ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.112 by dl, Thu Jan 26 18:15:12 2012 UTC vs.
Revision 1.148 by jsr166, Tue Nov 20 06:18:39 2012 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.atomic.AtomicInteger;
23 import java.util.concurrent.atomic.AtomicLong;
24 import java.util.concurrent.locks.ReentrantLock;
25 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 42 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used primarily by clients not
68 < * already engaged in fork/join computations in the current pool.  The
69 < * main forms of these methods accept instances of {@code
70 < * ForkJoinTask}, but overloaded forms also allow mixed execution of
71 < * plain {@code Runnable}- or {@code Callable}- based activities as
72 < * well.  However, tasks that are already executing in a pool should
73 < * normally instead use the within-computation forms listed in the
74 < * table unless using async event-style tasks that are not usually
75 < * joined, in which case there is little difference among choice of
73 < * methods.
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71 > * Runnable}- or {@code Callable}- based activities as well.  However,
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 95 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
108 < *  <pre> {@code
109 < * static final ForkJoinPool mainPool = new ForkJoinPool();
110 < * ...
111 < * public void sort(long[] array) {
112 < *   mainPool.invoke(new SortTask(array, 0, array.length));
113 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 131 | Line 127 | public class ForkJoinPool extends Abstra
127       *
128       * This class and its nested classes provide the main
129       * functionality and control for a set of worker threads:
130 <     * Submissions from non-FJ threads enter into submission
131 <     * queues. Workers take these tasks and typically split them into
132 <     * subtasks that may be stolen by other workers.  Preference rules
133 <     * give first priority to processing tasks from their own queues
134 <     * (LIFO or FIFO, depending on mode), then to randomized FIFO
135 <     * steals of tasks in other queues.
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136       *
137 <     * WorkQueues.
137 >     * WorkQueues
138       * ==========
139       *
140       * Most operations occur within work-stealing queues (in nested
# Line 156 | Line 152 | public class ForkJoinPool extends Abstra
152       * (http://research.sun.com/scalable/pubs/index.html) and
153       * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154       * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 <     * The main differences ultimately stem from gc requirements that
155 >     * The main differences ultimately stem from GC requirements that
156       * we null out taken slots as soon as we can, to maintain as small
157       * a footprint as possible even in programs generating huge
158       * numbers of tasks. To accomplish this, we shift the CAS
# Line 178 | Line 174 | public class ForkJoinPool extends Abstra
174       * If an attempted steal fails, a thief always chooses a different
175       * random victim target to try next. So, in order for one thief to
176       * progress, it suffices for any in-progress poll or new push on
177 <     * any empty queue to complete.
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181       *
182       * This approach also enables support of a user mode in which local
183       * task processing is in FIFO, not LIFO order, simply by using
# Line 188 | Line 187 | public class ForkJoinPool extends Abstra
187       * rarely provide the best possible performance on a given
188       * machine, but portably provide good throughput by averaging over
189       * these factors.  (Further, even if we did try to use such
190 <     * information, we do not usually have a basis for exploiting
191 <     * it. For example, some sets of tasks profit from cache
192 <     * affinities, but others are harmed by cache pollution effects.)
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193       *
194       * WorkQueues are also used in a similar way for tasks submitted
195       * to the pool. We cannot mix these tasks in the same queues used
196       * for work-stealing (this would contaminate lifo/fifo
197 <     * processing). Instead, we loosely associate (via hashing)
198 <     * submission queues with submitting threads, and randomly scan
199 <     * these queues as well when looking for work. In essence,
200 <     * submitters act like workers except that they never take tasks,
201 <     * and they are multiplexed on to a finite number of shared work
202 <     * queues. However, classes are set up so that future extensions
203 <     * could allow submitters to optionally help perform tasks as
204 <     * well. Pool submissions from internal workers are also allowed,
205 <     * but use randomized rather than thread-hashed queue indices to
206 <     * avoid imbalance.  Insertion of tasks in shared mode requires a
207 <     * lock (mainly to protect in the case of resizing) but we use
208 <     * only a simple spinlock (using bits in field runState), because
209 <     * submitters encountering a busy queue try or create others so
210 <     * never block.
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216 <     * Management.
216 >     * Management
217       * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
# Line 220 | Line 223 | public class ForkJoinPool extends Abstra
223       * tactic for avoiding bottlenecks is packing nearly all
224       * essentially atomic control state into two volatile variables
225       * that are by far most often read (not written) as status and
226 <     * consistency checks
226 >     * consistency checks.
227       *
228       * Field "ctl" contains 64 bits holding all the information needed
229       * to atomically decide to add, inactivate, enqueue (on an event
# Line 230 | Line 233 | public class ForkJoinPool extends Abstra
233       * and their negations (used for thresholding) to fit into 16bit
234       * fields.
235       *
236 <     * Field "runState" contains 32 bits needed to register and
237 <     * deregister WorkQueues, as well as to enable shutdown. It is
238 <     * only modified under a lock (normally briefly held, but
239 <     * occasionally protecting allocations and resizings) but even
240 <     * when locked remains available to check consistency.
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243       *
244       * Recording WorkQueues.  WorkQueues are recorded in the
245 <     * "workQueues" array that is created upon pool construction and
246 <     * expanded if necessary.  Updates to the array while recording
247 <     * new workers and unrecording terminated ones are protected from
248 <     * each other by a lock but the array is otherwise concurrently
249 <     * readable, and accessed directly.  To simplify index-based
250 <     * operations, the array size is always a power of two, and all
251 <     * readers must tolerate null slots. Shared (submission) queues
252 <     * are at even indices, worker queues at odd indices. Grouping
253 <     * them together in this way simplifies and speeds up task
254 <     * scanning. To avoid flailing during start-up, the array is
255 <     * presized to hold twice #parallelism workers (which is unlikely
256 <     * to need further resizing during execution). But to avoid
257 <     * dealing with so many null slots, variable runState includes a
258 <     * mask for the nearest power of two that contains all current
254 <     * workers.  All worker thread creation is on-demand, triggered by
255 <     * task submissions, replacement of terminated workers, and/or
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259       * compensation for blocked workers. However, all other support
260       * code is set up to work with other policies.  To ensure that we
261       * do not hold on to worker references that would prevent GC, ALL
# Line 265 | Line 268 | public class ForkJoinPool extends Abstra
268       * both index-check and null-check the IDs. All such accesses
269       * ignore bad IDs by returning out early from what they are doing,
270       * since this can only be associated with termination, in which
271 <     * case it is OK to give up.
272 <     *
273 <     * All uses of the workQueues array check that it is non-null
274 <     * (even if previously non-null). This allows nulling during
275 <     * termination, which is currently not necessary, but remains an
276 <     * option for resource-revocation-based shutdown schemes. It also
274 <     * helps reduce JIT issuance of uncommon-trap code, which tends to
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277       * unnecessarily complicate control flow in some methods.
278       *
279       * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
# Line 299 | Line 301 | public class ForkJoinPool extends Abstra
301       * some other queued worker rather than itself, which has the same
302       * net effect. Because enqueued workers may actually be rescanning
303       * rather than waiting, we set and clear the "parker" field of
304 <     * Workqueues to reduce unnecessary calls to unpark.  (This
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305       * requires a secondary recheck to avoid missed signals.)  Note
306       * the unusual conventions about Thread.interrupts surrounding
307       * parking and other blocking: Because interrupts are used solely
# Line 311 | Line 313 | public class ForkJoinPool extends Abstra
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had fewer than two tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans;
321 <     * together these cover the signals needed in cases when more
322 <     * tasks are pushed but untaken, and improve performance compared
323 <     * to having one thread wake up all workers.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that is
320 >     * apparently empty, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism
322 >     * level).  These primary signals are buttressed by signals
323 >     * whenever other threads scan for work or do not have a task to
324 >     * process (including the case of leaving a hint to unparked
325 >     * threads to help signal others upon wakeup).  On most platforms,
326 >     * signalling (unpark) overhead time is noticeably long, and the
327 >     * time between signalling a thread and it actually making
328 >     * progress can be very noticeably long, so it is worth offloading
329 >     * these delays from critical paths as much as possible.
330       *
331       * Trimming workers. To release resources after periods of lack of
332       * use, a worker starting to wait when the pool is quiescent will
333 <     * time out and terminate if the pool has remained quiescent for
334 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
335 <     * terminating all workers after long periods of non-use.
333 >     * time out and terminate if the pool has remained quiescent for a
334 >     * given period -- a short period if there are more threads than
335 >     * parallelism, longer as the number of threads decreases. This
336 >     * will slowly propagate, eventually terminating all workers after
337 >     * periods of non-use.
338       *
339       * Shutdown and Termination. A call to shutdownNow atomically sets
340 <     * a runState bit and then (non-atomically) sets each workers
341 <     * runState status, cancels all unprocessed tasks, and wakes up
340 >     * a plock bit and then (non-atomically) sets each worker's
341 >     * qlock status, cancels all unprocessed tasks, and wakes up
342       * all waiting workers.  Detecting whether termination should
343       * commence after a non-abrupt shutdown() call requires more work
344       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 336 | Line 346 | public class ForkJoinPool extends Abstra
346       * indication but non-abrupt shutdown still requires a rechecking
347       * scan for any workers that are inactive but not queued.
348       *
349 <     * Joining Tasks.
350 <     * ==============
349 >     * Joining Tasks
350 >     * =============
351       *
352       * Any of several actions may be taken when one worker is waiting
353 <     * to join a task stolen (or always held by) another.  Because we
353 >     * to join a task stolen (or always held) by another.  Because we
354       * are multiplexing many tasks on to a pool of workers, we can't
355       * just let them block (as in Thread.join).  We also cannot just
356       * reassign the joiner's run-time stack with another and replace
357       * it later, which would be a form of "continuation", that even if
358       * possible is not necessarily a good idea since we sometimes need
359 <     * both an unblocked task and its continuation to
360 <     * progress. Instead we combine two tactics:
359 >     * both an unblocked task and its continuation to progress.
360 >     * Instead we combine two tactics:
361       *
362       *   Helping: Arranging for the joiner to execute some task that it
363       *      would be running if the steal had not occurred.
# Line 356 | Line 366 | public class ForkJoinPool extends Abstra
366       *      method tryCompensate() may create or re-activate a spare
367       *      thread to compensate for blocked joiners until they unblock.
368       *
369 <     * A third form (implemented in tryRemoveAndExec and
370 <     * tryPollForAndExec) amounts to helping a hypothetical
371 <     * compensator: If we can readily tell that a possible action of a
372 <     * compensator is to steal and execute the task being joined, the
373 <     * joining thread can do so directly, without the need for a
374 <     * compensation thread (although at the expense of larger run-time
375 <     * stacks, but the tradeoff is typically worthwhile).
369 >     * A third form (implemented in tryRemoveAndExec) amounts to
370 >     * helping a hypothetical compensator: If we can readily tell that
371 >     * a possible action of a compensator is to steal and execute the
372 >     * task being joined, the joining thread can do so directly,
373 >     * without the need for a compensation thread (although at the
374 >     * expense of larger run-time stacks, but the tradeoff is
375 >     * typically worthwhile).
376       *
377       * The ManagedBlocker extension API can't use helping so relies
378       * only on compensation in method awaitBlocker.
# Line 382 | Line 392 | public class ForkJoinPool extends Abstra
392       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
393       * that: (1) We only maintain dependency links across workers upon
394       * steals, rather than use per-task bookkeeping.  This sometimes
395 <     * requires a linear scan of workers array to locate stealers, but
396 <     * often doesn't because stealers leave hints (that may become
397 <     * stale/wrong) of where to locate them.  A stealHint is only a
398 <     * hint because a worker might have had multiple steals and the
399 <     * hint records only one of them (usually the most current).
400 <     * Hinting isolates cost to when it is needed, rather than adding
401 <     * to per-task overhead.  (2) It is "shallow", ignoring nesting
402 <     * and potentially cyclic mutual steals.  (3) It is intentionally
395 >     * requires a linear scan of workQueues array to locate stealers,
396 >     * but often doesn't because stealers leave hints (that may become
397 >     * stale/wrong) of where to locate them.  It is only a hint
398 >     * because a worker might have had multiple steals and the hint
399 >     * records only one of them (usually the most current).  Hinting
400 >     * isolates cost to when it is needed, rather than adding to
401 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
402 >     * potentially cyclic mutual steals.  (3) It is intentionally
403       * racy: field currentJoin is updated only while actively joining,
404       * which means that we miss links in the chain during long-lived
405       * tasks, GC stalls etc (which is OK since blocking in such cases
406       * is usually a good idea).  (4) We bound the number of attempts
407 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
408 <     * the worker and if necessary replacing it with another.
407 >     * to find work (see MAX_HELP) and fall back to suspending the
408 >     * worker and if necessary replacing it with another.
409 >     *
410 >     * Helping actions for CountedCompleters are much simpler: Method
411 >     * helpComplete can take and execute any task with the same root
412 >     * as the task being waited on. However, this still entails some
413 >     * traversal of completer chains, so is less efficient than using
414 >     * CountedCompleters without explicit joins.
415       *
416       * It is impossible to keep exactly the target parallelism number
417       * of threads running at any given time.  Determining the
418       * existence of conservatively safe helping targets, the
419       * availability of already-created spares, and the apparent need
420       * to create new spares are all racy, so we rely on multiple
421 <     * retries of each.  Currently, in keeping with on-demand
422 <     * signalling policy, we compensate only if blocking would leave
423 <     * less than one active (non-waiting, non-blocked) worker.
424 <     * Additionally, to avoid some false alarms due to GC, lagging
425 <     * counters, system activity, etc, compensated blocking for joins
426 <     * is only attempted after rechecks stabilize in
427 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
428 <     * Thread.yield, for good citizenship.)
429 <     *
430 <     * Style notes: There is a lot of representation-level coupling
431 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
432 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
433 <     * managed by ForkJoinPool, so are directly accessed.  There is
434 <     * little point trying to reduce this, since any associated future
435 <     * changes in representations will need to be accompanied by
436 <     * algorithmic changes anyway. All together, these low-level
437 <     * implementation choices produce as much as a factor of 4
438 <     * performance improvement compared to naive implementations, and
439 <     * enable the processing of billions of tasks per second, at the
440 <     * expense of some ugliness.
441 <     *
442 <     * Methods signalWork() and scan() are the main bottlenecks so are
443 <     * especially heavily micro-optimized/mangled.  There are lots of
444 <     * inline assignments (of form "while ((local = field) != 0)")
445 <     * which are usually the simplest way to ensure the required read
446 <     * orderings (which are sometimes critical). This leads to a
447 <     * "C"-like style of listing declarations of these locals at the
448 <     * heads of methods or blocks.  There are several occurrences of
449 <     * the unusual "do {} while (!cas...)"  which is the simplest way
450 <     * to force an update of a CAS'ed variable. There are also other
451 <     * coding oddities that help some methods perform reasonably even
452 <     * when interpreted (not compiled).
453 <     *
454 <     * The order of declarations in this file is: (1) declarations of
455 <     * statics (2) fields (along with constants used when unpacking
456 <     * some of them), listed in an order that tends to reduce
457 <     * contention among them a bit under most JVMs; (3) nested
458 <     * classes; (4) internal control methods; (5) callbacks and other
459 <     * support for ForkJoinTask methods; (6) exported methods (plus a
460 <     * few little helpers); (7) static block initializing all statics
461 <     * in a minimally dependent order.
421 >     * retries of each.  Compensation in the apparent absence of
422 >     * helping opportunities is challenging to control on JVMs, where
423 >     * GC and other activities can stall progress of tasks that in
424 >     * turn stall out many other dependent tasks, without us being
425 >     * able to determine whether they will ever require compensation.
426 >     * Even though work-stealing otherwise encounters little
427 >     * degradation in the presence of more threads than cores,
428 >     * aggressively adding new threads in such cases entails risk of
429 >     * unwanted positive feedback control loops in which more threads
430 >     * cause more dependent stalls (as well as delayed progress of
431 >     * unblocked threads to the point that we know they are available)
432 >     * leading to more situations requiring more threads, and so
433 >     * on. This aspect of control can be seen as an (analytically
434 >     * intractable) game with an opponent that may choose the worst
435 >     * (for us) active thread to stall at any time.  We take several
436 >     * precautions to bound losses (and thus bound gains), mainly in
437 >     * methods tryCompensate and awaitJoin.
438 >     *
439 >     * Common Pool
440 >     * ===========
441 >     *
442 >     * The static commonPool always exists after static
443 >     * initialization.  Since it (or any other created pool) need
444 >     * never be used, we minimize initial construction overhead and
445 >     * footprint to the setup of about a dozen fields, with no nested
446 >     * allocation. Most bootstrapping occurs within method
447 >     * fullExternalPush during the first submission to the pool.
448 >     *
449 >     * When external threads submit to the common pool, they can
450 >     * perform some subtask processing (see externalHelpJoin and
451 >     * related methods).  We do not need to record whether these
452 >     * submissions are to the common pool -- if not, externalHelpJoin
453 >     * returns quickly (at the most helping to signal some common pool
454 >     * workers). These submitters would otherwise be blocked waiting
455 >     * for completion, so the extra effort (with liberally sprinkled
456 >     * task status checks) in inapplicable cases amounts to an odd
457 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
458 >     *
459 >     * Style notes
460 >     * ===========
461 >     *
462 >     * There is a lot of representation-level coupling among classes
463 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
464 >     * fields of WorkQueue maintain data structures managed by
465 >     * ForkJoinPool, so are directly accessed.  There is little point
466 >     * trying to reduce this, since any associated future changes in
467 >     * representations will need to be accompanied by algorithmic
468 >     * changes anyway. Several methods intrinsically sprawl because
469 >     * they must accumulate sets of consistent reads of volatiles held
470 >     * in local variables.  Methods signalWork() and scan() are the
471 >     * main bottlenecks, so are especially heavily
472 >     * micro-optimized/mangled.  There are lots of inline assignments
473 >     * (of form "while ((local = field) != 0)") which are usually the
474 >     * simplest way to ensure the required read orderings (which are
475 >     * sometimes critical). This leads to a "C"-like style of listing
476 >     * declarations of these locals at the heads of methods or blocks.
477 >     * There are several occurrences of the unusual "do {} while
478 >     * (!cas...)"  which is the simplest way to force an update of a
479 >     * CAS'ed variable. There are also other coding oddities (including
480 >     * several unnecessary-looking hoisted null checks) that help
481 >     * some methods perform reasonably even when interpreted (not
482 >     * compiled).
483 >     *
484 >     * The order of declarations in this file is:
485 >     * (1) Static utility functions
486 >     * (2) Nested (static) classes
487 >     * (3) Static fields
488 >     * (4) Fields, along with constants used when unpacking some of them
489 >     * (5) Internal control methods
490 >     * (6) Callbacks and other support for ForkJoinTask methods
491 >     * (7) Exported methods
492 >     * (8) Static block initializing statics in minimally dependent order
493 >     */
494 >
495 >    // Static utilities
496 >
497 >    /**
498 >     * If there is a security manager, makes sure caller has
499 >     * permission to modify threads.
500       */
501 +    private static void checkPermission() {
502 +        SecurityManager security = System.getSecurityManager();
503 +        if (security != null)
504 +            security.checkPermission(modifyThreadPermission);
505 +    }
506 +
507 +    // Nested classes
508  
509      /**
510       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 465 | Line 526 | public class ForkJoinPool extends Abstra
526       * Default ForkJoinWorkerThreadFactory implementation; creates a
527       * new ForkJoinWorkerThread.
528       */
529 <    static class DefaultForkJoinWorkerThreadFactory
529 >    static final class DefaultForkJoinWorkerThreadFactory
530          implements ForkJoinWorkerThreadFactory {
531 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
531 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532              return new ForkJoinWorkerThread(pool);
533          }
534      }
535  
536      /**
537 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
538 <     * overridden in ForkJoinPool constructors.
539 <     */
540 <    public static final ForkJoinWorkerThreadFactory
480 <        defaultForkJoinWorkerThreadFactory;
481 <
482 <    /**
483 <     * Permission required for callers of methods that may start or
484 <     * kill threads.
485 <     */
486 <    private static final RuntimePermission modifyThreadPermission;
487 <
488 <    /**
489 <     * If there is a security manager, makes sure caller has
490 <     * permission to modify threads.
537 >     * Class for artificial tasks that are used to replace the target
538 >     * of local joins if they are removed from an interior queue slot
539 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
540 >     * actually do anything beyond having a unique identity.
541       */
542 <    private static void checkPermission() {
543 <        SecurityManager security = System.getSecurityManager();
544 <        if (security != null)
545 <            security.checkPermission(modifyThreadPermission);
542 >    static final class EmptyTask extends ForkJoinTask<Void> {
543 >        private static final long serialVersionUID = -7721805057305804111L;
544 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
545 >        public final Void getRawResult() { return null; }
546 >        public final void setRawResult(Void x) {}
547 >        public final boolean exec() { return true; }
548      }
549  
550      /**
499     * Generator for assigning sequence numbers as pool names.
500     */
501    private static final AtomicInteger poolNumberGenerator;
502
503    /**
504     * Bits and masks for control variables
505     *
506     * Field ctl is a long packed with:
507     * AC: Number of active running workers minus target parallelism (16 bits)
508     * TC: Number of total workers minus target parallelism (16 bits)
509     * ST: true if pool is terminating (1 bit)
510     * EC: the wait count of top waiting thread (15 bits)
511     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
512     *
513     * When convenient, we can extract the upper 32 bits of counts and
514     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
515     * (int)ctl.  The ec field is never accessed alone, but always
516     * together with id and st. The offsets of counts by the target
517     * parallelism and the positionings of fields makes it possible to
518     * perform the most common checks via sign tests of fields: When
519     * ac is negative, there are not enough active workers, when tc is
520     * negative, there are not enough total workers, when id is
521     * negative, there is at least one waiting worker, and when e is
522     * negative, the pool is terminating.  To deal with these possibly
523     * negative fields, we use casts in and out of "short" and/or
524     * signed shifts to maintain signedness.
525     *
526     * When a thread is queued (inactivated), its eventCount field is
527     * negative, which is the only way to tell if a worker is
528     * prevented from executing tasks, even though it must continue to
529     * scan for them to avoid queuing races.
530     *
531     * Field runState is an int packed with:
532     * SHUTDOWN: true if shutdown is enabled (1 bit)
533     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
534     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
535     *
536     * The combination of mask and sequence number enables simple
537     * consistency checks: Staleness of read-only operations on the
538     * workers and queues arrays can be checked by comparing runState
539     * before vs after the reads. The low 16 bits (i.e, anding with
540     * SMASK) hold (the smallest power of two covering all worker
541     * indices, minus one.  The mask for queues (vs workers) is twice
542     * this value plus 1.
543     */
544
545    // bit positions/shifts for fields
546    private static final int  AC_SHIFT   = 48;
547    private static final int  TC_SHIFT   = 32;
548    private static final int  ST_SHIFT   = 31;
549    private static final int  EC_SHIFT   = 16;
550
551    // bounds
552    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
553    private static final int  SMASK      = 0xffff;  // mask short bits
554    private static final int  SHORT_SIGN = 1 << 15;
555    private static final int  INT_SIGN   = 1 << 31;
556
557    // masks
558    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
559    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
560    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
561
562    // units for incrementing and decrementing
563    private static final long TC_UNIT    = 1L << TC_SHIFT;
564    private static final long AC_UNIT    = 1L << AC_SHIFT;
565
566    // masks and units for dealing with u = (int)(ctl >>> 32)
567    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
568    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
569    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
570    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
571    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
572    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
573
574    // masks and units for dealing with e = (int)ctl
575    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
576    private static final int E_SEQ       = 1 << EC_SHIFT;
577
578    // runState bits
579    private static final int SHUTDOWN    = 1 << 31;
580    private static final int RS_SEQ      = 1 << 16;
581    private static final int RS_SEQ_MASK = 0x7fff0000;
582
583    // access mode for WorkQueue
584    static final int LIFO_QUEUE          =  0;
585    static final int FIFO_QUEUE          =  1;
586    static final int SHARED_QUEUE        = -1;
587
588    /**
589     * The wakeup interval (in nanoseconds) for a worker waiting for a
590     * task when the pool is quiescent to instead try to shrink the
591     * number of workers.  The exact value does not matter too
592     * much. It must be short enough to release resources during
593     * sustained periods of idleness, but not so short that threads
594     * are continually re-created.
595     */
596    private static final long SHRINK_RATE =
597        4L * 1000L * 1000L * 1000L; // 4 seconds
598
599    /**
600     * The timeout value for attempted shrinkage, includes
601     * some slop to cope with system timer imprecision.
602     */
603    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
604
605    /**
606     * The maximum stolen->joining link depth allowed in tryHelpStealer.
607     * Depths for legitimate chains are unbounded, but we use a fixed
608     * constant to avoid (otherwise unchecked) cycles and to bound
609     * staleness of traversal parameters at the expense of sometimes
610     * blocking when we could be helping.
611     */
612    private static final int MAX_HELP_DEPTH = 16;
613
614    /*
615     * Field layout order in this class tends to matter more than one
616     * would like. Runtime layout order is only loosely related to
617     * declaration order and may differ across JVMs, but the following
618     * empirically works OK on current JVMs.
619     */
620
621    volatile long ctl;                       // main pool control
622    final int parallelism;                   // parallelism level
623    final int localMode;                     // per-worker scheduling mode
624    int nextPoolIndex;                       // hint used in registerWorker
625    volatile int runState;                   // shutdown status, seq, and mask
626    WorkQueue[] workQueues;                  // main registry
627    final ReentrantLock lock;                // for registration
628    final Condition termination;             // for awaitTermination
629    final ForkJoinWorkerThreadFactory factory; // factory for new workers
630    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
631    final AtomicLong stealCount;             // collect counts when terminated
632    final AtomicInteger nextWorkerNumber;    // to create worker name string
633    final String workerNamePrefix;           // Prefix for assigning worker names
634
635    /**
551       * Queues supporting work-stealing as well as external task
552       * submission. See above for main rationale and algorithms.
553       * Implementation relies heavily on "Unsafe" intrinsics
# Line 646 | Line 561 | public class ForkJoinPool extends Abstra
561       *
562       * Field "top" is the index (mod array.length) of the next queue
563       * slot to push to or pop from. It is written only by owner thread
564 <     * for push, or under lock for trySharedPush, and accessed by
565 <     * other threads only after reading (volatile) base.  Both top and
566 <     * base are allowed to wrap around on overflow, but (top - base)
567 <     * (or more comonly -(base - top) to force volatile read of base
568 <     * before top) still estimates size.
564 >     * for push, or under lock for external/shared push, and accessed
565 >     * by other threads only after reading (volatile) base.  Both top
566 >     * and base are allowed to wrap around on overflow, but (top -
567 >     * base) (or more commonly -(base - top) to force volatile read of
568 >     * base before top) still estimates size. The lock ("qlock") is
569 >     * forced to -1 on termination, causing all further lock attempts
570 >     * to fail. (Note: we don't need CAS for termination state because
571 >     * upon pool shutdown, all shared-queues will stop being used
572 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
573 >     * within lock bodies are "impossible" (modulo JVM errors that
574 >     * would cause failure anyway.)
575       *
576       * The array slots are read and written using the emulation of
577       * volatiles/atomics provided by Unsafe. Insertions must in
578       * general use putOrderedObject as a form of releasing store to
579       * ensure that all writes to the task object are ordered before
580 <     * its publication in the queue. (Although we can avoid one case
581 <     * of this when locked in trySharedPush.) All removals entail a
582 <     * CAS to null.  The array is always a power of two. To ensure
583 <     * safety of Unsafe array operations, all accesses perform
663 <     * explicit null checks and implicit bounds checks via
664 <     * power-of-two masking.
580 >     * its publication in the queue.  All removals entail a CAS to
581 >     * null.  The array is always a power of two. To ensure safety of
582 >     * Unsafe array operations, all accesses perform explicit null
583 >     * checks and implicit bounds checks via power-of-two masking.
584       *
585       * In addition to basic queuing support, this class contains
586       * fields described elsewhere to control execution. It turns out
587 <     * to work better memory-layout-wise to include them in this
588 <     * class rather than a separate class.
587 >     * to work better memory-layout-wise to include them in this class
588 >     * rather than a separate class.
589       *
590       * Performance on most platforms is very sensitive to placement of
591       * instances of both WorkQueues and their arrays -- we absolutely
# Line 680 | Line 599 | public class ForkJoinPool extends Abstra
599       * trades off slightly slower average field access for the sake of
600       * avoiding really bad worst-case access. (Until better JVM
601       * support is in place, this padding is dependent on transient
602 <     * properties of JVM field layout rules.)  We also take care in
684 <     * allocating and sizing and resizing the array. Non-shared queue
685 <     * arrays are initialized (via method growArray) by workers before
686 <     * use. Others are allocated on first use.
602 >     * properties of JVM field layout rules.)
603       */
604      static final class WorkQueue {
605          /**
606           * Capacity of work-stealing queue array upon initialization.
607 <         * Must be a power of two; at least 4, but set larger to
608 <         * reduce cacheline sharing among queues.
607 >         * Must be a power of two; at least 4, but should be larger to
608 >         * reduce or eliminate cacheline sharing among queues.
609 >         * Currently, it is much larger, as a partial workaround for
610 >         * the fact that JVMs often place arrays in locations that
611 >         * share GC bookkeeping (especially cardmarks) such that
612 >         * per-write accesses encounter serious memory contention.
613           */
614 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
614 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
615  
616          /**
617           * Maximum size for queue arrays. Must be a power of two less
# Line 702 | Line 622 | public class ForkJoinPool extends Abstra
622           */
623          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
624  
705        volatile long totalSteals; // cumulative number of steals
625          int seed;                  // for random scanning; initialize nonzero
626          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
627          int nextWait;              // encoded record of next event waiter
628 <        int rescans;               // remaining scans until block
710 <        int nsteals;               // top-level task executions since last idle
711 <        final int mode;            // lifo, fifo, or shared
628 >        int hint;                  // steal or signal hint (index)
629          int poolIndex;             // index of this queue in pool (or 0)
630 <        int stealHint;             // index of most recent known stealer
631 <        volatile int runState;     // 1: locked, -1: terminate; else 0
630 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
631 >        int nsteals;               // number of steals
632 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
633          volatile int base;         // index of next slot for poll
634          int top;                   // index of next slot for push
635          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
636 +        final ForkJoinPool pool;   // the containing pool (may be null)
637          final ForkJoinWorkerThread owner; // owning thread or null if shared
638          volatile Thread parker;    // == owner during call to park; else null
639 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
639 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
640          ForkJoinTask<?> currentSteal; // current non-local task being executed
641 +
642          // Heuristic padding to ameliorate unfortunate memory placements
643 <        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
643 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
644 >        Object p08, p09, p0a, p0b, p0c;
645  
646 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
646 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
647 >                  int seed) {
648 >            this.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
649 >            this.pool = pool;
650              this.owner = owner;
651              this.mode = mode;
652 <            // Place indices in the center of array (that is not yet allocated)
652 >            this.seed = seed;
653 >            // Place indices in the center of array
654              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
655          }
656  
657          /**
733         * Returns number of tasks in the queue
734         */
735        final int queueSize() {
736            int n = base - top; // non-owner callers must read base first
737            return (n >= 0) ? 0 : -n;
738        }
739
740        /**
658           * Pushes a task. Call only by owner in unshared queues.
659 +         * Cases needing resizing or rejection are relayed to fullPush
660 +         * (that also handles shared queues).
661           *
662           * @param task the task. Caller must ensure non-null.
663 <         * @param p, if non-null, pool to signal if necessary
745 <         * @throw RejectedExecutionException if array cannot
746 <         * be resized
663 >         * @throw RejectedExecutionException if array cannot be resized
664           */
665 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
666 <            ForkJoinTask<?>[] a;
665 >        final void push(ForkJoinTask<?> task) {
666 >            ForkJoinTask<?>[] a; ForkJoinPool p;
667              int s = top, m, n;
668              if ((a = array) != null) {    // ignore if queue removed
669                  U.putOrderedObject
670                      (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
671 <                if ((n = (top = s + 1) - base) <= 2) {
672 <                    if (p != null)
673 <                        p.signalWork();
671 >                if ((n = (top = s + 1) - base) <= 1) {
672 >                    if ((p = pool) != null)
673 >                        p.signalWork(this, 0);
674                  }
675                  else if (n >= m)
676 <                    growArray(true);
676 >                    growArray();
677              }
678          }
679  
# Line 769 | Line 686 | public class ForkJoinPool extends Abstra
686           */
687          final boolean trySharedPush(ForkJoinTask<?> task) {
688              boolean submitted = false;
689 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
690 <                ForkJoinTask<?>[] a = array;
691 <                int s = top, n = s - base;
689 >            if (qlock == 0 && U.compareAndSwapInt(this, QLOCK, 0, 1)) {
690 >                ForkJoinTask<?>[] a = array;  ForkJoinPool p;
691 >                int s = top;
692                  try {
693 <                    if ((a != null && n < a.length - 1) ||
694 <                        (a = growArray(false)) != null) { // must presize
693 >                    if ((a != null && a.length > s + 1 - base) ||
694 >                        (a = growArray()) != null) {   // must presize
695                          int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
696 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
696 >                        U.putOrderedObject(a, j, task);
697                          top = s + 1;
698                          submitted = true;
699                      }
700                  } finally {
701 <                    runState = 0;                         // unlock
701 >                    qlock = 0;                         // unlock
702                  }
703 +                if (submitted && (p = pool) != null)
704 +                    p.signalWork(this, 0);
705              }
706              return submitted;
707          }
708  
709 +       /**
710 +         * Initializes or doubles the capacity of array. Call either
711 +         * by owner or with lock held -- it is OK for base, but not
712 +         * top, to move while resizings are in progress.
713 +         */
714 +        final ForkJoinTask<?>[] growArray() {
715 +            ForkJoinTask<?>[] oldA = array;
716 +            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
717 +            if (size > MAXIMUM_QUEUE_CAPACITY)
718 +                throw new RejectedExecutionException("Queue capacity exceeded");
719 +            int oldMask, t, b;
720 +            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
721 +            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
722 +                (t = top) - (b = base) > 0) {
723 +                int mask = size - 1;
724 +                do {
725 +                    ForkJoinTask<?> x;
726 +                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
727 +                    int j    = ((b &    mask) << ASHIFT) + ABASE;
728 +                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
729 +                    if (x != null &&
730 +                        U.compareAndSwapObject(oldA, oldj, x, null))
731 +                        U.putObjectVolatile(a, j, x);
732 +                } while (++b != t);
733 +            }
734 +            return a;
735 +        }
736 +
737          /**
738 <         * Takes next task, if one exists, in FIFO order.
738 >         * Takes next task, if one exists, in LIFO order.  Call only
739 >         * by owner in unshared queues.
740           */
741 <        final ForkJoinTask<?> poll() {
742 <            ForkJoinTask<?>[] a; int b, i;
743 <            while ((b = base) - top < 0 && (a = array) != null &&
744 <                   (i = (a.length - 1) & b) >= 0) {
745 <                int j = (i << ASHIFT) + ABASE;
746 <                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
747 <                if (t != null && base == b &&
741 >        final ForkJoinTask<?> pop() {
742 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
743 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
744 >                for (int s; (s = top - 1) - base >= 0;) {
745 >                    long j = ((m & s) << ASHIFT) + ABASE;
746 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
747 >                        break;
748 >                    if (U.compareAndSwapObject(a, j, t, null)) {
749 >                        top = s;
750 >                        return t;
751 >                    }
752 >                }
753 >            }
754 >            return null;
755 >        }
756 >
757 >        /**
758 >         * Takes a task in FIFO order if b is base of queue and a task
759 >         * can be claimed without contention. Specialized versions
760 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
761 >         */
762 >        final ForkJoinTask<?> pollAt(int b) {
763 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
764 >            if ((a = array) != null) {
765 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
767 >                    base == b &&
768                      U.compareAndSwapObject(a, j, t, null)) {
769                      base = b + 1;
770                      return t;
# Line 806 | Line 774 | public class ForkJoinPool extends Abstra
774          }
775  
776          /**
777 <         * Takes next task, if one exists, in LIFO order.
810 <         * Call only by owner in unshared queues.
777 >         * Takes next task, if one exists, in FIFO order.
778           */
779 <        final ForkJoinTask<?> pop() {
780 <            ForkJoinTask<?> t; int m;
781 <            ForkJoinTask<?>[] a = array;
782 <            if (a != null && (m = a.length - 1) >= 0) {
783 <                for (int s; (s = top - 1) - base >= 0;) {
784 <                    int j = ((m & s) << ASHIFT) + ABASE;
785 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
786 <                        break;
787 <                    if (U.compareAndSwapObject(a, j, t, null)) {
821 <                        top = s;
779 >        final ForkJoinTask<?> poll() {
780 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
781 >            while ((b = base) - top < 0 && (a = array) != null) {
782 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
783 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
784 >                if (t != null) {
785 >                    if (base == b &&
786 >                        U.compareAndSwapObject(a, j, t, null)) {
787 >                        base = b + 1;
788                          return t;
789                      }
790                  }
791 +                else if (base == b) {
792 +                    if (b + 1 == top)
793 +                        break;
794 +                    Thread.yield(); // wait for lagging update (very rare)
795 +                }
796              }
797              return null;
798          }
# Line 846 | Line 817 | public class ForkJoinPool extends Abstra
817          }
818  
819          /**
849         * Returns task at index b if b is current base of queue.
850         */
851        final ForkJoinTask<?> pollAt(int b) {
852            ForkJoinTask<?>[] a; int i;
853            ForkJoinTask<?> task = null;
854            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
855                int j = (i << ASHIFT) + ABASE;
856                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
857                if (t != null && base == b &&
858                    U.compareAndSwapObject(a, j, t, null)) {
859                    base = b + 1;
860                    task = t;
861                }
862            }
863            return task;
864        }
865
866        /**
820           * Pops the given task only if it is at the current top.
821 +         * (A shared version is available only via FJP.tryExternalUnpush)
822           */
823          final boolean tryUnpush(ForkJoinTask<?> t) {
824              ForkJoinTask<?>[] a; int s;
# Line 878 | Line 832 | public class ForkJoinPool extends Abstra
832          }
833  
834          /**
835 <         * Polls the given task only if it is at the current base.
835 >         * Removes and cancels all known tasks, ignoring any exceptions.
836           */
837 <        final boolean pollFor(ForkJoinTask<?> task) {
838 <            ForkJoinTask<?>[] a; int b, i;
839 <            if ((b = base) - top < 0 && (a = array) != null &&
840 <                (i = (a.length - 1) & b) >= 0) {
841 <                int j = (i << ASHIFT) + ABASE;
842 <                if (U.getObjectVolatile(a, j) == task && base == b &&
843 <                    U.compareAndSwapObject(a, j, task, null)) {
844 <                    base = b + 1;
845 <                    return true;
837 >        final void cancelAll() {
838 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
839 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
840 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
841 >                ForkJoinTask.cancelIgnoringExceptions(t);
842 >        }
843 >
844 >        /**
845 >         * Computes next value for random probes.  Scans don't require
846 >         * a very high quality generator, but also not a crummy one.
847 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
848 >         * This is manually inlined in its usages in ForkJoinPool to
849 >         * avoid writes inside busy scan loops.
850 >         */
851 >        final int nextSeed() {
852 >            int r = seed;
853 >            r ^= r << 13;
854 >            r ^= r >>> 17;
855 >            return seed = r ^= r << 5;
856 >        }
857 >
858 >        /**
859 >         * Provides a more accurate estimate of size than (top - base)
860 >         * by ordering reads and checking whether a near-empty queue
861 >         * has at least one unclaimed task.
862 >         */
863 >        final int queueSize() {
864 >            ForkJoinTask<?>[] a; int k, s, n;
865 >            return ((n = base - (s = top)) < 0 &&
866 >                    (n != -1 ||
867 >                     ((a = array) != null && (k = a.length) > 0 &&
868 >                      U.getObject
869 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
870 >                -n : 0;
871 >        }
872 >
873 >        // Specialized execution methods
874 >
875 >        /**
876 >         * Pops and runs tasks until empty.
877 >         */
878 >        private void popAndExecAll() {
879 >            // A bit faster than repeated pop calls
880 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
881 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
882 >                   (s = top - 1) - base >= 0 &&
883 >                   (t = ((ForkJoinTask<?>)
884 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
885 >                   != null) {
886 >                if (U.compareAndSwapObject(a, j, t, null)) {
887 >                    top = s;
888 >                    t.doExec();
889                  }
890              }
894            return false;
891          }
892  
893          /**
894 <         * If present, removes from queue and executes the given task, or
895 <         * any other cancelled task. Returns (true) immediately on any CAS
894 >         * Polls and runs tasks until empty.
895 >         */
896 >        private void pollAndExecAll() {
897 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
898 >                t.doExec();
899 >        }
900 >
901 >        /**
902 >         * If present, removes from queue and executes the given task,
903 >         * or any other cancelled task. Returns (true) on any CAS
904           * or consistency check failure so caller can retry.
905           *
906 <         * @return false if no progress can be made
906 >         * @return false if no progress can be made, else true;
907           */
908          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
909 <            boolean removed = false, empty = true, progress = true;
909 >            boolean stat = true, removed = false, empty = true;
910              ForkJoinTask<?>[] a; int m, s, b, n;
911              if ((a = array) != null && (m = a.length - 1) >= 0 &&
912                  (n = (s = top) - (b = base)) > 0) {
# Line 932 | Line 936 | public class ForkJoinPool extends Abstra
936                      }
937                      if (--n == 0) {
938                          if (!empty && base == b)
939 <                            progress = false;
939 >                            stat = false;
940                          break;
941                      }
942                  }
943              }
944              if (removed)
945                  task.doExec();
946 <            return progress;
946 >            return stat;
947          }
948  
949          /**
950 <         * Initializes or doubles the capacity of array. Call either
951 <         * by owner or with lock held -- it is OK for base, but not
948 <         * top, to move while resizings are in progress.
949 <         *
950 <         * @param rejectOnFailure if true, throw exception if capacity
951 <         * exceeded (relayed ultimately to user); else return null.
950 >         * Polls for and executes the given task or any other task in
951 >         * its CountedCompleter computation
952           */
953 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
954 <            ForkJoinTask<?>[] oldA = array;
955 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
956 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
957 <                int oldMask, t, b;
958 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
959 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
960 <                    (t = top) - (b = base) > 0) {
961 <                    int mask = size - 1;
962 <                    do {
963 <                        ForkJoinTask<?> x;
964 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
965 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
966 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
967 <                        if (x != null &&
968 <                            U.compareAndSwapObject(oldA, oldj, x, null))
969 <                            U.putObjectVolatile(a, j, x);
970 <                    } while (++b != t);
953 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
954 >            ForkJoinTask<?>[] a; int b; Object o;
955 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
956 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
957 >                if ((o = U.getObject(a, j)) == null ||
958 >                    !(o instanceof CountedCompleter))
959 >                    break;
960 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
961 >                    if (r == root) {
962 >                        if (base == b &&
963 >                            U.compareAndSwapObject(a, j, t, null)) {
964 >                            base = b + 1;
965 >                            t.doExec();
966 >                            return true;
967 >                        }
968 >                        else
969 >                            break; // restart
970 >                    }
971 >                    if ((r = r.completer) == null)
972 >                        break outer; // not part of root computation
973                  }
972                return a;
973            }
974            else if (!rejectOnFailure)
975                return null;
976            else
977                throw new RejectedExecutionException("Queue capacity exceeded");
978        }
979
980        /**
981         * Removes and cancels all known tasks, ignoring any exceptions
982         */
983        final void cancelAll() {
984            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
985            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
986            for (ForkJoinTask<?> t; (t = poll()) != null; )
987                ForkJoinTask.cancelIgnoringExceptions(t);
988        }
989
990        // Execution methods
991
992        /**
993         * Removes and runs tasks until empty, using local mode
994         * ordering.
995         */
996        final void runLocalTasks() {
997            if (base - top < 0) {
998                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
999                    t.doExec();
974              }
975 +            return false;
976          }
977  
978          /**
979           * Executes a top-level task and any local tasks remaining
980           * after execution.
1006         *
1007         * @return true unless terminating
981           */
982 <        final boolean runTask(ForkJoinTask<?> t) {
1010 <            boolean alive = true;
982 >        final void runTask(ForkJoinTask<?> t) {
983              if (t != null) {
984 <                currentSteal = t;
1013 <                t.doExec();
1014 <                runLocalTasks();
1015 <                ++nsteals;
984 >                (currentSteal = t).doExec();
985                  currentSteal = null;
986 +                ++nsteals;
987 +                if (top != base) {       // process remaining local tasks
988 +                    if (mode == 0)
989 +                        popAndExecAll();
990 +                    else
991 +                        pollAndExecAll();
992 +                }
993              }
1018            else if (runState < 0)            // terminating
1019                alive = false;
1020            return alive;
994          }
995  
996          /**
997 <         * Executes a non-top-level (stolen) task
997 >         * Executes a non-top-level (stolen) task.
998           */
999          final void runSubtask(ForkJoinTask<?> t) {
1000              if (t != null) {
1001                  ForkJoinTask<?> ps = currentSteal;
1002 <                currentSteal = t;
1030 <                t.doExec();
1002 >                (currentSteal = t).doExec();
1003                  currentSteal = ps;
1004              }
1005          }
1006  
1007          /**
1008 <         * Computes next value for random probes.  Scans don't require
1037 <         * a very high quality generator, but also not a crummy one.
1038 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
1039 <         * This is manually inlined in several usages in ForkJoinPool
1040 <         * to avoid writes inside busy scan loops.
1008 >         * Returns true if owned and not known to be blocked.
1009           */
1010 <        final int nextSeed() {
1011 <            int r = seed;
1012 <            r ^= r << 13;
1013 <            r ^= r >>> 17;
1014 <            r ^= r << 5;
1015 <            return seed = r;
1010 >        final boolean isApparentlyUnblocked() {
1011 >            Thread wt; Thread.State s;
1012 >            return (eventCount >= 0 &&
1013 >                    (wt = owner) != null &&
1014 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1015 >                    s != Thread.State.WAITING &&
1016 >                    s != Thread.State.TIMED_WAITING);
1017 >        }
1018 >
1019 >        /**
1020 >         * If this owned and is not already interrupted, try to
1021 >         * interrupt and/or unpark, ignoring exceptions.
1022 >         */
1023 >        final void interruptOwner() {
1024 >            Thread wt, p;
1025 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1026 >                try {
1027 >                    wt.interrupt();
1028 >                } catch (SecurityException ignore) {
1029 >                }
1030 >            }
1031 >            if ((p = parker) != null)
1032 >                U.unpark(p);
1033          }
1034  
1035          // Unsafe mechanics
1036          private static final sun.misc.Unsafe U;
1037 <        private static final long RUNSTATE;
1037 >        private static final long QLOCK;
1038          private static final int ABASE;
1039          private static final int ASHIFT;
1040          static {
# Line 1058 | Line 1043 | public class ForkJoinPool extends Abstra
1043                  U = getUnsafe();
1044                  Class<?> k = WorkQueue.class;
1045                  Class<?> ak = ForkJoinTask[].class;
1046 <                RUNSTATE = U.objectFieldOffset
1047 <                    (k.getDeclaredField("runState"));
1046 >                QLOCK = U.objectFieldOffset
1047 >                    (k.getDeclaredField("qlock"));
1048                  ABASE = U.arrayBaseOffset(ak);
1049                  s = U.arrayIndexScale(ak);
1050              } catch (Exception e) {
# Line 1071 | Line 1056 | public class ForkJoinPool extends Abstra
1056          }
1057      }
1058  
1059 +    // static fields (initialized in static initializer below)
1060 +
1061      /**
1062 <     * Class for artificial tasks that are used to replace the target
1063 <     * of local joins if they are removed from an interior queue slot
1077 <     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1078 <     * actually do anything beyond having a unique identity.
1062 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1063 >     * overridden in ForkJoinPool constructors.
1064       */
1065 <    static final class EmptyTask extends ForkJoinTask<Void> {
1066 <        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1082 <        public Void getRawResult() { return null; }
1083 <        public void setRawResult(Void x) {}
1084 <        public boolean exec() { return true; }
1085 <    }
1065 >    public static final ForkJoinWorkerThreadFactory
1066 >        defaultForkJoinWorkerThreadFactory;
1067  
1068      /**
1069 <     * Computes a hash code for the given thread. This method is
1070 <     * expected to provide higher-quality hash codes than those using
1071 <     * method hashCode().
1069 >     * Per-thread records for threads that submit to pools. Currently
1070 >     * holds only pseudo-random seed / index that is used to choose
1071 >     * submission queues in method externalPush. In the future, this may
1072 >     * also incorporate a means to implement different task rejection
1073 >     * and resubmission policies.
1074 >     *
1075 >     * Seeds for submitters and workers/workQueues work in basically
1076 >     * the same way but are initialized and updated using slightly
1077 >     * different mechanics. Both are initialized using the same
1078 >     * approach as in class ThreadLocal, where successive values are
1079 >     * unlikely to collide with previous values. Seeds are then
1080 >     * randomly modified upon collisions using xorshifts, which
1081 >     * requires a non-zero seed.
1082       */
1083 <    static final int hashThread(Thread t) {
1084 <        long id = (t == null)? 0L : t.getId(); // Use MurmurHash of thread id
1085 <        int h = (int)id ^ (int)(id >>> 32);
1095 <        h ^= h >>> 16;
1096 <        h *= 0x85ebca6b;
1097 <        h ^= h >>> 13;
1098 <        h *= 0xc2b2ae35;
1099 <        return h ^ (h >>> 16);
1083 >    static final class Submitter {
1084 >        int seed;
1085 >        Submitter(int s) { seed = s; }
1086      }
1087  
1088      /**
1089 <     * Top-level runloop for workers
1089 >     * Per-thread submission bookkeeping. Shared across all pools
1090 >     * to reduce ThreadLocal pollution and because random motion
1091 >     * to avoid contention in one pool is likely to hold for others.
1092 >     * Lazily initialized on first submission (but null-checked
1093 >     * in other contexts to avoid unnecessary initialization).
1094 >     */
1095 >    static final ThreadLocal<Submitter> submitters;
1096 >
1097 >    /**
1098 >     * Common (static) pool. Non-null for public use unless a static
1099 >     * construction exception, but internal usages null-check on use
1100 >     * to paranoically avoid potential initialization circularities
1101 >     * as well as to simplify generated code.
1102 >     */
1103 >    static final ForkJoinPool commonPool;
1104 >
1105 >    /**
1106 >     * Permission required for callers of methods that may start or
1107 >     * kill threads.
1108 >     */
1109 >    private static final RuntimePermission modifyThreadPermission;
1110 >
1111 >    /**
1112 >     * Common pool parallelism. Must equal commonPool.parallelism.
1113 >     */
1114 >    static final int commonPoolParallelism;
1115 >
1116 >    /**
1117 >     * Sequence number for creating workerNamePrefix.
1118       */
1119 <    final void runWorker(ForkJoinWorkerThread wt) {
1106 <        WorkQueue w = wt.workQueue;
1107 <        w.growArray(false);     // Initialize queue array and seed in this thread
1108 <        w.seed = hashThread(Thread.currentThread()) | (1 << 31); // force < 0
1119 >    private static int poolNumberSequence;
1120  
1121 <        do {} while (w.runTask(scan(w)));
1121 >    /**
1122 >     * Return the next sequence number. We don't expect this to
1123 >     * ever contend so use simple builtin sync.
1124 >     */
1125 >    private static final synchronized int nextPoolId() {
1126 >        return ++poolNumberSequence;
1127      }
1128  
1129 <    // Creating, registering and deregistering workers
1129 >    // static constants
1130  
1131      /**
1132 <     * Tries to create and start a worker
1132 >     * Initial timeout value (in nanoseconds) for the thread
1133 >     * triggering quiescence to park waiting for new work. On timeout,
1134 >     * the thread will instead try to shrink the number of
1135 >     * workers. The value should be large enough to avoid overly
1136 >     * aggressive shrinkage during most transient stalls (long GCs
1137 >     * etc).
1138       */
1139 <    private void addWorker() {
1140 <        Throwable ex = null;
1141 <        ForkJoinWorkerThread w = null;
1142 <        try {
1143 <            if ((w = factory.newThread(this)) != null) {
1144 <                w.start();
1145 <                return;
1139 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1140 >
1141 >    /**
1142 >     * Timeout value when there are more threads than parallelism level
1143 >     */
1144 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1145 >
1146 >    /**
1147 >     * The maximum stolen->joining link depth allowed in method
1148 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1149 >     * chains are unbounded, but we use a fixed constant to avoid
1150 >     * (otherwise unchecked) cycles and to bound staleness of
1151 >     * traversal parameters at the expense of sometimes blocking when
1152 >     * we could be helping.
1153 >     */
1154 >    private static final int MAX_HELP = 64;
1155 >
1156 >    /**
1157 >     * Increment for seed generators. See class ThreadLocal for
1158 >     * explanation.
1159 >     */
1160 >    private static final int SEED_INCREMENT = 0x61c88647;
1161 >
1162 >    /**
1163 >     * Bits and masks for control variables
1164 >     *
1165 >     * Field ctl is a long packed with:
1166 >     * AC: Number of active running workers minus target parallelism (16 bits)
1167 >     * TC: Number of total workers minus target parallelism (16 bits)
1168 >     * ST: true if pool is terminating (1 bit)
1169 >     * EC: the wait count of top waiting thread (15 bits)
1170 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1171 >     *
1172 >     * When convenient, we can extract the upper 32 bits of counts and
1173 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1174 >     * (int)ctl.  The ec field is never accessed alone, but always
1175 >     * together with id and st. The offsets of counts by the target
1176 >     * parallelism and the positionings of fields makes it possible to
1177 >     * perform the most common checks via sign tests of fields: When
1178 >     * ac is negative, there are not enough active workers, when tc is
1179 >     * negative, there are not enough total workers, and when e is
1180 >     * negative, the pool is terminating.  To deal with these possibly
1181 >     * negative fields, we use casts in and out of "short" and/or
1182 >     * signed shifts to maintain signedness.
1183 >     *
1184 >     * When a thread is queued (inactivated), its eventCount field is
1185 >     * set negative, which is the only way to tell if a worker is
1186 >     * prevented from executing tasks, even though it must continue to
1187 >     * scan for them to avoid queuing races. Note however that
1188 >     * eventCount updates lag releases so usage requires care.
1189 >     *
1190 >     * Field plock is an int packed with:
1191 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1192 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1193 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1194 >     *
1195 >     * The sequence number enables simple consistency checks:
1196 >     * Staleness of read-only operations on the workQueues array can
1197 >     * be checked by comparing plock before vs after the reads.
1198 >     */
1199 >
1200 >    // bit positions/shifts for fields
1201 >    private static final int  AC_SHIFT   = 48;
1202 >    private static final int  TC_SHIFT   = 32;
1203 >    private static final int  ST_SHIFT   = 31;
1204 >    private static final int  EC_SHIFT   = 16;
1205 >
1206 >    // bounds
1207 >    private static final int  SMASK      = 0xffff;  // short bits
1208 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1209 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1210 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1211 >    private static final int  SHORT_SIGN = 1 << 15;
1212 >    private static final int  INT_SIGN   = 1 << 31;
1213 >
1214 >    // masks
1215 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1216 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1217 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1218 >
1219 >    // units for incrementing and decrementing
1220 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1221 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1222 >
1223 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1224 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1225 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1226 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1227 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1228 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1229 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1230 >
1231 >    // masks and units for dealing with e = (int)ctl
1232 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1233 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1234 >
1235 >    // plock bits
1236 >    private static final int SHUTDOWN    = 1 << 31;
1237 >    private static final int PL_LOCK     = 2;
1238 >    private static final int PL_SIGNAL   = 1;
1239 >    private static final int PL_SPINS    = 1 << 8;
1240 >
1241 >    // access mode for WorkQueue
1242 >    static final int LIFO_QUEUE          =  0;
1243 >    static final int FIFO_QUEUE          =  1;
1244 >    static final int SHARED_QUEUE        = -1;
1245 >
1246 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1247 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1248 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1249 >
1250 >    // Instance fields
1251 >
1252 >    /*
1253 >     * Field layout of this class tends to matter more than one would
1254 >     * like. Runtime layout order is only loosely related to
1255 >     * declaration order and may differ across JVMs, but the following
1256 >     * empirically works OK on current JVMs.
1257 >     */
1258 >    volatile long stealCount;                  // collects worker counts
1259 >    volatile long ctl;                         // main pool control
1260 >    volatile int plock;                        // shutdown status and seqLock
1261 >    volatile int indexSeed;                    // worker/submitter index seed
1262 >    final int config;                          // mode and parallelism level
1263 >    WorkQueue[] workQueues;                    // main registry
1264 >    final ForkJoinWorkerThreadFactory factory;
1265 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1266 >    final String workerNamePrefix;             // to create worker name string
1267 >
1268 >    /*
1269 >     * Acquires the plock lock to protect worker array and related
1270 >     * updates. This method is called only if an initial CAS on plock
1271 >     * fails. This acts as a spinLock for normal cases, but falls back
1272 >     * to builtin monitor to block when (rarely) needed. This would be
1273 >     * a terrible idea for a highly contended lock, but works fine as
1274 >     * a more conservative alternative to a pure spinlock.  See
1275 >     * internal ConcurrentHashMap documentation for further
1276 >     * explanation of nearly the same construction.
1277 >     */
1278 >    private int acquirePlock() {
1279 >        int spins = PL_SPINS, r = 0, ps, nps;
1280 >        for (;;) {
1281 >            if (((ps = plock) & PL_LOCK) == 0 &&
1282 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1283 >                return nps;
1284 >            else if (r == 0) { // randomize spins if possible
1285 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1286 >                if ((t instanceof ForkJoinWorkerThread) &&
1287 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1288 >                    r = w.seed;
1289 >                else if ((z = submitters.get()) != null)
1290 >                    r = z.seed;
1291 >                else
1292 >                    r = 1;
1293 >            }
1294 >            else if (spins >= 0) {
1295 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1296 >                if (r >= 0)
1297 >                    --spins;
1298 >            }
1299 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1300 >                synchronized (this) {
1301 >                    if ((plock & PL_SIGNAL) != 0) {
1302 >                        try {
1303 >                            wait();
1304 >                        } catch (InterruptedException ie) {
1305 >                            try {
1306 >                                Thread.currentThread().interrupt();
1307 >                            } catch (SecurityException ignore) {
1308 >                            }
1309 >                        }
1310 >                    }
1311 >                    else
1312 >                        notifyAll();
1313 >                }
1314              }
1126        } catch (Throwable e) {
1127            ex = e;
1315          }
1129        deregisterWorker(w, ex);
1316      }
1317  
1318      /**
1319 <     * Callback from ForkJoinWorkerThread constructor to assign a
1320 <     * public name. This must be separate from registerWorker because
1135 <     * it is called during the "super" constructor call in
1136 <     * ForkJoinWorkerThread.
1319 >     * Unlocks and signals any thread waiting for plock. Called only
1320 >     * when CAS of seq value for unlock fails.
1321       */
1322 <    final String nextWorkerName() {
1323 <        return workerNamePrefix.concat
1324 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1322 >    private void releasePlock(int ps) {
1323 >        plock = ps;
1324 >        synchronized (this) { notifyAll(); }
1325      }
1326  
1327      /**
1328 <     * Callback from ForkJoinWorkerThread constructor to establish and
1329 <     * record its WorkQueue
1328 >     * Tries to create and start a worker; adjusts counts etc on failure
1329 >     */
1330 >    private void addWorker() {
1331 >        ForkJoinWorkerThread wt = null;
1332 >        try {
1333 >            (wt = factory.newThread(this)).start();
1334 >        } catch (Throwable ex) {
1335 >            deregisterWorker(wt, ex); // adjust on failure
1336 >        }
1337 >    }
1338 >
1339 >    /**
1340 >     * Performs secondary initialization, called when plock is zero.
1341 >     * Creates workQueue array and sets plock to a valid value.  The
1342 >     * lock body must be exception-free (so no try/finally) so we
1343 >     * optimistically allocate new array outside the lock and throw
1344 >     * away if (very rarely) not needed. (A similar tactic is used in
1345 >     * fullExternalPush.)  Because the plock seq value can eventually
1346 >     * wrap around zero, this method harmlessly fails to reinitialize
1347 >     * if workQueues exists, while still advancing plock.
1348 >     */
1349 >    private void initWorkQueuesArray() {
1350 >        WorkQueue[] ws; int ps;
1351 >        int p = config & SMASK;        // find power of two table size
1352 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1353 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1354 >        WorkQueue[] nws = new WorkQueue[(n + 1) << 1];
1355 >        if (((ps = plock) & PL_LOCK) != 0 ||
1356 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357 >            ps = acquirePlock();
1358 >        if ((ws = workQueues) == null || ws.length == 0)
1359 >            workQueues = nws;
1360 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1361 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1362 >            releasePlock(nps);
1363 >        long c; int u;
1364 >        if ((u = (int)((c = ctl) >>> 32)) < 0 && (int)c == 0) {
1365 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1366 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1367 >            if (U.compareAndSwapLong(this, CTL, c, nc))
1368 >                addWorker();
1369 >        }
1370 >
1371 >    }
1372 >
1373 >    //  Registering and deregistering workers
1374 >
1375 >    /**
1376 >     * Callback from ForkJoinWorkerThread to establish and record its
1377 >     * WorkQueue. To avoid scanning bias due to packing entries in
1378 >     * front of the workQueues array, we treat the array as a simple
1379 >     * power-of-two hash table using per-thread seed as hash,
1380 >     * expanding as needed.
1381       *
1382       * @param wt the worker thread
1383       */
1384      final void registerWorker(ForkJoinWorkerThread wt) {
1385 <        WorkQueue w = wt.workQueue;
1386 <        ReentrantLock lock = this.lock;
1387 <        lock.lock();
1388 <        try {
1389 <            int k = nextPoolIndex;
1390 <            WorkQueue[] ws = workQueues;
1391 <            if (ws != null) {                       // ignore on shutdown
1392 <                int n = ws.length;
1393 <                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1394 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1395 <                        ;                           // workers are at odd indices
1396 <                    if (k >= n)                     // resize
1397 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1398 <                }
1399 <                w.poolIndex = k;
1400 <                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1401 <                ws[k] = w;                          // record worker
1402 <                nextPoolIndex = k + 2;
1403 <                int rs = runState;
1404 <                int m = rs & SMASK;                 // recalculate runState mask
1405 <                if (k > m)
1406 <                    m = (m << 1) + 1;
1407 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1385 >        if (wt != null && wt.workQueue == null) {
1386 >            int s, ps;    // generate a rarely colliding candidate index seed
1387 >            do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1388 >                                              s += SEED_INCREMENT) ||
1389 >                         s == 0); // skip 0
1390 >            WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1391 >            if (((ps = plock) & PL_LOCK) != 0 ||
1392 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1393 >                ps = acquirePlock();
1394 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1395 >            try {
1396 >                WorkQueue[] ws;
1397 >                if ((ws = workQueues) != null && wt.workQueue == null) {
1398 >                    int n = ws.length, m = n - 1;
1399 >                    int r = (s << 1) | 1;           // use odd-numbered indices
1400 >                    if (ws[r &= m] != null) {       // collision
1401 >                        int probes = 0;             // step by approx half size
1402 >                        int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1403 >                        while (ws[r = (r + step) & m] != null) {
1404 >                            if (++probes >= n) {
1405 >                                workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1406 >                                m = n - 1;
1407 >                                probes = 0;
1408 >                            }
1409 >                        }
1410 >                    }
1411 >                    w.eventCount = w.poolIndex = r; // volatile write orders
1412 >                    wt.workQueue = ws[r] = w;
1413 >                }
1414 >            } finally {
1415 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1416 >                    releasePlock(nps);
1417              }
1174        } finally {
1175            lock.unlock();
1418          }
1419      }
1420  
1421      /**
1422 <     * Final callback from terminating worker, as well as failure to
1423 <     * construct or start a worker in addWorker.  Removes record of
1424 <     * worker from array, and adjusts counts. If pool is shutting
1425 <     * down, tries to complete termination.
1422 >     * Final callback from terminating worker, as well as upon failure
1423 >     * to construct or start a worker.  Removes record of worker from
1424 >     * array, and adjusts counts. If pool is shutting down, tries to
1425 >     * complete termination.
1426       *
1427 <     * @param wt the worker thread or null if addWorker failed
1427 >     * @param wt the worker thread or null if construction failed
1428       * @param ex the exception causing failure, or null if none
1429       */
1430      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1431          WorkQueue w = null;
1432          if (wt != null && (w = wt.workQueue) != null) {
1433 <            w.runState = -1;                // ensure runState is set
1434 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1435 <            int idx = w.poolIndex;
1436 <            ReentrantLock lock = this.lock;
1437 <            lock.lock();
1438 <            try {                           // remove record from array
1433 >            int ps;
1434 >            w.qlock = -1;                // ensure set
1435 >            long ns = w.nsteals, sc;     // collect steal count
1436 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1437 >                                               sc = stealCount, sc + ns));
1438 >            if (((ps = plock) & PL_LOCK) != 0 ||
1439 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1440 >                ps = acquirePlock();
1441 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1442 >            try {
1443 >                int idx = w.poolIndex;
1444                  WorkQueue[] ws = workQueues;
1445                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1446 <                    ws[nextPoolIndex = idx] = null;
1446 >                    ws[idx] = null;
1447              } finally {
1448 <                lock.unlock();
1448 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1449 >                    releasePlock(nps);
1450              }
1451          }
1452  
# Line 1208 | Line 1456 | public class ForkJoinPool extends Abstra
1456                                             ((c - TC_UNIT) & TC_MASK) |
1457                                             (c & ~(AC_MASK|TC_MASK)))));
1458  
1459 <        if (!tryTerminate(false) && w != null) {
1459 >        if (!tryTerminate(false, false) && w != null) {
1460              w.cancelAll();                  // cancel remaining tasks
1461              if (w.array != null)            // suppress signal if never ran
1462 <                signalWork();               // wake up or create replacement
1462 >                helpSignal(null, 0);        // wake up or create replacement
1463 >            if (ex == null)                 // help clean refs on way out
1464 >                ForkJoinTask.helpExpungeStaleExceptions();
1465          }
1466  
1467          if (ex != null)                     // rethrow
1468 <            U.throwException(ex);
1468 >            ForkJoinTask.rethrow(ex);
1469      }
1470  
1471 <
1222 <    // Maintaining ctl counts
1471 >    // Submissions
1472  
1473      /**
1474 <     * Increments active count; mainly called upon return from blocking
1475 <     */
1476 <    final void incrementActiveCount() {
1477 <        long c;
1478 <        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1474 >     * Unless shutting down, adds the given task to a submission queue
1475 >     * at submitter's current queue index (modulo submission
1476 >     * range). Only the most common path is directly handled in this
1477 >     * method. All others are relayed to fullExternalPush.
1478 >     *
1479 >     * @param task the task. Caller must ensure non-null.
1480 >     */
1481 >    final void externalPush(ForkJoinTask<?> task) {
1482 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1483 >        if ((z = submitters.get()) != null && plock > 0 &&
1484 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1485 >            (q = ws[m & z.seed & SQMASK]) != null &&
1486 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1487 >            int b = q.base, s = q.top, n, an;
1488 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1489 >                U.putObject(a, (long)(((an - 1) & s) << ASHIFT) + ABASE, task);
1490 >                q.top = s + 1;                     // push on to deque
1491 >                q.qlock = 0;
1492 >                if (n <= 2)
1493 >                    signalWork(q, 0);
1494 >                return;
1495 >            }
1496 >            q.qlock = 0;
1497 >        }
1498 >        fullExternalPush(task);
1499      }
1500  
1501      /**
1502 <     * Activates or creates a worker
1503 <     */
1504 <    final void signalWork() {
1505 <        /*
1506 <         * The while condition is true if: (there is are too few total
1507 <         * workers OR there is at least one waiter) AND (there are too
1508 <         * few active workers OR the pool is terminating).  The value
1509 <         * of e distinguishes the remaining cases: zero (no waiters)
1510 <         * for create, negative if terminating (in which case do
1511 <         * nothing), else release a waiter. The secondary checks for
1512 <         * release (non-null array etc) can fail if the pool begins
1513 <         * terminating after the test, and don't impose any added cost
1514 <         * because JVMs must perform null and bounds checks anyway.
1515 <         */
1516 <        long c; int e, u;
1517 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1518 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1519 <            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1520 <            if (e == 0) {                    // add a new worker
1521 <                if (U.compareAndSwapLong
1522 <                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1523 <                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1524 <                    addWorker();
1525 <                    break;
1526 <                }
1502 >     * Full version of externalPush. This method is called, among
1503 >     * other times, upon the first submission of the first task to the
1504 >     * pool, so must perform secondary initialization (via
1505 >     * initWorkQueuesArray). It also detects first submission by an
1506 >     * external thread by looking up its ThreadLocal, and creates a
1507 >     * new shared queue if the one at index if empty or contended. The
1508 >     * lock body must be exception-free (so no try/finally) so we
1509 >     * optimistically allocate new queues outside the lock and throw
1510 >     * them away if (very rarely) not needed.
1511 >     */
1512 >    private void fullExternalPush(ForkJoinTask<?> task) {
1513 >        int r = 0;
1514 >        for (Submitter z = submitters.get();;) {
1515 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1516 >            if (z == null) {
1517 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1518 >                                        r += SEED_INCREMENT) && r != 0)
1519 >                    submitters.set(z = new Submitter(r));
1520 >            }
1521 >            else if (r == 0) {               // move to a different index
1522 >                r = z.seed;
1523 >                r ^= r << 13;                // same xorshift as WorkQueues
1524 >                r ^= r >>> 17;
1525 >                z.seed = r ^ (r << 5);
1526 >            }
1527 >            else if ((ps = plock) < 0)
1528 >                throw new RejectedExecutionException();
1529 >            else if (ps == 0 || (ws = workQueues) == null ||
1530 >                     (m = ws.length - 1) < 0)
1531 >                initWorkQueuesArray();
1532 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1533 >                if (q.trySharedPush(task))
1534 >                    return;
1535 >                else
1536 >                    r = 0; // move on contention
1537              }
1538 <            else if (e > 0 && ws != null &&
1539 <                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1540 <                     (w = ws[i]) != null &&
1541 <                     w.eventCount == (e | INT_SIGN)) {
1542 <                if (U.compareAndSwapLong
1543 <                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1544 <                                    ((long)(u + UAC_UNIT) << 32)))) {
1545 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1546 <                    if ((p = w.parker) != null)
1547 <                        U.unpark(p);         // release a waiting worker
1269 <                    break;
1270 <                }
1538 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1539 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1540 >                if (((ps = plock) & PL_LOCK) != 0 ||
1541 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1542 >                    ps = acquirePlock();
1543 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1544 >                    ws[k] = q;
1545 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1546 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1547 >                    releasePlock(nps);
1548              }
1549              else
1550 <                break;
1550 >                r = 0; // try elsewhere while lock held
1551          }
1552      }
1553  
1554 +    // Maintaining ctl counts
1555 +
1556      /**
1557 <     * Tries to decrement active count (sometimes implicitly) and
1279 <     * possibly release or create a compensating worker in preparation
1280 <     * for blocking. Fails on contention or termination.
1281 <     *
1282 <     * @return true if the caller can block, else should recheck and retry
1557 >     * Increments active count; mainly called upon return from blocking.
1558       */
1559 <    final boolean tryCompensate() {
1560 <        WorkQueue[] ws; WorkQueue w; Thread p;
1561 <        int pc = parallelism, e, u, ac, tc, i;
1562 <        long c = ctl;
1559 >    final void incrementActiveCount() {
1560 >        long c;
1561 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1562 >    }
1563  
1564 <        if ((e = (int)c) >= 0) {
1565 <            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1566 <                e != 0 && (ws = workQueues) != null &&
1567 <                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1568 <                (w = ws[i]) != null) {
1569 <                if (w.eventCount == (e | INT_SIGN) &&
1570 <                    U.compareAndSwapLong
1571 <                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1572 <                                    (c & (AC_MASK|TC_MASK))))) {
1573 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1574 <                    if ((p = w.parker) != null)
1575 <                        U.unpark(p);
1576 <                    return true;             // release an idle worker
1564 >    /**
1565 >     * Tries to create (at most one) or activate (possibly several)
1566 >     * workers if too few are active. On contention failure, continues
1567 >     * until at least one worker is signalled or the given queue is
1568 >     * empty or all workers are active.
1569 >     *
1570 >     * @param q if non-null, the queue holding tasks to be signalled
1571 >     * @param signals the target number of signals (at least one --
1572 >     * if argument is zero also sets signallee hint if parked).
1573 >     */
1574 >    final void signalWork(WorkQueue q, int signals) {
1575 >        long c; int e, u, i, s; WorkQueue[] ws; WorkQueue w; Thread p;
1576 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1577 >            if ((e = (int)c) > 0) {
1578 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1579 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1580 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1581 >                               ((long)(u + UAC_UNIT) << 32));
1582 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1583 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1584 >                        if ((p = w.parker) != null) {
1585 >                            if (q != null && signals == 0)
1586 >                                w.hint = q.poolIndex;
1587 >                            U.unpark(p);
1588 >                        }
1589 >                        if (--signals <= 0)
1590 >                            break;
1591 >                    }
1592 >                    if (q != null && (s = q.queueSize()) <= signals &&
1593 >                         (signals = s) <= 0)
1594 >                        break;
1595                  }
1596 +                else
1597 +                    break;
1598              }
1599 <            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1600 <                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1601 <                if (U.compareAndSwapLong(this, CTL, c, nc))
1307 <                    return true;             // no compensation needed
1308 <            }
1309 <            else if (tc + pc < MAX_ID) {
1310 <                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1599 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1600 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1601 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1602                  if (U.compareAndSwapLong(this, CTL, c, nc)) {
1603                      addWorker();
1604 <                    return true;             // create replacement
1604 >                    break;
1605                  }
1606              }
1607 +            else
1608 +                break;
1609          }
1317        return false;
1610      }
1611  
1612 <    // Submissions
1612 >    // Scanning for tasks
1613  
1614      /**
1615 <     * Unless shutting down, adds the given task to some submission
1324 <     * queue; using a randomly chosen queue index if the caller is a
1325 <     * ForkJoinWorkerThread, else one based on caller thread's hash
1326 <     * code. If no queue exists at the index, one is created.  If the
1327 <     * queue is busy, another is chosen by sweeping through the queues
1328 <     * array.
1615 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1616       */
1617 <    private void doSubmit(ForkJoinTask<?> task) {
1618 <        if (task == null)
1619 <            throw new NullPointerException();
1333 <        Thread t = Thread.currentThread();
1334 <        int r = ((t instanceof ForkJoinWorkerThread) ?
1335 <                 ((ForkJoinWorkerThread)t).workQueue.nextSeed() : hashThread(t));
1336 <        for (;;) {
1337 <            int rs = runState, m = rs & SMASK;
1338 <            int j = r &= (m & ~1);                      // even numbered queues
1339 <            WorkQueue[] ws = workQueues;
1340 <            if (rs < 0 || ws == null)
1341 <                throw new RejectedExecutionException(); // shutting down
1342 <            if (ws.length > m) {                        // consistency check
1343 <                for (WorkQueue q;;) {                   // circular sweep
1344 <                    if (((q = ws[j]) != null ||
1345 <                         (q = tryAddSharedQueue(j)) != null) &&
1346 <                        q.trySharedPush(task)) {
1347 <                        signalWork();
1348 <                        return;
1349 <                    }
1350 <                    if ((j = (j + 2) & m) == r) {
1351 <                        Thread.yield();                 // all queues busy
1352 <                        break;
1353 <                    }
1354 <                }
1355 <            }
1356 <        }
1357 <    }
1358 <
1359 <    /**
1360 <     * Tries to add and register a new queue at the given index.
1361 <     *
1362 <     * @param idx the workQueues array index to register the queue
1363 <     * @return the queue, or null if could not add because could
1364 <     * not acquire lock or idx is unusable
1365 <     */
1366 <    private WorkQueue tryAddSharedQueue(int idx) {
1367 <        WorkQueue q = null;
1368 <        ReentrantLock lock = this.lock;
1369 <        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1370 <            // create queue outside of lock but only if apparently free
1371 <            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1372 <            if (lock.tryLock()) {
1373 <                try {
1374 <                    WorkQueue[] ws = workQueues;
1375 <                    if (ws != null && idx < ws.length) {
1376 <                        if ((q = ws[idx]) == null) {
1377 <                            int rs;         // update runState seq
1378 <                            ws[idx] = q = nq;
1379 <                            runState = (((rs = runState) & SHUTDOWN) |
1380 <                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1381 <                        }
1382 <                    }
1383 <                } finally {
1384 <                    lock.unlock();
1385 <                }
1386 <            }
1387 <        }
1388 <        return q;
1617 >    final void runWorker(WorkQueue w) {
1618 >        if (w != null) // skip on initialization failure
1619 >            do { w.runTask(scan(w)); } while (w.qlock >= 0);
1620      }
1621  
1391    // Scanning for tasks
1392
1622      /**
1623       * Scans for and, if found, returns one task, else possibly
1624       * inactivates the worker. This method operates on single reads of
1625 <     * volatile state and is designed to be re-invoked continuously in
1626 <     * part because it returns upon detecting inconsistencies,
1625 >     * volatile state and is designed to be re-invoked continuously,
1626 >     * in part because it returns upon detecting inconsistencies,
1627       * contention, or state changes that indicate possible success on
1628       * re-invocation.
1629       *
1630 <     * The scan searches for tasks across queues, randomly selecting
1631 <     * the first #queues probes, favoring steals 2:1 over submissions
1632 <     * (by exploiting even/odd indexing), and then performing a
1633 <     * circular sweep of all queues.  The scan terminates upon either
1634 <     * finding a non-empty queue, or completing a full sweep. If the
1635 <     * worker is not inactivated, it takes and returns a task from
1636 <     * this queue.  On failure to find a task, we take one of the
1637 <     * following actions, after which the caller will retry calling
1638 <     * this method unless terminated.
1639 <     *
1640 <     * * If not a complete sweep, try to release a waiting worker.  If
1641 <     * the scan terminated because the worker is inactivated, then the
1413 <     * released worker will often be the calling worker, and it can
1414 <     * succeed obtaining a task on the next call. Or maybe it is
1415 <     * another worker, but with same net effect. Releasing in other
1416 <     * cases as well ensures that we have enough workers running.
1417 <     *
1418 <     * * If the caller has run a task since the the last empty scan,
1419 <     * return (to allow rescan) if other workers are not also yet
1420 <     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1421 <     * ensure eventual inactivation, and occasional calls to
1422 <     * Thread.yield to help avoid interference with more useful
1423 <     * activities on the system.
1630 >     * The scan searches for tasks across queues (starting at a random
1631 >     * index, and relying on registerWorker to irregularly scatter
1632 >     * them within array to avoid bias), checking each at least twice.
1633 >     * The scan terminates upon either finding a non-empty queue, or
1634 >     * completing the sweep. If the worker is not inactivated, it
1635 >     * takes and returns a task from this queue. Otherwise, if not
1636 >     * activated, it signals workers (that may include itself) and
1637 >     * returns so caller can retry. Also returns for true if the
1638 >     * worker array may have changed during an empty scan.  On failure
1639 >     * to find a task, we take one of the following actions, after
1640 >     * which the caller will retry calling this method unless
1641 >     * terminated.
1642       *
1643 <     * * If pool is terminating, terminate the worker
1643 >     * * If pool is terminating, terminate the worker.
1644       *
1645       * * If not already enqueued, try to inactivate and enqueue the
1646 <     * worker on wait queue.
1647 <     *
1648 <     * * If already enqueued and none of the above apply, either park
1649 <     * awaiting signal, or if this is the most recent waiter and pool
1650 <     * is quiescent, relay to idleAwaitWork to check for termination
1651 <     * and possibly shrink pool.
1646 >     * worker on wait queue. Or, if inactivating has caused the pool
1647 >     * to be quiescent, relay to idleAwaitWork to check for
1648 >     * termination and possibly shrink pool.
1649 >     *
1650 >     * * If already enqueued and none of the above apply, possibly
1651 >     * (with 1/2 probability) park awaiting signal, else lingering to
1652 >     * help scan and signal.
1653       *
1654       * @param w the worker (via its WorkQueue)
1655 <     * @return a task or null of none found
1655 >     * @return a task or null if none found
1656       */
1657      private final ForkJoinTask<?> scan(WorkQueue w) {
1658 <        boolean swept = false;                 // true after full empty scan
1659 <        WorkQueue[] ws;                        // volatile read order matters
1660 <        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1661 <        int rs = runState, m = rs & SMASK;
1662 <        if ((ws = workQueues) != null && ws.length > m) {
1663 <            ForkJoinTask<?> task = null;
1664 <            for (int k = 0, j = -2 - m; ; ++j) {
1665 <                WorkQueue q; int b;
1666 <                if (j < 0) {                    // random probes while j negative
1667 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1668 <                }                               // worker (not submit) for odd j
1669 <                else                            // cyclic scan when j >= 0
1670 <                    k += (m >>> 1) | 1;         // step by half to reduce bias
1671 <
1672 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1673 <                    if (ec >= 0)
1674 <                        task = q.pollAt(b);     // steal
1675 <                    break;
1658 >        WorkQueue[] ws; int m, hint;
1659 >        int ps = plock;                          // read plock before ws
1660 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1661 >            int ec = w.eventCount;               // ec is negative if inactive
1662 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1663 >            for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; ; --j) {
1664 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1665 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1666 >                    (a = q.array) != null) {     // probably nonempty
1667 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1668 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1669 >                        U.getObjectVolatile(a, i);
1670 >                    if (q.base == b && ec >= 0 && t != null &&
1671 >                        U.compareAndSwapObject(a, i, t, null)) {
1672 >                        if ((q.base = b + 1) - q.top < 0)
1673 >                            signalWork(q, 0);
1674 >                        return t;                // taken
1675 >                    }
1676 >                    else if (ec < 0 || j < m) {  // cannot take or cannot rescan
1677 >                        w.hint = q.poolIndex;    // use hint below
1678 >                        break;                   // let caller retry after signal
1679 >                    }
1680                  }
1681 <                else if (j > m) {
1682 <                    if (rs == runState)        // staleness check
1683 <                        swept = true;
1681 >                else if (j < 0) { // end of scan; in loop to simplify code
1682 >                    long c, sc; int e, ns;
1683 >                    if ((ns = w.nsteals) != 0) {
1684 >                        if (U.compareAndSwapLong(this, STEALCOUNT,
1685 >                                                 sc = stealCount, sc + ns))
1686 >                            w.nsteals = 0;       // collect steals
1687 >                    }
1688 >                    else if (plock != ps)        // ws may have changed
1689 >                        break;
1690 >                    else if ((e = (int)(c = ctl)) < 0)
1691 >                        w.qlock = -1;            // pool is terminating
1692 >                    else if (ec >= 0) {          // try to enqueue/inactivate
1693 >                        long nc = ((long)ec |
1694 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1695 >                        w.nextWait = e;          // link and mark inactive
1696 >                        w.hint = -1;             // use hint if set while parked
1697 >                        w.eventCount = ec | INT_SIGN;
1698 >                        if (ctl != c ||
1699 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1700 >                            w.eventCount = ec;  // unmark on CAS failure
1701 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1702 >                            idleAwaitWork(w, nc, c);
1703 >                    }
1704 >                    else if (w.eventCount < 0) { // block
1705 >                        Thread wt = Thread.currentThread();
1706 >                        Thread.interrupted();    // clear status
1707 >                        U.putObject(wt, PARKBLOCKER, this);
1708 >                        w.parker = wt;           // emulate LockSupport.park
1709 >                        if (w.eventCount < 0)    // recheck
1710 >                            U.park(false, 0L);
1711 >                        w.parker = null;
1712 >                        U.putObject(wt, PARKBLOCKER, null);
1713 >                    }
1714                      break;
1715                  }
1716              }
1717 <            w.seed = r;                        // save seed for next scan
1718 <            if (task != null)
1719 <                return task;
1720 <        }
1721 <
1722 <        // Decode ctl on empty scan
1470 <        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1471 <        if (!swept) {                          // try to release a waiter
1472 <            WorkQueue v; Thread p;
1473 <            if (e > 0 && a < 0 && ws != null &&
1474 <                (v = ws[((~e << 1) | 1) & m]) != null &&
1475 <                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1476 <                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1477 <                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1478 <                v.eventCount = (e + E_SEQ) & E_MASK;
1479 <                if ((p = v.parker) != null)
1480 <                    U.unpark(p);
1481 <            }
1482 <        }
1483 <        else if ((nr = w.rescans) > 0) {       // continue rescanning
1484 <            int ac = a + parallelism;
1485 <            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1486 <                w.eventCount == ec)
1487 <                Thread.yield();                // 1 bit randomness for yield call
1488 <        }
1489 <        else if (e < 0)                        // pool is terminating
1490 <            w.runState = -1;
1491 <        else if (ec >= 0) {                    // try to enqueue
1492 <            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1493 <            w.nextWait = e;
1494 <            w.eventCount = ec | INT_SIGN;      // mark as inactive
1495 <            if (!U.compareAndSwapLong(this, CTL, c, nc))
1496 <                w.eventCount = ec;             // back out on CAS failure
1497 <            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1498 <                if (a <= 0)                    // ... unless too many active
1499 <                    w.rescans = a + parallelism;
1500 <                w.nsteals = 0;
1501 <                w.totalSteals += ns;
1502 <            }
1503 <        }
1504 <        else{                                  // already queued
1505 <            if (parallelism == -a)
1506 <                idleAwaitWork(w);              // quiescent
1507 <            if (w.eventCount == ec) {
1508 <                Thread.interrupted();          // clear status
1509 <                ForkJoinWorkerThread wt = w.owner;
1510 <                U.putObject(wt, PARKBLOCKER, this);
1511 <                w.parker = wt;                 // emulate LockSupport.park
1512 <                if (w.eventCount == ec)        // recheck
1513 <                    U.park(false, 0L);         // block
1514 <                w.parker = null;
1515 <                U.putObject(wt, PARKBLOCKER, null);
1717 >            if ((hint = w.hint) >= 0) {          // help signal
1718 >                WorkQueue[] vs; WorkQueue v; int k;
1719 >                w.hint = -1;                     // suppress resignal
1720 >                if ((vs = workQueues) != null && hint < vs.length &&
1721 >                    (v = vs[hint]) != null && (k = v.base - v.top) < -1)
1722 >                    signalWork(v, 1 - k);
1723              }
1724          }
1725          return null;
1726      }
1727  
1728      /**
1729 <     * If inactivating worker w has caused pool to become quiescent,
1730 <     * check for pool termination, and, so long as this is not the
1731 <     * only worker, wait for event for up to SHRINK_RATE nanosecs On
1732 <     * timeout, if ctl has not changed, terminate the worker, which
1733 <     * will in turn wake up another worker to possibly repeat this
1734 <     * process.
1729 >     * If inactivating worker w has caused the pool to become
1730 >     * quiescent, checks for pool termination, and, so long as this is
1731 >     * not the only worker, waits for event for up to a given
1732 >     * duration.  On timeout, if ctl has not changed, terminates the
1733 >     * worker, which will in turn wake up another worker to possibly
1734 >     * repeat this process.
1735       *
1736       * @param w the calling worker
1737 +     * @param currentCtl the ctl value triggering possible quiescence
1738 +     * @param prevCtl the ctl value to restore if thread is terminated
1739       */
1740 <    private void idleAwaitWork(WorkQueue w) {
1741 <        long c; int nw, ec;
1742 <        if (!tryTerminate(false) &&
1743 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1744 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1745 <            (nw = w.nextWait) != 0) {
1746 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1747 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1539 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1540 <            ForkJoinWorkerThread wt = w.owner;
1541 <            while (ctl == c) {
1542 <                long startTime = System.nanoTime();
1740 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1741 >        if (w != null && w.eventCount < 0 &&
1742 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1743 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1744 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1745 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1746 >            Thread wt = Thread.currentThread();
1747 >            while (ctl == currentCtl) {
1748                  Thread.interrupted();  // timed variant of version in scan()
1749                  U.putObject(wt, PARKBLOCKER, this);
1750                  w.parker = wt;
1751 <                if (ctl == c)
1752 <                    U.park(false, SHRINK_RATE);
1751 >                if (ctl == currentCtl)
1752 >                    U.park(false, parkTime);
1753                  w.parker = null;
1754                  U.putObject(wt, PARKBLOCKER, null);
1755 <                if (ctl != c)
1755 >                if (ctl != currentCtl)
1756                      break;
1757 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1758 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1759 <                    w.runState = -1;          // shrink
1760 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1757 >                if (deadline - System.nanoTime() <= 0L &&
1758 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1759 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1760 >                    w.qlock = -1;   // shrink
1761 >                    w.hint = -1;    // suppress helping
1762                      break;
1763                  }
1764              }
# Line 1560 | Line 1766 | public class ForkJoinPool extends Abstra
1766      }
1767  
1768      /**
1769 +     * Scans through queues looking for work (optionally, while
1770 +     * joining a task); if any are present, signals. May return early
1771 +     * if more signalling is detectably unneeded.
1772 +     *
1773 +     * @param task if non-null, return early if done
1774 +     * @param origin an index to start scan
1775 +     */
1776 +    final int helpSignal(ForkJoinTask<?> task, int origin) {
1777 +        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1778 +        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1779 +            for (int i = 0; i <= m; ++i) {
1780 +                if (task != null && (s = task.status) < 0)
1781 +                    return s;
1782 +                if ((q = ws[(i + origin) & m]) != null &&
1783 +                    (n = q.queueSize()) > 0) {
1784 +                    signalWork(q, n);
1785 +                    if ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
1786 +                        break;
1787 +                }
1788 +            }
1789 +        }
1790 +        return 0;
1791 +    }
1792 +
1793 +    /**
1794       * Tries to locate and execute tasks for a stealer of the given
1795       * task, or in turn one of its stealers, Traces currentSteal ->
1796       * currentJoin links looking for a thread working on a descendant
# Line 1570 | Line 1801 | public class ForkJoinPool extends Abstra
1801       * leaves hints in workers to speed up subsequent calls. The
1802       * implementation is very branchy to cope with potential
1803       * inconsistencies or loops encountering chains that are stale,
1804 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1574 <     * of these cases are dealt with by just retrying by caller.
1804 >     * unknown, or so long that they are likely cyclic.
1805       *
1806       * @param joiner the joining worker
1807       * @param task the task to join
1808 <     * @return true if found or ran a task (and so is immediately retryable)
1808 >     * @return 0 if no progress can be made, negative if task
1809 >     * known complete, else positive
1810       */
1811 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1812 <        ForkJoinTask<?> subtask;    // current target
1813 <        boolean progress = false;
1814 <        int depth = 0;              // current chain depth
1815 <        int m = runState & SMASK;
1816 <        WorkQueue[] ws = workQueues;
1817 <
1818 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1819 <            outer:for (WorkQueue j = joiner;;) {
1820 <                // Try to find the stealer of subtask, by first using hint
1821 <                WorkQueue stealer = null;
1822 <                WorkQueue v = ws[j.stealHint & m];
1823 <                if (v != null && v.currentSteal == subtask)
1824 <                    stealer = v;
1825 <                else {
1826 <                    for (int i = 1; i <= m; i += 2) {
1827 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1828 <                            stealer = v;
1829 <                            j.stealHint = i; // save hint
1830 <                            break;
1811 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1812 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1813 >        if (joiner != null && task != null) {       // hoist null checks
1814 >            restart: for (;;) {
1815 >                ForkJoinTask<?> subtask = task;     // current target
1816 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1817 >                    WorkQueue[] ws; int m, s, h;
1818 >                    if ((s = task.status) < 0) {
1819 >                        stat = s;
1820 >                        break restart;
1821 >                    }
1822 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1823 >                        break restart;              // shutting down
1824 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1825 >                        v.currentSteal != subtask) {
1826 >                        for (int origin = h;;) {    // find stealer
1827 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1828 >                                (subtask.status < 0 || j.currentJoin != subtask))
1829 >                                continue restart;   // occasional staleness check
1830 >                            if ((v = ws[h]) != null &&
1831 >                                v.currentSteal == subtask) {
1832 >                                j.hint = h;        // save hint
1833 >                                break;
1834 >                            }
1835 >                            if (h == origin)
1836 >                                break restart;      // cannot find stealer
1837                          }
1838                      }
1839 <                    if (stealer == null)
1840 <                        break;
1841 <                }
1842 <
1843 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1844 <                    ForkJoinTask<?> t; int b;
1845 <                    if (task.status < 0)
1846 <                        break outer;
1847 <                    if ((b = q.base) - q.top < 0) {
1848 <                        progress = true;
1849 <                        if (subtask.status < 0)
1850 <                            break outer;               // stale
1851 <                        if ((t = q.pollAt(b)) != null) {
1852 <                            stealer.stealHint = joiner.poolIndex;
1853 <                            joiner.runSubtask(t);
1839 >                    for (;;) { // help stealer or descend to its stealer
1840 >                        ForkJoinTask[] a;  int b;
1841 >                        if (subtask.status < 0)     // surround probes with
1842 >                            continue restart;       //   consistency checks
1843 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1844 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1845 >                            ForkJoinTask<?> t =
1846 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1847 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1848 >                                v.currentSteal != subtask)
1849 >                                continue restart;   // stale
1850 >                            stat = 1;               // apparent progress
1851 >                            if (t != null && v.base == b &&
1852 >                                U.compareAndSwapObject(a, i, t, null)) {
1853 >                                v.base = b + 1;     // help stealer
1854 >                                joiner.runSubtask(t);
1855 >                            }
1856 >                            else if (v.base == b && ++steps == MAX_HELP)
1857 >                                break restart;      // v apparently stalled
1858 >                        }
1859 >                        else {                      // empty -- try to descend
1860 >                            ForkJoinTask<?> next = v.currentJoin;
1861 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1862 >                                v.currentSteal != subtask)
1863 >                                continue restart;   // stale
1864 >                            else if (next == null || ++steps == MAX_HELP)
1865 >                                break restart;      // dead-end or maybe cyclic
1866 >                            else {
1867 >                                subtask = next;
1868 >                                j = v;
1869 >                                break;
1870 >                            }
1871                          }
1872                      }
1873 <                    else { // empty - try to descend to find stealer's stealer
1874 <                        ForkJoinTask<?> next = stealer.currentJoin;
1875 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1876 <                            next == null || next == subtask)
1877 <                            break outer;  // max depth, stale, dead-end, cyclic
1878 <                        subtask = next;
1879 <                        j = stealer;
1873 >                }
1874 >            }
1875 >        }
1876 >        return stat;
1877 >    }
1878 >
1879 >    /**
1880 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1881 >     * and run tasks within the target's computation.
1882 >     *
1883 >     * @param task the task to join
1884 >     * @param mode if shared, exit upon completing any task
1885 >     * if all workers are active
1886 >     *
1887 >     */
1888 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1889 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1890 >        if (task != null && (ws = workQueues) != null &&
1891 >            (m = ws.length - 1) >= 0) {
1892 >            for (int j = 1, origin = j;;) {
1893 >                if ((s = task.status) < 0)
1894 >                    return s;
1895 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1896 >                    origin = j;
1897 >                    if (mode == SHARED_QUEUE &&
1898 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1899                          break;
1900 <                    }
1900 >                }
1901 >                else if ((j = (j + 2) & m) == origin)
1902 >                    break;
1903 >            }
1904 >        }
1905 >        return 0;
1906 >    }
1907 >
1908 >    /**
1909 >     * Tries to decrement active count (sometimes implicitly) and
1910 >     * possibly release or create a compensating worker in preparation
1911 >     * for blocking. Fails on contention or termination. Otherwise,
1912 >     * adds a new thread if no idle workers are available and pool
1913 >     * may become starved.
1914 >     */
1915 >    final boolean tryCompensate() {
1916 >        int pc = config & SMASK, e, i, tc; long c;
1917 >        WorkQueue[] ws; WorkQueue w; Thread p;
1918 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1919 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1920 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1921 >                long nc = ((long)(w.nextWait & E_MASK) |
1922 >                           (c & (AC_MASK|TC_MASK)));
1923 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1924 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1925 >                    if ((p = w.parker) != null)
1926 >                        U.unpark(p);
1927 >                    return true;   // replace with idle worker
1928 >                }
1929 >            }
1930 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1931 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1932 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1933 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1934 >                    return true;   // no compensation
1935 >            }
1936 >            else if (tc + pc < MAX_CAP) {
1937 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1938 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1939 >                    addWorker();
1940 >                    return true;
1941                  }
1942              }
1943          }
1944 <        return progress;
1944 >        return false;
1945      }
1946  
1947      /**
1948 <     * If task is at base of some steal queue, steals and executes it.
1948 >     * Helps and/or blocks until the given task is done.
1949       *
1950       * @param joiner the joining worker
1951       * @param task the task
1952 +     * @return task status on exit
1953       */
1954 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1955 <        WorkQueue[] ws;
1956 <        int m = runState & SMASK;
1957 <        if ((ws = workQueues) != null && ws.length > m) {
1958 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
1959 <                WorkQueue q = ws[j];
1960 <                if (q != null && q.pollFor(task)) {
1961 <                    joiner.runSubtask(task);
1962 <                    break;
1954 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1955 >        int s = 0;
1956 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1957 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1958 >            joiner.currentJoin = task;
1959 >            do {} while ((s = task.status) >= 0 &&
1960 >                         joiner.queueSize() > 0 &&
1961 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1962 >            if (s >= 0 && (s = task.status) >= 0 &&
1963 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1964 >                (task instanceof CountedCompleter))
1965 >                s = helpComplete(task, LIFO_QUEUE);
1966 >            int k = 0; // to perform pre-block yield for politeness
1967 >            while (s >= 0 && (s = task.status) >= 0) {
1968 >                if ((joiner.queueSize() > 0 ||           // try helping
1969 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1970 >                    (s = task.status) >= 0) {
1971 >                    if (k < 3) {
1972 >                        if (++k < 3)
1973 >                            s = helpSignal(task, joiner.poolIndex);
1974 >                        else
1975 >                            Thread.yield();
1976 >                    }
1977 >                    else if (!tryCompensate())
1978 >                        k = 0;
1979 >                    else {
1980 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
1981 >                            synchronized (task) {
1982 >                                if (task.status >= 0) {
1983 >                                    try {                // see ForkJoinTask
1984 >                                        task.wait();     //  for explanation
1985 >                                    } catch (InterruptedException ie) {
1986 >                                    }
1987 >                                }
1988 >                                else
1989 >                                    task.notifyAll();
1990 >                            }
1991 >                        }
1992 >                        long c;                          // re-activate
1993 >                        do {} while (!U.compareAndSwapLong
1994 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1995 >                    }
1996                  }
1997              }
1998 +            joiner.currentJoin = prevJoin;
1999 +        }
2000 +        return s;
2001 +    }
2002 +
2003 +    /**
2004 +     * Stripped-down variant of awaitJoin used by timed joins. Tries
2005 +     * to help join only while there is continuous progress. (Caller
2006 +     * will then enter a timed wait.)
2007 +     *
2008 +     * @param joiner the joining worker
2009 +     * @param task the task
2010 +     */
2011 +    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2012 +        int s;
2013 +        if (joiner != null && task != null && (s = task.status) >= 0) {
2014 +            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2015 +            joiner.currentJoin = task;
2016 +            do {} while ((s = task.status) >= 0 &&
2017 +                         joiner.queueSize() > 0 &&
2018 +                         joiner.tryRemoveAndExec(task));
2019 +            if (s >= 0 && (s = task.status) >= 0 &&
2020 +                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
2021 +                (task instanceof CountedCompleter))
2022 +                s = helpComplete(task, LIFO_QUEUE);
2023 +            if (s >= 0 && joiner.queueSize() == 0) {
2024 +                do {} while (task.status >= 0 &&
2025 +                             tryHelpStealer(joiner, task) > 0);
2026 +            }
2027 +            joiner.currentJoin = prevJoin;
2028          }
2029      }
2030  
2031      /**
2032 <     * Returns a non-empty steal queue, if one is found during a random,
2033 <     * then cyclic scan, else null.  This method must be retried by
2034 <     * caller if, by the time it tries to use the queue, it is empty.
2032 >     * Returns a (probably) non-empty steal queue, if one is found
2033 >     * during a random, then cyclic scan, else null.  This method must
2034 >     * be retried by caller if, by the time it tries to use the queue,
2035 >     * it is empty.
2036 >     * @param r a (random) seed for scanning
2037       */
2038 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
1660 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
2038 >    private WorkQueue findNonEmptyStealQueue(int r) {
2039          for (WorkQueue[] ws;;) {
2040 <            int m = runState & SMASK;
2041 <            if ((ws = workQueues) == null)
2040 >            int ps = plock, m, n;
2041 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2042                  return null;
2043 <            if (ws.length > m) {
2044 <                WorkQueue q;
2045 <                for (int n = m << 2, k = r, j = -n;;) {
2046 <                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
2047 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
2048 <                        w.seed = r;
2049 <                        return q;
2050 <                    }
2051 <                    else if (j > n)
2043 >            for (int j = (m + 1) << 2; ;) {
2044 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2045 >                if (q != null && (n = q.queueSize()) > 0) {
2046 >                    if (n > 1)
2047 >                        signalWork(q, 0);
2048 >                    return q;
2049 >                }
2050 >                else if (--j < 0) {
2051 >                    if (plock == ps)
2052                          return null;
2053 <                    else
1676 <                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1677 <
2053 >                    break;
2054                  }
2055              }
2056          }
# Line 1688 | Line 2064 | public class ForkJoinPool extends Abstra
2064       */
2065      final void helpQuiescePool(WorkQueue w) {
2066          for (boolean active = true;;) {
2067 <            w.runLocalTasks();      // exhaust local queue
2068 <            WorkQueue q = findNonEmptyStealQueue(w);
2067 >            ForkJoinTask<?> localTask; // exhaust local queue
2068 >            while ((localTask = w.nextLocalTask()) != null)
2069 >                localTask.doExec();
2070 >            // Similar to loop in scan(), but ignoring submissions
2071 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2072              if (q != null) {
2073 <                ForkJoinTask<?> t;
2073 >                ForkJoinTask<?> t; int b;
2074                  if (!active) {      // re-establish active count
2075                      long c;
2076                      active = true;
2077                      do {} while (!U.compareAndSwapLong
2078                                   (this, CTL, c = ctl, c + AC_UNIT));
2079                  }
2080 <                if ((t = q.poll()) != null)
2080 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2081                      w.runSubtask(t);
2082              }
2083              else {
# Line 1710 | Line 2089 | public class ForkJoinPool extends Abstra
2089                  }
2090                  else
2091                      c = ctl;        // re-increment on exit
2092 <                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
2092 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2093                      do {} while (!U.compareAndSwapLong
2094                                   (this, CTL, c = ctl, c + AC_UNIT));
2095                      break;
# Line 1720 | Line 2099 | public class ForkJoinPool extends Abstra
2099      }
2100  
2101      /**
2102 <     * Gets and removes a local or stolen task for the given worker
2102 >     * Gets and removes a local or stolen task for the given worker.
2103       *
2104       * @return a task, if available
2105       */
2106      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2107          for (ForkJoinTask<?> t;;) {
2108 <            WorkQueue q;
2108 >            WorkQueue q; int b;
2109              if ((t = w.nextLocalTask()) != null)
2110                  return t;
2111 <            if ((q = findNonEmptyStealQueue(w)) == null)
2111 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2112                  return null;
2113 <            if ((t = q.poll()) != null)
2113 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2114                  return t;
2115          }
2116      }
2117  
2118      /**
2119 <     * Returns the approximate (non-atomic) number of idle threads per
2120 <     * active thread to offset steal queue size for method
2121 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2122 <     */
2123 <    final int idlePerActive() {
2124 <        // Approximate at powers of two for small values, saturate past 4
2125 <        int p = parallelism;
2126 <        int a = p + (int)(ctl >> AC_SHIFT);
2127 <        return (a > (p >>>= 1) ? 0 :
2128 <                a > (p >>>= 1) ? 1 :
2129 <                a > (p >>>= 1) ? 2 :
2130 <                a > (p >>>= 1) ? 4 :
2131 <                8);
2132 <    }
2133 <
2134 <    // Termination
2135 <
2136 <    /**
2137 <     * Sets SHUTDOWN bit of runState under lock
2138 <     */
2139 <    private void enableShutdown() {
2140 <        ReentrantLock lock = this.lock;
2141 <        if (runState >= 0) {
2142 <            lock.lock();                       // don't need try/finally
2143 <            runState |= SHUTDOWN;
2144 <            lock.unlock();
2119 >     * Returns a cheap heuristic guide for task partitioning when
2120 >     * programmers, frameworks, tools, or languages have little or no
2121 >     * idea about task granularity.  In essence by offering this
2122 >     * method, we ask users only about tradeoffs in overhead vs
2123 >     * expected throughput and its variance, rather than how finely to
2124 >     * partition tasks.
2125 >     *
2126 >     * In a steady state strict (tree-structured) computation, each
2127 >     * thread makes available for stealing enough tasks for other
2128 >     * threads to remain active. Inductively, if all threads play by
2129 >     * the same rules, each thread should make available only a
2130 >     * constant number of tasks.
2131 >     *
2132 >     * The minimum useful constant is just 1. But using a value of 1
2133 >     * would require immediate replenishment upon each steal to
2134 >     * maintain enough tasks, which is infeasible.  Further,
2135 >     * partitionings/granularities of offered tasks should minimize
2136 >     * steal rates, which in general means that threads nearer the top
2137 >     * of computation tree should generate more than those nearer the
2138 >     * bottom. In perfect steady state, each thread is at
2139 >     * approximately the same level of computation tree. However,
2140 >     * producing extra tasks amortizes the uncertainty of progress and
2141 >     * diffusion assumptions.
2142 >     *
2143 >     * So, users will want to use values larger, but not much larger
2144 >     * than 1 to both smooth over transient shortages and hedge
2145 >     * against uneven progress; as traded off against the cost of
2146 >     * extra task overhead. We leave the user to pick a threshold
2147 >     * value to compare with the results of this call to guide
2148 >     * decisions, but recommend values such as 3.
2149 >     *
2150 >     * When all threads are active, it is on average OK to estimate
2151 >     * surplus strictly locally. In steady-state, if one thread is
2152 >     * maintaining say 2 surplus tasks, then so are others. So we can
2153 >     * just use estimated queue length.  However, this strategy alone
2154 >     * leads to serious mis-estimates in some non-steady-state
2155 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2156 >     * many of these by further considering the number of "idle"
2157 >     * threads, that are known to have zero queued tasks, so
2158 >     * compensate by a factor of (#idle/#active) threads.
2159 >     *
2160 >     * Note: The approximation of #busy workers as #active workers is
2161 >     * not very good under current signalling scheme, and should be
2162 >     * improved.
2163 >     */
2164 >    static int getSurplusQueuedTaskCount() {
2165 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2166 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2167 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2168 >            int n = (q = wt.workQueue).top - q.base;
2169 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2170 >            return n - (a > (p >>>= 1) ? 0 :
2171 >                        a > (p >>>= 1) ? 1 :
2172 >                        a > (p >>>= 1) ? 2 :
2173 >                        a > (p >>>= 1) ? 4 :
2174 >                        8);
2175          }
2176 +        return 0;
2177      }
2178  
2179 +    //  Termination
2180 +
2181      /**
2182 <     * Possibly initiates and/or completes termination.  Upon
2183 <     * termination, cancels all queued tasks and then
2182 >     * Possibly initiates and/or completes termination.  The caller
2183 >     * triggering termination runs three passes through workQueues:
2184 >     * (0) Setting termination status, followed by wakeups of queued
2185 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2186 >     * threads (likely in external tasks, but possibly also blocked in
2187 >     * joins).  Each pass repeats previous steps because of potential
2188 >     * lagging thread creation.
2189       *
2190       * @param now if true, unconditionally terminate, else only
2191       * if no work and no active workers
2192 +     * @param enable if true, enable shutdown when next possible
2193       * @return true if now terminating or terminated
2194       */
2195 <    private boolean tryTerminate(boolean now) {
2195 >    private boolean tryTerminate(boolean now, boolean enable) {
2196 >        if (this == commonPool)                     // cannot shut down
2197 >            return false;
2198          for (long c;;) {
2199              if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2200 <                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2201 <                    ReentrantLock lock = this.lock; // signal when no workers
2202 <                    lock.lock();                    // don't need try/finally
2203 <                    termination.signalAll();        // signal when 0 workers
1784 <                    lock.unlock();
2200 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2201 >                    synchronized (this) {
2202 >                        notifyAll();                // signal when 0 workers
2203 >                    }
2204                  }
2205                  return true;
2206              }
2207 <            if (!now) {
2208 <                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
2207 >            if (plock >= 0) {                       // not yet enabled
2208 >                int ps;
2209 >                if (!enable)
2210 >                    return false;
2211 >                if (((ps = plock) & PL_LOCK) != 0 ||
2212 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2213 >                    ps = acquirePlock();
2214 >                int nps = SHUTDOWN;
2215 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2216 >                    releasePlock(nps);
2217 >            }
2218 >            if (!now) {                             // check if idle & no tasks
2219 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2220                      hasQueuedSubmissions())
2221                      return false;
2222                  // Check for unqueued inactive workers. One pass suffices.
2223                  WorkQueue[] ws = workQueues; WorkQueue w;
2224                  if (ws != null) {
2225 <                    int n = ws.length;
1796 <                    for (int i = 1; i < n; i += 2) {
2225 >                    for (int i = 1; i < ws.length; i += 2) {
2226                          if ((w = ws[i]) != null && w.eventCount >= 0)
2227                              return false;
2228                      }
2229                  }
2230              }
2231 <            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
2232 <                startTerminating();
2231 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2232 >                for (int pass = 0; pass < 3; ++pass) {
2233 >                    WorkQueue[] ws = workQueues;
2234 >                    if (ws != null) {
2235 >                        WorkQueue w;
2236 >                        int n = ws.length;
2237 >                        for (int i = 0; i < n; ++i) {
2238 >                            if ((w = ws[i]) != null) {
2239 >                                w.qlock = -1;
2240 >                                if (pass > 0) {
2241 >                                    w.cancelAll();
2242 >                                    if (pass > 1)
2243 >                                        w.interruptOwner();
2244 >                                }
2245 >                            }
2246 >                        }
2247 >                        // Wake up workers parked on event queue
2248 >                        int i, e; long cc; Thread p;
2249 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2250 >                               (i = e & SMASK) < n &&
2251 >                               (w = ws[i]) != null) {
2252 >                            long nc = ((long)(w.nextWait & E_MASK) |
2253 >                                       ((cc + AC_UNIT) & AC_MASK) |
2254 >                                       (cc & (TC_MASK|STOP_BIT)));
2255 >                            if (w.eventCount == (e | INT_SIGN) &&
2256 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2257 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2258 >                                w.qlock = -1;
2259 >                                if ((p = w.parker) != null)
2260 >                                    U.unpark(p);
2261 >                            }
2262 >                        }
2263 >                    }
2264 >                }
2265 >            }
2266          }
2267      }
2268  
2269 +    // external operations on common pool
2270 +
2271      /**
2272 <     * Initiates termination: Runs three passes through workQueues:
2273 <     * (0) Setting termination status, followed by wakeups of queued
1810 <     * workers; (1) cancelling all tasks; (2) interrupting lagging
1811 <     * threads (likely in external tasks, but possibly also blocked in
1812 <     * joins).  Each pass repeats previous steps because of potential
1813 <     * lagging thread creation.
2272 >     * Returns common pool queue for a thread that has submitted at
2273 >     * least one task.
2274       */
2275 <    private void startTerminating() {
2276 <        for (int pass = 0; pass < 3; ++pass) {
2277 <            WorkQueue[] ws = workQueues;
2278 <            if (ws != null) {
2279 <                WorkQueue w; Thread wt;
2280 <                int n = ws.length;
2281 <                for (int j = 0; j < n; ++j) {
2282 <                    if ((w = ws[j]) != null) {
2283 <                        w.runState = -1;
2284 <                        if (pass > 0) {
2285 <                            w.cancelAll();
2286 <                            if (pass > 1 && (wt = w.owner) != null &&
2287 <                                !wt.isInterrupted()) {
2288 <                                try {
2289 <                                    wt.interrupt();
2290 <                                } catch (SecurityException ignore) {
2275 >    static WorkQueue commonSubmitterQueue() {
2276 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2277 >        return ((z = submitters.get()) != null &&
2278 >                (p = commonPool) != null &&
2279 >                (ws = p.workQueues) != null &&
2280 >                (m = ws.length - 1) >= 0) ?
2281 >            ws[m & z.seed & SQMASK] : null;
2282 >    }
2283 >
2284 >    /**
2285 >     * Tries to pop the given task from submitter's queue in common pool.
2286 >     */
2287 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2288 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2289 >        ForkJoinTask<?>[] a;  int m, s; long j;
2290 >        if ((z = submitters.get()) != null &&
2291 >            (p = commonPool) != null &&
2292 >            (ws = p.workQueues) != null &&
2293 >            (m = ws.length - 1) >= 0 &&
2294 >            (q = ws[m & z.seed & SQMASK]) != null &&
2295 >            (s = q.top) != q.base &&
2296 >            (a = q.array) != null &&
2297 >            U.getObjectVolatile
2298 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2299 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2300 >            if (q.array == a && q.top == s && // recheck
2301 >                U.compareAndSwapObject(a, j, t, null)) {
2302 >                q.top = s - 1;
2303 >                q.qlock = 0;
2304 >                return true;
2305 >            }
2306 >            q.qlock = 0;
2307 >        }
2308 >        return false;
2309 >    }
2310 >
2311 >    /**
2312 >     * Tries to pop and run local tasks within the same computation
2313 >     * as the given root. On failure, tries to help complete from
2314 >     * other queues via helpComplete.
2315 >     */
2316 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2317 >        ForkJoinTask<?>[] a; int m;
2318 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2319 >            root != null && root.status >= 0) {
2320 >            for (;;) {
2321 >                int s, u; Object o; CountedCompleter<?> task = null;
2322 >                if ((s = q.top) - q.base > 0) {
2323 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2324 >                    if ((o = U.getObject(a, j)) != null &&
2325 >                        (o instanceof CountedCompleter)) {
2326 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2327 >                        do {
2328 >                            if (r == root) {
2329 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2330 >                                    if (q.array == a && q.top == s &&
2331 >                                        U.compareAndSwapObject(a, j, t, null)) {
2332 >                                        q.top = s - 1;
2333 >                                        task = t;
2334 >                                    }
2335 >                                    q.qlock = 0;
2336                                  }
2337 +                                break;
2338                              }
2339 <                        }
2339 >                        } while ((r = r.completer) != null);
2340                      }
2341                  }
2342 <                // Wake up workers parked on event queue
2343 <                int i, e; long c; Thread p;
2344 <                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
2345 <                       (w = ws[i]) != null &&
2346 <                       w.eventCount == (e | INT_SIGN)) {
2347 <                    long nc = ((long)(w.nextWait & E_MASK) |
2348 <                               ((c + AC_UNIT) & AC_MASK) |
2349 <                               (c & (TC_MASK|STOP_BIT)));
2350 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2351 <                        w.eventCount = (e + E_SEQ) & E_MASK;
2352 <                        if ((p = w.parker) != null)
2353 <                            U.unpark(p);
2354 <                    }
2342 >                if (task != null)
2343 >                    task.doExec();
2344 >                if (root.status < 0 ||
2345 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2346 >                    break;
2347 >                if (task == null) {
2348 >                    if (helpSignal(root, q.poolIndex) >= 0)
2349 >                        helpComplete(root, SHARED_QUEUE);
2350 >                    break;
2351 >                }
2352 >            }
2353 >        }
2354 >    }
2355 >
2356 >    /**
2357 >     * Tries to help execute or signal availability of the given task
2358 >     * from submitter's queue in common pool.
2359 >     */
2360 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2361 >        // Some hard-to-avoid overlap with tryExternalUnpush
2362 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2363 >        ForkJoinTask<?>[] a;  int m, s, n; long j;
2364 >        if (t != null &&
2365 >            (z = submitters.get()) != null &&
2366 >            (p = commonPool) != null &&
2367 >            (ws = p.workQueues) != null &&
2368 >            (m = ws.length - 1) >= 0 &&
2369 >            (q = ws[m & z.seed & SQMASK]) != null &&
2370 >            (a = q.array) != null &&
2371 >            t.status >= 0) {
2372 >            if ((s = q.top) != q.base &&
2373 >                U.getObjectVolatile
2374 >                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2375 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2376 >                if (q.array == a && q.top == s &&
2377 >                    U.compareAndSwapObject(a, j, t, null)) {
2378 >                    q.top = s - 1;
2379 >                    q.qlock = 0;
2380 >                    t.doExec();
2381                  }
2382 +                else
2383 +                    q.qlock = 0;
2384 +            }
2385 +            if (t.status >= 0) {
2386 +                if (t instanceof CountedCompleter)
2387 +                    p.externalHelpComplete(q, t);
2388 +                else
2389 +                    p.helpSignal(t, q.poolIndex);
2390              }
2391          }
2392      }
2393  
2394 +    /**
2395 +     * Restricted version of helpQuiescePool for external callers
2396 +     */
2397 +    static void externalHelpQuiescePool() {
2398 +        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2399 +        if ((p = commonPool) != null &&
2400 +            (q = p.findNonEmptyStealQueue(1)) != null &&
2401 +            (b = q.base) - q.top < 0 &&
2402 +            (t = q.pollAt(b)) != null)
2403 +            t.doExec();
2404 +    }
2405 +
2406      // Exported methods
2407  
2408      // Constructors
# Line 1920 | Line 2472 | public class ForkJoinPool extends Abstra
2472          checkPermission();
2473          if (factory == null)
2474              throw new NullPointerException();
2475 <        if (parallelism <= 0 || parallelism > MAX_ID)
2475 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2476              throw new IllegalArgumentException();
1925        this.parallelism = parallelism;
2477          this.factory = factory;
2478          this.ueh = handler;
2479 <        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1929 <        this.nextPoolIndex = 1;
2479 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2480          long np = (long)(-parallelism); // offset ctl counts
2481          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2482 <        // initialize workQueues array with room for 2*parallelism if possible
1933 <        int n = parallelism << 1;
1934 <        if (n >= MAX_ID)
1935 <            n = MAX_ID;
1936 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1937 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1938 <        }
1939 <        this.workQueues = new WorkQueue[(n + 1) << 1];
1940 <        ReentrantLock lck = this.lock = new ReentrantLock();
1941 <        this.termination = lck.newCondition();
1942 <        this.stealCount = new AtomicLong();
1943 <        this.nextWorkerNumber = new AtomicInteger();
2482 >        int pn = nextPoolId();
2483          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2484 <        sb.append(poolNumberGenerator.incrementAndGet());
2484 >        sb.append(Integer.toString(pn));
2485          sb.append("-worker-");
2486          this.workerNamePrefix = sb.toString();
2487 <        // Create initial submission queue
2488 <        WorkQueue sq = tryAddSharedQueue(0);
2489 <        if (sq != null)
2490 <            sq.growArray(false);
2487 >    }
2488 >
2489 >    /**
2490 >     * Constructor for common pool, suitable only for static initialization.
2491 >     * Basically the same as above, but uses smallest possible initial footprint.
2492 >     */
2493 >    ForkJoinPool(int parallelism, long ctl,
2494 >                 ForkJoinWorkerThreadFactory factory,
2495 >                 Thread.UncaughtExceptionHandler handler) {
2496 >        this.config = parallelism;
2497 >        this.ctl = ctl;
2498 >        this.factory = factory;
2499 >        this.ueh = handler;
2500 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2501 >    }
2502 >
2503 >    /**
2504 >     * Returns the common pool instance.
2505 >     *
2506 >     * @return the common pool instance
2507 >     */
2508 >    public static ForkJoinPool commonPool() {
2509 >        // assert commonPool != null : "static init error";
2510 >        return commonPool;
2511      }
2512  
2513      // Execution methods
# Line 1970 | Line 2529 | public class ForkJoinPool extends Abstra
2529       *         scheduled for execution
2530       */
2531      public <T> T invoke(ForkJoinTask<T> task) {
2532 <        doSubmit(task);
2532 >        if (task == null)
2533 >            throw new NullPointerException();
2534 >        externalPush(task);
2535          return task.join();
2536      }
2537  
# Line 1983 | Line 2544 | public class ForkJoinPool extends Abstra
2544       *         scheduled for execution
2545       */
2546      public void execute(ForkJoinTask<?> task) {
2547 <        doSubmit(task);
2547 >        if (task == null)
2548 >            throw new NullPointerException();
2549 >        externalPush(task);
2550      }
2551  
2552      // AbstractExecutorService methods
# Line 2000 | Line 2563 | public class ForkJoinPool extends Abstra
2563          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2564              job = (ForkJoinTask<?>) task;
2565          else
2566 <            job = ForkJoinTask.adapt(task, null);
2567 <        doSubmit(job);
2566 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2567 >        externalPush(job);
2568      }
2569  
2570      /**
# Line 2014 | Line 2577 | public class ForkJoinPool extends Abstra
2577       *         scheduled for execution
2578       */
2579      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2580 <        doSubmit(task);
2580 >        if (task == null)
2581 >            throw new NullPointerException();
2582 >        externalPush(task);
2583          return task;
2584      }
2585  
# Line 2024 | Line 2589 | public class ForkJoinPool extends Abstra
2589       *         scheduled for execution
2590       */
2591      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2592 <        if (task == null)
2593 <            throw new NullPointerException();
2029 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2030 <        doSubmit(job);
2592 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2593 >        externalPush(job);
2594          return job;
2595      }
2596  
# Line 2037 | Line 2600 | public class ForkJoinPool extends Abstra
2600       *         scheduled for execution
2601       */
2602      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2603 <        if (task == null)
2604 <            throw new NullPointerException();
2042 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2043 <        doSubmit(job);
2603 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2604 >        externalPush(job);
2605          return job;
2606      }
2607  
# Line 2056 | Line 2617 | public class ForkJoinPool extends Abstra
2617          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2618              job = (ForkJoinTask<?>) task;
2619          else
2620 <            job = ForkJoinTask.adapt(task, null);
2621 <        doSubmit(job);
2620 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2621 >        externalPush(job);
2622          return job;
2623      }
2624  
# Line 2066 | Line 2627 | public class ForkJoinPool extends Abstra
2627       * @throws RejectedExecutionException {@inheritDoc}
2628       */
2629      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2630 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2631 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2632 <        for (Callable<T> task : tasks)
2633 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2634 <        invoke(new InvokeAll<T>(forkJoinTasks));
2635 <
2630 >        // In previous versions of this class, this method constructed
2631 >        // a task to run ForkJoinTask.invokeAll, but now external
2632 >        // invocation of multiple tasks is at least as efficient.
2633 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2634 >        // Workaround needed because method wasn't declared with
2635 >        // wildcards in return type but should have been.
2636          @SuppressWarnings({"unchecked", "rawtypes"})
2637 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2077 <        return futures;
2078 <    }
2637 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2638  
2639 <    static final class InvokeAll<T> extends RecursiveAction {
2640 <        final ArrayList<ForkJoinTask<T>> tasks;
2641 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2642 <        public void compute() {
2643 <            try { invokeAll(tasks); }
2644 <            catch (Exception ignore) {}
2639 >        boolean done = false;
2640 >        try {
2641 >            for (Callable<T> t : tasks) {
2642 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2643 >                externalPush(f);
2644 >                fs.add(f);
2645 >            }
2646 >            for (ForkJoinTask<T> f : fs)
2647 >                f.quietlyJoin();
2648 >            done = true;
2649 >            return futures;
2650 >        } finally {
2651 >            if (!done)
2652 >                for (ForkJoinTask<T> f : fs)
2653 >                    f.cancel(false);
2654          }
2087        private static final long serialVersionUID = -7914297376763021607L;
2655      }
2656  
2657      /**
# Line 2112 | Line 2679 | public class ForkJoinPool extends Abstra
2679       * @return the targeted parallelism level of this pool
2680       */
2681      public int getParallelism() {
2682 <        return parallelism;
2682 >        return config & SMASK;
2683 >    }
2684 >
2685 >    /**
2686 >     * Returns the targeted parallelism level of the common pool.
2687 >     *
2688 >     * @return the targeted parallelism level of the common pool
2689 >     */
2690 >    public static int getCommonPoolParallelism() {
2691 >        return commonPoolParallelism;
2692      }
2693  
2694      /**
# Line 2124 | Line 2700 | public class ForkJoinPool extends Abstra
2700       * @return the number of worker threads
2701       */
2702      public int getPoolSize() {
2703 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2703 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2704      }
2705  
2706      /**
# Line 2134 | Line 2710 | public class ForkJoinPool extends Abstra
2710       * @return {@code true} if this pool uses async mode
2711       */
2712      public boolean getAsyncMode() {
2713 <        return localMode != 0;
2713 >        return (config >>> 16) == FIFO_QUEUE;
2714      }
2715  
2716      /**
# Line 2149 | Line 2725 | public class ForkJoinPool extends Abstra
2725          int rc = 0;
2726          WorkQueue[] ws; WorkQueue w;
2727          if ((ws = workQueues) != null) {
2728 <            int n = ws.length;
2729 <            for (int i = 1; i < n; i += 2) {
2154 <                Thread.State s; ForkJoinWorkerThread wt;
2155 <                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2156 <                    w.eventCount >= 0 &&
2157 <                    (s = wt.getState()) != Thread.State.BLOCKED &&
2158 <                    s != Thread.State.WAITING &&
2159 <                    s != Thread.State.TIMED_WAITING)
2728 >            for (int i = 1; i < ws.length; i += 2) {
2729 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2730                      ++rc;
2731              }
2732          }
# Line 2171 | Line 2741 | public class ForkJoinPool extends Abstra
2741       * @return the number of active threads
2742       */
2743      public int getActiveThreadCount() {
2744 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2744 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2745          return (r <= 0) ? 0 : r; // suppress momentarily negative values
2746      }
2747  
# Line 2187 | Line 2757 | public class ForkJoinPool extends Abstra
2757       * @return {@code true} if all threads are currently idle
2758       */
2759      public boolean isQuiescent() {
2760 <        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2760 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2761      }
2762  
2763      /**
# Line 2202 | Line 2772 | public class ForkJoinPool extends Abstra
2772       * @return the number of steals
2773       */
2774      public long getStealCount() {
2775 <        long count = stealCount.get();
2775 >        long count = stealCount;
2776          WorkQueue[] ws; WorkQueue w;
2777          if ((ws = workQueues) != null) {
2778 <            int n = ws.length;
2209 <            for (int i = 1; i < n; i += 2) {
2778 >            for (int i = 1; i < ws.length; i += 2) {
2779                  if ((w = ws[i]) != null)
2780 <                    count += w.totalSteals;
2780 >                    count += w.nsteals;
2781              }
2782          }
2783          return count;
# Line 2228 | Line 2797 | public class ForkJoinPool extends Abstra
2797          long count = 0;
2798          WorkQueue[] ws; WorkQueue w;
2799          if ((ws = workQueues) != null) {
2800 <            int n = ws.length;
2232 <            for (int i = 1; i < n; i += 2) {
2800 >            for (int i = 1; i < ws.length; i += 2) {
2801                  if ((w = ws[i]) != null)
2802                      count += w.queueSize();
2803              }
# Line 2248 | Line 2816 | public class ForkJoinPool extends Abstra
2816          int count = 0;
2817          WorkQueue[] ws; WorkQueue w;
2818          if ((ws = workQueues) != null) {
2819 <            int n = ws.length;
2252 <            for (int i = 0; i < n; i += 2) {
2819 >            for (int i = 0; i < ws.length; i += 2) {
2820                  if ((w = ws[i]) != null)
2821                      count += w.queueSize();
2822              }
# Line 2266 | Line 2833 | public class ForkJoinPool extends Abstra
2833      public boolean hasQueuedSubmissions() {
2834          WorkQueue[] ws; WorkQueue w;
2835          if ((ws = workQueues) != null) {
2836 <            int n = ws.length;
2270 <            for (int i = 0; i < n; i += 2) {
2836 >            for (int i = 0; i < ws.length; i += 2) {
2837                  if ((w = ws[i]) != null && w.queueSize() != 0)
2838                      return true;
2839              }
# Line 2285 | Line 2851 | public class ForkJoinPool extends Abstra
2851      protected ForkJoinTask<?> pollSubmission() {
2852          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2853          if ((ws = workQueues) != null) {
2854 <            int n = ws.length;
2289 <            for (int i = 0; i < n; i += 2) {
2854 >            for (int i = 0; i < ws.length; i += 2) {
2855                  if ((w = ws[i]) != null && (t = w.poll()) != null)
2856                      return t;
2857              }
# Line 2315 | Line 2880 | public class ForkJoinPool extends Abstra
2880          int count = 0;
2881          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2882          if ((ws = workQueues) != null) {
2883 <            int n = ws.length;
2319 <            for (int i = 0; i < n; ++i) {
2883 >            for (int i = 0; i < ws.length; ++i) {
2884                  if ((w = ws[i]) != null) {
2885                      while ((t = w.poll()) != null) {
2886                          c.add(t);
# Line 2336 | Line 2900 | public class ForkJoinPool extends Abstra
2900       * @return a string identifying this pool, as well as its state
2901       */
2902      public String toString() {
2903 <        long st = getStealCount();
2904 <        long qt = getQueuedTaskCount();
2905 <        long qs = getQueuedSubmissionCount();
2342 <        int rc = getRunningThreadCount();
2343 <        int pc = parallelism;
2903 >        // Use a single pass through workQueues to collect counts
2904 >        long qt = 0L, qs = 0L; int rc = 0;
2905 >        long st = stealCount;
2906          long c = ctl;
2907 +        WorkQueue[] ws; WorkQueue w;
2908 +        if ((ws = workQueues) != null) {
2909 +            for (int i = 0; i < ws.length; ++i) {
2910 +                if ((w = ws[i]) != null) {
2911 +                    int size = w.queueSize();
2912 +                    if ((i & 1) == 0)
2913 +                        qs += size;
2914 +                    else {
2915 +                        qt += size;
2916 +                        st += w.nsteals;
2917 +                        if (w.isApparentlyUnblocked())
2918 +                            ++rc;
2919 +                    }
2920 +                }
2921 +            }
2922 +        }
2923 +        int pc = (config & SMASK);
2924          int tc = pc + (short)(c >>> TC_SHIFT);
2925          int ac = pc + (int)(c >> AC_SHIFT);
2926          if (ac < 0) // ignore transient negative
# Line 2350 | Line 2929 | public class ForkJoinPool extends Abstra
2929          if ((c & STOP_BIT) != 0)
2930              level = (tc == 0) ? "Terminated" : "Terminating";
2931          else
2932 <            level = runState < 0 ? "Shutting down" : "Running";
2932 >            level = plock < 0 ? "Shutting down" : "Running";
2933          return super.toString() +
2934              "[" + level +
2935              ", parallelism = " + pc +
# Line 2364 | Line 2943 | public class ForkJoinPool extends Abstra
2943      }
2944  
2945      /**
2946 <     * Initiates an orderly shutdown in which previously submitted
2947 <     * tasks are executed, but no new tasks will be accepted.
2948 <     * Invocation has no additional effect if already shut down.
2949 <     * Tasks that are in the process of being submitted concurrently
2950 <     * during the course of this method may or may not be rejected.
2946 >     * Possibly initiates an orderly shutdown in which previously
2947 >     * submitted tasks are executed, but no new tasks will be
2948 >     * accepted. Invocation has no effect on execution state if this
2949 >     * is the {@link #commonPool}, and no additional effect if
2950 >     * already shut down.  Tasks that are in the process of being
2951 >     * submitted concurrently during the course of this method may or
2952 >     * may not be rejected.
2953       *
2954       * @throws SecurityException if a security manager exists and
2955       *         the caller is not permitted to modify threads
# Line 2377 | Line 2958 | public class ForkJoinPool extends Abstra
2958       */
2959      public void shutdown() {
2960          checkPermission();
2961 <        enableShutdown();
2381 <        tryTerminate(false);
2961 >        tryTerminate(false, true);
2962      }
2963  
2964      /**
2965 <     * Attempts to cancel and/or stop all tasks, and reject all
2966 <     * subsequently submitted tasks.  Tasks that are in the process of
2967 <     * being submitted or executed concurrently during the course of
2968 <     * this method may or may not be rejected. This method cancels
2969 <     * both existing and unexecuted tasks, in order to permit
2970 <     * termination in the presence of task dependencies. So the method
2971 <     * always returns an empty list (unlike the case for some other
2972 <     * Executors).
2965 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2966 >     * all subsequently submitted tasks.  Invocation has no effect on
2967 >     * execution state if this is the {@link #commonPool}, and no
2968 >     * additional effect if already shut down. Otherwise, tasks that
2969 >     * are in the process of being submitted or executed concurrently
2970 >     * during the course of this method may or may not be
2971 >     * rejected. This method cancels both existing and unexecuted
2972 >     * tasks, in order to permit termination in the presence of task
2973 >     * dependencies. So the method always returns an empty list
2974 >     * (unlike the case for some other Executors).
2975       *
2976       * @return an empty list
2977       * @throws SecurityException if a security manager exists and
# Line 2399 | Line 2981 | public class ForkJoinPool extends Abstra
2981       */
2982      public List<Runnable> shutdownNow() {
2983          checkPermission();
2984 <        enableShutdown();
2403 <        tryTerminate(true);
2984 >        tryTerminate(true, true);
2985          return Collections.emptyList();
2986      }
2987  
# Line 2412 | Line 2993 | public class ForkJoinPool extends Abstra
2993      public boolean isTerminated() {
2994          long c = ctl;
2995          return ((c & STOP_BIT) != 0L &&
2996 <                (short)(c >>> TC_SHIFT) == -parallelism);
2996 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
2997      }
2998  
2999      /**
# Line 2431 | Line 3012 | public class ForkJoinPool extends Abstra
3012      public boolean isTerminating() {
3013          long c = ctl;
3014          return ((c & STOP_BIT) != 0L &&
3015 <                (short)(c >>> TC_SHIFT) != -parallelism);
3015 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3016      }
3017  
3018      /**
# Line 2440 | Line 3021 | public class ForkJoinPool extends Abstra
3021       * @return {@code true} if this pool has been shut down
3022       */
3023      public boolean isShutdown() {
3024 <        return runState < 0;
3024 >        return plock < 0;
3025      }
3026  
3027      /**
3028 <     * Blocks until all tasks have completed execution after a shutdown
3029 <     * request, or the timeout occurs, or the current thread is
3030 <     * interrupted, whichever happens first.
3028 >     * Blocks until all tasks have completed execution after a
3029 >     * shutdown request, or the timeout occurs, or the current thread
3030 >     * is interrupted, whichever happens first. Note that the {@link
3031 >     * #commonPool()} never terminates until program shutdown so
3032 >     * this method will always time out.
3033       *
3034       * @param timeout the maximum time to wait
3035       * @param unit the time unit of the timeout argument
# Line 2457 | Line 3040 | public class ForkJoinPool extends Abstra
3040      public boolean awaitTermination(long timeout, TimeUnit unit)
3041          throws InterruptedException {
3042          long nanos = unit.toNanos(timeout);
3043 <        final ReentrantLock lock = this.lock;
3044 <        lock.lock();
3045 <        try {
3046 <            for (;;) {
3047 <                if (isTerminated())
3048 <                    return true;
3049 <                if (nanos <= 0)
3050 <                    return false;
3051 <                nanos = termination.awaitNanos(nanos);
3043 >        if (isTerminated())
3044 >            return true;
3045 >        long startTime = System.nanoTime();
3046 >        boolean terminated = false;
3047 >        synchronized (this) {
3048 >            for (long waitTime = nanos, millis = 0L;;) {
3049 >                if (terminated = isTerminated() ||
3050 >                    waitTime <= 0L ||
3051 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3052 >                    break;
3053 >                wait(millis);
3054 >                waitTime = nanos - (System.nanoTime() - startTime);
3055              }
2470        } finally {
2471            lock.unlock();
3056          }
3057 +        return terminated;
3058      }
3059  
3060      /**
# Line 2553 | Line 3138 | public class ForkJoinPool extends Abstra
3138       *
3139       * <p>If the caller is not a {@link ForkJoinTask}, this method is
3140       * behaviorally equivalent to
3141 < a     *  <pre> {@code
3141 >     *  <pre> {@code
3142       * while (!blocker.isReleasable())
3143       *   if (blocker.block())
3144       *     return;
# Line 2568 | Line 3153 | a     *  <pre> {@code
3153      public static void managedBlock(ManagedBlocker blocker)
3154          throws InterruptedException {
3155          Thread t = Thread.currentThread();
3156 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3157 <                          ((ForkJoinWorkerThread)t).pool : null);
3158 <        while (!blocker.isReleasable()) {
3159 <            if (p == null || p.tryCompensate()) {
3160 <                try {
3161 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3162 <                } finally {
3163 <                    if (p != null)
3156 >        if (t instanceof ForkJoinWorkerThread) {
3157 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3158 >            while (!blocker.isReleasable()) { // variant of helpSignal
3159 >                WorkQueue[] ws; WorkQueue q; int m, n, u;
3160 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3161 >                    for (int i = 0; i <= m; ++i) {
3162 >                        if (blocker.isReleasable())
3163 >                            return;
3164 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3165 >                            p.signalWork(q, n);
3166 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3167 >                                (u >> UAC_SHIFT) >= 0)
3168 >                                break;
3169 >                        }
3170 >                    }
3171 >                }
3172 >                if (p.tryCompensate()) {
3173 >                    try {
3174 >                        do {} while (!blocker.isReleasable() &&
3175 >                                     !blocker.block());
3176 >                    } finally {
3177                          p.incrementActiveCount();
3178 +                    }
3179 +                    break;
3180                  }
2581                break;
3181              }
3182          }
3183 +        else {
3184 +            do {} while (!blocker.isReleasable() &&
3185 +                         !blocker.block());
3186 +        }
3187      }
3188  
3189      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2588 | Line 3191 | a     *  <pre> {@code
3191      // implement RunnableFuture.
3192  
3193      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3194 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3194 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3195      }
3196  
3197      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3198 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3198 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3199      }
3200  
3201      // Unsafe mechanics
3202      private static final sun.misc.Unsafe U;
3203      private static final long CTL;
2601    private static final long RUNSTATE;
3204      private static final long PARKBLOCKER;
3205 +    private static final int ABASE;
3206 +    private static final int ASHIFT;
3207 +    private static final long STEALCOUNT;
3208 +    private static final long PLOCK;
3209 +    private static final long INDEXSEED;
3210 +    private static final long QLOCK;
3211  
3212      static {
3213 <        poolNumberGenerator = new AtomicInteger();
2606 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2607 <        defaultForkJoinWorkerThreadFactory =
2608 <            new DefaultForkJoinWorkerThreadFactory();
2609 <        int s;
3213 >        int s; // initialize field offsets for CAS etc
3214          try {
3215              U = getUnsafe();
3216              Class<?> k = ForkJoinPool.class;
2613            Class<?> tk = Thread.class;
3217              CTL = U.objectFieldOffset
3218                  (k.getDeclaredField("ctl"));
3219 <            RUNSTATE = U.objectFieldOffset
3220 <                (k.getDeclaredField("runState"));
3219 >            STEALCOUNT = U.objectFieldOffset
3220 >                (k.getDeclaredField("stealCount"));
3221 >            PLOCK = U.objectFieldOffset
3222 >                (k.getDeclaredField("plock"));
3223 >            INDEXSEED = U.objectFieldOffset
3224 >                (k.getDeclaredField("indexSeed"));
3225 >            Class<?> tk = Thread.class;
3226              PARKBLOCKER = U.objectFieldOffset
3227                  (tk.getDeclaredField("parkBlocker"));
3228 +            Class<?> wk = WorkQueue.class;
3229 +            QLOCK = U.objectFieldOffset
3230 +                (wk.getDeclaredField("qlock"));
3231 +            Class<?> ak = ForkJoinTask[].class;
3232 +            ABASE = U.arrayBaseOffset(ak);
3233 +            s = U.arrayIndexScale(ak);
3234 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3235          } catch (Exception e) {
3236              throw new Error(e);
3237          }
3238 +        if ((s & (s-1)) != 0)
3239 +            throw new Error("data type scale not a power of two");
3240 +
3241 +        submitters = new ThreadLocal<Submitter>();
3242 +        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3243 +            new DefaultForkJoinWorkerThreadFactory();
3244 +        /*
3245 +         * Establish common pool parameters.  For extra caution,
3246 +         * computations to set up common pool state are here; the
3247 +         * constructor just assigns these values to fields.
3248 +         */
3249 +
3250 +        int par = 0;
3251 +        Thread.UncaughtExceptionHandler handler = null;
3252 +        try {  // TBD: limit or report ignored exceptions?
3253 +            String pp = System.getProperty
3254 +                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3255 +            String hp = System.getProperty
3256 +                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3257 +            String fp = System.getProperty
3258 +                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3259 +            if (fp != null)
3260 +                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3261 +                       getSystemClassLoader().loadClass(fp).newInstance());
3262 +            if (hp != null)
3263 +                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3264 +                           getSystemClassLoader().loadClass(hp).newInstance());
3265 +            if (pp != null)
3266 +                par = Integer.parseInt(pp);
3267 +        } catch (Exception ignore) {
3268 +        }
3269 +
3270 +        if (par <= 0)
3271 +            par = Runtime.getRuntime().availableProcessors();
3272 +        if (par > MAX_CAP)
3273 +            par = MAX_CAP;
3274 +        commonPoolParallelism = par;
3275 +        long np = (long)(-par); // precompute initial ctl value
3276 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3277 +
3278 +        commonPool = new ForkJoinPool(par, ct, fac, handler);
3279 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3280      }
3281  
3282      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines