ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.72 by jsr166, Tue Sep 7 06:19:05 2010 UTC vs.
Revision 1.147 by jsr166, Tue Nov 20 05:18:42 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
16 < import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.CountDownLatch;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 26 | Line 28 | import java.util.concurrent.CountDownLat
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 50 | Line 62 | import java.util.concurrent.CountDownLat
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 84 | Line 97 | import java.util.concurrent.CountDownLat
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
110 < * <pre>
111 < * static final ForkJoinPool mainPool = new ForkJoinPool();
112 < * ...
113 < * public void sort(long[] array) {
101 < *   mainPool.invoke(new SortTask(array, 0, array.length));
102 < * }
103 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > <<<<<<< ForkJoinPool.java
107 > * exceptionHandler} -- the class name of a {@code
108 > =======
109 > * exceptionHandler} -- the class name of a {@link
110 > * java.lang.Thread.UncaughtExceptionHandler
111 > >>>>>>> 1.111
112 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
113 > * these settings, default parameters are used.
114   *
115   * <p><b>Implementation notes</b>: This implementation restricts the
116   * maximum number of running threads to 32767. Attempts to create
# Line 119 | Line 129 | public class ForkJoinPool extends Abstra
129      /*
130       * Implementation Overview
131       *
132 <     * This class provides the central bookkeeping and control for a
133 <     * set of worker threads: Submissions from non-FJ threads enter
134 <     * into a submission queue. Workers take these tasks and typically
135 <     * split them into subtasks that may be stolen by other workers.
136 <     * The main work-stealing mechanics implemented in class
137 <     * ForkJoinWorkerThread give first priority to processing tasks
138 <     * from their own queues (LIFO or FIFO, depending on mode), then
139 <     * to randomized FIFO steals of tasks in other worker queues, and
140 <     * lastly to new submissions. These mechanics do not consider
141 <     * affinities, loads, cache localities, etc, so rarely provide the
142 <     * best possible performance on a given machine, but portably
143 <     * provide good throughput by averaging over these factors.
144 <     * (Further, even if we did try to use such information, we do not
145 <     * usually have a basis for exploiting it. For example, some sets
146 <     * of tasks profit from cache affinities, but others are harmed by
147 <     * cache pollution effects.)
148 <     *
149 <     * Beyond work-stealing support and essential bookkeeping, the
150 <     * main responsibility of this framework is to take actions when
151 <     * one worker is waiting to join a task stolen (or always held by)
152 <     * another.  Because we are multiplexing many tasks on to a pool
153 <     * of workers, we can't just let them block (as in Thread.join).
154 <     * We also cannot just reassign the joiner's run-time stack with
155 <     * another and replace it later, which would be a form of
156 <     * "continuation", that even if possible is not necessarily a good
157 <     * idea. Given that the creation costs of most threads on most
158 <     * systems mainly surrounds setting up runtime stacks, thread
159 <     * creation and switching is usually not much more expensive than
160 <     * stack creation and switching, and is more flexible). Instead we
161 <     * combine two tactics:
132 >     * This class and its nested classes provide the main
133 >     * functionality and control for a set of worker threads:
134 >     * Submissions from non-FJ threads enter into submission queues.
135 >     * Workers take these tasks and typically split them into subtasks
136 >     * that may be stolen by other workers.  Preference rules give
137 >     * first priority to processing tasks from their own queues (LIFO
138 >     * or FIFO, depending on mode), then to randomized FIFO steals of
139 >     * tasks in other queues.
140 >     *
141 >     * WorkQueues
142 >     * ==========
143 >     *
144 >     * Most operations occur within work-stealing queues (in nested
145 >     * class WorkQueue).  These are special forms of Deques that
146 >     * support only three of the four possible end-operations -- push,
147 >     * pop, and poll (aka steal), under the further constraints that
148 >     * push and pop are called only from the owning thread (or, as
149 >     * extended here, under a lock), while poll may be called from
150 >     * other threads.  (If you are unfamiliar with them, you probably
151 >     * want to read Herlihy and Shavit's book "The Art of
152 >     * Multiprocessor programming", chapter 16 describing these in
153 >     * more detail before proceeding.)  The main work-stealing queue
154 >     * design is roughly similar to those in the papers "Dynamic
155 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
156 >     * (http://research.sun.com/scalable/pubs/index.html) and
157 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
158 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
159 >     * The main differences ultimately stem from GC requirements that
160 >     * we null out taken slots as soon as we can, to maintain as small
161 >     * a footprint as possible even in programs generating huge
162 >     * numbers of tasks. To accomplish this, we shift the CAS
163 >     * arbitrating pop vs poll (steal) from being on the indices
164 >     * ("base" and "top") to the slots themselves.  So, both a
165 >     * successful pop and poll mainly entail a CAS of a slot from
166 >     * non-null to null.  Because we rely on CASes of references, we
167 >     * do not need tag bits on base or top.  They are simple ints as
168 >     * used in any circular array-based queue (see for example
169 >     * ArrayDeque).  Updates to the indices must still be ordered in a
170 >     * way that guarantees that top == base means the queue is empty,
171 >     * but otherwise may err on the side of possibly making the queue
172 >     * appear nonempty when a push, pop, or poll have not fully
173 >     * committed. Note that this means that the poll operation,
174 >     * considered individually, is not wait-free. One thief cannot
175 >     * successfully continue until another in-progress one (or, if
176 >     * previously empty, a push) completes.  However, in the
177 >     * aggregate, we ensure at least probabilistic non-blockingness.
178 >     * If an attempted steal fails, a thief always chooses a different
179 >     * random victim target to try next. So, in order for one thief to
180 >     * progress, it suffices for any in-progress poll or new push on
181 >     * any empty queue to complete. (This is why we normally use
182 >     * method pollAt and its variants that try once at the apparent
183 >     * base index, else consider alternative actions, rather than
184 >     * method poll.)
185 >     *
186 >     * This approach also enables support of a user mode in which local
187 >     * task processing is in FIFO, not LIFO order, simply by using
188 >     * poll rather than pop.  This can be useful in message-passing
189 >     * frameworks in which tasks are never joined.  However neither
190 >     * mode considers affinities, loads, cache localities, etc, so
191 >     * rarely provide the best possible performance on a given
192 >     * machine, but portably provide good throughput by averaging over
193 >     * these factors.  (Further, even if we did try to use such
194 >     * information, we do not usually have a basis for exploiting it.
195 >     * For example, some sets of tasks profit from cache affinities,
196 >     * but others are harmed by cache pollution effects.)
197 >     *
198 >     * WorkQueues are also used in a similar way for tasks submitted
199 >     * to the pool. We cannot mix these tasks in the same queues used
200 >     * for work-stealing (this would contaminate lifo/fifo
201 >     * processing). Instead, we randomly associate submission queues
202 >     * with submitting threads, using a form of hashing.  The
203 >     * ThreadLocal Submitter class contains a value initially used as
204 >     * a hash code for choosing existing queues, but may be randomly
205 >     * repositioned upon contention with other submitters.  In
206 >     * essence, submitters act like workers except that they are
207 >     * restricted to executing local tasks that they submitted (or in
208 >     * the case of CountedCompleters, others with the same root task).
209 >     * However, because most shared/external queue operations are more
210 >     * expensive than internal, and because, at steady state, external
211 >     * submitters will compete for CPU with workers, ForkJoinTask.join
212 >     * and related methods disable them from repeatedly helping to
213 >     * process tasks if all workers are active.  Insertion of tasks in
214 >     * shared mode requires a lock (mainly to protect in the case of
215 >     * resizing) but we use only a simple spinlock (using bits in
216 >     * field qlock), because submitters encountering a busy queue move
217 >     * on to try or create other queues -- they block only when
218 >     * creating and registering new queues.
219 >     *
220 >     * Management
221 >     * ==========
222 >     *
223 >     * The main throughput advantages of work-stealing stem from
224 >     * decentralized control -- workers mostly take tasks from
225 >     * themselves or each other. We cannot negate this in the
226 >     * implementation of other management responsibilities. The main
227 >     * tactic for avoiding bottlenecks is packing nearly all
228 >     * essentially atomic control state into two volatile variables
229 >     * that are by far most often read (not written) as status and
230 >     * consistency checks.
231 >     *
232 >     * Field "ctl" contains 64 bits holding all the information needed
233 >     * to atomically decide to add, inactivate, enqueue (on an event
234 >     * queue), dequeue, and/or re-activate workers.  To enable this
235 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
236 >     * far in excess of normal operating range) to allow ids, counts,
237 >     * and their negations (used for thresholding) to fit into 16bit
238 >     * fields.
239 >     *
240 >     * Field "plock" is a form of sequence lock with a saturating
241 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
242 >     * protecting updates to the workQueues array, as well as to
243 >     * enable shutdown.  When used as a lock, it is normally only very
244 >     * briefly held, so is nearly always available after at most a
245 >     * brief spin, but we use a monitor-based backup strategy to
246 >     * block when needed.
247 >     *
248 >     * Recording WorkQueues.  WorkQueues are recorded in the
249 >     * "workQueues" array that is created upon first use and expanded
250 >     * if necessary.  Updates to the array while recording new workers
251 >     * and unrecording terminated ones are protected from each other
252 >     * by a lock but the array is otherwise concurrently readable, and
253 >     * accessed directly.  To simplify index-based operations, the
254 >     * array size is always a power of two, and all readers must
255 >     * tolerate null slots. Worker queues are at odd indices. Shared
256 >     * (submission) queues are at even indices, up to a maximum of 64
257 >     * slots, to limit growth even if array needs to expand to add
258 >     * more workers. Grouping them together in this way simplifies and
259 >     * speeds up task scanning.
260 >     *
261 >     * All worker thread creation is on-demand, triggered by task
262 >     * submissions, replacement of terminated workers, and/or
263 >     * compensation for blocked workers. However, all other support
264 >     * code is set up to work with other policies.  To ensure that we
265 >     * do not hold on to worker references that would prevent GC, ALL
266 >     * accesses to workQueues are via indices into the workQueues
267 >     * array (which is one source of some of the messy code
268 >     * constructions here). In essence, the workQueues array serves as
269 >     * a weak reference mechanism. Thus for example the wait queue
270 >     * field of ctl stores indices, not references.  Access to the
271 >     * workQueues in associated methods (for example signalWork) must
272 >     * both index-check and null-check the IDs. All such accesses
273 >     * ignore bad IDs by returning out early from what they are doing,
274 >     * since this can only be associated with termination, in which
275 >     * case it is OK to give up.  All uses of the workQueues array
276 >     * also check that it is non-null (even if previously
277 >     * non-null). This allows nulling during termination, which is
278 >     * currently not necessary, but remains an option for
279 >     * resource-revocation-based shutdown schemes. It also helps
280 >     * reduce JIT issuance of uncommon-trap code, which tends to
281 >     * unnecessarily complicate control flow in some methods.
282 >     *
283 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
284 >     * let workers spin indefinitely scanning for tasks when none can
285 >     * be found immediately, and we cannot start/resume workers unless
286 >     * there appear to be tasks available.  On the other hand, we must
287 >     * quickly prod them into action when new tasks are submitted or
288 >     * generated. In many usages, ramp-up time to activate workers is
289 >     * the main limiting factor in overall performance (this is
290 >     * compounded at program start-up by JIT compilation and
291 >     * allocation). So we try to streamline this as much as possible.
292 >     * We park/unpark workers after placing in an event wait queue
293 >     * when they cannot find work. This "queue" is actually a simple
294 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
295 >     * counter value (that reflects the number of times a worker has
296 >     * been inactivated) to avoid ABA effects (we need only as many
297 >     * version numbers as worker threads). Successors are held in
298 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
299 >     * races, mainly that a task-producing thread can miss seeing (and
300 >     * signalling) another thread that gave up looking for work but
301 >     * has not yet entered the wait queue. We solve this by requiring
302 >     * a full sweep of all workers (via repeated calls to method
303 >     * scan()) both before and after a newly waiting worker is added
304 >     * to the wait queue. During a rescan, the worker might release
305 >     * some other queued worker rather than itself, which has the same
306 >     * net effect. Because enqueued workers may actually be rescanning
307 >     * rather than waiting, we set and clear the "parker" field of
308 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
309 >     * requires a secondary recheck to avoid missed signals.)  Note
310 >     * the unusual conventions about Thread.interrupts surrounding
311 >     * parking and other blocking: Because interrupts are used solely
312 >     * to alert threads to check termination, which is checked anyway
313 >     * upon blocking, we clear status (using Thread.interrupted)
314 >     * before any call to park, so that park does not immediately
315 >     * return due to status being set via some other unrelated call to
316 >     * interrupt in user code.
317 >     *
318 >     * Signalling.  We create or wake up workers only when there
319 >     * appears to be at least one task they might be able to find and
320 >     * execute. However, many other threads may notice the same task
321 >     * and each signal to wake up a thread that might take it. So in
322 >     * general, pools will be over-signalled.  When a submission is
323 >     * added or another worker adds a task to a queue that is
324 >     * apparently empty, they signal waiting workers (or trigger
325 >     * creation of new ones if fewer than the given parallelism
326 >     * level).  These primary signals are buttressed by signals
327 >     * whenever other threads scan for work or do not have a task to
328 >     * process (including the case of leaving a hint to unparked
329 >     * threads to help signal others upon wakeup).  On most platforms,
330 >     * signalling (unpark) overhead time is noticeably long, and the
331 >     * time between signalling a thread and it actually making
332 >     * progress can be very noticeably long, so it is worth offloading
333 >     * these delays from critical paths as much as possible.
334 >     *
335 >     * Trimming workers. To release resources after periods of lack of
336 >     * use, a worker starting to wait when the pool is quiescent will
337 >     * time out and terminate if the pool has remained quiescent for a
338 >     * given period -- a short period if there are more threads than
339 >     * parallelism, longer as the number of threads decreases. This
340 >     * will slowly propagate, eventually terminating all workers after
341 >     * periods of non-use.
342 >     *
343 >     * Shutdown and Termination. A call to shutdownNow atomically sets
344 >     * a plock bit and then (non-atomically) sets each worker's
345 >     * qlock status, cancels all unprocessed tasks, and wakes up
346 >     * all waiting workers.  Detecting whether termination should
347 >     * commence after a non-abrupt shutdown() call requires more work
348 >     * and bookkeeping. We need consensus about quiescence (i.e., that
349 >     * there is no more work). The active count provides a primary
350 >     * indication but non-abrupt shutdown still requires a rechecking
351 >     * scan for any workers that are inactive but not queued.
352 >     *
353 >     * Joining Tasks
354 >     * =============
355 >     *
356 >     * Any of several actions may be taken when one worker is waiting
357 >     * to join a task stolen (or always held) by another.  Because we
358 >     * are multiplexing many tasks on to a pool of workers, we can't
359 >     * just let them block (as in Thread.join).  We also cannot just
360 >     * reassign the joiner's run-time stack with another and replace
361 >     * it later, which would be a form of "continuation", that even if
362 >     * possible is not necessarily a good idea since we sometimes need
363 >     * both an unblocked task and its continuation to progress.
364 >     * Instead we combine two tactics:
365       *
366       *   Helping: Arranging for the joiner to execute some task that it
367 <     *      would be running if the steal had not occurred.  Method
155 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
156 <     *      links to try to find such a task.
367 >     *      would be running if the steal had not occurred.
368       *
369       *   Compensating: Unless there are already enough live threads,
370 <     *      method helpMaintainParallelism() may create or
371 <     *      re-activate a spare thread to compensate for blocked
161 <     *      joiners until they unblock.
370 >     *      method tryCompensate() may create or re-activate a spare
371 >     *      thread to compensate for blocked joiners until they unblock.
372       *
373 <     * It is impossible to keep exactly the target (parallelism)
374 <     * number of threads running at any given time.  Determining
375 <     * existence of conservatively safe helping targets, the
376 <     * availability of already-created spares, and the apparent need
377 <     * to create new spares are all racy and require heuristic
378 <     * guidance, so we rely on multiple retries of each.  Compensation
379 <     * occurs in slow-motion. It is triggered only upon timeouts of
170 <     * Object.wait used for joins. This reduces poor decisions that
171 <     * would otherwise be made when threads are waiting for others
172 <     * that are stalled because of unrelated activities such as
173 <     * garbage collection.
373 >     * A third form (implemented in tryRemoveAndExec) amounts to
374 >     * helping a hypothetical compensator: If we can readily tell that
375 >     * a possible action of a compensator is to steal and execute the
376 >     * task being joined, the joining thread can do so directly,
377 >     * without the need for a compensation thread (although at the
378 >     * expense of larger run-time stacks, but the tradeoff is
379 >     * typically worthwhile).
380       *
381       * The ManagedBlocker extension API can't use helping so relies
382       * only on compensation in method awaitBlocker.
383       *
384 <     * The main throughput advantages of work-stealing stem from
385 <     * decentralized control -- workers mostly steal tasks from each
386 <     * other. We do not want to negate this by creating bottlenecks
387 <     * implementing other management responsibilities. So we use a
388 <     * collection of techniques that avoid, reduce, or cope well with
389 <     * contention. These entail several instances of bit-packing into
390 <     * CASable fields to maintain only the minimally required
391 <     * atomicity. To enable such packing, we restrict maximum
392 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
393 <     * unbalanced increments and decrements) to fit into a 16 bit
394 <     * field, which is far in excess of normal operating range.  Even
395 <     * though updates to some of these bookkeeping fields do sometimes
396 <     * contend with each other, they don't normally cache-contend with
397 <     * updates to others enough to warrant memory padding or
398 <     * isolation. So they are all held as fields of ForkJoinPool
399 <     * objects.  The main capabilities are as follows:
400 <     *
401 <     * 1. Creating and removing workers. Workers are recorded in the
402 <     * "workers" array. This is an array as opposed to some other data
403 <     * structure to support index-based random steals by workers.
404 <     * Updates to the array recording new workers and unrecording
405 <     * terminated ones are protected from each other by a lock
406 <     * (workerLock) but the array is otherwise concurrently readable,
407 <     * and accessed directly by workers. To simplify index-based
408 <     * operations, the array size is always a power of two, and all
409 <     * readers must tolerate null slots. Currently, all worker thread
410 <     * creation is on-demand, triggered by task submissions,
411 <     * replacement of terminated workers, and/or compensation for
412 <     * blocked workers. However, all other support code is set up to
413 <     * work with other policies.
414 <     *
415 <     * To ensure that we do not hold on to worker references that
416 <     * would prevent GC, ALL accesses to workers are via indices into
417 <     * the workers array (which is one source of some of the unusual
418 <     * code constructions here). In essence, the workers array serves
419 <     * as a WeakReference mechanism. Thus for example the event queue
420 <     * stores worker indices, not worker references. Access to the
421 <     * workers in associated methods (for example releaseEventWaiters)
422 <     * must both index-check and null-check the IDs. All such accesses
423 <     * ignore bad IDs by returning out early from what they are doing,
424 <     * since this can only be associated with shutdown, in which case
425 <     * it is OK to give up. On termination, we just clobber these
426 <     * data structures without trying to use them.
427 <     *
428 <     * 2. Bookkeeping for dynamically adding and removing workers. We
429 <     * aim to approximately maintain the given level of parallelism.
430 <     * When some workers are known to be blocked (on joins or via
431 <     * ManagedBlocker), we may create or resume others to take their
432 <     * place until they unblock (see below). Implementing this
433 <     * requires counts of the number of "running" threads (i.e., those
434 <     * that are neither blocked nor artificially suspended) as well as
435 <     * the total number.  These two values are packed into one field,
436 <     * "workerCounts" because we need accurate snapshots when deciding
437 <     * to create, resume or suspend.  Note however that the
438 <     * correspondence of these counts to reality is not guaranteed. In
439 <     * particular updates for unblocked threads may lag until they
440 <     * actually wake up.
441 <     *
442 <     * 3. Maintaining global run state. The run state of the pool
443 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
444 <     * those in other Executor implementations, as well as a count of
445 <     * "active" workers -- those that are, or soon will be, or
446 <     * recently were executing tasks. The runLevel and active count
447 <     * are packed together in order to correctly trigger shutdown and
448 <     * termination. Without care, active counts can be subject to very
449 <     * high contention.  We substantially reduce this contention by
450 <     * relaxing update rules.  A worker must claim active status
451 <     * prospectively, by activating if it sees that a submitted or
452 <     * stealable task exists (it may find after activating that the
453 <     * task no longer exists). It stays active while processing this
454 <     * task (if it exists) and any other local subtasks it produces,
455 <     * until it cannot find any other tasks. It then tries
456 <     * inactivating (see method preStep), but upon update contention
457 <     * instead scans for more tasks, later retrying inactivation if it
458 <     * doesn't find any.
459 <     *
460 <     * 4. Managing idle workers waiting for tasks. We cannot let
461 <     * workers spin indefinitely scanning for tasks when none are
462 <     * available. On the other hand, we must quickly prod them into
463 <     * action when new tasks are submitted or generated.  We
464 <     * park/unpark these idle workers using an event-count scheme.
465 <     * Field eventCount is incremented upon events that may enable
466 <     * workers that previously could not find a task to now find one:
467 <     * Submission of a new task to the pool, or another worker pushing
468 <     * a task onto a previously empty queue.  (We also use this
469 <     * mechanism for configuration and termination actions that
264 <     * require wakeups of idle workers).  Each worker maintains its
265 <     * last known event count, and blocks when a scan for work did not
266 <     * find a task AND its lastEventCount matches the current
267 <     * eventCount. Waiting idle workers are recorded in a variant of
268 <     * Treiber stack headed by field eventWaiters which, when nonzero,
269 <     * encodes the thread index and count awaited for by the worker
270 <     * thread most recently calling eventSync. This thread in turn has
271 <     * a record (field nextEventWaiter) for the next waiting worker.
272 <     * In addition to allowing simpler decisions about need for
273 <     * wakeup, the event count bits in eventWaiters serve the role of
274 <     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
275 <     * released threads also try to release at most two others.  The
276 <     * net effect is a tree-like diffusion of signals, where released
277 <     * threads (and possibly others) help with unparks.  To further
278 <     * reduce contention effects a bit, failed CASes to increment
279 <     * field eventCount are tolerated without retries in signalWork.
280 <     * Conceptually they are merged into the same event, which is OK
281 <     * when their only purpose is to enable workers to scan for work.
282 <     *
283 <     * 5. Managing suspension of extra workers. When a worker notices
284 <     * (usually upon timeout of a wait()) that there are too few
285 <     * running threads, we may create a new thread to maintain
286 <     * parallelism level, or at least avoid starvation. Usually, extra
287 <     * threads are needed for only very short periods, yet join
288 <     * dependencies are such that we sometimes need them in
289 <     * bursts. Rather than create new threads each time this happens,
290 <     * we suspend no-longer-needed extra ones as "spares". For most
291 <     * purposes, we don't distinguish "extra" spare threads from
292 <     * normal "core" threads: On each call to preStep (the only point
293 <     * at which we can do this) a worker checks to see if there are
294 <     * now too many running workers, and if so, suspends itself.
295 <     * Method helpMaintainParallelism looks for suspended threads to
296 <     * resume before considering creating a new replacement. The
297 <     * spares themselves are encoded on another variant of a Treiber
298 <     * Stack, headed at field "spareWaiters".  Note that the use of
299 <     * spares is intrinsically racy.  One thread may become a spare at
300 <     * about the same time as another is needlessly being created. We
301 <     * counteract this and related slop in part by requiring resumed
302 <     * spares to immediately recheck (in preStep) to see whether they
303 <     * should re-suspend.
304 <     *
305 <     * 6. Killing off unneeded workers. A timeout mechanism is used to
306 <     * shed unused workers: The oldest (first) event queue waiter uses
307 <     * a timed rather than hard wait. When this wait times out without
308 <     * a normal wakeup, it tries to shutdown any one (for convenience
309 <     * the newest) other spare or event waiter via
310 <     * tryShutdownUnusedWorker. This eventually reduces the number of
311 <     * worker threads to a minimum of one after a long enough period
312 <     * without use.
313 <     *
314 <     * 7. Deciding when to create new workers. The main dynamic
315 <     * control in this class is deciding when to create extra threads
316 <     * in method helpMaintainParallelism. We would like to keep
317 <     * exactly #parallelism threads running, which is an impossible
318 <     * task. We always need to create one when the number of running
319 <     * threads would become zero and all workers are busy. Beyond
320 <     * this, we must rely on heuristics that work well in the
321 <     * presence of transient phenomena such as GC stalls, dynamic
322 <     * compilation, and wake-up lags. These transients are extremely
323 <     * common -- we are normally trying to fully saturate the CPUs on
324 <     * a machine, so almost any activity other than running tasks
325 <     * impedes accuracy. Our main defense is to allow parallelism to
326 <     * lapse for a while during joins, and use a timeout to see if,
327 <     * after the resulting settling, there is still a need for
328 <     * additional workers.  This also better copes with the fact that
329 <     * some of the methods in this class tend to never become compiled
330 <     * (but are interpreted), so some components of the entire set of
331 <     * controls might execute 100 times faster than others. And
332 <     * similarly for cases where the apparent lack of work is just due
333 <     * to GC stalls and other transient system activity.
334 <     *
335 <     * Beware that there is a lot of representation-level coupling
336 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
337 <     * ForkJoinTask.  For example, direct access to "workers" array by
338 <     * workers, and direct access to ForkJoinTask.status by both
339 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
384 >     * The algorithm in tryHelpStealer entails a form of "linear"
385 >     * helping: Each worker records (in field currentSteal) the most
386 >     * recent task it stole from some other worker. Plus, it records
387 >     * (in field currentJoin) the task it is currently actively
388 >     * joining. Method tryHelpStealer uses these markers to try to
389 >     * find a worker to help (i.e., steal back a task from and execute
390 >     * it) that could hasten completion of the actively joined task.
391 >     * In essence, the joiner executes a task that would be on its own
392 >     * local deque had the to-be-joined task not been stolen. This may
393 >     * be seen as a conservative variant of the approach in Wagner &
394 >     * Calder "Leapfrogging: a portable technique for implementing
395 >     * efficient futures" SIGPLAN Notices, 1993
396 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
397 >     * that: (1) We only maintain dependency links across workers upon
398 >     * steals, rather than use per-task bookkeeping.  This sometimes
399 >     * requires a linear scan of workQueues array to locate stealers,
400 >     * but often doesn't because stealers leave hints (that may become
401 >     * stale/wrong) of where to locate them.  It is only a hint
402 >     * because a worker might have had multiple steals and the hint
403 >     * records only one of them (usually the most current).  Hinting
404 >     * isolates cost to when it is needed, rather than adding to
405 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
406 >     * potentially cyclic mutual steals.  (3) It is intentionally
407 >     * racy: field currentJoin is updated only while actively joining,
408 >     * which means that we miss links in the chain during long-lived
409 >     * tasks, GC stalls etc (which is OK since blocking in such cases
410 >     * is usually a good idea).  (4) We bound the number of attempts
411 >     * to find work (see MAX_HELP) and fall back to suspending the
412 >     * worker and if necessary replacing it with another.
413 >     *
414 >     * Helping actions for CountedCompleters are much simpler: Method
415 >     * helpComplete can take and execute any task with the same root
416 >     * as the task being waited on. However, this still entails some
417 >     * traversal of completer chains, so is less efficient than using
418 >     * CountedCompleters without explicit joins.
419 >     *
420 >     * It is impossible to keep exactly the target parallelism number
421 >     * of threads running at any given time.  Determining the
422 >     * existence of conservatively safe helping targets, the
423 >     * availability of already-created spares, and the apparent need
424 >     * to create new spares are all racy, so we rely on multiple
425 >     * retries of each.  Compensation in the apparent absence of
426 >     * helping opportunities is challenging to control on JVMs, where
427 >     * GC and other activities can stall progress of tasks that in
428 >     * turn stall out many other dependent tasks, without us being
429 >     * able to determine whether they will ever require compensation.
430 >     * Even though work-stealing otherwise encounters little
431 >     * degradation in the presence of more threads than cores,
432 >     * aggressively adding new threads in such cases entails risk of
433 >     * unwanted positive feedback control loops in which more threads
434 >     * cause more dependent stalls (as well as delayed progress of
435 >     * unblocked threads to the point that we know they are available)
436 >     * leading to more situations requiring more threads, and so
437 >     * on. This aspect of control can be seen as an (analytically
438 >     * intractable) game with an opponent that may choose the worst
439 >     * (for us) active thread to stall at any time.  We take several
440 >     * precautions to bound losses (and thus bound gains), mainly in
441 >     * methods tryCompensate and awaitJoin.
442 >     *
443 >     * Common Pool
444 >     * ===========
445 >     *
446 >     * The static commonPool always exists after static
447 >     * initialization.  Since it (or any other created pool) need
448 >     * never be used, we minimize initial construction overhead and
449 >     * footprint to the setup of about a dozen fields, with no nested
450 >     * allocation. Most bootstrapping occurs within method
451 >     * fullExternalPush during the first submission to the pool.
452 >     *
453 >     * When external threads submit to the common pool, they can
454 >     * perform some subtask processing (see externalHelpJoin and
455 >     * related methods).  We do not need to record whether these
456 >     * submissions are to the common pool -- if not, externalHelpJoin
457 >     * returns quickly (at the most helping to signal some common pool
458 >     * workers). These submitters would otherwise be blocked waiting
459 >     * for completion, so the extra effort (with liberally sprinkled
460 >     * task status checks) in inapplicable cases amounts to an odd
461 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
462 >     *
463 >     * Style notes
464 >     * ===========
465 >     *
466 >     * There is a lot of representation-level coupling among classes
467 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
468 >     * fields of WorkQueue maintain data structures managed by
469 >     * ForkJoinPool, so are directly accessed.  There is little point
470       * trying to reduce this, since any associated future changes in
471       * representations will need to be accompanied by algorithmic
472 <     * changes anyway.
473 <     *
474 <     * Style notes: There are lots of inline assignments (of form
475 <     * "while ((local = field) != 0)") which are usually the simplest
476 <     * way to ensure the required read orderings (which are sometimes
477 <     * critical). Also several occurrences of the unusual "do {}
478 <     * while (!cas...)" which is the simplest way to force an update of
479 <     * a CAS'ed variable. There are also other coding oddities that
480 <     * help some methods perform reasonably even when interpreted (not
481 <     * compiled), at the expense of some messy constructions that
482 <     * reduce byte code counts.
483 <     *
484 <     * The order of declarations in this file is: (1) statics (2)
485 <     * fields (along with constants used when unpacking some of them)
486 <     * (3) internal control methods (4) callbacks and other support
487 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
488 <     * methods (plus a few little helpers).
472 >     * changes anyway. Several methods intrinsically sprawl because
473 >     * they must accumulate sets of consistent reads of volatiles held
474 >     * in local variables.  Methods signalWork() and scan() are the
475 >     * main bottlenecks, so are especially heavily
476 >     * micro-optimized/mangled.  There are lots of inline assignments
477 >     * (of form "while ((local = field) != 0)") which are usually the
478 >     * simplest way to ensure the required read orderings (which are
479 >     * sometimes critical). This leads to a "C"-like style of listing
480 >     * declarations of these locals at the heads of methods or blocks.
481 >     * There are several occurrences of the unusual "do {} while
482 >     * (!cas...)"  which is the simplest way to force an update of a
483 >     * CAS'ed variable. There are also other coding oddities (including
484 >     * several unnecessary-looking hoisted null checks) that help
485 >     * some methods perform reasonably even when interpreted (not
486 >     * compiled).
487 >     *
488 >     * The order of declarations in this file is:
489 >     * (1) Static utility functions
490 >     * (2) Nested (static) classes
491 >     * (3) Static fields
492 >     * (4) Fields, along with constants used when unpacking some of them
493 >     * (5) Internal control methods
494 >     * (6) Callbacks and other support for ForkJoinTask methods
495 >     * (7) Exported methods
496 >     * (8) Static block initializing statics in minimally dependent order
497       */
498  
499 +    // Static utilities
500 +
501 +    /**
502 +     * If there is a security manager, makes sure caller has
503 +     * permission to modify threads.
504 +     */
505 +    private static void checkPermission() {
506 +        SecurityManager security = System.getSecurityManager();
507 +        if (security != null)
508 +            security.checkPermission(modifyThreadPermission);
509 +    }
510 +
511 +    // Nested classes
512 +
513      /**
514       * Factory for creating new {@link ForkJoinWorkerThread}s.
515       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 378 | Line 530 | public class ForkJoinPool extends Abstra
530       * Default ForkJoinWorkerThreadFactory implementation; creates a
531       * new ForkJoinWorkerThread.
532       */
533 <    static class DefaultForkJoinWorkerThreadFactory
533 >    static final class DefaultForkJoinWorkerThreadFactory
534          implements ForkJoinWorkerThreadFactory {
535 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
535 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
536              return new ForkJoinWorkerThread(pool);
537          }
538      }
539  
540      /**
541 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
542 <     * overridden in ForkJoinPool constructors.
541 >     * Class for artificial tasks that are used to replace the target
542 >     * of local joins if they are removed from an interior queue slot
543 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
544 >     * actually do anything beyond having a unique identity.
545 >     */
546 >    static final class EmptyTask extends ForkJoinTask<Void> {
547 >        private static final long serialVersionUID = -7721805057305804111L;
548 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
549 >        public final Void getRawResult() { return null; }
550 >        public final void setRawResult(Void x) {}
551 >        public final boolean exec() { return true; }
552 >    }
553 >
554 >    /**
555 >     * Queues supporting work-stealing as well as external task
556 >     * submission. See above for main rationale and algorithms.
557 >     * Implementation relies heavily on "Unsafe" intrinsics
558 >     * and selective use of "volatile":
559 >     *
560 >     * Field "base" is the index (mod array.length) of the least valid
561 >     * queue slot, which is always the next position to steal (poll)
562 >     * from if nonempty. Reads and writes require volatile orderings
563 >     * but not CAS, because updates are only performed after slot
564 >     * CASes.
565 >     *
566 >     * Field "top" is the index (mod array.length) of the next queue
567 >     * slot to push to or pop from. It is written only by owner thread
568 >     * for push, or under lock for external/shared push, and accessed
569 >     * by other threads only after reading (volatile) base.  Both top
570 >     * and base are allowed to wrap around on overflow, but (top -
571 >     * base) (or more commonly -(base - top) to force volatile read of
572 >     * base before top) still estimates size. The lock ("qlock") is
573 >     * forced to -1 on termination, causing all further lock attempts
574 >     * to fail. (Note: we don't need CAS for termination state because
575 >     * upon pool shutdown, all shared-queues will stop being used
576 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
577 >     * within lock bodies are "impossible" (modulo JVM errors that
578 >     * would cause failure anyway.)
579 >     *
580 >     * The array slots are read and written using the emulation of
581 >     * volatiles/atomics provided by Unsafe. Insertions must in
582 >     * general use putOrderedObject as a form of releasing store to
583 >     * ensure that all writes to the task object are ordered before
584 >     * its publication in the queue.  All removals entail a CAS to
585 >     * null.  The array is always a power of two. To ensure safety of
586 >     * Unsafe array operations, all accesses perform explicit null
587 >     * checks and implicit bounds checks via power-of-two masking.
588 >     *
589 >     * In addition to basic queuing support, this class contains
590 >     * fields described elsewhere to control execution. It turns out
591 >     * to work better memory-layout-wise to include them in this class
592 >     * rather than a separate class.
593 >     *
594 >     * Performance on most platforms is very sensitive to placement of
595 >     * instances of both WorkQueues and their arrays -- we absolutely
596 >     * do not want multiple WorkQueue instances or multiple queue
597 >     * arrays sharing cache lines. (It would be best for queue objects
598 >     * and their arrays to share, but there is nothing available to
599 >     * help arrange that).  Unfortunately, because they are recorded
600 >     * in a common array, WorkQueue instances are often moved to be
601 >     * adjacent by garbage collectors. To reduce impact, we use field
602 >     * padding that works OK on common platforms; this effectively
603 >     * trades off slightly slower average field access for the sake of
604 >     * avoiding really bad worst-case access. (Until better JVM
605 >     * support is in place, this padding is dependent on transient
606 >     * properties of JVM field layout rules.)
607       */
608 <    public static final ForkJoinWorkerThreadFactory
609 <        defaultForkJoinWorkerThreadFactory =
610 <        new DefaultForkJoinWorkerThreadFactory();
608 >    static final class WorkQueue {
609 >        /**
610 >         * Capacity of work-stealing queue array upon initialization.
611 >         * Must be a power of two; at least 4, but should be larger to
612 >         * reduce or eliminate cacheline sharing among queues.
613 >         * Currently, it is much larger, as a partial workaround for
614 >         * the fact that JVMs often place arrays in locations that
615 >         * share GC bookkeeping (especially cardmarks) such that
616 >         * per-write accesses encounter serious memory contention.
617 >         */
618 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
619  
620 <    /**
621 <     * Permission required for callers of methods that may start or
622 <     * kill threads.
623 <     */
624 <    private static final RuntimePermission modifyThreadPermission =
625 <        new RuntimePermission("modifyThread");
620 >        /**
621 >         * Maximum size for queue arrays. Must be a power of two less
622 >         * than or equal to 1 << (31 - width of array entry) to ensure
623 >         * lack of wraparound of index calculations, but defined to a
624 >         * value a bit less than this to help users trap runaway
625 >         * programs before saturating systems.
626 >         */
627 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
628  
629 <    /**
630 <     * If there is a security manager, makes sure caller has
631 <     * permission to modify threads.
632 <     */
633 <    private static void checkPermission() {
634 <        SecurityManager security = System.getSecurityManager();
635 <        if (security != null)
636 <            security.checkPermission(modifyThreadPermission);
629 >        int seed;                  // for random scanning; initialize nonzero
630 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
631 >        int nextWait;              // encoded record of next event waiter
632 >        int hint;                  // steal or signal hint (index)
633 >        int poolIndex;             // index of this queue in pool (or 0)
634 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
635 >        int nsteals;               // number of steals
636 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
637 >        volatile int base;         // index of next slot for poll
638 >        int top;                   // index of next slot for push
639 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
640 >        final ForkJoinPool pool;   // the containing pool (may be null)
641 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
642 >        volatile Thread parker;    // == owner during call to park; else null
643 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
644 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
645 >
646 >        // Heuristic padding to ameliorate unfortunate memory placements
647 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
648 >        Object p08, p09, p0a, p0b, p0c;
649 >
650 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
651 >                  int seed) {
652 >            this.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
653 >            this.pool = pool;
654 >            this.owner = owner;
655 >            this.mode = mode;
656 >            this.seed = seed;
657 >            // Place indices in the center of array
658 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
659 >        }
660 >
661 >        /**
662 >         * Pushes a task. Call only by owner in unshared queues.
663 >         * Cases needing resizing or rejection are relayed to fullPush
664 >         * (that also handles shared queues).
665 >         *
666 >         * @param task the task. Caller must ensure non-null.
667 >         * @throw RejectedExecutionException if array cannot be resized
668 >         */
669 >        final void push(ForkJoinTask<?> task) {
670 >            ForkJoinTask<?>[] a; ForkJoinPool p;
671 >            int s = top, m, n;
672 >            if ((a = array) != null) {    // ignore if queue removed
673 >                U.putOrderedObject
674 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
675 >                if ((n = (top = s + 1) - base) <= 1) {
676 >                    if ((p = pool) != null)
677 >                        p.signalWork(this, 0);
678 >                }
679 >                else if (n >= m)
680 >                    growArray();
681 >            }
682 >        }
683 >
684 >        /**
685 >         * Pushes a task if lock is free and array is either big
686 >         * enough or can be resized to be big enough.
687 >         *
688 >         * @param task the task. Caller must ensure non-null.
689 >         * @return true if submitted
690 >         */
691 >        final boolean trySharedPush(ForkJoinTask<?> task) {
692 >            boolean submitted = false;
693 >            if (qlock == 0 && U.compareAndSwapInt(this, QLOCK, 0, 1)) {
694 >                ForkJoinTask<?>[] a = array;  ForkJoinPool p;
695 >                int s = top;
696 >                try {
697 >                    if ((a != null && a.length > s + 1 - base) ||
698 >                        (a = growArray()) != null) {   // must presize
699 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
700 >                        U.putOrderedObject(a, j, task);
701 >                        top = s + 1;
702 >                        submitted = true;
703 >                    }
704 >                } finally {
705 >                    qlock = 0;                         // unlock
706 >                }
707 >                if (submitted && (p = pool) != null)
708 >                    p.signalWork(this, 0);
709 >            }
710 >            return submitted;
711 >        }
712 >
713 >       /**
714 >         * Initializes or doubles the capacity of array. Call either
715 >         * by owner or with lock held -- it is OK for base, but not
716 >         * top, to move while resizings are in progress.
717 >         */
718 >        final ForkJoinTask<?>[] growArray() {
719 >            ForkJoinTask<?>[] oldA = array;
720 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
721 >            if (size > MAXIMUM_QUEUE_CAPACITY)
722 >                throw new RejectedExecutionException("Queue capacity exceeded");
723 >            int oldMask, t, b;
724 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
725 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
726 >                (t = top) - (b = base) > 0) {
727 >                int mask = size - 1;
728 >                do {
729 >                    ForkJoinTask<?> x;
730 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
731 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
732 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
733 >                    if (x != null &&
734 >                        U.compareAndSwapObject(oldA, oldj, x, null))
735 >                        U.putObjectVolatile(a, j, x);
736 >                } while (++b != t);
737 >            }
738 >            return a;
739 >        }
740 >
741 >        /**
742 >         * Takes next task, if one exists, in LIFO order.  Call only
743 >         * by owner in unshared queues.
744 >         */
745 >        final ForkJoinTask<?> pop() {
746 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
747 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
748 >                for (int s; (s = top - 1) - base >= 0;) {
749 >                    long j = ((m & s) << ASHIFT) + ABASE;
750 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
751 >                        break;
752 >                    if (U.compareAndSwapObject(a, j, t, null)) {
753 >                        top = s;
754 >                        return t;
755 >                    }
756 >                }
757 >            }
758 >            return null;
759 >        }
760 >
761 >        /**
762 >         * Takes a task in FIFO order if b is base of queue and a task
763 >         * can be claimed without contention. Specialized versions
764 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
765 >         */
766 >        final ForkJoinTask<?> pollAt(int b) {
767 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
768 >            if ((a = array) != null) {
769 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
770 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
771 >                    base == b &&
772 >                    U.compareAndSwapObject(a, j, t, null)) {
773 >                    base = b + 1;
774 >                    return t;
775 >                }
776 >            }
777 >            return null;
778 >        }
779 >
780 >        /**
781 >         * Takes next task, if one exists, in FIFO order.
782 >         */
783 >        final ForkJoinTask<?> poll() {
784 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
785 >            while ((b = base) - top < 0 && (a = array) != null) {
786 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
787 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
788 >                if (t != null) {
789 >                    if (base == b &&
790 >                        U.compareAndSwapObject(a, j, t, null)) {
791 >                        base = b + 1;
792 >                        return t;
793 >                    }
794 >                }
795 >                else if (base == b) {
796 >                    if (b + 1 == top)
797 >                        break;
798 >                    Thread.yield(); // wait for lagging update (very rare)
799 >                }
800 >            }
801 >            return null;
802 >        }
803 >
804 >        /**
805 >         * Takes next task, if one exists, in order specified by mode.
806 >         */
807 >        final ForkJoinTask<?> nextLocalTask() {
808 >            return mode == 0 ? pop() : poll();
809 >        }
810 >
811 >        /**
812 >         * Returns next task, if one exists, in order specified by mode.
813 >         */
814 >        final ForkJoinTask<?> peek() {
815 >            ForkJoinTask<?>[] a = array; int m;
816 >            if (a == null || (m = a.length - 1) < 0)
817 >                return null;
818 >            int i = mode == 0 ? top - 1 : base;
819 >            int j = ((i & m) << ASHIFT) + ABASE;
820 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
821 >        }
822 >
823 >        /**
824 >         * Pops the given task only if it is at the current top.
825 >         * (A shared version is available only via FJP.tryExternalUnpush)
826 >         */
827 >        final boolean tryUnpush(ForkJoinTask<?> t) {
828 >            ForkJoinTask<?>[] a; int s;
829 >            if ((a = array) != null && (s = top) != base &&
830 >                U.compareAndSwapObject
831 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
832 >                top = s;
833 >                return true;
834 >            }
835 >            return false;
836 >        }
837 >
838 >        /**
839 >         * Removes and cancels all known tasks, ignoring any exceptions.
840 >         */
841 >        final void cancelAll() {
842 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
843 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
844 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
845 >                ForkJoinTask.cancelIgnoringExceptions(t);
846 >        }
847 >
848 >        /**
849 >         * Computes next value for random probes.  Scans don't require
850 >         * a very high quality generator, but also not a crummy one.
851 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
852 >         * This is manually inlined in its usages in ForkJoinPool to
853 >         * avoid writes inside busy scan loops.
854 >         */
855 >        final int nextSeed() {
856 >            int r = seed;
857 >            r ^= r << 13;
858 >            r ^= r >>> 17;
859 >            return seed = r ^= r << 5;
860 >        }
861 >
862 >        /**
863 >         * Provides a more accurate estimate of size than (top - base)
864 >         * by ordering reads and checking whether a near-empty queue
865 >         * has at least one unclaimed task.
866 >         */
867 >        final int queueSize() {
868 >            ForkJoinTask<?>[] a; int k, s, n;
869 >            return ((n = base - (s = top)) < 0 &&
870 >                    (n != -1 ||
871 >                     ((a = array) != null && (k = a.length) > 0 &&
872 >                      U.getObject
873 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
874 >                -n : 0;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893 >                }
894 >            }
895 >        }
896 >
897 >        /**
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908 >         * or consistency check failure so caller can retry.
909 >         *
910 >         * @return false if no progress can be made, else true;
911 >         */
912 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 >            boolean stat = true, removed = false, empty = true;
914 >            ForkJoinTask<?>[] a; int m, s, b, n;
915 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 >                (n = (s = top) - (b = base)) > 0) {
917 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 >                    int j = ((--s & m) << ASHIFT) + ABASE;
919 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 >                    if (t == null)                    // inconsistent length
921 >                        break;
922 >                    else if (t == task) {
923 >                        if (s + 1 == top) {           // pop
924 >                            if (!U.compareAndSwapObject(a, j, task, null))
925 >                                break;
926 >                            top = s;
927 >                            removed = true;
928 >                        }
929 >                        else if (base == b)           // replace with proxy
930 >                            removed = U.compareAndSwapObject(a, j, task,
931 >                                                             new EmptyTask());
932 >                        break;
933 >                    }
934 >                    else if (t.status >= 0)
935 >                        empty = false;
936 >                    else if (s + 1 == top) {          // pop and throw away
937 >                        if (U.compareAndSwapObject(a, j, t, null))
938 >                            top = s;
939 >                        break;
940 >                    }
941 >                    if (--n == 0) {
942 >                        if (!empty && base == b)
943 >                            stat = false;
944 >                        break;
945 >                    }
946 >                }
947 >            }
948 >            if (removed)
949 >                task.doExec();
950 >            return stat;
951 >        }
952 >
953 >        /**
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation
956 >         */
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971 >                        }
972 >                        else
973 >                            break; // restart
974 >                    }
975 >                    if ((r = r.completer) == null)
976 >                        break outer; // not part of root computation
977 >                }
978 >            }
979 >            return false;
980 >        }
981 >
982 >        /**
983 >         * Executes a top-level task and any local tasks remaining
984 >         * after execution.
985 >         */
986 >        final void runTask(ForkJoinTask<?> t) {
987 >            if (t != null) {
988 >                (currentSteal = t).doExec();
989 >                currentSteal = null;
990 >                ++nsteals;
991 >                if (top != base) {       // process remaining local tasks
992 >                    if (mode == 0)
993 >                        popAndExecAll();
994 >                    else
995 >                        pollAndExecAll();
996 >                }
997 >            }
998 >        }
999 >
1000 >        /**
1001 >         * Executes a non-top-level (stolen) task.
1002 >         */
1003 >        final void runSubtask(ForkJoinTask<?> t) {
1004 >            if (t != null) {
1005 >                ForkJoinTask<?> ps = currentSteal;
1006 >                (currentSteal = t).doExec();
1007 >                currentSteal = ps;
1008 >            }
1009 >        }
1010 >
1011 >        /**
1012 >         * Returns true if owned and not known to be blocked.
1013 >         */
1014 >        final boolean isApparentlyUnblocked() {
1015 >            Thread wt; Thread.State s;
1016 >            return (eventCount >= 0 &&
1017 >                    (wt = owner) != null &&
1018 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1019 >                    s != Thread.State.WAITING &&
1020 >                    s != Thread.State.TIMED_WAITING);
1021 >        }
1022 >
1023 >        /**
1024 >         * If this owned and is not already interrupted, try to
1025 >         * interrupt and/or unpark, ignoring exceptions.
1026 >         */
1027 >        final void interruptOwner() {
1028 >            Thread wt, p;
1029 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1030 >                try {
1031 >                    wt.interrupt();
1032 >                } catch (SecurityException ignore) {
1033 >                }
1034 >            }
1035 >            if ((p = parker) != null)
1036 >                U.unpark(p);
1037 >        }
1038 >
1039 >        // Unsafe mechanics
1040 >        private static final sun.misc.Unsafe U;
1041 >        private static final long QLOCK;
1042 >        private static final int ABASE;
1043 >        private static final int ASHIFT;
1044 >        static {
1045 >            int s;
1046 >            try {
1047 >                U = getUnsafe();
1048 >                Class<?> k = WorkQueue.class;
1049 >                Class<?> ak = ForkJoinTask[].class;
1050 >                QLOCK = U.objectFieldOffset
1051 >                    (k.getDeclaredField("qlock"));
1052 >                ABASE = U.arrayBaseOffset(ak);
1053 >                s = U.arrayIndexScale(ak);
1054 >            } catch (Exception e) {
1055 >                throw new Error(e);
1056 >            }
1057 >            if ((s & (s-1)) != 0)
1058 >                throw new Error("data type scale not a power of two");
1059 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1060 >        }
1061      }
1062  
1063 <    /**
414 <     * Generator for assigning sequence numbers as pool names.
415 <     */
416 <    private static final AtomicInteger poolNumberGenerator =
417 <        new AtomicInteger();
1063 >    // static fields (initialized in static initializer below)
1064  
1065      /**
1066 <     * The time to block in a join (see awaitJoin) before checking if
1067 <     * a new worker should be (re)started to maintain parallelism
422 <     * level. The value should be short enough to maintain global
423 <     * responsiveness and progress but long enough to avoid
424 <     * counterproductive firings during GC stalls or unrelated system
425 <     * activity, and to not bog down systems with continual re-firings
426 <     * on GCs or legitimately long waits.
1066 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1067 >     * overridden in ForkJoinPool constructors.
1068       */
1069 <    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
1069 >    public static final ForkJoinWorkerThreadFactory
1070 >        defaultForkJoinWorkerThreadFactory;
1071  
1072      /**
1073 <     * The wakeup interval (in nanoseconds) for the oldest worker
1074 <     * waiting for an event invokes tryShutdownUnusedWorker to shrink
1075 <     * the number of workers.  The exact value does not matter too
1076 <     * much, but should be long enough to slowly release resources
1077 <     * during long periods without use without disrupting normal use.
1073 >     * Per-thread records for threads that submit to pools. Currently
1074 >     * holds only pseudo-random seed / index that is used to choose
1075 >     * submission queues in method externalPush. In the future, this may
1076 >     * also incorporate a means to implement different task rejection
1077 >     * and resubmission policies.
1078 >     *
1079 >     * Seeds for submitters and workers/workQueues work in basically
1080 >     * the same way but are initialized and updated using slightly
1081 >     * different mechanics. Both are initialized using the same
1082 >     * approach as in class ThreadLocal, where successive values are
1083 >     * unlikely to collide with previous values. Seeds are then
1084 >     * randomly modified upon collisions using xorshifts, which
1085 >     * requires a non-zero seed.
1086       */
1087 <    private static final long SHRINK_RATE_NANOS =
1088 <        30L * 1000L * 1000L * 1000L; // 2 per minute
1087 >    static final class Submitter {
1088 >        int seed;
1089 >        Submitter(int s) { seed = s; }
1090 >    }
1091  
1092      /**
1093 <     * Absolute bound for parallelism level. Twice this number plus
1094 <     * one (i.e., 0xfff) must fit into a 16bit field to enable
1095 <     * word-packing for some counts and indices.
1093 >     * Per-thread submission bookkeeping. Shared across all pools
1094 >     * to reduce ThreadLocal pollution and because random motion
1095 >     * to avoid contention in one pool is likely to hold for others.
1096 >     * Lazily initialized on first submission (but null-checked
1097 >     * in other contexts to avoid unnecessary initialization).
1098       */
1099 <    private static final int MAX_WORKERS   = 0x7fff;
1099 >    static final ThreadLocal<Submitter> submitters;
1100  
1101      /**
1102 <     * Array holding all worker threads in the pool.  Array size must
1103 <     * be a power of two.  Updates and replacements are protected by
1104 <     * workerLock, but the array is always kept in a consistent enough
1105 <     * state to be randomly accessed without locking by workers
452 <     * performing work-stealing, as well as other traversal-based
453 <     * methods in this class. All readers must tolerate that some
454 <     * array slots may be null.
1102 >     * Common (static) pool. Non-null for public use unless a static
1103 >     * construction exception, but internal usages null-check on use
1104 >     * to paranoically avoid potential initialization circularities
1105 >     * as well as to simplify generated code.
1106       */
1107 <    volatile ForkJoinWorkerThread[] workers;
1107 >    static final ForkJoinPool commonPool;
1108  
1109      /**
1110 <     * Queue for external submissions.
1110 >     * Permission required for callers of methods that may start or
1111 >     * kill threads.
1112       */
1113 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1113 >    private static final RuntimePermission modifyThreadPermission;
1114  
1115      /**
1116 <     * Lock protecting updates to workers array.
1116 >     * Common pool parallelism. Must equal commonPool.parallelism.
1117       */
1118 <    private final ReentrantLock workerLock;
1118 >    static final int commonPoolParallelism;
1119  
1120      /**
1121 <     * Latch released upon termination.
1121 >     * Sequence number for creating workerNamePrefix.
1122       */
1123 <    private final Phaser termination;
1123 >    private static int poolNumberSequence;
1124  
1125      /**
1126 <     * Creation factory for worker threads.
1126 >     * Return the next sequence number. We don't expect this to
1127 >     * ever contend so use simple builtin sync.
1128       */
1129 <    private final ForkJoinWorkerThreadFactory factory;
1129 >    private static final synchronized int nextPoolId() {
1130 >        return ++poolNumberSequence;
1131 >    }
1132 >
1133 >    // static constants
1134  
1135      /**
1136 <     * Sum of per-thread steal counts, updated only when threads are
1137 <     * idle or terminating.
1136 >     * Initial timeout value (in nanoseconds) for the thread
1137 >     * triggering quiescence to park waiting for new work. On timeout,
1138 >     * the thread will instead try to shrink the number of
1139 >     * workers. The value should be large enough to avoid overly
1140 >     * aggressive shrinkage during most transient stalls (long GCs
1141 >     * etc).
1142       */
1143 <    private volatile long stealCount;
1143 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1144  
1145      /**
1146 <     * Encoded record of top of Treiber stack of threads waiting for
486 <     * events. The top 32 bits contain the count being waited for. The
487 <     * bottom 16 bits contains one plus the pool index of waiting
488 <     * worker thread. (Bits 16-31 are unused.)
1146 >     * Timeout value when there are more threads than parallelism level
1147       */
1148 <    private volatile long eventWaiters;
491 <
492 <    private static final int  EVENT_COUNT_SHIFT = 32;
493 <    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
1148 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1149  
1150      /**
1151 <     * A counter for events that may wake up worker threads:
1152 <     *   - Submission of a new task to the pool
1153 <     *   - A worker pushing a task on an empty queue
1154 <     *   - termination
1151 >     * The maximum stolen->joining link depth allowed in method
1152 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1153 >     * chains are unbounded, but we use a fixed constant to avoid
1154 >     * (otherwise unchecked) cycles and to bound staleness of
1155 >     * traversal parameters at the expense of sometimes blocking when
1156 >     * we could be helping.
1157       */
1158 <    private volatile int eventCount;
1158 >    private static final int MAX_HELP = 64;
1159  
1160      /**
1161 <     * Encoded record of top of Treiber stack of spare threads waiting
1162 <     * for resumption. The top 16 bits contain an arbitrary count to
506 <     * avoid ABA effects. The bottom 16bits contains one plus the pool
507 <     * index of waiting worker thread.
1161 >     * Increment for seed generators. See class ThreadLocal for
1162 >     * explanation.
1163       */
1164 <    private volatile int spareWaiters;
510 <
511 <    private static final int SPARE_COUNT_SHIFT = 16;
512 <    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
1164 >    private static final int SEED_INCREMENT = 0x61c88647;
1165  
1166      /**
1167 <     * Lifecycle control. The low word contains the number of workers
1168 <     * that are (probably) executing tasks. This value is atomically
1169 <     * incremented before a worker gets a task to run, and decremented
1170 <     * when worker has no tasks and cannot find any.  Bits 16-18
1171 <     * contain runLevel value. When all are zero, the pool is
1172 <     * running. Level transitions are monotonic (running -> shutdown
1173 <     * -> terminating -> terminated) so each transition adds a bit.
1174 <     * These are bundled together to ensure consistent read for
1175 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
1176 <     * and active threads is zero).
1167 >     * Bits and masks for control variables
1168 >     *
1169 >     * Field ctl is a long packed with:
1170 >     * AC: Number of active running workers minus target parallelism (16 bits)
1171 >     * TC: Number of total workers minus target parallelism (16 bits)
1172 >     * ST: true if pool is terminating (1 bit)
1173 >     * EC: the wait count of top waiting thread (15 bits)
1174 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1175 >     *
1176 >     * When convenient, we can extract the upper 32 bits of counts and
1177 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1178 >     * (int)ctl.  The ec field is never accessed alone, but always
1179 >     * together with id and st. The offsets of counts by the target
1180 >     * parallelism and the positionings of fields makes it possible to
1181 >     * perform the most common checks via sign tests of fields: When
1182 >     * ac is negative, there are not enough active workers, when tc is
1183 >     * negative, there are not enough total workers, and when e is
1184 >     * negative, the pool is terminating.  To deal with these possibly
1185 >     * negative fields, we use casts in and out of "short" and/or
1186 >     * signed shifts to maintain signedness.
1187 >     *
1188 >     * When a thread is queued (inactivated), its eventCount field is
1189 >     * set negative, which is the only way to tell if a worker is
1190 >     * prevented from executing tasks, even though it must continue to
1191 >     * scan for them to avoid queuing races. Note however that
1192 >     * eventCount updates lag releases so usage requires care.
1193 >     *
1194 >     * Field plock is an int packed with:
1195 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1196 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1197 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1198       *
1199 <     * Notes: Most direct CASes are dependent on these bitfield
1200 <     * positions.  Also, this field is non-private to enable direct
1201 <     * performance-sensitive CASes in ForkJoinWorkerThread.
1199 >     * The sequence number enables simple consistency checks:
1200 >     * Staleness of read-only operations on the workQueues array can
1201 >     * be checked by comparing plock before vs after the reads.
1202       */
530    volatile int runState;
1203  
1204 <    // Note: The order among run level values matters.
1205 <    private static final int RUNLEVEL_SHIFT     = 16;
1206 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
1207 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
1208 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
537 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
1204 >    // bit positions/shifts for fields
1205 >    private static final int  AC_SHIFT   = 48;
1206 >    private static final int  TC_SHIFT   = 32;
1207 >    private static final int  ST_SHIFT   = 31;
1208 >    private static final int  EC_SHIFT   = 16;
1209  
1210 <    /**
1211 <     * Holds number of total (i.e., created and not yet terminated)
1212 <     * and running (i.e., not blocked on joins or other managed sync)
1213 <     * threads, packed together to ensure consistent snapshot when
1214 <     * making decisions about creating and suspending spare
1215 <     * threads. Updated only by CAS. Note that adding a new worker
1216 <     * requires incrementing both counts, since workers start off in
546 <     * running state.
547 <     */
548 <    private volatile int workerCounts;
1210 >    // bounds
1211 >    private static final int  SMASK      = 0xffff;  // short bits
1212 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1213 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1214 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1215 >    private static final int  SHORT_SIGN = 1 << 15;
1216 >    private static final int  INT_SIGN   = 1 << 31;
1217  
1218 <    private static final int TOTAL_COUNT_SHIFT  = 16;
1219 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
1220 <    private static final int ONE_RUNNING        = 1;
1221 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
1218 >    // masks
1219 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1220 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1221 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1222  
1223 <    /**
1224 <     * The target parallelism level.
1225 <     * Accessed directly by ForkJoinWorkerThreads.
558 <     */
559 <    final int parallelism;
1223 >    // units for incrementing and decrementing
1224 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1225 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1226  
1227 <    /**
1228 <     * True if use local fifo, not default lifo, for local polling
1229 <     * Read by, and replicated by ForkJoinWorkerThreads
1230 <     */
1231 <    final boolean locallyFifo;
1227 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1228 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1229 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1230 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1231 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1232 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1233 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1234  
1235 <    /**
1236 <     * The uncaught exception handler used when any worker abruptly
1237 <     * terminates.
570 <     */
571 <    private final Thread.UncaughtExceptionHandler ueh;
1235 >    // masks and units for dealing with e = (int)ctl
1236 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1237 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1238  
1239 <    /**
1240 <     * Pool number, just for assigning useful names to worker threads
1241 <     */
1242 <    private final int poolNumber;
1239 >    // plock bits
1240 >    private static final int SHUTDOWN    = 1 << 31;
1241 >    private static final int PL_LOCK     = 2;
1242 >    private static final int PL_SIGNAL   = 1;
1243 >    private static final int PL_SPINS    = 1 << 8;
1244  
1245 <    // Utilities for CASing fields. Note that most of these
1246 <    // are usually manually inlined by callers
1245 >    // access mode for WorkQueue
1246 >    static final int LIFO_QUEUE          =  0;
1247 >    static final int FIFO_QUEUE          =  1;
1248 >    static final int SHARED_QUEUE        = -1;
1249  
1250 <    /**
1251 <     * Increments running count part of workerCounts
1252 <     */
584 <    final void incrementRunningCount() {
585 <        int c;
586 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587 <                                               c = workerCounts,
588 <                                               c + ONE_RUNNING));
589 <    }
1250 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1251 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1252 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1253  
1254 <    /**
592 <     * Tries to decrement running count unless already zero
593 <     */
594 <    final boolean tryDecrementRunningCount() {
595 <        int wc = workerCounts;
596 <        if ((wc & RUNNING_COUNT_MASK) == 0)
597 <            return false;
598 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
599 <                                        wc, wc - ONE_RUNNING);
600 <    }
1254 >    // Instance fields
1255  
1256 <    /**
1257 <     * Forces decrement of encoded workerCounts, awaiting nonzero if
1258 <     * (rarely) necessary when other count updates lag.
1259 <     *
1260 <     * @param dr -- either zero or ONE_RUNNING
1261 <     * @param dt == either zero or ONE_TOTAL
1256 >    /*
1257 >     * Field layout of this class tends to matter more than one would
1258 >     * like. Runtime layout order is only loosely related to
1259 >     * declaration order and may differ across JVMs, but the following
1260 >     * empirically works OK on current JVMs.
1261 >     */
1262 >    volatile long stealCount;                  // collects worker counts
1263 >    volatile long ctl;                         // main pool control
1264 >    volatile int plock;                        // shutdown status and seqLock
1265 >    volatile int indexSeed;                    // worker/submitter index seed
1266 >    final int config;                          // mode and parallelism level
1267 >    WorkQueue[] workQueues;                    // main registry
1268 >    final ForkJoinWorkerThreadFactory factory;
1269 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1270 >    final String workerNamePrefix;             // to create worker name string
1271 >
1272 >    /*
1273 >     * Acquires the plock lock to protect worker array and related
1274 >     * updates. This method is called only if an initial CAS on plock
1275 >     * fails. This acts as a spinLock for normal cases, but falls back
1276 >     * to builtin monitor to block when (rarely) needed. This would be
1277 >     * a terrible idea for a highly contended lock, but works fine as
1278 >     * a more conservative alternative to a pure spinlock.  See
1279 >     * internal ConcurrentHashMap documentation for further
1280 >     * explanation of nearly the same construction.
1281       */
1282 <    private void decrementWorkerCounts(int dr, int dt) {
1282 >    private int acquirePlock() {
1283 >        int spins = PL_SPINS, r = 0, ps, nps;
1284          for (;;) {
1285 <            int wc = workerCounts;
1286 <            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
1287 <                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
1288 <                if ((runState & TERMINATED) != 0)
1289 <                    return; // lagging termination on a backout
1290 <                Thread.yield();
1285 >            if (((ps = plock) & PL_LOCK) == 0 &&
1286 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1287 >                return nps;
1288 >            else if (r == 0) { // randomize spins if possible
1289 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1290 >                if ((t instanceof ForkJoinWorkerThread) &&
1291 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1292 >                    r = w.seed;
1293 >                else if ((z = submitters.get()) != null)
1294 >                    r = z.seed;
1295 >                else
1296 >                    r = 1;
1297 >            }
1298 >            else if (spins >= 0) {
1299 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1300 >                if (r >= 0)
1301 >                    --spins;
1302 >            }
1303 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1304 >                synchronized (this) {
1305 >                    if ((plock & PL_SIGNAL) != 0) {
1306 >                        try {
1307 >                            wait();
1308 >                        } catch (InterruptedException ie) {
1309 >                            try {
1310 >                                Thread.currentThread().interrupt();
1311 >                            } catch (SecurityException ignore) {
1312 >                            }
1313 >                        }
1314 >                    }
1315 >                    else
1316 >                        notifyAll();
1317 >                }
1318              }
618            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
619                                         wc, wc - (dr + dt)))
620                return;
1319          }
1320      }
1321  
1322      /**
1323 <     * Tries decrementing active count; fails on contention.
1324 <     * Called when workers cannot find tasks to run.
1323 >     * Unlocks and signals any thread waiting for plock. Called only
1324 >     * when CAS of seq value for unlock fails.
1325       */
1326 <    final boolean tryDecrementActiveCount() {
1327 <        int c;
1328 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 <                                        c = runState, c - 1);
1326 >    private void releasePlock(int ps) {
1327 >        plock = ps;
1328 >        synchronized (this) { notifyAll(); }
1329      }
1330  
1331      /**
1332 <     * Advances to at least the given level. Returns true if not
636 <     * already in at least the given level.
1332 >     * Tries to create and start a worker; adjusts counts etc on failure
1333       */
1334 <    private boolean advanceRunLevel(int level) {
1335 <        for (;;) {
1336 <            int s = runState;
1337 <            if ((s & level) != 0)
1338 <                return false;
1339 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1340 <                return true;
1334 >    private void addWorker() {
1335 >        ForkJoinWorkerThread wt = null;
1336 >        try {
1337 >            (wt = factory.newThread(this)).start();
1338 >        } catch (Throwable ex) {
1339 >            deregisterWorker(wt, ex); // adjust on failure
1340 >        }
1341 >    }
1342 >
1343 >    /**
1344 >     * Performs secondary initialization, called when plock is zero.
1345 >     * Creates workQueue array and sets plock to a valid value.  The
1346 >     * lock body must be exception-free (so no try/finally) so we
1347 >     * optimistically allocate new array outside the lock and throw
1348 >     * away if (very rarely) not needed. (A similar tactic is used in
1349 >     * fullExternalPush.)  Because the plock seq value can eventually
1350 >     * wrap around zero, this method harmlessly fails to reinitialize
1351 >     * if workQueues exists, while still advancing plock.
1352 >     */
1353 >    private void initWorkQueuesArray() {
1354 >        WorkQueue[] ws; int ps;
1355 >        int p = config & SMASK;        // find power of two table size
1356 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1357 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1358 >        WorkQueue[] nws = new WorkQueue[(n + 1) << 1];
1359 >        if (((ps = plock) & PL_LOCK) != 0 ||
1360 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1361 >            ps = acquirePlock();
1362 >        if ((ws = workQueues) == null || ws.length == 0)
1363 >            workQueues = nws;
1364 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1365 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1366 >            releasePlock(nps);
1367 >        long c; int u;
1368 >        if ((u = (int)((c = ctl) >>> 32)) < 0 && (int)c == 0) {
1369 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1370 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1371 >            if (U.compareAndSwapLong(this, CTL, c, nc))
1372 >                addWorker();
1373          }
1374 +
1375      }
1376  
1377 <    // workers array maintenance
1377 >    //  Registering and deregistering workers
1378 >
1379 >    /**
1380 >     * Callback from ForkJoinWorkerThread to establish and record its
1381 >     * WorkQueue. To avoid scanning bias due to packing entries in
1382 >     * front of the workQueues array, we treat the array as a simple
1383 >     * power-of-two hash table using per-thread seed as hash,
1384 >     * expanding as needed.
1385 >     *
1386 >     * @param wt the worker thread
1387 >     */
1388 >    final void registerWorker(ForkJoinWorkerThread wt) {
1389 >        if (wt != null && wt.workQueue == null) {
1390 >            int s, ps;    // generate a rarely colliding candidate index seed
1391 >            do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1392 >                                              s += SEED_INCREMENT) ||
1393 >                         s == 0); // skip 0
1394 >            WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1395 >            if (((ps = plock) & PL_LOCK) != 0 ||
1396 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1397 >                ps = acquirePlock();
1398 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1399 >            try {
1400 >                WorkQueue[] ws;
1401 >                if ((ws = workQueues) != null && wt.workQueue == null) {
1402 >                    int n = ws.length, m = n - 1;
1403 >                    int r = (s << 1) | 1;           // use odd-numbered indices
1404 >                    if (ws[r &= m] != null) {       // collision
1405 >                        int probes = 0;             // step by approx half size
1406 >                        int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1407 >                        while (ws[r = (r + step) & m] != null) {
1408 >                            if (++probes >= n) {
1409 >                                workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1410 >                                m = n - 1;
1411 >                                probes = 0;
1412 >                            }
1413 >                        }
1414 >                    }
1415 >                    w.eventCount = w.poolIndex = r; // volatile write orders
1416 >                    wt.workQueue = ws[r] = w;
1417 >                }
1418 >            } finally {
1419 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1420 >                    releasePlock(nps);
1421 >            }
1422 >        }
1423 >    }
1424  
1425      /**
1426 <     * Records and returns a workers array index for new worker.
1427 <     */
1428 <    private int recordWorker(ForkJoinWorkerThread w) {
1429 <        // Try using slot totalCount-1. If not available, scan and/or resize
1430 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1431 <        final ReentrantLock lock = this.workerLock;
1432 <        lock.lock();
1433 <        try {
1434 <            ForkJoinWorkerThread[] ws = workers;
1435 <            int n = ws.length;
1436 <            if (k < 0 || k >= n || ws[k] != null) {
1437 <                for (k = 0; k < n && ws[k] != null; ++k)
1438 <                    ;
1439 <                if (k == n)
1440 <                    ws = Arrays.copyOf(ws, n << 1);
1426 >     * Final callback from terminating worker, as well as upon failure
1427 >     * to construct or start a worker.  Removes record of worker from
1428 >     * array, and adjusts counts. If pool is shutting down, tries to
1429 >     * complete termination.
1430 >     *
1431 >     * @param wt the worker thread or null if construction failed
1432 >     * @param ex the exception causing failure, or null if none
1433 >     */
1434 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1435 >        WorkQueue w = null;
1436 >        if (wt != null && (w = wt.workQueue) != null) {
1437 >            int ps;
1438 >            w.qlock = -1;                // ensure set
1439 >            long ns = w.nsteals, sc;     // collect steal count
1440 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1441 >                                               sc = stealCount, sc + ns));
1442 >            if (((ps = plock) & PL_LOCK) != 0 ||
1443 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1444 >                ps = acquirePlock();
1445 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1446 >            try {
1447 >                int idx = w.poolIndex;
1448 >                WorkQueue[] ws = workQueues;
1449 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1450 >                    ws[idx] = null;
1451 >            } finally {
1452 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1453 >                    releasePlock(nps);
1454              }
667            ws[k] = w;
668            workers = ws; // volatile array write ensures slot visibility
669        } finally {
670            lock.unlock();
1455          }
1456 <        return k;
1456 >
1457 >        long c;                             // adjust ctl counts
1458 >        do {} while (!U.compareAndSwapLong
1459 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1460 >                                           ((c - TC_UNIT) & TC_MASK) |
1461 >                                           (c & ~(AC_MASK|TC_MASK)))));
1462 >
1463 >        if (!tryTerminate(false, false) && w != null) {
1464 >            w.cancelAll();                  // cancel remaining tasks
1465 >            if (w.array != null)            // suppress signal if never ran
1466 >                helpSignal(null, 0);        // wake up or create replacement
1467 >            if (ex == null)                 // help clean refs on way out
1468 >                ForkJoinTask.helpExpungeStaleExceptions();
1469 >        }
1470 >
1471 >        if (ex != null)                     // rethrow
1472 >            ForkJoinTask.rethrow(ex);
1473 >    }
1474 >
1475 >    // Submissions
1476 >
1477 >    /**
1478 >     * Unless shutting down, adds the given task to a submission queue
1479 >     * at submitter's current queue index (modulo submission
1480 >     * range). Only the most common path is directly handled in this
1481 >     * method. All others are relayed to fullExternalPush.
1482 >     *
1483 >     * @param task the task. Caller must ensure non-null.
1484 >     */
1485 >    final void externalPush(ForkJoinTask<?> task) {
1486 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1487 >        if ((z = submitters.get()) != null && plock > 0 &&
1488 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1489 >            (q = ws[m & z.seed & SQMASK]) != null &&
1490 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1491 >            int b = q.base, s = q.top, n, an;
1492 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1493 >                U.putObject(a, (long)(((an - 1) & s) << ASHIFT) + ABASE, task);
1494 >                q.top = s + 1;                     // push on to deque
1495 >                q.qlock = 0;
1496 >                if (n <= 2)
1497 >                    signalWork(q, 0);
1498 >                return;
1499 >            }
1500 >            q.qlock = 0;
1501 >        }
1502 >        fullExternalPush(task);
1503      }
1504  
1505      /**
1506 <     * Nulls out record of worker in workers array.
1507 <     */
1508 <    private void forgetWorker(ForkJoinWorkerThread w) {
1509 <        int idx = w.poolIndex;
1510 <        // Locking helps method recordWorker avoid unnecessary expansion
1511 <        final ReentrantLock lock = this.workerLock;
1512 <        lock.lock();
1513 <        try {
1514 <            ForkJoinWorkerThread[] ws = workers;
1515 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1516 <                ws[idx] = null;
1517 <        } finally {
1518 <            lock.unlock();
1506 >     * Full version of externalPush. This method is called, among
1507 >     * other times, upon the first submission of the first task to the
1508 >     * pool, so must perform secondary initialization (via
1509 >     * initWorkQueuesArray). It also detects first submission by an
1510 >     * external thread by looking up its ThreadLocal, and creates a
1511 >     * new shared queue if the one at index if empty or contended. The
1512 >     * lock body must be exception-free (so no try/finally) so we
1513 >     * optimistically allocate new queues outside the lock and throw
1514 >     * them away if (very rarely) not needed.
1515 >     */
1516 >    private void fullExternalPush(ForkJoinTask<?> task) {
1517 >        int r = 0;
1518 >        for (Submitter z = submitters.get();;) {
1519 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1520 >            if (z == null) {
1521 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1522 >                                        r += SEED_INCREMENT) && r != 0)
1523 >                    submitters.set(z = new Submitter(r));
1524 >            }
1525 >            else if (r == 0) {               // move to a different index
1526 >                r = z.seed;
1527 >                r ^= r << 13;                // same xorshift as WorkQueues
1528 >                r ^= r >>> 17;
1529 >                z.seed = r ^ (r << 5);
1530 >            }
1531 >            else if ((ps = plock) < 0)
1532 >                throw new RejectedExecutionException();
1533 >            else if (ps == 0 || (ws = workQueues) == null ||
1534 >                     (m = ws.length - 1) < 0)
1535 >                initWorkQueuesArray();
1536 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1537 >                if (q.trySharedPush(task))
1538 >                    return;
1539 >                else
1540 >                    r = 0; // move on contention
1541 >            }
1542 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1543 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1544 >                if (((ps = plock) & PL_LOCK) != 0 ||
1545 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1546 >                    ps = acquirePlock();
1547 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1548 >                    ws[k] = q;
1549 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1550 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1551 >                    releasePlock(nps);
1552 >            }
1553 >            else
1554 >                r = 0; // try elsewhere while lock held
1555          }
1556      }
1557  
1558 +    // Maintaining ctl counts
1559 +
1560      /**
1561 <     * Final callback from terminating worker.  Removes record of
694 <     * worker from array, and adjusts counts. If pool is shutting
695 <     * down, tries to complete termination.
696 <     *
697 <     * @param w the worker
1561 >     * Increments active count; mainly called upon return from blocking.
1562       */
1563 <    final void workerTerminated(ForkJoinWorkerThread w) {
1564 <        forgetWorker(w);
1565 <        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
702 <        while (w.stealCount != 0) // collect final count
703 <            tryAccumulateStealCount(w);
704 <        tryTerminate(false);
1563 >    final void incrementActiveCount() {
1564 >        long c;
1565 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1566      }
1567  
707    // Waiting for and signalling events
708
1568      /**
1569 <     * Releases workers blocked on a count not equal to current count.
1570 <     * Normally called after precheck that eventWaiters isn't zero to
1571 <     * avoid wasted array checks. Gives up upon a change in count or
1572 <     * upon releasing two workers, letting others take over.
1569 >     * Tries to create (at most one) or activate (possibly several)
1570 >     * workers if too few are active. On contention failure, continues
1571 >     * until at least one worker is signalled or the given queue is
1572 >     * empty or all workers are active.
1573 >     *
1574 >     * @param q if non-null, the queue holding tasks to be signalled
1575 >     * @param signals the target number of signals (at least one --
1576 >     * if argument is zero also sets signallee hint if parked).
1577       */
1578 <    private void releaseEventWaiters() {
1579 <        ForkJoinWorkerThread[] ws = workers;
1580 <        int n = ws.length;
1581 <        long h = eventWaiters;
1582 <        int ec = eventCount;
1583 <        boolean releasedOne = false;
1584 <        ForkJoinWorkerThread w; int id;
1585 <        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
1586 <               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
1587 <               id < n && (w = ws[id]) != null) {
1588 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1589 <                                          h,  w.nextWaiter)) {
1590 <                LockSupport.unpark(w);
1591 <                if (releasedOne) // exit on second release
1578 >    final void signalWork(WorkQueue q, int signals) {
1579 >        long c; int e, u, i, s; WorkQueue[] ws; WorkQueue w; Thread p;
1580 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1581 >            if ((e = (int)c) > 0) {
1582 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1583 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1584 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1585 >                               ((long)(u + UAC_UNIT) << 32));
1586 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1587 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1588 >                        if ((p = w.parker) != null) {
1589 >                            if (q != null && signals == 0)
1590 >                                w.hint = q.poolIndex;
1591 >                            U.unpark(p);
1592 >                        }
1593 >                        if (--signals <= 0)
1594 >                            break;
1595 >                    }
1596 >                    if (q != null && (s = q.queueSize()) <= signals &&
1597 >                         (signals = s) <= 0)
1598 >                        break;
1599 >                }
1600 >                else
1601                      break;
730                releasedOne = true;
1602              }
1603 <            if (eventCount != ec)
1603 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1604 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1605 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1606 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1607 >                    addWorker();
1608 >                    break;
1609 >                }
1610 >            }
1611 >            else
1612                  break;
734            h = eventWaiters;
1613          }
1614      }
1615  
1616 +    // Scanning for tasks
1617 +
1618      /**
1619 <     * Tries to advance eventCount and releases waiters. Called only
740 <     * from workers.
1619 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1620       */
1621 <    final void signalWork() {
1622 <        int c; // try to increment event count -- CAS failure OK
1623 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
745 <        if (eventWaiters != 0L)
746 <            releaseEventWaiters();
1621 >    final void runWorker(WorkQueue w) {
1622 >        if (w != null) // skip on initialization failure
1623 >            do { w.runTask(scan(w)); } while (w.qlock >= 0);
1624      }
1625  
1626      /**
1627 <     * Adds the given worker to event queue and blocks until
1628 <     * terminating or event count advances from the given value
1629 <     *
1630 <     * @param w the calling worker thread
1631 <     * @param ec the count
1632 <     */
1633 <    private void eventSync(ForkJoinWorkerThread w, int ec) {
1634 <        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
1635 <        long h;
1636 <        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1637 <               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
1638 <                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
1639 <               eventCount == ec) {
1640 <            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1641 <                                          w.nextWaiter = h, nh)) {
1642 <                awaitEvent(w, ec);
1643 <                break;
1627 >     * Scans for and, if found, returns one task, else possibly
1628 >     * inactivates the worker. This method operates on single reads of
1629 >     * volatile state and is designed to be re-invoked continuously,
1630 >     * in part because it returns upon detecting inconsistencies,
1631 >     * contention, or state changes that indicate possible success on
1632 >     * re-invocation.
1633 >     *
1634 >     * The scan searches for tasks across queues (starting at a random
1635 >     * index, and relying on registerWorker to irregularly scatter
1636 >     * them within array to avoid bias), checking each at least twice.
1637 >     * The scan terminates upon either finding a non-empty queue, or
1638 >     * completing the sweep. If the worker is not inactivated, it
1639 >     * takes and returns a task from this queue. Otherwise, if not
1640 >     * activated, it signals workers (that may include itself) and
1641 >     * returns so caller can retry. Also returns for true if the
1642 >     * worker array may have changed during an empty scan.  On failure
1643 >     * to find a task, we take one of the following actions, after
1644 >     * which the caller will retry calling this method unless
1645 >     * terminated.
1646 >     *
1647 >     * * If pool is terminating, terminate the worker.
1648 >     *
1649 >     * * If not already enqueued, try to inactivate and enqueue the
1650 >     * worker on wait queue. Or, if inactivating has caused the pool
1651 >     * to be quiescent, relay to idleAwaitWork to check for
1652 >     * termination and possibly shrink pool.
1653 >     *
1654 >     * * If already enqueued and none of the above apply, possibly
1655 >     * (with 1/2 probability) park awaiting signal, else lingering to
1656 >     * help scan and signal.
1657 >     *
1658 >     * @param w the worker (via its WorkQueue)
1659 >     * @return a task or null if none found
1660 >     */
1661 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1662 >        WorkQueue[] ws; int m, hint;
1663 >        int ps = plock;                          // read plock before ws
1664 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1665 >            int ec = w.eventCount;               // ec is negative if inactive
1666 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1667 >            for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; ; --j) {
1668 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1669 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1670 >                    (a = q.array) != null) {     // probably nonempty
1671 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1672 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1673 >                        U.getObjectVolatile(a, i);
1674 >                    if (q.base == b && ec >= 0 && t != null &&
1675 >                        U.compareAndSwapObject(a, i, t, null)) {
1676 >                        if ((q.base = b + 1) - q.top < 0)
1677 >                            signalWork(q, 0);
1678 >                        return t;                // taken
1679 >                    }
1680 >                    else if (ec < 0 || j < m) {  // cannot take or cannot rescan
1681 >                        w.hint = q.poolIndex;    // use hint below
1682 >                        break;                   // let caller retry after signal
1683 >                    }
1684 >                }
1685 >                else if (j < 0) { // end of scan; in loop to simplify code
1686 >                    long c, sc; int e, ns;
1687 >                    if ((ns = w.nsteals) != 0) {
1688 >                        if (U.compareAndSwapLong(this, STEALCOUNT,
1689 >                                                 sc = stealCount, sc + ns))
1690 >                            w.nsteals = 0;       // collect steals
1691 >                    }
1692 >                    else if (plock != ps)        // ws may have changed
1693 >                        break;
1694 >                    else if ((e = (int)(c = ctl)) < 0)
1695 >                        w.qlock = -1;            // pool is terminating
1696 >                    else if (ec >= 0) {          // try to enqueue/inactivate
1697 >                        long nc = ((long)ec |
1698 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1699 >                        w.nextWait = e;          // link and mark inactive
1700 >                        w.hint = -1;             // use hint if set while parked
1701 >                        w.eventCount = ec | INT_SIGN;
1702 >                        if (ctl != c ||
1703 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1704 >                            w.eventCount = ec;  // unmark on CAS failure
1705 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1706 >                            idleAwaitWork(w, nc, c);
1707 >                    }
1708 >                    else if (w.eventCount < 0) { // block
1709 >                        Thread wt = Thread.currentThread();
1710 >                        Thread.interrupted();    // clear status
1711 >                        U.putObject(wt, PARKBLOCKER, this);
1712 >                        w.parker = wt;           // emulate LockSupport.park
1713 >                        if (w.eventCount < 0)    // recheck
1714 >                            U.park(false, 0L);
1715 >                        w.parker = null;
1716 >                        U.putObject(wt, PARKBLOCKER, null);
1717 >                    }
1718 >                    break;
1719 >                }
1720 >            }
1721 >            if ((hint = w.hint) >= 0) {          // help signal
1722 >                WorkQueue[] vs; WorkQueue v; int k;
1723 >                w.hint = -1;                     // suppress resignal
1724 >                if ((vs = workQueues) != null && hint < vs.length &&
1725 >                    (v = vs[hint]) != null && (k = v.base - v.top) < -1)
1726 >                    signalWork(v, 1 - k);
1727              }
1728          }
1729 +        return null;
1730      }
1731  
1732      /**
1733 <     * Blocks the given worker (that has already been entered as an
1734 <     * event waiter) until terminating or event count advances from
1735 <     * the given value. The oldest (first) waiter uses a timed wait to
1736 <     * occasionally one-by-one shrink the number of workers (to a
1737 <     * minimum of one) if the pool has not been used for extended
1738 <     * periods.
1739 <     *
1740 <     * @param w the calling worker thread
1741 <     * @param ec the count
1742 <     */
1743 <    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
1744 <        while (eventCount == ec) {
1745 <            if (tryAccumulateStealCount(w)) { // transfer while idle
1746 <                boolean untimed = (w.nextWaiter != 0L ||
1747 <                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
1748 <                long startTime = untimed? 0 : System.nanoTime();
1749 <                Thread.interrupted();         // clear/ignore interrupt
1750 <                if (eventCount != ec || w.runState != 0 ||
1751 <                    runState >= TERMINATING)  // recheck after clear
1733 >     * If inactivating worker w has caused the pool to become
1734 >     * quiescent, checks for pool termination, and, so long as this is
1735 >     * not the only worker, waits for event for up to a given
1736 >     * duration.  On timeout, if ctl has not changed, terminates the
1737 >     * worker, which will in turn wake up another worker to possibly
1738 >     * repeat this process.
1739 >     *
1740 >     * @param w the calling worker
1741 >     * @param currentCtl the ctl value triggering possible quiescence
1742 >     * @param prevCtl the ctl value to restore if thread is terminated
1743 >     */
1744 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1745 >        if (w != null && w.eventCount < 0 &&
1746 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1747 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1748 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1749 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1750 >            Thread wt = Thread.currentThread();
1751 >            while (ctl == currentCtl) {
1752 >                Thread.interrupted();  // timed variant of version in scan()
1753 >                U.putObject(wt, PARKBLOCKER, this);
1754 >                w.parker = wt;
1755 >                if (ctl == currentCtl)
1756 >                    U.park(false, parkTime);
1757 >                w.parker = null;
1758 >                U.putObject(wt, PARKBLOCKER, null);
1759 >                if (ctl != currentCtl)
1760 >                    break;
1761 >                if (deadline - System.nanoTime() <= 0L &&
1762 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1763 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1764 >                    w.qlock = -1;   // shrink
1765 >                    w.hint = -1;    // suppress helping
1766                      break;
1767 <                if (untimed)
1768 <                    LockSupport.park(w);
1769 <                else {
1770 <                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
1771 <                    if (eventCount != ec || w.runState != 0 ||
1772 <                        runState >= TERMINATING)
1767 >                }
1768 >            }
1769 >        }
1770 >    }
1771 >
1772 >    /**
1773 >     * Scans through queues looking for work (optionally, while
1774 >     * joining a task); if any are present, signals. May return early
1775 >     * if more signalling is detectably unneeded.
1776 >     *
1777 >     * @param task if non-null, return early if done
1778 >     * @param origin an index to start scan
1779 >     */
1780 >    final int helpSignal(ForkJoinTask<?> task, int origin) {
1781 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1782 >        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1783 >            for (int i = 0; i <= m; ++i) {
1784 >                if (task != null && (s = task.status) < 0)
1785 >                    return s;
1786 >                if ((q = ws[(i + origin) & m]) != null &&
1787 >                    (n = q.queueSize()) > 0) {
1788 >                    signalWork(q, n);
1789 >                    if ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
1790                          break;
799                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
800                        tryShutdownUnusedWorker(ec);
1791                  }
1792              }
1793          }
1794 +        return 0;
1795      }
1796  
1797 <    // Maintaining parallelism
1797 >    /**
1798 >     * Tries to locate and execute tasks for a stealer of the given
1799 >     * task, or in turn one of its stealers, Traces currentSteal ->
1800 >     * currentJoin links looking for a thread working on a descendant
1801 >     * of the given task and with a non-empty queue to steal back and
1802 >     * execute tasks from. The first call to this method upon a
1803 >     * waiting join will often entail scanning/search, (which is OK
1804 >     * because the joiner has nothing better to do), but this method
1805 >     * leaves hints in workers to speed up subsequent calls. The
1806 >     * implementation is very branchy to cope with potential
1807 >     * inconsistencies or loops encountering chains that are stale,
1808 >     * unknown, or so long that they are likely cyclic.
1809 >     *
1810 >     * @param joiner the joining worker
1811 >     * @param task the task to join
1812 >     * @return 0 if no progress can be made, negative if task
1813 >     * known complete, else positive
1814 >     */
1815 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1816 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1817 >        if (joiner != null && task != null) {       // hoist null checks
1818 >            restart: for (;;) {
1819 >                ForkJoinTask<?> subtask = task;     // current target
1820 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1821 >                    WorkQueue[] ws; int m, s, h;
1822 >                    if ((s = task.status) < 0) {
1823 >                        stat = s;
1824 >                        break restart;
1825 >                    }
1826 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1827 >                        break restart;              // shutting down
1828 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1829 >                        v.currentSteal != subtask) {
1830 >                        for (int origin = h;;) {    // find stealer
1831 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1832 >                                (subtask.status < 0 || j.currentJoin != subtask))
1833 >                                continue restart;   // occasional staleness check
1834 >                            if ((v = ws[h]) != null &&
1835 >                                v.currentSteal == subtask) {
1836 >                                j.hint = h;        // save hint
1837 >                                break;
1838 >                            }
1839 >                            if (h == origin)
1840 >                                break restart;      // cannot find stealer
1841 >                        }
1842 >                    }
1843 >                    for (;;) { // help stealer or descend to its stealer
1844 >                        ForkJoinTask[] a;  int b;
1845 >                        if (subtask.status < 0)     // surround probes with
1846 >                            continue restart;       //   consistency checks
1847 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1848 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1849 >                            ForkJoinTask<?> t =
1850 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1851 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1852 >                                v.currentSteal != subtask)
1853 >                                continue restart;   // stale
1854 >                            stat = 1;               // apparent progress
1855 >                            if (t != null && v.base == b &&
1856 >                                U.compareAndSwapObject(a, i, t, null)) {
1857 >                                v.base = b + 1;     // help stealer
1858 >                                joiner.runSubtask(t);
1859 >                            }
1860 >                            else if (v.base == b && ++steps == MAX_HELP)
1861 >                                break restart;      // v apparently stalled
1862 >                        }
1863 >                        else {                      // empty -- try to descend
1864 >                            ForkJoinTask<?> next = v.currentJoin;
1865 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1866 >                                v.currentSteal != subtask)
1867 >                                continue restart;   // stale
1868 >                            else if (next == null || ++steps == MAX_HELP)
1869 >                                break restart;      // dead-end or maybe cyclic
1870 >                            else {
1871 >                                subtask = next;
1872 >                                j = v;
1873 >                                break;
1874 >                            }
1875 >                        }
1876 >                    }
1877 >                }
1878 >            }
1879 >        }
1880 >        return stat;
1881 >    }
1882  
1883      /**
1884 <     * Pushes worker onto the spare stack
1884 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1885 >     * and run tasks within the target's computation.
1886 >     *
1887 >     * @param task the task to join
1888 >     * @param mode if shared, exit upon completing any task
1889 >     * if all workers are active
1890 >     *
1891       */
1892 <    final void pushSpare(ForkJoinWorkerThread w) {
1893 <        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
1894 <        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1895 <                                               w.nextSpare = spareWaiters,ns));
1892 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1893 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1894 >        if (task != null && (ws = workQueues) != null &&
1895 >            (m = ws.length - 1) >= 0) {
1896 >            for (int j = 1, origin = j;;) {
1897 >                if ((s = task.status) < 0)
1898 >                    return s;
1899 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1900 >                    origin = j;
1901 >                    if (mode == SHARED_QUEUE &&
1902 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1903 >                        break;
1904 >                }
1905 >                else if ((j = (j + 2) & m) == origin)
1906 >                    break;
1907 >            }
1908 >        }
1909 >        return 0;
1910      }
1911  
1912      /**
1913 <     * Tries (once) to resume a spare if the number of running
1914 <     * threads is less than target.
1915 <     */
1916 <    private void tryResumeSpare() {
1917 <        int sw, id;
1918 <        ForkJoinWorkerThread[] ws = workers;
1919 <        int n = ws.length;
1920 <        ForkJoinWorkerThread w;
1921 <        if ((sw = spareWaiters) != 0 &&
1922 <            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
1923 <            id < n && (w = ws[id]) != null &&
1924 <            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
1925 <            spareWaiters == sw &&
1926 <            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
1927 <                                     sw, w.nextSpare)) {
1928 <            int c; // increment running count before resume
1929 <            do {} while (!UNSAFE.compareAndSwapInt
1930 <                         (this, workerCountsOffset,
1931 <                          c = workerCounts, c + ONE_RUNNING));
1932 <            if (w.tryUnsuspend())
1933 <                LockSupport.unpark(w);
1934 <            else   // back out if w was shutdown
1935 <                decrementWorkerCounts(ONE_RUNNING, 0);
1913 >     * Tries to decrement active count (sometimes implicitly) and
1914 >     * possibly release or create a compensating worker in preparation
1915 >     * for blocking. Fails on contention or termination. Otherwise,
1916 >     * adds a new thread if no idle workers are available and pool
1917 >     * may become starved.
1918 >     */
1919 >    final boolean tryCompensate() {
1920 >        int pc = config & SMASK, e, i, tc; long c;
1921 >        WorkQueue[] ws; WorkQueue w; Thread p;
1922 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1923 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1924 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1925 >                long nc = ((long)(w.nextWait & E_MASK) |
1926 >                           (c & (AC_MASK|TC_MASK)));
1927 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1928 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1929 >                    if ((p = w.parker) != null)
1930 >                        U.unpark(p);
1931 >                    return true;   // replace with idle worker
1932 >                }
1933 >            }
1934 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1935 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1936 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1937 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1938 >                    return true;   // no compensation
1939 >            }
1940 >            else if (tc + pc < MAX_CAP) {
1941 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1942 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1943 >                    addWorker();
1944 >                    return true;
1945 >                }
1946 >            }
1947          }
1948 +        return false;
1949      }
1950  
1951      /**
1952 <     * Tries to increase the number of running workers if below target
1953 <     * parallelism: If a spare exists tries to resume it via
1954 <     * tryResumeSpare.  Otherwise, if not enough total workers or all
1955 <     * existing workers are busy, adds a new worker. In all cases also
1956 <     * helps wake up releasable workers waiting for work.
1952 >     * Helps and/or blocks until the given task is done.
1953 >     *
1954 >     * @param joiner the joining worker
1955 >     * @param task the task
1956 >     * @return task status on exit
1957       */
1958 <    private void helpMaintainParallelism() {
1959 <        int pc = parallelism;
1960 <        int wc, rs, tc;
1961 <        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
1962 <               (rs = runState) < TERMINATING) {
1963 <            if (spareWaiters != 0)
1964 <                tryResumeSpare();
1965 <            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
1966 <                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
1967 <                break;   // enough total
1968 <            else if (runState == rs && workerCounts == wc &&
1969 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1970 <                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
1971 <                ForkJoinWorkerThread w = null;
1972 <                try {
1973 <                    w = factory.newThread(this);
1974 <                } finally { // adjust on null or exceptional factory return
1975 <                    if (w == null) {
1976 <                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
1977 <                        tryTerminate(false); // handle failure during shutdown
1958 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1959 >        int s = 0;
1960 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1961 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1962 >            joiner.currentJoin = task;
1963 >            do {} while ((s = task.status) >= 0 &&
1964 >                         joiner.queueSize() > 0 &&
1965 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1966 >            if (s >= 0 && (s = task.status) >= 0 &&
1967 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1968 >                (task instanceof CountedCompleter))
1969 >                s = helpComplete(task, LIFO_QUEUE);
1970 >            int k = 0; // to perform pre-block yield for politeness
1971 >            while (s >= 0 && (s = task.status) >= 0) {
1972 >                if ((joiner.queueSize() > 0 ||           // try helping
1973 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1974 >                    (s = task.status) >= 0) {
1975 >                    if (k < 3) {
1976 >                        if (++k < 3)
1977 >                            s = helpSignal(task, joiner.poolIndex);
1978 >                        else
1979 >                            Thread.yield();
1980 >                    }
1981 >                    else if (!tryCompensate())
1982 >                        k = 0;
1983 >                    else {
1984 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
1985 >                            synchronized (task) {
1986 >                                if (task.status >= 0) {
1987 >                                    try {                // see ForkJoinTask
1988 >                                        task.wait();     //  for explanation
1989 >                                    } catch (InterruptedException ie) {
1990 >                                    }
1991 >                                }
1992 >                                else
1993 >                                    task.notifyAll();
1994 >                            }
1995 >                        }
1996 >                        long c;                          // re-activate
1997 >                        do {} while (!U.compareAndSwapLong
1998 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1999                      }
2000                  }
873                if (w == null)
874                    break;
875                w.start(recordWorker(w), ueh);
876                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
877                    int c; // advance event count
878                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
879                                             c = eventCount, c+1);
880                    break; // add at most one unless total below target
881                }
882            }
883        }
884        if (eventWaiters != 0L)
885            releaseEventWaiters();
886    }
887
888    /**
889     * Callback from the oldest waiter in awaitEvent waking up after a
890     * period of non-use. If all workers are idle, tries (once) to
891     * shutdown an event waiter or a spare, if one exists. Note that
892     * we don't need CAS or locks here because the method is called
893     * only from one thread occasionally waking (and even misfires are
894     * OK). Note that until the shutdown worker fully terminates,
895     * workerCounts will overestimate total count, which is tolerable.
896     *
897     * @param ec the event count waited on by caller (to abort
898     * attempt if count has since changed).
899     */
900    private void tryShutdownUnusedWorker(int ec) {
901        if (runState == 0 && eventCount == ec) { // only trigger if all idle
902            ForkJoinWorkerThread[] ws = workers;
903            int n = ws.length;
904            ForkJoinWorkerThread w = null;
905            boolean shutdown = false;
906            int sw;
907            long h;
908            if ((sw = spareWaiters) != 0) { // prefer killing spares
909                int id = (sw & SPARE_ID_MASK) - 1;
910                if (id >= 0 && id < n && (w = ws[id]) != null &&
911                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
912                                             sw, w.nextSpare))
913                    shutdown = true;
914            }
915            else if ((h = eventWaiters) != 0L) {
916                long nh;
917                int id = ((int)(h & WAITER_ID_MASK)) - 1;
918                if (id >= 0 && id < n && (w = ws[id]) != null &&
919                    (nh = w.nextWaiter) != 0L && // keep at least one worker
920                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
921                    shutdown = true;
922            }
923            if (w != null && shutdown) {
924                w.shutdown();
925                LockSupport.unpark(w);
926            }
927        }
928        releaseEventWaiters(); // in case of interference
929    }
930
931    /**
932     * Callback from workers invoked upon each top-level action (i.e.,
933     * stealing a task or taking a submission and running it).
934     * Performs one or more of the following:
935     *
936     * 1. If the worker is active and either did not run a task
937     *    or there are too many workers, try to set its active status
938     *    to inactive and update activeCount. On contention, we may
939     *    try again in this or a subsequent call.
940     *
941     * 2. If not enough total workers, help create some.
942     *
943     * 3. If there are too many running workers, suspend this worker
944     *    (first forcing inactive if necessary).  If it is not needed,
945     *    it may be shutdown while suspended (via
946     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
947     *    rechecks running thread count and need for event sync.
948     *
949     * 4. If worker did not run a task, await the next task event via
950     *    eventSync if necessary (first forcing inactivation), upon
951     *    which the worker may be shutdown via
952     *    tryShutdownUnusedWorker.  Otherwise, help release any
953     *    existing event waiters that are now releasable,
954     *
955     * @param w the worker
956     * @param ran true if worker ran a task since last call to this method
957     */
958    final void preStep(ForkJoinWorkerThread w, boolean ran) {
959        int wec = w.lastEventCount;
960        boolean active = w.active;
961        boolean inactivate = false;
962        int pc = parallelism;
963        int rs;
964        while (w.runState == 0 && (rs = runState) < TERMINATING) {
965            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
966                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
967                inactivate = active = w.active = false;
968            int wc = workerCounts;
969            if ((wc & RUNNING_COUNT_MASK) > pc) {
970                if (!(inactivate |= active) && // must inactivate to suspend
971                    workerCounts == wc &&      // try to suspend as spare
972                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
973                                             wc, wc - ONE_RUNNING))
974                    w.suspendAsSpare();
975            }
976            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
977                helpMaintainParallelism();     // not enough workers
978            else if (!ran) {
979                long h = eventWaiters;
980                int ec = eventCount;
981                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
982                    releaseEventWaiters();     // release others before waiting
983                else if (ec != wec) {
984                    w.lastEventCount = ec;     // no need to wait
985                    break;
986                }
987                else if (!(inactivate |= active))
988                    eventSync(w, wec);         // must inactivate before sync
2001              }
2002 <            else
991 <                break;
2002 >            joiner.currentJoin = prevJoin;
2003          }
2004 +        return s;
2005      }
2006  
2007      /**
2008 <     * Helps and/or blocks awaiting join of the given task.
2009 <     * See above for explanation.
2008 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2009 >     * to help join only while there is continuous progress. (Caller
2010 >     * will then enter a timed wait.)
2011       *
2012 <     * @param joinMe the task to join
2013 <     * @param worker the current worker thread
2012 >     * @param joiner the joining worker
2013 >     * @param task the task
2014       */
2015 <    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
2016 <        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
2017 <        while (joinMe.status >= 0) {
2018 <            int wc;
2019 <            worker.helpJoinTask(joinMe);
2020 <            if (joinMe.status < 0)
2021 <                break;
2022 <            else if (retries > 0)
2023 <                --retries;
2024 <            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
2025 <                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
2026 <                                              wc, wc - ONE_RUNNING)) {
2027 <                int stat, c; long h;
2028 <                while ((stat = joinMe.status) >= 0 &&
2029 <                       (h = eventWaiters) != 0L && // help release others
1017 <                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1018 <                    releaseEventWaiters();
1019 <                if (stat >= 0 &&
1020 <                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1021 <                     (stat =
1022 <                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1023 <                    helpMaintainParallelism(); // timeout or no running workers
1024 <                do {} while (!UNSAFE.compareAndSwapInt
1025 <                             (this, workerCountsOffset,
1026 <                              c = workerCounts, c + ONE_RUNNING));
1027 <                if (stat < 0)
1028 <                    break;   // else restart
2015 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2016 >        int s;
2017 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2018 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2019 >            joiner.currentJoin = task;
2020 >            do {} while ((s = task.status) >= 0 &&
2021 >                         joiner.queueSize() > 0 &&
2022 >                         joiner.tryRemoveAndExec(task));
2023 >            if (s >= 0 && (s = task.status) >= 0 &&
2024 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
2025 >                (task instanceof CountedCompleter))
2026 >                s = helpComplete(task, LIFO_QUEUE);
2027 >            if (s >= 0 && joiner.queueSize() == 0) {
2028 >                do {} while (task.status >= 0 &&
2029 >                             tryHelpStealer(joiner, task) > 0);
2030              }
2031 +            joiner.currentJoin = prevJoin;
2032          }
2033      }
2034  
2035      /**
2036 <     * Same idea as awaitJoin, but no helping, retries, or timeouts.
2037 <     */
2038 <    final void awaitBlocker(ManagedBlocker blocker)
2039 <        throws InterruptedException {
2040 <        while (!blocker.isReleasable()) {
2041 <            int wc = workerCounts;
2042 <            if ((wc & RUNNING_COUNT_MASK) != 0 &&
2043 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
2044 <                                         wc, wc - ONE_RUNNING)) {
2045 <                try {
2046 <                    while (!blocker.isReleasable()) {
2047 <                        long h = eventWaiters;
2048 <                        if (h != 0L &&
2049 <                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
2050 <                            releaseEventWaiters();
2051 <                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
2052 <                                 runState < TERMINATING)
2053 <                            helpMaintainParallelism();
2054 <                        else if (blocker.block())
2055 <                            break;
2056 <                    }
2057 <                } finally {
2058 <                    int c;
2059 <                    do {} while (!UNSAFE.compareAndSwapInt
2060 <                                 (this, workerCountsOffset,
2061 <                                  c = workerCounts, c + ONE_RUNNING));
2036 >     * Returns a (probably) non-empty steal queue, if one is found
2037 >     * during a random, then cyclic scan, else null.  This method must
2038 >     * be retried by caller if, by the time it tries to use the queue,
2039 >     * it is empty.
2040 >     * @param r a (random) seed for scanning
2041 >     */
2042 >    private WorkQueue findNonEmptyStealQueue(int r) {
2043 >        for (WorkQueue[] ws;;) {
2044 >            int ps = plock, m, n;
2045 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2046 >                return null;
2047 >            for (int j = (m + 1) << 2; ;) {
2048 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2049 >                if (q != null && (n = q.queueSize()) > 0) {
2050 >                    if (n > 1)
2051 >                        signalWork(q, 0);
2052 >                    return q;
2053 >                }
2054 >                else if (--j < 0) {
2055 >                    if (plock == ps)
2056 >                        return null;
2057 >                    break;
2058 >                }
2059 >            }
2060 >        }
2061 >    }
2062 >
2063 >    /**
2064 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2065 >     * active count ctl maintenance, but rather than blocking
2066 >     * when tasks cannot be found, we rescan until all others cannot
2067 >     * find tasks either.
2068 >     */
2069 >    final void helpQuiescePool(WorkQueue w) {
2070 >        for (boolean active = true;;) {
2071 >            ForkJoinTask<?> localTask; // exhaust local queue
2072 >            while ((localTask = w.nextLocalTask()) != null)
2073 >                localTask.doExec();
2074 >            // Similar to loop in scan(), but ignoring submissions
2075 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2076 >            if (q != null) {
2077 >                ForkJoinTask<?> t; int b;
2078 >                if (!active) {      // re-establish active count
2079 >                    long c;
2080 >                    active = true;
2081 >                    do {} while (!U.compareAndSwapLong
2082 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2083 >                }
2084 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2085 >                    w.runSubtask(t);
2086 >            }
2087 >            else {
2088 >                long c;
2089 >                if (active) {       // decrement active count without queuing
2090 >                    active = false;
2091 >                    do {} while (!U.compareAndSwapLong
2092 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2093 >                }
2094 >                else
2095 >                    c = ctl;        // re-increment on exit
2096 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2097 >                    do {} while (!U.compareAndSwapLong
2098 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2099 >                    break;
2100                  }
1061                break;
2101              }
2102          }
2103      }
2104  
2105      /**
2106 <     * Possibly initiates and/or completes termination.
2106 >     * Gets and removes a local or stolen task for the given worker.
2107 >     *
2108 >     * @return a task, if available
2109 >     */
2110 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2111 >        for (ForkJoinTask<?> t;;) {
2112 >            WorkQueue q; int b;
2113 >            if ((t = w.nextLocalTask()) != null)
2114 >                return t;
2115 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2116 >                return null;
2117 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2118 >                return t;
2119 >        }
2120 >    }
2121 >
2122 >    /**
2123 >     * Returns a cheap heuristic guide for task partitioning when
2124 >     * programmers, frameworks, tools, or languages have little or no
2125 >     * idea about task granularity.  In essence by offering this
2126 >     * method, we ask users only about tradeoffs in overhead vs
2127 >     * expected throughput and its variance, rather than how finely to
2128 >     * partition tasks.
2129 >     *
2130 >     * In a steady state strict (tree-structured) computation, each
2131 >     * thread makes available for stealing enough tasks for other
2132 >     * threads to remain active. Inductively, if all threads play by
2133 >     * the same rules, each thread should make available only a
2134 >     * constant number of tasks.
2135 >     *
2136 >     * The minimum useful constant is just 1. But using a value of 1
2137 >     * would require immediate replenishment upon each steal to
2138 >     * maintain enough tasks, which is infeasible.  Further,
2139 >     * partitionings/granularities of offered tasks should minimize
2140 >     * steal rates, which in general means that threads nearer the top
2141 >     * of computation tree should generate more than those nearer the
2142 >     * bottom. In perfect steady state, each thread is at
2143 >     * approximately the same level of computation tree. However,
2144 >     * producing extra tasks amortizes the uncertainty of progress and
2145 >     * diffusion assumptions.
2146 >     *
2147 >     * So, users will want to use values larger, but not much larger
2148 >     * than 1 to both smooth over transient shortages and hedge
2149 >     * against uneven progress; as traded off against the cost of
2150 >     * extra task overhead. We leave the user to pick a threshold
2151 >     * value to compare with the results of this call to guide
2152 >     * decisions, but recommend values such as 3.
2153 >     *
2154 >     * When all threads are active, it is on average OK to estimate
2155 >     * surplus strictly locally. In steady-state, if one thread is
2156 >     * maintaining say 2 surplus tasks, then so are others. So we can
2157 >     * just use estimated queue length.  However, this strategy alone
2158 >     * leads to serious mis-estimates in some non-steady-state
2159 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2160 >     * many of these by further considering the number of "idle"
2161 >     * threads, that are known to have zero queued tasks, so
2162 >     * compensate by a factor of (#idle/#active) threads.
2163 >     *
2164 >     * Note: The approximation of #busy workers as #active workers is
2165 >     * not very good under current signalling scheme, and should be
2166 >     * improved.
2167 >     */
2168 >    static int getSurplusQueuedTaskCount() {
2169 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2170 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2171 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2172 >            int n = (q = wt.workQueue).top - q.base;
2173 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2174 >            return n - (a > (p >>>= 1) ? 0 :
2175 >                        a > (p >>>= 1) ? 1 :
2176 >                        a > (p >>>= 1) ? 2 :
2177 >                        a > (p >>>= 1) ? 4 :
2178 >                        8);
2179 >        }
2180 >        return 0;
2181 >    }
2182 >
2183 >    //  Termination
2184 >
2185 >    /**
2186 >     * Possibly initiates and/or completes termination.  The caller
2187 >     * triggering termination runs three passes through workQueues:
2188 >     * (0) Setting termination status, followed by wakeups of queued
2189 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2190 >     * threads (likely in external tasks, but possibly also blocked in
2191 >     * joins).  Each pass repeats previous steps because of potential
2192 >     * lagging thread creation.
2193       *
2194       * @param now if true, unconditionally terminate, else only
2195 <     * if shutdown and empty queue and no active workers
2195 >     * if no work and no active workers
2196 >     * @param enable if true, enable shutdown when next possible
2197       * @return true if now terminating or terminated
2198       */
2199 <    private boolean tryTerminate(boolean now) {
2200 <        if (now)
1075 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1076 <        else if (runState < SHUTDOWN ||
1077 <                 !submissionQueue.isEmpty() ||
1078 <                 (runState & ACTIVE_COUNT_MASK) != 0)
2199 >    private boolean tryTerminate(boolean now, boolean enable) {
2200 >        if (this == commonPool)                     // cannot shut down
2201              return false;
2202 <
2203 <        if (advanceRunLevel(TERMINATING))
2204 <            startTerminating();
2205 <
2206 <        // Finish now if all threads terminated; else in some subsequent call
2207 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
2208 <            advanceRunLevel(TERMINATED);
2209 <            termination.arrive();
2210 <        }
2211 <        return true;
2212 <    }
2213 <
2214 <    /**
2215 <     * Actions on transition to TERMINATING
2216 <     *
2217 <     * Runs up to four passes through workers: (0) shutting down each
2218 <     * (without waking up if parked) to quickly spread notifications
2219 <     * without unnecessary bouncing around event queues etc (1) wake
2220 <     * up and help cancel tasks (2) interrupt (3) mop up races with
2221 <     * interrupted workers
2222 <     */
2223 <    private void startTerminating() {
2224 <        cancelSubmissions();
2225 <        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
2226 <            int c; // advance event count
2227 <            UNSAFE.compareAndSwapInt(this, eventCountOffset,
2228 <                                     c = eventCount, c+1);
2229 <            eventWaiters = 0L; // clobber lists
2230 <            spareWaiters = 0;
2231 <            for (ForkJoinWorkerThread w : workers) {
2232 <                if (w != null) {
2233 <                    w.shutdown();
2234 <                    if (passes > 0 && !w.isTerminated()) {
2235 <                        w.cancelTasks();
2236 <                        LockSupport.unpark(w);
2237 <                        if (passes > 1) {
2238 <                            try {
2239 <                                w.interrupt();
2240 <                            } catch (SecurityException ignore) {
2202 >        for (long c;;) {
2203 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2204 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2205 >                    synchronized (this) {
2206 >                        notifyAll();                // signal when 0 workers
2207 >                    }
2208 >                }
2209 >                return true;
2210 >            }
2211 >            if (plock >= 0) {                       // not yet enabled
2212 >                int ps;
2213 >                if (!enable)
2214 >                    return false;
2215 >                if (((ps = plock) & PL_LOCK) != 0 ||
2216 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2217 >                    ps = acquirePlock();
2218 >                int nps = SHUTDOWN;
2219 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2220 >                    releasePlock(nps);
2221 >            }
2222 >            if (!now) {                             // check if idle & no tasks
2223 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2224 >                    hasQueuedSubmissions())
2225 >                    return false;
2226 >                // Check for unqueued inactive workers. One pass suffices.
2227 >                WorkQueue[] ws = workQueues; WorkQueue w;
2228 >                if (ws != null) {
2229 >                    for (int i = 1; i < ws.length; i += 2) {
2230 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2231 >                            return false;
2232 >                    }
2233 >                }
2234 >            }
2235 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2236 >                for (int pass = 0; pass < 3; ++pass) {
2237 >                    WorkQueue[] ws = workQueues;
2238 >                    if (ws != null) {
2239 >                        WorkQueue w;
2240 >                        int n = ws.length;
2241 >                        for (int i = 0; i < n; ++i) {
2242 >                            if ((w = ws[i]) != null) {
2243 >                                w.qlock = -1;
2244 >                                if (pass > 0) {
2245 >                                    w.cancelAll();
2246 >                                    if (pass > 1)
2247 >                                        w.interruptOwner();
2248 >                                }
2249 >                            }
2250 >                        }
2251 >                        // Wake up workers parked on event queue
2252 >                        int i, e; long cc; Thread p;
2253 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2254 >                               (i = e & SMASK) < n &&
2255 >                               (w = ws[i]) != null) {
2256 >                            long nc = ((long)(w.nextWait & E_MASK) |
2257 >                                       ((cc + AC_UNIT) & AC_MASK) |
2258 >                                       (cc & (TC_MASK|STOP_BIT)));
2259 >                            if (w.eventCount == (e | INT_SIGN) &&
2260 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2261 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2262 >                                w.qlock = -1;
2263 >                                if ((p = w.parker) != null)
2264 >                                    U.unpark(p);
2265                              }
2266                          }
2267                      }
# Line 1124 | Line 2270 | public class ForkJoinPool extends Abstra
2270          }
2271      }
2272  
2273 +    // external operations on common pool
2274 +
2275      /**
2276 <     * Clears out and cancels submissions, ignoring exceptions.
2276 >     * Returns common pool queue for a thread that has submitted at
2277 >     * least one task.
2278       */
2279 <    private void cancelSubmissions() {
2280 <        ForkJoinTask<?> task;
2281 <        while ((task = submissionQueue.poll()) != null) {
2282 <            try {
2283 <                task.cancel(false);
2284 <            } catch (Throwable ignore) {
2279 >    static WorkQueue commonSubmitterQueue() {
2280 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2281 >        return ((z = submitters.get()) != null &&
2282 >                (p = commonPool) != null &&
2283 >                (ws = p.workQueues) != null &&
2284 >                (m = ws.length - 1) >= 0) ?
2285 >            ws[m & z.seed & SQMASK] : null;
2286 >    }
2287 >
2288 >    /**
2289 >     * Tries to pop the given task from submitter's queue in common pool.
2290 >     */
2291 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2292 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2293 >        ForkJoinTask<?>[] a;  int m, s; long j;
2294 >        if ((z = submitters.get()) != null &&
2295 >            (p = commonPool) != null &&
2296 >            (ws = p.workQueues) != null &&
2297 >            (m = ws.length - 1) >= 0 &&
2298 >            (q = ws[m & z.seed & SQMASK]) != null &&
2299 >            (s = q.top) != q.base &&
2300 >            (a = q.array) != null &&
2301 >            U.getObjectVolatile
2302 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2303 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2304 >            if (q.array == a && q.top == s && // recheck
2305 >                U.compareAndSwapObject(a, j, t, null)) {
2306 >                q.top = s - 1;
2307 >                q.qlock = 0;
2308 >                return true;
2309              }
2310 +            q.qlock = 0;
2311          }
2312 +        return false;
2313      }
2314  
1140    // misc support for ForkJoinWorkerThread
1141
2315      /**
2316 <     * Returns pool number.
2317 <     */
2318 <    final int getPoolNumber() {
2319 <        return poolNumber;
2316 >     * Tries to pop and run local tasks within the same computation
2317 >     * as the given root. On failure, tries to help complete from
2318 >     * other queues via helpComplete.
2319 >     */
2320 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2321 >        ForkJoinTask<?>[] a; int m;
2322 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2323 >            root != null && root.status >= 0) {
2324 >            for (;;) {
2325 >                int s, u; Object o; CountedCompleter<?> task = null;
2326 >                if ((s = q.top) - q.base > 0) {
2327 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2328 >                    if ((o = U.getObject(a, j)) != null &&
2329 >                        (o instanceof CountedCompleter)) {
2330 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2331 >                        do {
2332 >                            if (r == root) {
2333 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2334 >                                    if (q.array == a && q.top == s &&
2335 >                                        U.compareAndSwapObject(a, j, t, null)) {
2336 >                                        q.top = s - 1;
2337 >                                        task = t;
2338 >                                    }
2339 >                                    q.qlock = 0;
2340 >                                }
2341 >                                break;
2342 >                            }
2343 >                        } while ((r = r.completer) != null);
2344 >                    }
2345 >                }
2346 >                if (task != null)
2347 >                    task.doExec();
2348 >                if (root.status < 0 ||
2349 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2350 >                    break;
2351 >                if (task == null) {
2352 >                    if (helpSignal(root, q.poolIndex) >= 0)
2353 >                        helpComplete(root, SHARED_QUEUE);
2354 >                    break;
2355 >                }
2356 >            }
2357 >        }
2358      }
2359  
2360      /**
2361 <     * Tries to accumulate steal count from a worker, clearing
2362 <     * the worker's value if successful.
1152 <     *
1153 <     * @return true if worker steal count now zero
2361 >     * Tries to help execute or signal availability of the given task
2362 >     * from submitter's queue in common pool.
2363       */
2364 <    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
2365 <        int sc = w.stealCount;
2366 <        long c = stealCount;
2367 <        // CAS even if zero, for fence effects
2368 <        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
2369 <            if (sc != 0)
2370 <                w.stealCount = 0;
2371 <            return true;
2364 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2365 >        // Some hard-to-avoid overlap with tryExternalUnpush
2366 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2367 >        ForkJoinTask<?>[] a;  int m, s, n; long j;
2368 >        if (t != null &&
2369 >            (z = submitters.get()) != null &&
2370 >            (p = commonPool) != null &&
2371 >            (ws = p.workQueues) != null &&
2372 >            (m = ws.length - 1) >= 0 &&
2373 >            (q = ws[m & z.seed & SQMASK]) != null &&
2374 >            (a = q.array) != null &&
2375 >            t.status >= 0) {
2376 >            if ((s = q.top) != q.base &&
2377 >                U.getObjectVolatile
2378 >                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2379 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2380 >                if (q.array == a && q.top == s &&
2381 >                    U.compareAndSwapObject(a, j, t, null)) {
2382 >                    q.top = s - 1;
2383 >                    q.qlock = 0;
2384 >                    t.doExec();
2385 >                }
2386 >                else
2387 >                    q.qlock = 0;
2388 >            }
2389 >            if (t.status >= 0) {
2390 >                if (t instanceof CountedCompleter)
2391 >                    p.externalHelpComplete(q, t);
2392 >                else
2393 >                    p.helpSignal(t, q.poolIndex);
2394 >            }
2395          }
1164        return sc == 0;
2396      }
2397  
2398      /**
2399 <     * Returns the approximate (non-atomic) number of idle threads per
1169 <     * active thread.
2399 >     * Restricted version of helpQuiescePool for external callers
2400       */
2401 <    final int idlePerActive() {
2402 <        int pc = parallelism; // use parallelism, not rc
2403 <        int ac = runState;    // no mask -- artificially boosts during shutdown
2404 <        // Use exact results for small values, saturate past 4
2405 <        return ((pc <= ac) ? 0 :
2406 <                (pc >>> 1 <= ac) ? 1 :
2407 <                (pc >>> 2 <= ac) ? 3 :
1178 <                pc >>> 3);
2401 >    static void externalHelpQuiescePool() {
2402 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2403 >        if ((p = commonPool) != null &&
2404 >            (q = p.findNonEmptyStealQueue(1)) != null &&
2405 >            (b = q.base) - q.top < 0 &&
2406 >            (t = q.pollAt(b)) != null)
2407 >            t.doExec();
2408      }
2409  
2410 <    // Public and protected methods
2410 >    // Exported methods
2411  
2412      // Constructors
2413  
# Line 1225 | Line 2454 | public class ForkJoinPool extends Abstra
2454       * use {@link #defaultForkJoinWorkerThreadFactory}.
2455       * @param handler the handler for internal worker threads that
2456       * terminate due to unrecoverable errors encountered while executing
2457 <     * tasks. For default value, use <code>null</code>.
2457 >     * tasks. For default value, use {@code null}.
2458       * @param asyncMode if true,
2459       * establishes local first-in-first-out scheduling mode for forked
2460       * tasks that are never joined. This mode may be more appropriate
2461       * than default locally stack-based mode in applications in which
2462       * worker threads only process event-style asynchronous tasks.
2463 <     * For default value, use <code>false</code>.
2463 >     * For default value, use {@code false}.
2464       * @throws IllegalArgumentException if parallelism less than or
2465       *         equal to zero, or greater than implementation limit
2466       * @throws NullPointerException if the factory is null
# Line 1247 | Line 2476 | public class ForkJoinPool extends Abstra
2476          checkPermission();
2477          if (factory == null)
2478              throw new NullPointerException();
2479 <        if (parallelism <= 0 || parallelism > MAX_WORKERS)
2479 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2480              throw new IllegalArgumentException();
1252        this.parallelism = parallelism;
2481          this.factory = factory;
2482          this.ueh = handler;
2483 <        this.locallyFifo = asyncMode;
2484 <        int arraySize = initialArraySizeFor(parallelism);
2485 <        this.workers = new ForkJoinWorkerThread[arraySize];
2486 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2487 <        this.workerLock = new ReentrantLock();
2488 <        this.termination = new Phaser(1);
2489 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2483 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2484 >        long np = (long)(-parallelism); // offset ctl counts
2485 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2486 >        int pn = nextPoolId();
2487 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2488 >        sb.append(Integer.toString(pn));
2489 >        sb.append("-worker-");
2490 >        this.workerNamePrefix = sb.toString();
2491      }
2492  
2493      /**
2494 <     * Returns initial power of two size for workers array.
2495 <     * @param pc the initial parallelism level
2496 <     */
2497 <    private static int initialArraySizeFor(int pc) {
2498 <        // If possible, initially allocate enough space for one spare
2499 <        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
2500 <        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
2501 <        size |= size >>> 1;
2502 <        size |= size >>> 2;
2503 <        size |= size >>> 4;
2504 <        size |= size >>> 8;
1276 <        return size + 1;
2494 >     * Constructor for common pool, suitable only for static initialization.
2495 >     * Basically the same as above, but uses smallest possible initial footprint.
2496 >     */
2497 >    ForkJoinPool(int parallelism, long ctl,
2498 >                 ForkJoinWorkerThreadFactory factory,
2499 >                 Thread.UncaughtExceptionHandler handler) {
2500 >        this.config = parallelism;
2501 >        this.ctl = ctl;
2502 >        this.factory = factory;
2503 >        this.ueh = handler;
2504 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2505      }
2506  
1279    // Execution methods
1280
2507      /**
2508 <     * Common code for execute, invoke and submit
2508 >     * Returns the common pool instance.
2509 >     *
2510 >     * @return the common pool instance
2511       */
2512 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2513 <        if (task == null)
2514 <            throw new NullPointerException();
1287 <        if (runState >= SHUTDOWN)
1288 <            throw new RejectedExecutionException();
1289 <        submissionQueue.offer(task);
1290 <        int c; // try to increment event count -- CAS failure OK
1291 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1292 <        helpMaintainParallelism(); // create, start, or resume some workers
2512 >    public static ForkJoinPool commonPool() {
2513 >        // assert commonPool != null : "static init error";
2514 >        return commonPool;
2515      }
2516  
2517 +    // Execution methods
2518 +
2519      /**
2520       * Performs the given task, returning its result upon completion.
2521 +     * If the computation encounters an unchecked Exception or Error,
2522 +     * it is rethrown as the outcome of this invocation.  Rethrown
2523 +     * exceptions behave in the same way as regular exceptions, but,
2524 +     * when possible, contain stack traces (as displayed for example
2525 +     * using {@code ex.printStackTrace()}) of both the current thread
2526 +     * as well as the thread actually encountering the exception;
2527 +     * minimally only the latter.
2528       *
2529       * @param task the task
2530       * @return the task's result
# Line 1302 | Line 2533 | public class ForkJoinPool extends Abstra
2533       *         scheduled for execution
2534       */
2535      public <T> T invoke(ForkJoinTask<T> task) {
2536 <        doSubmit(task);
2536 >        if (task == null)
2537 >            throw new NullPointerException();
2538 >        externalPush(task);
2539          return task.join();
2540      }
2541  
# Line 1315 | Line 2548 | public class ForkJoinPool extends Abstra
2548       *         scheduled for execution
2549       */
2550      public void execute(ForkJoinTask<?> task) {
2551 <        doSubmit(task);
2551 >        if (task == null)
2552 >            throw new NullPointerException();
2553 >        externalPush(task);
2554      }
2555  
2556      // AbstractExecutorService methods
# Line 1326 | Line 2561 | public class ForkJoinPool extends Abstra
2561       *         scheduled for execution
2562       */
2563      public void execute(Runnable task) {
2564 +        if (task == null)
2565 +            throw new NullPointerException();
2566          ForkJoinTask<?> job;
2567          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2568              job = (ForkJoinTask<?>) task;
2569          else
2570 <            job = ForkJoinTask.adapt(task, null);
2571 <        doSubmit(job);
2570 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2571 >        externalPush(job);
2572      }
2573  
2574      /**
# Line 1344 | Line 2581 | public class ForkJoinPool extends Abstra
2581       *         scheduled for execution
2582       */
2583      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2584 <        doSubmit(task);
2584 >        if (task == null)
2585 >            throw new NullPointerException();
2586 >        externalPush(task);
2587          return task;
2588      }
2589  
# Line 1354 | Line 2593 | public class ForkJoinPool extends Abstra
2593       *         scheduled for execution
2594       */
2595      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2596 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2597 <        doSubmit(job);
2596 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2597 >        externalPush(job);
2598          return job;
2599      }
2600  
# Line 1365 | Line 2604 | public class ForkJoinPool extends Abstra
2604       *         scheduled for execution
2605       */
2606      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2607 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2608 <        doSubmit(job);
2607 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2608 >        externalPush(job);
2609          return job;
2610      }
2611  
# Line 1376 | Line 2615 | public class ForkJoinPool extends Abstra
2615       *         scheduled for execution
2616       */
2617      public ForkJoinTask<?> submit(Runnable task) {
2618 +        if (task == null)
2619 +            throw new NullPointerException();
2620          ForkJoinTask<?> job;
2621          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2622              job = (ForkJoinTask<?>) task;
2623          else
2624 <            job = ForkJoinTask.adapt(task, null);
2625 <        doSubmit(job);
2624 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2625 >        externalPush(job);
2626          return job;
2627      }
2628  
# Line 1390 | Line 2631 | public class ForkJoinPool extends Abstra
2631       * @throws RejectedExecutionException {@inheritDoc}
2632       */
2633      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2634 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2635 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2636 <        for (Callable<T> task : tasks)
2637 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2638 <        invoke(new InvokeAll<T>(forkJoinTasks));
2639 <
2634 >        // In previous versions of this class, this method constructed
2635 >        // a task to run ForkJoinTask.invokeAll, but now external
2636 >        // invocation of multiple tasks is at least as efficient.
2637 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2638 >        // Workaround needed because method wasn't declared with
2639 >        // wildcards in return type but should have been.
2640          @SuppressWarnings({"unchecked", "rawtypes"})
2641 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1401 <        return futures;
1402 <    }
2641 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2642  
2643 <    static final class InvokeAll<T> extends RecursiveAction {
2644 <        final ArrayList<ForkJoinTask<T>> tasks;
2645 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2646 <        public void compute() {
2647 <            try { invokeAll(tasks); }
2648 <            catch (Exception ignore) {}
2643 >        boolean done = false;
2644 >        try {
2645 >            for (Callable<T> t : tasks) {
2646 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2647 >                externalPush(f);
2648 >                fs.add(f);
2649 >            }
2650 >            for (ForkJoinTask<T> f : fs)
2651 >                f.quietlyJoin();
2652 >            done = true;
2653 >            return futures;
2654 >        } finally {
2655 >            if (!done)
2656 >                for (ForkJoinTask<T> f : fs)
2657 >                    f.cancel(false);
2658          }
1411        private static final long serialVersionUID = -7914297376763021607L;
2659      }
2660  
2661      /**
# Line 1436 | Line 2683 | public class ForkJoinPool extends Abstra
2683       * @return the targeted parallelism level of this pool
2684       */
2685      public int getParallelism() {
2686 <        return parallelism;
2686 >        return config & SMASK;
2687 >    }
2688 >
2689 >    /**
2690 >     * Returns the targeted parallelism level of the common pool.
2691 >     *
2692 >     * @return the targeted parallelism level of the common pool
2693 >     */
2694 >    public static int getCommonPoolParallelism() {
2695 >        return commonPoolParallelism;
2696      }
2697  
2698      /**
2699       * Returns the number of worker threads that have started but not
2700 <     * yet terminated.  This result returned by this method may differ
2700 >     * yet terminated.  The result returned by this method may differ
2701       * from {@link #getParallelism} when threads are created to
2702       * maintain parallelism when others are cooperatively blocked.
2703       *
2704       * @return the number of worker threads
2705       */
2706      public int getPoolSize() {
2707 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2707 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2708      }
2709  
2710      /**
# Line 1458 | Line 2714 | public class ForkJoinPool extends Abstra
2714       * @return {@code true} if this pool uses async mode
2715       */
2716      public boolean getAsyncMode() {
2717 <        return locallyFifo;
2717 >        return (config >>> 16) == FIFO_QUEUE;
2718      }
2719  
2720      /**
# Line 1470 | Line 2726 | public class ForkJoinPool extends Abstra
2726       * @return the number of worker threads
2727       */
2728      public int getRunningThreadCount() {
2729 <        return workerCounts & RUNNING_COUNT_MASK;
2729 >        int rc = 0;
2730 >        WorkQueue[] ws; WorkQueue w;
2731 >        if ((ws = workQueues) != null) {
2732 >            for (int i = 1; i < ws.length; i += 2) {
2733 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2734 >                    ++rc;
2735 >            }
2736 >        }
2737 >        return rc;
2738      }
2739  
2740      /**
# Line 1481 | Line 2745 | public class ForkJoinPool extends Abstra
2745       * @return the number of active threads
2746       */
2747      public int getActiveThreadCount() {
2748 <        return runState & ACTIVE_COUNT_MASK;
2748 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2749 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2750      }
2751  
2752      /**
# Line 1496 | Line 2761 | public class ForkJoinPool extends Abstra
2761       * @return {@code true} if all threads are currently idle
2762       */
2763      public boolean isQuiescent() {
2764 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2764 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2765      }
2766  
2767      /**
# Line 1511 | Line 2776 | public class ForkJoinPool extends Abstra
2776       * @return the number of steals
2777       */
2778      public long getStealCount() {
2779 <        return stealCount;
2779 >        long count = stealCount;
2780 >        WorkQueue[] ws; WorkQueue w;
2781 >        if ((ws = workQueues) != null) {
2782 >            for (int i = 1; i < ws.length; i += 2) {
2783 >                if ((w = ws[i]) != null)
2784 >                    count += w.nsteals;
2785 >            }
2786 >        }
2787 >        return count;
2788      }
2789  
2790      /**
# Line 1526 | Line 2799 | public class ForkJoinPool extends Abstra
2799       */
2800      public long getQueuedTaskCount() {
2801          long count = 0;
2802 <        for (ForkJoinWorkerThread w : workers)
2803 <            if (w != null)
2804 <                count += w.getQueueSize();
2802 >        WorkQueue[] ws; WorkQueue w;
2803 >        if ((ws = workQueues) != null) {
2804 >            for (int i = 1; i < ws.length; i += 2) {
2805 >                if ((w = ws[i]) != null)
2806 >                    count += w.queueSize();
2807 >            }
2808 >        }
2809          return count;
2810      }
2811  
2812      /**
2813       * Returns an estimate of the number of tasks submitted to this
2814 <     * pool that have not yet begun executing.  This method takes time
2815 <     * proportional to the number of submissions.
2814 >     * pool that have not yet begun executing.  This method may take
2815 >     * time proportional to the number of submissions.
2816       *
2817       * @return the number of queued submissions
2818       */
2819      public int getQueuedSubmissionCount() {
2820 <        return submissionQueue.size();
2820 >        int count = 0;
2821 >        WorkQueue[] ws; WorkQueue w;
2822 >        if ((ws = workQueues) != null) {
2823 >            for (int i = 0; i < ws.length; i += 2) {
2824 >                if ((w = ws[i]) != null)
2825 >                    count += w.queueSize();
2826 >            }
2827 >        }
2828 >        return count;
2829      }
2830  
2831      /**
# Line 1550 | Line 2835 | public class ForkJoinPool extends Abstra
2835       * @return {@code true} if there are any queued submissions
2836       */
2837      public boolean hasQueuedSubmissions() {
2838 <        return !submissionQueue.isEmpty();
2838 >        WorkQueue[] ws; WorkQueue w;
2839 >        if ((ws = workQueues) != null) {
2840 >            for (int i = 0; i < ws.length; i += 2) {
2841 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2842 >                    return true;
2843 >            }
2844 >        }
2845 >        return false;
2846      }
2847  
2848      /**
# Line 1561 | Line 2853 | public class ForkJoinPool extends Abstra
2853       * @return the next submission, or {@code null} if none
2854       */
2855      protected ForkJoinTask<?> pollSubmission() {
2856 <        return submissionQueue.poll();
2856 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2857 >        if ((ws = workQueues) != null) {
2858 >            for (int i = 0; i < ws.length; i += 2) {
2859 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2860 >                    return t;
2861 >            }
2862 >        }
2863 >        return null;
2864      }
2865  
2866      /**
# Line 1582 | Line 2881 | public class ForkJoinPool extends Abstra
2881       * @return the number of elements transferred
2882       */
2883      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2884 <        int count = submissionQueue.drainTo(c);
2885 <        for (ForkJoinWorkerThread w : workers)
2886 <            if (w != null)
2887 <                count += w.drainTasksTo(c);
2884 >        int count = 0;
2885 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2886 >        if ((ws = workQueues) != null) {
2887 >            for (int i = 0; i < ws.length; ++i) {
2888 >                if ((w = ws[i]) != null) {
2889 >                    while ((t = w.poll()) != null) {
2890 >                        c.add(t);
2891 >                        ++count;
2892 >                    }
2893 >                }
2894 >            }
2895 >        }
2896          return count;
2897      }
2898  
# Line 1597 | Line 2904 | public class ForkJoinPool extends Abstra
2904       * @return a string identifying this pool, as well as its state
2905       */
2906      public String toString() {
2907 <        long st = getStealCount();
2908 <        long qt = getQueuedTaskCount();
2909 <        long qs = getQueuedSubmissionCount();
2910 <        int wc = workerCounts;
2911 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2912 <        int rc = wc & RUNNING_COUNT_MASK;
2913 <        int pc = parallelism;
2914 <        int rs = runState;
2915 <        int ac = rs & ACTIVE_COUNT_MASK;
2907 >        // Use a single pass through workQueues to collect counts
2908 >        long qt = 0L, qs = 0L; int rc = 0;
2909 >        long st = stealCount;
2910 >        long c = ctl;
2911 >        WorkQueue[] ws; WorkQueue w;
2912 >        if ((ws = workQueues) != null) {
2913 >            for (int i = 0; i < ws.length; ++i) {
2914 >                if ((w = ws[i]) != null) {
2915 >                    int size = w.queueSize();
2916 >                    if ((i & 1) == 0)
2917 >                        qs += size;
2918 >                    else {
2919 >                        qt += size;
2920 >                        st += w.nsteals;
2921 >                        if (w.isApparentlyUnblocked())
2922 >                            ++rc;
2923 >                    }
2924 >                }
2925 >            }
2926 >        }
2927 >        int pc = (config & SMASK);
2928 >        int tc = pc + (short)(c >>> TC_SHIFT);
2929 >        int ac = pc + (int)(c >> AC_SHIFT);
2930 >        if (ac < 0) // ignore transient negative
2931 >            ac = 0;
2932 >        String level;
2933 >        if ((c & STOP_BIT) != 0)
2934 >            level = (tc == 0) ? "Terminated" : "Terminating";
2935 >        else
2936 >            level = plock < 0 ? "Shutting down" : "Running";
2937          return super.toString() +
2938 <            "[" + runLevelToString(rs) +
2938 >            "[" + level +
2939              ", parallelism = " + pc +
2940              ", size = " + tc +
2941              ", active = " + ac +
# Line 1618 | Line 2946 | public class ForkJoinPool extends Abstra
2946              "]";
2947      }
2948  
1621    private static String runLevelToString(int s) {
1622        return ((s & TERMINATED) != 0 ? "Terminated" :
1623                ((s & TERMINATING) != 0 ? "Terminating" :
1624                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1625                  "Running")));
1626    }
1627
2949      /**
2950 <     * Initiates an orderly shutdown in which previously submitted
2951 <     * tasks are executed, but no new tasks will be accepted.
2952 <     * Invocation has no additional effect if already shut down.
2953 <     * Tasks that are in the process of being submitted concurrently
2954 <     * during the course of this method may or may not be rejected.
2950 >     * Possibly initiates an orderly shutdown in which previously
2951 >     * submitted tasks are executed, but no new tasks will be
2952 >     * accepted. Invocation has no effect on execution state if this
2953 >     * is the {@link #commonPool}, and no additional effect if
2954 >     * already shut down.  Tasks that are in the process of being
2955 >     * submitted concurrently during the course of this method may or
2956 >     * may not be rejected.
2957       *
2958       * @throws SecurityException if a security manager exists and
2959       *         the caller is not permitted to modify threads
# Line 1639 | Line 2962 | public class ForkJoinPool extends Abstra
2962       */
2963      public void shutdown() {
2964          checkPermission();
2965 <        advanceRunLevel(SHUTDOWN);
1643 <        tryTerminate(false);
2965 >        tryTerminate(false, true);
2966      }
2967  
2968      /**
2969 <     * Attempts to cancel and/or stop all tasks, and reject all
2970 <     * subsequently submitted tasks.  Tasks that are in the process of
2971 <     * being submitted or executed concurrently during the course of
2972 <     * this method may or may not be rejected. This method cancels
2973 <     * both existing and unexecuted tasks, in order to permit
2974 <     * termination in the presence of task dependencies. So the method
2975 <     * always returns an empty list (unlike the case for some other
2976 <     * Executors).
2969 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2970 >     * all subsequently submitted tasks.  Invocation has no effect on
2971 >     * execution state if this is the {@link #commonPool}, and no
2972 >     * additional effect if already shut down. Otherwise, tasks that
2973 >     * are in the process of being submitted or executed concurrently
2974 >     * during the course of this method may or may not be
2975 >     * rejected. This method cancels both existing and unexecuted
2976 >     * tasks, in order to permit termination in the presence of task
2977 >     * dependencies. So the method always returns an empty list
2978 >     * (unlike the case for some other Executors).
2979       *
2980       * @return an empty list
2981       * @throws SecurityException if a security manager exists and
# Line 1661 | Line 2985 | public class ForkJoinPool extends Abstra
2985       */
2986      public List<Runnable> shutdownNow() {
2987          checkPermission();
2988 <        tryTerminate(true);
2988 >        tryTerminate(true, true);
2989          return Collections.emptyList();
2990      }
2991  
# Line 1671 | Line 2995 | public class ForkJoinPool extends Abstra
2995       * @return {@code true} if all tasks have completed following shut down
2996       */
2997      public boolean isTerminated() {
2998 <        return runState >= TERMINATED;
2998 >        long c = ctl;
2999 >        return ((c & STOP_BIT) != 0L &&
3000 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3001      }
3002  
3003      /**
# Line 1679 | Line 3005 | public class ForkJoinPool extends Abstra
3005       * commenced but not yet completed.  This method may be useful for
3006       * debugging. A return of {@code true} reported a sufficient
3007       * period after shutdown may indicate that submitted tasks have
3008 <     * ignored or suppressed interruption, causing this executor not
3009 <     * to properly terminate.
3008 >     * ignored or suppressed interruption, or are waiting for IO,
3009 >     * causing this executor not to properly terminate. (See the
3010 >     * advisory notes for class {@link ForkJoinTask} stating that
3011 >     * tasks should not normally entail blocking operations.  But if
3012 >     * they do, they must abort them on interrupt.)
3013       *
3014       * @return {@code true} if terminating but not yet terminated
3015       */
3016      public boolean isTerminating() {
3017 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
3017 >        long c = ctl;
3018 >        return ((c & STOP_BIT) != 0L &&
3019 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3020      }
3021  
3022      /**
# Line 1694 | Line 3025 | public class ForkJoinPool extends Abstra
3025       * @return {@code true} if this pool has been shut down
3026       */
3027      public boolean isShutdown() {
3028 <        return runState >= SHUTDOWN;
3028 >        return plock < 0;
3029      }
3030  
3031      /**
3032 <     * Blocks until all tasks have completed execution after a shutdown
3033 <     * request, or the timeout occurs, or the current thread is
3034 <     * interrupted, whichever happens first.
3032 >     * Blocks until all tasks have completed execution after a
3033 >     * shutdown request, or the timeout occurs, or the current thread
3034 >     * is interrupted, whichever happens first. Note that the {@link
3035 >     * #commonPool()} never terminates until program shutdown so
3036 >     * this method will always time out.
3037       *
3038       * @param timeout the maximum time to wait
3039       * @param unit the time unit of the timeout argument
# Line 1710 | Line 3043 | public class ForkJoinPool extends Abstra
3043       */
3044      public boolean awaitTermination(long timeout, TimeUnit unit)
3045          throws InterruptedException {
3046 <        try {
3047 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
3048 <        } catch (TimeoutException ex) {
3049 <            return false;
3046 >        long nanos = unit.toNanos(timeout);
3047 >        if (isTerminated())
3048 >            return true;
3049 >        long startTime = System.nanoTime();
3050 >        boolean terminated = false;
3051 >        synchronized (this) {
3052 >            for (long waitTime = nanos, millis = 0L;;) {
3053 >                if (terminated = isTerminated() ||
3054 >                    waitTime <= 0L ||
3055 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3056 >                    break;
3057 >                wait(millis);
3058 >                waitTime = nanos - (System.nanoTime() - startTime);
3059 >            }
3060          }
3061 +        return terminated;
3062      }
3063  
3064      /**
# Line 1725 | Line 3069 | public class ForkJoinPool extends Abstra
3069       * {@code isReleasable} must return {@code true} if blocking is
3070       * not necessary. Method {@code block} blocks the current thread
3071       * if necessary (perhaps internally invoking {@code isReleasable}
3072 <     * before actually blocking). The unusual methods in this API
3073 <     * accommodate synchronizers that may, but don't usually, block
3074 <     * for long periods. Similarly, they allow more efficient internal
3075 <     * handling of cases in which additional workers may be, but
3076 <     * usually are not, needed to ensure sufficient parallelism.
3077 <     * Toward this end, implementations of method {@code isReleasable}
3078 <     * must be amenable to repeated invocation.
3072 >     * before actually blocking). These actions are performed by any
3073 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3074 >     * unusual methods in this API accommodate synchronizers that may,
3075 >     * but don't usually, block for long periods. Similarly, they
3076 >     * allow more efficient internal handling of cases in which
3077 >     * additional workers may be, but usually are not, needed to
3078 >     * ensure sufficient parallelism.  Toward this end,
3079 >     * implementations of method {@code isReleasable} must be amenable
3080 >     * to repeated invocation.
3081       *
3082       * <p>For example, here is a ManagedBlocker based on a
3083       * ReentrantLock:
# Line 1812 | Line 3158 | public class ForkJoinPool extends Abstra
3158          throws InterruptedException {
3159          Thread t = Thread.currentThread();
3160          if (t instanceof ForkJoinWorkerThread) {
3161 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
3162 <            w.pool.awaitBlocker(blocker);
3161 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3162 >            while (!blocker.isReleasable()) { // variant of helpSignal
3163 >                WorkQueue[] ws; WorkQueue q; int m, n, u;
3164 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3165 >                    for (int i = 0; i <= m; ++i) {
3166 >                        if (blocker.isReleasable())
3167 >                            return;
3168 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3169 >                            p.signalWork(q, n);
3170 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3171 >                                (u >> UAC_SHIFT) >= 0)
3172 >                                break;
3173 >                        }
3174 >                    }
3175 >                }
3176 >                if (p.tryCompensate()) {
3177 >                    try {
3178 >                        do {} while (!blocker.isReleasable() &&
3179 >                                     !blocker.block());
3180 >                    } finally {
3181 >                        p.incrementActiveCount();
3182 >                    }
3183 >                    break;
3184 >                }
3185 >            }
3186          }
3187          else {
3188 <            do {} while (!blocker.isReleasable() && !blocker.block());
3188 >            do {} while (!blocker.isReleasable() &&
3189 >                         !blocker.block());
3190          }
3191      }
3192  
# Line 1825 | Line 3195 | public class ForkJoinPool extends Abstra
3195      // implement RunnableFuture.
3196  
3197      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3198 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3198 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3199      }
3200  
3201      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3202 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3202 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3203      }
3204  
3205      // Unsafe mechanics
3206 +    private static final sun.misc.Unsafe U;
3207 +    private static final long CTL;
3208 +    private static final long PARKBLOCKER;
3209 +    private static final int ABASE;
3210 +    private static final int ASHIFT;
3211 +    private static final long STEALCOUNT;
3212 +    private static final long PLOCK;
3213 +    private static final long INDEXSEED;
3214 +    private static final long QLOCK;
3215  
3216 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3217 <    private static final long workerCountsOffset =
1839 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
1840 <    private static final long runStateOffset =
1841 <        objectFieldOffset("runState", ForkJoinPool.class);
1842 <    private static final long eventCountOffset =
1843 <        objectFieldOffset("eventCount", ForkJoinPool.class);
1844 <    private static final long eventWaitersOffset =
1845 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1846 <    private static final long stealCountOffset =
1847 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1848 <    private static final long spareWaitersOffset =
1849 <        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1850 <
1851 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3216 >    static {
3217 >        int s; // initialize field offsets for CAS etc
3218          try {
3219 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3220 <        } catch (NoSuchFieldException e) {
3221 <            // Convert Exception to corresponding Error
3222 <            NoSuchFieldError error = new NoSuchFieldError(field);
3223 <            error.initCause(e);
3224 <            throw error;
3225 <        }
3219 >            U = getUnsafe();
3220 >            Class<?> k = ForkJoinPool.class;
3221 >            CTL = U.objectFieldOffset
3222 >                (k.getDeclaredField("ctl"));
3223 >            STEALCOUNT = U.objectFieldOffset
3224 >                (k.getDeclaredField("stealCount"));
3225 >            PLOCK = U.objectFieldOffset
3226 >                (k.getDeclaredField("plock"));
3227 >            INDEXSEED = U.objectFieldOffset
3228 >                (k.getDeclaredField("indexSeed"));
3229 >            Class<?> tk = Thread.class;
3230 >            PARKBLOCKER = U.objectFieldOffset
3231 >                (tk.getDeclaredField("parkBlocker"));
3232 >            Class<?> wk = WorkQueue.class;
3233 >            QLOCK = U.objectFieldOffset
3234 >                (wk.getDeclaredField("qlock"));
3235 >            Class<?> ak = ForkJoinTask[].class;
3236 >            ABASE = U.arrayBaseOffset(ak);
3237 >            s = U.arrayIndexScale(ak);
3238 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3239 >        } catch (Exception e) {
3240 >            throw new Error(e);
3241 >        }
3242 >        if ((s & (s-1)) != 0)
3243 >            throw new Error("data type scale not a power of two");
3244 >
3245 >        submitters = new ThreadLocal<Submitter>();
3246 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3247 >            new DefaultForkJoinWorkerThreadFactory();
3248 >        /*
3249 >         * Establish common pool parameters.  For extra caution,
3250 >         * computations to set up common pool state are here; the
3251 >         * constructor just assigns these values to fields.
3252 >         */
3253 >
3254 >        int par = 0;
3255 >        Thread.UncaughtExceptionHandler handler = null;
3256 >        try {  // TBD: limit or report ignored exceptions?
3257 >            String pp = System.getProperty
3258 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3259 >            String hp = System.getProperty
3260 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3261 >            String fp = System.getProperty
3262 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3263 >            if (fp != null)
3264 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3265 >                       getSystemClassLoader().loadClass(fp).newInstance());
3266 >            if (hp != null)
3267 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3268 >                           getSystemClassLoader().loadClass(hp).newInstance());
3269 >            if (pp != null)
3270 >                par = Integer.parseInt(pp);
3271 >        } catch (Exception ignore) {
3272 >        }
3273 >
3274 >        if (par <= 0)
3275 >            par = Runtime.getRuntime().availableProcessors();
3276 >        if (par > MAX_CAP)
3277 >            par = MAX_CAP;
3278 >        commonPoolParallelism = par;
3279 >        long np = (long)(-par); // precompute initial ctl value
3280 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3281 >
3282 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3283 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3284      }
3285  
3286      /**
# Line 1886 | Line 3310 | public class ForkJoinPool extends Abstra
3310              }
3311          }
3312      }
3313 +
3314   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines