ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.58 by dl, Fri Jul 23 13:07:43 2010 UTC vs.
Revision 1.144 by jsr166, Sun Nov 18 18:03:10 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
16 < import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.CountDownLatch;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 28 | import java.util.concurrent.CountDownLat
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39 > *
40 > * <p>A static {@link #commonPool} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A {@code ForkJoinPool} is constructed with a given target
48 < * parallelism level; by default, equal to the number of available
49 < * processors. The pool attempts to maintain enough active (or
50 < * available) threads by dynamically adding, suspending, or resuming
51 < * internal worker threads, even if some tasks are stalled waiting to
52 < * join others. However, no such adjustments are guaranteed in the
53 < * face of blocked IO or other unmanaged synchronization. The nested
54 < * {@link ManagedBlocker} interface enables extension of the kinds of
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 51 | Line 62 | import java.util.concurrent.CountDownLat
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the follwoing
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 69 | Line 81 | import java.util.concurrent.CountDownLat
81   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82   *  </tr>
83   *  <tr>
84 < *    <td> <b>Arange async execution</td>
84 > *    <td> <b>Arrange async execution</td>
85   *    <td> {@link #execute(ForkJoinTask)}</td>
86   *    <td> {@link ForkJoinTask#fork}</td>
87   *  </tr>
# Line 84 | Line 96 | import java.util.concurrent.CountDownLat
96   *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97   *  </tr>
98   * </table>
87 *
88 * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 * used for all parallel task execution in a program or subsystem.
90 * Otherwise, use would not usually outweigh the construction and
91 * bookkeeping overhead of creating a large set of threads. For
92 * example, a common pool could be used for the {@code SortTasks}
93 * illustrated in {@link RecursiveAction}. Because {@code
94 * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 * daemon} mode, there is typically no need to explicitly {@link
96 * #shutdown} such a pool upon program exit.
99   *
100 < * <pre>
101 < * static final ForkJoinPool mainPool = new ForkJoinPool();
102 < * ...
103 < * public void sort(long[] array) {
104 < *   mainPool.invoke(new SortTask(array, 0, array.length));
105 < * }
106 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 110 | Line 115 | import java.util.concurrent.CountDownLat
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117   * {@link RejectedExecutionException}) only when the pool is shut down
118 < * or internal resources have been exhuasted.
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 120 | Line 125 | public class ForkJoinPool extends Abstra
125      /*
126       * Implementation Overview
127       *
128 <     * This class provides the central bookkeeping and control for a
129 <     * set of worker threads: Submissions from non-FJ threads enter
130 <     * into a submission queue. Workers take these tasks and typically
131 <     * split them into subtasks that may be stolen by other workers.
132 <     * The main work-stealing mechanics implemented in class
133 <     * ForkJoinWorkerThread give first priority to processing tasks
134 <     * from their own queues (LIFO or FIFO, depending on mode), then
135 <     * to randomized FIFO steals of tasks in other worker queues, and
136 <     * lastly to new submissions. These mechanics do not consider
137 <     * affinities, loads, cache localities, etc, so rarely provide the
138 <     * best possible performance on a given machine, but portably
139 <     * provide good throughput by averaging over these factors.
140 <     * (Further, even if we did try to use such information, we do not
141 <     * usually have a basis for exploiting it. For example, some sets
142 <     * of tasks profit from cache affinities, but others are harmed by
143 <     * cache pollution effects.)
144 <     *
145 <     * Beyond work-stealing support and essential bookkeeping, the
146 <     * main responsibility of this framework is to arrange tactics for
147 <     * when one worker is waiting to join a task stolen (or always
148 <     * held by) another.  Becauae we are multiplexing many tasks on to
149 <     * a pool of workers, we can't just let them block (as in
150 <     * Thread.join).  We also cannot just reassign the joiner's
151 <     * run-time stack with another and replace it later, which would
152 <     * be a form of "continuation", that even if possible is not
153 <     * necessarily a good idea. Given that the creation costs of most
154 <     * threads on most systems mainly surrounds setting up runtime
155 <     * stacks, thread creation and switching is usually not much more
156 <     * expensive than stack creation and switching, and is more
157 <     * flexible). Instead we combine two tactics:
158 <     *
159 <     *   1. Arranging for the joiner to execute some task that it
160 <     *      would be running if the steal had not occurred.  Method
161 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162 <     *      links to try to find such a task.
163 <     *
164 <     *   2. Unless there are already enough live threads, creating or
165 <     *      or re-activating a spare thread to compensate for the
166 <     *      (blocked) joiner until it unblocks.  Spares then suspend
167 <     *      at their next opportunity or eventually die if unused for
168 <     *      too long.  See below and the internal documentation
169 <     *      for tryAwaitJoin for more details about compensation
170 <     *      rules.
171 <     *
172 <     * Because the determining existence of conservatively safe
173 <     * helping targets, the availability of already-created spares,
174 <     * and the apparent need to create new spares are all racy and
175 <     * require heuristic guidance, joins (in
176 <     * ForkJoinWorkerThread.joinTask) interleave these options until
177 <     * successful.  Creating a new spare always succeeds, but also
178 <     * increases application footprint, so we try to avoid it, within
179 <     * reason.
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216 <     * The ManagedBlocker extension API can't use option (1) so uses a
217 <     * special version of (2) in method awaitBlocker.
216 >     * Management
217 >     * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
220 <     * decentralized control -- workers mostly steal tasks from each
221 <     * other. We do not want to negate this by creating bottlenecks
222 <     * implementing other management responsibilities. So we use a
223 <     * collection of techniques that avoid, reduce, or cope well with
224 <     * contention. These entail several instances of bit-packing into
225 <     * CASable fields to maintain only the minimally required
226 <     * atomicity. To enable such packing, we restrict maximum
227 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
228 <     * unbalanced increments and decrements) to fit into a 16 bit
229 <     * field, which is far in excess of normal operating range.  Even
230 <     * though updates to some of these bookkeeping fields do sometimes
231 <     * contend with each other, they don't normally cache-contend with
232 <     * updates to others enough to warrant memory padding or
233 <     * isolation. So they are all held as fields of ForkJoinPool
234 <     * objects.  The main capabilities are as follows:
235 <     *
236 <     * 1. Creating and removing workers. Workers are recorded in the
237 <     * "workers" array. This is an array as opposed to some other data
238 <     * structure to support index-based random steals by workers.
239 <     * Updates to the array recording new workers and unrecording
240 <     * terminated ones are protected from each other by a lock
241 <     * (workerLock) but the array is otherwise concurrently readable,
242 <     * and accessed directly by workers. To simplify index-based
243 <     * operations, the array size is always a power of two, and all
244 <     * readers must tolerate null slots. Currently, all worker thread
245 <     * creation is on-demand, triggered by task submissions,
246 <     * replacement of terminated workers, and/or compensation for
247 <     * blocked workers. However, all other support code is set up to
248 <     * work with other policies.
249 <     *
250 <     * 2. Bookkeeping for dynamically adding and removing workers. We
251 <     * aim to approximately maintain the given level of parallelism.
252 <     * When some workers are known to be blocked (on joins or via
253 <     * ManagedBlocker), we may create or resume others to take their
254 <     * place until they unblock (see below). Implementing this
255 <     * requires counts of the number of "running" threads (i.e., those
256 <     * that are neither blocked nor artifically suspended) as well as
257 <     * the total number.  These two values are packed into one field,
258 <     * "workerCounts" because we need accurate snapshots when deciding
259 <     * to create, resume or suspend.  Note however that the
260 <     * correspondance of these counts to reality is not guaranteed. In
261 <     * particular updates for unblocked threads may lag until they
262 <     * actually wake up.
263 <     *
264 <     * 3. Maintaining global run state. The run state of the pool
265 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
266 <     * those in other Executor implementations, as well as a count of
267 <     * "active" workers -- those that are, or soon will be, or
268 <     * recently were executing tasks. The runLevel and active count
269 <     * are packed together in order to correctly trigger shutdown and
270 <     * termination. Without care, active counts can be subject to very
271 <     * high contention.  We substantially reduce this contention by
272 <     * relaxing update rules.  A worker must claim active status
273 <     * prospectively, by activating if it sees that a submitted or
274 <     * stealable task exists (it may find after activating that the
275 <     * task no longer exists). It stays active while processing this
276 <     * task (if it exists) and any other local subtasks it produces,
277 <     * until it cannot find any other tasks. It then tries
278 <     * inactivating (see method preStep), but upon update contention
279 <     * instead scans for more tasks, later retrying inactivation if it
280 <     * doesn't find any.
281 <     *
282 <     * 4. Managing idle workers waiting for tasks. We cannot let
283 <     * workers spin indefinitely scanning for tasks when none are
284 <     * available. On the other hand, we must quickly prod them into
285 <     * action when new tasks are submitted or generated.  We
286 <     * park/unpark these idle workers using an event-count scheme.
287 <     * Field eventCount is incremented upon events that may enable
288 <     * workers that previously could not find a task to now find one:
289 <     * Submission of a new task to the pool, or another worker pushing
290 <     * a task onto a previously empty queue.  (We also use this
291 <     * mechanism for termination and reconfiguration actions that
292 <     * require wakeups of idle workers).  Each worker maintains its
293 <     * last known event count, and blocks when a scan for work did not
294 <     * find a task AND its lastEventCount matches the current
295 <     * eventCount. Waiting idle workers are recorded in a variant of
296 <     * Treiber stack headed by field eventWaiters which, when nonzero,
297 <     * encodes the thread index and count awaited for by the worker
298 <     * thread most recently calling eventSync. This thread in turn has
299 <     * a record (field nextEventWaiter) for the next waiting worker.
300 <     * In addition to allowing simpler decisions about need for
301 <     * wakeup, the event count bits in eventWaiters serve the role of
302 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
303 <     * in task diffusion, workers not otherwise occupied may invoke
304 <     * method releaseWaiters, that removes and signals (unparks)
305 <     * workers not waiting on current count. To minimize task
306 <     * production stalls associate with signalling, any worker pushing
307 <     * a task on an empty queue invokes the weaker method signalWork,
308 <     * that only releases idle workers until it detects interference
309 <     * by other threads trying to release, and lets them take
310 <     * over. The net effect is a tree-like diffusion of signals, where
311 <     * released threads (and possibly others) help with unparks.  To
312 <     * further reduce contention effects a bit, failed CASes to
313 <     * increment field eventCount are tolerated without retries.
314 <     * Conceptually they are merged into the same event, which is OK
315 <     * when their only purpose is to enable workers to scan for work.
316 <     *
317 <     * 5. Managing suspension of extra workers. When a worker is about
318 <     * to block waiting for a join (or via ManagedBlockers), we may
319 <     * create a new thread to maintain parallelism level, or at least
320 <     * avoid starvation. Usually, extra threads are needed for only
321 <     * very short periods, yet join dependencies are such that we
322 <     * sometimes need them in bursts. Rather than create new threads
323 <     * each time this happens, we suspend no-longer-needed extra ones
324 <     * as "spares". For most purposes, we don't distinguish "extra"
325 <     * spare threads from normal "core" threads: On each call to
326 <     * preStep (the only point at which we can do this) a worker
327 <     * checks to see if there are now too many running workers, and if
328 <     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
329 <     * look for suspended threads to resume before considering
330 <     * creating a new replacement. We don't need a special data
331 <     * structure to maintain spares; simply scanning the workers array
332 <     * looking for worker.isSuspended() is fine because the calling
333 <     * thread is otherwise not doing anything useful anyway; we are at
334 <     * least as happy if after locating a spare, the caller doesn't
335 <     * actually block because the join is ready before we try to
336 <     * adjust and compensate.  Note that this is intrinsically racy.
337 <     * One thread may become a spare at about the same time as another
338 <     * is needlessly being created. We counteract this and related
339 <     * slop in part by requiring resumed spares to immediately recheck
340 <     * (in preStep) to see whether they they should re-suspend. The
341 <     * only effective difference between "extra" and "core" threads is
342 <     * that we allow the "extra" ones to time out and die if they are
343 <     * not resumed within a keep-alive interval of a few seconds. This
344 <     * is implemented mainly within ForkJoinWorkerThread, but requires
345 <     * some coordination (isTrimmed() -- meaning killed while
346 <     * suspended) to correctly maintain pool counts.
347 <     *
348 <     * 6. Deciding when to create new workers. The main dynamic
349 <     * control in this class is deciding when to create extra threads,
350 <     * in methods awaitJoin and awaitBlocker. We always need to create
351 <     * one when the number of running threads would become zero and
352 <     * all workers are busy. However, this is not easy to detect
353 <     * reliably in the presence of transients so we use retries and
354 <     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
355 <     * effectively reduce churn at the price of systematically
356 <     * undershooting target parallelism when many threads are blocked.
357 <     * However, biasing toward undeshooting partially compensates for
358 <     * the above mechanics to suspend extra threads, that normally
359 <     * lead to overshoot because we can only suspend workers
360 <     * in-between top-level actions. It also better copes with the
361 <     * fact that some of the methods in this class tend to never
362 <     * become compiled (but are interpreted), so some components of
363 <     * the entire set of controls might execute many times faster than
364 <     * others. And similarly for cases where the apparent lack of work
365 <     * is just due to GC stalls and other transient system activity.
366 <     *
367 <     * Beware that there is a lot of representation-level coupling
368 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
369 <     * ForkJoinTask.  For example, direct access to "workers" array by
370 <     * workers, and direct access to ForkJoinTask.status by both
371 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * blocking when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that is
320 >     * apparently empty, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- see signalWork).  These primary signals are buttressed by
323 >     * signals whenever other threads scan for work or do not have a
324 >     * task to process. On most platforms, signalling (unpark)
325 >     * overhead time is noticeably long, and the time between
326 >     * signalling a thread and it actually making progress can be very
327 >     * noticeably long, so it is worth offloading these delays from
328 >     * critical paths as much as possible.
329 >     *
330 >     * Trimming workers. To release resources after periods of lack of
331 >     * use, a worker starting to wait when the pool is quiescent will
332 >     * time out and terminate if the pool has remained quiescent for a
333 >     * given period -- a short period if there are more threads than
334 >     * parallelism, longer as the number of threads decreases. This
335 >     * will slowly propagate, eventually terminating all workers after
336 >     * periods of non-use.
337 >     *
338 >     * Shutdown and Termination. A call to shutdownNow atomically sets
339 >     * a plock bit and then (non-atomically) sets each worker's
340 >     * qlock status, cancels all unprocessed tasks, and wakes up
341 >     * all waiting workers.  Detecting whether termination should
342 >     * commence after a non-abrupt shutdown() call requires more work
343 >     * and bookkeeping. We need consensus about quiescence (i.e., that
344 >     * there is no more work). The active count provides a primary
345 >     * indication but non-abrupt shutdown still requires a rechecking
346 >     * scan for any workers that are inactive but not queued.
347 >     *
348 >     * Joining Tasks
349 >     * =============
350 >     *
351 >     * Any of several actions may be taken when one worker is waiting
352 >     * to join a task stolen (or always held) by another.  Because we
353 >     * are multiplexing many tasks on to a pool of workers, we can't
354 >     * just let them block (as in Thread.join).  We also cannot just
355 >     * reassign the joiner's run-time stack with another and replace
356 >     * it later, which would be a form of "continuation", that even if
357 >     * possible is not necessarily a good idea since we sometimes need
358 >     * both an unblocked task and its continuation to progress.
359 >     * Instead we combine two tactics:
360 >     *
361 >     *   Helping: Arranging for the joiner to execute some task that it
362 >     *      would be running if the steal had not occurred.
363 >     *
364 >     *   Compensating: Unless there are already enough live threads,
365 >     *      method tryCompensate() may create or re-activate a spare
366 >     *      thread to compensate for blocked joiners until they unblock.
367 >     *
368 >     * A third form (implemented in tryRemoveAndExec) amounts to
369 >     * helping a hypothetical compensator: If we can readily tell that
370 >     * a possible action of a compensator is to steal and execute the
371 >     * task being joined, the joining thread can do so directly,
372 >     * without the need for a compensation thread (although at the
373 >     * expense of larger run-time stacks, but the tradeoff is
374 >     * typically worthwhile).
375 >     *
376 >     * The ManagedBlocker extension API can't use helping so relies
377 >     * only on compensation in method awaitBlocker.
378 >     *
379 >     * The algorithm in tryHelpStealer entails a form of "linear"
380 >     * helping: Each worker records (in field currentSteal) the most
381 >     * recent task it stole from some other worker. Plus, it records
382 >     * (in field currentJoin) the task it is currently actively
383 >     * joining. Method tryHelpStealer uses these markers to try to
384 >     * find a worker to help (i.e., steal back a task from and execute
385 >     * it) that could hasten completion of the actively joined task.
386 >     * In essence, the joiner executes a task that would be on its own
387 >     * local deque had the to-be-joined task not been stolen. This may
388 >     * be seen as a conservative variant of the approach in Wagner &
389 >     * Calder "Leapfrogging: a portable technique for implementing
390 >     * efficient futures" SIGPLAN Notices, 1993
391 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
392 >     * that: (1) We only maintain dependency links across workers upon
393 >     * steals, rather than use per-task bookkeeping.  This sometimes
394 >     * requires a linear scan of workQueues array to locate stealers,
395 >     * but often doesn't because stealers leave hints (that may become
396 >     * stale/wrong) of where to locate them.  A stealHint is only a
397 >     * hint because a worker might have had multiple steals and the
398 >     * hint records only one of them (usually the most current).
399 >     * Hinting isolates cost to when it is needed, rather than adding
400 >     * to per-task overhead.  (2) It is "shallow", ignoring nesting
401 >     * and potentially cyclic mutual steals.  (3) It is intentionally
402 >     * racy: field currentJoin is updated only while actively joining,
403 >     * which means that we miss links in the chain during long-lived
404 >     * tasks, GC stalls etc (which is OK since blocking in such cases
405 >     * is usually a good idea).  (4) We bound the number of attempts
406 >     * to find work (see MAX_HELP) and fall back to suspending the
407 >     * worker and if necessary replacing it with another.
408 >     *
409 >     * Helping actions for CountedCompleters are much simpler: Method
410 >     * helpComplete can take and execute any task with the same root
411 >     * as the task being waited on. However, this still entails some
412 >     * traversal of completer chains, so is less efficient than using
413 >     * CountedCompleters without explicit joins.
414 >     *
415 >     * It is impossible to keep exactly the target parallelism number
416 >     * of threads running at any given time.  Determining the
417 >     * existence of conservatively safe helping targets, the
418 >     * availability of already-created spares, and the apparent need
419 >     * to create new spares are all racy, so we rely on multiple
420 >     * retries of each.  Compensation in the apparent absence of
421 >     * helping opportunities is challenging to control on JVMs, where
422 >     * GC and other activities can stall progress of tasks that in
423 >     * turn stall out many other dependent tasks, without us being
424 >     * able to determine whether they will ever require compensation.
425 >     * Even though work-stealing otherwise encounters little
426 >     * degradation in the presence of more threads than cores,
427 >     * aggressively adding new threads in such cases entails risk of
428 >     * unwanted positive feedback control loops in which more threads
429 >     * cause more dependent stalls (as well as delayed progress of
430 >     * unblocked threads to the point that we know they are available)
431 >     * leading to more situations requiring more threads, and so
432 >     * on. This aspect of control can be seen as an (analytically
433 >     * intractable) game with an opponent that may choose the worst
434 >     * (for us) active thread to stall at any time.  We take several
435 >     * precautions to bound losses (and thus bound gains), mainly in
436 >     * methods tryCompensate and awaitJoin.
437 >     *
438 >     * Common Pool
439 >     * ===========
440 >     *
441 >     * The static commonPool always exists after static
442 >     * initialization.  Since it (or any other created pool) need
443 >     * never be used, we minimize initial construction overhead and
444 >     * footprint to the setup of about a dozen fields, with no nested
445 >     * allocation. Most bootstrapping occurs within method
446 >     * fullExternalPush during the first submission to the pool.
447 >     *
448 >     * When external threads submit to the common pool, they can
449 >     * perform some subtask processing (see externalHelpJoin and
450 >     * related methods).  We do not need to record whether these
451 >     * submissions are to the common pool -- if not, externalHelpJoin
452 >     * returns quickly (at the most helping to signal some common pool
453 >     * workers). These submitters would otherwise be blocked waiting
454 >     * for completion, so the extra effort (with liberally sprinkled
455 >     * task status checks) in inapplicable cases amounts to an odd
456 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
457 >     *
458 >     * Style notes
459 >     * ===========
460 >     *
461 >     * There is a lot of representation-level coupling among classes
462 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
463 >     * fields of WorkQueue maintain data structures managed by
464 >     * ForkJoinPool, so are directly accessed.  There is little point
465       * trying to reduce this, since any associated future changes in
466       * representations will need to be accompanied by algorithmic
467 <     * changes anyway.
468 <     *
469 <     * Style notes: There are lots of inline assignments (of form
470 <     * "while ((local = field) != 0)") which are usually the simplest
471 <     * way to ensure read orderings. Also several occurrences of the
472 <     * unusual "do {} while(!cas...)" which is the simplest way to
473 <     * force an update of a CAS'ed variable. There are also other
474 <     * coding oddities that help some methods perform reasonably even
475 <     * when interpreted (not compiled), at the expense of messiness.
476 <     *
477 <     * The order of declarations in this file is: (1) statics (2)
478 <     * fields (along with constants used when unpacking some of them)
479 <     * (3) internal control methods (4) callbacks and other support
480 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
481 <     * methods (plus a few little helpers).
467 >     * changes anyway. Several methods intrinsically sprawl because
468 >     * they must accumulate sets of consistent reads of volatiles held
469 >     * in local variables.  Methods signalWork() and scan() are the
470 >     * main bottlenecks, so are especially heavily
471 >     * micro-optimized/mangled.  There are lots of inline assignments
472 >     * (of form "while ((local = field) != 0)") which are usually the
473 >     * simplest way to ensure the required read orderings (which are
474 >     * sometimes critical). This leads to a "C"-like style of listing
475 >     * declarations of these locals at the heads of methods or blocks.
476 >     * There are several occurrences of the unusual "do {} while
477 >     * (!cas...)"  which is the simplest way to force an update of a
478 >     * CAS'ed variable. There are also other coding oddities (including
479 >     * several unnecessary-looking hoisted null checks) that help
480 >     * some methods perform reasonably even when interpreted (not
481 >     * compiled).
482 >     *
483 >     * The order of declarations in this file is:
484 >     * (1) Static utility functions
485 >     * (2) Nested (static) classes
486 >     * (3) Static fields
487 >     * (4) Fields, along with constants used when unpacking some of them
488 >     * (5) Internal control methods
489 >     * (6) Callbacks and other support for ForkJoinTask methods
490 >     * (7) Exported methods
491 >     * (8) Static block initializing statics in minimally dependent order
492 >     */
493 >
494 >    // Static utilities
495 >
496 >    /**
497 >     * If there is a security manager, makes sure caller has
498 >     * permission to modify threads.
499       */
500 +    private static void checkPermission() {
501 +        SecurityManager security = System.getSecurityManager();
502 +        if (security != null)
503 +            security.checkPermission(modifyThreadPermission);
504 +    }
505 +
506 +    // Nested classes
507  
508      /**
509       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 376 | Line 533 | public class ForkJoinPool extends Abstra
533      }
534  
535      /**
536 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
537 <     * overridden in ForkJoinPool constructors.
536 >     * Class for artificial tasks that are used to replace the target
537 >     * of local joins if they are removed from an interior queue slot
538 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
539 >     * actually do anything beyond having a unique identity.
540 >     */
541 >    static final class EmptyTask extends ForkJoinTask<Void> {
542 >        private static final long serialVersionUID = -7721805057305804111L;
543 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
544 >        public final Void getRawResult() { return null; }
545 >        public final void setRawResult(Void x) {}
546 >        public final boolean exec() { return true; }
547 >    }
548 >
549 >    /**
550 >     * Queues supporting work-stealing as well as external task
551 >     * submission. See above for main rationale and algorithms.
552 >     * Implementation relies heavily on "Unsafe" intrinsics
553 >     * and selective use of "volatile":
554 >     *
555 >     * Field "base" is the index (mod array.length) of the least valid
556 >     * queue slot, which is always the next position to steal (poll)
557 >     * from if nonempty. Reads and writes require volatile orderings
558 >     * but not CAS, because updates are only performed after slot
559 >     * CASes.
560 >     *
561 >     * Field "top" is the index (mod array.length) of the next queue
562 >     * slot to push to or pop from. It is written only by owner thread
563 >     * for push, or under lock for external/shared push, and accessed
564 >     * by other threads only after reading (volatile) base.  Both top
565 >     * and base are allowed to wrap around on overflow, but (top -
566 >     * base) (or more commonly -(base - top) to force volatile read of
567 >     * base before top) still estimates size. The lock ("qlock") is
568 >     * forced to -1 on termination, causing all further lock attempts
569 >     * to fail. (Note: we don't need CAS for termination state because
570 >     * upon pool shutdown, all shared-queues will stop being used
571 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
572 >     * within lock bodies are "impossible" (modulo JVM errors that
573 >     * would cause failure anyway.)
574 >     *
575 >     * The array slots are read and written using the emulation of
576 >     * volatiles/atomics provided by Unsafe. Insertions must in
577 >     * general use putOrderedObject as a form of releasing store to
578 >     * ensure that all writes to the task object are ordered before
579 >     * its publication in the queue.  All removals entail a CAS to
580 >     * null.  The array is always a power of two. To ensure safety of
581 >     * Unsafe array operations, all accesses perform explicit null
582 >     * checks and implicit bounds checks via power-of-two masking.
583 >     *
584 >     * In addition to basic queuing support, this class contains
585 >     * fields described elsewhere to control execution. It turns out
586 >     * to work better memory-layout-wise to include them in this class
587 >     * rather than a separate class.
588 >     *
589 >     * Performance on most platforms is very sensitive to placement of
590 >     * instances of both WorkQueues and their arrays -- we absolutely
591 >     * do not want multiple WorkQueue instances or multiple queue
592 >     * arrays sharing cache lines. (It would be best for queue objects
593 >     * and their arrays to share, but there is nothing available to
594 >     * help arrange that).  Unfortunately, because they are recorded
595 >     * in a common array, WorkQueue instances are often moved to be
596 >     * adjacent by garbage collectors. To reduce impact, we use field
597 >     * padding that works OK on common platforms; this effectively
598 >     * trades off slightly slower average field access for the sake of
599 >     * avoiding really bad worst-case access. (Until better JVM
600 >     * support is in place, this padding is dependent on transient
601 >     * properties of JVM field layout rules.)  We also take care in
602 >     * allocating, sizing and resizing the array. Non-shared queue
603 >     * arrays are initialized by workers before use. Others are
604 >     * allocated on first use.
605       */
606 <    public static final ForkJoinWorkerThreadFactory
607 <        defaultForkJoinWorkerThreadFactory =
608 <        new DefaultForkJoinWorkerThreadFactory();
606 >    static final class WorkQueue {
607 >        /**
608 >         * Capacity of work-stealing queue array upon initialization.
609 >         * Must be a power of two; at least 4, but should be larger to
610 >         * reduce or eliminate cacheline sharing among queues.
611 >         * Currently, it is much larger, as a partial workaround for
612 >         * the fact that JVMs often place arrays in locations that
613 >         * share GC bookkeeping (especially cardmarks) such that
614 >         * per-write accesses encounter serious memory contention.
615 >         */
616 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
617  
618 <    /**
619 <     * Permission required for callers of methods that may start or
620 <     * kill threads.
621 <     */
622 <    private static final RuntimePermission modifyThreadPermission =
623 <        new RuntimePermission("modifyThread");
618 >        /**
619 >         * Maximum size for queue arrays. Must be a power of two less
620 >         * than or equal to 1 << (31 - width of array entry) to ensure
621 >         * lack of wraparound of index calculations, but defined to a
622 >         * value a bit less than this to help users trap runaway
623 >         * programs before saturating systems.
624 >         */
625 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
626  
627 <    /**
628 <     * If there is a security manager, makes sure caller has
629 <     * permission to modify threads.
630 <     */
631 <    private static void checkPermission() {
632 <        SecurityManager security = System.getSecurityManager();
633 <        if (security != null)
634 <            security.checkPermission(modifyThreadPermission);
627 >        int seed;                  // for random scanning; initialize nonzero
628 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
629 >        int nextWait;              // encoded record of next event waiter
630 >        final int mode;            // lifo, fifo, or shared
631 >        int nsteals;               // cumulative number of steals
632 >        int poolIndex;             // index of this queue in pool (or 0)
633 >        int stealHint;             // index of most recent known stealer
634 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
635 >        volatile int base;         // index of next slot for poll
636 >        int top;                   // index of next slot for push
637 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
638 >        final ForkJoinPool pool;   // the containing pool (may be null)
639 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
640 >        volatile Thread parker;    // == owner during call to park; else null
641 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
642 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
643 >        // Heuristic padding to ameliorate unfortunate memory placements
644 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
645 >        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
646 >
647 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
648 >            this.mode = mode;
649 >            this.pool = pool;
650 >            this.owner = owner;
651 >            // Place indices in the center of array (that is not yet allocated)
652 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
653 >        }
654 >
655 >        /**
656 >         * Pushes a task. Call only by owner in unshared queues.
657 >         * Cases needing resizing or rejection are relayed to fullPush
658 >         * (that also handles shared queues).
659 >         *
660 >         * @param task the task. Caller must ensure non-null.
661 >         * @throw RejectedExecutionException if array cannot be resized
662 >         */
663 >        final void push(ForkJoinTask<?> task) {
664 >            ForkJoinPool p; ForkJoinTask<?>[] a;
665 >            int s = top, n;
666 >            if ((a = array) != null && a.length > (n = s + 1 - base)) {
667 >                U.putOrderedObject
668 >                    (a, (((a.length - 1) & s) << ASHIFT) + ABASE, task);
669 >                top = s + 1;
670 >                if (n <= 1 && (p = pool) != null)
671 >                    p.signalWork(this, 1);
672 >            }
673 >            else
674 >                fullPush(task, true);
675 >        }
676 >
677 >        /**
678 >         * Pushes a task if lock is free and array is either big
679 >         * enough or can be resized to be big enough. Note: a
680 >         * specialization of a common fast path of this method is in
681 >         * ForkJoinPool.externalPush. When called from a FJWT queue,
682 >         * this can fail only if the pool has been shut down or
683 >         * an out of memory error.
684 >         *
685 >         * @param task the task. Caller must ensure non-null.
686 >         * @param owned if true, throw RJE on failure
687 >         */
688 >        final boolean fullPush(ForkJoinTask<?> task, boolean owned) {
689 >            ForkJoinPool p; ForkJoinTask<?>[] a;
690 >            if (owned) {
691 >                if (qlock < 0) // must be shutting down
692 >                    throw new RejectedExecutionException();
693 >            }
694 >            else if (!U.compareAndSwapInt(this, QLOCK, 0, 1))
695 >                return false;
696 >            try {
697 >                int s = top, oldLen, len;
698 >                if ((a = array) == null)
699 >                    a = array = new ForkJoinTask<?>[len=INITIAL_QUEUE_CAPACITY];
700 >                else if ((oldLen = a.length) > s + 1 - base)
701 >                    len = oldLen;
702 >                else if ((len = oldLen << 1) > MAXIMUM_QUEUE_CAPACITY)
703 >                    throw new RejectedExecutionException("Capacity exceeded");
704 >                else {
705 >                    int oldMask, b;
706 >                    ForkJoinTask<?>[] oldA = a;
707 >                    a = array = new ForkJoinTask<?>[len];
708 >                    if ((oldMask = oldLen - 1) >= 0 && s - (b = base) > 0) {
709 >                        int mask = len - 1;
710 >                        do {
711 >                            ForkJoinTask<?> x;
712 >                            int oldj = ((b & oldMask) << ASHIFT) + ABASE;
713 >                            int j    = ((b &    mask) << ASHIFT) + ABASE;
714 >                            x = (ForkJoinTask<?>)
715 >                                U.getObjectVolatile(oldA, oldj);
716 >                            if (x != null &&
717 >                                U.compareAndSwapObject(oldA, oldj, x, null))
718 >                                U.putObjectVolatile(a, j, x);
719 >                        } while (++b != s);
720 >                    }
721 >                }
722 >                U.putOrderedObject
723 >                    (a, (((len - 1) & s) << ASHIFT) + ABASE, task);
724 >                top = s + 1;
725 >            } finally {
726 >                if (!owned)
727 >                    qlock = 0;
728 >            }
729 >            if ((p = pool) != null)
730 >                p.signalWork(this, 1);
731 >            return true;
732 >        }
733 >
734 >        /**
735 >         * Takes next task, if one exists, in LIFO order.  Call only
736 >         * by owner in unshared queues.
737 >         */
738 >        final ForkJoinTask<?> pop() {
739 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
740 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
741 >                for (int s; (s = top - 1) - base >= 0;) {
742 >                    long j = ((m & s) << ASHIFT) + ABASE;
743 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
744 >                        break;
745 >                    if (U.compareAndSwapObject(a, j, t, null)) {
746 >                        top = s;
747 >                        return t;
748 >                    }
749 >                }
750 >            }
751 >            return null;
752 >        }
753 >
754 >        /**
755 >         * Takes a task in FIFO order if b is base of queue and a task
756 >         * can be claimed without contention. Specialized versions
757 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
758 >         */
759 >        final ForkJoinTask<?> pollAt(int b) {
760 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
761 >            if ((a = array) != null) {
762 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
763 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
764 >                    base == b &&
765 >                    U.compareAndSwapObject(a, j, t, null)) {
766 >                    base = b + 1;
767 >                    return t;
768 >                }
769 >            }
770 >            return null;
771 >        }
772 >
773 >        /**
774 >         * Takes next task, if one exists, in FIFO order.
775 >         */
776 >        final ForkJoinTask<?> poll() {
777 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
778 >            while ((b = base) - top < 0 && (a = array) != null) {
779 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
780 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
781 >                if (t != null) {
782 >                    if (base == b &&
783 >                        U.compareAndSwapObject(a, j, t, null)) {
784 >                        base = b + 1;
785 >                        return t;
786 >                    }
787 >                }
788 >                else if (base == b) {
789 >                    if (b + 1 == top)
790 >                        break;
791 >                    Thread.yield(); // wait for lagging update (very rare)
792 >                }
793 >            }
794 >            return null;
795 >        }
796 >
797 >        /**
798 >         * Takes next task, if one exists, in order specified by mode.
799 >         */
800 >        final ForkJoinTask<?> nextLocalTask() {
801 >            return mode == 0 ? pop() : poll();
802 >        }
803 >
804 >        /**
805 >         * Returns next task, if one exists, in order specified by mode.
806 >         */
807 >        final ForkJoinTask<?> peek() {
808 >            ForkJoinTask<?>[] a = array; int m;
809 >            if (a == null || (m = a.length - 1) < 0)
810 >                return null;
811 >            int i = mode == 0 ? top - 1 : base;
812 >            int j = ((i & m) << ASHIFT) + ABASE;
813 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
814 >        }
815 >
816 >        /**
817 >         * Pops the given task only if it is at the current top.
818 >         * (A shared version is available only via FJP.tryExternalUnpush)
819 >         */
820 >        final boolean tryUnpush(ForkJoinTask<?> t) {
821 >            ForkJoinTask<?>[] a; int s;
822 >            if ((a = array) != null && (s = top) != base &&
823 >                U.compareAndSwapObject
824 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
825 >                top = s;
826 >                return true;
827 >            }
828 >            return false;
829 >        }
830 >
831 >        /**
832 >         * Removes and cancels all known tasks, ignoring any exceptions.
833 >         */
834 >        final void cancelAll() {
835 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
836 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
837 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
838 >                ForkJoinTask.cancelIgnoringExceptions(t);
839 >        }
840 >
841 >        /**
842 >         * Computes next value for random probes.  Scans don't require
843 >         * a very high quality generator, but also not a crummy one.
844 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
845 >         * This is manually inlined in its usages in ForkJoinPool to
846 >         * avoid writes inside busy scan loops.
847 >         */
848 >        final int nextSeed() {
849 >            int r = seed;
850 >            r ^= r << 13;
851 >            r ^= r >>> 17;
852 >            return seed = r ^= r << 5;
853 >        }
854 >
855 >        /**
856 >         * Provides a more accurate estimate of size than (top - base)
857 >         * by ordering reads and checking whether a near-empty queue
858 >         * has at least one unclaimed task.
859 >         */
860 >        final int queueSize() {
861 >            ForkJoinTask<?>[] a; int k, s, n;
862 >            return ((n = base - (s = top)) < 0 &&
863 >                    (n != -1 ||
864 >                     ((a = array) != null && (k = a.length) > 0 &&
865 >                      U.getObject
866 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
867 >                -n : 0;
868 >        }
869 >
870 >        // Specialized execution methods
871 >
872 >        /**
873 >         * Pops and runs tasks until empty.
874 >         */
875 >        private void popAndExecAll() {
876 >            // A bit faster than repeated pop calls
877 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
878 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
879 >                   (s = top - 1) - base >= 0 &&
880 >                   (t = ((ForkJoinTask<?>)
881 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
882 >                   != null) {
883 >                if (U.compareAndSwapObject(a, j, t, null)) {
884 >                    top = s;
885 >                    t.doExec();
886 >                }
887 >            }
888 >        }
889 >
890 >        /**
891 >         * Polls and runs tasks until empty.
892 >         */
893 >        private void pollAndExecAll() {
894 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
895 >                t.doExec();
896 >        }
897 >
898 >        /**
899 >         * If present, removes from queue and executes the given task,
900 >         * or any other cancelled task. Returns (true) on any CAS
901 >         * or consistency check failure so caller can retry.
902 >         *
903 >         * @return false if no progress can be made, else true;
904 >         */
905 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
906 >            boolean stat = true, removed = false, empty = true;
907 >            ForkJoinTask<?>[] a; int m, s, b, n;
908 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
909 >                (n = (s = top) - (b = base)) > 0) {
910 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
911 >                    int j = ((--s & m) << ASHIFT) + ABASE;
912 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
913 >                    if (t == null)                    // inconsistent length
914 >                        break;
915 >                    else if (t == task) {
916 >                        if (s + 1 == top) {           // pop
917 >                            if (!U.compareAndSwapObject(a, j, task, null))
918 >                                break;
919 >                            top = s;
920 >                            removed = true;
921 >                        }
922 >                        else if (base == b)           // replace with proxy
923 >                            removed = U.compareAndSwapObject(a, j, task,
924 >                                                             new EmptyTask());
925 >                        break;
926 >                    }
927 >                    else if (t.status >= 0)
928 >                        empty = false;
929 >                    else if (s + 1 == top) {          // pop and throw away
930 >                        if (U.compareAndSwapObject(a, j, t, null))
931 >                            top = s;
932 >                        break;
933 >                    }
934 >                    if (--n == 0) {
935 >                        if (!empty && base == b)
936 >                            stat = false;
937 >                        break;
938 >                    }
939 >                }
940 >            }
941 >            if (removed)
942 >                task.doExec();
943 >            return stat;
944 >        }
945 >
946 >        /**
947 >         * Polls for and executes the given task or any other task in
948 >         * its CountedCompleter computation
949 >         */
950 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
951 >            ForkJoinTask<?>[] a; int b; Object o;
952 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
953 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
954 >                if ((o = U.getObject(a, j)) == null ||
955 >                    !(o instanceof CountedCompleter))
956 >                    break;
957 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
958 >                    if (r == root) {
959 >                        if (base == b &&
960 >                            U.compareAndSwapObject(a, j, t, null)) {
961 >                            base = b + 1;
962 >                            t.doExec();
963 >                            return true;
964 >                        }
965 >                        else
966 >                            break; // restart
967 >                    }
968 >                    if ((r = r.completer) == null)
969 >                        break outer; // not part of root computation
970 >                }
971 >            }
972 >            return false;
973 >        }
974 >
975 >        /**
976 >         * Executes a top-level task and any local tasks remaining
977 >         * after execution.
978 >         */
979 >        final void runTask(ForkJoinTask<?> t) {
980 >            if (t != null) {
981 >                (currentSteal = t).doExec();
982 >                currentSteal = null;
983 >                if (++nsteals < 0) {     // spill on overflow
984 >                    ForkJoinPool p;
985 >                    if ((p = pool) != null)
986 >                        p.collectStealCount(this);
987 >                }
988 >                if (top != base) {       // process remaining local tasks
989 >                    if (mode == 0)
990 >                        popAndExecAll();
991 >                    else
992 >                        pollAndExecAll();
993 >                }
994 >            }
995 >        }
996 >
997 >        /**
998 >         * Executes a non-top-level (stolen) task.
999 >         */
1000 >        final void runSubtask(ForkJoinTask<?> t) {
1001 >            if (t != null) {
1002 >                ForkJoinTask<?> ps = currentSteal;
1003 >                (currentSteal = t).doExec();
1004 >                currentSteal = ps;
1005 >            }
1006 >        }
1007 >
1008 >        /**
1009 >         * Returns true if owned and not known to be blocked.
1010 >         */
1011 >        final boolean isApparentlyUnblocked() {
1012 >            Thread wt; Thread.State s;
1013 >            return (eventCount >= 0 &&
1014 >                    (wt = owner) != null &&
1015 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1016 >                    s != Thread.State.WAITING &&
1017 >                    s != Thread.State.TIMED_WAITING);
1018 >        }
1019 >
1020 >        /**
1021 >         * If this owned and is not already interrupted, try to
1022 >         * interrupt and/or unpark, ignoring exceptions.
1023 >         */
1024 >        final void interruptOwner() {
1025 >            Thread wt, p;
1026 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1027 >                try {
1028 >                    wt.interrupt();
1029 >                } catch (SecurityException ignore) {
1030 >                }
1031 >            }
1032 >            if ((p = parker) != null)
1033 >                U.unpark(p);
1034 >        }
1035 >
1036 >        // Unsafe mechanics
1037 >        private static final sun.misc.Unsafe U;
1038 >        private static final long QLOCK;
1039 >        private static final int ABASE;
1040 >        private static final int ASHIFT;
1041 >        static {
1042 >            int s;
1043 >            try {
1044 >                U = getUnsafe();
1045 >                Class<?> k = WorkQueue.class;
1046 >                Class<?> ak = ForkJoinTask[].class;
1047 >                QLOCK = U.objectFieldOffset
1048 >                    (k.getDeclaredField("qlock"));
1049 >                ABASE = U.arrayBaseOffset(ak);
1050 >                s = U.arrayIndexScale(ak);
1051 >            } catch (Exception e) {
1052 >                throw new Error(e);
1053 >            }
1054 >            if ((s & (s-1)) != 0)
1055 >                throw new Error("data type scale not a power of two");
1056 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1057 >        }
1058      }
1059  
1060      /**
1061 <     * Generator for assigning sequence numbers as pool names.
1061 >     * Per-thread records for threads that submit to pools. Currently
1062 >     * holds only pseudo-random seed / index that is used to choose
1063 >     * submission queues in method externalPush. In the future, this may
1064 >     * also incorporate a means to implement different task rejection
1065 >     * and resubmission policies.
1066 >     *
1067 >     * Seeds for submitters and workers/workQueues work in basically
1068 >     * the same way but are initialized and updated using slightly
1069 >     * different mechanics. Both are initialized using the same
1070 >     * approach as in class ThreadLocal, where successive values are
1071 >     * unlikely to collide with previous values. Seeds are then
1072 >     * randomly modified upon collisions using xorshifts, which
1073 >     * requires a non-zero seed.
1074       */
1075 <    private static final AtomicInteger poolNumberGenerator =
1076 <        new AtomicInteger();
1075 >    static final class Submitter {
1076 >        int seed;
1077 >        Submitter(int s) { seed = s; }
1078 >    }
1079  
1080 <    /**
1081 <     * Absolute bound for parallelism level. Twice this number must
1082 <     * fit into a 16bit field to enable word-packing for some counts.
1083 <     */
1084 <    private static final int MAX_THREADS = 0x7fff;
1080 >    /** Property prefix for constructing common pool */
1081 >    private static final String propPrefix =
1082 >        "java.util.concurrent.ForkJoinPool.common.";
1083 >
1084 >    // static fields (initialized in static initializer below)
1085  
1086      /**
1087 <     * Array holding all worker threads in the pool.  Array size must
1088 <     * be a power of two.  Updates and replacements are protected by
418 <     * workerLock, but the array is always kept in a consistent enough
419 <     * state to be randomly accessed without locking by workers
420 <     * performing work-stealing, as well as other traversal-based
421 <     * methods in this class. All readers must tolerate that some
422 <     * array slots may be null.
1087 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1088 >     * overridden in ForkJoinPool constructors.
1089       */
1090 <    volatile ForkJoinWorkerThread[] workers;
1090 >    public static final ForkJoinWorkerThreadFactory
1091 >        defaultForkJoinWorkerThreadFactory;
1092  
1093      /**
1094 <     * Queue for external submissions.
1094 >     * Common (static) pool. Non-null for public use unless a static
1095 >     * construction exception, but internal usages null-check on use
1096 >     * to paranoically avoid potential initialization circularities
1097 >     * as well as to simplify generated code.
1098       */
1099 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1099 >    static final ForkJoinPool commonPool;
1100  
1101      /**
1102 <     * Lock protecting updates to workers array.
1102 >     * Permission required for callers of methods that may start or
1103 >     * kill threads.
1104       */
1105 <    private final ReentrantLock workerLock;
1105 >    private static final RuntimePermission modifyThreadPermission;
1106  
1107      /**
1108 <     * Latch released upon termination.
1108 >     * Per-thread submission bookkeeping. Shared across all pools
1109 >     * to reduce ThreadLocal pollution and because random motion
1110 >     * to avoid contention in one pool is likely to hold for others.
1111 >     * Lazily initialized on first submission (but null-checked
1112 >     * in other contexts to avoid unnecessary initialization).
1113       */
1114 <    private final Phaser termination;
1114 >    static final ThreadLocal<Submitter> submitters;
1115  
1116      /**
1117 <     * Creation factory for worker threads.
1117 >     * Common pool parallelism. Must equal commonPool.parallelism.
1118       */
1119 <    private final ForkJoinWorkerThreadFactory factory;
1119 >    static final int commonPoolParallelism;
1120  
1121      /**
1122 <     * Sum of per-thread steal counts, updated only when threads are
448 <     * idle or terminating.
1122 >     * Sequence number for creating workerNamePrefix.
1123       */
1124 <    private volatile long stealCount;
1124 >    private static int poolNumberSequence;
1125  
1126      /**
1127 <     * Encoded record of top of treiber stack of threads waiting for
1128 <     * events. The top 32 bits contain the count being waited for. The
455 <     * bottom word contains one plus the pool index of waiting worker
456 <     * thread.
1127 >     * Return the next sequence number. We don't expect this to
1128 >     * ever contend so use simple builtin sync.
1129       */
1130 <    private volatile long eventWaiters;
1130 >    private static final synchronized int nextPoolId() {
1131 >        return ++poolNumberSequence;
1132 >    }
1133  
1134 <    private static final int  EVENT_COUNT_SHIFT = 32;
461 <    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
1134 >    // static constants
1135  
1136      /**
1137 <     * A counter for events that may wake up worker threads:
1138 <     *   - Submission of a new task to the pool
1139 <     *   - A worker pushing a task on an empty queue
1140 <     *   - termination and reconfiguration
1137 >     * Initial timeout value (in nanoseconds) for the thread
1138 >     * triggering quiescence to park waiting for new work. On timeout,
1139 >     * the thread will instead try to shrink the number of
1140 >     * workers. The value should be large enough to avoid overly
1141 >     * aggressive shrinkage during most transient stalls (long GCs
1142 >     * etc).
1143       */
1144 <    private volatile int eventCount;
1144 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1145  
1146      /**
1147 <     * Lifecycle control. The low word contains the number of workers
473 <     * that are (probably) executing tasks. This value is atomically
474 <     * incremented before a worker gets a task to run, and decremented
475 <     * when worker has no tasks and cannot find any.  Bits 16-18
476 <     * contain runLevel value. When all are zero, the pool is
477 <     * running. Level transitions are monotonic (running -> shutdown
478 <     * -> terminating -> terminated) so each transition adds a bit.
479 <     * These are bundled together to ensure consistent read for
480 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
481 <     * and active threads is zero).
1147 >     * Timeout value when there are more threads than parallelism level
1148       */
1149 <    private volatile int runState;
484 <
485 <    // Note: The order among run level values matters.
486 <    private static final int RUNLEVEL_SHIFT     = 16;
487 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
488 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
489 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
490 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491 <    private static final int ONE_ACTIVE         = 1; // active update delta
1149 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1150  
1151      /**
1152 <     * Holds number of total (i.e., created and not yet terminated)
1153 <     * and running (i.e., not blocked on joins or other managed sync)
1154 <     * threads, packed together to ensure consistent snapshot when
1155 <     * making decisions about creating and suspending spare
1156 <     * threads. Updated only by CAS. Note that adding a new worker
1157 <     * requires incrementing both counts, since workers start off in
500 <     * running state.  This field is also used for memory-fencing
501 <     * configuration parameters.
1152 >     * The maximum stolen->joining link depth allowed in method
1153 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1154 >     * chains are unbounded, but we use a fixed constant to avoid
1155 >     * (otherwise unchecked) cycles and to bound staleness of
1156 >     * traversal parameters at the expense of sometimes blocking when
1157 >     * we could be helping.
1158       */
1159 <    private volatile int workerCounts;
504 <
505 <    private static final int TOTAL_COUNT_SHIFT  = 16;
506 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
507 <    private static final int ONE_RUNNING        = 1;
508 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
1159 >    private static final int MAX_HELP = 64;
1160  
1161      /**
1162 <     * The target parallelism level.
1163 <     * Accessed directly by ForkJoinWorkerThreads.
1162 >     * Increment for seed generators. See class ThreadLocal for
1163 >     * explanation.
1164       */
1165 <    final int parallelism;
1165 >    private static final int SEED_INCREMENT = 0x61c88647;
1166  
1167      /**
1168 <     * True if use local fifo, not default lifo, for local polling
1169 <     * Read by, and replicated by ForkJoinWorkerThreads
1168 >     * Bits and masks for control variables
1169 >     *
1170 >     * Field ctl is a long packed with:
1171 >     * AC: Number of active running workers minus target parallelism (16 bits)
1172 >     * TC: Number of total workers minus target parallelism (16 bits)
1173 >     * ST: true if pool is terminating (1 bit)
1174 >     * EC: the wait count of top waiting thread (15 bits)
1175 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1176 >     *
1177 >     * When convenient, we can extract the upper 32 bits of counts and
1178 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1179 >     * (int)ctl.  The ec field is never accessed alone, but always
1180 >     * together with id and st. The offsets of counts by the target
1181 >     * parallelism and the positionings of fields makes it possible to
1182 >     * perform the most common checks via sign tests of fields: When
1183 >     * ac is negative, there are not enough active workers, when tc is
1184 >     * negative, there are not enough total workers, and when e is
1185 >     * negative, the pool is terminating.  To deal with these possibly
1186 >     * negative fields, we use casts in and out of "short" and/or
1187 >     * signed shifts to maintain signedness.
1188 >     *
1189 >     * When a thread is queued (inactivated), its eventCount field is
1190 >     * set negative, which is the only way to tell if a worker is
1191 >     * prevented from executing tasks, even though it must continue to
1192 >     * scan for them to avoid queuing races. Note however that
1193 >     * eventCount updates lag releases so usage requires care.
1194 >     *
1195 >     * Field plock is an int packed with:
1196 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1197 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1198 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1199 >     *
1200 >     * The sequence number enables simple consistency checks:
1201 >     * Staleness of read-only operations on the workQueues array can
1202 >     * be checked by comparing plock before vs after the reads.
1203       */
520    final boolean locallyFifo;
1204  
1205 <    /**
1206 <     * The uncaught exception handler used when any worker abruptly
1207 <     * terminates.
1208 <     */
1209 <    private final Thread.UncaughtExceptionHandler ueh;
1205 >    // bit positions/shifts for fields
1206 >    private static final int  AC_SHIFT   = 48;
1207 >    private static final int  TC_SHIFT   = 32;
1208 >    private static final int  ST_SHIFT   = 31;
1209 >    private static final int  EC_SHIFT   = 16;
1210  
1211 <    /**
1212 <     * Pool number, just for assigning useful names to worker threads
1213 <     */
1214 <    private final int poolNumber;
1211 >    // bounds
1212 >    private static final int  SMASK      = 0xffff;  // short bits
1213 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1214 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1215 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1216 >    private static final int  SHORT_SIGN = 1 << 15;
1217 >    private static final int  INT_SIGN   = 1 << 31;
1218  
1219 <    // Utilities for CASing fields. Note that several of these
1220 <    // are manually inlined by callers
1219 >    // masks
1220 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1221 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1222 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1223  
1224 <    /**
1225 <     * Increments running count.  Also used by ForkJoinTask.
1226 <     */
539 <    final void incrementRunningCount() {
540 <        int c;
541 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
542 <                                               c = workerCounts,
543 <                                               c + ONE_RUNNING));
544 <    }
1224 >    // units for incrementing and decrementing
1225 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1226 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1227  
1228 <    /**
1229 <     * Tries to decrement running count unless already zero
1230 <     */
1231 <    final boolean tryDecrementRunningCount() {
1232 <        int wc = workerCounts;
1233 <        if ((wc & RUNNING_COUNT_MASK) == 0)
1234 <            return false;
553 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
554 <                                        wc, wc - ONE_RUNNING);
555 <    }
1228 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1229 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1230 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1231 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1232 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1233 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1234 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1235  
1236 <    /**
1237 <     * Tries to increment running count
1238 <     */
560 <    final boolean tryIncrementRunningCount() {
561 <        int wc;
562 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
563 <                                        wc = workerCounts, wc + ONE_RUNNING);
564 <    }
1236 >    // masks and units for dealing with e = (int)ctl
1237 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1238 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1239  
1240 <    /**
1241 <     * Tries incrementing active count; fails on contention.
1242 <     * Called by workers before executing tasks.
1243 <     *
1244 <     * @return true on success
571 <     */
572 <    final boolean tryIncrementActiveCount() {
573 <        int c;
574 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
575 <                                        c = runState, c + ONE_ACTIVE);
576 <    }
1240 >    // plock bits
1241 >    private static final int SHUTDOWN    = 1 << 31;
1242 >    private static final int PL_LOCK     = 2;
1243 >    private static final int PL_SIGNAL   = 1;
1244 >    private static final int PL_SPINS    = 1 << 8;
1245  
1246 <    /**
1247 <     * Tries decrementing active count; fails on contention.
1248 <     * Called when workers cannot find tasks to run.
1249 <     */
582 <    final boolean tryDecrementActiveCount() {
583 <        int c;
584 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
585 <                                        c = runState, c - ONE_ACTIVE);
586 <    }
1246 >    // access mode for WorkQueue
1247 >    static final int LIFO_QUEUE          =  0;
1248 >    static final int FIFO_QUEUE          =  1;
1249 >    static final int SHARED_QUEUE        = -1;
1250  
1251 <    /**
1252 <     * Advances to at least the given level. Returns true if not
1253 <     * already in at least the given level.
1251 >    // Instance fields
1252 >
1253 >    /*
1254 >     * Field layout order in this class tends to matter more than one
1255 >     * would like. Runtime layout order is only loosely related to
1256 >     * declaration order and may differ across JVMs, but the following
1257 >     * empirically works OK on current JVMs.
1258 >     */
1259 >    volatile long stealCount;                  // collects worker counts
1260 >    volatile long ctl;                         // main pool control
1261 >    final int parallelism;                     // parallelism level
1262 >    final int localMode;                       // per-worker scheduling mode
1263 >    volatile int indexSeed;                    // worker/submitter index seed
1264 >    volatile int plock;                        // shutdown status and seqLock
1265 >    WorkQueue[] workQueues;                    // main registry
1266 >    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1267 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1268 >    final String workerNamePrefix;             // to create worker name string
1269 >
1270 >    /*
1271 >     * Acquires the plock lock to protect worker array and related
1272 >     * updates. This method is called only if an initial CAS on plock
1273 >     * fails. This acts as a spinLock for normal cases, but falls back
1274 >     * to builtin monitor to block when (rarely) needed. This would be
1275 >     * a terrible idea for a highly contended lock, but works fine as
1276 >     * a more conservative alternative to a pure spinlock.  See
1277 >     * internal ConcurrentHashMap documentation for further
1278 >     * explanation of nearly the same construction.
1279       */
1280 <    private boolean advanceRunLevel(int level) {
1280 >    private int acquirePlock() {
1281 >        int spins = PL_SPINS, r = 0, ps, nps;
1282          for (;;) {
1283 <            int s = runState;
1284 <            if ((s & level) != 0)
1285 <                return false;
1286 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1287 <                return true;
1283 >            if (((ps = plock) & PL_LOCK) == 0 &&
1284 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1285 >                return nps;
1286 >            else if (r == 0)
1287 >                r = ThreadLocalRandom.current().nextInt(); // randomize spins
1288 >            else if (spins >= 0) {
1289 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1290 >                if (r >= 0)
1291 >                    --spins;
1292 >            }
1293 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1294 >                synchronized (this) {
1295 >                    if ((plock & PL_SIGNAL) != 0) {
1296 >                        try {
1297 >                            wait();
1298 >                        } catch (InterruptedException ie) {
1299 >                            try {
1300 >                                Thread.currentThread().interrupt();
1301 >                            } catch (SecurityException ignore) {
1302 >                            }
1303 >                        }
1304 >                    }
1305 >                    else
1306 >                        notifyAll();
1307 >                }
1308 >            }
1309          }
1310      }
1311  
602    // workers array maintenance
603
1312      /**
1313 <     * Records and returns a workers array index for new worker.
1313 >     * Unlocks and signals any thread waiting for plock. Called only
1314 >     * when CAS of seq value for unlock fails.
1315       */
1316 <    private int recordWorker(ForkJoinWorkerThread w) {
1317 <        // Try using slot totalCount-1. If not available, scan and/or resize
1318 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1319 <        final ReentrantLock lock = this.workerLock;
1320 <        lock.lock();
1316 >    private void releasePlock(int ps) {
1317 >        plock = ps;
1318 >        synchronized (this) { notifyAll(); }
1319 >    }
1320 >
1321 >    //  Registering and deregistering workers
1322 >
1323 >    /**
1324 >     * Callback from ForkJoinWorkerThread constructor to establish its
1325 >     * poolIndex and record its WorkQueue. To avoid scanning bias due
1326 >     * to packing entries in front of the workQueues array, we treat
1327 >     * the array as a simple power-of-two hash table using per-thread
1328 >     * seed as hash, expanding as needed.
1329 >     *
1330 >     * @param w the worker's queue
1331 >     */
1332 >    final void registerWorker(WorkQueue w) {
1333 >        int s, ps; // generate a rarely colliding candidate index seed
1334 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED,
1335 >                                          s = indexSeed, s += SEED_INCREMENT) ||
1336 >                     s == 0); // skip 0
1337 >        if (((ps = plock) & PL_LOCK) != 0 ||
1338 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1339 >            ps = acquirePlock();
1340 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1341          try {
1342 <            ForkJoinWorkerThread[] ws = workers;
1343 <            int nws = ws.length;
1344 <            if (k < 0 || k >= nws || ws[k] != null) {
1345 <                for (k = 0; k < nws && ws[k] != null; ++k)
1346 <                    ;
1347 <                if (k == nws)
1348 <                    ws = Arrays.copyOf(ws, nws << 1);
1342 >            WorkQueue[] ws;
1343 >            if (w != null && (ws = workQueues) != null) {
1344 >                w.seed = s;
1345 >                int n = ws.length, m = n - 1;
1346 >                int r = (s << 1) | 1;               // use odd-numbered indices
1347 >                if (ws[r &= m] != null) {           // collision
1348 >                    int probes = 0;                 // step by approx half size
1349 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1350 >                    while (ws[r = (r + step) & m] != null) {
1351 >                        if (++probes >= n) {
1352 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1353 >                            m = n - 1;
1354 >                            probes = 0;
1355 >                        }
1356 >                    }
1357 >                }
1358 >                w.eventCount = w.poolIndex = r;     // establish before recording
1359 >                ws[r] = w;
1360              }
621            ws[k] = w;
622            workers = ws; // volatile array write ensures slot visibility
1361          } finally {
1362 <            lock.unlock();
1362 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1363 >                releasePlock(nps);
1364          }
626        return k;
1365      }
1366  
1367      /**
1368 <     * Nulls out record of worker in workers array
1369 <     */
1370 <    private void forgetWorker(ForkJoinWorkerThread w) {
1371 <        int idx = w.poolIndex;
1372 <        // Locking helps method recordWorker avoid unecessary expansion
1373 <        final ReentrantLock lock = this.workerLock;
1374 <        lock.lock();
1375 <        try {
1376 <            ForkJoinWorkerThread[] ws = workers;
1377 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1378 <                ws[idx] = null;
1379 <        } finally {
1380 <            lock.unlock();
1368 >     * Final callback from terminating worker, as well as upon failure
1369 >     * to construct or start a worker.  Removes record of worker from
1370 >     * array, and adjusts counts. If pool is shutting down, tries to
1371 >     * complete termination.
1372 >     *
1373 >     * @param wt the worker thread or null if construction failed
1374 >     * @param ex the exception causing failure, or null if none
1375 >     */
1376 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1377 >        WorkQueue w = null;
1378 >        if (wt != null && (w = wt.workQueue) != null) {
1379 >            int ps;
1380 >            collectStealCount(w);
1381 >            w.qlock = -1;                // ensure set
1382 >            if (((ps = plock) & PL_LOCK) != 0 ||
1383 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1384 >                ps = acquirePlock();
1385 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1386 >            try {
1387 >                int idx = w.poolIndex;
1388 >                WorkQueue[] ws = workQueues;
1389 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1390 >                    ws[idx] = null;
1391 >            } finally {
1392 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1393 >                    releasePlock(nps);
1394 >            }
1395          }
644    }
1396  
1397 <    // adding and removing workers
1397 >        long c;                             // adjust ctl counts
1398 >        do {} while (!U.compareAndSwapLong
1399 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1400 >                                           ((c - TC_UNIT) & TC_MASK) |
1401 >                                           (c & ~(AC_MASK|TC_MASK)))));
1402 >
1403 >        if (!tryTerminate(false, false) && w != null) {
1404 >            w.cancelAll();                  // cancel remaining tasks
1405 >            if (w.array != null)            // suppress signal if never ran
1406 >                signalWork(null, 1);        // wake up or create replacement
1407 >            if (ex == null)                 // help clean refs on way out
1408 >                ForkJoinTask.helpExpungeStaleExceptions();
1409 >        }
1410 >
1411 >        if (ex != null)                     // rethrow
1412 >            ForkJoinTask.rethrow(ex);
1413 >    }
1414  
1415      /**
1416 <     * Tries to create and add new worker. Assumes that worker counts
1417 <     * are already updated to accommodate the worker, so adjusts on
1418 <     * failure.
1419 <     *
1420 <     * @return new worker or null if creation failed
1421 <     */
1422 <    private ForkJoinWorkerThread addWorker() {
1423 <        ForkJoinWorkerThread w = null;
1424 <        try {
1425 <            w = factory.newThread(this);
1426 <        } finally { // Adjust on either null or exceptional factory return
1427 <            if (w == null) {
1428 <                onWorkerCreationFailure();
1429 <                return null;
1416 >     * Collect worker steal count into total. Called on termination
1417 >     * and upon int overflow of local count. (There is a possible race
1418 >     * in the latter case vs any caller of getStealCount, which can
1419 >     * make its results less accurate than usual.)
1420 >     */
1421 >    final void collectStealCount(WorkQueue w) {
1422 >        if (w != null) {
1423 >            long sc;
1424 >            int ns = w.nsteals;
1425 >            w.nsteals = 0; // handle overflow
1426 >            long steals = (ns >= 0) ? ns : 1L + (long)(Integer.MAX_VALUE);
1427 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1428 >                                               sc = stealCount, sc + steals));
1429 >        }
1430 >    }
1431 >
1432 >    // Submissions
1433 >
1434 >    /**
1435 >     * Unless shutting down, adds the given task to a submission queue
1436 >     * at submitter's current queue index (modulo submission
1437 >     * range). Only the most common path is directly handled in this
1438 >     * method. All others are relayed to fullExternalPush.
1439 >     *
1440 >     * @param task the task. Caller must ensure non-null.
1441 >     */
1442 >    final void externalPush(ForkJoinTask<?> task) {
1443 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1444 >        if ((z = submitters.get()) != null && plock > 0 &&
1445 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1446 >            (q = ws[m & z.seed & SQMASK]) != null &&
1447 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1448 >            int s = q.top, n;
1449 >            if ((a = q.array) != null && a.length > (n = s + 1 - q.base)) {
1450 >                U.putObject(a, (long)(((a.length - 1) & s) << ASHIFT) + ABASE,
1451 >                            task);
1452 >                q.top = s + 1;                     // push on to deque
1453 >                q.qlock = 0;
1454 >                if (n <= 1)
1455 >                    signalWork(q, 1);
1456 >                return;
1457              }
1458 +            q.qlock = 0;
1459          }
1460 <        w.start(recordWorker(w), ueh);
666 <        return w;
1460 >        fullExternalPush(task);
1461      }
1462  
1463      /**
1464 <     * Adjusts counts upon failure to create worker
1465 <     */
1466 <    private void onWorkerCreationFailure() {
1467 <        for (;;) {
1468 <            int wc = workerCounts;
1469 <            if ((wc >>> TOTAL_COUNT_SHIFT) == 0)
1470 <                Thread.yield(); // wait for other counts to settle
1471 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1472 <                                              wc - (ONE_RUNNING|ONE_TOTAL)))
1473 <                break;
1464 >     * Full version of externalPush. This method is called, among
1465 >     * other times, upon the first submission of the first task to the
1466 >     * pool, so must perform secondary initialization: creating
1467 >     * workQueue array and setting plock to a valid value. It also
1468 >     * detects first submission by an external thread by looking up
1469 >     * its ThreadLocal, and creates a new shared queue if the one at
1470 >     * index if empty or contended. The lock bodies must be
1471 >     * exception-free (so no try/finally) so we optimistically
1472 >     * allocate new queues/arrays outside the locks and throw them
1473 >     * away if (very rarely) not needed. Note that the plock seq value
1474 >     * can eventually wrap around zero, but if so harmlessly fails to
1475 >     * reinitialize.
1476 >     */
1477 >    private void fullExternalPush(ForkJoinTask<?> task) {
1478 >        for (Submitter z = null;;) {
1479 >            WorkQueue[] ws; WorkQueue q; int ps, m, r, s;
1480 >            if ((ps = plock) < 0)
1481 >                throw new RejectedExecutionException();
1482 >            else if ((ws = workQueues) == null || (m = ws.length - 1) < 0) {
1483 >                int n = parallelism - 1; n |= n >>> 1; n |= n >>> 2;
1484 >                n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1485 >                WorkQueue[] nws = new WorkQueue[(n + 1) << 1]; // power of two
1486 >                if ((ps & PL_LOCK) != 0 ||
1487 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1488 >                    ps = acquirePlock();
1489 >                if ((ws = workQueues) == null)
1490 >                    workQueues = nws;
1491 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1492 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1493 >                    releasePlock(nps);
1494 >            }
1495 >            else if (z == null && (z = submitters.get()) == null) {
1496 >                if (U.compareAndSwapInt(this, INDEXSEED,
1497 >                                        s = indexSeed, s += SEED_INCREMENT) &&
1498 >                    s != 0) // skip 0
1499 >                    submitters.set(z = new Submitter(s));
1500 >            }
1501 >            else {
1502 >                int k = (r = z.seed) & m & SQMASK;
1503 >                if ((q = ws[k]) == null && (ps & PL_LOCK) == 0) {
1504 >                    (q = new WorkQueue(this, null, SHARED_QUEUE)).poolIndex = k;
1505 >                    if (((ps = plock) & PL_LOCK) != 0 ||
1506 >                        !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1507 >                        ps = acquirePlock();
1508 >                    WorkQueue w = null;
1509 >                    if ((ws = workQueues) != null && k < ws.length &&
1510 >                        (w = ws[k]) == null)
1511 >                        ws[k] = q;
1512 >                    else
1513 >                        q = w;
1514 >                    int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1515 >                    if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1516 >                        releasePlock(nps);
1517 >                }
1518 >                if (q != null && q.qlock == 0 && q.fullPush(task, false))
1519 >                    return;
1520 >                r ^= r << 13;                // same xorshift as WorkQueues
1521 >                r ^= r >>> 17;
1522 >                z.seed = r ^= r << 5;        // move to a different index
1523 >            }
1524          }
681        tryTerminate(false); // in case of failure during shutdown
1525      }
1526  
1527 +    // Maintaining ctl counts
1528 +
1529      /**
1530 <     * Creates and/or resumes enough workers to establish target
686 <     * parallelism, giving up if terminating or addWorker fails
687 <     *
688 <     * TODO: recast this to support lazier creation and automated
689 <     * parallelism maintenance
1530 >     * Increments active count; mainly called upon return from blocking.
1531       */
1532 <    private void ensureEnoughWorkers() {
1533 <        for (;;) {
1534 <            int pc = parallelism;
1535 <            int wc = workerCounts;
1536 <            int rc = wc & RUNNING_COUNT_MASK;
1537 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1538 <            if (tc < pc) {
1539 <                if (runState == TERMINATING ||
1540 <                    (UNSAFE.compareAndSwapInt
1541 <                     (this, workerCountsOffset,
1542 <                      wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
1543 <                     addWorker() == null))
1532 >    final void incrementActiveCount() {
1533 >        long c;
1534 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1535 >    }
1536 >
1537 >    /**
1538 >     * Tries to create (at most one) or activate (possibly several)
1539 >     * workers if too few are active. On contention failure, continues
1540 >     * until at least one worker is signalled or the given queue is
1541 >     * empty or all workers are active.
1542 >     *
1543 >     * @param q if non-null, the queue holding tasks to be signalled
1544 >     * @param signals the target number of signals.
1545 >     */
1546 >    final void signalWork(WorkQueue q, int signals) {
1547 >        long c; int e, u, i; WorkQueue[] ws; WorkQueue w; Thread p;
1548 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1549 >            if ((e = (int)c) > 0) {
1550 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1551 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1552 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1553 >                               ((long)(u + UAC_UNIT) << 32));
1554 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1555 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1556 >                        if ((p = w.parker) != null)
1557 >                            U.unpark(p);
1558 >                        if (--signals <= 0)
1559 >                            break;
1560 >                    }
1561 >                    else
1562 >                        signals = 1;
1563 >                    if ((q != null && q.queueSize() == 0))
1564 >                        break;
1565 >                }
1566 >                else
1567                      break;
1568              }
1569 <            else if (tc > pc && rc < pc &&
1570 <                     tc > (runState & ACTIVE_COUNT_MASK)) {
1571 <                ForkJoinWorkerThread spare = null;
1572 <                ForkJoinWorkerThread[] ws = workers;
1573 <                int nws = ws.length;
1574 <                for (int i = 0; i < nws; ++i) {
1575 <                    ForkJoinWorkerThread w = ws[i];
1576 <                    if (w != null && w.isSuspended()) {
1577 <                        if ((workerCounts & RUNNING_COUNT_MASK) > pc ||
1578 <                            runState == TERMINATING)
1579 <                            return;
1580 <                        if (w.tryResumeSpare())
1581 <                            incrementRunningCount();
1582 <                        break;
1569 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1570 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1571 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1572 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1573 >                    ForkJoinWorkerThread wt = null;
1574 >                    Throwable ex = null;
1575 >                    boolean started = false;
1576 >                    try {
1577 >                        ForkJoinWorkerThreadFactory fac;
1578 >                        if ((fac = factory) != null &&
1579 >                            (wt = fac.newThread(this)) != null) {
1580 >                            wt.start();
1581 >                            started = true;
1582 >                        }
1583 >                    } catch (Throwable rex) {
1584 >                        ex = rex;
1585                      }
1586 +                    if (!started)
1587 +                        deregisterWorker(wt, ex); // adjust counts on failure
1588 +                    break;
1589                  }
1590              }
1591              else
# Line 724 | Line 1593 | public class ForkJoinPool extends Abstra
1593          }
1594      }
1595  
1596 <    /**
728 <     * Final callback from terminating worker.  Removes record of
729 <     * worker from array, and adjusts counts. If pool is shutting
730 <     * down, tries to complete terminatation, else possibly replaces
731 <     * the worker.
732 <     *
733 <     * @param w the worker
734 <     */
735 <    final void workerTerminated(ForkJoinWorkerThread w) {
736 <        if (w.active) { // force inactive
737 <            w.active = false;
738 <            do {} while (!tryDecrementActiveCount());
739 <        }
740 <        forgetWorker(w);
741 <
742 <        // Decrement total count, and if was running, running count
743 <        // Spin (waiting for other updates) if either would be negative
744 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
745 <        int unit = ONE_TOTAL + nr;
746 <        for (;;) {
747 <            int wc = workerCounts;
748 <            int rc = wc & RUNNING_COUNT_MASK;
749 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
750 <                Thread.yield(); // back off if waiting for other updates
751 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
752 <                                              wc, wc - unit))
753 <                break;
754 <        }
1596 >    // Scanning for tasks
1597  
1598 <        accumulateStealCount(w); // collect final count
1599 <        if (!tryTerminate(false))
1600 <            ensureEnoughWorkers();
1598 >    /**
1599 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1600 >     */
1601 >    final void runWorker(WorkQueue w) {
1602 >        // initialize queue array in this thread
1603 >        w.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
1604 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1605      }
1606  
761    // Waiting for and signalling events
762
1607      /**
1608 <     * Releases workers blocked on a count not equal to current count.
1609 <     * @return true if any released
1610 <     */
1611 <    private void releaseWaiters() {
1612 <        long top;
1613 <        while ((top = eventWaiters) != 0L) {
1614 <            ForkJoinWorkerThread[] ws = workers;
1615 <            int n = ws.length;
1616 <            for (;;) {
1617 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
1618 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == eventCount)
1619 <                    return;
1620 <                ForkJoinWorkerThread w;
1621 <                if (i < n && (w = ws[i]) != null &&
1622 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1623 <                                              top, w.nextWaiter)) {
1624 <                    LockSupport.unpark(w);
1625 <                    top = eventWaiters;
1608 >     * Scans for and, if found, returns one task, else possibly
1609 >     * inactivates the worker. This method operates on single reads of
1610 >     * volatile state and is designed to be re-invoked continuously,
1611 >     * in part because it returns upon detecting inconsistencies,
1612 >     * contention, or state changes that indicate possible success on
1613 >     * re-invocation.
1614 >     *
1615 >     * The scan searches for tasks across a random permutation of
1616 >     * queues (starting at a random index and stepping by a random
1617 >     * relative prime, checking each at least once).  The scan
1618 >     * terminates upon either finding a non-empty queue, or completing
1619 >     * the sweep. If the worker is not inactivated, it takes and
1620 >     * returns a task from this queue. Otherwise, if not activated, it
1621 >     * signals workers (that may include itself) and returns so caller
1622 >     * can retry. Also returns for trtry if the worker array may have
1623 >     * changed during an empty scan.  On failure to find a task, we
1624 >     * take one of the following actions, after which the caller will
1625 >     * retry calling this method unless terminated.
1626 >     *
1627 >     * * If pool is terminating, terminate the worker.
1628 >     *
1629 >     * * If not already enqueued, try to inactivate and enqueue the
1630 >     * worker on wait queue. Or, if inactivating has caused the pool
1631 >     * to be quiescent, relay to idleAwaitWork to check for
1632 >     * termination and possibly shrink pool.
1633 >     *
1634 >     * * If already enqueued and none of the above apply, possibly
1635 >     * (with 1/2 probability) park awaiting signal, else lingering to
1636 >     * help scan and signal.
1637 >     *
1638 >     * @param w the worker (via its WorkQueue)
1639 >     * @return a task or null if none found
1640 >     */
1641 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1642 >        WorkQueue[] ws; WorkQueue q;           // first update random seed
1643 >        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1644 >        int ps = plock, m;                     // volatile read order matters
1645 >        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1646 >            int ec = w.eventCount;             // ec is negative if inactive
1647 >            int step = (r >>> 16) | 1;         // relatively prime
1648 >            for (int j = (m + 1) << 2;  ; --j, r += step) {
1649 >                ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b, n;
1650 >                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1651 >                    (a = q.array) != null) {   // probably nonempty
1652 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1653 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1654 >                    if (q.base == b && ec >= 0 && t != null &&
1655 >                        U.compareAndSwapObject(a, i, t, null)) {
1656 >                        if ((n = q.top - (q.base = b + 1)) > 0)
1657 >                            signalWork(q, n);
1658 >                        return t;              // taken
1659 >                    }
1660 >                    if (j < m || (ec < 0 && (ec = w.eventCount) < 0)) {
1661 >                        if ((n = q.queueSize() - 1) > 0)
1662 >                            signalWork(q, n);
1663 >                        break;                 // let caller retry after signal
1664 >                    }
1665 >                }
1666 >                else if (j < 0) {              // end of scan
1667 >                    long c = ctl; int e;
1668 >                    if (plock != ps)           // incomplete sweep
1669 >                        break;
1670 >                    if ((e = (int)c) < 0)      // pool is terminating
1671 >                        w.qlock = -1;
1672 >                    else if (ec >= 0) {        // try to enqueue/inactivate
1673 >                        long nc = ((long)ec |
1674 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1675 >                        w.nextWait = e;
1676 >                        w.eventCount = ec | INT_SIGN; // mark as inactive
1677 >                        if (ctl != c ||
1678 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1679 >                            w.eventCount = ec; // unmark on CAS failure
1680 >                        else if ((int)(c >> AC_SHIFT) == 1 - parallelism)
1681 >                            idleAwaitWork(w, nc, c);  // quiescent
1682 >                    }
1683 >                    else if (w.seed >= 0 && w.eventCount < 0) {
1684 >                        Thread wt = Thread.currentThread();
1685 >                        Thread.interrupted();  // clear status
1686 >                        U.putObject(wt, PARKBLOCKER, this);
1687 >                        w.parker = wt;         // emulate LockSupport.park
1688 >                        if (w.eventCount < 0)  // recheck
1689 >                            U.park(false, 0L);
1690 >                        w.parker = null;
1691 >                        U.putObject(wt, PARKBLOCKER, null);
1692 >                    }
1693 >                    break;
1694                  }
783                else
784                    break;      // possibly stale; reread
1695              }
1696          }
1697 +        return null;
1698      }
1699  
1700      /**
1701 <     * Ensures eventCount on exit is different (mod 2^32) than on
1702 <     * entry and wakes up all waiters
1703 <     */
1704 <    private void signalEvent() {
1705 <        int c;
1706 <        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
1707 <                                               c = eventCount, c+1));
1708 <        releaseWaiters();
1701 >     * If inactivating worker w has caused the pool to become
1702 >     * quiescent, checks for pool termination, and, so long as this is
1703 >     * not the only worker, waits for event for up to a given
1704 >     * duration.  On timeout, if ctl has not changed, terminates the
1705 >     * worker, which will in turn wake up another worker to possibly
1706 >     * repeat this process.
1707 >     *
1708 >     * @param w the calling worker
1709 >     * @param currentCtl the ctl value triggering possible quiescence
1710 >     * @param prevCtl the ctl value to restore if thread is terminated
1711 >     */
1712 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1713 >        if (w.eventCount < 0 &&
1714 >            (this == commonPool || !tryTerminate(false, false)) &&
1715 >            (int)prevCtl != 0) {
1716 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1717 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1718 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1719 >            Thread wt = Thread.currentThread();
1720 >            while (ctl == currentCtl) {
1721 >                Thread.interrupted();  // timed variant of version in scan()
1722 >                U.putObject(wt, PARKBLOCKER, this);
1723 >                w.parker = wt;
1724 >                if (ctl == currentCtl)
1725 >                    U.park(false, parkTime);
1726 >                w.parker = null;
1727 >                U.putObject(wt, PARKBLOCKER, null);
1728 >                if (ctl != currentCtl)
1729 >                    break;
1730 >                if (deadline - System.nanoTime() <= 0L &&
1731 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1732 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1733 >                    w.qlock = -1;   // shrink
1734 >                    break;
1735 >                }
1736 >            }
1737 >        }
1738      }
1739  
1740      /**
1741 <     * Advances eventCount and releases waiters until interference by
1742 <     * other releasing threads is detected.
1741 >     * Scans through queues looking for work while joining a task;
1742 >     * if any are present, signals.
1743 >     *
1744 >     * @param task to return early if done
1745 >     * @param origin an index to start scan
1746       */
1747 <    final void signalWork() {
1748 <        int c;
1749 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
1750 <        long top;
1751 <        while ((top = eventWaiters) != 0L) {
1752 <            int ec = eventCount;
1753 <            ForkJoinWorkerThread[] ws = workers;
1754 <            int n = ws.length;
1755 <            for (;;) {
1756 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
1757 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
1758 <                    return;
816 <                ForkJoinWorkerThread w;
817 <                if (i < n && (w = ws[i]) != null &&
818 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
819 <                                              top, top = w.nextWaiter)) {
820 <                    LockSupport.unpark(w);
821 <                    if (top != eventWaiters) // let someone else take over
822 <                        return;
1747 >    final int helpSignal(ForkJoinTask<?> task, int origin) {
1748 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1749 >        if (task != null && (ws = workQueues) != null &&
1750 >            (m = ws.length - 1) >= 0) {
1751 >            for (int i = 0; i <= m; ++i) {
1752 >                if ((s = task.status) < 0)
1753 >                    return s;
1754 >                if ((q = ws[(i + origin) & m]) != null &&
1755 >                    (n = q.queueSize()) > 0) {
1756 >                    signalWork(q, n);
1757 >                    if ((int)(ctl >> AC_SHIFT) >= 0)
1758 >                        break;
1759                  }
824                else
825                    break;      // possibly stale; reread
1760              }
1761          }
1762 +        return 0;
1763      }
1764  
1765      /**
1766 <     * If worker is inactive, blocks until terminating or event count
1767 <     * advances from last value held by worker; in any case helps
1768 <     * release others.
1769 <     *
1770 <     * @param w the calling worker thread
1771 <     * @param retries the number of scans by caller failing to find work
1772 <     * @return false if now too many threads running
1773 <     */
1774 <    private boolean eventSync(ForkJoinWorkerThread w, int retries) {
1775 <        int wec = w.lastEventCount;
1776 <        if (retries > 1) { // can only block after 2nd miss
1777 <            long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
1778 <                            ((long)(w.poolIndex + 1)));
1779 <            long top;
1780 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1781 <                   (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
1782 <                    (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
1783 <                   eventCount == wec) {
1784 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1785 <                                              w.nextWaiter = top, nextTop)) {
1786 <                    accumulateStealCount(w); // transfer steals while idle
1787 <                    Thread.interrupted();    // clear/ignore interrupt
1788 <                    while (eventCount == wec)
1789 <                        w.doPark();
1790 <                    break;
1766 >     * Tries to locate and execute tasks for a stealer of the given
1767 >     * task, or in turn one of its stealers, Traces currentSteal ->
1768 >     * currentJoin links looking for a thread working on a descendant
1769 >     * of the given task and with a non-empty queue to steal back and
1770 >     * execute tasks from. The first call to this method upon a
1771 >     * waiting join will often entail scanning/search, (which is OK
1772 >     * because the joiner has nothing better to do), but this method
1773 >     * leaves hints in workers to speed up subsequent calls. The
1774 >     * implementation is very branchy to cope with potential
1775 >     * inconsistencies or loops encountering chains that are stale,
1776 >     * unknown, or so long that they are likely cyclic.
1777 >     *
1778 >     * @param joiner the joining worker
1779 >     * @param task the task to join
1780 >     * @return 0 if no progress can be made, negative if task
1781 >     * known complete, else positive
1782 >     */
1783 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1784 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1785 >        if (joiner != null && task != null) {       // hoist null checks
1786 >            restart: for (;;) {
1787 >                ForkJoinTask<?> subtask = task;     // current target
1788 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1789 >                    WorkQueue[] ws; int m, s, h;
1790 >                    if ((s = task.status) < 0) {
1791 >                        stat = s;
1792 >                        break restart;
1793 >                    }
1794 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1795 >                        break restart;              // shutting down
1796 >                    if ((v = ws[h = (j.stealHint | 1) & m]) == null ||
1797 >                        v.currentSteal != subtask) {
1798 >                        for (int origin = h;;) {    // find stealer
1799 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1800 >                                (subtask.status < 0 || j.currentJoin != subtask))
1801 >                                continue restart;   // occasional staleness check
1802 >                            if ((v = ws[h]) != null &&
1803 >                                v.currentSteal == subtask) {
1804 >                                j.stealHint = h;    // save hint
1805 >                                break;
1806 >                            }
1807 >                            if (h == origin)
1808 >                                break restart;      // cannot find stealer
1809 >                        }
1810 >                    }
1811 >                    for (;;) { // help stealer or descend to its stealer
1812 >                        ForkJoinTask[] a;  int b;
1813 >                        if (subtask.status < 0)     // surround probes with
1814 >                            continue restart;       //   consistency checks
1815 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1816 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1817 >                            ForkJoinTask<?> t =
1818 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1819 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1820 >                                v.currentSteal != subtask)
1821 >                                continue restart;   // stale
1822 >                            stat = 1;               // apparent progress
1823 >                            if (t != null && v.base == b &&
1824 >                                U.compareAndSwapObject(a, i, t, null)) {
1825 >                                v.base = b + 1;     // help stealer
1826 >                                joiner.runSubtask(t);
1827 >                            }
1828 >                            else if (v.base == b && ++steps == MAX_HELP)
1829 >                                break restart;      // v apparently stalled
1830 >                        }
1831 >                        else {                      // empty -- try to descend
1832 >                            ForkJoinTask<?> next = v.currentJoin;
1833 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1834 >                                v.currentSteal != subtask)
1835 >                                continue restart;   // stale
1836 >                            else if (next == null || ++steps == MAX_HELP)
1837 >                                break restart;      // dead-end or maybe cyclic
1838 >                            else {
1839 >                                subtask = next;
1840 >                                j = v;
1841 >                                break;
1842 >                            }
1843 >                        }
1844 >                    }
1845                  }
1846              }
858            wec = eventCount;
859        }
860        releaseWaiters();
861        int wc = workerCounts;
862        if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
863            w.lastEventCount = wec;
864            return true;
1847          }
1848 <        if (wec != w.lastEventCount) // back up if may re-wait
867 <            w.lastEventCount = wec - (wc >>> TOTAL_COUNT_SHIFT);
868 <        return false;
1848 >        return stat;
1849      }
1850  
1851      /**
1852 <     * Callback from workers invoked upon each top-level action (i.e.,
1853 <     * stealing a task or taking a submission and running
1854 <     * it). Performs one or both of the following:
1855 <     *
1856 <     * * If the worker cannot find work, updates its active status to
1857 <     * inactive and updates activeCount unless there is contention, in
1858 <     * which case it may try again (either in this or a subsequent
1859 <     * call).  Additionally, awaits the next task event and/or helps
1860 <     * wake up other releasable waiters.
1861 <     *
1862 <     * * If there are too many running threads, suspends this worker
1863 <     * (first forcing inactivation if necessary).  If it is not
1864 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
1865 <     * -- killed while suspended within suspendAsSpare. Otherwise,
1866 <     * upon resume it rechecks to make sure that it is still needed.
1867 <     *
1868 <     * @param w the worker
1869 <     * @param retries the number of scans by caller failing to find work
1870 <     * find any (in which case it may block waiting for work).
1871 <     */
1872 <    final void preStep(ForkJoinWorkerThread w, int retries) {
893 <        boolean active = w.active;
894 <        boolean inactivate = active && retries != 0;
895 <        for (;;) {
896 <            int rs, wc;
897 <            if (inactivate &&
898 <                UNSAFE.compareAndSwapInt(this, runStateOffset,
899 <                                         rs = runState, rs - ONE_ACTIVE))
900 <                inactivate = active = w.active = false;
901 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
902 <                if (active || eventSync(w, retries))
1852 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1853 >     * and run tasks within the target's computation
1854 >     *
1855 >     * @param task the task to join
1856 >     * @param mode if shared, exit upon completing any task
1857 >     * if all workers are active
1858 >     *
1859 >     */
1860 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1861 >        WorkQueue[] ws; WorkQueue q; int m, n, s;
1862 >        if (task != null && (ws = workQueues) != null &&
1863 >            (m = ws.length - 1) >= 0) {
1864 >            for (int j = 1, origin = j;;) {
1865 >                if ((s = task.status) < 0)
1866 >                    return s;
1867 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1868 >                    origin = j;
1869 >                    if (mode == SHARED_QUEUE && (int)(ctl >> AC_SHIFT) >= 0)
1870 >                        break;
1871 >                }
1872 >                else if ((j = (j + 2) & m) == origin)
1873                      break;
1874              }
905            else if (!(inactivate |= active) &&  // must inactivate to suspend
906                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
907                                         wc, wc - ONE_RUNNING) &&
908                !w.suspendAsSpare())             // false if trimmed
909                break;
1875          }
1876 +        return 0;
1877      }
1878  
1879      /**
1880 <     * Awaits join of the given task if enough threads, or can resume
1881 <     * or create a spare. Fails (in which case the given task might
1882 <     * not be done) upon contention or lack of decision about
1883 <     * blocking. Returns void because caller must check
1884 <     * task status on return anyway.
1885 <     *
1886 <     * We allow blocking if:
1887 <     *
1888 <     * 1. There would still be at least as many running threads as
1889 <     *    parallelism level if this thread blocks.
1890 <     *
1891 <     * 2. A spare is resumed to replace this worker. We tolerate
1892 <     *    slop in the decision to replace if a spare is found without
1893 <     *    first decrementing run count.  This may release too many,
1894 <     *    but if so, the superfluous ones will re-suspend via
1895 <     *    preStep().
1896 <     *
1897 <     * 3. After #spares repeated checks, there are no fewer than #spare
1898 <     *    threads not running. We allow this slack to avoid hysteresis
933 <     *    and as a hedge against lag/uncertainty of running count
934 <     *    estimates when signalling or unblocking stalls.
935 <     *
936 <     * 4. All existing workers are busy (as rechecked via repeated
937 <     *    retries by caller) and a new spare is created.
938 <     *
939 <     * If none of the above hold, we try to escape out by
940 <     * re-incrementing count and returning to caller, which can retry
941 <     * later.
942 <     *
943 <     * @param joinMe the task to join
944 <     * @param retries if negative, then serve only as a precheck
945 <     *   that the thread can be replaced by a spare. Otherwise,
946 <     *   the number of repeated calls to this method returning busy
947 <     * @return true if the call must be retried because there
948 <     *   none of the blocking checks hold
949 <     */
950 <    final boolean tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
951 <        if (joinMe.status < 0) // precheck to prime loop
952 <            return false;
953 <        int pc = parallelism;
954 <        boolean running = true; // false when running count decremented
955 <        outer:for (;;) {
956 <            int wc = workerCounts;
957 <            int rc = wc & RUNNING_COUNT_MASK;
958 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
959 <            if (running) { // replace with spare or decrement count
960 <                if (rc <= pc && tc > pc &&
961 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
962 <                    ForkJoinWorkerThread[] ws = workers;
963 <                    int nws = ws.length;
964 <                    for (int i = 0; i < nws; ++i) { // search for spare
965 <                        ForkJoinWorkerThread w = ws[i];
966 <                        if (w != null) {
967 <                            if (joinMe.status < 0)
968 <                                return false;
969 <                            if (w.isSuspended()) {
970 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
971 <                                    w.tryResumeSpare()) {
972 <                                    running = false;
973 <                                    break outer;
974 <                                }
975 <                                continue outer; // rescan
976 <                            }
977 <                        }
978 <                    }
1880 >     * Tries to decrement active count (sometimes implicitly) and
1881 >     * possibly release or create a compensating worker in preparation
1882 >     * for blocking. Fails on contention or termination. Otherwise,
1883 >     * adds a new thread if no idle workers are available and pool
1884 >     * may become starved.
1885 >     */
1886 >    final boolean tryCompensate() {
1887 >        int pc = parallelism, e, u, i, tc; long c;
1888 >        WorkQueue[] ws; WorkQueue w; Thread p;
1889 >        if ((e = (int)(c = ctl)) >= 0 && (ws = workQueues) != null) {
1890 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1891 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1892 >                long nc = ((long)(w.nextWait & E_MASK) |
1893 >                           (c & (AC_MASK|TC_MASK)));
1894 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1895 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1896 >                    if ((p = w.parker) != null)
1897 >                        U.unpark(p);
1898 >                    return true;   // replace with idle worker
1899                  }
980                if (retries < 0 || // < 0 means replacement check only
981                    rc == 0 || joinMe.status < 0 || workerCounts != wc ||
982                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
983                                              wc, wc - ONE_RUNNING))
984                    return false; // done or inconsistent or contended
985                running = false;
986                if (rc > pc)
987                    break;
1900              }
1901 <            else { // allow blocking if enough threads
1902 <                if (rc >= pc || joinMe.status < 0)
1903 <                    break;
1904 <                int sc = tc - pc + 1; // = spare threads, plus the one to add
1905 <                if (retries > sc) {
1906 <                    if (rc > 0 && rc >= pc - sc) // allow slack
1907 <                        break;
1908 <                    if (tc < MAX_THREADS &&
1909 <                        tc == (runState & ACTIVE_COUNT_MASK) &&
1910 <                        workerCounts == wc &&
1911 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1912 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1913 <                        addWorker();
1914 <                        break;
1901 >            else if ((short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) >= 0 &&
1902 >                     (u >> UAC_SHIFT) + pc > 1) {
1903 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1904 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1905 >                    return true;    // no compensation
1906 >            }
1907 >            else if ((tc = u + pc) < MAX_CAP) {
1908 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1909 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1910 >                    Throwable ex = null;
1911 >                    ForkJoinWorkerThread wt = null;
1912 >                    try {
1913 >                        ForkJoinWorkerThreadFactory fac;
1914 >                        if ((fac = factory) != null &&
1915 >                            (wt = fac.newThread(this)) != null) {
1916 >                            wt.start();
1917 >                            return true;
1918 >                        }
1919 >                    } catch (Throwable rex) {
1920 >                        ex = rex;
1921                      }
1922 <                }
1005 <                if (workerCounts == wc &&        // back out to allow rescan
1006 <                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1007 <                                              wc, wc + ONE_RUNNING)) {
1008 <                    releaseWaiters();            // help others progress
1009 <                    return true;                 // let caller retry
1922 >                    deregisterWorker(wt, ex); // adjust counts etc
1923                  }
1924              }
1925          }
1013        // arrive here if can block
1014        joinMe.internalAwaitDone();
1015        int c;                      // to inline incrementRunningCount
1016        do {} while (!UNSAFE.compareAndSwapInt
1017                     (this, workerCountsOffset,
1018                      c = workerCounts, c + ONE_RUNNING));
1926          return false;
1927      }
1928  
1929      /**
1930 <     * Same idea as (and shares many code snippets with) tryAwaitJoin,
1931 <     * but self-contained because there are no caller retries.
1932 <     * TODO: Rework to use simpler API.
1930 >     * Helps and/or blocks until the given task is done.
1931 >     *
1932 >     * @param joiner the joining worker
1933 >     * @param task the task
1934 >     * @return task status on exit
1935       */
1936 <    final void awaitBlocker(ManagedBlocker blocker)
1937 <        throws InterruptedException {
1938 <        boolean done;
1939 <        if (done = blocker.isReleasable())
1940 <            return;
1941 <        int pc = parallelism;
1942 <        int retries = 0;
1943 <        boolean running = true; // false when running count decremented
1944 <        outer:for (;;) {
1945 <            int wc = workerCounts;
1946 <            int rc = wc & RUNNING_COUNT_MASK;
1947 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1948 <            if (running) {
1949 <                if (rc <= pc && tc > pc &&
1950 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1951 <                    ForkJoinWorkerThread[] ws = workers;
1952 <                    int nws = ws.length;
1953 <                    for (int i = 0; i < nws; ++i) {
1954 <                        ForkJoinWorkerThread w = ws[i];
1955 <                        if (w != null) {
1956 <                            if (done = blocker.isReleasable())
1957 <                                return;
1049 <                            if (w.isSuspended()) {
1050 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1051 <                                    w.tryResumeSpare()) {
1052 <                                    running = false;
1053 <                                    break outer;
1936 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1937 >        int s = 0;
1938 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1939 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1940 >            joiner.currentJoin = task;
1941 >            do {} while ((s = task.status) >= 0 &&
1942 >                         joiner.queueSize() > 0 &&
1943 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1944 >            if (s >= 0 && (s = task.status) >= 0 &&
1945 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1946 >                (task instanceof CountedCompleter))
1947 >                s = helpComplete(task, LIFO_QUEUE);
1948 >            while (s >= 0 && (s = task.status) >= 0) {
1949 >                if ((joiner.queueSize() > 0 ||           // try helping
1950 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1951 >                    (s = task.status) >= 0 && tryCompensate()) {
1952 >                    if (task.trySetSignal() && (s = task.status) >= 0) {
1953 >                        synchronized (task) {
1954 >                            if (task.status >= 0) {
1955 >                                try {                // see ForkJoinTask
1956 >                                    task.wait();     //  for explanation
1957 >                                } catch (InterruptedException ie) {
1958                                  }
1055                                continue outer; // rescan
1959                              }
1960 +                            else
1961 +                                task.notifyAll();
1962                          }
1963                      }
1964 +                    long c;                          // re-activate
1965 +                    do {} while (!U.compareAndSwapLong
1966 +                                 (this, CTL, c = ctl, c + AC_UNIT));
1967                  }
1060                if (done = blocker.isReleasable())
1061                    return;
1062                if (rc == 0 || workerCounts != wc ||
1063                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1064                                              wc, wc - ONE_RUNNING))
1065                    continue;
1066                running = false;
1067                if (rc > pc)
1068                    break;
1069            }
1070            else {
1071                if (rc >= pc || (done = blocker.isReleasable()))
1072                    break;
1073                int sc = tc - pc + 1;
1074                if (retries++ > sc) {
1075                    if (rc > 0 && rc >= pc - sc)
1076                        break;
1077                    if (tc < MAX_THREADS &&
1078                        tc == (runState & ACTIVE_COUNT_MASK) &&
1079                        workerCounts == wc &&
1080                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1081                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1082                        addWorker();
1083                        break;
1084                    }
1085                }
1086                Thread.yield();
1968              }
1969 +            joiner.currentJoin = prevJoin;
1970          }
1971 <        
1972 <        try {
1091 <            if (!done)
1092 <                do {} while (!blocker.isReleasable() && !blocker.block());
1093 <        } finally {
1094 <            if (!running) {
1095 <                int c;
1096 <                do {} while (!UNSAFE.compareAndSwapInt
1097 <                             (this, workerCountsOffset,
1098 <                              c = workerCounts, c + ONE_RUNNING));
1099 <            }
1100 <        }
1101 <    }  
1971 >        return s;
1972 >    }
1973  
1974      /**
1975 <     * Possibly initiates and/or completes termination.
1975 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
1976 >     * to help join only while there is continuous progress. (Caller
1977 >     * will then enter a timed wait.)
1978       *
1979 <     * @param now if true, unconditionally terminate, else only
1980 <     * if shutdown and empty queue and no active workers
1108 <     * @return true if now terminating or terminated
1979 >     * @param joiner the joining worker
1980 >     * @param task the task
1981       */
1982 <    private boolean tryTerminate(boolean now) {
1983 <        if (now)
1984 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1985 <        else if (runState < SHUTDOWN ||
1986 <                 !submissionQueue.isEmpty() ||
1987 <                 (runState & ACTIVE_COUNT_MASK) != 0)
1988 <            return false;
1989 <
1990 <        if (advanceRunLevel(TERMINATING))
1991 <            startTerminating();
1992 <
1993 <        // Finish now if all threads terminated; else in some subsequent call
1994 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1995 <            advanceRunLevel(TERMINATED);
1996 <            termination.arrive();
1982 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
1983 >        int s;
1984 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1985 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1986 >            joiner.currentJoin = task;
1987 >            do {} while ((s = task.status) >= 0 &&
1988 >                         joiner.queueSize() > 0 &&
1989 >                         joiner.tryRemoveAndExec(task));
1990 >            if (s >= 0 && (s = task.status) >= 0 &&
1991 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1992 >                (task instanceof CountedCompleter))
1993 >                s = helpComplete(task, LIFO_QUEUE);
1994 >            if (s >= 0 && joiner.queueSize() == 0) {
1995 >                do {} while (task.status >= 0 &&
1996 >                             tryHelpStealer(joiner, task) > 0);
1997 >            }
1998 >            joiner.currentJoin = prevJoin;
1999          }
1126        return true;
2000      }
2001  
2002      /**
2003 <     * Actions on transition to TERMINATING
2003 >     * Returns a (probably) non-empty steal queue, if one is found
2004 >     * during a random, then cyclic scan, else null.  This method must
2005 >     * be retried by caller if, by the time it tries to use the queue,
2006 >     * it is empty.
2007 >     * @param r a (random) seed for scanning
2008       */
2009 <    private void startTerminating() {
2010 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
2011 <            cancelSubmissions();
2012 <            shutdownWorkers();
2013 <            cancelWorkerTasks();
2014 <            signalEvent();
2015 <            interruptWorkers();
2009 >    private WorkQueue findNonEmptyStealQueue(int r) {
2010 >        int step = (r >>> 16) | 1;
2011 >        for (WorkQueue[] ws;;) {
2012 >            int ps = plock, m;
2013 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2014 >                return null;
2015 >            for (int j = (m + 1) << 2; ; r += step) {
2016 >                WorkQueue q = ws[((r << 1) | 1) & m];
2017 >                if (q != null && q.queueSize() > 0)
2018 >                    return q;
2019 >                else if (--j < 0) {
2020 >                    if (plock == ps)
2021 >                        return null;
2022 >                    break;
2023 >                }
2024 >            }
2025          }
2026      }
2027  
2028      /**
2029 <     * Clear out and cancel submissions, ignoring exceptions
2030 <     */
2031 <    private void cancelSubmissions() {
2032 <        ForkJoinTask<?> task;
2033 <        while ((task = submissionQueue.poll()) != null) {
2034 <            try {
2035 <                task.cancel(false);
2036 <            } catch (Throwable ignore) {
2029 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2030 >     * active count ctl maintenance, but rather than blocking
2031 >     * when tasks cannot be found, we rescan until all others cannot
2032 >     * find tasks either.
2033 >     */
2034 >    final void helpQuiescePool(WorkQueue w) {
2035 >        for (boolean active = true;;) {
2036 >            ForkJoinTask<?> localTask; // exhaust local queue
2037 >            while ((localTask = w.nextLocalTask()) != null)
2038 >                localTask.doExec();
2039 >            // Similar to loop in scan(), but ignoring submissions
2040 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2041 >            if (q != null) {
2042 >                ForkJoinTask<?> t; int b;
2043 >                if (!active) {      // re-establish active count
2044 >                    long c;
2045 >                    active = true;
2046 >                    do {} while (!U.compareAndSwapLong
2047 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2048 >                }
2049 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2050 >                    w.runSubtask(t);
2051 >            }
2052 >            else {
2053 >                long c;
2054 >                if (active) {       // decrement active count without queuing
2055 >                    active = false;
2056 >                    do {} while (!U.compareAndSwapLong
2057 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2058 >                }
2059 >                else
2060 >                    c = ctl;        // re-increment on exit
2061 >                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2062 >                    do {} while (!U.compareAndSwapLong
2063 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2064 >                    break;
2065 >                }
2066              }
2067          }
2068      }
2069  
2070      /**
2071 <     * Sets all worker run states to at least shutdown,
2072 <     * also resuming suspended workers
2071 >     * Gets and removes a local or stolen task for the given worker.
2072 >     *
2073 >     * @return a task, if available
2074       */
2075 <    private void shutdownWorkers() {
2076 <        ForkJoinWorkerThread[] ws = workers;
2077 <        int nws = ws.length;
2078 <        for (int i = 0; i < nws; ++i) {
2079 <            ForkJoinWorkerThread w = ws[i];
2080 <            if (w != null)
2081 <                w.shutdown();
2075 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2076 >        for (ForkJoinTask<?> t;;) {
2077 >            WorkQueue q; int b;
2078 >            if ((t = w.nextLocalTask()) != null)
2079 >                return t;
2080 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2081 >                return null;
2082 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2083 >                return t;
2084          }
2085      }
2086  
2087      /**
2088 <     * Clears out and cancels all locally queued tasks
2088 >     * Returns a cheap heuristic guide for task partitioning when
2089 >     * programmers, frameworks, tools, or languages have little or no
2090 >     * idea about task granularity.  In essence by offering this
2091 >     * method, we ask users only about tradeoffs in overhead vs
2092 >     * expected throughput and its variance, rather than how finely to
2093 >     * partition tasks.
2094 >     *
2095 >     * In a steady state strict (tree-structured) computation, each
2096 >     * thread makes available for stealing enough tasks for other
2097 >     * threads to remain active. Inductively, if all threads play by
2098 >     * the same rules, each thread should make available only a
2099 >     * constant number of tasks.
2100 >     *
2101 >     * The minimum useful constant is just 1. But using a value of 1
2102 >     * would require immediate replenishment upon each steal to
2103 >     * maintain enough tasks, which is infeasible.  Further,
2104 >     * partitionings/granularities of offered tasks should minimize
2105 >     * steal rates, which in general means that threads nearer the top
2106 >     * of computation tree should generate more than those nearer the
2107 >     * bottom. In perfect steady state, each thread is at
2108 >     * approximately the same level of computation tree. However,
2109 >     * producing extra tasks amortizes the uncertainty of progress and
2110 >     * diffusion assumptions.
2111 >     *
2112 >     * So, users will want to use values larger, but not much larger
2113 >     * than 1 to both smooth over transient shortages and hedge
2114 >     * against uneven progress; as traded off against the cost of
2115 >     * extra task overhead. We leave the user to pick a threshold
2116 >     * value to compare with the results of this call to guide
2117 >     * decisions, but recommend values such as 3.
2118 >     *
2119 >     * When all threads are active, it is on average OK to estimate
2120 >     * surplus strictly locally. In steady-state, if one thread is
2121 >     * maintaining say 2 surplus tasks, then so are others. So we can
2122 >     * just use estimated queue length.  However, this strategy alone
2123 >     * leads to serious mis-estimates in some non-steady-state
2124 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2125 >     * many of these by further considering the number of "idle"
2126 >     * threads, that are known to have zero queued tasks, so
2127 >     * compensate by a factor of (#idle/#active) threads.
2128 >     *
2129 >     * Note: The approximation of #busy workers as #active workers is
2130 >     * not very good under current signalling scheme, and should be
2131 >     * improved.
2132 >     */
2133 >    static int getSurplusQueuedTaskCount() {
2134 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2135 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2136 >            int b = (q = (wt = (ForkJoinWorkerThread)t).workQueue).base;
2137 >            int p = (pool = wt.pool).parallelism;
2138 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2139 >            return q.top - b - (a > (p >>>= 1) ? 0 :
2140 >                                a > (p >>>= 1) ? 1 :
2141 >                                a > (p >>>= 1) ? 2 :
2142 >                                a > (p >>>= 1) ? 4 :
2143 >                                8);
2144 >        }
2145 >        return 0;
2146 >    }
2147 >
2148 >    //  Termination
2149 >
2150 >    /**
2151 >     * Possibly initiates and/or completes termination.  The caller
2152 >     * triggering termination runs three passes through workQueues:
2153 >     * (0) Setting termination status, followed by wakeups of queued
2154 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2155 >     * threads (likely in external tasks, but possibly also blocked in
2156 >     * joins).  Each pass repeats previous steps because of potential
2157 >     * lagging thread creation.
2158 >     *
2159 >     * @param now if true, unconditionally terminate, else only
2160 >     * if no work and no active workers
2161 >     * @param enable if true, enable shutdown when next possible
2162 >     * @return true if now terminating or terminated
2163       */
2164 <    private void cancelWorkerTasks() {
2165 <        ForkJoinWorkerThread[] ws = workers;
2166 <        int nws = ws.length;
2167 <        for (int i = 0; i < nws; ++i) {
2168 <            ForkJoinWorkerThread w = ws[i];
2169 <            if (w != null)
2170 <                w.cancelTasks();
2164 >    private boolean tryTerminate(boolean now, boolean enable) {
2165 >        if (this == commonPool)                     // cannot shut down
2166 >            return false;
2167 >        for (long c;;) {
2168 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2169 >                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2170 >                    synchronized (this) {
2171 >                        notifyAll();                // signal when 0 workers
2172 >                    }
2173 >                }
2174 >                return true;
2175 >            }
2176 >            if (plock >= 0) {                       // not yet enabled
2177 >                int ps;
2178 >                if (!enable)
2179 >                    return false;
2180 >                if (((ps = plock) & PL_LOCK) != 0 ||
2181 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2182 >                    ps = acquirePlock();
2183 >                int nps = SHUTDOWN;
2184 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2185 >                    releasePlock(nps);
2186 >            }
2187 >            if (!now) {                             // check if idle & no tasks
2188 >                if ((int)(c >> AC_SHIFT) != -parallelism ||
2189 >                    hasQueuedSubmissions())
2190 >                    return false;
2191 >                // Check for unqueued inactive workers. One pass suffices.
2192 >                WorkQueue[] ws = workQueues; WorkQueue w;
2193 >                if (ws != null) {
2194 >                    for (int i = 1; i < ws.length; i += 2) {
2195 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2196 >                            return false;
2197 >                    }
2198 >                }
2199 >            }
2200 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2201 >                for (int pass = 0; pass < 3; ++pass) {
2202 >                    WorkQueue[] ws = workQueues;
2203 >                    if (ws != null) {
2204 >                        WorkQueue w;
2205 >                        int n = ws.length;
2206 >                        for (int i = 0; i < n; ++i) {
2207 >                            if ((w = ws[i]) != null) {
2208 >                                w.qlock = -1;
2209 >                                if (pass > 0) {
2210 >                                    w.cancelAll();
2211 >                                    if (pass > 1)
2212 >                                        w.interruptOwner();
2213 >                                }
2214 >                            }
2215 >                        }
2216 >                        // Wake up workers parked on event queue
2217 >                        int i, e; long cc; Thread p;
2218 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2219 >                               (i = e & SMASK) < n &&
2220 >                               (w = ws[i]) != null) {
2221 >                            long nc = ((long)(w.nextWait & E_MASK) |
2222 >                                       ((cc + AC_UNIT) & AC_MASK) |
2223 >                                       (cc & (TC_MASK|STOP_BIT)));
2224 >                            if (w.eventCount == (e | INT_SIGN) &&
2225 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2226 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2227 >                                w.qlock = -1;
2228 >                                if ((p = w.parker) != null)
2229 >                                    U.unpark(p);
2230 >                            }
2231 >                        }
2232 >                    }
2233 >                }
2234 >            }
2235          }
2236      }
2237  
2238 +    // external operations on common pool
2239 +
2240      /**
2241 <     * Unsticks all workers blocked on joins etc
2241 >     * Returns common pool queue for a thread that has submitted at
2242 >     * least one task.
2243       */
2244 <    private void interruptWorkers() {
2245 <        ForkJoinWorkerThread[] ws = workers;
2246 <        int nws = ws.length;
2247 <        for (int i = 0; i < nws; ++i) {
2248 <            ForkJoinWorkerThread w = ws[i];
2249 <            if (w != null && !w.isTerminated()) {
2250 <                try {
2251 <                    w.interrupt();
2252 <                } catch (SecurityException ignore) {
2253 <                }
2244 >    static WorkQueue commonSubmitterQueue() {
2245 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2246 >        return ((z = submitters.get()) != null &&
2247 >                (p = commonPool) != null &&
2248 >                (ws = p.workQueues) != null &&
2249 >                (m = ws.length - 1) >= 0) ?
2250 >            ws[m & z.seed & SQMASK] : null;
2251 >    }
2252 >
2253 >    /**
2254 >     * Tries to pop the given task from submitter's queue in common pool.
2255 >     */
2256 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2257 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2258 >        ForkJoinTask<?>[] a;  int m, s; long j;
2259 >        if ((z = submitters.get()) != null &&
2260 >            (p = commonPool) != null &&
2261 >            (ws = p.workQueues) != null &&
2262 >            (m = ws.length - 1) >= 0 &&
2263 >            (q = ws[m & z.seed & SQMASK]) != null &&
2264 >            (s = q.top) != q.base &&
2265 >            (a = q.array) != null &&
2266 >            U.getObjectVolatile
2267 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2268 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2269 >            if (q.array == a && q.top == s && // recheck
2270 >                U.compareAndSwapObject(a, j, t, null)) {
2271 >                q.top = s - 1;
2272 >                q.qlock = 0;
2273 >                return true;
2274              }
2275 +            q.qlock = 0;
2276          }
2277 +        return false;
2278      }
2279  
1199    // misc support for ForkJoinWorkerThread
1200
2280      /**
2281 <     * Returns pool number
2282 <     */
2283 <    final int getPoolNumber() {
2284 <        return poolNumber;
2281 >     * Tries to pop and run local tasks within the same computation
2282 >     * as the given root. On failure, tries to help complete from
2283 >     * other queues via helpComplete.
2284 >     */
2285 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2286 >        ForkJoinTask<?>[] a; int m;
2287 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2288 >            root != null && root.status >= 0) {
2289 >            for (;;) {
2290 >                int s; Object o; CountedCompleter<?> task = null;
2291 >                if ((s = q.top) - q.base > 0) {
2292 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2293 >                    if ((o = U.getObject(a, j)) != null &&
2294 >                        (o instanceof CountedCompleter)) {
2295 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2296 >                        do {
2297 >                            if (r == root) {
2298 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2299 >                                    if (q.array == a && q.top == s &&
2300 >                                        U.compareAndSwapObject(a, j, t, null)) {
2301 >                                        q.top = s - 1;
2302 >                                        task = t;
2303 >                                    }
2304 >                                    q.qlock = 0;
2305 >                                }
2306 >                                break;
2307 >                            }
2308 >                        } while ((r = r.completer) != null);
2309 >                    }
2310 >                }
2311 >                if (task != null)
2312 >                    task.doExec();
2313 >                if (root.status < 0 || (int)(ctl >> AC_SHIFT) >= 0)
2314 >                    break;
2315 >                if (task == null) {
2316 >                    if (helpSignal(root, q.poolIndex) >= 0)
2317 >                        helpComplete(root, SHARED_QUEUE);
2318 >                    break;
2319 >                }
2320 >            }
2321 >        }
2322      }
2323  
2324      /**
2325 <     * Accumulates steal count from a worker, clearing
2326 <     * the worker's value
2325 >     * Tries to help execute or signal availability of the given task
2326 >     * from submitter's queue in common pool.
2327       */
2328 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
2329 <        int sc = w.stealCount;
2330 <        if (sc != 0) {
2331 <            long c;
2332 <            w.stealCount = 0;
2333 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
2334 <                                                    c = stealCount, c + sc));
2328 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2329 >        // Some hard-to-avoid overlap with tryExternalUnpush
2330 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2331 >        ForkJoinTask<?>[] a;  int m, s, n; long j;
2332 >        if (t != null && t.status >= 0 &&
2333 >            (z = submitters.get()) != null &&
2334 >            (p = commonPool) != null &&
2335 >            (ws = p.workQueues) != null &&
2336 >            (m = ws.length - 1) >= 0 &&
2337 >            (q = ws[m & z.seed & SQMASK]) != null &&
2338 >            (a = q.array) != null) {
2339 >            if ((s = q.top) != q.base &&
2340 >                U.getObjectVolatile
2341 >                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2342 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2343 >                if (q.array == a && q.top == s &&
2344 >                    U.compareAndSwapObject(a, j, t, null)) {
2345 >                    q.top = s - 1;
2346 >                    q.qlock = 0;
2347 >                    t.doExec();
2348 >                }
2349 >                else
2350 >                    q.qlock = 0;
2351 >            }
2352 >            if (t.status >= 0) {
2353 >                if (t instanceof CountedCompleter)
2354 >                    p.externalHelpComplete(q, t);
2355 >                else
2356 >                    p.helpSignal(t, q.poolIndex);
2357 >            }
2358          }
2359      }
2360  
2361      /**
2362 <     * Returns the approximate (non-atomic) number of idle threads per
1224 <     * active thread.
2362 >     * Restricted version of helpQuiescePool for external callers
2363       */
2364 <    final int idlePerActive() {
2365 <        int pc = parallelism; // use parallelism, not rc
2366 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2367 <        // Use exact results for small values, saturate past 4
2368 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2364 >    static void externalHelpQuiescePool() {
2365 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2366 >        int r = ThreadLocalRandom.current().nextInt();
2367 >        if ((p = commonPool) != null &&
2368 >            (q = p.findNonEmptyStealQueue(r)) != null &&
2369 >            (b = q.base) - q.top < 0 &&
2370 >            (t = q.pollAt(b)) != null)
2371 >            t.doExec();
2372      }
2373  
2374 <    // Public and protected methods
2374 >    // Exported methods
2375  
2376      // Constructors
2377  
# Line 1275 | Line 2416 | public class ForkJoinPool extends Abstra
2416       * use {@link java.lang.Runtime#availableProcessors}.
2417       * @param factory the factory for creating new threads. For default value,
2418       * use {@link #defaultForkJoinWorkerThreadFactory}.
2419 <     * @param handler the handler for internal worker threads that
2420 <     * terminate due to unrecoverable errors encountered while executing
2421 <     * tasks. For default value, use <code>null</code>.
2422 <     * @param asyncMode if true,
2419 >     * @param handler the handler for internal worker threads that
2420 >     * terminate due to unrecoverable errors encountered while executing
2421 >     * tasks. For default value, use {@code null}.
2422 >     * @param asyncMode if true,
2423       * establishes local first-in-first-out scheduling mode for forked
2424       * tasks that are never joined. This mode may be more appropriate
2425       * than default locally stack-based mode in applications in which
2426       * worker threads only process event-style asynchronous tasks.
2427 <     * For default value, use <code>false</code>.
2427 >     * For default value, use {@code false}.
2428       * @throws IllegalArgumentException if parallelism less than or
2429       *         equal to zero, or greater than implementation limit
2430       * @throws NullPointerException if the factory is null
# Line 1292 | Line 2433 | public class ForkJoinPool extends Abstra
2433       *         because it does not hold {@link
2434       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2435       */
2436 <    public ForkJoinPool(int parallelism,
2436 >    public ForkJoinPool(int parallelism,
2437                          ForkJoinWorkerThreadFactory factory,
2438                          Thread.UncaughtExceptionHandler handler,
2439                          boolean asyncMode) {
2440          checkPermission();
2441          if (factory == null)
2442              throw new NullPointerException();
2443 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2443 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2444              throw new IllegalArgumentException();
2445          this.parallelism = parallelism;
2446          this.factory = factory;
2447          this.ueh = handler;
2448 <        this.locallyFifo = asyncMode;
2449 <        int arraySize = initialArraySizeFor(parallelism);
2450 <        this.workers = new ForkJoinWorkerThread[arraySize];
2451 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2452 <        this.workerLock = new ReentrantLock();
2453 <        this.termination = new Phaser(1);
2454 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2448 >        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2449 >        long np = (long)(-parallelism); // offset ctl counts
2450 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2451 >        int pn = nextPoolId();
2452 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2453 >        sb.append(Integer.toString(pn));
2454 >        sb.append("-worker-");
2455 >        this.workerNamePrefix = sb.toString();
2456      }
2457  
2458      /**
2459 <     * Returns initial power of two size for workers array.
2460 <     * @param pc the initial parallelism level
2461 <     */
2462 <    private static int initialArraySizeFor(int pc) {
2463 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
2464 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
2465 <        size |= size >>> 1;
2466 <        size |= size >>> 2;
2467 <        size |= size >>> 4;
2468 <        size |= size >>> 8;
2469 <        return size + 1;
2459 >     * Constructor for common pool, suitable only for static initialization.
2460 >     * Basically the same as above, but uses smallest possible initial footprint.
2461 >     */
2462 >    ForkJoinPool(int parallelism, long ctl,
2463 >                 ForkJoinWorkerThreadFactory factory,
2464 >                 Thread.UncaughtExceptionHandler handler) {
2465 >        this.parallelism = parallelism;
2466 >        this.ctl = ctl;
2467 >        this.factory = factory;
2468 >        this.ueh = handler;
2469 >        this.localMode = LIFO_QUEUE;
2470 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2471      }
2472  
1330    // Execution methods
1331
2473      /**
2474 <     * Common code for execute, invoke and submit
2474 >     * Returns the common pool instance.
2475 >     *
2476 >     * @return the common pool instance
2477       */
2478 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2479 <        if (task == null)
1337 <            throw new NullPointerException();
1338 <        if (runState >= SHUTDOWN)
1339 <            throw new RejectedExecutionException();
1340 <        submissionQueue.offer(task);
1341 <        signalEvent();
1342 <        ensureEnoughWorkers();
2478 >    public static ForkJoinPool commonPool() {
2479 >        return commonPool; // cannot be null (if so, a static init error)
2480      }
2481  
2482 +    // Execution methods
2483 +
2484      /**
2485       * Performs the given task, returning its result upon completion.
2486 <     * If the caller is already engaged in a fork/join computation in
2487 <     * the current pool, this method is equivalent in effect to
2488 <     * {@link ForkJoinTask#invoke}.
2486 >     * If the computation encounters an unchecked Exception or Error,
2487 >     * it is rethrown as the outcome of this invocation.  Rethrown
2488 >     * exceptions behave in the same way as regular exceptions, but,
2489 >     * when possible, contain stack traces (as displayed for example
2490 >     * using {@code ex.printStackTrace()}) of both the current thread
2491 >     * as well as the thread actually encountering the exception;
2492 >     * minimally only the latter.
2493       *
2494       * @param task the task
2495       * @return the task's result
# Line 1355 | Line 2498 | public class ForkJoinPool extends Abstra
2498       *         scheduled for execution
2499       */
2500      public <T> T invoke(ForkJoinTask<T> task) {
2501 <        doSubmit(task);
2501 >        if (task == null)
2502 >            throw new NullPointerException();
2503 >        externalPush(task);
2504          return task.join();
2505      }
2506  
2507      /**
2508       * Arranges for (asynchronous) execution of the given task.
1364     * If the caller is already engaged in a fork/join computation in
1365     * the current pool, this method is equivalent in effect to
1366     * {@link ForkJoinTask#fork}.
2509       *
2510       * @param task the task
2511       * @throws NullPointerException if the task is null
# Line 1371 | Line 2513 | public class ForkJoinPool extends Abstra
2513       *         scheduled for execution
2514       */
2515      public void execute(ForkJoinTask<?> task) {
2516 <        doSubmit(task);
2516 >        if (task == null)
2517 >            throw new NullPointerException();
2518 >        externalPush(task);
2519      }
2520  
2521      // AbstractExecutorService methods
# Line 1382 | Line 2526 | public class ForkJoinPool extends Abstra
2526       *         scheduled for execution
2527       */
2528      public void execute(Runnable task) {
2529 +        if (task == null)
2530 +            throw new NullPointerException();
2531          ForkJoinTask<?> job;
2532          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2533              job = (ForkJoinTask<?>) task;
2534          else
2535 <            job = ForkJoinTask.adapt(task, null);
2536 <        doSubmit(job);
2535 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2536 >        externalPush(job);
2537      }
2538  
2539      /**
2540       * Submits a ForkJoinTask for execution.
1395     * If the caller is already engaged in a fork/join computation in
1396     * the current pool, this method is equivalent in effect to
1397     * {@link ForkJoinTask#fork}.
2541       *
2542       * @param task the task to submit
2543       * @return the task
# Line 1403 | Line 2546 | public class ForkJoinPool extends Abstra
2546       *         scheduled for execution
2547       */
2548      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2549 <        doSubmit(task);
2549 >        if (task == null)
2550 >            throw new NullPointerException();
2551 >        externalPush(task);
2552          return task;
2553      }
2554  
# Line 1413 | Line 2558 | public class ForkJoinPool extends Abstra
2558       *         scheduled for execution
2559       */
2560      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2561 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2562 <        doSubmit(job);
2561 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2562 >        externalPush(job);
2563          return job;
2564      }
2565  
# Line 1424 | Line 2569 | public class ForkJoinPool extends Abstra
2569       *         scheduled for execution
2570       */
2571      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2572 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2573 <        doSubmit(job);
2572 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2573 >        externalPush(job);
2574          return job;
2575      }
2576  
# Line 1435 | Line 2580 | public class ForkJoinPool extends Abstra
2580       *         scheduled for execution
2581       */
2582      public ForkJoinTask<?> submit(Runnable task) {
2583 +        if (task == null)
2584 +            throw new NullPointerException();
2585          ForkJoinTask<?> job;
2586          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2587              job = (ForkJoinTask<?>) task;
2588          else
2589 <            job = ForkJoinTask.adapt(task, null);
2590 <        doSubmit(job);
2589 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2590 >        externalPush(job);
2591          return job;
2592      }
2593  
# Line 1449 | Line 2596 | public class ForkJoinPool extends Abstra
2596       * @throws RejectedExecutionException {@inheritDoc}
2597       */
2598      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2599 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2600 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2601 <        for (Callable<T> task : tasks)
2602 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2603 <        invoke(new InvokeAll<T>(forkJoinTasks));
2604 <
2599 >        // In previous versions of this class, this method constructed
2600 >        // a task to run ForkJoinTask.invokeAll, but now external
2601 >        // invocation of multiple tasks is at least as efficient.
2602 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2603 >        // Workaround needed because method wasn't declared with
2604 >        // wildcards in return type but should have been.
2605          @SuppressWarnings({"unchecked", "rawtypes"})
2606 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1460 <        return futures;
1461 <    }
2606 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2607  
2608 <    static final class InvokeAll<T> extends RecursiveAction {
2609 <        final ArrayList<ForkJoinTask<T>> tasks;
2610 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2611 <        public void compute() {
2612 <            try { invokeAll(tasks); }
2613 <            catch (Exception ignore) {}
2608 >        boolean done = false;
2609 >        try {
2610 >            for (Callable<T> t : tasks) {
2611 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2612 >                externalPush(f);
2613 >                fs.add(f);
2614 >            }
2615 >            for (ForkJoinTask<T> f : fs)
2616 >                f.quietlyJoin();
2617 >            done = true;
2618 >            return futures;
2619 >        } finally {
2620 >            if (!done)
2621 >                for (ForkJoinTask<T> f : fs)
2622 >                    f.cancel(false);
2623          }
1470        private static final long serialVersionUID = -7914297376763021607L;
2624      }
2625  
2626      /**
# Line 1499 | Line 2652 | public class ForkJoinPool extends Abstra
2652      }
2653  
2654      /**
2655 +     * Returns the targeted parallelism level of the common pool.
2656 +     *
2657 +     * @return the targeted parallelism level of the common pool
2658 +     */
2659 +    public static int getCommonPoolParallelism() {
2660 +        return commonPoolParallelism;
2661 +    }
2662 +
2663 +    /**
2664       * Returns the number of worker threads that have started but not
2665 <     * yet terminated.  This result returned by this method may differ
2665 >     * yet terminated.  The result returned by this method may differ
2666       * from {@link #getParallelism} when threads are created to
2667       * maintain parallelism when others are cooperatively blocked.
2668       *
2669       * @return the number of worker threads
2670       */
2671      public int getPoolSize() {
2672 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2672 >        return parallelism + (short)(ctl >>> TC_SHIFT);
2673      }
2674  
2675      /**
# Line 1517 | Line 2679 | public class ForkJoinPool extends Abstra
2679       * @return {@code true} if this pool uses async mode
2680       */
2681      public boolean getAsyncMode() {
2682 <        return locallyFifo;
2682 >        return localMode != 0;
2683      }
2684  
2685      /**
# Line 1529 | Line 2691 | public class ForkJoinPool extends Abstra
2691       * @return the number of worker threads
2692       */
2693      public int getRunningThreadCount() {
2694 <        return workerCounts & RUNNING_COUNT_MASK;
2694 >        int rc = 0;
2695 >        WorkQueue[] ws; WorkQueue w;
2696 >        if ((ws = workQueues) != null) {
2697 >            for (int i = 1; i < ws.length; i += 2) {
2698 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2699 >                    ++rc;
2700 >            }
2701 >        }
2702 >        return rc;
2703      }
2704  
2705      /**
# Line 1540 | Line 2710 | public class ForkJoinPool extends Abstra
2710       * @return the number of active threads
2711       */
2712      public int getActiveThreadCount() {
2713 <        return runState & ACTIVE_COUNT_MASK;
2713 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
2714 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2715      }
2716  
2717      /**
# Line 1555 | Line 2726 | public class ForkJoinPool extends Abstra
2726       * @return {@code true} if all threads are currently idle
2727       */
2728      public boolean isQuiescent() {
2729 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2729 >        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2730      }
2731  
2732      /**
# Line 1570 | Line 2741 | public class ForkJoinPool extends Abstra
2741       * @return the number of steals
2742       */
2743      public long getStealCount() {
2744 <        return stealCount;
2744 >        long count = stealCount;
2745 >        WorkQueue[] ws; WorkQueue w;
2746 >        if ((ws = workQueues) != null) {
2747 >            for (int i = 1; i < ws.length; i += 2) {
2748 >                if ((w = ws[i]) != null)
2749 >                    count += w.nsteals;
2750 >            }
2751 >        }
2752 >        return count;
2753      }
2754  
2755      /**
# Line 1585 | Line 2764 | public class ForkJoinPool extends Abstra
2764       */
2765      public long getQueuedTaskCount() {
2766          long count = 0;
2767 <        ForkJoinWorkerThread[] ws = workers;
2768 <        int nws = ws.length;
2769 <        for (int i = 0; i < nws; ++i) {
2770 <            ForkJoinWorkerThread w = ws[i];
2771 <            if (w != null)
2772 <                count += w.getQueueSize();
2767 >        WorkQueue[] ws; WorkQueue w;
2768 >        if ((ws = workQueues) != null) {
2769 >            for (int i = 1; i < ws.length; i += 2) {
2770 >                if ((w = ws[i]) != null)
2771 >                    count += w.queueSize();
2772 >            }
2773          }
2774          return count;
2775      }
2776  
2777      /**
2778       * Returns an estimate of the number of tasks submitted to this
2779 <     * pool that have not yet begun executing.  This method takes time
2780 <     * proportional to the number of submissions.
2779 >     * pool that have not yet begun executing.  This method may take
2780 >     * time proportional to the number of submissions.
2781       *
2782       * @return the number of queued submissions
2783       */
2784      public int getQueuedSubmissionCount() {
2785 <        return submissionQueue.size();
2785 >        int count = 0;
2786 >        WorkQueue[] ws; WorkQueue w;
2787 >        if ((ws = workQueues) != null) {
2788 >            for (int i = 0; i < ws.length; i += 2) {
2789 >                if ((w = ws[i]) != null)
2790 >                    count += w.queueSize();
2791 >            }
2792 >        }
2793 >        return count;
2794      }
2795  
2796      /**
# Line 1613 | Line 2800 | public class ForkJoinPool extends Abstra
2800       * @return {@code true} if there are any queued submissions
2801       */
2802      public boolean hasQueuedSubmissions() {
2803 <        return !submissionQueue.isEmpty();
2803 >        WorkQueue[] ws; WorkQueue w;
2804 >        if ((ws = workQueues) != null) {
2805 >            for (int i = 0; i < ws.length; i += 2) {
2806 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2807 >                    return true;
2808 >            }
2809 >        }
2810 >        return false;
2811      }
2812  
2813      /**
# Line 1624 | Line 2818 | public class ForkJoinPool extends Abstra
2818       * @return the next submission, or {@code null} if none
2819       */
2820      protected ForkJoinTask<?> pollSubmission() {
2821 <        return submissionQueue.poll();
2821 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2822 >        if ((ws = workQueues) != null) {
2823 >            for (int i = 0; i < ws.length; i += 2) {
2824 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2825 >                    return t;
2826 >            }
2827 >        }
2828 >        return null;
2829      }
2830  
2831      /**
# Line 1645 | Line 2846 | public class ForkJoinPool extends Abstra
2846       * @return the number of elements transferred
2847       */
2848      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1648        int n = submissionQueue.drainTo(c);
1649        ForkJoinWorkerThread[] ws = workers;
1650        int nws = ws.length;
1651        for (int i = 0; i < nws; ++i) {
1652            ForkJoinWorkerThread w = ws[i];
1653            if (w != null)
1654                n += w.drainTasksTo(c);
1655        }
1656        return n;
1657    }
1658
1659    /**
1660     * Returns count of total parks by existing workers.
1661     * Used during development only since not meaningful to users.
1662     */
1663    private int collectParkCount() {
2849          int count = 0;
2850 <        ForkJoinWorkerThread[] ws = workers;
2851 <        int nws = ws.length;
2852 <        for (int i = 0; i < nws; ++i) {
2853 <            ForkJoinWorkerThread w = ws[i];
2854 <            if (w != null)
2855 <                count += w.parkCount;
2850 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2851 >        if ((ws = workQueues) != null) {
2852 >            for (int i = 0; i < ws.length; ++i) {
2853 >                if ((w = ws[i]) != null) {
2854 >                    while ((t = w.poll()) != null) {
2855 >                        c.add(t);
2856 >                        ++count;
2857 >                    }
2858 >                }
2859 >            }
2860          }
2861          return count;
2862      }
# Line 1680 | Line 2869 | public class ForkJoinPool extends Abstra
2869       * @return a string identifying this pool, as well as its state
2870       */
2871      public String toString() {
2872 <        long st = getStealCount();
2873 <        long qt = getQueuedTaskCount();
2874 <        long qs = getQueuedSubmissionCount();
2875 <        int wc = workerCounts;
2876 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2877 <        int rc = wc & RUNNING_COUNT_MASK;
2872 >        // Use a single pass through workQueues to collect counts
2873 >        long qt = 0L, qs = 0L; int rc = 0;
2874 >        long st = stealCount;
2875 >        long c = ctl;
2876 >        WorkQueue[] ws; WorkQueue w;
2877 >        if ((ws = workQueues) != null) {
2878 >            for (int i = 0; i < ws.length; ++i) {
2879 >                if ((w = ws[i]) != null) {
2880 >                    int size = w.queueSize();
2881 >                    if ((i & 1) == 0)
2882 >                        qs += size;
2883 >                    else {
2884 >                        qt += size;
2885 >                        st += w.nsteals;
2886 >                        if (w.isApparentlyUnblocked())
2887 >                            ++rc;
2888 >                    }
2889 >                }
2890 >            }
2891 >        }
2892          int pc = parallelism;
2893 <        int rs = runState;
2894 <        int ac = rs & ACTIVE_COUNT_MASK;
2895 <        //        int pk = collectParkCount();
2893 >        int tc = pc + (short)(c >>> TC_SHIFT);
2894 >        int ac = pc + (int)(c >> AC_SHIFT);
2895 >        if (ac < 0) // ignore transient negative
2896 >            ac = 0;
2897 >        String level;
2898 >        if ((c & STOP_BIT) != 0)
2899 >            level = (tc == 0) ? "Terminated" : "Terminating";
2900 >        else
2901 >            level = plock < 0 ? "Shutting down" : "Running";
2902          return super.toString() +
2903 <            "[" + runLevelToString(rs) +
2903 >            "[" + level +
2904              ", parallelism = " + pc +
2905              ", size = " + tc +
2906              ", active = " + ac +
# Line 1699 | Line 2908 | public class ForkJoinPool extends Abstra
2908              ", steals = " + st +
2909              ", tasks = " + qt +
2910              ", submissions = " + qs +
1702            //            ", parks = " + pk +
2911              "]";
2912      }
2913  
1706    private static String runLevelToString(int s) {
1707        return ((s & TERMINATED) != 0 ? "Terminated" :
1708                ((s & TERMINATING) != 0 ? "Terminating" :
1709                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1710                  "Running")));
1711    }
1712
2914      /**
2915 <     * Initiates an orderly shutdown in which previously submitted
2916 <     * tasks are executed, but no new tasks will be accepted.
2917 <     * Invocation has no additional effect if already shut down.
2918 <     * Tasks that are in the process of being submitted concurrently
2919 <     * during the course of this method may or may not be rejected.
2915 >     * Possibly initiates an orderly shutdown in which previously
2916 >     * submitted tasks are executed, but no new tasks will be
2917 >     * accepted. Invocation has no effect on execution state if this
2918 >     * is the {@link #commonPool}, and no additional effect if
2919 >     * already shut down.  Tasks that are in the process of being
2920 >     * submitted concurrently during the course of this method may or
2921 >     * may not be rejected.
2922       *
2923       * @throws SecurityException if a security manager exists and
2924       *         the caller is not permitted to modify threads
# Line 1724 | Line 2927 | public class ForkJoinPool extends Abstra
2927       */
2928      public void shutdown() {
2929          checkPermission();
2930 <        advanceRunLevel(SHUTDOWN);
1728 <        tryTerminate(false);
2930 >        tryTerminate(false, true);
2931      }
2932  
2933      /**
2934 <     * Attempts to cancel and/or stop all tasks, and reject all
2935 <     * subsequently submitted tasks.  Tasks that are in the process of
2936 <     * being submitted or executed concurrently during the course of
2937 <     * this method may or may not be rejected. This method cancels
2938 <     * both existing and unexecuted tasks, in order to permit
2939 <     * termination in the presence of task dependencies. So the method
2940 <     * always returns an empty list (unlike the case for some other
2941 <     * Executors).
2934 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2935 >     * all subsequently submitted tasks.  Invocation has no effect on
2936 >     * execution state if this is the {@link #commonPool}, and no
2937 >     * additional effect if already shut down. Otherwise, tasks that
2938 >     * are in the process of being submitted or executed concurrently
2939 >     * during the course of this method may or may not be
2940 >     * rejected. This method cancels both existing and unexecuted
2941 >     * tasks, in order to permit termination in the presence of task
2942 >     * dependencies. So the method always returns an empty list
2943 >     * (unlike the case for some other Executors).
2944       *
2945       * @return an empty list
2946       * @throws SecurityException if a security manager exists and
# Line 1746 | Line 2950 | public class ForkJoinPool extends Abstra
2950       */
2951      public List<Runnable> shutdownNow() {
2952          checkPermission();
2953 <        tryTerminate(true);
2953 >        tryTerminate(true, true);
2954          return Collections.emptyList();
2955      }
2956  
# Line 1756 | Line 2960 | public class ForkJoinPool extends Abstra
2960       * @return {@code true} if all tasks have completed following shut down
2961       */
2962      public boolean isTerminated() {
2963 <        return runState >= TERMINATED;
2963 >        long c = ctl;
2964 >        return ((c & STOP_BIT) != 0L &&
2965 >                (short)(c >>> TC_SHIFT) == -parallelism);
2966      }
2967  
2968      /**
# Line 1764 | Line 2970 | public class ForkJoinPool extends Abstra
2970       * commenced but not yet completed.  This method may be useful for
2971       * debugging. A return of {@code true} reported a sufficient
2972       * period after shutdown may indicate that submitted tasks have
2973 <     * ignored or suppressed interruption, causing this executor not
2974 <     * to properly terminate.
2973 >     * ignored or suppressed interruption, or are waiting for IO,
2974 >     * causing this executor not to properly terminate. (See the
2975 >     * advisory notes for class {@link ForkJoinTask} stating that
2976 >     * tasks should not normally entail blocking operations.  But if
2977 >     * they do, they must abort them on interrupt.)
2978       *
2979       * @return {@code true} if terminating but not yet terminated
2980       */
2981      public boolean isTerminating() {
2982 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
2982 >        long c = ctl;
2983 >        return ((c & STOP_BIT) != 0L &&
2984 >                (short)(c >>> TC_SHIFT) != -parallelism);
2985      }
2986  
2987      /**
# Line 1779 | Line 2990 | public class ForkJoinPool extends Abstra
2990       * @return {@code true} if this pool has been shut down
2991       */
2992      public boolean isShutdown() {
2993 <        return runState >= SHUTDOWN;
2993 >        return plock < 0;
2994      }
2995  
2996      /**
2997 <     * Blocks until all tasks have completed execution after a shutdown
2998 <     * request, or the timeout occurs, or the current thread is
2999 <     * interrupted, whichever happens first.
2997 >     * Blocks until all tasks have completed execution after a
2998 >     * shutdown request, or the timeout occurs, or the current thread
2999 >     * is interrupted, whichever happens first. Note that the {@link
3000 >     * #commonPool()} never terminates until program shutdown so
3001 >     * this method will always time out.
3002       *
3003       * @param timeout the maximum time to wait
3004       * @param unit the time unit of the timeout argument
# Line 1795 | Line 3008 | public class ForkJoinPool extends Abstra
3008       */
3009      public boolean awaitTermination(long timeout, TimeUnit unit)
3010          throws InterruptedException {
3011 <        try {
3012 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
3013 <        } catch(TimeoutException ex) {
3014 <            return false;
3011 >        long nanos = unit.toNanos(timeout);
3012 >        if (isTerminated())
3013 >            return true;
3014 >        long startTime = System.nanoTime();
3015 >        boolean terminated = false;
3016 >        synchronized (this) {
3017 >            for (long waitTime = nanos, millis = 0L;;) {
3018 >                if (terminated = isTerminated() ||
3019 >                    waitTime <= 0L ||
3020 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3021 >                    break;
3022 >                wait(millis);
3023 >                waitTime = nanos - (System.nanoTime() - startTime);
3024 >            }
3025          }
3026 +        return terminated;
3027      }
3028  
3029      /**
3030       * Interface for extending managed parallelism for tasks running
3031       * in {@link ForkJoinPool}s.
3032       *
3033 <     * <p>A {@code ManagedBlocker} provides two methods.
3034 <     * Method {@code isReleasable} must return {@code true} if
3035 <     * blocking is not necessary. Method {@code block} blocks the
3036 <     * current thread if necessary (perhaps internally invoking
3037 <     * {@code isReleasable} before actually blocking).
3033 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3034 >     * {@code isReleasable} must return {@code true} if blocking is
3035 >     * not necessary. Method {@code block} blocks the current thread
3036 >     * if necessary (perhaps internally invoking {@code isReleasable}
3037 >     * before actually blocking). These actions are performed by any
3038 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3039 >     * unusual methods in this API accommodate synchronizers that may,
3040 >     * but don't usually, block for long periods. Similarly, they
3041 >     * allow more efficient internal handling of cases in which
3042 >     * additional workers may be, but usually are not, needed to
3043 >     * ensure sufficient parallelism.  Toward this end,
3044 >     * implementations of method {@code isReleasable} must be amenable
3045 >     * to repeated invocation.
3046       *
3047       * <p>For example, here is a ManagedBlocker based on a
3048       * ReentrantLock:
# Line 1828 | Line 3060 | public class ForkJoinPool extends Abstra
3060       *     return hasLock || (hasLock = lock.tryLock());
3061       *   }
3062       * }}</pre>
3063 +     *
3064 +     * <p>Here is a class that possibly blocks waiting for an
3065 +     * item on a given queue:
3066 +     *  <pre> {@code
3067 +     * class QueueTaker<E> implements ManagedBlocker {
3068 +     *   final BlockingQueue<E> queue;
3069 +     *   volatile E item = null;
3070 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3071 +     *   public boolean block() throws InterruptedException {
3072 +     *     if (item == null)
3073 +     *       item = queue.take();
3074 +     *     return true;
3075 +     *   }
3076 +     *   public boolean isReleasable() {
3077 +     *     return item != null || (item = queue.poll()) != null;
3078 +     *   }
3079 +     *   public E getItem() { // call after pool.managedBlock completes
3080 +     *     return item;
3081 +     *   }
3082 +     * }}</pre>
3083       */
3084      public static interface ManagedBlocker {
3085          /**
# Line 1870 | Line 3122 | public class ForkJoinPool extends Abstra
3122      public static void managedBlock(ManagedBlocker blocker)
3123          throws InterruptedException {
3124          Thread t = Thread.currentThread();
3125 <        if (t instanceof ForkJoinWorkerThread)
3126 <            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
3125 >        if (t instanceof ForkJoinWorkerThread) {
3126 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3127 >            while (!blocker.isReleasable()) { // variant of helpSignal
3128 >                WorkQueue[] ws; WorkQueue q; int m, n;
3129 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3130 >                    for (int i = 0; i <= m; ++i) {
3131 >                        if (blocker.isReleasable())
3132 >                            return;
3133 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3134 >                            p.signalWork(q, n);
3135 >                            if ((int)(p.ctl >> AC_SHIFT) >= 0)
3136 >                                break;
3137 >                        }
3138 >                    }
3139 >                }
3140 >                if (p.tryCompensate()) {
3141 >                    try {
3142 >                        do {} while (!blocker.isReleasable() &&
3143 >                                     !blocker.block());
3144 >                    } finally {
3145 >                        p.incrementActiveCount();
3146 >                    }
3147 >                    break;
3148 >                }
3149 >            }
3150 >        }
3151          else {
3152 <            do {} while (!blocker.isReleasable() && !blocker.block());
3152 >            do {} while (!blocker.isReleasable() &&
3153 >                         !blocker.block());
3154          }
3155      }
3156  
# Line 1882 | Line 3159 | public class ForkJoinPool extends Abstra
3159      // implement RunnableFuture.
3160  
3161      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3162 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3162 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3163      }
3164  
3165      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3166 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3166 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3167      }
3168  
3169      // Unsafe mechanics
3170 <
3171 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3172 <    private static final long workerCountsOffset =
3173 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
3174 <    private static final long runStateOffset =
3175 <        objectFieldOffset("runState", ForkJoinPool.class);
3176 <    private static final long eventCountOffset =
3177 <        objectFieldOffset("eventCount", ForkJoinPool.class);
3178 <    private static final long eventWaitersOffset =
3179 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
3180 <    private static final long stealCountOffset =
3181 <        objectFieldOffset("stealCount",ForkJoinPool.class);
3182 <
3183 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3170 >    private static final sun.misc.Unsafe U;
3171 >    private static final long CTL;
3172 >    private static final long PARKBLOCKER;
3173 >    private static final int ABASE;
3174 >    private static final int ASHIFT;
3175 >    private static final long STEALCOUNT;
3176 >    private static final long PLOCK;
3177 >    private static final long INDEXSEED;
3178 >    private static final long QLOCK;
3179 >
3180 >    static {
3181 >        // Establish common pool parameters
3182 >        // TBD: limit or report ignored exceptions?
3183 >
3184 >        int par = 0;
3185 >        ForkJoinWorkerThreadFactory fac = null;
3186 >        Thread.UncaughtExceptionHandler handler = null;
3187          try {
3188 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3189 <        } catch (NoSuchFieldException e) {
3190 <            // Convert Exception to corresponding Error
3191 <            NoSuchFieldError error = new NoSuchFieldError(field);
3192 <            error.initCause(e);
3193 <            throw error;
3188 >            String pp = System.getProperty(propPrefix + "parallelism");
3189 >            String hp = System.getProperty(propPrefix + "exceptionHandler");
3190 >            String fp = System.getProperty(propPrefix + "threadFactory");
3191 >            if (fp != null)
3192 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3193 >                       getSystemClassLoader().loadClass(fp).newInstance());
3194 >            if (hp != null)
3195 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3196 >                           getSystemClassLoader().loadClass(hp).newInstance());
3197 >            if (pp != null)
3198 >                par = Integer.parseInt(pp);
3199 >        } catch (Exception ignore) {
3200          }
3201 +
3202 +        int s; // initialize field offsets for CAS etc
3203 +        try {
3204 +            U = getUnsafe();
3205 +            Class<?> k = ForkJoinPool.class;
3206 +            CTL = U.objectFieldOffset
3207 +                (k.getDeclaredField("ctl"));
3208 +            STEALCOUNT = U.objectFieldOffset
3209 +                (k.getDeclaredField("stealCount"));
3210 +            PLOCK = U.objectFieldOffset
3211 +                (k.getDeclaredField("plock"));
3212 +            INDEXSEED = U.objectFieldOffset
3213 +                (k.getDeclaredField("indexSeed"));
3214 +            Class<?> tk = Thread.class;
3215 +            PARKBLOCKER = U.objectFieldOffset
3216 +                (tk.getDeclaredField("parkBlocker"));
3217 +            Class<?> wk = WorkQueue.class;
3218 +            QLOCK = U.objectFieldOffset
3219 +                (wk.getDeclaredField("qlock"));
3220 +            Class<?> ak = ForkJoinTask[].class;
3221 +            ABASE = U.arrayBaseOffset(ak);
3222 +            s = U.arrayIndexScale(ak);
3223 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3224 +        } catch (Exception e) {
3225 +            throw new Error(e);
3226 +        }
3227 +        if ((s & (s-1)) != 0)
3228 +            throw new Error("data type scale not a power of two");
3229 +
3230 +        /*
3231 +         * For extra caution, computations to set up pool state are
3232 +         * here; the constructor just assigns these values to fields.
3233 +         */
3234 +        ForkJoinWorkerThreadFactory defaultFac =
3235 +            defaultForkJoinWorkerThreadFactory =
3236 +            new DefaultForkJoinWorkerThreadFactory();
3237 +        if (fac == null)
3238 +            fac = defaultFac;
3239 +        if (par <= 0)
3240 +            par = Runtime.getRuntime().availableProcessors();
3241 +        if (par > MAX_CAP)
3242 +            par = MAX_CAP;
3243 +        long np = (long)(-par); // precompute initial ctl value
3244 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3245 +
3246 +        commonPoolParallelism = par;
3247 +        commonPool = new ForkJoinPool(par, ct, fac, handler);
3248 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3249 +        submitters = new ThreadLocal<Submitter>();
3250      }
3251  
3252      /**
# Line 1941 | Line 3276 | public class ForkJoinPool extends Abstra
3276              }
3277          }
3278      }
3279 +
3280   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines