = sq.pollAt(b);
2206 >            if (t != null)
2207 >                t.doExec();
2208 >        }
2209      }
2210  
2211      /**
2212 <     * Tries to accumulates steal count from a worker, clearing
1132 <     * the worker's value.
2212 >     * Gets and removes a local or stolen task for the given worker.
2213       *
2214 <     * @return true if worker steal count now zero
2214 >     * @return a task, if available
2215       */
2216 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
2217 <        int sc = w.stealCount;
2218 <        long c = stealCount;
2219 <        // CAS even if zero, for fence effects
2220 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
2221 <            if (sc != 0)
2222 <                w.stealCount = 0;
2223 <            return true;
2216 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2217 >        for (ForkJoinTask<?> t;;) {
2218 >            WorkQueue q; int b;
2219 >            if ((t = w.nextLocalTask()) != null)
2220 >                return t;
2221 >            if ((q = findNonEmptyStealQueue(w)) == null)
2222 >                return null;
2223 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2224 >                return t;
2225          }
1145        return sc == 0;
2226      }
2227  
2228      /**
2229       * Returns the approximate (non-atomic) number of idle threads per
2230 <     * active thread.
2230 >     * active thread to offset steal queue size for method
2231 >     * ForkJoinTask.getSurplusQueuedTaskCount().
2232       */
2233      final int idlePerActive() {
2234 <        int pc = parallelism; // use parallelism, not rc
2235 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2236 <        // Use exact results for small values, saturate past 4
2237 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2234 >        // Approximate at powers of two for small values, saturate past 4
2235 >        int p = parallelism;
2236 >        int a = p + (int)(ctl >> AC_SHIFT);
2237 >        return (a > (p >>>= 1) ? 0 :
2238 >                a > (p >>>= 1) ? 1 :
2239 >                a > (p >>>= 1) ? 2 :
2240 >                a > (p >>>= 1) ? 4 :
2241 >                8);
2242      }
2243  
2244 <    // Public and protected methods
2244 >    /**
2245 >     * Returns approximate submission queue length for the given caller
2246 >     */
2247 >    static int getEstimatedSubmitterQueueLength() {
2248 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2249 >        int k = submitters.get().seed & SQMASK;
2250 >        return ((p = commonPool) != null &&
2251 >                p.runState >= 0 &&
2252 >                (ws = p.workQueues) != null &&
2253 >                ws.length > (k &= p.submitMask) &&
2254 >                (q = ws[k]) != null) ?
2255 >            q.queueSize() : 0;
2256 >    }
2257 >
2258 >    //  Termination
2259 >
2260 >    /**
2261 >     * Possibly initiates and/or completes termination.  The caller
2262 >     * triggering termination runs three passes through workQueues:
2263 >     * (0) Setting termination status, followed by wakeups of queued
2264 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2265 >     * threads (likely in external tasks, but possibly also blocked in
2266 >     * joins).  Each pass repeats previous steps because of potential
2267 >     * lagging thread creation.
2268 >     *
2269 >     * @param now if true, unconditionally terminate, else only
2270 >     * if no work and no active workers
2271 >     * @param enable if true, enable shutdown when next possible
2272 >     * @return true if now terminating or terminated
2273 >     */
2274 >    private boolean tryTerminate(boolean now, boolean enable) {
2275 >        for (long c;;) {
2276 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2277 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2278 >                    synchronized(this) {
2279 >                        notifyAll();                // signal when 0 workers
2280 >                    }
2281 >                }
2282 >                return true;
2283 >            }
2284 >            if (runState >= 0) {                    // not yet enabled
2285 >                if (!enable)
2286 >                    return false;
2287 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2288 >                    tryAwaitMainLock();
2289 >                try {
2290 >                    runState |= SHUTDOWN;
2291 >                } finally {
2292 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2293 >                        mainLock = 0;
2294 >                        synchronized (this) { notifyAll(); };
2295 >                    }
2296 >                }
2297 >            }
2298 >            if (!now) {                             // check if idle & no tasks
2299 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2300 >                    hasQueuedSubmissions())
2301 >                    return false;
2302 >                // Check for unqueued inactive workers. One pass suffices.
2303 >                WorkQueue[] ws = workQueues; WorkQueue w;
2304 >                if (ws != null) {
2305 >                    for (int i = 1; i < ws.length; i += 2) {
2306 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2307 >                            return false;
2308 >                    }
2309 >                }
2310 >            }
2311 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2312 >                for (int pass = 0; pass < 3; ++pass) {
2313 >                    WorkQueue[] ws = workQueues;
2314 >                    if (ws != null) {
2315 >                        WorkQueue w;
2316 >                        int n = ws.length;
2317 >                        for (int i = 0; i < n; ++i) {
2318 >                            if ((w = ws[i]) != null) {
2319 >                                w.runState = -1;
2320 >                                if (pass > 0) {
2321 >                                    w.cancelAll();
2322 >                                    if (pass > 1)
2323 >                                        w.interruptOwner();
2324 >                                }
2325 >                            }
2326 >                        }
2327 >                        // Wake up workers parked on event queue
2328 >                        int i, e; long cc; Thread p;
2329 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2330 >                               (i = e & SMASK) < n &&
2331 >                               (w = ws[i]) != null) {
2332 >                            long nc = ((long)(w.nextWait & E_MASK) |
2333 >                                       ((cc + AC_UNIT) & AC_MASK) |
2334 >                                       (cc & (TC_MASK|STOP_BIT)));
2335 >                            if (w.eventCount == (e | INT_SIGN) &&
2336 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2337 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2338 >                                w.runState = -1;
2339 >                                if ((p = w.parker) != null)
2340 >                                    U.unpark(p);
2341 >                            }
2342 >                        }
2343 >                    }
2344 >                }
2345 >            }
2346 >        }
2347 >    }
2348 >
2349 >    // Exported methods
2350  
2351      // Constructors
2352  
# Line 1203 | Line 2393 | public class ForkJoinPool extends Abstra
2393       * use {@link #defaultForkJoinWorkerThreadFactory}.
2394       * @param handler the handler for internal worker threads that
2395       * terminate due to unrecoverable errors encountered while executing
2396 <     * tasks. For default value, use <code>null</code>.
2396 >     * tasks. For default value, use {@code null}.
2397       * @param asyncMode if true,
2398       * establishes local first-in-first-out scheduling mode for forked
2399       * tasks that are never joined. This mode may be more appropriate
2400       * than default locally stack-based mode in applications in which
2401       * worker threads only process event-style asynchronous tasks.
2402 <     * For default value, use <code>false</code>.
2402 >     * For default value, use {@code false}.
2403       * @throws IllegalArgumentException if parallelism less than or
2404       *         equal to zero, or greater than implementation limit
2405       * @throws NullPointerException if the factory is null
# Line 1225 | Line 2415 | public class ForkJoinPool extends Abstra
2415          checkPermission();
2416          if (factory == null)
2417              throw new NullPointerException();
2418 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
2418 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2419              throw new IllegalArgumentException();
2420          this.parallelism = parallelism;
2421          this.factory = factory;
2422          this.ueh = handler;
2423 <        this.locallyFifo = asyncMode;
2424 <        int arraySize = initialArraySizeFor(parallelism);
2425 <        this.workers = new ForkJoinWorkerThread[arraySize];
2426 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2427 <        this.workerLock = new ReentrantLock();
2428 <        this.termination = new Phaser(1);
2429 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2430 <        this.trimTime = System.nanoTime();
2423 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2424 >        long np = (long)(-parallelism); // offset ctl counts
2425 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2426 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2427 >        int n = parallelism - 1;
2428 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2429 >        this.submitMask = ((n + 1) << 1) - 1;
2430 >        int pn = poolNumberGenerator.incrementAndGet();
2431 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2432 >        sb.append(Integer.toString(pn));
2433 >        sb.append("-worker-");
2434 >        this.workerNamePrefix = sb.toString();
2435 >        this.runState = 1;              // set init flag
2436      }
2437  
2438      /**
2439 <     * Returns initial power of two size for workers array.
2440 <     * @param pc the initial parallelism level
2441 <     */
2442 <    private static int initialArraySizeFor(int pc) {
2443 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
2444 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
2445 <        size |= size >>> 1;
2446 <        size |= size >>> 2;
2447 <        size |= size >>> 4;
2448 <        size |= size >>> 8;
2449 <        return size + 1;
2439 >     * Constructor for common pool, suitable only for static initialization.
2440 >     * Basically the same as above, but uses smallest possible initial footprint.
2441 >     */
2442 >    ForkJoinPool(int parallelism, int submitMask,
2443 >                 ForkJoinWorkerThreadFactory factory,
2444 >                 Thread.UncaughtExceptionHandler handler) {
2445 >        this.factory = factory;
2446 >        this.ueh = handler;
2447 >        this.submitMask = submitMask;
2448 >        this.parallelism = parallelism;
2449 >        long np = (long)(-parallelism);
2450 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2451 >        this.localMode = LIFO_QUEUE;
2452 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2453 >        this.runState = 1;
2454      }
2455  
1257    // Execution methods
1258
2456      /**
2457 <     * Common code for execute, invoke and submit
2457 >     * Returns the common pool instance.
2458 >     *
2459 >     * @return the common pool instance
2460       */
2461 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2462 <        if (task == null)
2463 <            throw new NullPointerException();
2464 <        if (runState >= SHUTDOWN)
2465 <            throw new RejectedExecutionException();
1267 <        submissionQueue.offer(task);
1268 <        advanceEventCount();
1269 <        helpMaintainParallelism();         // start or wake up workers
2461 >    public static ForkJoinPool commonPool() {
2462 >        ForkJoinPool p;
2463 >        if ((p = commonPool) == null)
2464 >            throw new Error("Common Pool Unavailable");
2465 >        return p;
2466      }
2467  
2468 +    // Execution methods
2469 +
2470      /**
2471       * Performs the given task, returning its result upon completion.
2472 <     * If the caller is already engaged in a fork/join computation in
2473 <     * the current pool, this method is equivalent in effect to
2474 <     * {@link ForkJoinTask#invoke}.
2472 >     * If the computation encounters an unchecked Exception or Error,
2473 >     * it is rethrown as the outcome of this invocation.  Rethrown
2474 >     * exceptions behave in the same way as regular exceptions, but,
2475 >     * when possible, contain stack traces (as displayed for example
2476 >     * using {@code ex.printStackTrace()}) of both the current thread
2477 >     * as well as the thread actually encountering the exception;
2478 >     * minimally only the latter.
2479       *
2480       * @param task the task
2481       * @return the task's result
# Line 1282 | Line 2484 | public class ForkJoinPool extends Abstra
2484       *         scheduled for execution
2485       */
2486      public <T> T invoke(ForkJoinTask<T> task) {
2487 +        if (task == null)
2488 +            throw new NullPointerException();
2489          doSubmit(task);
2490          return task.join();
2491      }
2492  
2493      /**
2494       * Arranges for (asynchronous) execution of the given task.
1291     * If the caller is already engaged in a fork/join computation in
1292     * the current pool, this method is equivalent in effect to
1293     * {@link ForkJoinTask#fork}.
2495       *
2496       * @param task the task
2497       * @throws NullPointerException if the task is null
# Line 1298 | Line 2499 | public class ForkJoinPool extends Abstra
2499       *         scheduled for execution
2500       */
2501      public void execute(ForkJoinTask<?> task) {
2502 +        if (task == null)
2503 +            throw new NullPointerException();
2504          doSubmit(task);
2505      }
2506  
# Line 1309 | Line 2512 | public class ForkJoinPool extends Abstra
2512       *         scheduled for execution
2513       */
2514      public void execute(Runnable task) {
2515 +        if (task == null)
2516 +            throw new NullPointerException();
2517          ForkJoinTask<?> job;
2518          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2519              job = (ForkJoinTask<?>) task;
2520          else
2521 <            job = ForkJoinTask.adapt(task, null);
2521 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2522          doSubmit(job);
2523      }
2524  
2525      /**
2526       * Submits a ForkJoinTask for execution.
1322     * If the caller is already engaged in a fork/join computation in
1323     * the current pool, this method is equivalent in effect to
1324     * {@link ForkJoinTask#fork}.
2527       *
2528       * @param task the task to submit
2529       * @return the task
# Line 1330 | Line 2532 | public class ForkJoinPool extends Abstra
2532       *         scheduled for execution
2533       */
2534      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2535 +        if (task == null)
2536 +            throw new NullPointerException();
2537          doSubmit(task);
2538          return task;
2539      }
# Line 1340 | Line 2544 | public class ForkJoinPool extends Abstra
2544       *         scheduled for execution
2545       */
2546      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2547 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2547 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2548          doSubmit(job);
2549          return job;
2550      }
# Line 1351 | Line 2555 | public class ForkJoinPool extends Abstra
2555       *         scheduled for execution
2556       */
2557      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2558 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2558 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2559          doSubmit(job);
2560          return job;
2561      }
# Line 1362 | Line 2566 | public class ForkJoinPool extends Abstra
2566       *         scheduled for execution
2567       */
2568      public ForkJoinTask<?> submit(Runnable task) {
2569 +        if (task == null)
2570 +            throw new NullPointerException();
2571          ForkJoinTask<?> job;
2572          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2573              job = (ForkJoinTask<?>) task;
2574          else
2575 <            job = ForkJoinTask.adapt(task, null);
2575 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2576          doSubmit(job);
2577          return job;
2578      }
# Line 1376 | Line 2582 | public class ForkJoinPool extends Abstra
2582       * @throws RejectedExecutionException {@inheritDoc}
2583       */
2584      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2585 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2586 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2587 <        for (Callable<T> task : tasks)
2588 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2589 <        invoke(new InvokeAll<T>(forkJoinTasks));
2590 <
2585 >        // In previous versions of this class, this method constructed
2586 >        // a task to run ForkJoinTask.invokeAll, but now external
2587 >        // invocation of multiple tasks is at least as efficient.
2588 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2589 >        // Workaround needed because method wasn't declared with
2590 >        // wildcards in return type but should have been.
2591          @SuppressWarnings({"unchecked", "rawtypes"})
2592 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1387 <        return futures;
1388 <    }
2592 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2593  
2594 <    static final class InvokeAll<T> extends RecursiveAction {
2595 <        final ArrayList<ForkJoinTask<T>> tasks;
2596 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2597 <        public void compute() {
2598 <            try { invokeAll(tasks); }
2599 <            catch (Exception ignore) {}
2594 >        boolean done = false;
2595 >        try {
2596 >            for (Callable<T> t : tasks) {
2597 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2598 >                doSubmit(f);
2599 >                fs.add(f);
2600 >            }
2601 >            for (ForkJoinTask<T> f : fs)
2602 >                f.quietlyJoin();
2603 >            done = true;
2604 >            return futures;
2605 >        } finally {
2606 >            if (!done)
2607 >                for (ForkJoinTask<T> f : fs)
2608 >                    f.cancel(false);
2609          }
1397        private static final long serialVersionUID = -7914297376763021607L;
2610      }
2611  
2612      /**
# Line 1426 | Line 2638 | public class ForkJoinPool extends Abstra
2638      }
2639  
2640      /**
2641 +     * Returns the targeted parallelism level of the common pool.
2642 +     *
2643 +     * @return the targeted parallelism level of the common pool
2644 +     */
2645 +    public static int getCommonPoolParallelism() {
2646 +        return commonPoolParallelism;
2647 +    }
2648 +
2649 +    /**
2650       * Returns the number of worker threads that have started but not
2651 <     * yet terminated.  This result returned by this method may differ
2651 >     * yet terminated.  The result returned by this method may differ
2652       * from {@link #getParallelism} when threads are created to
2653       * maintain parallelism when others are cooperatively blocked.
2654       *
2655       * @return the number of worker threads
2656       */
2657      public int getPoolSize() {
2658 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2658 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2659      }
2660  
2661      /**
# Line 1444 | Line 2665 | public class ForkJoinPool extends Abstra
2665       * @return {@code true} if this pool uses async mode
2666       */
2667      public boolean getAsyncMode() {
2668 <        return locallyFifo;
2668 >        return localMode != 0;
2669      }
2670  
2671      /**
# Line 1456 | Line 2677 | public class ForkJoinPool extends Abstra
2677       * @return the number of worker threads
2678       */
2679      public int getRunningThreadCount() {
2680 <        return workerCounts & RUNNING_COUNT_MASK;
2680 >        int rc = 0;
2681 >        WorkQueue[] ws; WorkQueue w;
2682 >        if ((ws = workQueues) != null) {
2683 >            for (int i = 1; i < ws.length; i += 2) {
2684 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2685 >                    ++rc;
2686 >            }
2687 >        }
2688 >        return rc;
2689      }
2690  
2691      /**
# Line 1467 | Line 2696 | public class ForkJoinPool extends Abstra
2696       * @return the number of active threads
2697       */
2698      public int getActiveThreadCount() {
2699 <        return runState & ACTIVE_COUNT_MASK;
2699 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2700 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2701      }
2702  
2703      /**
# Line 1482 | Line 2712 | public class ForkJoinPool extends Abstra
2712       * @return {@code true} if all threads are currently idle
2713       */
2714      public boolean isQuiescent() {
2715 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2715 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2716      }
2717  
2718      /**
# Line 1497 | Line 2727 | public class ForkJoinPool extends Abstra
2727       * @return the number of steals
2728       */
2729      public long getStealCount() {
2730 <        return stealCount;
2730 >        long count = stealCount;
2731 >        WorkQueue[] ws; WorkQueue w;
2732 >        if ((ws = workQueues) != null) {
2733 >            for (int i = 1; i < ws.length; i += 2) {
2734 >                if ((w = ws[i]) != null)
2735 >                    count += w.totalSteals;
2736 >            }
2737 >        }
2738 >        return count;
2739      }
2740  
2741      /**
# Line 1512 | Line 2750 | public class ForkJoinPool extends Abstra
2750       */
2751      public long getQueuedTaskCount() {
2752          long count = 0;
2753 <        ForkJoinWorkerThread[] ws = workers;
2754 <        int n = ws.length;
2755 <        for (int i = 0; i < n; ++i) {
2756 <            ForkJoinWorkerThread w = ws[i];
2757 <            if (w != null)
2758 <                count += w.getQueueSize();
2753 >        WorkQueue[] ws; WorkQueue w;
2754 >        if ((ws = workQueues) != null) {
2755 >            for (int i = 1; i < ws.length; i += 2) {
2756 >                if ((w = ws[i]) != null)
2757 >                    count += w.queueSize();
2758 >            }
2759          }
2760          return count;
2761      }
2762  
2763      /**
2764       * Returns an estimate of the number of tasks submitted to this
2765 <     * pool that have not yet begun executing.  This method takes time
2766 <     * proportional to the number of submissions.
2765 >     * pool that have not yet begun executing.  This method may take
2766 >     * time proportional to the number of submissions.
2767       *
2768       * @return the number of queued submissions
2769       */
2770      public int getQueuedSubmissionCount() {
2771 <        return submissionQueue.size();
2771 >        int count = 0;
2772 >        WorkQueue[] ws; WorkQueue w;
2773 >        if ((ws = workQueues) != null) {
2774 >            for (int i = 0; i < ws.length; i += 2) {
2775 >                if ((w = ws[i]) != null)
2776 >                    count += w.queueSize();
2777 >            }
2778 >        }
2779 >        return count;
2780      }
2781  
2782      /**
# Line 1540 | Line 2786 | public class ForkJoinPool extends Abstra
2786       * @return {@code true} if there are any queued submissions
2787       */
2788      public boolean hasQueuedSubmissions() {
2789 <        return !submissionQueue.isEmpty();
2789 >        WorkQueue[] ws; WorkQueue w;
2790 >        if ((ws = workQueues) != null) {
2791 >            for (int i = 0; i < ws.length; i += 2) {
2792 >                if ((w = ws[i]) != null && !w.isEmpty())
2793 >                    return true;
2794 >            }
2795 >        }
2796 >        return false;
2797      }
2798  
2799      /**
# Line 1551 | Line 2804 | public class ForkJoinPool extends Abstra
2804       * @return the next submission, or {@code null} if none
2805       */
2806      protected ForkJoinTask<?> pollSubmission() {
2807 <        return submissionQueue.poll();
2807 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2808 >        if ((ws = workQueues) != null) {
2809 >            for (int i = 0; i < ws.length; i += 2) {
2810 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2811 >                    return t;
2812 >            }
2813 >        }
2814 >        return null;
2815      }
2816  
2817      /**
# Line 1572 | Line 2832 | public class ForkJoinPool extends Abstra
2832       * @return the number of elements transferred
2833       */
2834      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2835 <        int count = submissionQueue.drainTo(c);
2836 <        ForkJoinWorkerThread[] ws = workers;
2837 <        int n = ws.length;
2838 <        for (int i = 0; i < n; ++i) {
2839 <            ForkJoinWorkerThread w = ws[i];
2840 <            if (w != null)
2841 <                count += w.drainTasksTo(c);
2835 >        int count = 0;
2836 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2837 >        if ((ws = workQueues) != null) {
2838 >            for (int i = 0; i < ws.length; ++i) {
2839 >                if ((w = ws[i]) != null) {
2840 >                    while ((t = w.poll()) != null) {
2841 >                        c.add(t);
2842 >                        ++count;
2843 >                    }
2844 >                }
2845 >            }
2846          }
2847          return count;
2848      }
# Line 1591 | Line 2855 | public class ForkJoinPool extends Abstra
2855       * @return a string identifying this pool, as well as its state
2856       */
2857      public String toString() {
2858 <        long st = getStealCount();
2859 <        long qt = getQueuedTaskCount();
2860 <        long qs = getQueuedSubmissionCount();
2861 <        int wc = workerCounts;
2862 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2863 <        int rc = wc & RUNNING_COUNT_MASK;
2858 >        // Use a single pass through workQueues to collect counts
2859 >        long qt = 0L, qs = 0L; int rc = 0;
2860 >        long st = stealCount;
2861 >        long c = ctl;
2862 >        WorkQueue[] ws; WorkQueue w;
2863 >        if ((ws = workQueues) != null) {
2864 >            for (int i = 0; i < ws.length; ++i) {
2865 >                if ((w = ws[i]) != null) {
2866 >                    int size = w.queueSize();
2867 >                    if ((i & 1) == 0)
2868 >                        qs += size;
2869 >                    else {
2870 >                        qt += size;
2871 >                        st += w.totalSteals;
2872 >                        if (w.isApparentlyUnblocked())
2873 >                            ++rc;
2874 >                    }
2875 >                }
2876 >            }
2877 >        }
2878          int pc = parallelism;
2879 <        int rs = runState;
2880 <        int ac = rs & ACTIVE_COUNT_MASK;
2879 >        int tc = pc + (short)(c >>> TC_SHIFT);
2880 >        int ac = pc + (int)(c >> AC_SHIFT);
2881 >        if (ac < 0) // ignore transient negative
2882 >            ac = 0;
2883 >        String level;
2884 >        if ((c & STOP_BIT) != 0)
2885 >            level = (tc == 0) ? "Terminated" : "Terminating";
2886 >        else
2887 >            level = runState < 0 ? "Shutting down" : "Running";
2888          return super.toString() +
2889 <            "[" + runLevelToString(rs) +
2889 >            "[" + level +
2890              ", parallelism = " + pc +
2891              ", size = " + tc +
2892              ", active = " + ac +
# Line 1612 | Line 2897 | public class ForkJoinPool extends Abstra
2897              "]";
2898      }
2899  
1615    private static String runLevelToString(int s) {
1616        return ((s & TERMINATED) != 0 ? "Terminated" :
1617                ((s & TERMINATING) != 0 ? "Terminating" :
1618                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1619                  "Running")));
1620    }
1621
2900      /**
2901 <     * Initiates an orderly shutdown in which previously submitted
2902 <     * tasks are executed, but no new tasks will be accepted.
2903 <     * Invocation has no additional effect if already shut down.
2904 <     * Tasks that are in the process of being submitted concurrently
2905 <     * during the course of this method may or may not be rejected.
2901 >     * Possibly initiates an orderly shutdown in which previously
2902 >     * submitted tasks are executed, but no new tasks will be
2903 >     * accepted. Invocation has no effect on execution state if this
2904 >     * is the {@link #commonPool}, and no additional effect if
2905 >     * already shut down.  Tasks that are in the process of being
2906 >     * submitted concurrently during the course of this method may or
2907 >     * may not be rejected.
2908       *
2909       * @throws SecurityException if a security manager exists and
2910       *         the caller is not permitted to modify threads
# Line 1633 | Line 2913 | public class ForkJoinPool extends Abstra
2913       */
2914      public void shutdown() {
2915          checkPermission();
2916 <        advanceRunLevel(SHUTDOWN);
2917 <        tryTerminate(false);
2916 >        if (this != commonPool)
2917 >            tryTerminate(false, true);
2918      }
2919  
2920      /**
2921 <     * Attempts to cancel and/or stop all tasks, and reject all
2922 <     * subsequently submitted tasks.  Tasks that are in the process of
2923 <     * being submitted or executed concurrently during the course of
2924 <     * this method may or may not be rejected. This method cancels
2925 <     * both existing and unexecuted tasks, in order to permit
2926 <     * termination in the presence of task dependencies. So the method
2927 <     * always returns an empty list (unlike the case for some other
2928 <     * Executors).
2921 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2922 >     * all subsequently submitted tasks.  Invocation has no effect on
2923 >     * execution state if this is the {@link #commonPool}, and no
2924 >     * additional effect if already shut down. Otherwise, tasks that
2925 >     * are in the process of being submitted or executed concurrently
2926 >     * during the course of this method may or may not be
2927 >     * rejected. This method cancels both existing and unexecuted
2928 >     * tasks, in order to permit termination in the presence of task
2929 >     * dependencies. So the method always returns an empty list
2930 >     * (unlike the case for some other Executors).
2931       *
2932       * @return an empty list
2933       * @throws SecurityException if a security manager exists and
# Line 1655 | Line 2937 | public class ForkJoinPool extends Abstra
2937       */
2938      public List<Runnable> shutdownNow() {
2939          checkPermission();
2940 <        tryTerminate(true);
2940 >        if (this != commonPool)
2941 >            tryTerminate(true, true);
2942          return Collections.emptyList();
2943      }
2944  
# Line 1665 | Line 2948 | public class ForkJoinPool extends Abstra
2948       * @return {@code true} if all tasks have completed following shut down
2949       */
2950      public boolean isTerminated() {
2951 <        return runState >= TERMINATED;
2951 >        long c = ctl;
2952 >        return ((c & STOP_BIT) != 0L &&
2953 >                (short)(c >>> TC_SHIFT) == -parallelism);
2954      }
2955  
2956      /**
# Line 1673 | Line 2958 | public class ForkJoinPool extends Abstra
2958       * commenced but not yet completed.  This method may be useful for
2959       * debugging. A return of {@code true} reported a sufficient
2960       * period after shutdown may indicate that submitted tasks have
2961 <     * ignored or suppressed interruption, causing this executor not
2962 <     * to properly terminate.
2961 >     * ignored or suppressed interruption, or are waiting for IO,
2962 >     * causing this executor not to properly terminate. (See the
2963 >     * advisory notes for class {@link ForkJoinTask} stating that
2964 >     * tasks should not normally entail blocking operations.  But if
2965 >     * they do, they must abort them on interrupt.)
2966       *
2967       * @return {@code true} if terminating but not yet terminated
2968       */
2969      public boolean isTerminating() {
2970 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
2970 >        long c = ctl;
2971 >        return ((c & STOP_BIT) != 0L &&
2972 >                (short)(c >>> TC_SHIFT) != -parallelism);
2973      }
2974  
2975      /**
# Line 1688 | Line 2978 | public class ForkJoinPool extends Abstra
2978       * @return {@code true} if this pool has been shut down
2979       */
2980      public boolean isShutdown() {
2981 <        return runState >= SHUTDOWN;
2981 >        return runState < 0;
2982      }
2983  
2984      /**
# Line 1704 | Line 2994 | public class ForkJoinPool extends Abstra
2994       */
2995      public boolean awaitTermination(long timeout, TimeUnit unit)
2996          throws InterruptedException {
2997 <        try {
2998 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
2999 <        } catch(TimeoutException ex) {
3000 <            return false;
2997 >        long nanos = unit.toNanos(timeout);
2998 >        if (isTerminated())
2999 >            return true;
3000 >        long startTime = System.nanoTime();
3001 >        boolean terminated = false;
3002 >        synchronized(this) {
3003 >            for (long waitTime = nanos, millis = 0L;;) {
3004 >                if (terminated = isTerminated() ||
3005 >                    waitTime <= 0L ||
3006 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3007 >                    break;
3008 >                wait(millis);
3009 >                waitTime = nanos - (System.nanoTime() - startTime);
3010 >            }
3011          }
3012 +        return terminated;
3013      }
3014  
3015      /**
# Line 1719 | Line 3020 | public class ForkJoinPool extends Abstra
3020       * {@code isReleasable} must return {@code true} if blocking is
3021       * not necessary. Method {@code block} blocks the current thread
3022       * if necessary (perhaps internally invoking {@code isReleasable}
3023 <     * before actually blocking). The unusual methods in this API
3024 <     * accommodate synchronizers that may, but don't usually, block
3025 <     * for long periods. Similarly, they allow more efficient internal
3026 <     * handling of cases in which additional workers may be, but
3027 <     * usually are not, needed to ensure sufficient parallelism.
3028 <     * Toward this end, implementations of method {@code isReleasable}
3029 <     * must be amenable to repeated invocation.
3023 >     * before actually blocking). These actions are performed by any
3024 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3025 >     * unusual methods in this API accommodate synchronizers that may,
3026 >     * but don't usually, block for long periods. Similarly, they
3027 >     * allow more efficient internal handling of cases in which
3028 >     * additional workers may be, but usually are not, needed to
3029 >     * ensure sufficient parallelism.  Toward this end,
3030 >     * implementations of method {@code isReleasable} must be amenable
3031 >     * to repeated invocation.
3032       *
3033       * <p>For example, here is a ManagedBlocker based on a
3034       * ReentrantLock:
# Line 1753 | Line 3056 | public class ForkJoinPool extends Abstra
3056       *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3057       *   public boolean block() throws InterruptedException {
3058       *     if (item == null)
3059 <     *       item = queue.take
3059 >     *       item = queue.take();
3060       *     return true;
3061       *   }
3062       *   public boolean isReleasable() {
3063 <     *     return item != null || (item = queue.poll) != null;
3063 >     *     return item != null || (item = queue.poll()) != null;
3064       *   }
3065       *   public E getItem() { // call after pool.managedBlock completes
3066       *     return item;
# Line 1805 | Line 3108 | public class ForkJoinPool extends Abstra
3108      public static void managedBlock(ManagedBlocker blocker)
3109          throws InterruptedException {
3110          Thread t = Thread.currentThread();
3111 <        if (t instanceof ForkJoinWorkerThread) {
3112 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
3113 <            w.pool.awaitBlocker(blocker);
3114 <        }
3115 <        else {
3116 <            do {} while (!blocker.isReleasable() && !blocker.block());
3111 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3112 >                          ((ForkJoinWorkerThread)t).pool : null);
3113 >        while (!blocker.isReleasable()) {
3114 >            if (p == null || p.tryCompensate(null, blocker)) {
3115 >                try {
3116 >                    do {} while (!blocker.isReleasable() && !blocker.block());
3117 >                } finally {
3118 >                    if (p != null)
3119 >                        p.incrementActiveCount();
3120 >                }
3121 >                break;
3122 >            }
3123          }
3124      }
3125  
# Line 1819 | Line 3128 | public class ForkJoinPool extends Abstra
3128      // implement RunnableFuture.
3129  
3130      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3131 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3131 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3132      }
3133  
3134      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3135 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3135 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3136      }
3137  
3138      // Unsafe mechanics
3139 <
3140 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3141 <    private static final long workerCountsOffset =
3142 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
3143 <    private static final long runStateOffset =
3144 <        objectFieldOffset("runState", ForkJoinPool.class);
3145 <    private static final long eventCountOffset =
3146 <        objectFieldOffset("eventCount", ForkJoinPool.class);
3147 <    private static final long eventWaitersOffset =
3148 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
3149 <    private static final long stealCountOffset =
3150 <        objectFieldOffset("stealCount",ForkJoinPool.class);
3151 <    private static final long spareWaitersOffset =
3152 <        objectFieldOffset("spareWaiters",ForkJoinPool.class);
3153 <
3154 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3139 >    private static final sun.misc.Unsafe U;
3140 >    private static final long CTL;
3141 >    private static final long PARKBLOCKER;
3142 >    private static final int ABASE;
3143 >    private static final int ASHIFT;
3144 >    private static final long NEXTWORKERNUMBER;
3145 >    private static final long STEALCOUNT;
3146 >    private static final long MAINLOCK;
3147 >
3148 >    static {
3149 >        poolNumberGenerator = new AtomicInteger();
3150 >        nextSubmitterSeed = new AtomicInteger(0x55555555);
3151 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3152 >        defaultForkJoinWorkerThreadFactory =
3153 >            new DefaultForkJoinWorkerThreadFactory();
3154 >        submitters = new ThreadSubmitter();
3155 >        int s;
3156          try {
3157 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3158 <        } catch (NoSuchFieldException e) {
3159 <            // Convert Exception to corresponding Error
3160 <            NoSuchFieldError error = new NoSuchFieldError(field);
3161 <            error.initCause(e);
3162 <            throw error;
3157 >            U = getUnsafe();
3158 >            Class<?> k = ForkJoinPool.class;
3159 >            Class<?> ak = ForkJoinTask[].class;
3160 >            CTL = U.objectFieldOffset
3161 >                (k.getDeclaredField("ctl"));
3162 >            NEXTWORKERNUMBER = U.objectFieldOffset
3163 >                (k.getDeclaredField("nextWorkerNumber"));
3164 >            STEALCOUNT = U.objectFieldOffset
3165 >                (k.getDeclaredField("stealCount"));
3166 >            MAINLOCK = U.objectFieldOffset
3167 >                (k.getDeclaredField("mainLock"));
3168 >            Class<?> tk = Thread.class;
3169 >            PARKBLOCKER = U.objectFieldOffset
3170 >                (tk.getDeclaredField("parkBlocker"));
3171 >            ABASE = U.arrayBaseOffset(ak);
3172 >            s = U.arrayIndexScale(ak);
3173 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3174 >        } catch (Exception e) {
3175 >            throw new Error(e);
3176 >        }
3177 >        if ((s & (s-1)) != 0)
3178 >            throw new Error("data type scale not a power of two");
3179 >        try { // Establish common pool
3180 >            String pp = System.getProperty(propPrefix + "parallelism");
3181 >            String fp = System.getProperty(propPrefix + "threadFactory");
3182 >            String up = System.getProperty(propPrefix + "exceptionHandler");
3183 >            ForkJoinWorkerThreadFactory fac = (fp == null) ?
3184 >                defaultForkJoinWorkerThreadFactory :
3185 >                ((ForkJoinWorkerThreadFactory)ClassLoader.
3186 >                 getSystemClassLoader().loadClass(fp).newInstance());
3187 >            Thread.UncaughtExceptionHandler ueh = (up == null)? null :
3188 >                ((Thread.UncaughtExceptionHandler)ClassLoader.
3189 >                 getSystemClassLoader().loadClass(up).newInstance());
3190 >            int par;
3191 >            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3192 >                par = Runtime.getRuntime().availableProcessors();
3193 >            if (par > MAX_CAP)
3194 >                par = MAX_CAP;
3195 >            commonPoolParallelism = par;
3196 >            int n = par - 1; // precompute submit mask
3197 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3198 >            n |= n >>> 8; n |= n >>> 16;
3199 >            int mask = ((n + 1) << 1) - 1;
3200 >            commonPool = new ForkJoinPool(par, mask, fac, ueh);
3201 >        } catch (Exception e) {
3202 >            throw new Error(e);
3203          }
3204      }
3205  
# Line 1880 | Line 3230 | public class ForkJoinPool extends Abstra
3230              }
3231          }
3232      }
3233 +
3234   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines