ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.1 by dl, Tue Jan 6 14:30:31 2009 UTC vs.
Revision 1.139 by dl, Wed Oct 31 12:49:24 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.atomic.AtomicInteger;
23 > import java.util.concurrent.atomic.AtomicLong;
24 > import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 > import java.util.concurrent.locks.Condition;
26  
27   /**
28 < * Host for a group of ForkJoinWorkerThreads.  A ForkJoinPool provides
29 < * the entry point for tasks submitted from non-ForkJoinTasks, as well
30 < * as management and monitoring operations.  Normally a single
31 < * ForkJoinPool is used for a large number of submitted
20 < * tasks. Otherwise, use would not usually outweigh the construction
21 < * and bookkeeping overhead of creating a large set of threads.
28 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29 > * A {@code ForkJoinPool} provides the entry point for submissions
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31 > * monitoring operations.
32   *
33 < * <p>ForkJoinPools differ from other kinds of Executor mainly in that
34 < * they provide <em>work-stealing</em>: all threads in the pool
35 < * attempt to find and execute subtasks created by other active tasks
36 < * (eventually blocking if none exist). This makes them efficient when
37 < * most tasks spawn other subtasks (as do most ForkJoinTasks) but
38 < * possibly less so otherwise. It is however fine to combine execution
39 < * of some plain Runnable- or Callable- based activities with that of
40 < * ForkJoinTasks.
33 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
34 > * ExecutorService} mainly by virtue of employing
35 > * <em>work-stealing</em>: all threads in the pool attempt to find and
36 > * execute tasks submitted to the pool and/or created by other active
37 > * tasks (eventually blocking waiting for work if none exist). This
38 > * enables efficient processing when most tasks spawn other subtasks
39 > * (as do most {@code ForkJoinTask}s), as well as when many small
40 > * tasks are submitted to the pool from external clients.  Especially
41 > * when setting <em>asyncMode</em> to true in constructors, {@code
42 > * ForkJoinPool}s may also be appropriate for use with event-style
43 > * tasks that are never joined.
44   *
45 < * <p>A ForkJoinPool may be constructed with a given parallelism level
46 < * (target pool size), which it attempts to maintain by dynamically
47 < * adding, suspending, or resuming threads, even if some tasks have
48 < * blocked waiting to join others. However, no such adjustments are
49 < * performed in the face of blocked IO or other unmanaged
50 < * synchronization. The nested ManagedBlocker interface enables
51 < * extension of the kinds of synchronization accommodated.
45 > * <p>A static {@link #commonPool} is available and appropriate for
46 > * most applications. The common pool is used by any ForkJoinTask that
47 > * is not explicitly submitted to a specified pool. Using the common
48 > * pool normally reduces resource usage (its threads are slowly
49 > * reclaimed during periods of non-use, and reinstated upon subsequent
50 > * use).  The common pool is by default constructed with default
51 > * parameters, but these may be controlled by setting any or all of
52 > * the three properties {@code
53 > * java.util.concurrent.ForkJoinPool.common.{parallelism,
54 > * threadFactory, exceptionHandler}}.
55   *
56 < * <p>The target parallelism level may also be set dynamically. You
57 < * can limit the number of threads dynamically constructed using
58 < * method <tt>setMaximumPoolSize</tt> and/or
59 < * <tt>setMaintainParallelism</tt>.
56 > * <p>For applications that require separate or custom pools, a {@code
57 > * ForkJoinPool} may be constructed with a given target parallelism
58 > * level; by default, equal to the number of available processors. The
59 > * pool attempts to maintain enough active (or available) threads by
60 > * dynamically adding, suspending, or resuming internal worker
61 > * threads, even if some tasks are stalled waiting to join
62 > * others. However, no such adjustments are guaranteed in the face of
63 > * blocked IO or other unmanaged synchronization. The nested {@link
64 > * ManagedBlocker} interface enables extension of the kinds of
65 > * synchronization accommodated.
66   *
67   * <p>In addition to execution and lifecycle control methods, this
68   * class provides status check methods (for example
69 < * <tt>getStealCount</tt>) that are intended to aid in developing,
69 > * {@link #getStealCount}) that are intended to aid in developing,
70   * tuning, and monitoring fork/join applications. Also, method
71 < * <tt>toString</tt> returns indications of pool state in a convenient
72 < * form for informal monitoring.
71 > * {@link #toString} returns indications of pool state in a
72 > * convenient form for informal monitoring.
73 > *
74 > * <p> As is the case with other ExecutorServices, there are three
75 > * main task execution methods summarized in the following table.
76 > * These are designed to be used primarily by clients not already
77 > * engaged in fork/join computations in the current pool.  The main
78 > * forms of these methods accept instances of {@code ForkJoinTask},
79 > * but overloaded forms also allow mixed execution of plain {@code
80 > * Runnable}- or {@code Callable}- based activities as well.  However,
81 > * tasks that are already executing in a pool should normally instead
82 > * use the within-computation forms listed in the table unless using
83 > * async event-style tasks that are not usually joined, in which case
84 > * there is little difference among choice of methods.
85 > *
86 > * <table BORDER CELLPADDING=3 CELLSPACING=1>
87 > *  <tr>
88 > *    <td></td>
89 > *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
90 > *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
91 > *  </tr>
92 > *  <tr>
93 > *    <td> <b>Arrange async execution</td>
94 > *    <td> {@link #execute(ForkJoinTask)}</td>
95 > *    <td> {@link ForkJoinTask#fork}</td>
96 > *  </tr>
97 > *  <tr>
98 > *    <td> <b>Await and obtain result</td>
99 > *    <td> {@link #invoke(ForkJoinTask)}</td>
100 > *    <td> {@link ForkJoinTask#invoke}</td>
101 > *  </tr>
102 > *  <tr>
103 > *    <td> <b>Arrange exec and obtain Future</td>
104 > *    <td> {@link #submit(ForkJoinTask)}</td>
105 > *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
106 > *  </tr>
107 > * </table>
108   *
109   * <p><b>Implementation notes</b>: This implementation restricts the
110 < * maximum parallelism to 32767. Attempts to create pools with greater
111 < * than the maximum result in IllegalArgumentExceptions.
110 > * maximum number of running threads to 32767. Attempts to create
111 > * pools with greater than the maximum number result in
112 > * {@code IllegalArgumentException}.
113 > *
114 > * <p>This implementation rejects submitted tasks (that is, by throwing
115 > * {@link RejectedExecutionException}) only when the pool is shut down
116 > * or internal resources have been exhausted.
117 > *
118 > * @since 1.7
119 > * @author Doug Lea
120   */
121 < public class ForkJoinPool extends AbstractExecutorService
57 <    implements ExecutorService {
121 > public class ForkJoinPool extends AbstractExecutorService {
122  
123      /*
124 <     * See the extended comments interspersed below for design,
125 <     * rationale, and walkthroughs.
124 >     * Implementation Overview
125 >     *
126 >     * This class and its nested classes provide the main
127 >     * functionality and control for a set of worker threads:
128 >     * Submissions from non-FJ threads enter into submission queues.
129 >     * Workers take these tasks and typically split them into subtasks
130 >     * that may be stolen by other workers.  Preference rules give
131 >     * first priority to processing tasks from their own queues (LIFO
132 >     * or FIFO, depending on mode), then to randomized FIFO steals of
133 >     * tasks in other queues.
134 >     *
135 >     * WorkQueues
136 >     * ==========
137 >     *
138 >     * Most operations occur within work-stealing queues (in nested
139 >     * class WorkQueue).  These are special forms of Deques that
140 >     * support only three of the four possible end-operations -- push,
141 >     * pop, and poll (aka steal), under the further constraints that
142 >     * push and pop are called only from the owning thread (or, as
143 >     * extended here, under a lock), while poll may be called from
144 >     * other threads.  (If you are unfamiliar with them, you probably
145 >     * want to read Herlihy and Shavit's book "The Art of
146 >     * Multiprocessor programming", chapter 16 describing these in
147 >     * more detail before proceeding.)  The main work-stealing queue
148 >     * design is roughly similar to those in the papers "Dynamic
149 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
150 >     * (http://research.sun.com/scalable/pubs/index.html) and
151 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
152 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
153 >     * The main differences ultimately stem from GC requirements that
154 >     * we null out taken slots as soon as we can, to maintain as small
155 >     * a footprint as possible even in programs generating huge
156 >     * numbers of tasks. To accomplish this, we shift the CAS
157 >     * arbitrating pop vs poll (steal) from being on the indices
158 >     * ("base" and "top") to the slots themselves.  So, both a
159 >     * successful pop and poll mainly entail a CAS of a slot from
160 >     * non-null to null.  Because we rely on CASes of references, we
161 >     * do not need tag bits on base or top.  They are simple ints as
162 >     * used in any circular array-based queue (see for example
163 >     * ArrayDeque).  Updates to the indices must still be ordered in a
164 >     * way that guarantees that top == base means the queue is empty,
165 >     * but otherwise may err on the side of possibly making the queue
166 >     * appear nonempty when a push, pop, or poll have not fully
167 >     * committed. Note that this means that the poll operation,
168 >     * considered individually, is not wait-free. One thief cannot
169 >     * successfully continue until another in-progress one (or, if
170 >     * previously empty, a push) completes.  However, in the
171 >     * aggregate, we ensure at least probabilistic non-blockingness.
172 >     * If an attempted steal fails, a thief always chooses a different
173 >     * random victim target to try next. So, in order for one thief to
174 >     * progress, it suffices for any in-progress poll or new push on
175 >     * any empty queue to complete. (This is why we normally use
176 >     * method pollAt and its variants that try once at the apparent
177 >     * base index, else consider alternative actions, rather than
178 >     * method poll.)
179 >     *
180 >     * This approach also enables support of a user mode in which local
181 >     * task processing is in FIFO, not LIFO order, simply by using
182 >     * poll rather than pop.  This can be useful in message-passing
183 >     * frameworks in which tasks are never joined.  However neither
184 >     * mode considers affinities, loads, cache localities, etc, so
185 >     * rarely provide the best possible performance on a given
186 >     * machine, but portably provide good throughput by averaging over
187 >     * these factors.  (Further, even if we did try to use such
188 >     * information, we do not usually have a basis for exploiting it.
189 >     * For example, some sets of tasks profit from cache affinities,
190 >     * but others are harmed by cache pollution effects.)
191 >     *
192 >     * WorkQueues are also used in a similar way for tasks submitted
193 >     * to the pool. We cannot mix these tasks in the same queues used
194 >     * for work-stealing (this would contaminate lifo/fifo
195 >     * processing). Instead, we loosely associate submission queues
196 >     * with submitting threads, using a form of hashing.  The
197 >     * ThreadLocal Submitter class contains a value initially used as
198 >     * a hash code for choosing existing queues, but may be randomly
199 >     * repositioned upon contention with other submitters.  In
200 >     * essence, submitters act like workers except that they never
201 >     * take tasks, and they are multiplexed on to a finite number of
202 >     * shared work queues. However, classes are set up so that future
203 >     * extensions could allow submitters to optionally help perform
204 >     * tasks as well. Insertion of tasks in shared mode requires a
205 >     * lock (mainly to protect in the case of resizing) but we use
206 >     * only a simple spinlock (using bits in field runState), because
207 >     * submitters encountering a busy queue move on to try or create
208 >     * other queues -- they block only when creating and registering
209 >     * new queues.
210 >     *
211 >     * Management
212 >     * ==========
213 >     *
214 >     * The main throughput advantages of work-stealing stem from
215 >     * decentralized control -- workers mostly take tasks from
216 >     * themselves or each other. We cannot negate this in the
217 >     * implementation of other management responsibilities. The main
218 >     * tactic for avoiding bottlenecks is packing nearly all
219 >     * essentially atomic control state into two volatile variables
220 >     * that are by far most often read (not written) as status and
221 >     * consistency checks.
222 >     *
223 >     * Field "ctl" contains 64 bits holding all the information needed
224 >     * to atomically decide to add, inactivate, enqueue (on an event
225 >     * queue), dequeue, and/or re-activate workers.  To enable this
226 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
227 >     * far in excess of normal operating range) to allow ids, counts,
228 >     * and their negations (used for thresholding) to fit into 16bit
229 >     * fields.
230 >     *
231 >     * Field "runState" contains 32 bits needed to register and
232 >     * deregister WorkQueues, as well as to enable shutdown. It is
233 >     * only modified under a lock (normally briefly held, but
234 >     * occasionally protecting allocations and resizings) but even
235 >     * when locked remains available to check consistency.
236 >     *
237 >     * Recording WorkQueues.  WorkQueues are recorded in the
238 >     * "workQueues" array that is created upon first use and expanded
239 >     * if necessary.  Updates to the array while recording new workers
240 >     * and unrecording terminated ones are protected from each other
241 >     * by a lock but the array is otherwise concurrently readable, and
242 >     * accessed directly.  To simplify index-based operations, the
243 >     * array size is always a power of two, and all readers must
244 >     * tolerate null slots. Shared (submission) queues are at even
245 >     * indices, worker queues at odd indices. Grouping them together
246 >     * in this way simplifies and speeds up task scanning.
247 >     *
248 >     * All worker thread creation is on-demand, triggered by task
249 >     * submissions, replacement of terminated workers, and/or
250 >     * compensation for blocked workers. However, all other support
251 >     * code is set up to work with other policies.  To ensure that we
252 >     * do not hold on to worker references that would prevent GC, ALL
253 >     * accesses to workQueues are via indices into the workQueues
254 >     * array (which is one source of some of the messy code
255 >     * constructions here). In essence, the workQueues array serves as
256 >     * a weak reference mechanism. Thus for example the wait queue
257 >     * field of ctl stores indices, not references.  Access to the
258 >     * workQueues in associated methods (for example signalWork) must
259 >     * both index-check and null-check the IDs. All such accesses
260 >     * ignore bad IDs by returning out early from what they are doing,
261 >     * since this can only be associated with termination, in which
262 >     * case it is OK to give up.  All uses of the workQueues array
263 >     * also check that it is non-null (even if previously
264 >     * non-null). This allows nulling during termination, which is
265 >     * currently not necessary, but remains an option for
266 >     * resource-revocation-based shutdown schemes. It also helps
267 >     * reduce JIT issuance of uncommon-trap code, which tends to
268 >     * unnecessarily complicate control flow in some methods.
269 >     *
270 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
271 >     * let workers spin indefinitely scanning for tasks when none can
272 >     * be found immediately, and we cannot start/resume workers unless
273 >     * there appear to be tasks available.  On the other hand, we must
274 >     * quickly prod them into action when new tasks are submitted or
275 >     * generated. In many usages, ramp-up time to activate workers is
276 >     * the main limiting factor in overall performance (this is
277 >     * compounded at program start-up by JIT compilation and
278 >     * allocation). So we try to streamline this as much as possible.
279 >     * We park/unpark workers after placing in an event wait queue
280 >     * when they cannot find work. This "queue" is actually a simple
281 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
282 >     * counter value (that reflects the number of times a worker has
283 >     * been inactivated) to avoid ABA effects (we need only as many
284 >     * version numbers as worker threads). Successors are held in
285 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
286 >     * races, mainly that a task-producing thread can miss seeing (and
287 >     * signalling) another thread that gave up looking for work but
288 >     * has not yet entered the wait queue. We solve this by requiring
289 >     * a full sweep of all workers (via repeated calls to method
290 >     * scan()) both before and after a newly waiting worker is added
291 >     * to the wait queue. During a rescan, the worker might release
292 >     * some other queued worker rather than itself, which has the same
293 >     * net effect. Because enqueued workers may actually be rescanning
294 >     * rather than waiting, we set and clear the "parker" field of
295 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
296 >     * requires a secondary recheck to avoid missed signals.)  Note
297 >     * the unusual conventions about Thread.interrupts surrounding
298 >     * parking and other blocking: Because interrupts are used solely
299 >     * to alert threads to check termination, which is checked anyway
300 >     * upon blocking, we clear status (using Thread.interrupted)
301 >     * before any call to park, so that park does not immediately
302 >     * return due to status being set via some other unrelated call to
303 >     * interrupt in user code.
304 >     *
305 >     * Signalling.  We create or wake up workers only when there
306 >     * appears to be at least one task they might be able to find and
307 >     * execute.  When a submission is added or another worker adds a
308 >     * task to a queue that previously had fewer than two tasks, they
309 >     * signal waiting workers (or trigger creation of new ones if
310 >     * fewer than the given parallelism level -- see signalWork).
311 >     * These primary signals are buttressed by signals during rescans;
312 >     * together these cover the signals needed in cases when more
313 >     * tasks are pushed but untaken, and improve performance compared
314 >     * to having one thread wake up all workers.
315 >     *
316 >     * Trimming workers. To release resources after periods of lack of
317 >     * use, a worker starting to wait when the pool is quiescent will
318 >     * time out and terminate if the pool has remained quiescent for a
319 >     * given period -- a short period if there are more threads than
320 >     * parallelism, longer as the number of threads decreases. This
321 >     * will slowly propagate, eventually terminating all workers after
322 >     * periods of non-use.
323 >     *
324 >     * Shutdown and Termination. A call to shutdownNow atomically sets
325 >     * a runState bit and then (non-atomically) sets each worker's
326 >     * runState status, cancels all unprocessed tasks, and wakes up
327 >     * all waiting workers.  Detecting whether termination should
328 >     * commence after a non-abrupt shutdown() call requires more work
329 >     * and bookkeeping. We need consensus about quiescence (i.e., that
330 >     * there is no more work). The active count provides a primary
331 >     * indication but non-abrupt shutdown still requires a rechecking
332 >     * scan for any workers that are inactive but not queued.
333 >     *
334 >     * Joining Tasks
335 >     * =============
336 >     *
337 >     * Any of several actions may be taken when one worker is waiting
338 >     * to join a task stolen (or always held) by another.  Because we
339 >     * are multiplexing many tasks on to a pool of workers, we can't
340 >     * just let them block (as in Thread.join).  We also cannot just
341 >     * reassign the joiner's run-time stack with another and replace
342 >     * it later, which would be a form of "continuation", that even if
343 >     * possible is not necessarily a good idea since we sometimes need
344 >     * both an unblocked task and its continuation to progress.
345 >     * Instead we combine two tactics:
346 >     *
347 >     *   Helping: Arranging for the joiner to execute some task that it
348 >     *      would be running if the steal had not occurred.
349 >     *
350 >     *   Compensating: Unless there are already enough live threads,
351 >     *      method tryCompensate() may create or re-activate a spare
352 >     *      thread to compensate for blocked joiners until they unblock.
353 >     *
354 >     * A third form (implemented in tryRemoveAndExec and
355 >     * tryPollForAndExec) amounts to helping a hypothetical
356 >     * compensator: If we can readily tell that a possible action of a
357 >     * compensator is to steal and execute the task being joined, the
358 >     * joining thread can do so directly, without the need for a
359 >     * compensation thread (although at the expense of larger run-time
360 >     * stacks, but the tradeoff is typically worthwhile).
361 >     *
362 >     * The ManagedBlocker extension API can't use helping so relies
363 >     * only on compensation in method awaitBlocker.
364 >     *
365 >     * The algorithm in tryHelpStealer entails a form of "linear"
366 >     * helping: Each worker records (in field currentSteal) the most
367 >     * recent task it stole from some other worker. Plus, it records
368 >     * (in field currentJoin) the task it is currently actively
369 >     * joining. Method tryHelpStealer uses these markers to try to
370 >     * find a worker to help (i.e., steal back a task from and execute
371 >     * it) that could hasten completion of the actively joined task.
372 >     * In essence, the joiner executes a task that would be on its own
373 >     * local deque had the to-be-joined task not been stolen. This may
374 >     * be seen as a conservative variant of the approach in Wagner &
375 >     * Calder "Leapfrogging: a portable technique for implementing
376 >     * efficient futures" SIGPLAN Notices, 1993
377 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
378 >     * that: (1) We only maintain dependency links across workers upon
379 >     * steals, rather than use per-task bookkeeping.  This sometimes
380 >     * requires a linear scan of workQueues array to locate stealers,
381 >     * but often doesn't because stealers leave hints (that may become
382 >     * stale/wrong) of where to locate them.  A stealHint is only a
383 >     * hint because a worker might have had multiple steals and the
384 >     * hint records only one of them (usually the most current).
385 >     * Hinting isolates cost to when it is needed, rather than adding
386 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
387 >     * and potentially cyclic mutual steals.  (3) It is intentionally
388 >     * racy: field currentJoin is updated only while actively joining,
389 >     * which means that we miss links in the chain during long-lived
390 >     * tasks, GC stalls etc (which is OK since blocking in such cases
391 >     * is usually a good idea).  (4) We bound the number of attempts
392 >     * to find work (see MAX_HELP) and fall back to suspending the
393 >     * worker and if necessary replacing it with another.
394 >     *
395 >     * It is impossible to keep exactly the target parallelism number
396 >     * of threads running at any given time.  Determining the
397 >     * existence of conservatively safe helping targets, the
398 >     * availability of already-created spares, and the apparent need
399 >     * to create new spares are all racy, so we rely on multiple
400 >     * retries of each.  Compensation in the apparent absence of
401 >     * helping opportunities is challenging to control on JVMs, where
402 >     * GC and other activities can stall progress of tasks that in
403 >     * turn stall out many other dependent tasks, without us being
404 >     * able to determine whether they will ever require compensation.
405 >     * Even though work-stealing otherwise encounters little
406 >     * degradation in the presence of more threads than cores,
407 >     * aggressively adding new threads in such cases entails risk of
408 >     * unwanted positive feedback control loops in which more threads
409 >     * cause more dependent stalls (as well as delayed progress of
410 >     * unblocked threads to the point that we know they are available)
411 >     * leading to more situations requiring more threads, and so
412 >     * on. This aspect of control can be seen as an (analytically
413 >     * intractable) game with an opponent that may choose the worst
414 >     * (for us) active thread to stall at any time.  We take several
415 >     * precautions to bound losses (and thus bound gains), mainly in
416 >     * methods tryCompensate and awaitJoin: (1) We only try
417 >     * compensation after attempting enough helping steps (measured
418 >     * via counting and timing) that we have already consumed the
419 >     * estimated cost of creating and activating a new thread.  (2) We
420 >     * allow up to 50% of threads to be blocked before initially
421 >     * adding any others, and unless completely saturated, check that
422 >     * some work is available for a new worker before adding. Also, we
423 >     * create up to only 50% more threads until entering a mode that
424 >     * only adds a thread if all others are possibly blocked.  All
425 >     * together, this means that we might be half as fast to react,
426 >     * and create half as many threads as possible in the ideal case,
427 >     * but present vastly fewer anomalies in all other cases compared
428 >     * to both more aggressive and more conservative alternatives.
429 >     *
430 >     * Style notes: There is a lot of representation-level coupling
431 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 >     * ForkJoinTask.  The fields of WorkQueue maintain data structures
433 >     * managed by ForkJoinPool, so are directly accessed.  There is
434 >     * little point trying to reduce this, since any associated future
435 >     * changes in representations will need to be accompanied by
436 >     * algorithmic changes anyway. Several methods intrinsically
437 >     * sprawl because they must accumulate sets of consistent reads of
438 >     * volatiles held in local variables.  Methods signalWork() and
439 >     * scan() are the main bottlenecks, so are especially heavily
440 >     * micro-optimized/mangled.  There are lots of inline assignments
441 >     * (of form "while ((local = field) != 0)") which are usually the
442 >     * simplest way to ensure the required read orderings (which are
443 >     * sometimes critical). This leads to a "C"-like style of listing
444 >     * declarations of these locals at the heads of methods or blocks.
445 >     * There are several occurrences of the unusual "do {} while
446 >     * (!cas...)"  which is the simplest way to force an update of a
447 >     * CAS'ed variable. There are also other coding oddities that help
448 >     * some methods perform reasonably even when interpreted (not
449 >     * compiled).
450 >     *
451 >     * The order of declarations in this file is:
452 >     * (1) Static utility functions
453 >     * (2) Nested (static) classes
454 >     * (3) Static fields
455 >     * (4) Fields, along with constants used when unpacking some of them
456 >     * (5) Internal control methods
457 >     * (6) Callbacks and other support for ForkJoinTask methods
458 >     * (7) Exported methods
459 >     * (8) Static block initializing statics in minimally dependent order
460       */
461  
462 <    /** Mask for packing and unpacking shorts */
463 <    private static final int  shortMask = 0xffff;
462 >    // Static utilities
463 >
464 >    /**
465 >     * If there is a security manager, makes sure caller has
466 >     * permission to modify threads.
467 >     */
468 >    private static void checkPermission() {
469 >        SecurityManager security = System.getSecurityManager();
470 >        if (security != null)
471 >            security.checkPermission(modifyThreadPermission);
472 >    }
473  
474 <    /** Max pool size -- must be a power of two minus 1 */
68 <    private static final int MAX_THREADS =  0x7FFF;
474 >    // Nested classes
475  
476      /**
477 <     * Factory for creating new ForkJoinWorkerThreads.  A
478 <     * ForkJoinWorkerThreadFactory must be defined and used for
479 <     * ForkJoinWorkerThread subclasses that extend base functionality
480 <     * or initialize threads with different contexts.
477 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
478 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
479 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
480 >     * functionality or initialize threads with different contexts.
481       */
482      public static interface ForkJoinWorkerThreadFactory {
483          /**
484           * Returns a new worker thread operating in the given pool.
485           *
486           * @param pool the pool this thread works in
487 <         * @throws NullPointerException if pool is null;
487 >         * @throws NullPointerException if the pool is null
488           */
489          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
490      }
491  
492      /**
493 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
493 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
494       * new ForkJoinWorkerThread.
495       */
496 <    public static class  DefaultForkJoinWorkerThreadFactory
496 >    static class DefaultForkJoinWorkerThreadFactory
497          implements ForkJoinWorkerThreadFactory {
498          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
499 <            try {
500 <                return new ForkJoinWorkerThread(pool);
501 <            } catch (OutOfMemoryError oom)  {
499 >            return new ForkJoinWorkerThread(pool);
500 >        }
501 >    }
502 >
503 >    /**
504 >     * Class for artificial tasks that are used to replace the target
505 >     * of local joins if they are removed from an interior queue slot
506 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
507 >     * actually do anything beyond having a unique identity.
508 >     */
509 >    static final class EmptyTask extends ForkJoinTask<Void> {
510 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
511 >        public final Void getRawResult() { return null; }
512 >        public final void setRawResult(Void x) {}
513 >        public final boolean exec() { return true; }
514 >    }
515 >
516 >    /**
517 >     * Queues supporting work-stealing as well as external task
518 >     * submission. See above for main rationale and algorithms.
519 >     * Implementation relies heavily on "Unsafe" intrinsics
520 >     * and selective use of "volatile":
521 >     *
522 >     * Field "base" is the index (mod array.length) of the least valid
523 >     * queue slot, which is always the next position to steal (poll)
524 >     * from if nonempty. Reads and writes require volatile orderings
525 >     * but not CAS, because updates are only performed after slot
526 >     * CASes.
527 >     *
528 >     * Field "top" is the index (mod array.length) of the next queue
529 >     * slot to push to or pop from. It is written only by owner thread
530 >     * for push, or under lock for trySharedPush, and accessed by
531 >     * other threads only after reading (volatile) base.  Both top and
532 >     * base are allowed to wrap around on overflow, but (top - base)
533 >     * (or more commonly -(base - top) to force volatile read of base
534 >     * before top) still estimates size.
535 >     *
536 >     * The array slots are read and written using the emulation of
537 >     * volatiles/atomics provided by Unsafe. Insertions must in
538 >     * general use putOrderedObject as a form of releasing store to
539 >     * ensure that all writes to the task object are ordered before
540 >     * its publication in the queue. (Although we can avoid one case
541 >     * of this when locked in trySharedPush.) All removals entail a
542 >     * CAS to null.  The array is always a power of two. To ensure
543 >     * safety of Unsafe array operations, all accesses perform
544 >     * explicit null checks and implicit bounds checks via
545 >     * power-of-two masking.
546 >     *
547 >     * In addition to basic queuing support, this class contains
548 >     * fields described elsewhere to control execution. It turns out
549 >     * to work better memory-layout-wise to include them in this
550 >     * class rather than a separate class.
551 >     *
552 >     * Performance on most platforms is very sensitive to placement of
553 >     * instances of both WorkQueues and their arrays -- we absolutely
554 >     * do not want multiple WorkQueue instances or multiple queue
555 >     * arrays sharing cache lines. (It would be best for queue objects
556 >     * and their arrays to share, but there is nothing available to
557 >     * help arrange that).  Unfortunately, because they are recorded
558 >     * in a common array, WorkQueue instances are often moved to be
559 >     * adjacent by garbage collectors. To reduce impact, we use field
560 >     * padding that works OK on common platforms; this effectively
561 >     * trades off slightly slower average field access for the sake of
562 >     * avoiding really bad worst-case access. (Until better JVM
563 >     * support is in place, this padding is dependent on transient
564 >     * properties of JVM field layout rules.)  We also take care in
565 >     * allocating, sizing and resizing the array. Non-shared queue
566 >     * arrays are initialized (via method growArray) by workers before
567 >     * use. Others are allocated on first use.
568 >     */
569 >    static final class WorkQueue {
570 >        /**
571 >         * Capacity of work-stealing queue array upon initialization.
572 >         * Must be a power of two; at least 4, but should be larger to
573 >         * reduce or eliminate cacheline sharing among queues.
574 >         * Currently, it is much larger, as a partial workaround for
575 >         * the fact that JVMs often place arrays in locations that
576 >         * share GC bookkeeping (especially cardmarks) such that
577 >         * per-write accesses encounter serious memory contention.
578 >         */
579 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
580 >
581 >        /**
582 >         * Maximum size for queue arrays. Must be a power of two less
583 >         * than or equal to 1 << (31 - width of array entry) to ensure
584 >         * lack of wraparound of index calculations, but defined to a
585 >         * value a bit less than this to help users trap runaway
586 >         * programs before saturating systems.
587 >         */
588 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
589 >
590 >        volatile long totalSteals; // cumulative number of steals
591 >        int seed;                  // for random scanning; initialize nonzero
592 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
593 >        int nextWait;              // encoded record of next event waiter
594 >        int rescans;               // remaining scans until block
595 >        int nsteals;               // top-level task executions since last idle
596 >        final int mode;            // lifo, fifo, or shared
597 >        int poolIndex;             // index of this queue in pool (or 0)
598 >        int stealHint;             // index of most recent known stealer
599 >        volatile int runState;     // 1: locked, -1: terminate; else 0
600 >        volatile int base;         // index of next slot for poll
601 >        int top;                   // index of next slot for push
602 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
603 >        final ForkJoinPool pool;   // the containing pool (may be null)
604 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
605 >        volatile Thread parker;    // == owner during call to park; else null
606 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
607 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
608 >        // Heuristic padding to ameliorate unfortunate memory placements
609 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
610 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
611 >
612 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
613 >            this.mode = mode;
614 >            this.pool = pool;
615 >            this.owner = owner;
616 >            // Place indices in the center of array (that is not yet allocated)
617 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
618 >        }
619 >
620 >        /**
621 >         * Returns the approximate number of tasks in the queue.
622 >         */
623 >        final int queueSize() {
624 >            int n = base - top;       // non-owner callers must read base first
625 >            return (n >= 0) ? 0 : -n; // ignore transient negative
626 >        }
627 >
628 >        /**
629 >         * Provides a more accurate estimate of whether this queue has
630 >         * any tasks than does queueSize, by checking whether a
631 >         * near-empty queue has at least one unclaimed task.
632 >         */
633 >        final boolean isEmpty() {
634 >            ForkJoinTask<?>[] a; int m, s;
635 >            int n = base - (s = top);
636 >            return (n >= 0 ||
637 >                    (n == -1 &&
638 >                     ((a = array) == null ||
639 >                      (m = a.length - 1) < 0 ||
640 >                      U.getObjectVolatile
641 >                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
642 >        }
643 >
644 >        /**
645 >         * Pushes a task. Call only by owner in unshared queues.
646 >         *
647 >         * @param task the task. Caller must ensure non-null.
648 >         * @throw RejectedExecutionException if array cannot be resized
649 >         */
650 >        final void push(ForkJoinTask<?> task) {
651 >            ForkJoinTask<?>[] a; ForkJoinPool p;
652 >            int s = top, m, n;
653 >            if ((a = array) != null) {    // ignore if queue removed
654 >                U.putOrderedObject
655 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
656 >                if ((n = (top = s + 1) - base) <= 2) {
657 >                    if ((p = pool) != null)
658 >                        p.signalWork();
659 >                }
660 >                else if (n >= m)
661 >                    growArray(true);
662 >            }
663 >        }
664 >
665 >        /**
666 >         * Pushes a task if lock is free and array is either big
667 >         * enough or can be resized to be big enough.
668 >         *
669 >         * @param task the task. Caller must ensure non-null.
670 >         * @return true if submitted
671 >         */
672 >        final boolean trySharedPush(ForkJoinTask<?> task) {
673 >            boolean submitted = false;
674 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
675 >                ForkJoinTask<?>[] a = array;
676 >                int s = top;
677 >                try {
678 >                    if ((a != null && a.length > s + 1 - base) ||
679 >                        (a = growArray(false)) != null) { // must presize
680 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
681 >                        U.putObject(a, (long)j, task);    // don't need "ordered"
682 >                        top = s + 1;
683 >                        submitted = true;
684 >                    }
685 >                } finally {
686 >                    runState = 0;                         // unlock
687 >                }
688 >            }
689 >            return submitted;
690 >        }
691 >
692 >        /**
693 >         * Takes next task, if one exists, in LIFO order.  Call only
694 >         * by owner in unshared queues.
695 >         */
696 >        final ForkJoinTask<?> pop() {
697 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
698 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
699 >                for (int s; (s = top - 1) - base >= 0;) {
700 >                    long j = ((m & s) << ASHIFT) + ABASE;
701 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
702 >                        break;
703 >                    if (U.compareAndSwapObject(a, j, t, null)) {
704 >                        top = s;
705 >                        return t;
706 >                    }
707 >                }
708 >            }
709 >            return null;
710 >        }
711 >
712 >        final ForkJoinTask<?> sharedPop() {
713 >            ForkJoinTask<?> task = null;
714 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
715 >                try {
716 >                    ForkJoinTask<?>[] a; int m;
717 >                    if ((a = array) != null && (m = a.length - 1) >= 0) {
718 >                        for (int s; (s = top - 1) - base >= 0;) {
719 >                            long j = ((m & s) << ASHIFT) + ABASE;
720 >                            ForkJoinTask<?> t =
721 >                                (ForkJoinTask<?>)U.getObject(a, j);
722 >                            if (t == null)
723 >                                break;
724 >                            if (U.compareAndSwapObject(a, j, t, null)) {
725 >                                top = s;
726 >                                task = t;
727 >                                break;
728 >                            }
729 >                        }
730 >                    }
731 >                } finally {
732 >                    runState = 0;
733 >                }
734 >            }
735 >            return task;
736 >        }
737 >
738 >
739 >        /**
740 >         * Takes a task in FIFO order if b is base of queue and a task
741 >         * can be claimed without contention. Specialized versions
742 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
743 >         */
744 >        final ForkJoinTask<?> pollAt(int b) {
745 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
746 >            if ((a = array) != null) {
747 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
748 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
749 >                    base == b &&
750 >                    U.compareAndSwapObject(a, j, t, null)) {
751 >                    base = b + 1;
752 >                    return t;
753 >                }
754 >            }
755 >            return null;
756 >        }
757 >
758 >        /**
759 >         * Takes next task, if one exists, in FIFO order.
760 >         */
761 >        final ForkJoinTask<?> poll() {
762 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
763 >            while ((b = base) - top < 0 && (a = array) != null) {
764 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
765 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
766 >                if (t != null) {
767 >                    if (base == b &&
768 >                        U.compareAndSwapObject(a, j, t, null)) {
769 >                        base = b + 1;
770 >                        return t;
771 >                    }
772 >                }
773 >                else if (base == b) {
774 >                    if (b + 1 == top)
775 >                        break;
776 >                    Thread.yield(); // wait for lagging update
777 >                }
778 >            }
779 >            return null;
780 >        }
781 >
782 >        /**
783 >         * Takes next task, if one exists, in order specified by mode.
784 >         */
785 >        final ForkJoinTask<?> nextLocalTask() {
786 >            return mode == 0 ? pop() : poll();
787 >        }
788 >
789 >        /**
790 >         * Returns next task, if one exists, in order specified by mode.
791 >         */
792 >        final ForkJoinTask<?> peek() {
793 >            ForkJoinTask<?>[] a = array; int m;
794 >            if (a == null || (m = a.length - 1) < 0)
795 >                return null;
796 >            int i = mode == 0 ? top - 1 : base;
797 >            int j = ((i & m) << ASHIFT) + ABASE;
798 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
799 >        }
800 >
801 >        /**
802 >         * Pops the given task only if it is at the current top.
803 >         */
804 >        final boolean tryUnpush(ForkJoinTask<?> t) {
805 >            ForkJoinTask<?>[] a; int s;
806 >            if ((a = array) != null && (s = top) != base &&
807 >                U.compareAndSwapObject
808 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
809 >                top = s;
810 >                return true;
811 >            }
812 >            return false;
813 >        }
814 >
815 >        /**
816 >         * Version of tryUnpush for shared queues; called by non-FJ
817 >         * submitters after prechecking that task probably exists.
818 >         */
819 >        final boolean trySharedUnpush(ForkJoinTask<?> t) {
820 >            boolean success = false;
821 >            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
822 >                try {
823 >                    ForkJoinTask<?>[] a; int s;
824 >                    if ((a = array) != null && (s = top) != base &&
825 >                        U.compareAndSwapObject
826 >                        (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
827 >                        top = s;
828 >                        success = true;
829 >                    }
830 >                } finally {
831 >                    runState = 0;                         // unlock
832 >                }
833 >            }
834 >            return success;
835 >        }
836 >
837 >        /**
838 >         * Polls the given task only if it is at the current base.
839 >         */
840 >        final boolean pollFor(ForkJoinTask<?> task) {
841 >            ForkJoinTask<?>[] a; int b;
842 >            if ((b = base) - top < 0 && (a = array) != null) {
843 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
844 >                if (U.getObjectVolatile(a, j) == task && base == b &&
845 >                    U.compareAndSwapObject(a, j, task, null)) {
846 >                    base = b + 1;
847 >                    return true;
848 >                }
849 >            }
850 >            return false;
851 >        }
852 >
853 >        /**
854 >         * Initializes or doubles the capacity of array. Call either
855 >         * by owner or with lock held -- it is OK for base, but not
856 >         * top, to move while resizings are in progress.
857 >         *
858 >         * @param rejectOnFailure if true, throw exception if capacity
859 >         * exceeded (relayed ultimately to user); else return null.
860 >         */
861 >        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
862 >            ForkJoinTask<?>[] oldA = array;
863 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
864 >            if (size <= MAXIMUM_QUEUE_CAPACITY) {
865 >                int oldMask, t, b;
866 >                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
867 >                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
868 >                    (t = top) - (b = base) > 0) {
869 >                    int mask = size - 1;
870 >                    do {
871 >                        ForkJoinTask<?> x;
872 >                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
873 >                        int j    = ((b &    mask) << ASHIFT) + ABASE;
874 >                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
875 >                        if (x != null &&
876 >                            U.compareAndSwapObject(oldA, oldj, x, null))
877 >                            U.putObjectVolatile(a, j, x);
878 >                    } while (++b != t);
879 >                }
880 >                return a;
881 >            }
882 >            else if (!rejectOnFailure)
883                  return null;
884 +            else
885 +                throw new RejectedExecutionException("Queue capacity exceeded");
886 +        }
887 +
888 +        /**
889 +         * Removes and cancels all known tasks, ignoring any exceptions.
890 +         */
891 +        final void cancelAll() {
892 +            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
893 +            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
894 +            for (ForkJoinTask<?> t; (t = poll()) != null; )
895 +                ForkJoinTask.cancelIgnoringExceptions(t);
896 +        }
897 +
898 +        /**
899 +         * Computes next value for random probes.  Scans don't require
900 +         * a very high quality generator, but also not a crummy one.
901 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
902 +         * This is manually inlined in its usages in ForkJoinPool to
903 +         * avoid writes inside busy scan loops.
904 +         */
905 +        final int nextSeed() {
906 +            int r = seed;
907 +            r ^= r << 13;
908 +            r ^= r >>> 17;
909 +            return seed = r ^= r << 5;
910 +        }
911 +
912 +        // Specialized execution methods
913 +
914 +        /**
915 +         * Pops and runs tasks until empty.
916 +         */
917 +        private void popAndExecAll() {
918 +            // A bit faster than repeated pop calls
919 +            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
920 +            while ((a = array) != null && (m = a.length - 1) >= 0 &&
921 +                   (s = top - 1) - base >= 0 &&
922 +                   (t = ((ForkJoinTask<?>)
923 +                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
924 +                   != null) {
925 +                if (U.compareAndSwapObject(a, j, t, null)) {
926 +                    top = s;
927 +                    t.doExec();
928 +                }
929 +            }
930 +        }
931 +
932 +        /**
933 +         * Polls and runs tasks until empty.
934 +         */
935 +        private void pollAndExecAll() {
936 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
937 +                t.doExec();
938 +        }
939 +
940 +        /**
941 +         * If present, removes from queue and executes the given task, or
942 +         * any other cancelled task. Returns (true) immediately on any CAS
943 +         * or consistency check failure so caller can retry.
944 +         *
945 +         * @return 0 if no progress can be made, else positive
946 +         * (this unusual convention simplifies use with tryHelpStealer.)
947 +         */
948 +        final int tryRemoveAndExec(ForkJoinTask<?> task) {
949 +            int stat = 1;
950 +            boolean removed = false, empty = true;
951 +            ForkJoinTask<?>[] a; int m, s, b, n;
952 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
953 +                (n = (s = top) - (b = base)) > 0) {
954 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
955 +                    int j = ((--s & m) << ASHIFT) + ABASE;
956 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
957 +                    if (t == null)                    // inconsistent length
958 +                        break;
959 +                    else if (t == task) {
960 +                        if (s + 1 == top) {           // pop
961 +                            if (!U.compareAndSwapObject(a, j, task, null))
962 +                                break;
963 +                            top = s;
964 +                            removed = true;
965 +                        }
966 +                        else if (base == b)           // replace with proxy
967 +                            removed = U.compareAndSwapObject(a, j, task,
968 +                                                             new EmptyTask());
969 +                        break;
970 +                    }
971 +                    else if (t.status >= 0)
972 +                        empty = false;
973 +                    else if (s + 1 == top) {          // pop and throw away
974 +                        if (U.compareAndSwapObject(a, j, t, null))
975 +                            top = s;
976 +                        break;
977 +                    }
978 +                    if (--n == 0) {
979 +                        if (!empty && base == b)
980 +                            stat = 0;
981 +                        break;
982 +                    }
983 +                }
984 +            }
985 +            if (removed)
986 +                task.doExec();
987 +            return stat;
988 +        }
989 +
990 +        /**
991 +         * Version of shared pop that takes top element only if it
992 +         * its root is the given CountedCompleter.
993 +         */
994 +        final CountedCompleter<?> sharedPopCC(CountedCompleter<?> root) {
995 +            CountedCompleter<?> task = null;
996 +            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
997 +                try {
998 +                    ForkJoinTask<?>[] a; int m;
999 +                    if ((a = array) != null && (m = a.length - 1) >= 0) {
1000 +                        outer:for (int s; (s = top - 1) - base >= 0;) {
1001 +                            long j = ((m & s) << ASHIFT) + ABASE;
1002 +                            ForkJoinTask<?> t =
1003 +                                (ForkJoinTask<?>)U.getObject(a, j);
1004 +                            if (t == null || !(t instanceof CountedCompleter))
1005 +                                break;
1006 +                            CountedCompleter<?> cc = (CountedCompleter<?>)t;
1007 +                            for (CountedCompleter<?> q = cc, p;;) {
1008 +                                if (q == root) {
1009 +                                    if (U.compareAndSwapObject(a, j, cc, null)) {
1010 +                                        top = s;
1011 +                                        task = cc;
1012 +                                        break outer;
1013 +                                    }
1014 +                                    break;
1015 +                                }
1016 +                                if ((p = q.completer) == null)
1017 +                                    break outer;
1018 +                                q = p;
1019 +                            }
1020 +                        }
1021 +                    }
1022 +                } finally {
1023 +                    runState = 0;
1024 +                }
1025 +            }
1026 +            return task;
1027 +        }
1028 +
1029 +        /**
1030 +         * Executes a top-level task and any local tasks remaining
1031 +         * after execution.
1032 +         */
1033 +        final void runTask(ForkJoinTask<?> t) {
1034 +            if (t != null) {
1035 +                currentSteal = t;
1036 +                t.doExec();
1037 +                if (top != base) {       // process remaining local tasks
1038 +                    if (mode == 0)
1039 +                        popAndExecAll();
1040 +                    else
1041 +                        pollAndExecAll();
1042 +                }
1043 +                ++nsteals;
1044 +                currentSteal = null;
1045              }
1046          }
1047 +
1048 +        /**
1049 +         * Executes a non-top-level (stolen) task.
1050 +         */
1051 +        final void runSubtask(ForkJoinTask<?> t) {
1052 +            if (t != null) {
1053 +                ForkJoinTask<?> ps = currentSteal;
1054 +                currentSteal = t;
1055 +                t.doExec();
1056 +                currentSteal = ps;
1057 +            }
1058 +        }
1059 +
1060 +        /**
1061 +         * Returns true if owned and not known to be blocked.
1062 +         */
1063 +        final boolean isApparentlyUnblocked() {
1064 +            Thread wt; Thread.State s;
1065 +            return (eventCount >= 0 &&
1066 +                    (wt = owner) != null &&
1067 +                    (s = wt.getState()) != Thread.State.BLOCKED &&
1068 +                    s != Thread.State.WAITING &&
1069 +                    s != Thread.State.TIMED_WAITING);
1070 +        }
1071 +
1072 +        /**
1073 +         * If this owned and is not already interrupted, try to
1074 +         * interrupt and/or unpark, ignoring exceptions.
1075 +         */
1076 +        final void interruptOwner() {
1077 +            Thread wt, p;
1078 +            if ((wt = owner) != null && !wt.isInterrupted()) {
1079 +                try {
1080 +                    wt.interrupt();
1081 +                } catch (SecurityException ignore) {
1082 +                }
1083 +            }
1084 +            if ((p = parker) != null)
1085 +                U.unpark(p);
1086 +        }
1087 +
1088 +        // Unsafe mechanics
1089 +        private static final sun.misc.Unsafe U;
1090 +        private static final long RUNSTATE;
1091 +        private static final int ABASE;
1092 +        private static final int ASHIFT;
1093 +        static {
1094 +            int s;
1095 +            try {
1096 +                U = getUnsafe();
1097 +                Class<?> k = WorkQueue.class;
1098 +                Class<?> ak = ForkJoinTask[].class;
1099 +                RUNSTATE = U.objectFieldOffset
1100 +                    (k.getDeclaredField("runState"));
1101 +                ABASE = U.arrayBaseOffset(ak);
1102 +                s = U.arrayIndexScale(ak);
1103 +            } catch (Exception e) {
1104 +                throw new Error(e);
1105 +            }
1106 +            if ((s & (s-1)) != 0)
1107 +                throw new Error("data type scale not a power of two");
1108 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1109 +        }
1110      }
1111  
1112      /**
1113 <     * The default ForkJoinWorkerThreadFactory, used unless overridden
1114 <     * in ForkJoinPool constructors.
1113 >     * Per-thread records for threads that submit to pools. Currently
1114 >     * holds only pseudo-random seed / index that is used to choose
1115 >     * submission queues in method doSubmit. In the future, this may
1116 >     * also incorporate a means to implement different task rejection
1117 >     * and resubmission policies.
1118 >     *
1119 >     * Seeds for submitters and workers/workQueues work in basically
1120 >     * the same way but are initialized and updated using slightly
1121 >     * different mechanics. Both are initialized using the same
1122 >     * approach as in class ThreadLocal, where successive values are
1123 >     * unlikely to collide with previous values. This is done during
1124 >     * registration for workers, but requires a separate AtomicInteger
1125 >     * for submitters. Seeds are then randomly modified upon
1126 >     * collisions using xorshifts, which requires a non-zero seed.
1127       */
1128 <    private static final DefaultForkJoinWorkerThreadFactory
1129 <        defaultForkJoinWorkerThreadFactory =
1130 <        new DefaultForkJoinWorkerThreadFactory();
1128 >    static final class Submitter {
1129 >        int seed;
1130 >        Submitter() {
1131 >            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1132 >            seed = (s == 0) ? 1 : s; // ensure non-zero
1133 >        }
1134 >    }
1135 >
1136 >    /** ThreadLocal class for Submitters */
1137 >    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1138 >        public Submitter initialValue() { return new Submitter(); }
1139 >    }
1140  
1141 +    // static fields (initialized in static initializer below)
1142  
1143      /**
1144 <     * Permission required for callers of methods that may start or
1145 <     * kill threads.
1144 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1145 >     * overridden in ForkJoinPool constructors.
1146       */
1147 <    private static final RuntimePermission modifyThreadPermission =
1148 <        new RuntimePermission("modifyThread");
1147 >    public static final ForkJoinWorkerThreadFactory
1148 >        defaultForkJoinWorkerThreadFactory;
1149 >
1150 >    /** Property prefix for constructing common pool */
1151 >    private static final String propPrefix =
1152 >        "java.util.concurrent.ForkJoinPool.common.";
1153  
1154      /**
1155 <     * If there is a security manager, makes sure caller has
1156 <     * permission to modify threads.
1155 >     * Common (static) pool. Non-null for public use unless a static
1156 >     * construction exception, but internal usages must null-check on
1157 >     * use.
1158       */
1159 <    private static void checkPermission() {
122 <        SecurityManager security = System.getSecurityManager();
123 <        if (security != null)
124 <            security.checkPermission(modifyThreadPermission);
125 <    }
1159 >    static final ForkJoinPool commonPool;
1160  
1161      /**
1162 <     * Generator for assigning sequence numbers as pool names.
1162 >     * Common pool parallelism. Must equal commonPool.parallelism.
1163       */
1164 <    private static final AtomicInteger poolNumberGenerator =
131 <        new AtomicInteger();
1164 >    static final int commonPoolParallelism;
1165  
1166      /**
1167 <     * Array holding all worker threads in the pool. Array size must
135 <     * be a power of two.  Updates and replacements are protected by
136 <     * workerLock, but it is always kept in a consistent enough state
137 <     * to be randomly accessed without locking by workers performing
138 <     * work-stealing.
1167 >     * Generator for assigning sequence numbers as pool names.
1168       */
1169 <    volatile ForkJoinWorkerThread[] workers;
1169 >    private static final AtomicInteger poolNumberGenerator;
1170  
1171      /**
1172 <     * Lock protecting access to workers.
1172 >     * Generator for initial hashes/seeds for submitters. Accessed by
1173 >     * Submitter class constructor.
1174       */
1175 <    private final ReentrantLock workerLock;
1175 >    static final AtomicInteger nextSubmitterSeed;
1176  
1177      /**
1178 <     * Condition for awaitTermination.
1178 >     * Permission required for callers of methods that may start or
1179 >     * kill threads.
1180       */
1181 <    private final Condition termination;
1181 >    private static final RuntimePermission modifyThreadPermission;
1182  
1183      /**
1184 <     * The uncaught exception handler used when any worker
1185 <     * abrupty terminates
1184 >     * Per-thread submission bookkeeping. Shared across all pools
1185 >     * to reduce ThreadLocal pollution and because random motion
1186 >     * to avoid contention in one pool is likely to hold for others.
1187       */
1188 <    private Thread.UncaughtExceptionHandler ueh;
1188 >    private static final ThreadSubmitter submitters;
1189 >
1190 >    // static constants
1191  
1192      /**
1193 <     * Creation factory for worker threads.
1193 >     * Initial timeout value (in nanoseconds) for the thread triggering
1194 >     * quiescence to park waiting for new work. On timeout, the thread
1195 >     * will instead try to shrink the number of workers.
1196       */
1197 <    private final ForkJoinWorkerThreadFactory factory;
1197 >    private static final long IDLE_TIMEOUT      = 1000L * 1000L * 1000L; // 1sec
1198  
1199      /**
1200 <     * Head of stack of threads that were created to maintain
165 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
1200 >     * Timeout value when there are more threads than parallelism level
1201       */
1202 <    private volatile WaitQueueNode spareStack;
1202 >    private static final long FAST_IDLE_TIMEOUT =  100L * 1000L * 1000L;
1203  
1204      /**
1205 <     * Sum of per-thread steal counts, updated only when threads are
1206 <     * idle or terminating.
1205 >     * The maximum stolen->joining link depth allowed in method
1206 >     * tryHelpStealer.  Must be a power of two. This value also
1207 >     * controls the maximum number of times to try to help join a task
1208 >     * without any apparent progress or change in pool state before
1209 >     * giving up and blocking (see awaitJoin).  Depths for legitimate
1210 >     * chains are unbounded, but we use a fixed constant to avoid
1211 >     * (otherwise unchecked) cycles and to bound staleness of
1212 >     * traversal parameters at the expense of sometimes blocking when
1213 >     * we could be helping.
1214       */
1215 <    private final AtomicLong stealCount;
1215 >    private static final int MAX_HELP = 64;
1216  
1217      /**
1218 <     * Queue for external submissions.
1218 >     * Secondary time-based bound (in nanosecs) for helping attempts
1219 >     * before trying compensated blocking in awaitJoin. Used in
1220 >     * conjunction with MAX_HELP to reduce variance due to different
1221 >     * polling rates associated with different helping options. The
1222 >     * value should roughly approximate the time required to create
1223 >     * and/or activate a worker thread.
1224       */
1225 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1225 >    private static final long COMPENSATION_DELAY = 1L << 18; // ~0.25 millisec
1226  
1227      /**
1228 <     * Head of Treiber stack for barrier sync. See below for explanation
1228 >     * Increment for seed generators. See class ThreadLocal for
1229 >     * explanation.
1230       */
1231 <    private volatile WaitQueueNode barrierStack;
1231 >    private static final int SEED_INCREMENT = 0x61c88647;
1232  
1233      /**
1234 <     * The count for event barrier
1235 <     */
1236 <    private volatile long eventCount;
1234 >     * Bits and masks for control variables
1235 >     *
1236 >     * Field ctl is a long packed with:
1237 >     * AC: Number of active running workers minus target parallelism (16 bits)
1238 >     * TC: Number of total workers minus target parallelism (16 bits)
1239 >     * ST: true if pool is terminating (1 bit)
1240 >     * EC: the wait count of top waiting thread (15 bits)
1241 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1242 >     *
1243 >     * When convenient, we can extract the upper 32 bits of counts and
1244 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1245 >     * (int)ctl.  The ec field is never accessed alone, but always
1246 >     * together with id and st. The offsets of counts by the target
1247 >     * parallelism and the positionings of fields makes it possible to
1248 >     * perform the most common checks via sign tests of fields: When
1249 >     * ac is negative, there are not enough active workers, when tc is
1250 >     * negative, there are not enough total workers, and when e is
1251 >     * negative, the pool is terminating.  To deal with these possibly
1252 >     * negative fields, we use casts in and out of "short" and/or
1253 >     * signed shifts to maintain signedness.
1254 >     *
1255 >     * When a thread is queued (inactivated), its eventCount field is
1256 >     * set negative, which is the only way to tell if a worker is
1257 >     * prevented from executing tasks, even though it must continue to
1258 >     * scan for them to avoid queuing races. Note however that
1259 >     * eventCount updates lag releases so usage requires care.
1260 >     *
1261 >     * Field runState is an int packed with:
1262 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1263 >     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1264 >     * INIT: set true after workQueues array construction (1 bit)
1265 >     *
1266 >     * The sequence number enables simple consistency checks:
1267 >     * Staleness of read-only operations on the workQueues array can
1268 >     * be checked by comparing runState before vs after the reads.
1269 >     */
1270 >
1271 >    // bit positions/shifts for fields
1272 >    private static final int  AC_SHIFT   = 48;
1273 >    private static final int  TC_SHIFT   = 32;
1274 >    private static final int  ST_SHIFT   = 31;
1275 >    private static final int  EC_SHIFT   = 16;
1276 >
1277 >    // bounds
1278 >    private static final int  SMASK      = 0xffff;  // short bits
1279 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1280 >    private static final int  SQMASK     = 0xfffe;  // even short bits
1281 >    private static final int  SHORT_SIGN = 1 << 15;
1282 >    private static final int  INT_SIGN   = 1 << 31;
1283 >
1284 >    // masks
1285 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1286 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1287 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1288 >
1289 >    // units for incrementing and decrementing
1290 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1291 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1292 >
1293 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1294 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1295 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1296 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1297 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1298 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1299 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1300 >
1301 >    // masks and units for dealing with e = (int)ctl
1302 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1303 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1304 >
1305 >    // runState bits
1306 >    private static final int SHUTDOWN    = 1 << 31;
1307 >
1308 >    // access mode for WorkQueue
1309 >    static final int LIFO_QUEUE          =  0;
1310 >    static final int FIFO_QUEUE          =  1;
1311 >    static final int SHARED_QUEUE        = -1;
1312 >
1313 >    // Instance fields
1314 >
1315 >    /*
1316 >     * Field layout order in this class tends to matter more than one
1317 >     * would like. Runtime layout order is only loosely related to
1318 >     * declaration order and may differ across JVMs, but the following
1319 >     * empirically works OK on current JVMs.
1320 >     */
1321 >
1322 >    volatile long stealCount;                  // collects worker counts
1323 >    volatile long ctl;                         // main pool control
1324 >    final int parallelism;                     // parallelism level
1325 >    final int localMode;                       // per-worker scheduling mode
1326 >    volatile int nextWorkerNumber;             // to create worker name string
1327 >    final int submitMask;                      // submit queue index bound
1328 >    int nextSeed;                              // for initializing worker seeds
1329 >    volatile int mainLock;                     // spinlock for array updates
1330 >    volatile int runState;                     // shutdown status and seq
1331 >    WorkQueue[] workQueues;                    // main registry
1332 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1333 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1334 >    final String workerNamePrefix;             // to create worker name string
1335 >
1336 >    /*
1337 >     * Mechanics for main lock protecting worker array updates.  Uses
1338 >     * the same strategy as ConcurrentHashMap bins -- a spinLock for
1339 >     * normal cases, but falling back to builtin lock when (rarely)
1340 >     * needed.  See internal ConcurrentHashMap documentation for
1341 >     * explanation.
1342 >     */
1343 >
1344 >    static final int LOCK_WAITING = 2; // bit to indicate need for signal
1345 >    static final int MAX_LOCK_SPINS = 1 << 8;
1346 >
1347 >    private void tryAwaitMainLock() {
1348 >        int spins = MAX_LOCK_SPINS, r = 0, h;
1349 >        while (((h = mainLock) & 1) != 0) {
1350 >            if (r == 0)
1351 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1352 >            else if (spins >= 0) {
1353 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1354 >                if (r >= 0)
1355 >                    --spins;
1356 >            }
1357 >            else if (U.compareAndSwapInt(this, MAINLOCK, h, h | LOCK_WAITING)) {
1358 >                synchronized (this) {
1359 >                    if ((mainLock & LOCK_WAITING) != 0) {
1360 >                        try {
1361 >                            wait();
1362 >                        } catch (InterruptedException ie) {
1363 >                            try {
1364 >                                Thread.currentThread().interrupt();
1365 >                            } catch (SecurityException ignore) {
1366 >                            }
1367 >                        }
1368 >                    }
1369 >                    else
1370 >                        notifyAll(); // possibly won race vs signaller
1371 >                }
1372 >                break;
1373 >            }
1374 >        }
1375 >    }
1376 >
1377 >    //  Creating, registering, and deregistering workers
1378  
1379      /**
1380 <     * Pool number, just for assigning useful names to worker threads
1380 >     * Tries to create and start a worker
1381       */
1382 <    private final int poolNumber;
1382 >    private void addWorker() {
1383 >        Throwable ex = null;
1384 >        ForkJoinWorkerThread wt = null;
1385 >        try {
1386 >            if ((wt = factory.newThread(this)) != null) {
1387 >                wt.start();
1388 >                return;
1389 >            }
1390 >        } catch (Throwable e) {
1391 >            ex = e;
1392 >        }
1393 >        deregisterWorker(wt, ex); // adjust counts etc on failure
1394 >    }
1395  
1396      /**
1397 <     * The maximum allowed pool size
1397 >     * Callback from ForkJoinWorkerThread constructor to assign a
1398 >     * public name. This must be separate from registerWorker because
1399 >     * it is called during the "super" constructor call in
1400 >     * ForkJoinWorkerThread.
1401       */
1402 <    private volatile int maxPoolSize;
1402 >    final String nextWorkerName() {
1403 >        int n;
1404 >        do {} while (!U.compareAndSwapInt(this, NEXTWORKERNUMBER,
1405 >                                          n = nextWorkerNumber, ++n));
1406 >        return workerNamePrefix.concat(Integer.toString(n));
1407 >    }
1408  
1409      /**
1410 <     * The desired parallelism level, updated only under workerLock.
1410 >     * Callback from ForkJoinWorkerThread constructor to establish its
1411 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1412 >     * to packing entries in front of the workQueues array, we treat
1413 >     * the array as a simple power-of-two hash table using per-thread
1414 >     * seed as hash, expanding as needed.
1415 >     *
1416 >     * @param w the worker's queue
1417       */
1418 <    private volatile int parallelism;
1418 >    final void registerWorker(WorkQueue w) {
1419 >        while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1420 >            tryAwaitMainLock();
1421 >        try {
1422 >            WorkQueue[] ws;
1423 >            if ((ws = workQueues) == null)
1424 >                ws = workQueues = new WorkQueue[submitMask + 1];
1425 >            if (w != null) {
1426 >                int rs, n =  ws.length, m = n - 1;
1427 >                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1428 >                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1429 >                int r = (s << 1) | 1;               // use odd-numbered indices
1430 >                if (ws[r &= m] != null) {           // collision
1431 >                    int probes = 0;                 // step by approx half size
1432 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & SQMASK) + 2;
1433 >                    while (ws[r = (r + step) & m] != null) {
1434 >                        if (++probes >= n) {
1435 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1436 >                            m = n - 1;
1437 >                            probes = 0;
1438 >                        }
1439 >                    }
1440 >                }
1441 >                w.eventCount = w.poolIndex = r;     // establish before recording
1442 >                ws[r] = w;                          // also update seq
1443 >                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1444 >            }
1445 >        } finally {
1446 >            if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1447 >                mainLock = 0;
1448 >                synchronized (this) { notifyAll(); };
1449 >            }
1450 >        }
1451 >    }
1452  
1453      /**
1454 <     * Holds number of total (i.e., created and not yet terminated)
1455 <     * and running (i.e., not blocked on joins or other managed sync)
1456 <     * threads, packed into one int to ensure consistent snapshot when
1457 <     * making decisions about creating and suspending spare
1458 <     * threads. Updated only by CAS.  Note: CASes in
1459 <     * updateRunningCount and preJoin running active count is in low
1460 <     * word, so need to be modified if this changes
1454 >     * Final callback from terminating worker, as well as upon failure
1455 >     * to construct or start a worker in addWorker.  Removes record of
1456 >     * worker from array, and adjusts counts. If pool is shutting
1457 >     * down, tries to complete termination.
1458 >     *
1459 >     * @param wt the worker thread or null if addWorker failed
1460 >     * @param ex the exception causing failure, or null if none
1461       */
1462 <    private volatile int workerCounts;
1462 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1463 >        WorkQueue w = null;
1464 >        if (wt != null && (w = wt.workQueue) != null) {
1465 >            w.runState = -1;                // ensure runState is set
1466 >            long steals = w.totalSteals + w.nsteals, sc;
1467 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1468 >                                               sc = stealCount, sc + steals));
1469 >            int idx = w.poolIndex;
1470 >            while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1471 >                tryAwaitMainLock();
1472 >            try {
1473 >                WorkQueue[] ws = workQueues;
1474 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1475 >                    ws[idx] = null;
1476 >            } finally {
1477 >                if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1478 >                    mainLock = 0;
1479 >                    synchronized (this) { notifyAll(); };
1480 >                }
1481 >            }
1482 >        }
1483  
1484 <    private static int totalCountOf(int s)           { return s >>> 16;  }
1485 <    private static int runningCountOf(int s)         { return s & shortMask; }
1486 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1484 >        long c;                             // adjust ctl counts
1485 >        do {} while (!U.compareAndSwapLong
1486 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1487 >                                           ((c - TC_UNIT) & TC_MASK) |
1488 >                                           (c & ~(AC_MASK|TC_MASK)))));
1489 >
1490 >        if (!tryTerminate(false, false) && w != null) {
1491 >            w.cancelAll();                  // cancel remaining tasks
1492 >            if (w.array != null)            // suppress signal if never ran
1493 >                signalWork();               // wake up or create replacement
1494 >            if (ex == null)                 // help clean refs on way out
1495 >                ForkJoinTask.helpExpungeStaleExceptions();
1496 >        }
1497 >
1498 >        if (ex != null)                     // rethrow
1499 >            ForkJoinTask.rethrow(ex);
1500 >    }
1501 >
1502 >    // Submissions
1503  
1504      /**
1505 <     * Add delta (which may be negative) to running count.  This must
1506 <     * be called before (with negative arg) and after (with positive)
1507 <     * any managed synchronization (i.e., mainly, joins)
1508 <     * @param delta the number to add
1505 >     * Unless shutting down, adds the given task to a submission queue
1506 >     * at submitter's current queue index (modulo submission
1507 >     * range). If no queue exists at the index, one is created.  If
1508 >     * the queue is busy, another index is randomly chosen. The
1509 >     * submitMask bounds the effective number of queues to the
1510 >     * (nearest power of two for) parallelism level.
1511 >     *
1512 >     * @param task the task. Caller must ensure non-null.
1513       */
1514 <    final void updateRunningCount(int delta) {
1515 <        int s;
1516 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1514 >    private void doSubmit(ForkJoinTask<?> task) {
1515 >        Submitter s = submitters.get();
1516 >        for (int r = s.seed, m = submitMask;;) {
1517 >            WorkQueue[] ws; WorkQueue q;
1518 >            int k = r & m & SQMASK;          // use only even indices
1519 >            if (runState < 0)
1520 >                throw new RejectedExecutionException(); // shutting down
1521 >            else if ((ws = workQueues) == null || ws.length <= k) {
1522 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1523 >                    tryAwaitMainLock();
1524 >                try {
1525 >                    if (workQueues == null)
1526 >                        workQueues = new WorkQueue[submitMask + 1];
1527 >                } finally {
1528 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1529 >                        mainLock = 0;
1530 >                        synchronized (this) { notifyAll(); };
1531 >                    }
1532 >                }
1533 >            }
1534 >            else if ((q = ws[k]) == null) {  // create new queue
1535 >                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1536 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
1537 >                    tryAwaitMainLock();
1538 >                try {
1539 >                    int rs = runState;       // to update seq
1540 >                    if (ws == workQueues && ws[k] == null) {
1541 >                        ws[k] = nq;
1542 >                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1543 >                    }
1544 >                } finally {
1545 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
1546 >                        mainLock = 0;
1547 >                        synchronized (this) { notifyAll(); };
1548 >                    }
1549 >                }
1550 >            }
1551 >            else if (q.trySharedPush(task)) {
1552 >                signalWork();
1553 >                return;
1554 >            }
1555 >            else if (m > 1) {                // move to a different index
1556 >                r ^= r << 13;                // same xorshift as WorkQueues
1557 >                r ^= r >>> 17;
1558 >                s.seed = r ^= r << 5;
1559 >            }
1560 >            else
1561 >                Thread.yield();              // yield if no alternatives
1562 >        }
1563      }
1564  
1565      /**
1566 <     * Add delta (which may be negative) to both total and running
234 <     * count.  This must be called upon creation and termination of
235 <     * worker threads.
236 <     * @param delta the number to add
1566 >     * Submits the given (non-null) task to the common pool, if possible.
1567       */
1568 <    private void updateWorkerCount(int delta) {
1569 <        int d = delta + (delta << 16); // add to both lo and hi parts
1570 <        int s;
1571 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1568 >    static void submitToCommonPool(ForkJoinTask<?> task) {
1569 >        ForkJoinPool p;
1570 >        if ((p = commonPool) == null)
1571 >            throw new RejectedExecutionException("Common Pool Unavailable");
1572 >        p.doSubmit(task);
1573      }
1574  
1575      /**
1576 <     * Lifecycle control. High word contains runState, low word
1577 <     * contains the number of workers that are (probably) executing
1578 <     * tasks. This value is atomically incremented before a worker
1579 <     * gets a task to run, and decremented when worker has no tasks
1580 <     * and cannot find any. These two fields are bundled together to
1581 <     * support correct termination triggering.  Note: activeCount
1582 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
1576 >     * Returns true if the given task was submitted to common pool
1577 >     * and has not yet commenced execution, and is available for
1578 >     * removal according to execution policies; if so removing the
1579 >     * submission from the pool.
1580 >     *
1581 >     * @param task the task
1582 >     * @return true if successful
1583       */
1584 <    private volatile int runControl;
1584 >    static boolean tryUnsubmitFromCommonPool(ForkJoinTask<?> task) {
1585 >        // If not oversaturating platform, peek, looking for task and
1586 >        // eligibility before using trySharedUnpush to actually take
1587 >        // it under lock
1588 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue w, q;
1589 >        ForkJoinTask<?>[] a; int ac, s, m;
1590 >        if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1591 >            int k = submitters.get().seed & p.submitMask & SQMASK;
1592 >            if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1593 >                (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1594 >                if (ac == 0) { // double check if all workers active
1595 >                    for (int i = 1; i <= m; i += 2) {
1596 >                        if ((w = ws[i]) != null && w.parker != null) {
1597 >                            ac = -1;
1598 >                            break;
1599 >                        }
1600 >                    }
1601 >                }
1602 >                return (ac < 0 && (a = q.array) != null &&
1603 >                        (s = q.top - 1) - q.base >= 0 &&
1604 >                        s >= 0 && s < a.length &&
1605 >                        a[s] == task &&
1606 >                        q.trySharedUnpush(task));
1607 >            }
1608 >        }
1609 >        return false;
1610 >    }
1611  
1612 <    // RunState values. Order among values matters
1613 <    private static final int RUNNING     = 0;
1614 <    private static final int SHUTDOWN    = 1;
1615 <    private static final int TERMINATING = 2;
1616 <    private static final int TERMINATED  = 3;
1612 >    /**
1613 >     * Tries to pop and run a task within same computation from common pool
1614 >     */
1615 >    static void popAndExecCCFromCommonPool(CountedCompleter<?> cc) {
1616 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; int m, ac;
1617 >        CountedCompleter<?> par, task;
1618 >        if ((p = commonPool) != null && (ws = p.workQueues) != null) {
1619 >            while ((par = cc.completer) != null) // find root
1620 >                cc = par;
1621 >            int k = submitters.get().seed & p.submitMask & SQMASK;
1622 >            if ((m = ws.length - 1) >= k && (q = ws[k]) != null &&
1623 >                (ac = (int)(p.ctl >> AC_SHIFT)) <= 0) {
1624 >                if (ac == 0) {
1625 >                    for (int i = 1; i <= m; i += 2) {
1626 >                        if ((w = ws[i]) != null && w.parker != null) {
1627 >                            ac = -1;
1628 >                            break;
1629 >                        }
1630 >                    }
1631 >                }
1632 >                if (ac < 0 && q.top - q.base > 0 &&
1633 >                    (task = q.sharedPopCC(cc)) != null)
1634 >                    task.exec();
1635 >            }
1636 >        }
1637 >    }
1638  
1639 <    private static int runStateOf(int c)             { return c >>> 16; }
263 <    private static int activeCountOf(int c)          { return c & shortMask; }
264 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1639 >    // Maintaining ctl counts
1640  
1641      /**
1642 <     * Increment active count. Called by workers before/during
268 <     * executing tasks.
1642 >     * Increments active count; mainly called upon return from blocking.
1643       */
1644      final void incrementActiveCount() {
1645 <        int c;
1646 <        do;while (!casRunControl(c = runControl, c+1));
1645 >        long c;
1646 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1647      }
1648  
1649      /**
1650 <     * Decrement active count; possibly trigger termination.
277 <     * Called by workers when they can't find tasks.
1650 >     * Tries to create one or activate one or more workers if too few are active.
1651       */
1652 <    final void decrementActiveCount() {
1653 <        int c, nextc;
1654 <        do;while (!casRunControl(c = runControl, nextc = c-1));
1655 <        if (canTerminateOnShutdown(nextc))
1656 <            terminateOnShutdown();
1652 >    final void signalWork() {
1653 >        long c; int u;
1654 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1655 >            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1656 >            if ((e = (int)c) > 0) {                     // at least one waiting
1657 >                if (ws != null && (i = e & SMASK) < ws.length &&
1658 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1659 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1660 >                               ((long)(u + UAC_UNIT) << 32));
1661 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1662 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1663 >                        if ((p = w.parker) != null)
1664 >                            U.unpark(p);                // activate and release
1665 >                        break;
1666 >                    }
1667 >                }
1668 >                else
1669 >                    break;
1670 >            }
1671 >            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1672 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1673 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1674 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1675 >                    addWorker();
1676 >                    break;
1677 >                }
1678 >            }
1679 >            else
1680 >                break;
1681 >        }
1682      }
1683  
1684 +    // Scanning for tasks
1685 +
1686      /**
1687 <     * Return true if argument represents zero active count and
288 <     * nonzero runstate, which is the triggering condition for
289 <     * terminating on shutdown.
1687 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1688       */
1689 <    private static boolean canTerminateOnShutdown(int c) {
1690 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
1689 >    final void runWorker(WorkQueue w) {
1690 >        w.growArray(false);         // initialize queue array in this thread
1691 >        do { w.runTask(scan(w)); } while (w.runState >= 0);
1692      }
1693  
1694      /**
1695 <     * Transition run state to at least the given state. Return true
1696 <     * if not already at least given state.
1695 >     * Scans for and, if found, returns one task, else possibly
1696 >     * inactivates the worker. This method operates on single reads of
1697 >     * volatile state and is designed to be re-invoked continuously,
1698 >     * in part because it returns upon detecting inconsistencies,
1699 >     * contention, or state changes that indicate possible success on
1700 >     * re-invocation.
1701 >     *
1702 >     * The scan searches for tasks across a random permutation of
1703 >     * queues (starting at a random index and stepping by a random
1704 >     * relative prime, checking each at least once).  The scan
1705 >     * terminates upon either finding a non-empty queue, or completing
1706 >     * the sweep. If the worker is not inactivated, it takes and
1707 >     * returns a task from this queue.  On failure to find a task, we
1708 >     * take one of the following actions, after which the caller will
1709 >     * retry calling this method unless terminated.
1710 >     *
1711 >     * * If pool is terminating, terminate the worker.
1712 >     *
1713 >     * * If not a complete sweep, try to release a waiting worker.  If
1714 >     * the scan terminated because the worker is inactivated, then the
1715 >     * released worker will often be the calling worker, and it can
1716 >     * succeed obtaining a task on the next call. Or maybe it is
1717 >     * another worker, but with same net effect. Releasing in other
1718 >     * cases as well ensures that we have enough workers running.
1719 >     *
1720 >     * * If not already enqueued, try to inactivate and enqueue the
1721 >     * worker on wait queue. Or, if inactivating has caused the pool
1722 >     * to be quiescent, relay to idleAwaitWork to check for
1723 >     * termination and possibly shrink pool.
1724 >     *
1725 >     * * If already inactive, and the caller has run a task since the
1726 >     * last empty scan, return (to allow rescan) unless others are
1727 >     * also inactivated.  Field WorkQueue.rescans counts down on each
1728 >     * scan to ensure eventual inactivation and blocking.
1729 >     *
1730 >     * * If already enqueued and none of the above apply, park
1731 >     * awaiting signal,
1732 >     *
1733 >     * @param w the worker (via its WorkQueue)
1734 >     * @return a task or null if none found
1735       */
1736 <    private boolean transitionRunStateTo(int state) {
1737 <        for (;;) {
1738 <            int c = runControl;
1739 <            if (runStateOf(c) >= state)
1740 <                return false;
1741 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1742 <                return true;
1736 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1737 >        WorkQueue[] ws;                       // first update random seed
1738 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1739 >        int rs = runState, m;                 // volatile read order matters
1740 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1741 >            int ec = w.eventCount;            // ec is negative if inactive
1742 >            int step = (r >>> 16) | 1;        // relative prime
1743 >            for (int j = (m + 1) << 2; ; r += step) {
1744 >                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1745 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1746 >                    (a = q.array) != null) {  // probably nonempty
1747 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1748 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1749 >                    if (q.base == b && ec >= 0 && t != null &&
1750 >                        U.compareAndSwapObject(a, i, t, null)) {
1751 >                        if (q.top - (q.base = b + 1) > 0)
1752 >                            signalWork();    // help pushes signal
1753 >                        return t;
1754 >                    }
1755 >                    else if (ec < 0 || j <= m) {
1756 >                        rs = 0;               // mark scan as imcomplete
1757 >                        break;                // caller can retry after release
1758 >                    }
1759 >                }
1760 >                if (--j < 0)
1761 >                    break;
1762 >            }
1763 >
1764 >            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1765 >            if (e < 0)                        // decode ctl on empty scan
1766 >                w.runState = -1;              // pool is terminating
1767 >            else if (rs == 0 || rs != runState) { // incomplete scan
1768 >                WorkQueue v; Thread p;        // try to release a waiter
1769 >                if (e > 0 && a < 0 && w.eventCount == ec &&
1770 >                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1771 >                    long nc = ((long)(v.nextWait & E_MASK) |
1772 >                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1773 >                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1774 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1775 >                        if ((p = v.parker) != null)
1776 >                            U.unpark(p);
1777 >                    }
1778 >                }
1779 >            }
1780 >            else if (ec >= 0) {               // try to enqueue/inactivate
1781 >                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1782 >                w.nextWait = e;
1783 >                w.eventCount = ec | INT_SIGN; // mark as inactive
1784 >                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1785 >                    w.eventCount = ec;        // unmark on CAS failure
1786 >                else {
1787 >                    if ((ns = w.nsteals) != 0) {
1788 >                        w.nsteals = 0;        // set rescans if ran task
1789 >                        w.rescans = (a > 0) ? 0 : a + parallelism;
1790 >                        w.totalSteals += ns;
1791 >                    }
1792 >                    if (a == 1 - parallelism) // quiescent
1793 >                        idleAwaitWork(w, nc, c);
1794 >                }
1795 >            }
1796 >            else if (w.eventCount < 0) {      // already queued
1797 >                int ac = a + parallelism;
1798 >                if ((nr = w.rescans) > 0)     // continue rescanning
1799 >                    w.rescans = (ac < nr) ? ac : nr - 1;
1800 >                else if (((w.seed >>> 16) & ac) == 0) { // randomize park
1801 >                    Thread.interrupted();     // clear status
1802 >                    Thread wt = Thread.currentThread();
1803 >                    U.putObject(wt, PARKBLOCKER, this);
1804 >                    w.parker = wt;            // emulate LockSupport.park
1805 >                    if (w.eventCount < 0)     // recheck
1806 >                        U.park(false, 0L);
1807 >                    w.parker = null;
1808 >                    U.putObject(wt, PARKBLOCKER, null);
1809 >                }
1810 >            }
1811          }
1812 +        return null;
1813      }
1814  
1815      /**
1816 <     * Controls whether to add spares to maintain parallelism
1817 <     */
1818 <    private volatile boolean maintainsParallelism;
1816 >     * If inactivating worker w has caused the pool to become
1817 >     * quiescent, checks for pool termination, and, so long as this is
1818 >     * not the only worker, waits for event for up to a given
1819 >     * duration.  On timeout, if ctl has not changed, terminates the
1820 >     * worker, which will in turn wake up another worker to possibly
1821 >     * repeat this process.
1822 >     *
1823 >     * @param w the calling worker
1824 >     * @param currentCtl the ctl value triggering possible quiescence
1825 >     * @param prevCtl the ctl value to restore if thread is terminated
1826 >     */
1827 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1828 >        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1829 >            (int)prevCtl != 0 && !hasQueuedSubmissions() && ctl == currentCtl) {
1830 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1831 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1832 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1833 >            Thread wt = Thread.currentThread();
1834 >            while (ctl == currentCtl) {
1835 >                Thread.interrupted();  // timed variant of version in scan()
1836 >                U.putObject(wt, PARKBLOCKER, this);
1837 >                w.parker = wt;
1838 >                if (ctl == currentCtl)
1839 >                    U.park(false, parkTime);
1840 >                w.parker = null;
1841 >                U.putObject(wt, PARKBLOCKER, null);
1842 >                if (ctl != currentCtl)
1843 >                    break;
1844 >                if (deadline - System.nanoTime() <= 0L &&
1845 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1846 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1847 >                    w.runState = -1;   // shrink
1848 >                    break;
1849 >                }
1850 >            }
1851 >        }
1852 >    }
1853  
1854 <    // Constructors
1854 >    /**
1855 >     * Tries to locate and execute tasks for a stealer of the given
1856 >     * task, or in turn one of its stealers, Traces currentSteal ->
1857 >     * currentJoin links looking for a thread working on a descendant
1858 >     * of the given task and with a non-empty queue to steal back and
1859 >     * execute tasks from. The first call to this method upon a
1860 >     * waiting join will often entail scanning/search, (which is OK
1861 >     * because the joiner has nothing better to do), but this method
1862 >     * leaves hints in workers to speed up subsequent calls. The
1863 >     * implementation is very branchy to cope with potential
1864 >     * inconsistencies or loops encountering chains that are stale,
1865 >     * unknown, or so long that they are likely cyclic.
1866 >     *
1867 >     * @param joiner the joining worker
1868 >     * @param task the task to join
1869 >     * @return 0 if no progress can be made, negative if task
1870 >     * known complete, else positive
1871 >     */
1872 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1873 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1874 >        if (joiner != null && task != null) {       // hoist null checks
1875 >            restart: for (;;) {
1876 >                ForkJoinTask<?> subtask = task;     // current target
1877 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1878 >                    WorkQueue[] ws; int m, s, h;
1879 >                    if ((s = task.status) < 0) {
1880 >                        stat = s;
1881 >                        break restart;
1882 >                    }
1883 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1884 >                        break restart;              // shutting down
1885 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1886 >                        v.currentSteal != subtask) {
1887 >                        for (int origin = h;;) {    // find stealer
1888 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1889 >                                (subtask.status < 0 || j.currentJoin != subtask))
1890 >                                continue restart;   // occasional staleness check
1891 >                            if ((v = ws[h]) != null &&
1892 >                                v.currentSteal == subtask) {
1893 >                                j.stealHint = h;    // save hint
1894 >                                break;
1895 >                            }
1896 >                            if (h == origin)
1897 >                                break restart;      // cannot find stealer
1898 >                        }
1899 >                    }
1900 >                    for (;;) { // help stealer or descend to its stealer
1901 >                        ForkJoinTask[] a;  int b;
1902 >                        if (subtask.status < 0)     // surround probes with
1903 >                            continue restart;       //   consistency checks
1904 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1905 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1906 >                            ForkJoinTask<?> t =
1907 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1908 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1909 >                                v.currentSteal != subtask)
1910 >                                continue restart;   // stale
1911 >                            stat = 1;               // apparent progress
1912 >                            if (t != null && v.base == b &&
1913 >                                U.compareAndSwapObject(a, i, t, null)) {
1914 >                                v.base = b + 1;     // help stealer
1915 >                                joiner.runSubtask(t);
1916 >                            }
1917 >                            else if (v.base == b && ++steps == MAX_HELP)
1918 >                                break restart;      // v apparently stalled
1919 >                        }
1920 >                        else {                      // empty -- try to descend
1921 >                            ForkJoinTask<?> next = v.currentJoin;
1922 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1923 >                                v.currentSteal != subtask)
1924 >                                continue restart;   // stale
1925 >                            else if (next == null || ++steps == MAX_HELP)
1926 >                                break restart;      // dead-end or maybe cyclic
1927 >                            else {
1928 >                                subtask = next;
1929 >                                j = v;
1930 >                                break;
1931 >                            }
1932 >                        }
1933 >                    }
1934 >                }
1935 >            }
1936 >        }
1937 >        return stat;
1938 >    }
1939  
1940      /**
1941 <     * Creates a ForkJoinPool with a pool size equal to the number of
1942 <     * processors available on the system and using the default
1943 <     * ForkJoinWorkerThreadFactory,
1944 <     * @throws SecurityException if a security manager exists and
321 <     *         the caller is not permitted to modify threads
322 <     *         because it does not hold {@link
323 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1941 >     * If task is at base of some steal queue, steals and executes it.
1942 >     *
1943 >     * @param joiner the joining worker
1944 >     * @param task the task
1945       */
1946 <    public ForkJoinPool() {
1947 <        this(Runtime.getRuntime().availableProcessors(),
1948 <             defaultForkJoinWorkerThreadFactory);
1946 >    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1947 >        WorkQueue[] ws;
1948 >        if ((ws = workQueues) != null) {
1949 >            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1950 >                WorkQueue q = ws[j];
1951 >                if (q != null && q.pollFor(task)) {
1952 >                    joiner.runSubtask(task);
1953 >                    break;
1954 >                }
1955 >            }
1956 >        }
1957      }
1958  
1959      /**
1960 <     * Creates a ForkJoinPool with the indicated parellelism level
1961 <     * threads, and using the default ForkJoinWorkerThreadFactory,
1962 <     * @param parallelism the number of worker threads
1963 <     * @throws IllegalArgumentException if parallelism less than or
1964 <     * equal to zero
1965 <     * @throws SecurityException if a security manager exists and
1966 <     *         the caller is not permitted to modify threads
1967 <     *         because it does not hold {@link
1968 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
1969 <     */
1970 <    public ForkJoinPool(int parallelism) {
1971 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1960 >     * Tries to decrement active count (sometimes implicitly) and
1961 >     * possibly release or create a compensating worker in preparation
1962 >     * for blocking. Fails on contention or termination. Otherwise,
1963 >     * adds a new thread if no idle workers are available and either
1964 >     * pool would become completely starved or: (at least half
1965 >     * starved, and fewer than 50% spares exist, and there is at least
1966 >     * one task apparently available). Even though the availability
1967 >     * check requires a full scan, it is worthwhile in reducing false
1968 >     * alarms.
1969 >     *
1970 >     * @param task if non-null, a task being waited for
1971 >     * @param blocker if non-null, a blocker being waited for
1972 >     * @return true if the caller can block, else should recheck and retry
1973 >     */
1974 >    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1975 >        int pc = parallelism, e;
1976 >        long c = ctl;
1977 >        WorkQueue[] ws = workQueues;
1978 >        if ((e = (int)c) >= 0 && ws != null) {
1979 >            int u, a, ac, hc;
1980 >            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1981 >            boolean replace = false;
1982 >            if ((a = u >> UAC_SHIFT) <= 0) {
1983 >                if ((ac = a + pc) <= 1)
1984 >                    replace = true;
1985 >                else if ((e > 0 || (task != null &&
1986 >                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1987 >                    WorkQueue w;
1988 >                    for (int j = 0; j < ws.length; ++j) {
1989 >                        if ((w = ws[j]) != null && !w.isEmpty()) {
1990 >                            replace = true;
1991 >                            break;   // in compensation range and tasks available
1992 >                        }
1993 >                    }
1994 >                }
1995 >            }
1996 >            if ((task == null || task.status >= 0) && // recheck need to block
1997 >                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1998 >                if (!replace) {          // no compensation
1999 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
2000 >                    if (U.compareAndSwapLong(this, CTL, c, nc))
2001 >                        return true;
2002 >                }
2003 >                else if (e != 0) {       // release an idle worker
2004 >                    WorkQueue w; Thread p; int i;
2005 >                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
2006 >                        long nc = ((long)(w.nextWait & E_MASK) |
2007 >                                   (c & (AC_MASK|TC_MASK)));
2008 >                        if (w.eventCount == (e | INT_SIGN) &&
2009 >                            U.compareAndSwapLong(this, CTL, c, nc)) {
2010 >                            w.eventCount = (e + E_SEQ) & E_MASK;
2011 >                            if ((p = w.parker) != null)
2012 >                                U.unpark(p);
2013 >                            return true;
2014 >                        }
2015 >                    }
2016 >                }
2017 >                else if (tc < MAX_CAP) { // create replacement
2018 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
2019 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2020 >                        addWorker();
2021 >                        return true;
2022 >                    }
2023 >                }
2024 >            }
2025 >        }
2026 >        return false;
2027      }
2028  
2029      /**
2030 <     * Creates a ForkJoinPool with a pool size equal to the number of
2031 <     * processors available on the system and using the given
2032 <     * ForkJoinWorkerThreadFactory,
2033 <     * @param factory the factory for creating new threads
2034 <     * @throws NullPointerException if factory is null
351 <     * @throws SecurityException if a security manager exists and
352 <     *         the caller is not permitted to modify threads
353 <     *         because it does not hold {@link
354 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
2030 >     * Helps and/or blocks until the given task is done.
2031 >     *
2032 >     * @param joiner the joining worker
2033 >     * @param task the task
2034 >     * @return task status on exit
2035       */
2036 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
2037 <        this(Runtime.getRuntime().availableProcessors(), factory);
2036 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2037 >        int s;
2038 >        if ((s = task.status) >= 0) {
2039 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2040 >            joiner.currentJoin = task;
2041 >            long startTime = 0L;
2042 >            for (int k = 0;;) {
2043 >                if ((s = (joiner.isEmpty() ?           // try to help
2044 >                          tryHelpStealer(joiner, task) :
2045 >                          joiner.tryRemoveAndExec(task))) == 0 &&
2046 >                    (s = task.status) >= 0) {
2047 >                    if (k == 0) {
2048 >                        startTime = System.nanoTime();
2049 >                        tryPollForAndExec(joiner, task); // check uncommon case
2050 >                    }
2051 >                    else if ((k & (MAX_HELP - 1)) == 0 &&
2052 >                             System.nanoTime() - startTime >=
2053 >                             COMPENSATION_DELAY &&
2054 >                             tryCompensate(task, null)) {
2055 >                        if (task.trySetSignal()) {
2056 >                            synchronized (task) {
2057 >                                if (task.status >= 0) {
2058 >                                    try {                // see ForkJoinTask
2059 >                                        task.wait();     //  for explanation
2060 >                                    } catch (InterruptedException ie) {
2061 >                                    }
2062 >                                }
2063 >                                else
2064 >                                    task.notifyAll();
2065 >                            }
2066 >                        }
2067 >                        long c;                          // re-activate
2068 >                        do {} while (!U.compareAndSwapLong
2069 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2070 >                    }
2071 >                }
2072 >                if (s < 0 || (s = task.status) < 0) {
2073 >                    joiner.currentJoin = prevJoin;
2074 >                    break;
2075 >                }
2076 >                else if ((k++ & (MAX_HELP - 1)) == MAX_HELP >>> 1)
2077 >                    Thread.yield();                     // for politeness
2078 >            }
2079 >        }
2080 >        return s;
2081      }
2082  
2083      /**
2084 <     * Creates a ForkJoinPool with the indicated target number of
2085 <     * worker threads and the given factory.
2084 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2085 >     * to help join only while there is continuous progress. (Caller
2086 >     * will then enter a timed wait.)
2087       *
2088 <     * @param parallelism the targeted number of worker threads
2089 <     * @param factory the factory for creating new threads
2090 <     * @throws IllegalArgumentException if parallelism less than or
367 <     * equal to zero, or greater than implementation limit.
368 <     * @throws NullPointerException if factory is null
369 <     * @throws SecurityException if a security manager exists and
370 <     *         the caller is not permitted to modify threads
371 <     *         because it does not hold {@link
372 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
2088 >     * @param joiner the joining worker
2089 >     * @param task the task
2090 >     * @return task status on exit
2091       */
2092 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
2093 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2094 <            throw new IllegalArgumentException();
2095 <        if (factory == null)
2096 <            throw new NullPointerException();
2097 <        checkPermission();
2098 <        this.factory = factory;
2099 <        this.parallelism = parallelism;
382 <        this.maxPoolSize = MAX_THREADS;
383 <        this.maintainsParallelism = true;
384 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
385 <        this.workerLock = new ReentrantLock();
386 <        this.termination = workerLock.newCondition();
387 <        this.stealCount = new AtomicLong();
388 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
389 <        createAndStartInitialWorkers(parallelism);
2092 >    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2093 >        int s;
2094 >        while ((s = task.status) >= 0 &&
2095 >               (joiner.isEmpty() ?
2096 >                tryHelpStealer(joiner, task) :
2097 >                joiner.tryRemoveAndExec(task)) != 0)
2098 >            ;
2099 >        return s;
2100      }
2101  
2102      /**
2103 <     * Create new worker using factory.
2104 <     * @param index the index to assign worker
2105 <     * @return new worker, or null of factory failed
2106 <     */
2107 <    private ForkJoinWorkerThread createWorker(int index) {
2108 <        Thread.UncaughtExceptionHandler h = ueh;
2109 <        ForkJoinWorkerThread w = factory.newThread(this);
2110 <        if (w != null) {
2111 <            w.poolIndex = index;
2112 <            w.setDaemon(true);
2113 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
2114 <            if (h != null)
2115 <                w.setUncaughtExceptionHandler(h);
2103 >     * Returns a (probably) non-empty steal queue, if one is found
2104 >     * during a random, then cyclic scan, else null.  This method must
2105 >     * be retried by caller if, by the time it tries to use the queue,
2106 >     * it is empty.
2107 >     */
2108 >    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2109 >        // Similar to loop in scan(), but ignoring submissions
2110 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2111 >        int step = (r >>> 16) | 1;
2112 >        for (WorkQueue[] ws;;) {
2113 >            int rs = runState, m;
2114 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2115 >                return null;
2116 >            for (int j = (m + 1) << 2; ; r += step) {
2117 >                WorkQueue q = ws[((r << 1) | 1) & m];
2118 >                if (q != null && !q.isEmpty())
2119 >                    return q;
2120 >                else if (--j < 0) {
2121 >                    if (runState == rs)
2122 >                        return null;
2123 >                    break;
2124 >                }
2125 >            }
2126          }
407        return w;
2127      }
2128  
2129      /**
2130 <     * Return a good size for worker array given pool size.
2131 <     * Currently requires size to be a power of two.
2132 <     */
2133 <    private static int arraySizeFor(int ps) {
2134 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
2130 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2131 >     * active count ctl maintenance, but rather than blocking
2132 >     * when tasks cannot be found, we rescan until all others cannot
2133 >     * find tasks either.
2134 >     */
2135 >    final void helpQuiescePool(WorkQueue w) {
2136 >        for (boolean active = true;;) {
2137 >            ForkJoinTask<?> localTask; // exhaust local queue
2138 >            while ((localTask = w.nextLocalTask()) != null)
2139 >                localTask.doExec();
2140 >            WorkQueue q = findNonEmptyStealQueue(w);
2141 >            if (q != null) {
2142 >                ForkJoinTask<?> t; int b;
2143 >                if (!active) {      // re-establish active count
2144 >                    long c;
2145 >                    active = true;
2146 >                    do {} while (!U.compareAndSwapLong
2147 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2148 >                }
2149 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2150 >                    w.runSubtask(t);
2151 >            }
2152 >            else {
2153 >                long c;
2154 >                if (active) {       // decrement active count without queuing
2155 >                    active = false;
2156 >                    do {} while (!U.compareAndSwapLong
2157 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2158 >                }
2159 >                else
2160 >                    c = ctl;        // re-increment on exit
2161 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2162 >                    do {} while (!U.compareAndSwapLong
2163 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2164 >                    break;
2165 >                }
2166 >            }
2167 >        }
2168      }
2169  
2170      /**
2171 <     * Create or resize array if necessary to hold newLength
420 <     * @return the array
2171 >     * Restricted version of helpQuiescePool for non-FJ callers
2172       */
2173 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
2174 <        ForkJoinWorkerThread[] ws = workers;
2175 <        if (ws == null)
2176 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
2177 <        else if (newLength > ws.length)
2178 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
2179 <        else
2180 <            return ws;
2173 >    static void externalHelpQuiescePool() {
2174 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, sq;
2175 >        ForkJoinTask<?>[] a; int b;
2176 >        ForkJoinTask<?> t = null;
2177 >        int k = submitters.get().seed & SQMASK;
2178 >        if ((p = commonPool) != null &&
2179 >            (ws = p.workQueues) != null &&
2180 >            ws.length > (k &= p.submitMask) &&
2181 >            (q = ws[k]) != null) {
2182 >            while (q.top - q.base > 0) {
2183 >                if ((t = q.sharedPop()) != null)
2184 >                    break;
2185 >            }
2186 >            if (t == null && (sq = p.findNonEmptyStealQueue(q)) != null &&
2187 >                (b = sq.base) - sq.top < 0)
2188 >                t = sq.pollAt(b);
2189 >            if (t != null)
2190 >                t.doExec();
2191 >        }
2192      }
2193  
2194      /**
2195 <     * Try to shrink workers into smaller array after one or more terminate
2195 >     * Gets and removes a local or stolen task for the given worker.
2196 >     *
2197 >     * @return a task, if available
2198       */
2199 <    private void tryShrinkWorkerArray() {
2200 <        ForkJoinWorkerThread[] ws = workers;
2201 <        int len = ws.length;
2202 <        int last = len - 1;
2203 <        while (last >= 0 && ws[last] == null)
2204 <            --last;
2205 <        int newLength = arraySizeFor(last+1);
2206 <        if (newLength < len)
2207 <            workers = Arrays.copyOf(ws, newLength);
2199 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2200 >        for (ForkJoinTask<?> t;;) {
2201 >            WorkQueue q; int b;
2202 >            if ((t = w.nextLocalTask()) != null)
2203 >                return t;
2204 >            if ((q = findNonEmptyStealQueue(w)) == null)
2205 >                return null;
2206 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2207 >                return t;
2208 >        }
2209      }
2210  
2211      /**
2212 <     * Initial worker array and worker creation and startup. (This
2213 <     * must be done under lock to avoid interference by some of the
2214 <     * newly started threads while creating others.)
2212 >     * Returns the approximate (non-atomic) number of idle threads per
2213 >     * active thread to offset steal queue size for method
2214 >     * ForkJoinTask.getSurplusQueuedTaskCount().
2215       */
2216 <    private void createAndStartInitialWorkers(int ps) {
2217 <        final ReentrantLock lock = this.workerLock;
2218 <        lock.lock();
2219 <        try {
2220 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
2221 <            for (int i = 0; i < ps; ++i) {
2222 <                ForkJoinWorkerThread w = createWorker(i);
2223 <                if (w != null) {
2224 <                    ws[i] = w;
460 <                    w.start();
461 <                    updateWorkerCount(1);
462 <                }
463 <            }
464 <        } finally {
465 <            lock.unlock();
466 <        }
2216 >    final int idlePerActive() {
2217 >        // Approximate at powers of two for small values, saturate past 4
2218 >        int p = parallelism;
2219 >        int a = p + (int)(ctl >> AC_SHIFT);
2220 >        return (a > (p >>>= 1) ? 0 :
2221 >                a > (p >>>= 1) ? 1 :
2222 >                a > (p >>>= 1) ? 2 :
2223 >                a > (p >>>= 1) ? 4 :
2224 >                8);
2225      }
2226  
2227      /**
2228 <     * Worker creation and startup for threads added via setParallelism.
2228 >     * Returns approximate submission queue length for the given caller
2229       */
2230 <    private void createAndStartAddedWorkers() {
2231 <        resumeAllSpares();  // Allow spares to convert to nonspare
2232 <        int ps = parallelism;
2233 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
2234 <        int len = ws.length;
2235 <        // Sweep through slots, to keep lowest indices most populated
2236 <        int k = 0;
2237 <        while (k < len) {
2238 <            if (ws[k] != null) {
2239 <                ++k;
2240 <                continue;
2230 >    static int getEstimatedSubmitterQueueLength() {
2231 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q;
2232 >        int k = submitters.get().seed & SQMASK;
2233 >        return ((p = commonPool) != null && (ws = p.workQueues) != null &&
2234 >                ws.length > (k &= p.submitMask) &&
2235 >                (q = ws[k]) != null) ?
2236 >            q.queueSize() : 0;
2237 >    }
2238 >
2239 >    //  Termination
2240 >
2241 >    /**
2242 >     * Possibly initiates and/or completes termination.  The caller
2243 >     * triggering termination runs three passes through workQueues:
2244 >     * (0) Setting termination status, followed by wakeups of queued
2245 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2246 >     * threads (likely in external tasks, but possibly also blocked in
2247 >     * joins).  Each pass repeats previous steps because of potential
2248 >     * lagging thread creation.
2249 >     *
2250 >     * @param now if true, unconditionally terminate, else only
2251 >     * if no work and no active workers
2252 >     * @param enable if true, enable shutdown when next possible
2253 >     * @return true if now terminating or terminated
2254 >     */
2255 >    private boolean tryTerminate(boolean now, boolean enable) {
2256 >        for (long c;;) {
2257 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2258 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2259 >                    synchronized (this) {
2260 >                        notifyAll();                // signal when 0 workers
2261 >                    }
2262 >                }
2263 >                return true;
2264              }
2265 <            int s = workerCounts;
2266 <            int tc = totalCountOf(s);
2267 <            int rc = runningCountOf(s);
2268 <            if (rc >= ps || tc >= ps)
2269 <                break;
2270 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
2271 <                ForkJoinWorkerThread w = createWorker(k);
2272 <                if (w != null) {
2273 <                    ws[k++] = w;
2274 <                    w.start();
2265 >            if (runState >= 0) {                    // not yet enabled
2266 >                if (!enable)
2267 >                    return false;
2268 >                while (!U.compareAndSwapInt(this, MAINLOCK, 0, 1))
2269 >                    tryAwaitMainLock();
2270 >                try {
2271 >                    runState |= SHUTDOWN;
2272 >                } finally {
2273 >                    if (!U.compareAndSwapInt(this, MAINLOCK, 1, 0)) {
2274 >                        mainLock = 0;
2275 >                        synchronized (this) { notifyAll(); };
2276 >                    }
2277                  }
2278 <                else {
2279 <                    updateWorkerCount(-1); // back out on failed creation
2280 <                    break;
2278 >            }
2279 >            if (!now) {                             // check if idle & no tasks
2280 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2281 >                    hasQueuedSubmissions())
2282 >                    return false;
2283 >                // Check for unqueued inactive workers. One pass suffices.
2284 >                WorkQueue[] ws = workQueues; WorkQueue w;
2285 >                if (ws != null) {
2286 >                    for (int i = 1; i < ws.length; i += 2) {
2287 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2288 >                            return false;
2289 >                    }
2290 >                }
2291 >            }
2292 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2293 >                for (int pass = 0; pass < 3; ++pass) {
2294 >                    WorkQueue[] ws = workQueues;
2295 >                    if (ws != null) {
2296 >                        WorkQueue w;
2297 >                        int n = ws.length;
2298 >                        for (int i = 0; i < n; ++i) {
2299 >                            if ((w = ws[i]) != null) {
2300 >                                w.runState = -1;
2301 >                                if (pass > 0) {
2302 >                                    w.cancelAll();
2303 >                                    if (pass > 1)
2304 >                                        w.interruptOwner();
2305 >                                }
2306 >                            }
2307 >                        }
2308 >                        // Wake up workers parked on event queue
2309 >                        int i, e; long cc; Thread p;
2310 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2311 >                               (i = e & SMASK) < n &&
2312 >                               (w = ws[i]) != null) {
2313 >                            long nc = ((long)(w.nextWait & E_MASK) |
2314 >                                       ((cc + AC_UNIT) & AC_MASK) |
2315 >                                       (cc & (TC_MASK|STOP_BIT)));
2316 >                            if (w.eventCount == (e | INT_SIGN) &&
2317 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2318 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2319 >                                w.runState = -1;
2320 >                                if ((p = w.parker) != null)
2321 >                                    U.unpark(p);
2322 >                            }
2323 >                        }
2324 >                    }
2325                  }
2326              }
2327          }
2328      }
2329  
2330 +    // Exported methods
2331 +
2332 +    // Constructors
2333 +
2334      /**
2335 <     * Sets the handler for internal worker threads that terminate due
2336 <     * to unrecoverable errors encountered while executing tasks.
2337 <     * Unless set, the current default or ThreadGroup handler is used
2338 <     * as handler.
2335 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2336 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2337 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2338 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2339       *
509     * @param h the new handler
510     * @return the old handler, or null if none
2340       * @throws SecurityException if a security manager exists and
2341       *         the caller is not permitted to modify threads
2342       *         because it does not hold {@link
2343 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
2343 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2344       */
2345 <    public Thread.UncaughtExceptionHandler
2346 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
2347 <        checkPermission();
519 <        Thread.UncaughtExceptionHandler old = null;
520 <        final ReentrantLock lock = this.workerLock;
521 <        lock.lock();
522 <        try {
523 <            old = ueh;
524 <            ueh = h;
525 <            ForkJoinWorkerThread[] ws = workers;
526 <            for (int i = 0; i < ws.length; ++i) {
527 <                ForkJoinWorkerThread w = ws[i];
528 <                if (w != null)
529 <                    w.setUncaughtExceptionHandler(h);
530 <            }
531 <        } finally {
532 <            lock.unlock();
533 <        }
534 <        return old;
2345 >    public ForkJoinPool() {
2346 >        this(Runtime.getRuntime().availableProcessors(),
2347 >             defaultForkJoinWorkerThreadFactory, null, false);
2348      }
2349  
2350      /**
2351 <     * Returns the handler for internal worker threads that terminate
2352 <     * due to unrecoverable errors encountered while executing tasks.
2353 <     * @return the handler, or null if none
2351 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
2352 >     * level, the {@linkplain
2353 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2354 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2355 >     *
2356 >     * @param parallelism the parallelism level
2357 >     * @throws IllegalArgumentException if parallelism less than or
2358 >     *         equal to zero, or greater than implementation limit
2359 >     * @throws SecurityException if a security manager exists and
2360 >     *         the caller is not permitted to modify threads
2361 >     *         because it does not hold {@link
2362 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2363       */
2364 <    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2365 <        Thread.UncaughtExceptionHandler h;
544 <        final ReentrantLock lock = this.workerLock;
545 <        lock.lock();
546 <        try {
547 <            h = ueh;
548 <        } finally {
549 <            lock.unlock();
550 <        }
551 <        return h;
2364 >    public ForkJoinPool(int parallelism) {
2365 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2366      }
2367  
2368 <    // Execution methods
2368 >    /**
2369 >     * Creates a {@code ForkJoinPool} with the given parameters.
2370 >     *
2371 >     * @param parallelism the parallelism level. For default value,
2372 >     * use {@link java.lang.Runtime#availableProcessors}.
2373 >     * @param factory the factory for creating new threads. For default value,
2374 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2375 >     * @param handler the handler for internal worker threads that
2376 >     * terminate due to unrecoverable errors encountered while executing
2377 >     * tasks. For default value, use {@code null}.
2378 >     * @param asyncMode if true,
2379 >     * establishes local first-in-first-out scheduling mode for forked
2380 >     * tasks that are never joined. This mode may be more appropriate
2381 >     * than default locally stack-based mode in applications in which
2382 >     * worker threads only process event-style asynchronous tasks.
2383 >     * For default value, use {@code false}.
2384 >     * @throws IllegalArgumentException if parallelism less than or
2385 >     *         equal to zero, or greater than implementation limit
2386 >     * @throws NullPointerException if the factory is null
2387 >     * @throws SecurityException if a security manager exists and
2388 >     *         the caller is not permitted to modify threads
2389 >     *         because it does not hold {@link
2390 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2391 >     */
2392 >    public ForkJoinPool(int parallelism,
2393 >                        ForkJoinWorkerThreadFactory factory,
2394 >                        Thread.UncaughtExceptionHandler handler,
2395 >                        boolean asyncMode) {
2396 >        checkPermission();
2397 >        if (factory == null)
2398 >            throw new NullPointerException();
2399 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2400 >            throw new IllegalArgumentException();
2401 >        this.parallelism = parallelism;
2402 >        this.factory = factory;
2403 >        this.ueh = handler;
2404 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2405 >        long np = (long)(-parallelism); // offset ctl counts
2406 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2407 >        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2408 >        int n = parallelism - 1;
2409 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2410 >        this.submitMask = ((n + 1) << 1) - 1;
2411 >        int pn = poolNumberGenerator.incrementAndGet();
2412 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2413 >        sb.append(Integer.toString(pn));
2414 >        sb.append("-worker-");
2415 >        this.workerNamePrefix = sb.toString();
2416 >        this.runState = 1;              // set init flag
2417 >    }
2418  
2419      /**
2420 <     * Common code for execute, invoke and submit
2420 >     * Constructor for common pool, suitable only for static initialization.
2421 >     * Basically the same as above, but uses smallest possible initial footprint.
2422 >     */
2423 >    ForkJoinPool(int parallelism, int submitMask,
2424 >                 ForkJoinWorkerThreadFactory factory,
2425 >                 Thread.UncaughtExceptionHandler handler) {
2426 >        this.factory = factory;
2427 >        this.ueh = handler;
2428 >        this.submitMask = submitMask;
2429 >        this.parallelism = parallelism;
2430 >        long np = (long)(-parallelism);
2431 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2432 >        this.localMode = LIFO_QUEUE;
2433 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2434 >        this.runState = 1;
2435 >    }
2436 >
2437 >    /**
2438 >     * Returns the common pool instance.
2439 >     *
2440 >     * @return the common pool instance
2441       */
2442 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2443 <        if (isShutdown())
2444 <            throw new RejectedExecutionException();
2445 <        submissionQueue.offer(task);
2446 <        signalIdleWorkers(true);
2442 >    public static ForkJoinPool commonPool() {
2443 >        ForkJoinPool p;
2444 >        if ((p = commonPool) == null)
2445 >            throw new Error("Common Pool Unavailable");
2446 >        return p;
2447      }
2448  
2449 +    // Execution methods
2450 +
2451      /**
2452 <     * Performs the given task; returning its result upon completion
2452 >     * Performs the given task, returning its result upon completion.
2453 >     * If the computation encounters an unchecked Exception or Error,
2454 >     * it is rethrown as the outcome of this invocation.  Rethrown
2455 >     * exceptions behave in the same way as regular exceptions, but,
2456 >     * when possible, contain stack traces (as displayed for example
2457 >     * using {@code ex.printStackTrace()}) of both the current thread
2458 >     * as well as the thread actually encountering the exception;
2459 >     * minimally only the latter.
2460 >     *
2461       * @param task the task
2462       * @return the task's result
2463 <     * @throws NullPointerException if task is null
2464 <     * @throws RejectedExecutionException if pool is shut down
2463 >     * @throws NullPointerException if the task is null
2464 >     * @throws RejectedExecutionException if the task cannot be
2465 >     *         scheduled for execution
2466       */
2467      public <T> T invoke(ForkJoinTask<T> task) {
2468 +        if (task == null)
2469 +            throw new NullPointerException();
2470          doSubmit(task);
2471          return task.join();
2472      }
2473  
2474      /**
2475       * Arranges for (asynchronous) execution of the given task.
2476 +     *
2477       * @param task the task
2478 <     * @throws NullPointerException if task is null
2479 <     * @throws RejectedExecutionException if pool is shut down
2478 >     * @throws NullPointerException if the task is null
2479 >     * @throws RejectedExecutionException if the task cannot be
2480 >     *         scheduled for execution
2481       */
2482 <    public <T> void execute(ForkJoinTask<T> task) {
2482 >    public void execute(ForkJoinTask<?> task) {
2483 >        if (task == null)
2484 >            throw new NullPointerException();
2485          doSubmit(task);
2486      }
2487  
2488      // AbstractExecutorService methods
2489  
2490 +    /**
2491 +     * @throws NullPointerException if the task is null
2492 +     * @throws RejectedExecutionException if the task cannot be
2493 +     *         scheduled for execution
2494 +     */
2495      public void execute(Runnable task) {
2496 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2496 >        if (task == null)
2497 >            throw new NullPointerException();
2498 >        ForkJoinTask<?> job;
2499 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2500 >            job = (ForkJoinTask<?>) task;
2501 >        else
2502 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2503 >        doSubmit(job);
2504      }
2505  
2506 +    /**
2507 +     * Submits a ForkJoinTask for execution.
2508 +     *
2509 +     * @param task the task to submit
2510 +     * @return the task
2511 +     * @throws NullPointerException if the task is null
2512 +     * @throws RejectedExecutionException if the task cannot be
2513 +     *         scheduled for execution
2514 +     */
2515 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2516 +        if (task == null)
2517 +            throw new NullPointerException();
2518 +        doSubmit(task);
2519 +        return task;
2520 +    }
2521 +
2522 +    /**
2523 +     * @throws NullPointerException if the task is null
2524 +     * @throws RejectedExecutionException if the task cannot be
2525 +     *         scheduled for execution
2526 +     */
2527      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2528 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2528 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2529          doSubmit(job);
2530          return job;
2531      }
2532  
2533 +    /**
2534 +     * @throws NullPointerException if the task is null
2535 +     * @throws RejectedExecutionException if the task cannot be
2536 +     *         scheduled for execution
2537 +     */
2538      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2539 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2539 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2540          doSubmit(job);
2541          return job;
2542      }
2543  
2544 +    /**
2545 +     * @throws NullPointerException if the task is null
2546 +     * @throws RejectedExecutionException if the task cannot be
2547 +     *         scheduled for execution
2548 +     */
2549      public ForkJoinTask<?> submit(Runnable task) {
2550 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2550 >        if (task == null)
2551 >            throw new NullPointerException();
2552 >        ForkJoinTask<?> job;
2553 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2554 >            job = (ForkJoinTask<?>) task;
2555 >        else
2556 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2557          doSubmit(job);
2558          return job;
2559      }
2560  
612    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
613        return new AdaptedRunnable(runnable, value);
614    }
615
616    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
617        return new AdaptedCallable(callable);
618    }
619
620    /**
621     * Adaptor for Runnables. This implements RunnableFuture
622     * to be compliant with AbstractExecutorService constraints
623     */
624    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
625        implements RunnableFuture<T> {
626        final Runnable runnable;
627        final T resultOnCompletion;
628        T result;
629        AdaptedRunnable(Runnable runnable, T result) {
630            if (runnable == null) throw new NullPointerException();
631            this.runnable = runnable;
632            this.resultOnCompletion = result;
633        }
634        public T getRawResult() { return result; }
635        public void setRawResult(T v) { result = v; }
636        public boolean exec() {
637            runnable.run();
638            result = resultOnCompletion;
639            return true;
640        }
641        public void run() { invoke(); }
642    }
643
2561      /**
2562 <     * Adaptor for Callables
2562 >     * @throws NullPointerException       {@inheritDoc}
2563 >     * @throws RejectedExecutionException {@inheritDoc}
2564       */
647    static final class AdaptedCallable<T> extends ForkJoinTask<T>
648        implements RunnableFuture<T> {
649        final Callable<T> callable;
650        T result;
651        AdaptedCallable(Callable<T> callable) {
652            if (callable == null) throw new NullPointerException();
653            this.callable = callable;
654        }
655        public T getRawResult() { return result; }
656        public void setRawResult(T v) { result = v; }
657        public boolean exec() {
658            try {
659                result = callable.call();
660                return true;
661            } catch (Error err) {
662                throw err;
663            } catch (RuntimeException rex) {
664                throw rex;
665            } catch (Exception ex) {
666                throw new RuntimeException(ex);
667            }
668        }
669        public void run() { invoke(); }
670    }
671
2565      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2566 <        ArrayList<ForkJoinTask<T>> ts =
2567 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2568 <        for (Callable<T> c : tasks)
2569 <            ts.add(new AdaptedCallable<T>(c));
2570 <        invoke(new InvokeAll<T>(ts));
2571 <        return (List<Future<T>>)(List)ts;
2572 <    }
2566 >        // In previous versions of this class, this method constructed
2567 >        // a task to run ForkJoinTask.invokeAll, but now external
2568 >        // invocation of multiple tasks is at least as efficient.
2569 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2570 >        // Workaround needed because method wasn't declared with
2571 >        // wildcards in return type but should have been.
2572 >        @SuppressWarnings({"unchecked", "rawtypes"})
2573 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2574  
2575 <    static final class InvokeAll<T> extends RecursiveAction {
2576 <        final ArrayList<ForkJoinTask<T>> tasks;
2577 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2578 <        public void compute() {
2579 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2575 >        boolean done = false;
2576 >        try {
2577 >            for (Callable<T> t : tasks) {
2578 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2579 >                doSubmit(f);
2580 >                fs.add(f);
2581 >            }
2582 >            for (ForkJoinTask<T> f : fs)
2583 >                f.quietlyJoin();
2584 >            done = true;
2585 >            return futures;
2586 >        } finally {
2587 >            if (!done)
2588 >                for (ForkJoinTask<T> f : fs)
2589 >                    f.cancel(false);
2590          }
2591      }
2592  
689    // Configuration and status settings and queries
690
2593      /**
2594 <     * Returns the factory used for constructing new workers
2594 >     * Returns the factory used for constructing new workers.
2595       *
2596       * @return the factory used for constructing new workers
2597       */
# Line 698 | Line 2600 | public class ForkJoinPool extends Abstra
2600      }
2601  
2602      /**
2603 <     * Sets the target paralleism level of this pool.
2604 <     * @param parallelism the target parallelism
2605 <     * @throws IllegalArgumentException if parallelism less than or
2606 <     * equal to zero or greater than maximum size bounds.
705 <     * @throws SecurityException if a security manager exists and
706 <     *         the caller is not permitted to modify threads
707 <     *         because it does not hold {@link
708 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
2603 >     * Returns the handler for internal worker threads that terminate
2604 >     * due to unrecoverable errors encountered while executing tasks.
2605 >     *
2606 >     * @return the handler, or {@code null} if none
2607       */
2608 <    public void setParallelism(int parallelism) {
2609 <        checkPermission();
712 <        if (parallelism <= 0 || parallelism > maxPoolSize)
713 <            throw new IllegalArgumentException();
714 <        final ReentrantLock lock = this.workerLock;
715 <        lock.lock();
716 <        try {
717 <            if (!isTerminating()) {
718 <                int p = this.parallelism;
719 <                this.parallelism = parallelism;
720 <                if (parallelism > p)
721 <                    createAndStartAddedWorkers();
722 <                else
723 <                    trimSpares();
724 <            }
725 <        } finally {
726 <            lock.unlock();
727 <        }
728 <        signalIdleWorkers(false);
2608 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2609 >        return ueh;
2610      }
2611  
2612      /**
2613 <     * Returns the targeted number of worker threads in this pool.
733 <     * This value does not necessarily reflect transient changes as
734 <     * threads are added, removed, or abruptly terminate.
2613 >     * Returns the targeted parallelism level of this pool.
2614       *
2615 <     * @return the targeted number of worker threads in this pool
2615 >     * @return the targeted parallelism level of this pool
2616       */
2617      public int getParallelism() {
2618          return parallelism;
2619      }
2620  
2621      /**
2622 <     * Returns the number of worker threads that have started but not
744 <     * yet terminated.  This result returned by this method may differ
745 <     * from <tt>getParallelism</tt> when threads are created to
746 <     * maintain parallelism when others are cooperatively blocked.
2622 >     * Returns the targeted parallelism level of the common pool.
2623       *
2624 <     * @return the number of worker threads
2624 >     * @return the targeted parallelism level of the common pool
2625       */
2626 <    public int getPoolSize() {
2627 <        return totalCountOf(workerCounts);
2626 >    public static int getCommonPoolParallelism() {
2627 >        return commonPoolParallelism;
2628      }
2629  
2630      /**
2631 <     * Returns the maximum number of threads allowed to exist in the
2632 <     * pool, even if there are insufficient unblocked running threads.
2633 <     * @return the maximum
2634 <     */
2635 <    public int getMaximumPoolSize() {
2636 <        return maxPoolSize;
761 <    }
762 <
763 <    /**
764 <     * Sets the maximum number of threads allowed to exist in the
765 <     * pool, even if there are insufficient unblocked running threads.
766 <     * Setting this value has no effect on current pool size. It
767 <     * controls construction of new threads.
768 <     * @throws IllegalArgumentException if negative or greater then
769 <     * internal implementation limit.
770 <     */
771 <    public void setMaximumPoolSize(int newMax) {
772 <        if (newMax < 0 || newMax > MAX_THREADS)
773 <            throw new IllegalArgumentException();
774 <        maxPoolSize = newMax;
775 <    }
776 <
777 <
778 <    /**
779 <     * Returns true if this pool dynamically maintains its target
780 <     * parallelism level. If false, new threads are added only to
781 <     * avoid possible starvation.
782 <     * This setting is by default true;
783 <     * @return true if maintains parallelism
2631 >     * Returns the number of worker threads that have started but not
2632 >     * yet terminated.  The result returned by this method may differ
2633 >     * from {@link #getParallelism} when threads are created to
2634 >     * maintain parallelism when others are cooperatively blocked.
2635 >     *
2636 >     * @return the number of worker threads
2637       */
2638 <    public boolean getMaintainsParallelism() {
2639 <        return maintainsParallelism;
2638 >    public int getPoolSize() {
2639 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2640      }
2641  
2642      /**
2643 <     * Sets whether this pool dynamically maintains its target
2644 <     * parallelism level. If false, new threads are added only to
2645 <     * avoid possible starvation.
2646 <     * @param enable true to maintains parallelism
2643 >     * Returns {@code true} if this pool uses local first-in-first-out
2644 >     * scheduling mode for forked tasks that are never joined.
2645 >     *
2646 >     * @return {@code true} if this pool uses async mode
2647       */
2648 <    public void setMaintainsParallelism(boolean enable) {
2649 <        maintainsParallelism = enable;
2648 >    public boolean getAsyncMode() {
2649 >        return localMode != 0;
2650      }
2651  
2652      /**
2653 <     * Returns the approximate number of worker threads that are not
2654 <     * blocked waiting to join tasks or for other managed
2655 <     * synchronization.
2653 >     * Returns an estimate of the number of worker threads that are
2654 >     * not blocked waiting to join tasks or for other managed
2655 >     * synchronization. This method may overestimate the
2656 >     * number of running threads.
2657       *
2658       * @return the number of worker threads
2659       */
2660      public int getRunningThreadCount() {
2661 <        return runningCountOf(workerCounts);
2661 >        int rc = 0;
2662 >        WorkQueue[] ws; WorkQueue w;
2663 >        if ((ws = workQueues) != null) {
2664 >            for (int i = 1; i < ws.length; i += 2) {
2665 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2666 >                    ++rc;
2667 >            }
2668 >        }
2669 >        return rc;
2670      }
2671  
2672      /**
2673 <     * Returns the approximate number of threads that are currently
2673 >     * Returns an estimate of the number of threads that are currently
2674       * stealing or executing tasks. This method may overestimate the
2675       * number of active threads.
2676 <     * @return the number of active threads.
2676 >     *
2677 >     * @return the number of active threads
2678       */
2679      public int getActiveThreadCount() {
2680 <        return activeCountOf(runControl);
2681 <    }
819 <
820 <    /**
821 <     * Returns the approximate number of threads that are currently
822 <     * idle waiting for tasks. This method may underestimate the
823 <     * number of idle threads.
824 <     * @return the number of idle threads.
825 <     */
826 <    final int getIdleThreadCount() {
827 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
828 <        return (c <= 0)? 0 : c;
2680 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2681 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2682      }
2683  
2684      /**
2685 <     * Returns true if all worker threads are currently idle. An idle
2686 <     * worker is one that cannot obtain a task to execute because none
2687 <     * are available to steal from other threads, and there are no
2688 <     * pending submissions to the pool. This method is conservative:
2689 <     * It might not return true immediately upon idleness of all
2690 <     * threads, but will eventually become true if threads remain
2691 <     * inactive.
2692 <     * @return true if all threads are currently idle
2685 >     * Returns {@code true} if all worker threads are currently idle.
2686 >     * An idle worker is one that cannot obtain a task to execute
2687 >     * because none are available to steal from other threads, and
2688 >     * there are no pending submissions to the pool. This method is
2689 >     * conservative; it might not return {@code true} immediately upon
2690 >     * idleness of all threads, but will eventually become true if
2691 >     * threads remain inactive.
2692 >     *
2693 >     * @return {@code true} if all threads are currently idle
2694       */
2695      public boolean isQuiescent() {
2696 <        return activeCountOf(runControl) == 0;
2696 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2697      }
2698  
2699      /**
# Line 847 | Line 2701 | public class ForkJoinPool extends Abstra
2701       * one thread's work queue by another. The reported value
2702       * underestimates the actual total number of steals when the pool
2703       * is not quiescent. This value may be useful for monitoring and
2704 <     * tuning fork/join programs: In general, steal counts should be
2704 >     * tuning fork/join programs: in general, steal counts should be
2705       * high enough to keep threads busy, but low enough to avoid
2706       * overhead and contention across threads.
2707 <     * @return the number of steals.
2707 >     *
2708 >     * @return the number of steals
2709       */
2710      public long getStealCount() {
2711 <        return stealCount.get();
2712 <    }
2713 <
2714 <    /**
2715 <     * Accumulate steal count from a worker. Call only
2716 <     * when worker known to be idle.
2717 <     */
2718 <    private void updateStealCount(ForkJoinWorkerThread w) {
2719 <        int sc = w.getAndClearStealCount();
865 <        if (sc != 0)
866 <            stealCount.addAndGet(sc);
2711 >        long count = stealCount;
2712 >        WorkQueue[] ws; WorkQueue w;
2713 >        if ((ws = workQueues) != null) {
2714 >            for (int i = 1; i < ws.length; i += 2) {
2715 >                if ((w = ws[i]) != null)
2716 >                    count += w.totalSteals;
2717 >            }
2718 >        }
2719 >        return count;
2720      }
2721  
2722      /**
2723 <     * Returns the total number of tasks currently held in queues by
2724 <     * worker threads (but not including tasks submitted to the pool
2725 <     * that have not begun executing). This value is only an
2726 <     * approximation, obtained by iterating across all threads in the
2727 <     * pool. This method may be useful for tuning task granularities.
2728 <     * @return the number of queued tasks.
2723 >     * Returns an estimate of the total number of tasks currently held
2724 >     * in queues by worker threads (but not including tasks submitted
2725 >     * to the pool that have not begun executing). This value is only
2726 >     * an approximation, obtained by iterating across all threads in
2727 >     * the pool. This method may be useful for tuning task
2728 >     * granularities.
2729 >     *
2730 >     * @return the number of queued tasks
2731       */
2732      public long getQueuedTaskCount() {
2733          long count = 0;
2734 <        ForkJoinWorkerThread[] ws = workers;
2735 <        for (int i = 0; i < ws.length; ++i) {
2736 <            ForkJoinWorkerThread t = ws[i];
2737 <            if (t != null)
2738 <                count += t.getQueueSize();
2734 >        WorkQueue[] ws; WorkQueue w;
2735 >        if ((ws = workQueues) != null) {
2736 >            for (int i = 1; i < ws.length; i += 2) {
2737 >                if ((w = ws[i]) != null)
2738 >                    count += w.queueSize();
2739 >            }
2740          }
2741          return count;
2742      }
2743  
2744      /**
2745 <     * Returns the approximate number tasks submitted to this pool
2746 <     * that have not yet begun executing. This method takes time
2747 <     * proportional to the number of submissions.
2748 <     * @return the number of queued submissions.
2745 >     * Returns an estimate of the number of tasks submitted to this
2746 >     * pool that have not yet begun executing.  This method may take
2747 >     * time proportional to the number of submissions.
2748 >     *
2749 >     * @return the number of queued submissions
2750       */
2751      public int getQueuedSubmissionCount() {
2752 <        return submissionQueue.size();
2752 >        int count = 0;
2753 >        WorkQueue[] ws; WorkQueue w;
2754 >        if ((ws = workQueues) != null) {
2755 >            for (int i = 0; i < ws.length; i += 2) {
2756 >                if ((w = ws[i]) != null)
2757 >                    count += w.queueSize();
2758 >            }
2759 >        }
2760 >        return count;
2761      }
2762  
2763      /**
2764 <     * Returns true if there are any tasks submitted to this pool
2765 <     * that have not yet begun executing.
2766 <     * @return <tt>true</tt> if there are any queued submissions.
2764 >     * Returns {@code true} if there are any tasks submitted to this
2765 >     * pool that have not yet begun executing.
2766 >     *
2767 >     * @return {@code true} if there are any queued submissions
2768       */
2769      public boolean hasQueuedSubmissions() {
2770 <        return !submissionQueue.isEmpty();
2770 >        WorkQueue[] ws; WorkQueue w;
2771 >        if ((ws = workQueues) != null) {
2772 >            for (int i = 0; i < ws.length; i += 2) {
2773 >                if ((w = ws[i]) != null && !w.isEmpty())
2774 >                    return true;
2775 >            }
2776 >        }
2777 >        return false;
2778      }
2779  
2780      /**
2781       * Removes and returns the next unexecuted submission if one is
2782       * available.  This method may be useful in extensions to this
2783       * class that re-assign work in systems with multiple pools.
2784 <     * @return the next submission, or null if none
2784 >     *
2785 >     * @return the next submission, or {@code null} if none
2786       */
2787      protected ForkJoinTask<?> pollSubmission() {
2788 <        return submissionQueue.poll();
2788 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2789 >        if ((ws = workQueues) != null) {
2790 >            for (int i = 0; i < ws.length; i += 2) {
2791 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2792 >                    return t;
2793 >            }
2794 >        }
2795 >        return null;
2796 >    }
2797 >
2798 >    /**
2799 >     * Removes all available unexecuted submitted and forked tasks
2800 >     * from scheduling queues and adds them to the given collection,
2801 >     * without altering their execution status. These may include
2802 >     * artificially generated or wrapped tasks. This method is
2803 >     * designed to be invoked only when the pool is known to be
2804 >     * quiescent. Invocations at other times may not remove all
2805 >     * tasks. A failure encountered while attempting to add elements
2806 >     * to collection {@code c} may result in elements being in
2807 >     * neither, either or both collections when the associated
2808 >     * exception is thrown.  The behavior of this operation is
2809 >     * undefined if the specified collection is modified while the
2810 >     * operation is in progress.
2811 >     *
2812 >     * @param c the collection to transfer elements into
2813 >     * @return the number of elements transferred
2814 >     */
2815 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2816 >        int count = 0;
2817 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2818 >        if ((ws = workQueues) != null) {
2819 >            for (int i = 0; i < ws.length; ++i) {
2820 >                if ((w = ws[i]) != null) {
2821 >                    while ((t = w.poll()) != null) {
2822 >                        c.add(t);
2823 >                        ++count;
2824 >                    }
2825 >                }
2826 >            }
2827 >        }
2828 >        return count;
2829      }
2830  
2831      /**
# Line 922 | Line 2836 | public class ForkJoinPool extends Abstra
2836       * @return a string identifying this pool, as well as its state
2837       */
2838      public String toString() {
2839 <        int ps = parallelism;
2840 <        int wc = workerCounts;
2841 <        int rc = runControl;
2842 <        long st = getStealCount();
2843 <        long qt = getQueuedTaskCount();
2844 <        long qs = getQueuedSubmissionCount();
2839 >        // Use a single pass through workQueues to collect counts
2840 >        long qt = 0L, qs = 0L; int rc = 0;
2841 >        long st = stealCount;
2842 >        long c = ctl;
2843 >        WorkQueue[] ws; WorkQueue w;
2844 >        if ((ws = workQueues) != null) {
2845 >            for (int i = 0; i < ws.length; ++i) {
2846 >                if ((w = ws[i]) != null) {
2847 >                    int size = w.queueSize();
2848 >                    if ((i & 1) == 0)
2849 >                        qs += size;
2850 >                    else {
2851 >                        qt += size;
2852 >                        st += w.totalSteals;
2853 >                        if (w.isApparentlyUnblocked())
2854 >                            ++rc;
2855 >                    }
2856 >                }
2857 >            }
2858 >        }
2859 >        int pc = parallelism;
2860 >        int tc = pc + (short)(c >>> TC_SHIFT);
2861 >        int ac = pc + (int)(c >> AC_SHIFT);
2862 >        if (ac < 0) // ignore transient negative
2863 >            ac = 0;
2864 >        String level;
2865 >        if ((c & STOP_BIT) != 0)
2866 >            level = (tc == 0) ? "Terminated" : "Terminating";
2867 >        else
2868 >            level = runState < 0 ? "Shutting down" : "Running";
2869          return super.toString() +
2870 <            "[" + runStateToString(runStateOf(rc)) +
2871 <            ", parallelism = " + ps +
2872 <            ", size = " + totalCountOf(wc) +
2873 <            ", active = " + activeCountOf(rc) +
2874 <            ", running = " + runningCountOf(wc) +
2870 >            "[" + level +
2871 >            ", parallelism = " + pc +
2872 >            ", size = " + tc +
2873 >            ", active = " + ac +
2874 >            ", running = " + rc +
2875              ", steals = " + st +
2876              ", tasks = " + qt +
2877              ", submissions = " + qs +
2878              "]";
2879      }
2880  
943    private static String runStateToString(int rs) {
944        switch(rs) {
945        case RUNNING: return "Running";
946        case SHUTDOWN: return "Shutting down";
947        case TERMINATING: return "Terminating";
948        case TERMINATED: return "Terminated";
949        default: throw new Error("Unknown run state");
950        }
951    }
952
953    // lifecycle control
954
2881      /**
2882 <     * Initiates an orderly shutdown in which previously submitted
2883 <     * tasks are executed, but no new tasks will be accepted.
2884 <     * Invocation has no additional effect if already shut down.
2885 <     * Tasks that are in the process of being submitted concurrently
2886 <     * during the course of this method may or may not be rejected.
2882 >     * Possibly initiates an orderly shutdown in which previously
2883 >     * submitted tasks are executed, but no new tasks will be
2884 >     * accepted. Invocation has no effect on execution state if this
2885 >     * is the {@link #commonPool}, and no additional effect if
2886 >     * already shut down.  Tasks that are in the process of being
2887 >     * submitted concurrently during the course of this method may or
2888 >     * may not be rejected.
2889 >     *
2890       * @throws SecurityException if a security manager exists and
2891       *         the caller is not permitted to modify threads
2892       *         because it does not hold {@link
2893 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
2893 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2894       */
2895      public void shutdown() {
2896          checkPermission();
2897 <        transitionRunStateTo(SHUTDOWN);
2898 <        if (canTerminateOnShutdown(runControl))
970 <            terminateOnShutdown();
2897 >        if (this != commonPool)
2898 >            tryTerminate(false, true);
2899      }
2900  
2901      /**
2902 <     * Attempts to stop all actively executing tasks, and cancels all
2903 <     * waiting tasks.  Tasks that are in the process of being
2904 <     * submitted or executed concurrently during the course of this
2905 <     * method may or may not be rejected. Unlike some other executors,
2906 <     * this method cancels rather than collects non-executed tasks,
2907 <     * so always returns an empty list.
2902 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2903 >     * all subsequently submitted tasks.  Invocation has no effect on
2904 >     * execution state if this is the {@link #commonPool}, and no
2905 >     * additional effect if already shut down. Otherwise, tasks that
2906 >     * are in the process of being submitted or executed concurrently
2907 >     * during the course of this method may or may not be
2908 >     * rejected. This method cancels both existing and unexecuted
2909 >     * tasks, in order to permit termination in the presence of task
2910 >     * dependencies. So the method always returns an empty list
2911 >     * (unlike the case for some other Executors).
2912 >     *
2913       * @return an empty list
2914       * @throws SecurityException if a security manager exists and
2915       *         the caller is not permitted to modify threads
2916       *         because it does not hold {@link
2917 <     *         java.lang.RuntimePermission}<tt>("modifyThread")</tt>,
2917 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2918       */
2919      public List<Runnable> shutdownNow() {
2920          checkPermission();
2921 <        terminate();
2921 >        if (this != commonPool)
2922 >            tryTerminate(true, true);
2923          return Collections.emptyList();
2924      }
2925  
2926      /**
2927 <     * Returns <tt>true</tt> if all tasks have completed following shut down.
2927 >     * Returns {@code true} if all tasks have completed following shut down.
2928       *
2929 <     * @return <tt>true</tt> if all tasks have completed following shut down
2929 >     * @return {@code true} if all tasks have completed following shut down
2930       */
2931      public boolean isTerminated() {
2932 <        return runStateOf(runControl) == TERMINATED;
2932 >        long c = ctl;
2933 >        return ((c & STOP_BIT) != 0L &&
2934 >                (short)(c >>> TC_SHIFT) == -parallelism);
2935      }
2936  
2937      /**
2938 <     * Returns <tt>true</tt> if the process of termination has
2939 <     * commenced but possibly not yet completed.
2938 >     * Returns {@code true} if the process of termination has
2939 >     * commenced but not yet completed.  This method may be useful for
2940 >     * debugging. A return of {@code true} reported a sufficient
2941 >     * period after shutdown may indicate that submitted tasks have
2942 >     * ignored or suppressed interruption, or are waiting for IO,
2943 >     * causing this executor not to properly terminate. (See the
2944 >     * advisory notes for class {@link ForkJoinTask} stating that
2945 >     * tasks should not normally entail blocking operations.  But if
2946 >     * they do, they must abort them on interrupt.)
2947       *
2948 <     * @return <tt>true</tt> if terminating
2948 >     * @return {@code true} if terminating but not yet terminated
2949       */
2950      public boolean isTerminating() {
2951 <        return runStateOf(runControl) >= TERMINATING;
2951 >        long c = ctl;
2952 >        return ((c & STOP_BIT) != 0L &&
2953 >                (short)(c >>> TC_SHIFT) != -parallelism);
2954      }
2955  
2956      /**
2957 <     * Returns <tt>true</tt> if this pool has been shut down.
2957 >     * Returns {@code true} if this pool has been shut down.
2958       *
2959 <     * @return <tt>true</tt> if this pool has been shut down
2959 >     * @return {@code true} if this pool has been shut down
2960       */
2961      public boolean isShutdown() {
2962 <        return runStateOf(runControl) >= SHUTDOWN;
2962 >        return runState < 0;
2963      }
2964  
2965      /**
# Line 1024 | Line 2969 | public class ForkJoinPool extends Abstra
2969       *
2970       * @param timeout the maximum time to wait
2971       * @param unit the time unit of the timeout argument
2972 <     * @return <tt>true</tt> if this executor terminated and
2973 <     *         <tt>false</tt> if the timeout elapsed before termination
2972 >     * @return {@code true} if this executor terminated and
2973 >     *         {@code false} if the timeout elapsed before termination
2974       * @throws InterruptedException if interrupted while waiting
2975       */
2976      public boolean awaitTermination(long timeout, TimeUnit unit)
2977          throws InterruptedException {
2978          long nanos = unit.toNanos(timeout);
2979 <        final ReentrantLock lock = this.workerLock;
2980 <        lock.lock();
2981 <        try {
2982 <            for (;;) {
2983 <                if (isTerminated())
2984 <                    return true;
2985 <                if (nanos <= 0)
2986 <                    return false;
2987 <                nanos = termination.awaitNanos(nanos);
1043 <            }
1044 <        } finally {
1045 <            lock.unlock();
1046 <        }
1047 <    }
1048 <
1049 <    // Shutdown and termination support
1050 <
1051 <    /**
1052 <     * Callback from terminating worker. Null out the corresponding
1053 <     * workers slot, and if terminating, try to terminate, else try to
1054 <     * shrink workers array.
1055 <     * @param w the worker
1056 <     */
1057 <    final void workerTerminated(ForkJoinWorkerThread w) {
1058 <        updateStealCount(w);
1059 <        updateWorkerCount(-1);
1060 <        final ReentrantLock lock = this.workerLock;
1061 <        lock.lock();
1062 <        try {
1063 <            ForkJoinWorkerThread[] ws = workers;
1064 <            int idx = w.poolIndex;
1065 <            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1066 <                ws[idx] = null;
1067 <            if (totalCountOf(workerCounts) == 0) {
1068 <                terminate(); // no-op if already terminating
1069 <                transitionRunStateTo(TERMINATED);
1070 <                termination.signalAll();
1071 <            }
1072 <            else if (!isTerminating()) {
1073 <                tryShrinkWorkerArray();
1074 <                tryResumeSpare(true); // allow replacement
1075 <            }
1076 <        } finally {
1077 <            lock.unlock();
1078 <        }
1079 <        signalIdleWorkers(false);
1080 <    }
1081 <
1082 <    /**
1083 <     * Initiate termination.
1084 <     */
1085 <    private void terminate() {
1086 <        if (transitionRunStateTo(TERMINATING)) {
1087 <            stopAllWorkers();
1088 <            resumeAllSpares();
1089 <            signalIdleWorkers(true);
1090 <            cancelQueuedSubmissions();
1091 <            cancelQueuedWorkerTasks();
1092 <            interruptUnterminatedWorkers();
1093 <            signalIdleWorkers(true); // resignal after interrupt
1094 <        }
1095 <    }
1096 <
1097 <    /**
1098 <     * Possibly terminate when on shutdown state
1099 <     */
1100 <    private void terminateOnShutdown() {
1101 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1102 <            terminate();
1103 <    }
1104 <
1105 <    /**
1106 <     * Clear out and cancel submissions
1107 <     */
1108 <    private void cancelQueuedSubmissions() {
1109 <        ForkJoinTask<?> task;
1110 <        while ((task = pollSubmission()) != null)
1111 <            task.cancel(false);
1112 <    }
1113 <
1114 <    /**
1115 <     * Clean out worker queues.
1116 <     */
1117 <    private void cancelQueuedWorkerTasks() {
1118 <        final ReentrantLock lock = this.workerLock;
1119 <        lock.lock();
1120 <        try {
1121 <            ForkJoinWorkerThread[] ws = workers;
1122 <            for (int i = 0; i < ws.length; ++i) {
1123 <                ForkJoinWorkerThread t = ws[i];
1124 <                if (t != null)
1125 <                    t.cancelTasks();
1126 <            }
1127 <        } finally {
1128 <            lock.unlock();
1129 <        }
1130 <    }
1131 <
1132 <    /**
1133 <     * Set each worker's status to terminating. Requires lock to avoid
1134 <     * conflicts with add/remove
1135 <     */
1136 <    private void stopAllWorkers() {
1137 <        final ReentrantLock lock = this.workerLock;
1138 <        lock.lock();
1139 <        try {
1140 <            ForkJoinWorkerThread[] ws = workers;
1141 <            for (int i = 0; i < ws.length; ++i) {
1142 <                ForkJoinWorkerThread t = ws[i];
1143 <                if (t != null)
1144 <                    t.shutdownNow();
1145 <            }
1146 <        } finally {
1147 <            lock.unlock();
1148 <        }
1149 <    }
1150 <
1151 <    /**
1152 <     * Interrupt all unterminated workers.  This is not required for
1153 <     * sake of internal control, but may help unstick user code during
1154 <     * shutdown.
1155 <     */
1156 <    private void interruptUnterminatedWorkers() {
1157 <        final ReentrantLock lock = this.workerLock;
1158 <        lock.lock();
1159 <        try {
1160 <            ForkJoinWorkerThread[] ws = workers;
1161 <            for (int i = 0; i < ws.length; ++i) {
1162 <                ForkJoinWorkerThread t = ws[i];
1163 <                if (t != null && !t.isTerminated()) {
1164 <                    try {
1165 <                        t.interrupt();
1166 <                    } catch (SecurityException ignore) {
1167 <                    }
1168 <                }
1169 <            }
1170 <        } finally {
1171 <            lock.unlock();
1172 <        }
1173 <    }
1174 <
1175 <
1176 <    /*
1177 <     * Nodes for event barrier to manage idle threads.
1178 <     *
1179 <     * The event barrier has an event count and a wait queue (actually
1180 <     * a Treiber stack).  Workers are enabled to look for work when
1181 <     * the eventCount is incremented. If they fail to find some,
1182 <     * they may wait for next count. Synchronization events occur only
1183 <     * in enough contexts to maintain overall liveness:
1184 <     *
1185 <     *   - Submission of a new task to the pool
1186 <     *   - Creation or termination of a worker
1187 <     *   - pool termination
1188 <     *   - A worker pushing a task on an empty queue
1189 <     *
1190 <     * The last case (pushing a task) occurs often enough, and is
1191 <     * heavy enough compared to simple stack pushes to require some
1192 <     * special handling: Method signalNonEmptyWorkerQueue returns
1193 <     * without advancing count if the queue appears to be empty.  This
1194 <     * would ordinarily result in races causing some queued waiters
1195 <     * not to be woken up. To avoid this, a worker in sync
1196 <     * rescans for tasks after being enqueued if it was the first to
1197 <     * enqueue, and aborts the wait if finding one, also helping to
1198 <     * signal others. This works well because the worker has nothing
1199 <     * better to do anyway, and so might as well help alleviate the
1200 <     * overhead and contention on the threads actually doing work.
1201 <     *
1202 <     * Queue nodes are basic Treiber stack nodes, also used for spare
1203 <     * stack.
1204 <     */
1205 <    static final class WaitQueueNode {
1206 <        WaitQueueNode next; // only written before enqueued
1207 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1208 <        final long count; // unused for spare stack
1209 <        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1210 <            count = c;
1211 <            thread = w;
1212 <        }
1213 <        final boolean signal() {
1214 <            ForkJoinWorkerThread t = thread;
1215 <            thread = null;
1216 <            if (t != null) {
1217 <                LockSupport.unpark(t);
1218 <                return true;
1219 <            }
1220 <            return false;
1221 <        }
1222 <    }
1223 <
1224 <    /**
1225 <     * Release at least one thread waiting for event count to advance,
1226 <     * if one exists. If initial attempt fails, release all threads.
1227 <     * @param all if false, at first try to only release one thread
1228 <     * @return current event
1229 <     */
1230 <    private long releaseIdleWorkers(boolean all) {
1231 <        long c;
1232 <        for (;;) {
1233 <            WaitQueueNode q = barrierStack;
1234 <            c = eventCount;
1235 <            long qc;
1236 <            if (q == null || (qc = q.count) >= c)
1237 <                break;
1238 <            if (!all) {
1239 <                if (casBarrierStack(q, q.next) && q.signal())
1240 <                    break;
1241 <                all = true;
1242 <            }
1243 <            else if (casBarrierStack(q, null)) {
1244 <                do {
1245 <                 q.signal();
1246 <                } while ((q = q.next) != null);
1247 <                break;
1248 <            }
1249 <        }
1250 <        return c;
1251 <    }
1252 <
1253 <    /**
1254 <     * Returns current barrier event count
1255 <     * @return current barrier event count
1256 <     */
1257 <    final long getEventCount() {
1258 <        long ec = eventCount;
1259 <        releaseIdleWorkers(true); // release to ensure accurate result
1260 <        return ec;
1261 <    }
1262 <
1263 <    /**
1264 <     * Increment event count and release at least one waiting thread,
1265 <     * if one exists (released threads will in turn wake up others).
1266 <     * @param all if true, try to wake up all
1267 <     */
1268 <    final void signalIdleWorkers(boolean all) {
1269 <        long c;
1270 <        do;while (!casEventCount(c = eventCount, c+1));
1271 <        releaseIdleWorkers(all);
1272 <    }
1273 <
1274 <    /**
1275 <     * Wake up threads waiting to steal a task. Because method
1276 <     * sync rechecks availability, it is OK to only proceed if
1277 <     * queue appears to be non-empty.
1278 <     */
1279 <    final void signalNonEmptyWorkerQueue() {
1280 <        // If CAS fails another signaller must have succeeded
1281 <        long c;
1282 <        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1283 <            releaseIdleWorkers(false);
1284 <    }
1285 <
1286 <    /**
1287 <     * Waits until event count advances from count, or some thread is
1288 <     * waiting on a previous count, or there is stealable work
1289 <     * available. Help wake up others on release.
1290 <     * @param w the calling worker thread
1291 <     * @param prev previous value returned by sync (or 0)
1292 <     * @return current event count
1293 <     */
1294 <    final long sync(ForkJoinWorkerThread w, long prev) {
1295 <        updateStealCount(w);
1296 <
1297 <        while (!w.isShutdown() && !isTerminating() &&
1298 <               (parallelism >= runningCountOf(workerCounts) ||
1299 <                !suspendIfSpare(w))) { // prefer suspend to waiting here
1300 <            WaitQueueNode node = null;
1301 <            boolean queued = false;
1302 <            for (;;) {
1303 <                if (!queued) {
1304 <                    if (eventCount != prev)
1305 <                        break;
1306 <                    WaitQueueNode h = barrierStack;
1307 <                    if (h != null && h.count != prev)
1308 <                        break; // release below and maybe retry
1309 <                    if (node == null)
1310 <                        node = new WaitQueueNode(w, prev);
1311 <                    queued = casBarrierStack(node.next = h, node);
1312 <                }
1313 <                else if (Thread.interrupted() ||
1314 <                         node.thread == null ||
1315 <                         (node.next == null && w.prescan()) ||
1316 <                         eventCount != prev) {
1317 <                    node.thread = null;
1318 <                    if (eventCount == prev) // help trigger
1319 <                        casEventCount(prev, prev+1);
1320 <                    break;
1321 <                }
1322 <                else
1323 <                    LockSupport.park(this);
1324 <            }
1325 <            long ec = eventCount;
1326 <            if (releaseIdleWorkers(false) != prev)
1327 <                return ec;
1328 <        }
1329 <        return prev; // return old count if aborted
1330 <    }
1331 <
1332 <    //  Parallelism maintenance
1333 <
1334 <    /**
1335 <     * Decrement running count; if too low, add spare.
1336 <     *
1337 <     * Conceptually, all we need to do here is add or resume a
1338 <     * spare thread when one is about to block (and remove or
1339 <     * suspend it later when unblocked -- see suspendIfSpare).
1340 <     * However, implementing this idea requires coping with
1341 <     * several problems: We have imperfect information about the
1342 <     * states of threads. Some count updates can and usually do
1343 <     * lag run state changes, despite arrangements to keep them
1344 <     * accurate (for example, when possible, updating counts
1345 <     * before signalling or resuming), especially when running on
1346 <     * dynamic JVMs that don't optimize the infrequent paths that
1347 <     * update counts. Generating too many threads can make these
1348 <     * problems become worse, because excess threads are more
1349 <     * likely to be context-switched with others, slowing them all
1350 <     * down, especially if there is no work available, so all are
1351 <     * busy scanning or idling.  Also, excess spare threads can
1352 <     * only be suspended or removed when they are idle, not
1353 <     * immediately when they aren't needed. So adding threads will
1354 <     * raise parallelism level for longer than necessary.  Also,
1355 <     * FJ applications often enounter highly transient peaks when
1356 <     * many threads are blocked joining, but for less time than it
1357 <     * takes to create or resume spares.
1358 <     *
1359 <     * @param joinMe if non-null, return early if done
1360 <     * @param maintainParallelism if true, try to stay within
1361 <     * target counts, else create only to avoid starvation
1362 <     * @return true if joinMe known to be done
1363 <     */
1364 <    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1365 <        maintainParallelism &= maintainsParallelism; // overrride
1366 <        boolean dec = false;  // true when running count decremented
1367 <        while (spareStack == null || !tryResumeSpare(dec)) {
1368 <            int counts = workerCounts;
1369 <            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1370 <                if (!needSpare(counts, maintainParallelism))
1371 <                    break;
1372 <                if (joinMe.status < 0)
1373 <                    return true;
1374 <                if (tryAddSpare(counts))
1375 <                    break;
1376 <            }
1377 <        }
1378 <        return false;
1379 <    }
1380 <
1381 <    /**
1382 <     * Same idea as preJoin
1383 <     */
1384 <    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1385 <        maintainParallelism &= maintainsParallelism;
1386 <        boolean dec = false;
1387 <        while (spareStack == null || !tryResumeSpare(dec)) {
1388 <            int counts = workerCounts;
1389 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1390 <                if (!needSpare(counts, maintainParallelism))
1391 <                    break;
1392 <                if (blocker.isReleasable())
1393 <                    return true;
1394 <                if (tryAddSpare(counts))
1395 <                    break;
1396 <            }
1397 <        }
1398 <        return false;
1399 <    }
1400 <
1401 <    /**
1402 <     * Returns true if a spare thread appears to be needed.  If
1403 <     * maintaining parallelism, returns true when the deficit in
1404 <     * running threads is more than the surplus of total threads, and
1405 <     * there is apparently some work to do.  This self-limiting rule
1406 <     * means that the more threads that have already been added, the
1407 <     * less parallelism we will tolerate before adding another.
1408 <     * @param counts current worker counts
1409 <     * @param maintainParallelism try to maintain parallelism
1410 <     */
1411 <    private boolean needSpare(int counts, boolean maintainParallelism) {
1412 <        int ps = parallelism;
1413 <        int rc = runningCountOf(counts);
1414 <        int tc = totalCountOf(counts);
1415 <        int runningDeficit = ps - rc;
1416 <        int totalSurplus = tc - ps;
1417 <        return (tc < maxPoolSize &&
1418 <                (rc == 0 || totalSurplus < 0 ||
1419 <                 (maintainParallelism &&
1420 <                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1421 <    }
1422 <
1423 <    /**
1424 <     * Returns true if at least one worker queue appears to be
1425 <     * nonempty. This is expensive but not often called. It is not
1426 <     * critical that this be accurate, but if not, more or fewer
1427 <     * running threads than desired might be maintained.
1428 <     */
1429 <    private boolean mayHaveQueuedWork() {
1430 <        ForkJoinWorkerThread[] ws = workers;
1431 <        int len = ws.length;
1432 <        ForkJoinWorkerThread v;
1433 <        for (int i = 0; i < len; ++i) {
1434 <            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1435 <                releaseIdleWorkers(false); // help wake up stragglers
1436 <                return true;
1437 <            }
1438 <        }
1439 <        return false;
1440 <    }
1441 <
1442 <    /**
1443 <     * Add a spare worker if lock available and no more than the
1444 <     * expected numbers of threads exist
1445 <     * @return true if successful
1446 <     */
1447 <    private boolean tryAddSpare(int expectedCounts) {
1448 <        final ReentrantLock lock = this.workerLock;
1449 <        int expectedRunning = runningCountOf(expectedCounts);
1450 <        int expectedTotal = totalCountOf(expectedCounts);
1451 <        boolean success = false;
1452 <        boolean locked = false;
1453 <        // confirm counts while locking; CAS after obtaining lock
1454 <        try {
1455 <            for (;;) {
1456 <                int s = workerCounts;
1457 <                int tc = totalCountOf(s);
1458 <                int rc = runningCountOf(s);
1459 <                if (rc > expectedRunning || tc > expectedTotal)
1460 <                    break;
1461 <                if (!locked && !(locked = lock.tryLock()))
1462 <                    break;
1463 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1464 <                    createAndStartSpare(tc);
1465 <                    success = true;
2979 >        if (isTerminated())
2980 >            return true;
2981 >        long startTime = System.nanoTime();
2982 >        boolean terminated = false;
2983 >        synchronized (this) {
2984 >            for (long waitTime = nanos, millis = 0L;;) {
2985 >                if (terminated = isTerminated() ||
2986 >                    waitTime <= 0L ||
2987 >                    (millis = unit.toMillis(waitTime)) <= 0L)
2988                      break;
2989 <                }
2989 >                wait(millis);
2990 >                waitTime = nanos - (System.nanoTime() - startTime);
2991              }
1469        } finally {
1470            if (locked)
1471                lock.unlock();
1472        }
1473        return success;
1474    }
1475
1476    /**
1477     * Add the kth spare worker. On entry, pool coounts are already
1478     * adjusted to reflect addition.
1479     */
1480    private void createAndStartSpare(int k) {
1481        ForkJoinWorkerThread w = null;
1482        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1483        int len = ws.length;
1484        // Probably, we can place at slot k. If not, find empty slot
1485        if (k < len && ws[k] != null) {
1486            for (k = 0; k < len && ws[k] != null; ++k)
1487                ;
1488        }
1489        if (k < len && (w = createWorker(k)) != null) {
1490            ws[k] = w;
1491            w.start();
2992          }
2993 <        else
1494 <            updateWorkerCount(-1); // adjust on failure
1495 <        signalIdleWorkers(false);
1496 <    }
1497 <
1498 <    /**
1499 <     * Suspend calling thread w if there are excess threads.  Called
1500 <     * only from sync.  Spares are enqueued in a Treiber stack
1501 <     * using the same WaitQueueNodes as barriers.  They are resumed
1502 <     * mainly in preJoin, but are also woken on pool events that
1503 <     * require all threads to check run state.
1504 <     * @param w the caller
1505 <     */
1506 <    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1507 <        WaitQueueNode node = null;
1508 <        int s;
1509 <        while (parallelism < runningCountOf(s = workerCounts)) {
1510 <            if (node == null)
1511 <                node = new WaitQueueNode(w, 0);
1512 <            if (casWorkerCounts(s, s-1)) { // representation-dependent
1513 <                // push onto stack
1514 <                do;while (!casSpareStack(node.next = spareStack, node));
1515 <
1516 <                // block until released by resumeSpare
1517 <                while (node.thread != null) {
1518 <                    if (!Thread.interrupted())
1519 <                        LockSupport.park(this);
1520 <                }
1521 <                w.activate(); // help warm up
1522 <                return true;
1523 <            }
1524 <        }
1525 <        return false;
1526 <    }
1527 <
1528 <    /**
1529 <     * Try to pop and resume a spare thread.
1530 <     * @param updateCount if true, increment running count on success
1531 <     * @return true if successful
1532 <     */
1533 <    private boolean tryResumeSpare(boolean updateCount) {
1534 <        WaitQueueNode q;
1535 <        while ((q = spareStack) != null) {
1536 <            if (casSpareStack(q, q.next)) {
1537 <                if (updateCount)
1538 <                    updateRunningCount(1);
1539 <                q.signal();
1540 <                return true;
1541 <            }
1542 <        }
1543 <        return false;
1544 <    }
1545 <
1546 <    /**
1547 <     * Pop and resume all spare threads. Same idea as
1548 <     * releaseIdleWorkers.
1549 <     * @return true if any spares released
1550 <     */
1551 <    private boolean resumeAllSpares() {
1552 <        WaitQueueNode q;
1553 <        while ( (q = spareStack) != null) {
1554 <            if (casSpareStack(q, null)) {
1555 <                do {
1556 <                    updateRunningCount(1);
1557 <                    q.signal();
1558 <                } while ((q = q.next) != null);
1559 <                return true;
1560 <            }
1561 <        }
1562 <        return false;
1563 <    }
1564 <
1565 <    /**
1566 <     * Pop and shutdown excessive spare threads. Call only while
1567 <     * holding lock. This is not guaranteed to eliminate all excess
1568 <     * threads, only those suspended as spares, which are the ones
1569 <     * unlikely to be needed in the future.
1570 <     */
1571 <    private void trimSpares() {
1572 <        int surplus = totalCountOf(workerCounts) - parallelism;
1573 <        WaitQueueNode q;
1574 <        while (surplus > 0 && (q = spareStack) != null) {
1575 <            if (casSpareStack(q, null)) {
1576 <                do {
1577 <                    updateRunningCount(1);
1578 <                    ForkJoinWorkerThread w = q.thread;
1579 <                    if (w != null && surplus > 0 &&
1580 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1581 <                        --surplus;
1582 <                    q.signal();
1583 <                } while ((q = q.next) != null);
1584 <            }
1585 <        }
1586 <    }
1587 <
1588 <    /**
1589 <     * Returns approximate number of spares, just for diagnostics.
1590 <     */
1591 <    private int countSpares() {
1592 <        int sum = 0;
1593 <        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1594 <            ++sum;
1595 <        return sum;
2993 >        return terminated;
2994      }
2995  
2996      /**
2997       * Interface for extending managed parallelism for tasks running
2998 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
2999 <     * Method <tt>isReleasable</tt> must return true if blocking is not
3000 <     * necessary. Method <tt>block</tt> blocks the current thread
3001 <     * if necessary (perhaps internally invoking isReleasable before
3002 <     * actually blocking.).
2998 >     * in {@link ForkJoinPool}s.
2999 >     *
3000 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3001 >     * {@code isReleasable} must return {@code true} if blocking is
3002 >     * not necessary. Method {@code block} blocks the current thread
3003 >     * if necessary (perhaps internally invoking {@code isReleasable}
3004 >     * before actually blocking). These actions are performed by any
3005 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3006 >     * unusual methods in this API accommodate synchronizers that may,
3007 >     * but don't usually, block for long periods. Similarly, they
3008 >     * allow more efficient internal handling of cases in which
3009 >     * additional workers may be, but usually are not, needed to
3010 >     * ensure sufficient parallelism.  Toward this end,
3011 >     * implementations of method {@code isReleasable} must be amenable
3012 >     * to repeated invocation.
3013 >     *
3014       * <p>For example, here is a ManagedBlocker based on a
3015       * ReentrantLock:
3016 <     * <pre>
3017 <     *   class ManagedLocker implements ManagedBlocker {
3018 <     *     final ReentrantLock lock;
3019 <     *     boolean hasLock = false;
3020 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3021 <     *     public boolean block() {
3022 <     *        if (!hasLock)
3023 <     *           lock.lock();
3024 <     *        return true;
3025 <     *     }
3026 <     *     public boolean isReleasable() {
3027 <     *        return hasLock || (hasLock = lock.tryLock());
3028 <     *     }
3016 >     *  <pre> {@code
3017 >     * class ManagedLocker implements ManagedBlocker {
3018 >     *   final ReentrantLock lock;
3019 >     *   boolean hasLock = false;
3020 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3021 >     *   public boolean block() {
3022 >     *     if (!hasLock)
3023 >     *       lock.lock();
3024 >     *     return true;
3025 >     *   }
3026 >     *   public boolean isReleasable() {
3027 >     *     return hasLock || (hasLock = lock.tryLock());
3028 >     *   }
3029 >     * }}</pre>
3030 >     *
3031 >     * <p>Here is a class that possibly blocks waiting for an
3032 >     * item on a given queue:
3033 >     *  <pre> {@code
3034 >     * class QueueTaker<E> implements ManagedBlocker {
3035 >     *   final BlockingQueue<E> queue;
3036 >     *   volatile E item = null;
3037 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3038 >     *   public boolean block() throws InterruptedException {
3039 >     *     if (item == null)
3040 >     *       item = queue.take();
3041 >     *     return true;
3042 >     *   }
3043 >     *   public boolean isReleasable() {
3044 >     *     return item != null || (item = queue.poll()) != null;
3045       *   }
3046 <     * </pre>
3046 >     *   public E getItem() { // call after pool.managedBlock completes
3047 >     *     return item;
3048 >     *   }
3049 >     * }}</pre>
3050       */
3051      public static interface ManagedBlocker {
3052          /**
3053           * Possibly blocks the current thread, for example waiting for
3054           * a lock or condition.
3055 <         * @return true if no additional blocking is necessary (i.e.,
3056 <         * if isReleasable would return true).
3055 >         *
3056 >         * @return {@code true} if no additional blocking is necessary
3057 >         * (i.e., if isReleasable would return true)
3058           * @throws InterruptedException if interrupted while waiting
3059 <         * (the method is not required to do so, but is allowe to).
3059 >         * (the method is not required to do so, but is allowed to)
3060           */
3061          boolean block() throws InterruptedException;
3062  
3063          /**
3064 <         * Returns true if blocking is unnecessary.
3064 >         * Returns {@code true} if blocking is unnecessary.
3065           */
3066          boolean isReleasable();
3067      }
3068  
3069      /**
3070       * Blocks in accord with the given blocker.  If the current thread
3071 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
3072 <     * spare thread to be activated if necessary to ensure parallelism
3073 <     * while the current thread is blocked.  If
3074 <     * <tt>maintainParallelism</tt> is true and the pool supports it
3075 <     * (see <tt>getMaintainsParallelism</tt>), this method attempts to
3076 <     * maintain the pool's nominal parallelism. Otherwise if activates
3077 <     * a thread only if necessary to avoid complete starvation. This
3078 <     * option may be preferable when blockages use timeouts, or are
3079 <     * almost always brief.
3080 <     *
3081 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
3082 <     * equivalent to
3083 <     * <pre>
3084 <     *   while (!blocker.isReleasable())
1656 <     *      if (blocker.block())
1657 <     *         return;
1658 <     * </pre>
1659 <     * If the caller is a ForkJoinTask, then the pool may first
1660 <     * be expanded to ensure parallelism, and later adjusted.
3071 >     * is a {@link ForkJoinWorkerThread}, this method possibly
3072 >     * arranges for a spare thread to be activated if necessary to
3073 >     * ensure sufficient parallelism while the current thread is blocked.
3074 >     *
3075 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3076 >     * behaviorally equivalent to
3077 >     *  <pre> {@code
3078 >     * while (!blocker.isReleasable())
3079 >     *   if (blocker.block())
3080 >     *     return;
3081 >     * }</pre>
3082 >     *
3083 >     * If the caller is a {@code ForkJoinTask}, then the pool may
3084 >     * first be expanded to ensure parallelism, and later adjusted.
3085       *
3086       * @param blocker the blocker
3087 <     * @param maintainParallelism if true and supported by this pool,
1664 <     * attempt to maintain the pool's nominal parallelism; otherwise
1665 <     * activate a thread only if necessary to avoid complete
1666 <     * starvation.
1667 <     * @throws InterruptedException if blocker.block did so.
3087 >     * @throws InterruptedException if blocker.block did so
3088       */
3089 <    public static void managedBlock(ManagedBlocker blocker,
1670 <                                    boolean maintainParallelism)
3089 >    public static void managedBlock(ManagedBlocker blocker)
3090          throws InterruptedException {
3091          Thread t = Thread.currentThread();
3092 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
3093 <                             ((ForkJoinWorkerThread)t).pool : null);
3094 <        if (!blocker.isReleasable()) {
3095 <            try {
3096 <                if (pool == null ||
3097 <                    !pool.preBlock(blocker, maintainParallelism))
3098 <                    awaitBlocker(blocker);
3099 <            } finally {
3100 <                if (pool != null)
3101 <                    pool.updateRunningCount(1);
3092 >        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3093 >                          ((ForkJoinWorkerThread)t).pool : null);
3094 >        while (!blocker.isReleasable()) {
3095 >            if (p == null || p.tryCompensate(null, blocker)) {
3096 >                try {
3097 >                    do {} while (!blocker.isReleasable() && !blocker.block());
3098 >                } finally {
3099 >                    if (p != null)
3100 >                        p.incrementActiveCount();
3101 >                }
3102 >                break;
3103              }
3104          }
3105      }
3106  
3107 <    private static void awaitBlocker(ManagedBlocker blocker)
3108 <        throws InterruptedException {
3109 <        do;while (!blocker.isReleasable() && !blocker.block());
1690 <    }
3107 >    // AbstractExecutorService overrides.  These rely on undocumented
3108 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3109 >    // implement RunnableFuture.
3110  
3111 +    protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3112 +        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3113 +    }
3114  
3115 <    // Temporary Unsafe mechanics for preliminary release
3115 >    protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3116 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3117 >    }
3118  
3119 <    static final Unsafe _unsafe;
3120 <    static final long eventCountOffset;
3121 <    static final long workerCountsOffset;
3122 <    static final long runControlOffset;
3123 <    static final long barrierStackOffset;
3124 <    static final long spareStackOffset;
3119 >    // Unsafe mechanics
3120 >    private static final sun.misc.Unsafe U;
3121 >    private static final long CTL;
3122 >    private static final long PARKBLOCKER;
3123 >    private static final int ABASE;
3124 >    private static final int ASHIFT;
3125 >    private static final long NEXTWORKERNUMBER;
3126 >    private static final long STEALCOUNT;
3127 >    private static final long MAINLOCK;
3128  
3129      static {
3130 +        poolNumberGenerator = new AtomicInteger();
3131 +        nextSubmitterSeed = new AtomicInteger(0x55555555);
3132 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3133 +        defaultForkJoinWorkerThreadFactory =
3134 +            new DefaultForkJoinWorkerThreadFactory();
3135 +        submitters = new ThreadSubmitter();
3136 +        int s;
3137          try {
3138 <            if (ForkJoinPool.class.getClassLoader() != null) {
3139 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
3140 <                f.setAccessible(true);
3141 <                _unsafe = (Unsafe)f.get(null);
3142 <            }
3143 <            else
3144 <                _unsafe = Unsafe.getUnsafe();
3145 <            eventCountOffset = _unsafe.objectFieldOffset
3146 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
3147 <            workerCountsOffset = _unsafe.objectFieldOffset
3148 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
3149 <            runControlOffset = _unsafe.objectFieldOffset
3150 <                (ForkJoinPool.class.getDeclaredField("runControl"));
3151 <            barrierStackOffset = _unsafe.objectFieldOffset
3152 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
3153 <            spareStackOffset = _unsafe.objectFieldOffset
3154 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
3138 >            U = getUnsafe();
3139 >            Class<?> k = ForkJoinPool.class;
3140 >            Class<?> ak = ForkJoinTask[].class;
3141 >            CTL = U.objectFieldOffset
3142 >                (k.getDeclaredField("ctl"));
3143 >            NEXTWORKERNUMBER = U.objectFieldOffset
3144 >                (k.getDeclaredField("nextWorkerNumber"));
3145 >            STEALCOUNT = U.objectFieldOffset
3146 >                (k.getDeclaredField("stealCount"));
3147 >            MAINLOCK = U.objectFieldOffset
3148 >                (k.getDeclaredField("mainLock"));
3149 >            Class<?> tk = Thread.class;
3150 >            PARKBLOCKER = U.objectFieldOffset
3151 >                (tk.getDeclaredField("parkBlocker"));
3152 >            ABASE = U.arrayBaseOffset(ak);
3153 >            s = U.arrayIndexScale(ak);
3154 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3155 >        } catch (Exception e) {
3156 >            throw new Error(e);
3157 >        }
3158 >        if ((s & (s-1)) != 0)
3159 >            throw new Error("data type scale not a power of two");
3160 >        try { // Establish common pool
3161 >            String pp = System.getProperty(propPrefix + "parallelism");
3162 >            String fp = System.getProperty(propPrefix + "threadFactory");
3163 >            String up = System.getProperty(propPrefix + "exceptionHandler");
3164 >            ForkJoinWorkerThreadFactory fac = (fp == null) ?
3165 >                defaultForkJoinWorkerThreadFactory :
3166 >                ((ForkJoinWorkerThreadFactory)ClassLoader.
3167 >                 getSystemClassLoader().loadClass(fp).newInstance());
3168 >            Thread.UncaughtExceptionHandler ueh = (up == null) ? null :
3169 >                ((Thread.UncaughtExceptionHandler)ClassLoader.
3170 >                 getSystemClassLoader().loadClass(up).newInstance());
3171 >            int par;
3172 >            if ((pp == null || (par = Integer.parseInt(pp)) <= 0))
3173 >                par = Runtime.getRuntime().availableProcessors();
3174 >            if (par > MAX_CAP)
3175 >                par = MAX_CAP;
3176 >            commonPoolParallelism = par;
3177 >            int n = par - 1; // precompute submit mask
3178 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4;
3179 >            n |= n >>> 8; n |= n >>> 16;
3180 >            int mask = ((n + 1) << 1) - 1;
3181 >            commonPool = new ForkJoinPool(par, mask, fac, ueh);
3182          } catch (Exception e) {
3183 <            throw new RuntimeException("Could not initialize intrinsics", e);
3183 >            throw new Error(e);
3184          }
3185      }
3186  
3187 <    private boolean casEventCount(long cmp, long val) {
3188 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
3189 <    }
3190 <    private boolean casWorkerCounts(int cmp, int val) {
3191 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
3192 <    }
3193 <    private boolean casRunControl(int cmp, int val) {
3194 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
3195 <    }
3196 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
3197 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
3198 <    }
3199 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
3200 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
3187 >    /**
3188 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
3189 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
3190 >     * into a jdk.
3191 >     *
3192 >     * @return a sun.misc.Unsafe
3193 >     */
3194 >    private static sun.misc.Unsafe getUnsafe() {
3195 >        try {
3196 >            return sun.misc.Unsafe.getUnsafe();
3197 >        } catch (SecurityException se) {
3198 >            try {
3199 >                return java.security.AccessController.doPrivileged
3200 >                    (new java.security
3201 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3202 >                        public sun.misc.Unsafe run() throws Exception {
3203 >                            java.lang.reflect.Field f = sun.misc
3204 >                                .Unsafe.class.getDeclaredField("theUnsafe");
3205 >                            f.setAccessible(true);
3206 >                            return (sun.misc.Unsafe) f.get(null);
3207 >                        }});
3208 >            } catch (java.security.PrivilegedActionException e) {
3209 >                throw new RuntimeException("Could not initialize intrinsics",
3210 >                                           e.getCause());
3211 >            }
3212 >        }
3213      }
3214 +
3215   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines