ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.115 by jsr166, Thu Jan 26 19:10:27 2012 UTC vs.
Revision 1.141 by jsr166, Wed Nov 14 18:45:53 2012 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.atomic.AtomicInteger;
23 import java.util.concurrent.atomic.AtomicLong;
24 import java.util.concurrent.locks.ReentrantLock;
25 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 42 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 60 | Line 63 | import java.util.concurrent.locks.Condit
63   * convenient form for informal monitoring.
64   *
65   * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used primarily by clients not
68 < * already engaged in fork/join computations in the current pool.  The
69 < * main forms of these methods accept instances of {@code
70 < * ForkJoinTask}, but overloaded forms also allow mixed execution of
71 < * plain {@code Runnable}- or {@code Callable}- based activities as
72 < * well.  However, tasks that are already executing in a pool should
73 < * normally instead use the within-computation forms listed in the
74 < * table unless using async event-style tasks that are not usually
75 < * joined, in which case there is little difference among choice of
73 < * methods.
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71 > * Runnable}- or {@code Callable}- based activities as well.  However,
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 95 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
107 < *
108 < *  <pre> {@code
109 < * static final ForkJoinPool mainPool = new ForkJoinPool();
110 < * ...
111 < * public void sort(long[] array) {
112 < *   mainPool.invoke(new SortTask(array, 0, array.length));
113 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
108 > * these settings, default parameters are used.
109   *
110   * <p><b>Implementation notes</b>: This implementation restricts the
111   * maximum number of running threads to 32767. Attempts to create
# Line 131 | Line 126 | public class ForkJoinPool extends Abstra
126       *
127       * This class and its nested classes provide the main
128       * functionality and control for a set of worker threads:
129 <     * Submissions from non-FJ threads enter into submission
130 <     * queues. Workers take these tasks and typically split them into
131 <     * subtasks that may be stolen by other workers.  Preference rules
132 <     * give first priority to processing tasks from their own queues
133 <     * (LIFO or FIFO, depending on mode), then to randomized FIFO
134 <     * steals of tasks in other queues.
129 >     * Submissions from non-FJ threads enter into submission queues.
130 >     * Workers take these tasks and typically split them into subtasks
131 >     * that may be stolen by other workers.  Preference rules give
132 >     * first priority to processing tasks from their own queues (LIFO
133 >     * or FIFO, depending on mode), then to randomized FIFO steals of
134 >     * tasks in other queues.
135       *
136 <     * WorkQueues.
136 >     * WorkQueues
137       * ==========
138       *
139       * Most operations occur within work-stealing queues (in nested
# Line 156 | Line 151 | public class ForkJoinPool extends Abstra
151       * (http://research.sun.com/scalable/pubs/index.html) and
152       * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
153       * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
154 <     * The main differences ultimately stem from gc requirements that
154 >     * The main differences ultimately stem from GC requirements that
155       * we null out taken slots as soon as we can, to maintain as small
156       * a footprint as possible even in programs generating huge
157       * numbers of tasks. To accomplish this, we shift the CAS
# Line 178 | Line 173 | public class ForkJoinPool extends Abstra
173       * If an attempted steal fails, a thief always chooses a different
174       * random victim target to try next. So, in order for one thief to
175       * progress, it suffices for any in-progress poll or new push on
176 <     * any empty queue to complete.
176 >     * any empty queue to complete. (This is why we normally use
177 >     * method pollAt and its variants that try once at the apparent
178 >     * base index, else consider alternative actions, rather than
179 >     * method poll.)
180       *
181       * This approach also enables support of a user mode in which local
182       * task processing is in FIFO, not LIFO order, simply by using
# Line 188 | Line 186 | public class ForkJoinPool extends Abstra
186       * rarely provide the best possible performance on a given
187       * machine, but portably provide good throughput by averaging over
188       * these factors.  (Further, even if we did try to use such
189 <     * information, we do not usually have a basis for exploiting
190 <     * it. For example, some sets of tasks profit from cache
191 <     * affinities, but others are harmed by cache pollution effects.)
189 >     * information, we do not usually have a basis for exploiting it.
190 >     * For example, some sets of tasks profit from cache affinities,
191 >     * but others are harmed by cache pollution effects.)
192       *
193       * WorkQueues are also used in a similar way for tasks submitted
194       * to the pool. We cannot mix these tasks in the same queues used
195       * for work-stealing (this would contaminate lifo/fifo
196 <     * processing). Instead, we loosely associate (via hashing)
197 <     * submission queues with submitting threads, and randomly scan
198 <     * these queues as well when looking for work. In essence,
199 <     * submitters act like workers except that they never take tasks,
200 <     * and they are multiplexed on to a finite number of shared work
201 <     * queues. However, classes are set up so that future extensions
202 <     * could allow submitters to optionally help perform tasks as
203 <     * well. Pool submissions from internal workers are also allowed,
204 <     * but use randomized rather than thread-hashed queue indices to
205 <     * avoid imbalance.  Insertion of tasks in shared mode requires a
206 <     * lock (mainly to protect in the case of resizing) but we use
207 <     * only a simple spinlock (using bits in field runState), because
208 <     * submitters encountering a busy queue try or create others so
209 <     * never block.
196 >     * processing). Instead, we randomly associate submission queues
197 >     * with submitting threads, using a form of hashing.  The
198 >     * ThreadLocal Submitter class contains a value initially used as
199 >     * a hash code for choosing existing queues, but may be randomly
200 >     * repositioned upon contention with other submitters.  In
201 >     * essence, submitters act like workers except that they are
202 >     * restricted to executing local tasks that they submitted (or in
203 >     * the case of CountedCompleters, others with the same root task).
204 >     * However, because most shared/external queue operations are more
205 >     * expensive than internal, and because, at steady state, external
206 >     * submitters will compete for CPU with workers, ForkJoinTask.join
207 >     * and related methods disable them from repeatedly helping to
208 >     * process tasks if all workers are active.  Insertion of tasks in
209 >     * shared mode requires a lock (mainly to protect in the case of
210 >     * resizing) but we use only a simple spinlock (using bits in
211 >     * field qlock), because submitters encountering a busy queue move
212 >     * on to try or create other queues -- they block only when
213 >     * creating and registering new queues.
214       *
215 <     * Management.
215 >     * Management
216       * ==========
217       *
218       * The main throughput advantages of work-stealing stem from
# Line 220 | Line 222 | public class ForkJoinPool extends Abstra
222       * tactic for avoiding bottlenecks is packing nearly all
223       * essentially atomic control state into two volatile variables
224       * that are by far most often read (not written) as status and
225 <     * consistency checks
225 >     * consistency checks.
226       *
227       * Field "ctl" contains 64 bits holding all the information needed
228       * to atomically decide to add, inactivate, enqueue (on an event
# Line 230 | Line 232 | public class ForkJoinPool extends Abstra
232       * and their negations (used for thresholding) to fit into 16bit
233       * fields.
234       *
235 <     * Field "runState" contains 32 bits needed to register and
236 <     * deregister WorkQueues, as well as to enable shutdown. It is
237 <     * only modified under a lock (normally briefly held, but
238 <     * occasionally protecting allocations and resizings) but even
239 <     * when locked remains available to check consistency.
235 >     * Field "plock" is a form of sequence lock with a saturating
236 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
237 >     * protecting updates to the workQueues array, as well as to
238 >     * enable shutdown.  When used as a lock, it is normally only very
239 >     * briefly held, so is nearly always available after at most a
240 >     * brief spin, but we use a monitor-based backup strategy to
241 >     * blocking when needed.
242       *
243       * Recording WorkQueues.  WorkQueues are recorded in the
244 <     * "workQueues" array that is created upon pool construction and
245 <     * expanded if necessary.  Updates to the array while recording
246 <     * new workers and unrecording terminated ones are protected from
247 <     * each other by a lock but the array is otherwise concurrently
248 <     * readable, and accessed directly.  To simplify index-based
249 <     * operations, the array size is always a power of two, and all
250 <     * readers must tolerate null slots. Shared (submission) queues
251 <     * are at even indices, worker queues at odd indices. Grouping
252 <     * them together in this way simplifies and speeds up task
253 <     * scanning. To avoid flailing during start-up, the array is
254 <     * presized to hold twice #parallelism workers (which is unlikely
255 <     * to need further resizing during execution). But to avoid
256 <     * dealing with so many null slots, variable runState includes a
257 <     * mask for the nearest power of two that contains all current
254 <     * workers.  All worker thread creation is on-demand, triggered by
255 <     * task submissions, replacement of terminated workers, and/or
244 >     * "workQueues" array that is created upon first use and expanded
245 >     * if necessary.  Updates to the array while recording new workers
246 >     * and unrecording terminated ones are protected from each other
247 >     * by a lock but the array is otherwise concurrently readable, and
248 >     * accessed directly.  To simplify index-based operations, the
249 >     * array size is always a power of two, and all readers must
250 >     * tolerate null slots. Worker queues are at odd indices Shared
251 >     * (submission) queues are at even indices, up to a maximum of 64
252 >     * slots, to limit growth even if array needs to expand to add
253 >     * more workers. Grouping them together in this way simplifies and
254 >     * speeds up task scanning.
255 >     *
256 >     * All worker thread creation is on-demand, triggered by task
257 >     * submissions, replacement of terminated workers, and/or
258       * compensation for blocked workers. However, all other support
259       * code is set up to work with other policies.  To ensure that we
260       * do not hold on to worker references that would prevent GC, ALL
# Line 265 | Line 267 | public class ForkJoinPool extends Abstra
267       * both index-check and null-check the IDs. All such accesses
268       * ignore bad IDs by returning out early from what they are doing,
269       * since this can only be associated with termination, in which
270 <     * case it is OK to give up.
271 <     *
272 <     * All uses of the workQueues array check that it is non-null
273 <     * (even if previously non-null). This allows nulling during
274 <     * termination, which is currently not necessary, but remains an
275 <     * option for resource-revocation-based shutdown schemes. It also
274 <     * helps reduce JIT issuance of uncommon-trap code, which tends to
270 >     * case it is OK to give up.  All uses of the workQueues array
271 >     * also check that it is non-null (even if previously
272 >     * non-null). This allows nulling during termination, which is
273 >     * currently not necessary, but remains an option for
274 >     * resource-revocation-based shutdown schemes. It also helps
275 >     * reduce JIT issuance of uncommon-trap code, which tends to
276       * unnecessarily complicate control flow in some methods.
277       *
278       * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
# Line 299 | Line 300 | public class ForkJoinPool extends Abstra
300       * some other queued worker rather than itself, which has the same
301       * net effect. Because enqueued workers may actually be rescanning
302       * rather than waiting, we set and clear the "parker" field of
303 <     * Workqueues to reduce unnecessary calls to unpark.  (This
303 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
304       * requires a secondary recheck to avoid missed signals.)  Note
305       * the unusual conventions about Thread.interrupts surrounding
306       * parking and other blocking: Because interrupts are used solely
# Line 311 | Line 312 | public class ForkJoinPool extends Abstra
312       *
313       * Signalling.  We create or wake up workers only when there
314       * appears to be at least one task they might be able to find and
315 <     * execute.  When a submission is added or another worker adds a
316 <     * task to a queue that previously had fewer than two tasks, they
317 <     * signal waiting workers (or trigger creation of new ones if
318 <     * fewer than the given parallelism level -- see signalWork).
319 <     * These primary signals are buttressed by signals during rescans;
320 <     * together these cover the signals needed in cases when more
321 <     * tasks are pushed but untaken, and improve performance compared
322 <     * to having one thread wake up all workers.
315 >     * execute. However, many other threads may notice the same task
316 >     * and each signal to wake up a thread that might take it. So in
317 >     * general, pools will be over-signalled.  When a submission is
318 >     * added or another worker adds a task to a queue that is
319 >     * apparently empty, they signal waiting workers (or trigger
320 >     * creation of new ones if fewer than the given parallelism level
321 >     * -- see signalWork).  These primary signals are buttressed by
322 >     * signals whenever other threads scan for work or do not have a
323 >     * task to process. On most platforms, signalling (unpark)
324 >     * overhead time is noticeably long, and the time between
325 >     * signalling a thread and it actually making progress can be very
326 >     * noticeably long, so it is worth offloading these delays from
327 >     * critical paths as much as possible.
328       *
329       * Trimming workers. To release resources after periods of lack of
330       * use, a worker starting to wait when the pool is quiescent will
331 <     * time out and terminate if the pool has remained quiescent for
332 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
333 <     * terminating all workers after long periods of non-use.
331 >     * time out and terminate if the pool has remained quiescent for a
332 >     * given period -- a short period if there are more threads than
333 >     * parallelism, longer as the number of threads decreases. This
334 >     * will slowly propagate, eventually terminating all workers after
335 >     * periods of non-use.
336       *
337       * Shutdown and Termination. A call to shutdownNow atomically sets
338 <     * a runState bit and then (non-atomically) sets each workers
339 <     * runState status, cancels all unprocessed tasks, and wakes up
338 >     * a plock bit and then (non-atomically) sets each worker's
339 >     * qlock status, cancels all unprocessed tasks, and wakes up
340       * all waiting workers.  Detecting whether termination should
341       * commence after a non-abrupt shutdown() call requires more work
342       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 336 | Line 344 | public class ForkJoinPool extends Abstra
344       * indication but non-abrupt shutdown still requires a rechecking
345       * scan for any workers that are inactive but not queued.
346       *
347 <     * Joining Tasks.
348 <     * ==============
347 >     * Joining Tasks
348 >     * =============
349       *
350       * Any of several actions may be taken when one worker is waiting
351 <     * to join a task stolen (or always held by) another.  Because we
351 >     * to join a task stolen (or always held) by another.  Because we
352       * are multiplexing many tasks on to a pool of workers, we can't
353       * just let them block (as in Thread.join).  We also cannot just
354       * reassign the joiner's run-time stack with another and replace
355       * it later, which would be a form of "continuation", that even if
356       * possible is not necessarily a good idea since we sometimes need
357 <     * both an unblocked task and its continuation to
358 <     * progress. Instead we combine two tactics:
357 >     * both an unblocked task and its continuation to progress.
358 >     * Instead we combine two tactics:
359       *
360       *   Helping: Arranging for the joiner to execute some task that it
361       *      would be running if the steal had not occurred.
# Line 356 | Line 364 | public class ForkJoinPool extends Abstra
364       *      method tryCompensate() may create or re-activate a spare
365       *      thread to compensate for blocked joiners until they unblock.
366       *
367 <     * A third form (implemented in tryRemoveAndExec and
368 <     * tryPollForAndExec) amounts to helping a hypothetical
369 <     * compensator: If we can readily tell that a possible action of a
370 <     * compensator is to steal and execute the task being joined, the
371 <     * joining thread can do so directly, without the need for a
372 <     * compensation thread (although at the expense of larger run-time
373 <     * stacks, but the tradeoff is typically worthwhile).
367 >     * A third form (implemented in tryRemoveAndExec) amounts to
368 >     * helping a hypothetical compensator: If we can readily tell that
369 >     * a possible action of a compensator is to steal and execute the
370 >     * task being joined, the joining thread can do so directly,
371 >     * without the need for a compensation thread (although at the
372 >     * expense of larger run-time stacks, but the tradeoff is
373 >     * typically worthwhile).
374       *
375       * The ManagedBlocker extension API can't use helping so relies
376       * only on compensation in method awaitBlocker.
# Line 382 | Line 390 | public class ForkJoinPool extends Abstra
390       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
391       * that: (1) We only maintain dependency links across workers upon
392       * steals, rather than use per-task bookkeeping.  This sometimes
393 <     * requires a linear scan of workers array to locate stealers, but
394 <     * often doesn't because stealers leave hints (that may become
393 >     * requires a linear scan of workQueues array to locate stealers,
394 >     * but often doesn't because stealers leave hints (that may become
395       * stale/wrong) of where to locate them.  A stealHint is only a
396       * hint because a worker might have had multiple steals and the
397       * hint records only one of them (usually the most current).
# Line 394 | Line 402 | public class ForkJoinPool extends Abstra
402       * which means that we miss links in the chain during long-lived
403       * tasks, GC stalls etc (which is OK since blocking in such cases
404       * is usually a good idea).  (4) We bound the number of attempts
405 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
406 <     * the worker and if necessary replacing it with another.
405 >     * to find work (see MAX_HELP) and fall back to suspending the
406 >     * worker and if necessary replacing it with another.
407 >     *
408 >     * Helping actions for CountedCompleters are much simpler: Method
409 >     * helpComplete can take and execute any task with the same root
410 >     * as the task being waited on. However, this still entails some
411 >     * traversal of completer chains, so is less efficient than using
412 >     * CountedCompleters without explicit joins.
413       *
414       * It is impossible to keep exactly the target parallelism number
415       * of threads running at any given time.  Determining the
416       * existence of conservatively safe helping targets, the
417       * availability of already-created spares, and the apparent need
418       * to create new spares are all racy, so we rely on multiple
419 <     * retries of each.  Currently, in keeping with on-demand
420 <     * signalling policy, we compensate only if blocking would leave
421 <     * less than one active (non-waiting, non-blocked) worker.
422 <     * Additionally, to avoid some false alarms due to GC, lagging
423 <     * counters, system activity, etc, compensated blocking for joins
424 <     * is only attempted after rechecks stabilize in
425 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
426 <     * Thread.yield, for good citizenship.)
427 <     *
428 <     * Style notes: There is a lot of representation-level coupling
429 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
430 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
431 <     * managed by ForkJoinPool, so are directly accessed.  There is
432 <     * little point trying to reduce this, since any associated future
433 <     * changes in representations will need to be accompanied by
434 <     * algorithmic changes anyway. All together, these low-level
435 <     * implementation choices produce as much as a factor of 4
436 <     * performance improvement compared to naive implementations, and
437 <     * enable the processing of billions of tasks per second, at the
438 <     * expense of some ugliness.
439 <     *
440 <     * Methods signalWork() and scan() are the main bottlenecks so are
441 <     * especially heavily micro-optimized/mangled.  There are lots of
442 <     * inline assignments (of form "while ((local = field) != 0)")
443 <     * which are usually the simplest way to ensure the required read
444 <     * orderings (which are sometimes critical). This leads to a
445 <     * "C"-like style of listing declarations of these locals at the
446 <     * heads of methods or blocks.  There are several occurrences of
447 <     * the unusual "do {} while (!cas...)"  which is the simplest way
448 <     * to force an update of a CAS'ed variable. There are also other
449 <     * coding oddities that help some methods perform reasonably even
450 <     * when interpreted (not compiled).
451 <     *
452 <     * The order of declarations in this file is: (1) declarations of
453 <     * statics (2) fields (along with constants used when unpacking
454 <     * some of them), listed in an order that tends to reduce
455 <     * contention among them a bit under most JVMs; (3) nested
456 <     * classes; (4) internal control methods; (5) callbacks and other
457 <     * support for ForkJoinTask methods; (6) exported methods (plus a
458 <     * few little helpers); (7) static block initializing all statics
459 <     * in a minimally dependent order.
419 >     * retries of each.  Compensation in the apparent absence of
420 >     * helping opportunities is challenging to control on JVMs, where
421 >     * GC and other activities can stall progress of tasks that in
422 >     * turn stall out many other dependent tasks, without us being
423 >     * able to determine whether they will ever require compensation.
424 >     * Even though work-stealing otherwise encounters little
425 >     * degradation in the presence of more threads than cores,
426 >     * aggressively adding new threads in such cases entails risk of
427 >     * unwanted positive feedback control loops in which more threads
428 >     * cause more dependent stalls (as well as delayed progress of
429 >     * unblocked threads to the point that we know they are available)
430 >     * leading to more situations requiring more threads, and so
431 >     * on. This aspect of control can be seen as an (analytically
432 >     * intractable) game with an opponent that may choose the worst
433 >     * (for us) active thread to stall at any time.  We take several
434 >     * precautions to bound losses (and thus bound gains), mainly in
435 >     * methods tryCompensate and awaitJoin.
436 >     *
437 >     * Common Pool
438 >     * ===========
439 >     *
440 >     * The static commonPool always exists after static
441 >     * initialization.  Since it (or any other created pool) need
442 >     * never be used, we minimize initial construction overhead and
443 >     * footprint to the setup of about a dozen fields, with no nested
444 >     * allocation. Most bootstrapping occurs within method
445 >     * fullExternalPush during the first submission to the pool.
446 >     *
447 >     * When external threads submit to the common pool, they can
448 >     * perform some subtask processing (see externalHelpJoin and
449 >     * related methods).  We do not need to record whether these
450 >     * submissions are to the common pool -- if not, externalHelpJoin
451 >     * returns quicky (at the most helping to signal some common pool
452 >     * workers). These submitters would otherwise be blocked waiting
453 >     * for completion, so the extra effort (with liberally sprinkled
454 >     * task status checks) in inapplicable cases amounts to an odd
455 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
456 >     *
457 >     * Style notes
458 >     * ===========
459 >     *
460 >     * There is a lot of representation-level coupling among classes
461 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
462 >     * fields of WorkQueue maintain data structures managed by
463 >     * ForkJoinPool, so are directly accessed.  There is little point
464 >     * trying to reduce this, since any associated future changes in
465 >     * representations will need to be accompanied by algorithmic
466 >     * changes anyway. Several methods intrinsically sprawl because
467 >     * they must accumulate sets of consistent reads of volatiles held
468 >     * in local variables.  Methods signalWork() and scan() are the
469 >     * main bottlenecks, so are especially heavily
470 >     * micro-optimized/mangled.  There are lots of inline assignments
471 >     * (of form "while ((local = field) != 0)") which are usually the
472 >     * simplest way to ensure the required read orderings (which are
473 >     * sometimes critical). This leads to a "C"-like style of listing
474 >     * declarations of these locals at the heads of methods or blocks.
475 >     * There are several occurrences of the unusual "do {} while
476 >     * (!cas...)"  which is the simplest way to force an update of a
477 >     * CAS'ed variable. There are also other coding oddities (including
478 >     * several unnecessary-looking hoisted null checks) that help
479 >     * some methods perform reasonably even when interpreted (not
480 >     * compiled).
481 >     *
482 >     * The order of declarations in this file is:
483 >     * (1) Static utility functions
484 >     * (2) Nested (static) classes
485 >     * (3) Static fields
486 >     * (4) Fields, along with constants used when unpacking some of them
487 >     * (5) Internal control methods
488 >     * (6) Callbacks and other support for ForkJoinTask methods
489 >     * (7) Exported methods
490 >     * (8) Static block initializing statics in minimally dependent order
491 >     */
492 >
493 >    // Static utilities
494 >
495 >    /**
496 >     * If there is a security manager, makes sure caller has
497 >     * permission to modify threads.
498       */
499 +    private static void checkPermission() {
500 +        SecurityManager security = System.getSecurityManager();
501 +        if (security != null)
502 +            security.checkPermission(modifyThreadPermission);
503 +    }
504 +
505 +    // Nested classes
506  
507      /**
508       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 473 | Line 532 | public class ForkJoinPool extends Abstra
532      }
533  
534      /**
535 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
536 <     * overridden in ForkJoinPool constructors.
537 <     */
538 <    public static final ForkJoinWorkerThreadFactory
480 <        defaultForkJoinWorkerThreadFactory;
481 <
482 <    /**
483 <     * Permission required for callers of methods that may start or
484 <     * kill threads.
485 <     */
486 <    private static final RuntimePermission modifyThreadPermission;
487 <
488 <    /**
489 <     * If there is a security manager, makes sure caller has
490 <     * permission to modify threads.
535 >     * Class for artificial tasks that are used to replace the target
536 >     * of local joins if they are removed from an interior queue slot
537 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
538 >     * actually do anything beyond having a unique identity.
539       */
540 <    private static void checkPermission() {
541 <        SecurityManager security = System.getSecurityManager();
542 <        if (security != null)
543 <            security.checkPermission(modifyThreadPermission);
540 >    static final class EmptyTask extends ForkJoinTask<Void> {
541 >        private static final long serialVersionUID = -7721805057305804111L;
542 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
543 >        public final Void getRawResult() { return null; }
544 >        public final void setRawResult(Void x) {}
545 >        public final boolean exec() { return true; }
546      }
547  
548      /**
499     * Generator for assigning sequence numbers as pool names.
500     */
501    private static final AtomicInteger poolNumberGenerator;
502
503    /**
504     * Bits and masks for control variables
505     *
506     * Field ctl is a long packed with:
507     * AC: Number of active running workers minus target parallelism (16 bits)
508     * TC: Number of total workers minus target parallelism (16 bits)
509     * ST: true if pool is terminating (1 bit)
510     * EC: the wait count of top waiting thread (15 bits)
511     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
512     *
513     * When convenient, we can extract the upper 32 bits of counts and
514     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
515     * (int)ctl.  The ec field is never accessed alone, but always
516     * together with id and st. The offsets of counts by the target
517     * parallelism and the positionings of fields makes it possible to
518     * perform the most common checks via sign tests of fields: When
519     * ac is negative, there are not enough active workers, when tc is
520     * negative, there are not enough total workers, when id is
521     * negative, there is at least one waiting worker, and when e is
522     * negative, the pool is terminating.  To deal with these possibly
523     * negative fields, we use casts in and out of "short" and/or
524     * signed shifts to maintain signedness.
525     *
526     * When a thread is queued (inactivated), its eventCount field is
527     * negative, which is the only way to tell if a worker is
528     * prevented from executing tasks, even though it must continue to
529     * scan for them to avoid queuing races.
530     *
531     * Field runState is an int packed with:
532     * SHUTDOWN: true if shutdown is enabled (1 bit)
533     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
534     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
535     *
536     * The combination of mask and sequence number enables simple
537     * consistency checks: Staleness of read-only operations on the
538     * workers and queues arrays can be checked by comparing runState
539     * before vs after the reads. The low 16 bits (i.e, anding with
540     * SMASK) hold (the smallest power of two covering all worker
541     * indices, minus one.  The mask for queues (vs workers) is twice
542     * this value plus 1.
543     */
544
545    // bit positions/shifts for fields
546    private static final int  AC_SHIFT   = 48;
547    private static final int  TC_SHIFT   = 32;
548    private static final int  ST_SHIFT   = 31;
549    private static final int  EC_SHIFT   = 16;
550
551    // bounds
552    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
553    private static final int  SMASK      = 0xffff;  // mask short bits
554    private static final int  SHORT_SIGN = 1 << 15;
555    private static final int  INT_SIGN   = 1 << 31;
556
557    // masks
558    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
559    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
560    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
561
562    // units for incrementing and decrementing
563    private static final long TC_UNIT    = 1L << TC_SHIFT;
564    private static final long AC_UNIT    = 1L << AC_SHIFT;
565
566    // masks and units for dealing with u = (int)(ctl >>> 32)
567    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
568    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
569    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
570    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
571    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
572    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
573
574    // masks and units for dealing with e = (int)ctl
575    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
576    private static final int E_SEQ       = 1 << EC_SHIFT;
577
578    // runState bits
579    private static final int SHUTDOWN    = 1 << 31;
580    private static final int RS_SEQ      = 1 << 16;
581    private static final int RS_SEQ_MASK = 0x7fff0000;
582
583    // access mode for WorkQueue
584    static final int LIFO_QUEUE          =  0;
585    static final int FIFO_QUEUE          =  1;
586    static final int SHARED_QUEUE        = -1;
587
588    /**
589     * The wakeup interval (in nanoseconds) for a worker waiting for a
590     * task when the pool is quiescent to instead try to shrink the
591     * number of workers.  The exact value does not matter too
592     * much. It must be short enough to release resources during
593     * sustained periods of idleness, but not so short that threads
594     * are continually re-created.
595     */
596    private static final long SHRINK_RATE =
597        4L * 1000L * 1000L * 1000L; // 4 seconds
598
599    /**
600     * The timeout value for attempted shrinkage, includes
601     * some slop to cope with system timer imprecision.
602     */
603    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
604
605    /**
606     * The maximum stolen->joining link depth allowed in tryHelpStealer.
607     * Depths for legitimate chains are unbounded, but we use a fixed
608     * constant to avoid (otherwise unchecked) cycles and to bound
609     * staleness of traversal parameters at the expense of sometimes
610     * blocking when we could be helping.
611     */
612    private static final int MAX_HELP_DEPTH = 16;
613
614    /*
615     * Field layout order in this class tends to matter more than one
616     * would like. Runtime layout order is only loosely related to
617     * declaration order and may differ across JVMs, but the following
618     * empirically works OK on current JVMs.
619     */
620
621    volatile long ctl;                       // main pool control
622    final int parallelism;                   // parallelism level
623    final int localMode;                     // per-worker scheduling mode
624    int nextPoolIndex;                       // hint used in registerWorker
625    volatile int runState;                   // shutdown status, seq, and mask
626    WorkQueue[] workQueues;                  // main registry
627    final ReentrantLock lock;                // for registration
628    final Condition termination;             // for awaitTermination
629    final ForkJoinWorkerThreadFactory factory; // factory for new workers
630    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
631    final AtomicLong stealCount;             // collect counts when terminated
632    final AtomicInteger nextWorkerNumber;    // to create worker name string
633    final String workerNamePrefix;           // Prefix for assigning worker names
634
635    /**
549       * Queues supporting work-stealing as well as external task
550       * submission. See above for main rationale and algorithms.
551       * Implementation relies heavily on "Unsafe" intrinsics
# Line 646 | Line 559 | public class ForkJoinPool extends Abstra
559       *
560       * Field "top" is the index (mod array.length) of the next queue
561       * slot to push to or pop from. It is written only by owner thread
562 <     * for push, or under lock for trySharedPush, and accessed by
563 <     * other threads only after reading (volatile) base.  Both top and
564 <     * base are allowed to wrap around on overflow, but (top - base)
565 <     * (or more commonly -(base - top) to force volatile read of base
566 <     * before top) still estimates size.
562 >     * for push, or under lock for external/shared push, and accessed
563 >     * by other threads only after reading (volatile) base.  Both top
564 >     * and base are allowed to wrap around on overflow, but (top -
565 >     * base) (or more commonly -(base - top) to force volatile read of
566 >     * base before top) still estimates size. The lock ("qlock") is
567 >     * forced to -1 on termination, causing all further lock attempts
568 >     * to fail. (Note: we don't need CAS for termination state because
569 >     * upon pool shutdown, all shared-queues will stop being used
570 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
571 >     * within lock bodies are "impossible" (modulo JVM errors that
572 >     * would cause failure anyway.)
573       *
574       * The array slots are read and written using the emulation of
575       * volatiles/atomics provided by Unsafe. Insertions must in
576       * general use putOrderedObject as a form of releasing store to
577       * ensure that all writes to the task object are ordered before
578 <     * its publication in the queue. (Although we can avoid one case
579 <     * of this when locked in trySharedPush.) All removals entail a
580 <     * CAS to null.  The array is always a power of two. To ensure
581 <     * safety of Unsafe array operations, all accesses perform
663 <     * explicit null checks and implicit bounds checks via
664 <     * power-of-two masking.
578 >     * its publication in the queue.  All removals entail a CAS to
579 >     * null.  The array is always a power of two. To ensure safety of
580 >     * Unsafe array operations, all accesses perform explicit null
581 >     * checks and implicit bounds checks via power-of-two masking.
582       *
583       * In addition to basic queuing support, this class contains
584       * fields described elsewhere to control execution. It turns out
585 <     * to work better memory-layout-wise to include them in this
586 <     * class rather than a separate class.
585 >     * to work better memory-layout-wise to include them in this class
586 >     * rather than a separate class.
587       *
588       * Performance on most platforms is very sensitive to placement of
589       * instances of both WorkQueues and their arrays -- we absolutely
# Line 681 | Line 598 | public class ForkJoinPool extends Abstra
598       * avoiding really bad worst-case access. (Until better JVM
599       * support is in place, this padding is dependent on transient
600       * properties of JVM field layout rules.)  We also take care in
601 <     * allocating and sizing and resizing the array. Non-shared queue
602 <     * arrays are initialized (via method growArray) by workers before
603 <     * use. Others are allocated on first use.
601 >     * allocating, sizing and resizing the array. Non-shared queue
602 >     * arrays are initialized by workers before use. Others are
603 >     * allocated on first use.
604       */
605      static final class WorkQueue {
606          /**
607           * Capacity of work-stealing queue array upon initialization.
608 <         * Must be a power of two; at least 4, but set larger to
609 <         * reduce cacheline sharing among queues.
608 >         * Must be a power of two; at least 4, but should be larger to
609 >         * reduce or eliminate cacheline sharing among queues.
610 >         * Currently, it is much larger, as a partial workaround for
611 >         * the fact that JVMs often place arrays in locations that
612 >         * share GC bookkeeping (especially cardmarks) such that
613 >         * per-write accesses encounter serious memory contention.
614           */
615 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
615 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
616  
617          /**
618           * Maximum size for queue arrays. Must be a power of two less
# Line 702 | Line 623 | public class ForkJoinPool extends Abstra
623           */
624          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
625  
705        volatile long totalSteals; // cumulative number of steals
626          int seed;                  // for random scanning; initialize nonzero
627          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
628          int nextWait;              // encoded record of next event waiter
709        int rescans;               // remaining scans until block
710        int nsteals;               // top-level task executions since last idle
629          final int mode;            // lifo, fifo, or shared
630 +        int nsteals;               // cumulative number of steals
631          int poolIndex;             // index of this queue in pool (or 0)
632          int stealHint;             // index of most recent known stealer
633 <        volatile int runState;     // 1: locked, -1: terminate; else 0
633 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
634          volatile int base;         // index of next slot for poll
635          int top;                   // index of next slot for push
636          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
637 +        final ForkJoinPool pool;   // the containing pool (may be null)
638          final ForkJoinWorkerThread owner; // owning thread or null if shared
639          volatile Thread parker;    // == owner during call to park; else null
640 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
640 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
641          ForkJoinTask<?> currentSteal; // current non-local task being executed
642          // Heuristic padding to ameliorate unfortunate memory placements
643 <        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
643 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
644 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
645  
646 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
726 <            this.owner = owner;
646 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
647              this.mode = mode;
648 +            this.pool = pool;
649 +            this.owner = owner;
650              // Place indices in the center of array (that is not yet allocated)
651              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
652          }
653  
654          /**
733         * Returns number of tasks in the queue
734         */
735        final int queueSize() {
736            int n = base - top; // non-owner callers must read base first
737            return (n >= 0) ? 0 : -n;
738        }
739
740        /**
655           * Pushes a task. Call only by owner in unshared queues.
656 +         * Cases needing resizing or rejection are relyaed to fullPush
657 +         * (that also handles shared queues).
658           *
659           * @param task the task. Caller must ensure non-null.
660 <         * @param p, if non-null, pool to signal if necessary
661 <         * @throw RejectedExecutionException if array cannot
662 <         * be resized
663 <         */
664 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
665 <            ForkJoinTask<?>[] a;
750 <            int s = top, m, n;
751 <            if ((a = array) != null) {    // ignore if queue removed
660 >         * @throw RejectedExecutionException if array cannot be resized
661 >         */
662 >        final void push(ForkJoinTask<?> task) {
663 >            ForkJoinPool p; ForkJoinTask<?>[] a;
664 >            int s = top, n;
665 >            if ((a = array) != null && a.length > (n = s + 1 - base)) {
666                  U.putOrderedObject
667 <                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
668 <                if ((n = (top = s + 1) - base) <= 2) {
669 <                    if (p != null)
670 <                        p.signalWork();
757 <                }
758 <                else if (n >= m)
759 <                    growArray(true);
667 >                    (a, (((a.length - 1) & s) << ASHIFT) + ABASE, task);
668 >                top = s + 1;
669 >                if (n <= 1 && (p = pool) != null)
670 >                    p.signalWork(this, 1);
671              }
672 +            else
673 +                fullPush(task, true);
674          }
675  
676          /**
677           * Pushes a task if lock is free and array is either big
678 <         * enough or can be resized to be big enough.
678 >         * enough or can be resized to be big enough. Note: a
679 >         * specialization of a common fast path of this method is in
680 >         * ForkJoinPool.externalPush. When called from a FJWT queue,
681 >         * this can fail only if the pool has been shut down or
682 >         * an out of memory error.
683           *
684           * @param task the task. Caller must ensure non-null.
685 <         * @return true if submitted
685 >         * @param owned if true, throw RJE on failure
686           */
687 <        final boolean trySharedPush(ForkJoinTask<?> task) {
688 <            boolean submitted = false;
689 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
690 <                ForkJoinTask<?>[] a = array;
691 <                int s = top, n = s - base;
692 <                try {
693 <                    if ((a != null && n < a.length - 1) ||
694 <                        (a = growArray(false)) != null) { // must presize
695 <                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
696 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
697 <                        top = s + 1;
698 <                        submitted = true;
687 >        final boolean fullPush(ForkJoinTask<?> task, boolean owned) {
688 >            ForkJoinPool p; ForkJoinTask<?>[] a;
689 >            if (owned) {
690 >                if (qlock < 0) // must be shutting down
691 >                    throw new RejectedExecutionException();
692 >            }
693 >            else if (!U.compareAndSwapInt(this, QLOCK, 0, 1))
694 >                return false;
695 >            try {
696 >                int s = top, oldLen, len;
697 >                if ((a = array) == null)
698 >                    a = array = new ForkJoinTask<?>[len=INITIAL_QUEUE_CAPACITY];
699 >                else if ((oldLen = a.length) > s + 1 - base)
700 >                    len = oldLen;
701 >                else if ((len = oldLen << 1) > MAXIMUM_QUEUE_CAPACITY)
702 >                    throw new RejectedExecutionException("Capacity exceeded");
703 >                else {
704 >                    int oldMask, b;
705 >                    ForkJoinTask<?>[] oldA = a;
706 >                    a = array = new ForkJoinTask<?>[len];
707 >                    if ((oldMask = oldLen - 1) >= 0 && s - (b = base) > 0) {
708 >                        int mask = len - 1;
709 >                        do {
710 >                            ForkJoinTask<?> x;
711 >                            int oldj = ((b & oldMask) << ASHIFT) + ABASE;
712 >                            int j    = ((b &    mask) << ASHIFT) + ABASE;
713 >                            x = (ForkJoinTask<?>)
714 >                                U.getObjectVolatile(oldA, oldj);
715 >                            if (x != null &&
716 >                                U.compareAndSwapObject(oldA, oldj, x, null))
717 >                                U.putObjectVolatile(a, j, x);
718 >                        } while (++b != s);
719                      }
783                } finally {
784                    runState = 0;                         // unlock
720                  }
721 +                U.putOrderedObject
722 +                    (a, (((len - 1) & s) << ASHIFT) + ABASE, task);
723 +                top = s + 1;
724 +            } finally {
725 +                if (!owned)
726 +                    qlock = 0;
727              }
728 <            return submitted;
728 >            if ((p = pool) != null)
729 >                p.signalWork(this, 1);
730 >            return true;
731          }
732  
733          /**
734 <         * Takes next task, if one exists, in FIFO order.
734 >         * Takes next task, if one exists, in LIFO order.  Call only
735 >         * by owner in unshared queues.
736           */
737 <        final ForkJoinTask<?> poll() {
738 <            ForkJoinTask<?>[] a; int b, i;
739 <            while ((b = base) - top < 0 && (a = array) != null &&
740 <                   (i = (a.length - 1) & b) >= 0) {
741 <                int j = (i << ASHIFT) + ABASE;
742 <                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
743 <                if (t != null && base == b &&
737 >        final ForkJoinTask<?> pop() {
738 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
739 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
740 >                for (int s; (s = top - 1) - base >= 0;) {
741 >                    long j = ((m & s) << ASHIFT) + ABASE;
742 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
743 >                        break;
744 >                    if (U.compareAndSwapObject(a, j, t, null)) {
745 >                        top = s;
746 >                        return t;
747 >                    }
748 >                }
749 >            }
750 >            return null;
751 >        }
752 >
753 >        /**
754 >         * Takes a task in FIFO order if b is base of queue and a task
755 >         * can be claimed without contention. Specialized versions
756 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
757 >         */
758 >        final ForkJoinTask<?> pollAt(int b) {
759 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
760 >            if ((a = array) != null) {
761 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
762 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
763 >                    base == b &&
764                      U.compareAndSwapObject(a, j, t, null)) {
765                      base = b + 1;
766                      return t;
# Line 806 | Line 770 | public class ForkJoinPool extends Abstra
770          }
771  
772          /**
773 <         * Takes next task, if one exists, in LIFO order.
810 <         * Call only by owner in unshared queues.
773 >         * Takes next task, if one exists, in FIFO order.
774           */
775 <        final ForkJoinTask<?> pop() {
776 <            ForkJoinTask<?> t; int m;
777 <            ForkJoinTask<?>[] a = array;
778 <            if (a != null && (m = a.length - 1) >= 0) {
779 <                for (int s; (s = top - 1) - base >= 0;) {
780 <                    int j = ((m & s) << ASHIFT) + ABASE;
781 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
782 <                        break;
783 <                    if (U.compareAndSwapObject(a, j, t, null)) {
821 <                        top = s;
775 >        final ForkJoinTask<?> poll() {
776 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
777 >            while ((b = base) - top < 0 && (a = array) != null) {
778 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
779 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
780 >                if (t != null) {
781 >                    if (base == b &&
782 >                        U.compareAndSwapObject(a, j, t, null)) {
783 >                        base = b + 1;
784                          return t;
785                      }
786                  }
787 +                else if (base == b) {
788 +                    if (b + 1 == top)
789 +                        break;
790 +                    Thread.yield(); // wait for lagging update (very rare)
791 +                }
792              }
793              return null;
794          }
# Line 846 | Line 813 | public class ForkJoinPool extends Abstra
813          }
814  
815          /**
849         * Returns task at index b if b is current base of queue.
850         */
851        final ForkJoinTask<?> pollAt(int b) {
852            ForkJoinTask<?>[] a; int i;
853            ForkJoinTask<?> task = null;
854            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
855                int j = (i << ASHIFT) + ABASE;
856                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
857                if (t != null && base == b &&
858                    U.compareAndSwapObject(a, j, t, null)) {
859                    base = b + 1;
860                    task = t;
861                }
862            }
863            return task;
864        }
865
866        /**
816           * Pops the given task only if it is at the current top.
817 +         * (A shared version is available only via FJP.tryExternalUnpush)
818           */
819          final boolean tryUnpush(ForkJoinTask<?> t) {
820              ForkJoinTask<?>[] a; int s;
# Line 878 | Line 828 | public class ForkJoinPool extends Abstra
828          }
829  
830          /**
831 <         * Polls the given task only if it is at the current base.
831 >         * Removes and cancels all known tasks, ignoring any exceptions.
832           */
833 <        final boolean pollFor(ForkJoinTask<?> task) {
834 <            ForkJoinTask<?>[] a; int b, i;
835 <            if ((b = base) - top < 0 && (a = array) != null &&
836 <                (i = (a.length - 1) & b) >= 0) {
837 <                int j = (i << ASHIFT) + ABASE;
838 <                if (U.getObjectVolatile(a, j) == task && base == b &&
839 <                    U.compareAndSwapObject(a, j, task, null)) {
840 <                    base = b + 1;
841 <                    return true;
833 >        final void cancelAll() {
834 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
835 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
836 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
837 >                ForkJoinTask.cancelIgnoringExceptions(t);
838 >        }
839 >
840 >        /**
841 >         * Computes next value for random probes.  Scans don't require
842 >         * a very high quality generator, but also not a crummy one.
843 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
844 >         * This is manually inlined in its usages in ForkJoinPool to
845 >         * avoid writes inside busy scan loops.
846 >         */
847 >        final int nextSeed() {
848 >            int r = seed;
849 >            r ^= r << 13;
850 >            r ^= r >>> 17;
851 >            return seed = r ^= r << 5;
852 >        }
853 >
854 >        /**
855 >         * Provides a more accurate estimate of size than (top - base)
856 >         * by ordering reads and checking whether a near-empty queue
857 >         * has at least one unclaimed task.
858 >         */
859 >        final int queueSize() {
860 >            ForkJoinTask<?>[] a; int k, s, n;
861 >            return ((n = base - (s = top)) < 0 &&
862 >                    (n != -1 ||
863 >                     ((a = array) != null && (k = a.length) > 0 &&
864 >                      U.getObject
865 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
866 >                -n : 0;
867 >        }
868 >
869 >        // Specialized execution methods
870 >
871 >        /**
872 >         * Pops and runs tasks until empty.
873 >         */
874 >        private void popAndExecAll() {
875 >            // A bit faster than repeated pop calls
876 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
877 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
878 >                   (s = top - 1) - base >= 0 &&
879 >                   (t = ((ForkJoinTask<?>)
880 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
881 >                   != null) {
882 >                if (U.compareAndSwapObject(a, j, t, null)) {
883 >                    top = s;
884 >                    t.doExec();
885                  }
886              }
894            return false;
887          }
888  
889          /**
890 <         * If present, removes from queue and executes the given task, or
891 <         * any other cancelled task. Returns (true) immediately on any CAS
890 >         * Polls and runs tasks until empty.
891 >         */
892 >        private void pollAndExecAll() {
893 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
894 >                t.doExec();
895 >        }
896 >
897 >        /**
898 >         * If present, removes from queue and executes the given task,
899 >         * or any other cancelled task. Returns (true) on any CAS
900           * or consistency check failure so caller can retry.
901           *
902 <         * @return false if no progress can be made
902 >         * @return false if no progress can be made, else true;
903           */
904          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
905 <            boolean removed = false, empty = true, progress = true;
905 >            boolean stat = true, removed = false, empty = true;
906              ForkJoinTask<?>[] a; int m, s, b, n;
907              if ((a = array) != null && (m = a.length - 1) >= 0 &&
908                  (n = (s = top) - (b = base)) > 0) {
# Line 932 | Line 932 | public class ForkJoinPool extends Abstra
932                      }
933                      if (--n == 0) {
934                          if (!empty && base == b)
935 <                            progress = false;
935 >                            stat = false;
936                          break;
937                      }
938                  }
939              }
940              if (removed)
941                  task.doExec();
942 <            return progress;
942 >            return stat;
943          }
944  
945          /**
946 <         * Initializes or doubles the capacity of array. Call either
947 <         * by owner or with lock held -- it is OK for base, but not
948 <         * top, to move while resizings are in progress.
949 <         *
950 <         * @param rejectOnFailure if true, throw exception if capacity
951 <         * exceeded (relayed ultimately to user); else return null.
946 >         * Polls for and executes the given task or any other task in
947 >         * its CountedCompleter computation
948           */
949 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
950 <            ForkJoinTask<?>[] oldA = array;
951 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
952 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
953 <                int oldMask, t, b;
954 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
955 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
956 <                    (t = top) - (b = base) > 0) {
957 <                    int mask = size - 1;
958 <                    do {
959 <                        ForkJoinTask<?> x;
960 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
961 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
962 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
963 <                        if (x != null &&
964 <                            U.compareAndSwapObject(oldA, oldj, x, null))
965 <                            U.putObjectVolatile(a, j, x);
966 <                    } while (++b != t);
949 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
950 >            ForkJoinTask<?>[] a; int b; Object o;
951 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
952 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
953 >                if ((o = U.getObject(a, j)) == null ||
954 >                    !(o instanceof CountedCompleter))
955 >                    break;
956 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
957 >                    if (r == root) {
958 >                        if (base == b &&
959 >                            U.compareAndSwapObject(a, j, t, null)) {
960 >                            base = b + 1;
961 >                            t.doExec();
962 >                            return true;
963 >                        }
964 >                        else
965 >                            break; // restart
966 >                    }
967 >                    if ((r = r.completer) == null)
968 >                        break outer; // not part of root computation
969                  }
972                return a;
973            }
974            else if (!rejectOnFailure)
975                return null;
976            else
977                throw new RejectedExecutionException("Queue capacity exceeded");
978        }
979
980        /**
981         * Removes and cancels all known tasks, ignoring any exceptions
982         */
983        final void cancelAll() {
984            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
985            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
986            for (ForkJoinTask<?> t; (t = poll()) != null; )
987                ForkJoinTask.cancelIgnoringExceptions(t);
988        }
989
990        // Execution methods
991
992        /**
993         * Removes and runs tasks until empty, using local mode
994         * ordering.
995         */
996        final void runLocalTasks() {
997            if (base - top < 0) {
998                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
999                    t.doExec();
970              }
971 +            return false;
972          }
973  
974          /**
975           * Executes a top-level task and any local tasks remaining
976           * after execution.
1006         *
1007         * @return true unless terminating
977           */
978 <        final boolean runTask(ForkJoinTask<?> t) {
1010 <            boolean alive = true;
978 >        final void runTask(ForkJoinTask<?> t) {
979              if (t != null) {
980 <                currentSteal = t;
1013 <                t.doExec();
1014 <                runLocalTasks();
1015 <                ++nsteals;
980 >                (currentSteal = t).doExec();
981                  currentSteal = null;
982 +                if (++nsteals < 0) {     // spill on overflow
983 +                    ForkJoinPool p;
984 +                    if ((p = pool) != null)
985 +                        p.collectStealCount(this);
986 +                }
987 +                if (top != base) {       // process remaining local tasks
988 +                    if (mode == 0)
989 +                        popAndExecAll();
990 +                    else
991 +                        pollAndExecAll();
992 +                }
993              }
1018            else if (runState < 0)            // terminating
1019                alive = false;
1020            return alive;
994          }
995  
996          /**
997 <         * Executes a non-top-level (stolen) task
997 >         * Executes a non-top-level (stolen) task.
998           */
999          final void runSubtask(ForkJoinTask<?> t) {
1000              if (t != null) {
1001                  ForkJoinTask<?> ps = currentSteal;
1002 <                currentSteal = t;
1030 <                t.doExec();
1002 >                (currentSteal = t).doExec();
1003                  currentSteal = ps;
1004              }
1005          }
1006  
1007          /**
1008 <         * Computes next value for random probes.  Scans don't require
1037 <         * a very high quality generator, but also not a crummy one.
1038 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
1039 <         * This is manually inlined in several usages in ForkJoinPool
1040 <         * to avoid writes inside busy scan loops.
1008 >         * Returns true if owned and not known to be blocked.
1009           */
1010 <        final int nextSeed() {
1011 <            int r = seed;
1012 <            r ^= r << 13;
1013 <            r ^= r >>> 17;
1014 <            r ^= r << 5;
1015 <            return seed = r;
1010 >        final boolean isApparentlyUnblocked() {
1011 >            Thread wt; Thread.State s;
1012 >            return (eventCount >= 0 &&
1013 >                    (wt = owner) != null &&
1014 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1015 >                    s != Thread.State.WAITING &&
1016 >                    s != Thread.State.TIMED_WAITING);
1017 >        }
1018 >
1019 >        /**
1020 >         * If this owned and is not already interrupted, try to
1021 >         * interrupt and/or unpark, ignoring exceptions.
1022 >         */
1023 >        final void interruptOwner() {
1024 >            Thread wt, p;
1025 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1026 >                try {
1027 >                    wt.interrupt();
1028 >                } catch (SecurityException ignore) {
1029 >                }
1030 >            }
1031 >            if ((p = parker) != null)
1032 >                U.unpark(p);
1033          }
1034  
1035          // Unsafe mechanics
1036          private static final sun.misc.Unsafe U;
1037 <        private static final long RUNSTATE;
1037 >        private static final long QLOCK;
1038          private static final int ABASE;
1039          private static final int ASHIFT;
1040          static {
# Line 1058 | Line 1043 | public class ForkJoinPool extends Abstra
1043                  U = getUnsafe();
1044                  Class<?> k = WorkQueue.class;
1045                  Class<?> ak = ForkJoinTask[].class;
1046 <                RUNSTATE = U.objectFieldOffset
1047 <                    (k.getDeclaredField("runState"));
1046 >                QLOCK = U.objectFieldOffset
1047 >                    (k.getDeclaredField("qlock"));
1048                  ABASE = U.arrayBaseOffset(ak);
1049                  s = U.arrayIndexScale(ak);
1050              } catch (Exception e) {
# Line 1072 | Line 1057 | public class ForkJoinPool extends Abstra
1057      }
1058  
1059      /**
1060 <     * Class for artificial tasks that are used to replace the target
1061 <     * of local joins if they are removed from an interior queue slot
1062 <     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1063 <     * actually do anything beyond having a unique identity.
1060 >     * Per-thread records for threads that submit to pools. Currently
1061 >     * holds only pseudo-random seed / index that is used to choose
1062 >     * submission queues in method externalPush. In the future, this may
1063 >     * also incorporate a means to implement different task rejection
1064 >     * and resubmission policies.
1065 >     *
1066 >     * Seeds for submitters and workers/workQueues work in basically
1067 >     * the same way but are initialized and updated using slightly
1068 >     * different mechanics. Both are initialized using the same
1069 >     * approach as in class ThreadLocal, where successive values are
1070 >     * unlikely to collide with previous values. Seeds are then
1071 >     * randomly modified upon collisions using xorshifts, which
1072 >     * requires a non-zero seed.
1073 >     */
1074 >    static final class Submitter {
1075 >        int seed;
1076 >        Submitter(int s) { seed = s; }
1077 >    }
1078 >
1079 >    /** Property prefix for constructing common pool */
1080 >    private static final String propPrefix =
1081 >        "java.util.concurrent.ForkJoinPool.common.";
1082 >
1083 >    // static fields (initialized in static initializer below)
1084 >
1085 >    /**
1086 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1087 >     * overridden in ForkJoinPool constructors.
1088       */
1089 <    static final class EmptyTask extends ForkJoinTask<Void> {
1090 <        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1082 <        public Void getRawResult() { return null; }
1083 <        public void setRawResult(Void x) {}
1084 <        public boolean exec() { return true; }
1085 <    }
1089 >    public static final ForkJoinWorkerThreadFactory
1090 >        defaultForkJoinWorkerThreadFactory;
1091  
1092      /**
1093 <     * Computes a hash code for the given thread. This method is
1094 <     * expected to provide higher-quality hash codes than those using
1095 <     * method hashCode().
1093 >     * Common (static) pool. Non-null for public use unless a static
1094 >     * construction exception, but internal usages null-check on use
1095 >     * to paranoically avoid potential initialization circularities
1096 >     * as well as to simplify generated code.
1097       */
1098 <    static final int hashThread(Thread t) {
1093 <        long id = (t == null) ? 0L : t.getId(); // Use MurmurHash of thread id
1094 <        int h = (int)id ^ (int)(id >>> 32);
1095 <        h ^= h >>> 16;
1096 <        h *= 0x85ebca6b;
1097 <        h ^= h >>> 13;
1098 <        h *= 0xc2b2ae35;
1099 <        return h ^ (h >>> 16);
1100 <    }
1098 >    static final ForkJoinPool commonPool;
1099  
1100      /**
1101 <     * Top-level runloop for workers
1101 >     * Permission required for callers of methods that may start or
1102 >     * kill threads.
1103 >     */
1104 >    private static final RuntimePermission modifyThreadPermission;
1105 >
1106 >    /**
1107 >     * Per-thread submission bookkeeping. Shared across all pools
1108 >     * to reduce ThreadLocal pollution and because random motion
1109 >     * to avoid contention in one pool is likely to hold for others.
1110 >     * Lazily initialized on first submission (but null-checked
1111 >     * in other contexts to avoid unnecessary initialization).
1112       */
1113 <    final void runWorker(ForkJoinWorkerThread wt) {
1106 <        WorkQueue w = wt.workQueue;
1107 <        w.growArray(false);     // Initialize queue array and seed in this thread
1108 <        w.seed = hashThread(Thread.currentThread()) | (1 << 31); // force < 0
1113 >    static final ThreadLocal<Submitter> submitters;
1114  
1115 <        do {} while (w.runTask(scan(w)));
1115 >    /**
1116 >     * Common pool parallelism. Must equal commonPool.parallelism.
1117 >     */
1118 >    static final int commonPoolParallelism;
1119 >
1120 >    /**
1121 >     * Sequence number for creating workerNamePrefix.
1122 >     */
1123 >    private static int poolNumberSequence;
1124 >
1125 >    /**
1126 >     * Return the next sequence number. We don't expect this to
1127 >     * ever contend so use simple builtin sync.
1128 >     */
1129 >    private static final synchronized int nextPoolId() {
1130 >        return ++poolNumberSequence;
1131      }
1132  
1133 <    // Creating, registering and deregistering workers
1133 >    // static constants
1134  
1135      /**
1136 <     * Tries to create and start a worker
1136 >     * Initial timeout value (in nanoseconds) for the thread
1137 >     * triggering quiescence to park waiting for new work. On timeout,
1138 >     * the thread will instead try to shrink the number of
1139 >     * workers. The value should be large enough to avoid overly
1140 >     * aggressive shrinkage during most transient stalls (long GCs
1141 >     * etc).
1142       */
1143 <    private void addWorker() {
1144 <        Throwable ex = null;
1145 <        ForkJoinWorkerThread w = null;
1146 <        try {
1147 <            if ((w = factory.newThread(this)) != null) {
1148 <                w.start();
1149 <                return;
1143 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1144 >
1145 >    /**
1146 >     * Timeout value when there are more threads than parallelism level
1147 >     */
1148 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1149 >
1150 >    /**
1151 >     * The maximum stolen->joining link depth allowed in method
1152 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1153 >     * chains are unbounded, but we use a fixed constant to avoid
1154 >     * (otherwise unchecked) cycles and to bound staleness of
1155 >     * traversal parameters at the expense of sometimes blocking when
1156 >     * we could be helping.
1157 >     */
1158 >    private static final int MAX_HELP = 64;
1159 >
1160 >    /**
1161 >     * Increment for seed generators. See class ThreadLocal for
1162 >     * explanation.
1163 >     */
1164 >    private static final int SEED_INCREMENT = 0x61c88647;
1165 >
1166 >    /**
1167 >     * Bits and masks for control variables
1168 >     *
1169 >     * Field ctl is a long packed with:
1170 >     * AC: Number of active running workers minus target parallelism (16 bits)
1171 >     * TC: Number of total workers minus target parallelism (16 bits)
1172 >     * ST: true if pool is terminating (1 bit)
1173 >     * EC: the wait count of top waiting thread (15 bits)
1174 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1175 >     *
1176 >     * When convenient, we can extract the upper 32 bits of counts and
1177 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1178 >     * (int)ctl.  The ec field is never accessed alone, but always
1179 >     * together with id and st. The offsets of counts by the target
1180 >     * parallelism and the positionings of fields makes it possible to
1181 >     * perform the most common checks via sign tests of fields: When
1182 >     * ac is negative, there are not enough active workers, when tc is
1183 >     * negative, there are not enough total workers, and when e is
1184 >     * negative, the pool is terminating.  To deal with these possibly
1185 >     * negative fields, we use casts in and out of "short" and/or
1186 >     * signed shifts to maintain signedness.
1187 >     *
1188 >     * When a thread is queued (inactivated), its eventCount field is
1189 >     * set negative, which is the only way to tell if a worker is
1190 >     * prevented from executing tasks, even though it must continue to
1191 >     * scan for them to avoid queuing races. Note however that
1192 >     * eventCount updates lag releases so usage requires care.
1193 >     *
1194 >     * Field plock is an int packed with:
1195 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1196 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1197 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1198 >     *
1199 >     * The sequence number enables simple consistency checks:
1200 >     * Staleness of read-only operations on the workQueues array can
1201 >     * be checked by comparing plock before vs after the reads.
1202 >     */
1203 >
1204 >    // bit positions/shifts for fields
1205 >    private static final int  AC_SHIFT   = 48;
1206 >    private static final int  TC_SHIFT   = 32;
1207 >    private static final int  ST_SHIFT   = 31;
1208 >    private static final int  EC_SHIFT   = 16;
1209 >
1210 >    // bounds
1211 >    private static final int  SMASK      = 0xffff;  // short bits
1212 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1213 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1214 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1215 >    private static final int  SHORT_SIGN = 1 << 15;
1216 >    private static final int  INT_SIGN   = 1 << 31;
1217 >
1218 >    // masks
1219 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1220 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1221 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1222 >
1223 >    // units for incrementing and decrementing
1224 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1225 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1226 >
1227 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1228 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1229 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1230 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1231 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1232 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1233 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1234 >
1235 >    // masks and units for dealing with e = (int)ctl
1236 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1237 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1238 >
1239 >    // plock bits
1240 >    private static final int SHUTDOWN    = 1 << 31;
1241 >    private static final int PL_LOCK     = 2;
1242 >    private static final int PL_SIGNAL   = 1;
1243 >    private static final int PL_SPINS    = 1 << 8;
1244 >
1245 >    // access mode for WorkQueue
1246 >    static final int LIFO_QUEUE          =  0;
1247 >    static final int FIFO_QUEUE          =  1;
1248 >    static final int SHARED_QUEUE        = -1;
1249 >
1250 >    // Instance fields
1251 >
1252 >    /*
1253 >     * Field layout order in this class tends to matter more than one
1254 >     * would like. Runtime layout order is only loosely related to
1255 >     * declaration order and may differ across JVMs, but the following
1256 >     * empirically works OK on current JVMs.
1257 >     */
1258 >    volatile long stealCount;                  // collects worker counts
1259 >    volatile long ctl;                         // main pool control
1260 >    final int parallelism;                     // parallelism level
1261 >    final int localMode;                       // per-worker scheduling mode
1262 >    volatile int indexSeed;                    // worker/submitter index seed
1263 >    volatile int plock;                        // shutdown status and seqLock
1264 >    WorkQueue[] workQueues;                    // main registry
1265 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1266 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1267 >    final String workerNamePrefix;             // to create worker name string
1268 >
1269 >    /*
1270 >     * Acquires the plock lock to protect worker array and related
1271 >     * updates. This method is called only if an initial CAS on plock
1272 >     * fails. This acts as a spinLock for normal cases, but falls back
1273 >     * to builtin monitor to block when (rarely) needed. This would be
1274 >     * a terrible idea for a highly contended lock, but works fine as
1275 >     * a more conservative alternative to a pure spinlock.  See
1276 >     * internal ConcurrentHashMap documentation for further
1277 >     * explanation of nearly the same construction.
1278 >     */
1279 >    private int acquirePlock() {
1280 >        int spins = PL_SPINS, r = 0, ps, nps;
1281 >        for (;;) {
1282 >            if (((ps = plock) & PL_LOCK) == 0 &&
1283 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1284 >                return nps;
1285 >            else if (r == 0)
1286 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1287 >            else if (spins >= 0) {
1288 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1289 >                if (r >= 0)
1290 >                    --spins;
1291 >            }
1292 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1293 >                synchronized (this) {
1294 >                    if ((plock & PL_SIGNAL) != 0) {
1295 >                        try {
1296 >                            wait();
1297 >                        } catch (InterruptedException ie) {
1298 >                            try {
1299 >                                Thread.currentThread().interrupt();
1300 >                            } catch (SecurityException ignore) {
1301 >                            }
1302 >                        }
1303 >                    }
1304 >                    else
1305 >                        notifyAll();
1306 >                }
1307              }
1126        } catch (Throwable e) {
1127            ex = e;
1308          }
1129        deregisterWorker(w, ex);
1309      }
1310  
1311      /**
1312 <     * Callback from ForkJoinWorkerThread constructor to assign a
1313 <     * public name. This must be separate from registerWorker because
1135 <     * it is called during the "super" constructor call in
1136 <     * ForkJoinWorkerThread.
1312 >     * Unlocks and signals any thread waiting for plock. Called only
1313 >     * when CAS of seq value for unlock fails.
1314       */
1315 <    final String nextWorkerName() {
1316 <        return workerNamePrefix.concat
1317 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1315 >    private void releasePlock(int ps) {
1316 >        plock = ps;
1317 >        synchronized (this) { notifyAll(); }
1318      }
1319  
1320 +    //  Registering and deregistering workers
1321 +
1322      /**
1323 <     * Callback from ForkJoinWorkerThread constructor to establish and
1324 <     * record its WorkQueue
1323 >     * Callback from ForkJoinWorkerThread constructor to establish its
1324 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1325 >     * to packing entries in front of the workQueues array, we treat
1326 >     * the array as a simple power-of-two hash table using per-thread
1327 >     * seed as hash, expanding as needed.
1328       *
1329 <     * @param wt the worker thread
1329 >     * @param w the worker's queue
1330       */
1331 <    final void registerWorker(ForkJoinWorkerThread wt) {
1332 <        WorkQueue w = wt.workQueue;
1333 <        ReentrantLock lock = this.lock;
1334 <        lock.lock();
1331 >    final void registerWorker(WorkQueue w) {
1332 >        int s, ps; // generate a rarely colliding candidate index seed
1333 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED,
1334 >                                          s = indexSeed, s += SEED_INCREMENT) ||
1335 >                     s == 0); // skip 0
1336 >        if (((ps = plock) & PL_LOCK) != 0 ||
1337 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1338 >            ps = acquirePlock();
1339 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1340          try {
1341 <            int k = nextPoolIndex;
1342 <            WorkQueue[] ws = workQueues;
1343 <            if (ws != null) {                       // ignore on shutdown
1344 <                int n = ws.length;
1345 <                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1346 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1347 <                        ;                           // workers are at odd indices
1348 <                    if (k >= n)                     // resize
1349 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1350 <                }
1351 <                w.poolIndex = k;
1352 <                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1353 <                ws[k] = w;                          // record worker
1354 <                nextPoolIndex = k + 2;
1355 <                int rs = runState;
1356 <                int m = rs & SMASK;                 // recalculate runState mask
1357 <                if (k > m)
1358 <                    m = (m << 1) + 1;
1172 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1341 >            WorkQueue[] ws;
1342 >            if (w != null && (ws = workQueues) != null) {
1343 >                w.seed = s;
1344 >                int n = ws.length, m = n - 1;
1345 >                int r = (s << 1) | 1;               // use odd-numbered indices
1346 >                if (ws[r &= m] != null) {           // collision
1347 >                    int probes = 0;                 // step by approx half size
1348 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1349 >                    while (ws[r = (r + step) & m] != null) {
1350 >                        if (++probes >= n) {
1351 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1352 >                            m = n - 1;
1353 >                            probes = 0;
1354 >                        }
1355 >                    }
1356 >                }
1357 >                w.eventCount = w.poolIndex = r;     // establish before recording
1358 >                ws[r] = w;
1359              }
1360          } finally {
1361 <            lock.unlock();
1361 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1362 >                releasePlock(nps);
1363          }
1364      }
1365  
1366      /**
1367 <     * Final callback from terminating worker, as well as failure to
1368 <     * construct or start a worker in addWorker.  Removes record of
1369 <     * worker from array, and adjusts counts. If pool is shutting
1370 <     * down, tries to complete termination.
1367 >     * Final callback from terminating worker, as well as upon failure
1368 >     * to construct or start a worker.  Removes record of worker from
1369 >     * array, and adjusts counts. If pool is shutting down, tries to
1370 >     * complete termination.
1371       *
1372 <     * @param wt the worker thread or null if addWorker failed
1372 >     * @param wt the worker thread or null if construction failed
1373       * @param ex the exception causing failure, or null if none
1374       */
1375      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1376          WorkQueue w = null;
1377          if (wt != null && (w = wt.workQueue) != null) {
1378 <            w.runState = -1;                // ensure runState is set
1379 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1380 <            int idx = w.poolIndex;
1381 <            ReentrantLock lock = this.lock;
1382 <            lock.lock();
1383 <            try {                           // remove record from array
1378 >            int ps;
1379 >            collectStealCount(w);
1380 >            w.qlock = -1;                // ensure set
1381 >            if (((ps = plock) & PL_LOCK) != 0 ||
1382 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1383 >                ps = acquirePlock();
1384 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1385 >            try {
1386 >                int idx = w.poolIndex;
1387                  WorkQueue[] ws = workQueues;
1388                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1389 <                    ws[nextPoolIndex = idx] = null;
1389 >                    ws[idx] = null;
1390              } finally {
1391 <                lock.unlock();
1391 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1392 >                    releasePlock(nps);
1393              }
1394          }
1395  
# Line 1208 | Line 1399 | public class ForkJoinPool extends Abstra
1399                                             ((c - TC_UNIT) & TC_MASK) |
1400                                             (c & ~(AC_MASK|TC_MASK)))));
1401  
1402 <        if (!tryTerminate(false) && w != null) {
1402 >        if (!tryTerminate(false, false) && w != null) {
1403              w.cancelAll();                  // cancel remaining tasks
1404              if (w.array != null)            // suppress signal if never ran
1405 <                signalWork();               // wake up or create replacement
1405 >                signalWork(null, 1);        // wake up or create replacement
1406 >            if (ex == null)                 // help clean refs on way out
1407 >                ForkJoinTask.helpExpungeStaleExceptions();
1408          }
1409  
1410          if (ex != null)                     // rethrow
1411 <            U.throwException(ex);
1411 >            ForkJoinTask.rethrow(ex);
1412      }
1413  
1221
1222    // Maintaining ctl counts
1223
1414      /**
1415 <     * Increments active count; mainly called upon return from blocking
1416 <     */
1417 <    final void incrementActiveCount() {
1418 <        long c;
1419 <        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1415 >     * Collect worker steal count into total. Called on termination
1416 >     * and upon int overflow of local count. (There is a possible race
1417 >     * in the latter case vs any caller of getStealCount, which can
1418 >     * make its results less accurate than usual.)
1419 >     */
1420 >    final void collectStealCount(WorkQueue w) {
1421 >        if (w != null) {
1422 >            long sc;
1423 >            int ns = w.nsteals;
1424 >            w.nsteals = 0; // handle overflow
1425 >            long steals = (ns >= 0) ? ns : 1L + (long)(Integer.MAX_VALUE);
1426 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1427 >                                               sc = stealCount, sc + steals));
1428 >        }
1429      }
1430  
1431 +    // Submissions
1432 +
1433      /**
1434 <     * Activates or creates a worker
1435 <     */
1436 <    final void signalWork() {
1437 <        /*
1438 <         * The while condition is true if: (there is are too few total
1439 <         * workers OR there is at least one waiter) AND (there are too
1440 <         * few active workers OR the pool is terminating).  The value
1441 <         * of e distinguishes the remaining cases: zero (no waiters)
1442 <         * for create, negative if terminating (in which case do
1443 <         * nothing), else release a waiter. The secondary checks for
1444 <         * release (non-null array etc) can fail if the pool begins
1445 <         * terminating after the test, and don't impose any added cost
1446 <         * because JVMs must perform null and bounds checks anyway.
1447 <         */
1448 <        long c; int e, u;
1449 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1450 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1451 <            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1452 <            if (e == 0) {                    // add a new worker
1453 <                if (U.compareAndSwapLong
1454 <                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1455 <                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1255 <                    addWorker();
1256 <                    break;
1257 <                }
1258 <            }
1259 <            else if (e > 0 && ws != null &&
1260 <                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1261 <                     (w = ws[i]) != null &&
1262 <                     w.eventCount == (e | INT_SIGN)) {
1263 <                if (U.compareAndSwapLong
1264 <                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1265 <                                    ((long)(u + UAC_UNIT) << 32)))) {
1266 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1267 <                    if ((p = w.parker) != null)
1268 <                        U.unpark(p);         // release a waiting worker
1269 <                    break;
1270 <                }
1434 >     * Unless shutting down, adds the given task to a submission queue
1435 >     * at submitter's current queue index (modulo submission
1436 >     * range). Only the most common path is directly handled in this
1437 >     * method. All others are relayed to fullExternalPush.
1438 >     *
1439 >     * @param task the task. Caller must ensure non-null.
1440 >     */
1441 >    final void externalPush(ForkJoinTask<?> task) {
1442 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1443 >        if ((z = submitters.get()) != null && plock > 0 &&
1444 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1445 >            (q = ws[m & z.seed & SQMASK]) != null &&
1446 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1447 >            int s = q.top, n;
1448 >            if ((a = q.array) != null && a.length > (n = s + 1 - q.base)) {
1449 >                U.putObject(a, (long)(((a.length - 1) & s) << ASHIFT) + ABASE,
1450 >                            task);
1451 >                q.top = s + 1;                     // push on to deque
1452 >                q.qlock = 0;
1453 >                if (n <= 1)
1454 >                    signalWork(q, 1);
1455 >                return;
1456              }
1457 <            else
1273 <                break;
1457 >            q.qlock = 0;
1458          }
1459 +        fullExternalPush(task);
1460      }
1461  
1462      /**
1463 <     * Tries to decrement active count (sometimes implicitly) and
1464 <     * possibly release or create a compensating worker in preparation
1465 <     * for blocking. Fails on contention or termination.
1466 <     *
1467 <     * @return true if the caller can block, else should recheck and retry
1468 <     */
1469 <    final boolean tryCompensate() {
1470 <        WorkQueue[] ws; WorkQueue w; Thread p;
1471 <        int pc = parallelism, e, u, ac, tc, i;
1472 <        long c = ctl;
1473 <
1474 <        if ((e = (int)c) >= 0) {
1475 <            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1476 <                e != 0 && (ws = workQueues) != null &&
1477 <                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1478 <                (w = ws[i]) != null) {
1479 <                if (w.eventCount == (e | INT_SIGN) &&
1480 <                    U.compareAndSwapLong
1481 <                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1482 <                                    (c & (AC_MASK|TC_MASK))))) {
1483 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1484 <                    if ((p = w.parker) != null)
1485 <                        U.unpark(p);
1486 <                    return true;             // release an idle worker
1487 <                }
1488 <            }
1489 <            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1490 <                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1491 <                if (U.compareAndSwapLong(this, CTL, c, nc))
1492 <                    return true;             // no compensation needed
1463 >     * Full version of externalPush. This method is called, among
1464 >     * other times, upon the first submission of the first task to the
1465 >     * pool, so must perform secondary initialization: creating
1466 >     * workQueue array and setting plock to a valid value. It also
1467 >     * detects first submission by an external thread by looking up
1468 >     * its ThreadLocal, and creates a new shared queue if the one at
1469 >     * index if empty or contended. The lock bodies must be
1470 >     * exception-free (so no try/finally) so we optimistically
1471 >     * allocate new queues/arrays outside the locks and throw them
1472 >     * away if (very rarely) not needed. Note that the plock seq value
1473 >     * can eventually wrap around zero, but if so harmlessly fails to
1474 >     * reinitialize.
1475 >     */
1476 >    private void fullExternalPush(ForkJoinTask<?> task) {
1477 >        for (Submitter z = null;;) {
1478 >            WorkQueue[] ws; WorkQueue q; int ps, m, r, s;
1479 >            if ((ps = plock) < 0)
1480 >                throw new RejectedExecutionException();
1481 >            else if ((ws = workQueues) == null || (m = ws.length - 1) < 0) {
1482 >                int n = parallelism - 1; n |= n >>> 1; n |= n >>> 2;
1483 >                n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1484 >                WorkQueue[] nws = new WorkQueue[(n + 1) << 1]; // power of two
1485 >                if ((ps & PL_LOCK) != 0 ||
1486 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1487 >                    ps = acquirePlock();
1488 >                if ((ws = workQueues) == null)
1489 >                    workQueues = nws;
1490 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1491 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1492 >                    releasePlock(nps);
1493 >            }
1494 >            else if (z == null && (z = submitters.get()) == null) {
1495 >                if (U.compareAndSwapInt(this, INDEXSEED,
1496 >                                        s = indexSeed, s += SEED_INCREMENT) &&
1497 >                    s != 0) // skip 0
1498 >                    submitters.set(z = new Submitter(s));
1499              }
1500 <            else if (tc + pc < MAX_ID) {
1501 <                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1502 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1503 <                    addWorker();
1504 <                    return true;             // create replacement
1505 <                }
1500 >            else {
1501 >                int k = (r = z.seed) & m & SQMASK;
1502 >                if ((q = ws[k]) == null && (ps & PL_LOCK) == 0) {
1503 >                    (q = new WorkQueue(this, null, SHARED_QUEUE)).poolIndex = k;
1504 >                    if (((ps = plock) & PL_LOCK) != 0 ||
1505 >                        !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1506 >                        ps = acquirePlock();
1507 >                    WorkQueue w = null;
1508 >                    if ((ws = workQueues) != null && k < ws.length &&
1509 >                        (w = ws[k]) == null)
1510 >                        ws[k] = q;
1511 >                    else
1512 >                        q = w;
1513 >                    int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1514 >                    if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1515 >                        releasePlock(nps);
1516 >                }
1517 >                if (q != null && q.qlock == 0 && q.fullPush(task, false))
1518 >                    return;
1519 >                r ^= r << 13;                // same xorshift as WorkQueues
1520 >                r ^= r >>> 17;
1521 >                z.seed = r ^= r << 5;        // move to a different index
1522              }
1523          }
1317        return false;
1524      }
1525  
1526 <    // Submissions
1526 >    // Maintaining ctl counts
1527  
1528      /**
1529 <     * Unless shutting down, adds the given task to some submission
1324 <     * queue; using a randomly chosen queue index if the caller is a
1325 <     * ForkJoinWorkerThread, else one based on caller thread's hash
1326 <     * code. If no queue exists at the index, one is created.  If the
1327 <     * queue is busy, another is chosen by sweeping through the queues
1328 <     * array.
1529 >     * Increments active count; mainly called upon return from blocking.
1530       */
1531 <    private void doSubmit(ForkJoinTask<?> task) {
1532 <        if (task == null)
1533 <            throw new NullPointerException();
1534 <        Thread t = Thread.currentThread();
1535 <        int r = ((t instanceof ForkJoinWorkerThread) ?
1536 <                 ((ForkJoinWorkerThread)t).workQueue.nextSeed() : hashThread(t));
1537 <        for (;;) {
1538 <            int rs = runState, m = rs & SMASK;
1539 <            int j = r &= (m & ~1);                      // even numbered queues
1540 <            WorkQueue[] ws = workQueues;
1541 <            if (rs < 0 || ws == null)
1542 <                throw new RejectedExecutionException(); // shutting down
1543 <            if (ws.length > m) {                        // consistency check
1544 <                for (WorkQueue q;;) {                   // circular sweep
1545 <                    if (((q = ws[j]) != null ||
1546 <                         (q = tryAddSharedQueue(j)) != null) &&
1547 <                        q.trySharedPush(task)) {
1548 <                        signalWork();
1549 <                        return;
1531 >    final void incrementActiveCount() {
1532 >        long c;
1533 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1534 >    }
1535 >
1536 >    /**
1537 >     * Tries to create (at most one) or activate (possibly several)
1538 >     * workers if too few are active. On contention failure, continues
1539 >     * until at least one worker is signalled or the given queue is
1540 >     * empty or all workers are active.
1541 >     *
1542 >     * @param q if non-null, the queue holding tasks to be signalled
1543 >     * @param signals the target number of signals.
1544 >     */
1545 >    final void signalWork(WorkQueue q, int signals) {
1546 >        long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1547 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1548 >            if ((e = (int)c) > 0) {
1549 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1550 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1551 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1552 >                               ((long)(u + UAC_UNIT) << 32));
1553 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1554 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1555 >                        if ((p = w.parker) != null)
1556 >                            U.unpark(p);
1557 >                        if (--signals <= 0)
1558 >                            break;
1559                      }
1560 <                    if ((j = (j + 2) & m) == r) {
1561 <                        Thread.yield();                 // all queues busy
1560 >                    else
1561 >                        signals = 1;
1562 >                    if ((q != null && q.queueSize() == 0))
1563                          break;
1353                    }
1564                  }
1565 +                else
1566 +                    break;
1567              }
1568 <        }
1569 <    }
1570 <
1571 <    /**
1572 <     * Tries to add and register a new queue at the given index.
1573 <     *
1574 <     * @param idx the workQueues array index to register the queue
1575 <     * @return the queue, or null if could not add because could
1576 <     * not acquire lock or idx is unusable
1577 <     */
1578 <    private WorkQueue tryAddSharedQueue(int idx) {
1579 <        WorkQueue q = null;
1580 <        ReentrantLock lock = this.lock;
1369 <        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1370 <            // create queue outside of lock but only if apparently free
1371 <            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1372 <            if (lock.tryLock()) {
1373 <                try {
1374 <                    WorkQueue[] ws = workQueues;
1375 <                    if (ws != null && idx < ws.length) {
1376 <                        if ((q = ws[idx]) == null) {
1377 <                            int rs;         // update runState seq
1378 <                            ws[idx] = q = nq;
1379 <                            runState = (((rs = runState) & SHUTDOWN) |
1380 <                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1568 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1569 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1570 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1571 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1572 >                    ForkJoinWorkerThread wt = null;
1573 >                    Throwable ex = null;
1574 >                    boolean started = false;
1575 >                    try {
1576 >                        ForkJoinWorkerThreadFactory fac;
1577 >                        if ((fac = factory) != null &&
1578 >                            (wt = fac.newThread(this)) != null) {
1579 >                            wt.start();
1580 >                            started = true;
1581                          }
1582 +                    } catch (Throwable rex) {
1583 +                        ex = rex;
1584                      }
1585 <                } finally {
1586 <                    lock.unlock();
1585 >                    if (!started)
1586 >                        deregisterWorker(wt, ex); // adjust counts on failure
1587 >                    break;
1588                  }
1589              }
1590 +            else
1591 +                break;
1592          }
1388        return q;
1593      }
1594  
1595      // Scanning for tasks
1596  
1597      /**
1598 +     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1599 +     */
1600 +    final void runWorker(WorkQueue w) {
1601 +        // initialize queue array in this thread
1602 +        w.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
1603 +        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1604 +    }
1605 +
1606 +    /**
1607       * Scans for and, if found, returns one task, else possibly
1608       * inactivates the worker. This method operates on single reads of
1609 <     * volatile state and is designed to be re-invoked continuously in
1610 <     * part because it returns upon detecting inconsistencies,
1609 >     * volatile state and is designed to be re-invoked continuously,
1610 >     * in part because it returns upon detecting inconsistencies,
1611       * contention, or state changes that indicate possible success on
1612       * re-invocation.
1613       *
1614 <     * The scan searches for tasks across queues, randomly selecting
1615 <     * the first #queues probes, favoring steals 2:1 over submissions
1616 <     * (by exploiting even/odd indexing), and then performing a
1617 <     * circular sweep of all queues.  The scan terminates upon either
1618 <     * finding a non-empty queue, or completing a full sweep. If the
1619 <     * worker is not inactivated, it takes and returns a task from
1620 <     * this queue.  On failure to find a task, we take one of the
1621 <     * following actions, after which the caller will retry calling
1622 <     * this method unless terminated.
1623 <     *
1624 <     * * If not a complete sweep, try to release a waiting worker.  If
1412 <     * the scan terminated because the worker is inactivated, then the
1413 <     * released worker will often be the calling worker, and it can
1414 <     * succeed obtaining a task on the next call. Or maybe it is
1415 <     * another worker, but with same net effect. Releasing in other
1416 <     * cases as well ensures that we have enough workers running.
1417 <     *
1418 <     * * If the caller has run a task since the the last empty scan,
1419 <     * return (to allow rescan) if other workers are not also yet
1420 <     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1421 <     * ensure eventual inactivation, and occasional calls to
1422 <     * Thread.yield to help avoid interference with more useful
1423 <     * activities on the system.
1614 >     * The scan searches for tasks across a random permutation of
1615 >     * queues (starting at a random index and stepping by a random
1616 >     * relative prime, checking each at least once).  The scan
1617 >     * terminates upon either finding a non-empty queue, or completing
1618 >     * the sweep. If the worker is not inactivated, it takes and
1619 >     * returns a task from this queue. Otherwise, if not activated, it
1620 >     * signals workers (that may include itself) and returns so caller
1621 >     * can retry. Also returns for trtry if the worker array may have
1622 >     * changed during an empty scan.  On failure to find a task, we
1623 >     * take one of the following actions, after which the caller will
1624 >     * retry calling this method unless terminated.
1625       *
1626 <     * * If pool is terminating, terminate the worker
1626 >     * * If pool is terminating, terminate the worker.
1627       *
1628       * * If not already enqueued, try to inactivate and enqueue the
1629 <     * worker on wait queue.
1630 <     *
1631 <     * * If already enqueued and none of the above apply, either park
1632 <     * awaiting signal, or if this is the most recent waiter and pool
1633 <     * is quiescent, relay to idleAwaitWork to check for termination
1634 <     * and possibly shrink pool.
1629 >     * worker on wait queue. Or, if inactivating has caused the pool
1630 >     * to be quiescent, relay to idleAwaitWork to check for
1631 >     * termination and possibly shrink pool.
1632 >     *
1633 >     * * If already enqueued and none of the above apply, possibly
1634 >     * (with 1/2 probablility) park awaiting signal, else lingering to
1635 >     * help scan and signal.
1636       *
1637       * @param w the worker (via its WorkQueue)
1638 <     * @return a task or null of none found
1638 >     * @return a task or null if none found
1639       */
1640      private final ForkJoinTask<?> scan(WorkQueue w) {
1641 <        boolean swept = false;                 // true after full empty scan
1642 <        WorkQueue[] ws;                        // volatile read order matters
1643 <        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1644 <        int rs = runState, m = rs & SMASK;
1645 <        if ((ws = workQueues) != null && ws.length > m) {
1646 <            ForkJoinTask<?> task = null;
1647 <            for (int k = 0, j = -2 - m; ; ++j) {
1648 <                WorkQueue q; int b;
1649 <                if (j < 0) {                    // random probes while j negative
1650 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1651 <                }                               // worker (not submit) for odd j
1652 <                else                            // cyclic scan when j >= 0
1653 <                    k += (m >>> 1) | 1;         // step by half to reduce bias
1654 <
1655 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1656 <                    if (ec >= 0)
1657 <                        task = q.pollAt(b);     // steal
1658 <                    break;
1641 >        WorkQueue[] ws; WorkQueue q;           // first update random seed
1642 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1643 >        int ps = plock, m;                     // volatile read order matters
1644 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1645 >            int ec = w.eventCount;             // ec is negative if inactive
1646 >            int step = (r >>> 16) | 1;         // relatively prime
1647 >            for (int j = (m + 1) << 2;  ; --j, r += step) {
1648 >                ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b, n;
1649 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1650 >                    (a = q.array) != null) {   // probably nonempty
1651 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1652 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1653 >                    if (q.base == b && ec >= 0 && t != null &&
1654 >                        U.compareAndSwapObject(a, i, t, null)) {
1655 >                        if ((n = q.top - (q.base = b + 1)) > 0)
1656 >                            signalWork(q, n);
1657 >                        return t;              // taken
1658 >                    }
1659 >                    if (j < m || (ec < 0 && (ec = w.eventCount) < 0)) {
1660 >                        if ((n = q.queueSize() - 1) > 0)
1661 >                            signalWork(q, n);
1662 >                        break;                 // let caller retry after signal
1663 >                    }
1664                  }
1665 <                else if (j > m) {
1666 <                    if (rs == runState)        // staleness check
1667 <                        swept = true;
1665 >                else if (j < 0) {              // end of scan
1666 >                    long c = ctl; int e;
1667 >                    if (plock != ps)           // incomplete sweep
1668 >                        break;
1669 >                    if ((e = (int)c) < 0)      // pool is terminating
1670 >                        w.qlock = -1;
1671 >                    else if (ec >= 0) {        // try to enqueue/inactivate
1672 >                        long nc = ((long)ec |
1673 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1674 >                        w.nextWait = e;
1675 >                        w.eventCount = ec | INT_SIGN; // mark as inactive
1676 >                        if (ctl != c ||
1677 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1678 >                            w.eventCount = ec; // unmark on CAS failure
1679 >                        else if ((int)(c >> AC_SHIFT) == 1 - parallelism)
1680 >                            idleAwaitWork(w, nc, c);  // quiescent
1681 >                    }
1682 >                    else if (w.seed >= 0 && w.eventCount < 0) {
1683 >                        Thread wt = Thread.currentThread();
1684 >                        Thread.interrupted();  // clear status
1685 >                        U.putObject(wt, PARKBLOCKER, this);
1686 >                        w.parker = wt;         // emulate LockSupport.park
1687 >                        if (w.eventCount < 0)  // recheck
1688 >                            U.park(false, 0L);
1689 >                        w.parker = null;
1690 >                        U.putObject(wt, PARKBLOCKER, null);
1691 >                    }
1692                      break;
1693                  }
1694              }
1464            w.seed = r;                        // save seed for next scan
1465            if (task != null)
1466                return task;
1467        }
1468
1469        // Decode ctl on empty scan
1470        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1471        if (!swept) {                          // try to release a waiter
1472            WorkQueue v; Thread p;
1473            if (e > 0 && a < 0 && ws != null &&
1474                (v = ws[((~e << 1) | 1) & m]) != null &&
1475                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1476                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1477                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1478                v.eventCount = (e + E_SEQ) & E_MASK;
1479                if ((p = v.parker) != null)
1480                    U.unpark(p);
1481            }
1482        }
1483        else if ((nr = w.rescans) > 0) {       // continue rescanning
1484            int ac = a + parallelism;
1485            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1486                w.eventCount == ec)
1487                Thread.yield();                // 1 bit randomness for yield call
1488        }
1489        else if (e < 0)                        // pool is terminating
1490            w.runState = -1;
1491        else if (ec >= 0) {                    // try to enqueue
1492            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1493            w.nextWait = e;
1494            w.eventCount = ec | INT_SIGN;      // mark as inactive
1495            if (!U.compareAndSwapLong(this, CTL, c, nc))
1496                w.eventCount = ec;             // back out on CAS failure
1497            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1498                if (a <= 0)                    // ... unless too many active
1499                    w.rescans = a + parallelism;
1500                w.nsteals = 0;
1501                w.totalSteals += ns;
1502            }
1503        }
1504        else{                                  // already queued
1505            if (parallelism == -a)
1506                idleAwaitWork(w);              // quiescent
1507            if (w.eventCount == ec) {
1508                Thread.interrupted();          // clear status
1509                ForkJoinWorkerThread wt = w.owner;
1510                U.putObject(wt, PARKBLOCKER, this);
1511                w.parker = wt;                 // emulate LockSupport.park
1512                if (w.eventCount == ec)        // recheck
1513                    U.park(false, 0L);         // block
1514                w.parker = null;
1515                U.putObject(wt, PARKBLOCKER, null);
1516            }
1695          }
1696          return null;
1697      }
1698  
1699      /**
1700 <     * If inactivating worker w has caused pool to become quiescent,
1701 <     * check for pool termination, and, so long as this is not the
1702 <     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1703 <     * timeout, if ctl has not changed, terminate the worker, which
1704 <     * will in turn wake up another worker to possibly repeat this
1705 <     * process.
1700 >     * If inactivating worker w has caused the pool to become
1701 >     * quiescent, checks for pool termination, and, so long as this is
1702 >     * not the only worker, waits for event for up to a given
1703 >     * duration.  On timeout, if ctl has not changed, terminates the
1704 >     * worker, which will in turn wake up another worker to possibly
1705 >     * repeat this process.
1706       *
1707       * @param w the calling worker
1708 +     * @param currentCtl the ctl value triggering possible quiescence
1709 +     * @param prevCtl the ctl value to restore if thread is terminated
1710       */
1711 <    private void idleAwaitWork(WorkQueue w) {
1712 <        long c; int nw, ec;
1713 <        if (!tryTerminate(false) &&
1714 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1715 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1716 <            (nw = w.nextWait) != 0) {
1717 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1718 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1719 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1540 <            ForkJoinWorkerThread wt = w.owner;
1541 <            while (ctl == c) {
1542 <                long startTime = System.nanoTime();
1711 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1712 >        if (w.eventCount < 0 &&
1713 >            (this == commonPool || !tryTerminate(false, false)) &&
1714 >            (int)prevCtl != 0) {
1715 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1716 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1717 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1718 >            Thread wt = Thread.currentThread();
1719 >            while (ctl == currentCtl) {
1720                  Thread.interrupted();  // timed variant of version in scan()
1721                  U.putObject(wt, PARKBLOCKER, this);
1722                  w.parker = wt;
1723 <                if (ctl == c)
1724 <                    U.park(false, SHRINK_RATE);
1723 >                if (ctl == currentCtl)
1724 >                    U.park(false, parkTime);
1725                  w.parker = null;
1726                  U.putObject(wt, PARKBLOCKER, null);
1727 <                if (ctl != c)
1727 >                if (ctl != currentCtl)
1728                      break;
1729 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1730 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1731 <                    w.runState = -1;          // shrink
1732 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1729 >                if (deadline - System.nanoTime() <= 0L &&
1730 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1731 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1732 >                    w.qlock = -1;   // shrink
1733                      break;
1734                  }
1735              }
# Line 1560 | Line 1737 | public class ForkJoinPool extends Abstra
1737      }
1738  
1739      /**
1740 +     * Scans through queues looking for work while joining a task;
1741 +     * if any are present, signals.
1742 +     *
1743 +     * @param task to return early if done
1744 +     * @param origin an index to start scan
1745 +     */
1746 +    final int helpSignal(ForkJoinTask<?> task, int origin) {
1747 +        WorkQueue[] ws; WorkQueue q; int m, n, s;
1748 +        if (task != null && (ws = workQueues) != null &&
1749 +            (m = ws.length - 1) >= 0) {
1750 +            for (int i = 0; i <= m; ++i) {
1751 +                if ((s = task.status) < 0)
1752 +                    return s;
1753 +                if ((q = ws[(i + origin) & m]) != null &&
1754 +                    (n = q.queueSize()) > 0) {
1755 +                    signalWork(q, n);
1756 +                    if ((int)(ctl >> AC_SHIFT) >= 0)
1757 +                        break;
1758 +                }
1759 +            }
1760 +        }
1761 +        return 0;
1762 +    }
1763 +
1764 +    /**
1765       * Tries to locate and execute tasks for a stealer of the given
1766       * task, or in turn one of its stealers, Traces currentSteal ->
1767       * currentJoin links looking for a thread working on a descendant
# Line 1570 | Line 1772 | public class ForkJoinPool extends Abstra
1772       * leaves hints in workers to speed up subsequent calls. The
1773       * implementation is very branchy to cope with potential
1774       * inconsistencies or loops encountering chains that are stale,
1775 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1574 <     * of these cases are dealt with by just retrying by caller.
1775 >     * unknown, or so long that they are likely cyclic.
1776       *
1777       * @param joiner the joining worker
1778       * @param task the task to join
1779 <     * @return true if found or ran a task (and so is immediately retryable)
1779 >     * @return 0 if no progress can be made, negative if task
1780 >     * known complete, else positive
1781       */
1782 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1783 <        ForkJoinTask<?> subtask;    // current target
1784 <        boolean progress = false;
1785 <        int depth = 0;              // current chain depth
1786 <        int m = runState & SMASK;
1787 <        WorkQueue[] ws = workQueues;
1788 <
1789 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1790 <            outer:for (WorkQueue j = joiner;;) {
1791 <                // Try to find the stealer of subtask, by first using hint
1792 <                WorkQueue stealer = null;
1793 <                WorkQueue v = ws[j.stealHint & m];
1794 <                if (v != null && v.currentSteal == subtask)
1795 <                    stealer = v;
1796 <                else {
1797 <                    for (int i = 1; i <= m; i += 2) {
1798 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1799 <                            stealer = v;
1800 <                            j.stealHint = i; // save hint
1801 <                            break;
1782 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1783 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1784 >        if (joiner != null && task != null) {       // hoist null checks
1785 >            restart: for (;;) {
1786 >                ForkJoinTask<?> subtask = task;     // current target
1787 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1788 >                    WorkQueue[] ws; int m, s, h;
1789 >                    if ((s = task.status) < 0) {
1790 >                        stat = s;
1791 >                        break restart;
1792 >                    }
1793 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1794 >                        break restart;              // shutting down
1795 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1796 >                        v.currentSteal != subtask) {
1797 >                        for (int origin = h;;) {    // find stealer
1798 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1799 >                                (subtask.status < 0 || j.currentJoin != subtask))
1800 >                                continue restart;   // occasional staleness check
1801 >                            if ((v = ws[h]) != null &&
1802 >                                v.currentSteal == subtask) {
1803 >                                j.stealHint = h;    // save hint
1804 >                                break;
1805 >                            }
1806 >                            if (h == origin)
1807 >                                break restart;      // cannot find stealer
1808                          }
1809                      }
1810 <                    if (stealer == null)
1810 >                    for (;;) { // help stealer or descend to its stealer
1811 >                        ForkJoinTask[] a;  int b;
1812 >                        if (subtask.status < 0)     // surround probes with
1813 >                            continue restart;       //   consistency checks
1814 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1815 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1816 >                            ForkJoinTask<?> t =
1817 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1818 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1819 >                                v.currentSteal != subtask)
1820 >                                continue restart;   // stale
1821 >                            stat = 1;               // apparent progress
1822 >                            if (t != null && v.base == b &&
1823 >                                U.compareAndSwapObject(a, i, t, null)) {
1824 >                                v.base = b + 1;     // help stealer
1825 >                                joiner.runSubtask(t);
1826 >                            }
1827 >                            else if (v.base == b && ++steps == MAX_HELP)
1828 >                                break restart;      // v apparently stalled
1829 >                        }
1830 >                        else {                      // empty -- try to descend
1831 >                            ForkJoinTask<?> next = v.currentJoin;
1832 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1833 >                                v.currentSteal != subtask)
1834 >                                continue restart;   // stale
1835 >                            else if (next == null || ++steps == MAX_HELP)
1836 >                                break restart;      // dead-end or maybe cyclic
1837 >                            else {
1838 >                                subtask = next;
1839 >                                j = v;
1840 >                                break;
1841 >                            }
1842 >                        }
1843 >                    }
1844 >                }
1845 >            }
1846 >        }
1847 >        return stat;
1848 >    }
1849 >
1850 >    /**
1851 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1852 >     * and run tasks within the target's computation
1853 >     *
1854 >     * @param task the task to join
1855 >     * @param mode if shared, exit upon completing any task
1856 >     * if all workers are active
1857 >     *
1858 >     */
1859 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1860 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1861 >        if (task != null && (ws = workQueues) != null &&
1862 >            (m = ws.length - 1) >= 0) {
1863 >            for (int j = 1, origin = j;;) {
1864 >                if ((s = task.status) < 0)
1865 >                    return s;
1866 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1867 >                    origin = j;
1868 >                    if (mode == SHARED_QUEUE && (int)(ctl >> AC_SHIFT) >= 0)
1869                          break;
1870                  }
1871 +                else if ((j = (j + 2) & m) == origin)
1872 +                    break;
1873 +            }
1874 +        }
1875 +        return 0;
1876 +    }
1877  
1878 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1879 <                    ForkJoinTask<?> t; int b;
1880 <                    if (task.status < 0)
1881 <                        break outer;
1882 <                    if ((b = q.base) - q.top < 0) {
1883 <                        progress = true;
1884 <                        if (subtask.status < 0)
1885 <                            break outer;               // stale
1886 <                        if ((t = q.pollAt(b)) != null) {
1887 <                            stealer.stealHint = joiner.poolIndex;
1888 <                            joiner.runSubtask(t);
1878 >    /**
1879 >     * Tries to decrement active count (sometimes implicitly) and
1880 >     * possibly release or create a compensating worker in preparation
1881 >     * for blocking. Fails on contention or termination. Otherwise,
1882 >     * adds a new thread if no idle workers are available and pool
1883 >     * may become starved.
1884 >     */
1885 >    final boolean tryCompensate() {
1886 >        int pc = parallelism, e, u, i, tc; long c;
1887 >        WorkQueue[] ws; WorkQueue w; Thread p;
1888 >        if ((e = (int)(c = ctl)) >= 0 && (ws = workQueues) != null) {
1889 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1890 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1891 >                long nc = ((long)(w.nextWait & E_MASK) |
1892 >                           (c & (AC_MASK|TC_MASK)));
1893 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1894 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1895 >                    if ((p = w.parker) != null)
1896 >                        U.unpark(p);
1897 >                    return true;   // replace with idle worker
1898 >                }
1899 >            }
1900 >            else if ((short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) >= 0 &&
1901 >                     (u >> UAC_SHIFT) + pc > 1) {
1902 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1903 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1904 >                    return true;    // no compensation
1905 >            }
1906 >            else if ((tc = u + pc) < MAX_CAP) {
1907 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1908 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1909 >                    Throwable ex = null;
1910 >                    ForkJoinWorkerThread wt = null;
1911 >                    try {
1912 >                        ForkJoinWorkerThreadFactory fac;
1913 >                        if ((fac = factory) != null &&
1914 >                            (wt = fac.newThread(this)) != null) {
1915 >                            wt.start();
1916 >                            return true;
1917                          }
1918 +                    } catch (Throwable rex) {
1919 +                        ex = rex;
1920                      }
1921 <                    else { // empty - try to descend to find stealer's stealer
1620 <                        ForkJoinTask<?> next = stealer.currentJoin;
1621 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1622 <                            next == null || next == subtask)
1623 <                            break outer;  // max depth, stale, dead-end, cyclic
1624 <                        subtask = next;
1625 <                        j = stealer;
1626 <                        break;
1627 <                    }
1921 >                    deregisterWorker(wt, ex); // adjust counts etc
1922                  }
1923              }
1924          }
1925 <        return progress;
1925 >        return false;
1926      }
1927  
1928      /**
1929 <     * If task is at base of some steal queue, steals and executes it.
1929 >     * Helps and/or blocks until the given task is done.
1930       *
1931       * @param joiner the joining worker
1932       * @param task the task
1933 +     * @return task status on exit
1934       */
1935 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1936 <        WorkQueue[] ws;
1937 <        int m = runState & SMASK;
1938 <        if ((ws = workQueues) != null && ws.length > m) {
1939 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1940 <                WorkQueue q = ws[j];
1941 <                if (q != null && q.pollFor(task)) {
1942 <                    joiner.runSubtask(task);
1943 <                    break;
1935 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1936 >        int s = 0;
1937 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1938 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1939 >            joiner.currentJoin = task;
1940 >            do {} while ((s = task.status) >= 0 &&
1941 >                         joiner.queueSize() > 0 &&
1942 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1943 >            if (s >= 0 && (s = task.status) >= 0 &&
1944 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1945 >                (task instanceof CountedCompleter))
1946 >                s = helpComplete(task, LIFO_QUEUE);
1947 >            while (s >= 0 && (s = task.status) >= 0) {
1948 >                if ((joiner.queueSize() > 0 ||           // try helping
1949 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1950 >                    (s = task.status) >= 0 && tryCompensate()) {
1951 >                    if (task.trySetSignal() && (s = task.status) >= 0) {
1952 >                        synchronized (task) {
1953 >                            if (task.status >= 0) {
1954 >                                try {                // see ForkJoinTask
1955 >                                    task.wait();     //  for explanation
1956 >                                } catch (InterruptedException ie) {
1957 >                                }
1958 >                            }
1959 >                            else
1960 >                                task.notifyAll();
1961 >                        }
1962 >                    }
1963 >                    long c;                          // re-activate
1964 >                    do {} while (!U.compareAndSwapLong
1965 >                                 (this, CTL, c = ctl, c + AC_UNIT));
1966                  }
1967              }
1968 +            joiner.currentJoin = prevJoin;
1969          }
1970 +        return s;
1971      }
1972  
1973      /**
1974 <     * Returns a non-empty steal queue, if one is found during a random,
1975 <     * then cyclic scan, else null.  This method must be retried by
1976 <     * caller if, by the time it tries to use the queue, it is empty.
1974 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1975 >     * to help join only while there is continuous progress. (Caller
1976 >     * will then enter a timed wait.)
1977 >     *
1978 >     * @param joiner the joining worker
1979 >     * @param task the task
1980       */
1981 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1982 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
1981 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1982 >        int s;
1983 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1984 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1985 >            joiner.currentJoin = task;
1986 >            do {} while ((s = task.status) >= 0 &&
1987 >                         joiner.queueSize() > 0 &&
1988 >                         joiner.tryRemoveAndExec(task));
1989 >            if (s >= 0 && (s = task.status) >= 0 &&
1990 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1991 >                (task instanceof CountedCompleter))
1992 >                s = helpComplete(task, LIFO_QUEUE);
1993 >            if (s >= 0 && joiner.queueSize() == 0) {
1994 >                do {} while (task.status >= 0 &&
1995 >                             tryHelpStealer(joiner, task) > 0);
1996 >            }
1997 >            joiner.currentJoin = prevJoin;
1998 >        }
1999 >    }
2000 >
2001 >    /**
2002 >     * Returns a (probably) non-empty steal queue, if one is found
2003 >     * during a random, then cyclic scan, else null.  This method must
2004 >     * be retried by caller if, by the time it tries to use the queue,
2005 >     * it is empty.
2006 >     * @param r a (random) seed for scanning
2007 >     */
2008 >    private WorkQueue findNonEmptyStealQueue(int r) {
2009 >        int step = (r >>> 16) | 1;
2010          for (WorkQueue[] ws;;) {
2011 <            int m = runState & SMASK;
2012 <            if ((ws = workQueues) == null)
2011 >            int ps = plock, m;
2012 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2013                  return null;
2014 <            if (ws.length > m) {
2015 <                WorkQueue q;
2016 <                for (int n = m << 2, k = r, j = -n;;) {
2017 <                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
2018 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
2019 <                        w.seed = r;
1671 <                        return q;
1672 <                    }
1673 <                    else if (j > n)
2014 >            for (int j = (m + 1) << 2; ; r += step) {
2015 >                WorkQueue q = ws[((r << 1) | 1) & m];
2016 >                if (q != null && q.queueSize() > 0)
2017 >                    return q;
2018 >                else if (--j < 0) {
2019 >                    if (plock == ps)
2020                          return null;
2021 <                    else
1676 <                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1677 <
2021 >                    break;
2022                  }
2023              }
2024          }
# Line 1688 | Line 2032 | public class ForkJoinPool extends Abstra
2032       */
2033      final void helpQuiescePool(WorkQueue w) {
2034          for (boolean active = true;;) {
2035 <            w.runLocalTasks();      // exhaust local queue
2036 <            WorkQueue q = findNonEmptyStealQueue(w);
2035 >            ForkJoinTask<?> localTask; // exhaust local queue
2036 >            while ((localTask = w.nextLocalTask()) != null)
2037 >                localTask.doExec();
2038 >            // Similar to loop in scan(), but ignoring submissions
2039 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2040              if (q != null) {
2041 <                ForkJoinTask<?> t;
2041 >                ForkJoinTask<?> t; int b;
2042                  if (!active) {      // re-establish active count
2043                      long c;
2044                      active = true;
2045                      do {} while (!U.compareAndSwapLong
2046                                   (this, CTL, c = ctl, c + AC_UNIT));
2047                  }
2048 <                if ((t = q.poll()) != null)
2048 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2049                      w.runSubtask(t);
2050              }
2051              else {
# Line 1720 | Line 2067 | public class ForkJoinPool extends Abstra
2067      }
2068  
2069      /**
2070 <     * Gets and removes a local or stolen task for the given worker
2070 >     * Gets and removes a local or stolen task for the given worker.
2071       *
2072       * @return a task, if available
2073       */
2074      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2075          for (ForkJoinTask<?> t;;) {
2076 <            WorkQueue q;
2076 >            WorkQueue q; int b;
2077              if ((t = w.nextLocalTask()) != null)
2078                  return t;
2079 <            if ((q = findNonEmptyStealQueue(w)) == null)
2079 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2080                  return null;
2081 <            if ((t = q.poll()) != null)
2081 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2082                  return t;
2083          }
2084      }
2085  
2086      /**
2087 <     * Returns the approximate (non-atomic) number of idle threads per
2088 <     * active thread to offset steal queue size for method
2089 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2090 <     */
2091 <    final int idlePerActive() {
2092 <        // Approximate at powers of two for small values, saturate past 4
2093 <        int p = parallelism;
2094 <        int a = p + (int)(ctl >> AC_SHIFT);
2095 <        return (a > (p >>>= 1) ? 0 :
2096 <                a > (p >>>= 1) ? 1 :
2097 <                a > (p >>>= 1) ? 2 :
2098 <                a > (p >>>= 1) ? 4 :
2099 <                8);
2100 <    }
2101 <
2102 <    // Termination
2103 <
2104 <    /**
2105 <     * Sets SHUTDOWN bit of runState under lock
2106 <     */
2107 <    private void enableShutdown() {
2108 <        ReentrantLock lock = this.lock;
2109 <        if (runState >= 0) {
2110 <            lock.lock();                       // don't need try/finally
2111 <            runState |= SHUTDOWN;
2112 <            lock.unlock();
2087 >     * Returns a cheap heuristic guide for task partitioning when
2088 >     * programmers, frameworks, tools, or languages have little or no
2089 >     * idea about task granularity.  In essence by offering this
2090 >     * method, we ask users only about tradeoffs in overhead vs
2091 >     * expected throughput and its variance, rather than how finely to
2092 >     * partition tasks.
2093 >     *
2094 >     * In a steady state strict (tree-structured) computation, each
2095 >     * thread makes available for stealing enough tasks for other
2096 >     * threads to remain active. Inductively, if all threads play by
2097 >     * the same rules, each thread should make available only a
2098 >     * constant number of tasks.
2099 >     *
2100 >     * The minimum useful constant is just 1. But using a value of 1
2101 >     * would require immediate replenishment upon each steal to
2102 >     * maintain enough tasks, which is infeasible.  Further,
2103 >     * partitionings/granularities of offered tasks should minimize
2104 >     * steal rates, which in general means that threads nearer the top
2105 >     * of computation tree should generate more than those nearer the
2106 >     * bottom. In perfect steady state, each thread is at
2107 >     * approximately the same level of computation tree. However,
2108 >     * producing extra tasks amortizes the uncertainty of progress and
2109 >     * diffusion assumptions.
2110 >     *
2111 >     * So, users will want to use values larger, but not much larger
2112 >     * than 1 to both smooth over transient shortages and hedge
2113 >     * against uneven progress; as traded off against the cost of
2114 >     * extra task overhead. We leave the user to pick a threshold
2115 >     * value to compare with the results of this call to guide
2116 >     * decisions, but recommend values such as 3.
2117 >     *
2118 >     * When all threads are active, it is on average OK to estimate
2119 >     * surplus strictly locally. In steady-state, if one thread is
2120 >     * maintaining say 2 surplus tasks, then so are others. So we can
2121 >     * just use estimated queue length.  However, this strategy alone
2122 >     * leads to serious mis-estimates in some non-steady-state
2123 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2124 >     * many of these by further considering the number of "idle"
2125 >     * threads, that are known to have zero queued tasks, so
2126 >     * compensate by a factor of (#idle/#active) threads.
2127 >     *
2128 >     * Note: The approximation of #busy workers as #active workers is
2129 >     * not very good under current signalling scheme, and should be
2130 >     * improved.
2131 >     */
2132 >    static int getSurplusQueuedTaskCount() {
2133 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2134 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2135 >            int b = (q = (wt = (ForkJoinWorkerThread)t).workQueue).base;
2136 >            int p = (pool = wt.pool).parallelism;
2137 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2138 >            return q.top - b - (a > (p >>>= 1) ? 0 :
2139 >                                a > (p >>>= 1) ? 1 :
2140 >                                a > (p >>>= 1) ? 2 :
2141 >                                a > (p >>>= 1) ? 4 :
2142 >                                8);
2143          }
2144 +        return 0;
2145      }
2146  
2147 +    //  Termination
2148 +
2149      /**
2150 <     * Possibly initiates and/or completes termination.  Upon
2151 <     * termination, cancels all queued tasks and then
2150 >     * Possibly initiates and/or completes termination.  The caller
2151 >     * triggering termination runs three passes through workQueues:
2152 >     * (0) Setting termination status, followed by wakeups of queued
2153 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2154 >     * threads (likely in external tasks, but possibly also blocked in
2155 >     * joins).  Each pass repeats previous steps because of potential
2156 >     * lagging thread creation.
2157       *
2158       * @param now if true, unconditionally terminate, else only
2159       * if no work and no active workers
2160 +     * @param enable if true, enable shutdown when next possible
2161       * @return true if now terminating or terminated
2162       */
2163 <    private boolean tryTerminate(boolean now) {
2163 >    private boolean tryTerminate(boolean now, boolean enable) {
2164 >        if (this == commonPool)                     // cannot shut down
2165 >            return false;
2166          for (long c;;) {
2167              if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2168                  if ((short)(c >>> TC_SHIFT) == -parallelism) {
2169 <                    ReentrantLock lock = this.lock; // signal when no workers
2170 <                    lock.lock();                    // don't need try/finally
2171 <                    termination.signalAll();        // signal when 0 workers
1784 <                    lock.unlock();
2169 >                    synchronized (this) {
2170 >                        notifyAll();                // signal when 0 workers
2171 >                    }
2172                  }
2173                  return true;
2174              }
2175 <            if (!now) {
2176 <                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
2175 >            if (plock >= 0) {                       // not yet enabled
2176 >                int ps;
2177 >                if (!enable)
2178 >                    return false;
2179 >                if (((ps = plock) & PL_LOCK) != 0 ||
2180 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2181 >                    ps = acquirePlock();
2182 >                int nps = SHUTDOWN;
2183 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2184 >                    releasePlock(nps);
2185 >            }
2186 >            if (!now) {                             // check if idle & no tasks
2187 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2188                      hasQueuedSubmissions())
2189                      return false;
2190                  // Check for unqueued inactive workers. One pass suffices.
2191                  WorkQueue[] ws = workQueues; WorkQueue w;
2192                  if (ws != null) {
2193 <                    int n = ws.length;
1796 <                    for (int i = 1; i < n; i += 2) {
2193 >                    for (int i = 1; i < ws.length; i += 2) {
2194                          if ((w = ws[i]) != null && w.eventCount >= 0)
2195                              return false;
2196                      }
2197                  }
2198              }
2199 <            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
2200 <                startTerminating();
2199 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2200 >                for (int pass = 0; pass < 3; ++pass) {
2201 >                    WorkQueue[] ws = workQueues;
2202 >                    if (ws != null) {
2203 >                        WorkQueue w;
2204 >                        int n = ws.length;
2205 >                        for (int i = 0; i < n; ++i) {
2206 >                            if ((w = ws[i]) != null) {
2207 >                                w.qlock = -1;
2208 >                                if (pass > 0) {
2209 >                                    w.cancelAll();
2210 >                                    if (pass > 1)
2211 >                                        w.interruptOwner();
2212 >                                }
2213 >                            }
2214 >                        }
2215 >                        // Wake up workers parked on event queue
2216 >                        int i, e; long cc; Thread p;
2217 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2218 >                               (i = e & SMASK) < n &&
2219 >                               (w = ws[i]) != null) {
2220 >                            long nc = ((long)(w.nextWait & E_MASK) |
2221 >                                       ((cc + AC_UNIT) & AC_MASK) |
2222 >                                       (cc & (TC_MASK|STOP_BIT)));
2223 >                            if (w.eventCount == (e | INT_SIGN) &&
2224 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2225 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2226 >                                w.qlock = -1;
2227 >                                if ((p = w.parker) != null)
2228 >                                    U.unpark(p);
2229 >                            }
2230 >                        }
2231 >                    }
2232 >                }
2233 >            }
2234          }
2235      }
2236  
2237 +    // external operations on common pool
2238 +
2239      /**
2240 <     * Initiates termination: Runs three passes through workQueues:
2241 <     * (0) Setting termination status, followed by wakeups of queued
1810 <     * workers; (1) cancelling all tasks; (2) interrupting lagging
1811 <     * threads (likely in external tasks, but possibly also blocked in
1812 <     * joins).  Each pass repeats previous steps because of potential
1813 <     * lagging thread creation.
2240 >     * Returns common pool queue for a thread that has submitted at
2241 >     * least one task.
2242       */
2243 <    private void startTerminating() {
2244 <        for (int pass = 0; pass < 3; ++pass) {
2245 <            WorkQueue[] ws = workQueues;
2246 <            if (ws != null) {
2247 <                WorkQueue w; Thread wt;
2248 <                int n = ws.length;
2249 <                for (int j = 0; j < n; ++j) {
2250 <                    if ((w = ws[j]) != null) {
2251 <                        w.runState = -1;
2252 <                        if (pass > 0) {
2253 <                            w.cancelAll();
2254 <                            if (pass > 1 && (wt = w.owner) != null &&
2255 <                                !wt.isInterrupted()) {
2256 <                                try {
2257 <                                    wt.interrupt();
2258 <                                } catch (SecurityException ignore) {
2243 >    static WorkQueue commonSubmitterQueue() {
2244 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2245 >        return ((z = submitters.get()) != null &&
2246 >                (p = commonPool) != null &&
2247 >                (ws = p.workQueues) != null &&
2248 >                (m = ws.length - 1) >= 0) ?
2249 >            ws[m & z.seed & SQMASK] : null;
2250 >    }
2251 >
2252 >    /**
2253 >     * Tries to pop the given task from submitter's queue in common pool.
2254 >     */
2255 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2256 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2257 >        ForkJoinTask<?>[] a;  int m, s; long j;
2258 >        if ((z = submitters.get()) != null &&
2259 >            (p = commonPool) != null &&
2260 >            (ws = p.workQueues) != null &&
2261 >            (m = ws.length - 1) >= 0 &&
2262 >            (q = ws[m & z.seed & SQMASK]) != null &&
2263 >            (s = q.top) != q.base &&
2264 >            (a = q.array) != null &&
2265 >            U.getObjectVolatile
2266 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2267 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2268 >            if (q.array == a && q.top == s && // recheck
2269 >                U.compareAndSwapObject(a, j, t, null)) {
2270 >                q.top = s - 1;
2271 >                q.qlock = 0;
2272 >                return true;
2273 >            }
2274 >            q.qlock = 0;
2275 >        }
2276 >        return false;
2277 >    }
2278 >
2279 >    /**
2280 >     * Tries to pop and run local tasks within the same computation
2281 >     * as the given root. On failure, tries to help complete from
2282 >     * other queues via helpComplete.
2283 >     */
2284 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2285 >        ForkJoinTask<?>[] a; int m;
2286 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2287 >            root != null && root.status >= 0) {
2288 >            for (;;) {
2289 >                int s; Object o; CountedCompleter<?> task = null;
2290 >                if ((s = q.top) - q.base > 0) {
2291 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2292 >                    if ((o = U.getObject(a, j)) != null &&
2293 >                        (o instanceof CountedCompleter)) {
2294 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2295 >                        do {
2296 >                            if (r == root) {
2297 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2298 >                                    if (q.array == a && q.top == s &&
2299 >                                        U.compareAndSwapObject(a, j, t, null)) {
2300 >                                        q.top = s - 1;
2301 >                                        task = t;
2302 >                                    }
2303 >                                    q.qlock = 0;
2304                                  }
2305 +                                break;
2306                              }
2307 <                        }
2307 >                        } while ((r = r.completer) != null);
2308                      }
2309                  }
2310 <                // Wake up workers parked on event queue
2311 <                int i, e; long c; Thread p;
2312 <                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
2313 <                       (w = ws[i]) != null &&
2314 <                       w.eventCount == (e | INT_SIGN)) {
2315 <                    long nc = ((long)(w.nextWait & E_MASK) |
2316 <                               ((c + AC_UNIT) & AC_MASK) |
2317 <                               (c & (TC_MASK|STOP_BIT)));
1844 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1845 <                        w.eventCount = (e + E_SEQ) & E_MASK;
1846 <                        if ((p = w.parker) != null)
1847 <                            U.unpark(p);
1848 <                    }
2310 >                if (task != null)
2311 >                    task.doExec();
2312 >                if (root.status < 0 || (int)(ctl >> AC_SHIFT) >= 0)
2313 >                    break;
2314 >                if (task == null) {
2315 >                    if (helpSignal(root, q.poolIndex) >= 0)
2316 >                        helpComplete(root, SHARED_QUEUE);
2317 >                    break;
2318                  }
2319              }
2320          }
2321      }
2322  
2323 +    /**
2324 +     * Tries to help execute or signal availability of the given task
2325 +     * from submitter's queue in common pool.
2326 +     */
2327 +    static void externalHelpJoin(ForkJoinTask<?> t) {
2328 +        // Some hard-to-avoid overlap with tryExternalUnpush
2329 +        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2330 +        ForkJoinTask<?>[] a;  int m, s, n; long j;
2331 +        if (t != null && t.status >= 0 &&
2332 +            (z = submitters.get()) != null &&
2333 +            (p = commonPool) != null &&
2334 +            (ws = p.workQueues) != null &&
2335 +            (m = ws.length - 1) >= 0 &&
2336 +            (q = ws[m & z.seed & SQMASK]) != null &&
2337 +            (a = q.array) != null) {
2338 +            if ((s = q.top) != q.base &&
2339 +                U.getObjectVolatile
2340 +                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2341 +                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2342 +                if (q.array == a && q.top == s &&
2343 +                    U.compareAndSwapObject(a, j, t, null)) {
2344 +                    q.top = s - 1;
2345 +                    q.qlock = 0;
2346 +                    t.doExec();
2347 +                }
2348 +                else
2349 +                    q.qlock = 0;
2350 +            }
2351 +            if (t.status >= 0) {
2352 +                if (t instanceof CountedCompleter)
2353 +                    p.externalHelpComplete(q, t);
2354 +                else
2355 +                    p.helpSignal(t, q.poolIndex);
2356 +            }
2357 +        }
2358 +    }
2359 +
2360 +    /**
2361 +     * Restricted version of helpQuiescePool for external callers
2362 +     */
2363 +    static void externalHelpQuiescePool() {
2364 +        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2365 +        int r = ThreadLocalRandom.current().nextInt();
2366 +        if ((p = commonPool) != null &&
2367 +            (q = p.findNonEmptyStealQueue(r)) != null &&
2368 +            (b = q.base) - q.top < 0 &&
2369 +            (t = q.pollAt(b)) != null)
2370 +            t.doExec();
2371 +    }
2372 +
2373      // Exported methods
2374  
2375      // Constructors
# Line 1920 | Line 2439 | public class ForkJoinPool extends Abstra
2439          checkPermission();
2440          if (factory == null)
2441              throw new NullPointerException();
2442 <        if (parallelism <= 0 || parallelism > MAX_ID)
2442 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2443              throw new IllegalArgumentException();
2444          this.parallelism = parallelism;
2445          this.factory = factory;
2446          this.ueh = handler;
2447          this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1929        this.nextPoolIndex = 1;
2448          long np = (long)(-parallelism); // offset ctl counts
2449          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2450 <        // initialize workQueues array with room for 2*parallelism if possible
1933 <        int n = parallelism << 1;
1934 <        if (n >= MAX_ID)
1935 <            n = MAX_ID;
1936 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1937 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1938 <        }
1939 <        this.workQueues = new WorkQueue[(n + 1) << 1];
1940 <        ReentrantLock lck = this.lock = new ReentrantLock();
1941 <        this.termination = lck.newCondition();
1942 <        this.stealCount = new AtomicLong();
1943 <        this.nextWorkerNumber = new AtomicInteger();
2450 >        int pn = nextPoolId();
2451          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2452 <        sb.append(poolNumberGenerator.incrementAndGet());
2452 >        sb.append(Integer.toString(pn));
2453          sb.append("-worker-");
2454          this.workerNamePrefix = sb.toString();
2455 <        // Create initial submission queue
2456 <        WorkQueue sq = tryAddSharedQueue(0);
2457 <        if (sq != null)
2458 <            sq.growArray(false);
2455 >    }
2456 >
2457 >    /**
2458 >     * Constructor for common pool, suitable only for static initialization.
2459 >     * Basically the same as above, but uses smallest possible initial footprint.
2460 >     */
2461 >    ForkJoinPool(int parallelism, long ctl,
2462 >                 ForkJoinWorkerThreadFactory factory,
2463 >                 Thread.UncaughtExceptionHandler handler) {
2464 >        this.parallelism = parallelism;
2465 >        this.ctl = ctl;
2466 >        this.factory = factory;
2467 >        this.ueh = handler;
2468 >        this.localMode = LIFO_QUEUE;
2469 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2470 >    }
2471 >
2472 >    /**
2473 >     * Returns the common pool instance.
2474 >     *
2475 >     * @return the common pool instance
2476 >     */
2477 >    public static ForkJoinPool commonPool() {
2478 >        return commonPool; // cannot be null (if so, a static init error)
2479      }
2480  
2481      // Execution methods
# Line 1970 | Line 2497 | public class ForkJoinPool extends Abstra
2497       *         scheduled for execution
2498       */
2499      public <T> T invoke(ForkJoinTask<T> task) {
2500 <        doSubmit(task);
2500 >        if (task == null)
2501 >            throw new NullPointerException();
2502 >        externalPush(task);
2503          return task.join();
2504      }
2505  
# Line 1983 | Line 2512 | public class ForkJoinPool extends Abstra
2512       *         scheduled for execution
2513       */
2514      public void execute(ForkJoinTask<?> task) {
2515 <        doSubmit(task);
2515 >        if (task == null)
2516 >            throw new NullPointerException();
2517 >        externalPush(task);
2518      }
2519  
2520      // AbstractExecutorService methods
# Line 2000 | Line 2531 | public class ForkJoinPool extends Abstra
2531          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2532              job = (ForkJoinTask<?>) task;
2533          else
2534 <            job = ForkJoinTask.adapt(task, null);
2535 <        doSubmit(job);
2534 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2535 >        externalPush(job);
2536      }
2537  
2538      /**
# Line 2014 | Line 2545 | public class ForkJoinPool extends Abstra
2545       *         scheduled for execution
2546       */
2547      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2548 <        doSubmit(task);
2548 >        if (task == null)
2549 >            throw new NullPointerException();
2550 >        externalPush(task);
2551          return task;
2552      }
2553  
# Line 2024 | Line 2557 | public class ForkJoinPool extends Abstra
2557       *         scheduled for execution
2558       */
2559      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2560 <        if (task == null)
2561 <            throw new NullPointerException();
2029 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2030 <        doSubmit(job);
2560 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2561 >        externalPush(job);
2562          return job;
2563      }
2564  
# Line 2037 | Line 2568 | public class ForkJoinPool extends Abstra
2568       *         scheduled for execution
2569       */
2570      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2571 <        if (task == null)
2572 <            throw new NullPointerException();
2042 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2043 <        doSubmit(job);
2571 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2572 >        externalPush(job);
2573          return job;
2574      }
2575  
# Line 2056 | Line 2585 | public class ForkJoinPool extends Abstra
2585          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2586              job = (ForkJoinTask<?>) task;
2587          else
2588 <            job = ForkJoinTask.adapt(task, null);
2589 <        doSubmit(job);
2588 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2589 >        externalPush(job);
2590          return job;
2591      }
2592  
# Line 2066 | Line 2595 | public class ForkJoinPool extends Abstra
2595       * @throws RejectedExecutionException {@inheritDoc}
2596       */
2597      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2598 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2599 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2600 <        for (Callable<T> task : tasks)
2601 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2602 <        invoke(new InvokeAll<T>(forkJoinTasks));
2603 <
2598 >        // In previous versions of this class, this method constructed
2599 >        // a task to run ForkJoinTask.invokeAll, but now external
2600 >        // invocation of multiple tasks is at least as efficient.
2601 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2602 >        // Workaround needed because method wasn't declared with
2603 >        // wildcards in return type but should have been.
2604          @SuppressWarnings({"unchecked", "rawtypes"})
2605 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2077 <        return futures;
2078 <    }
2605 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2606  
2607 <    static final class InvokeAll<T> extends RecursiveAction {
2608 <        final ArrayList<ForkJoinTask<T>> tasks;
2609 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2610 <        public void compute() {
2611 <            try { invokeAll(tasks); }
2612 <            catch (Exception ignore) {}
2607 >        boolean done = false;
2608 >        try {
2609 >            for (Callable<T> t : tasks) {
2610 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2611 >                externalPush(f);
2612 >                fs.add(f);
2613 >            }
2614 >            for (ForkJoinTask<T> f : fs)
2615 >                f.quietlyJoin();
2616 >            done = true;
2617 >            return futures;
2618 >        } finally {
2619 >            if (!done)
2620 >                for (ForkJoinTask<T> f : fs)
2621 >                    f.cancel(false);
2622          }
2087        private static final long serialVersionUID = -7914297376763021607L;
2623      }
2624  
2625      /**
# Line 2116 | Line 2651 | public class ForkJoinPool extends Abstra
2651      }
2652  
2653      /**
2654 +     * Returns the targeted parallelism level of the common pool.
2655 +     *
2656 +     * @return the targeted parallelism level of the common pool
2657 +     */
2658 +    public static int getCommonPoolParallelism() {
2659 +        return commonPoolParallelism;
2660 +    }
2661 +
2662 +    /**
2663       * Returns the number of worker threads that have started but not
2664       * yet terminated.  The result returned by this method may differ
2665       * from {@link #getParallelism} when threads are created to
# Line 2149 | Line 2693 | public class ForkJoinPool extends Abstra
2693          int rc = 0;
2694          WorkQueue[] ws; WorkQueue w;
2695          if ((ws = workQueues) != null) {
2696 <            int n = ws.length;
2697 <            for (int i = 1; i < n; i += 2) {
2154 <                Thread.State s; ForkJoinWorkerThread wt;
2155 <                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2156 <                    w.eventCount >= 0 &&
2157 <                    (s = wt.getState()) != Thread.State.BLOCKED &&
2158 <                    s != Thread.State.WAITING &&
2159 <                    s != Thread.State.TIMED_WAITING)
2696 >            for (int i = 1; i < ws.length; i += 2) {
2697 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2698                      ++rc;
2699              }
2700          }
# Line 2202 | Line 2740 | public class ForkJoinPool extends Abstra
2740       * @return the number of steals
2741       */
2742      public long getStealCount() {
2743 <        long count = stealCount.get();
2743 >        long count = stealCount;
2744          WorkQueue[] ws; WorkQueue w;
2745          if ((ws = workQueues) != null) {
2746 <            int n = ws.length;
2209 <            for (int i = 1; i < n; i += 2) {
2746 >            for (int i = 1; i < ws.length; i += 2) {
2747                  if ((w = ws[i]) != null)
2748 <                    count += w.totalSteals;
2748 >                    count += w.nsteals;
2749              }
2750          }
2751          return count;
# Line 2228 | Line 2765 | public class ForkJoinPool extends Abstra
2765          long count = 0;
2766          WorkQueue[] ws; WorkQueue w;
2767          if ((ws = workQueues) != null) {
2768 <            int n = ws.length;
2232 <            for (int i = 1; i < n; i += 2) {
2768 >            for (int i = 1; i < ws.length; i += 2) {
2769                  if ((w = ws[i]) != null)
2770                      count += w.queueSize();
2771              }
# Line 2248 | Line 2784 | public class ForkJoinPool extends Abstra
2784          int count = 0;
2785          WorkQueue[] ws; WorkQueue w;
2786          if ((ws = workQueues) != null) {
2787 <            int n = ws.length;
2252 <            for (int i = 0; i < n; i += 2) {
2787 >            for (int i = 0; i < ws.length; i += 2) {
2788                  if ((w = ws[i]) != null)
2789                      count += w.queueSize();
2790              }
# Line 2266 | Line 2801 | public class ForkJoinPool extends Abstra
2801      public boolean hasQueuedSubmissions() {
2802          WorkQueue[] ws; WorkQueue w;
2803          if ((ws = workQueues) != null) {
2804 <            int n = ws.length;
2270 <            for (int i = 0; i < n; i += 2) {
2804 >            for (int i = 0; i < ws.length; i += 2) {
2805                  if ((w = ws[i]) != null && w.queueSize() != 0)
2806                      return true;
2807              }
# Line 2285 | Line 2819 | public class ForkJoinPool extends Abstra
2819      protected ForkJoinTask<?> pollSubmission() {
2820          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2821          if ((ws = workQueues) != null) {
2822 <            int n = ws.length;
2289 <            for (int i = 0; i < n; i += 2) {
2822 >            for (int i = 0; i < ws.length; i += 2) {
2823                  if ((w = ws[i]) != null && (t = w.poll()) != null)
2824                      return t;
2825              }
# Line 2315 | Line 2848 | public class ForkJoinPool extends Abstra
2848          int count = 0;
2849          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2850          if ((ws = workQueues) != null) {
2851 <            int n = ws.length;
2319 <            for (int i = 0; i < n; ++i) {
2851 >            for (int i = 0; i < ws.length; ++i) {
2852                  if ((w = ws[i]) != null) {
2853                      while ((t = w.poll()) != null) {
2854                          c.add(t);
# Line 2336 | Line 2868 | public class ForkJoinPool extends Abstra
2868       * @return a string identifying this pool, as well as its state
2869       */
2870      public String toString() {
2871 <        long st = getStealCount();
2872 <        long qt = getQueuedTaskCount();
2873 <        long qs = getQueuedSubmissionCount();
2342 <        int rc = getRunningThreadCount();
2343 <        int pc = parallelism;
2871 >        // Use a single pass through workQueues to collect counts
2872 >        long qt = 0L, qs = 0L; int rc = 0;
2873 >        long st = stealCount;
2874          long c = ctl;
2875 +        WorkQueue[] ws; WorkQueue w;
2876 +        if ((ws = workQueues) != null) {
2877 +            for (int i = 0; i < ws.length; ++i) {
2878 +                if ((w = ws[i]) != null) {
2879 +                    int size = w.queueSize();
2880 +                    if ((i & 1) == 0)
2881 +                        qs += size;
2882 +                    else {
2883 +                        qt += size;
2884 +                        st += w.nsteals;
2885 +                        if (w.isApparentlyUnblocked())
2886 +                            ++rc;
2887 +                    }
2888 +                }
2889 +            }
2890 +        }
2891 +        int pc = parallelism;
2892          int tc = pc + (short)(c >>> TC_SHIFT);
2893          int ac = pc + (int)(c >> AC_SHIFT);
2894          if (ac < 0) // ignore transient negative
# Line 2350 | Line 2897 | public class ForkJoinPool extends Abstra
2897          if ((c & STOP_BIT) != 0)
2898              level = (tc == 0) ? "Terminated" : "Terminating";
2899          else
2900 <            level = runState < 0 ? "Shutting down" : "Running";
2900 >            level = plock < 0 ? "Shutting down" : "Running";
2901          return super.toString() +
2902              "[" + level +
2903              ", parallelism = " + pc +
# Line 2364 | Line 2911 | public class ForkJoinPool extends Abstra
2911      }
2912  
2913      /**
2914 <     * Initiates an orderly shutdown in which previously submitted
2915 <     * tasks are executed, but no new tasks will be accepted.
2916 <     * Invocation has no additional effect if already shut down.
2917 <     * Tasks that are in the process of being submitted concurrently
2918 <     * during the course of this method may or may not be rejected.
2914 >     * Possibly initiates an orderly shutdown in which previously
2915 >     * submitted tasks are executed, but no new tasks will be
2916 >     * accepted. Invocation has no effect on execution state if this
2917 >     * is the {@link #commonPool}, and no additional effect if
2918 >     * already shut down.  Tasks that are in the process of being
2919 >     * submitted concurrently during the course of this method may or
2920 >     * may not be rejected.
2921       *
2922       * @throws SecurityException if a security manager exists and
2923       *         the caller is not permitted to modify threads
# Line 2377 | Line 2926 | public class ForkJoinPool extends Abstra
2926       */
2927      public void shutdown() {
2928          checkPermission();
2929 <        enableShutdown();
2381 <        tryTerminate(false);
2929 >        tryTerminate(false, true);
2930      }
2931  
2932      /**
2933 <     * Attempts to cancel and/or stop all tasks, and reject all
2934 <     * subsequently submitted tasks.  Tasks that are in the process of
2935 <     * being submitted or executed concurrently during the course of
2936 <     * this method may or may not be rejected. This method cancels
2937 <     * both existing and unexecuted tasks, in order to permit
2938 <     * termination in the presence of task dependencies. So the method
2939 <     * always returns an empty list (unlike the case for some other
2940 <     * Executors).
2933 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2934 >     * all subsequently submitted tasks.  Invocation has no effect on
2935 >     * execution state if this is the {@link #commonPool}, and no
2936 >     * additional effect if already shut down. Otherwise, tasks that
2937 >     * are in the process of being submitted or executed concurrently
2938 >     * during the course of this method may or may not be
2939 >     * rejected. This method cancels both existing and unexecuted
2940 >     * tasks, in order to permit termination in the presence of task
2941 >     * dependencies. So the method always returns an empty list
2942 >     * (unlike the case for some other Executors).
2943       *
2944       * @return an empty list
2945       * @throws SecurityException if a security manager exists and
# Line 2399 | Line 2949 | public class ForkJoinPool extends Abstra
2949       */
2950      public List<Runnable> shutdownNow() {
2951          checkPermission();
2952 <        enableShutdown();
2403 <        tryTerminate(true);
2952 >        tryTerminate(true, true);
2953          return Collections.emptyList();
2954      }
2955  
# Line 2440 | Line 2989 | public class ForkJoinPool extends Abstra
2989       * @return {@code true} if this pool has been shut down
2990       */
2991      public boolean isShutdown() {
2992 <        return runState < 0;
2992 >        return plock < 0;
2993      }
2994  
2995      /**
2996 <     * Blocks until all tasks have completed execution after a shutdown
2997 <     * request, or the timeout occurs, or the current thread is
2998 <     * interrupted, whichever happens first.
2996 >     * Blocks until all tasks have completed execution after a
2997 >     * shutdown request, or the timeout occurs, or the current thread
2998 >     * is interrupted, whichever happens first. Note that the {@link
2999 >     * #commonPool()} never terminates until program shutdown so
3000 >     * this method will always time out.
3001       *
3002       * @param timeout the maximum time to wait
3003       * @param unit the time unit of the timeout argument
# Line 2457 | Line 3008 | public class ForkJoinPool extends Abstra
3008      public boolean awaitTermination(long timeout, TimeUnit unit)
3009          throws InterruptedException {
3010          long nanos = unit.toNanos(timeout);
3011 <        final ReentrantLock lock = this.lock;
3012 <        lock.lock();
3013 <        try {
3014 <            for (;;) {
3015 <                if (isTerminated())
3016 <                    return true;
3017 <                if (nanos <= 0)
3018 <                    return false;
3019 <                nanos = termination.awaitNanos(nanos);
3011 >        if (isTerminated())
3012 >            return true;
3013 >        long startTime = System.nanoTime();
3014 >        boolean terminated = false;
3015 >        synchronized (this) {
3016 >            for (long waitTime = nanos, millis = 0L;;) {
3017 >                if (terminated = isTerminated() ||
3018 >                    waitTime <= 0L ||
3019 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3020 >                    break;
3021 >                wait(millis);
3022 >                waitTime = nanos - (System.nanoTime() - startTime);
3023              }
2470        } finally {
2471            lock.unlock();
3024          }
3025 +        return terminated;
3026      }
3027  
3028      /**
# Line 2568 | Line 3121 | public class ForkJoinPool extends Abstra
3121      public static void managedBlock(ManagedBlocker blocker)
3122          throws InterruptedException {
3123          Thread t = Thread.currentThread();
3124 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3125 <                          ((ForkJoinWorkerThread)t).pool : null);
3126 <        while (!blocker.isReleasable()) {
3127 <            if (p == null || p.tryCompensate()) {
3128 <                try {
3129 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3130 <                } finally {
3131 <                    if (p != null)
3124 >        if (t instanceof ForkJoinWorkerThread) {
3125 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3126 >            while (!blocker.isReleasable()) { // variant of helpSignal
3127 >                WorkQueue[] ws; WorkQueue q; int m, n;
3128 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3129 >                    for (int i = 0; i <= m; ++i) {
3130 >                        if (blocker.isReleasable())
3131 >                            return;
3132 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3133 >                            p.signalWork(q, n);
3134 >                            if ((int)(p.ctl >> AC_SHIFT) >= 0)
3135 >                                break;
3136 >                        }
3137 >                    }
3138 >                }
3139 >                if (p.tryCompensate()) {
3140 >                    try {
3141 >                        do {} while (!blocker.isReleasable() &&
3142 >                                     !blocker.block());
3143 >                    } finally {
3144                          p.incrementActiveCount();
3145 +                    }
3146 +                    break;
3147                  }
2581                break;
3148              }
3149          }
3150 +        else {
3151 +            do {} while (!blocker.isReleasable() &&
3152 +                         !blocker.block());
3153 +        }
3154      }
3155  
3156      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2588 | Line 3158 | public class ForkJoinPool extends Abstra
3158      // implement RunnableFuture.
3159  
3160      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3161 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3161 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3162      }
3163  
3164      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3165 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3165 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3166      }
3167  
3168      // Unsafe mechanics
3169      private static final sun.misc.Unsafe U;
3170      private static final long CTL;
2601    private static final long RUNSTATE;
3171      private static final long PARKBLOCKER;
3172 +    private static final int ABASE;
3173 +    private static final int ASHIFT;
3174 +    private static final long STEALCOUNT;
3175 +    private static final long PLOCK;
3176 +    private static final long INDEXSEED;
3177 +    private static final long QLOCK;
3178  
3179      static {
3180 <        poolNumberGenerator = new AtomicInteger();
3181 <        modifyThreadPermission = new RuntimePermission("modifyThread");
3182 <        defaultForkJoinWorkerThreadFactory =
3183 <            new DefaultForkJoinWorkerThreadFactory();
3184 <        int s;
3180 >        // Establish common pool parameters
3181 >        // TBD: limit or report ignored exceptions?
3182 >
3183 >        int par = 0;
3184 >        ForkJoinWorkerThreadFactory fac = null;
3185 >        Thread.UncaughtExceptionHandler handler = null;
3186 >        try {
3187 >            String pp = System.getProperty(propPrefix + "parallelism");
3188 >            String hp = System.getProperty(propPrefix + "exceptionHandler");
3189 >            String fp = System.getProperty(propPrefix + "threadFactory");
3190 >            if (fp != null)
3191 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3192 >                       getSystemClassLoader().loadClass(fp).newInstance());
3193 >            if (hp != null)
3194 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3195 >                           getSystemClassLoader().loadClass(hp).newInstance());
3196 >            if (pp != null)
3197 >                par = Integer.parseInt(pp);
3198 >        } catch (Exception ignore) {
3199 >        }
3200 >
3201 >        int s; // initialize field offsets for CAS etc
3202          try {
3203              U = getUnsafe();
3204              Class<?> k = ForkJoinPool.class;
2613            Class<?> tk = Thread.class;
3205              CTL = U.objectFieldOffset
3206                  (k.getDeclaredField("ctl"));
3207 <            RUNSTATE = U.objectFieldOffset
3208 <                (k.getDeclaredField("runState"));
3207 >            STEALCOUNT = U.objectFieldOffset
3208 >                (k.getDeclaredField("stealCount"));
3209 >            PLOCK = U.objectFieldOffset
3210 >                (k.getDeclaredField("plock"));
3211 >            INDEXSEED = U.objectFieldOffset
3212 >                (k.getDeclaredField("indexSeed"));
3213 >            Class<?> tk = Thread.class;
3214              PARKBLOCKER = U.objectFieldOffset
3215                  (tk.getDeclaredField("parkBlocker"));
3216 +            Class<?> wk = WorkQueue.class;
3217 +            QLOCK = U.objectFieldOffset
3218 +                (wk.getDeclaredField("qlock"));
3219 +            Class<?> ak = ForkJoinTask[].class;
3220 +            ABASE = U.arrayBaseOffset(ak);
3221 +            s = U.arrayIndexScale(ak);
3222 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3223          } catch (Exception e) {
3224              throw new Error(e);
3225          }
3226 +        if ((s & (s-1)) != 0)
3227 +            throw new Error("data type scale not a power of two");
3228 +
3229 +        /*
3230 +         * For extra caution, computations to set up pool state are
3231 +         * here; the constructor just assigns these values to fields.
3232 +         */
3233 +        ForkJoinWorkerThreadFactory defaultFac =
3234 +            defaultForkJoinWorkerThreadFactory =
3235 +            new DefaultForkJoinWorkerThreadFactory();
3236 +        if (fac == null)
3237 +            fac = defaultFac;
3238 +        if (par <= 0)
3239 +            par = Runtime.getRuntime().availableProcessors();
3240 +        if (par > MAX_CAP)
3241 +            par = MAX_CAP;
3242 +        long np = (long)(-par); // precompute initial ctl value
3243 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3244 +
3245 +        commonPoolParallelism = par;
3246 +        commonPool = new ForkJoinPool(par, ct, fac, handler);
3247 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3248 +        submitters = new ThreadLocal<Submitter>();
3249      }
3250  
3251      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines