ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.91 by dl, Tue Feb 22 00:39:31 2011 UTC vs.
Revision 1.148 by jsr166, Tue Nov 20 06:18:39 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.TimeoutException;
23 import java.util.concurrent.atomic.AtomicInteger;
24 import java.util.concurrent.locks.LockSupport;
25 import java.util.concurrent.locks.ReentrantLock;
26 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 34 | Line 28 | import java.util.concurrent.locks.Condit
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked IO or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 58 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the following
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 92 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
105 < * <pre>
106 < * static final ForkJoinPool mainPool = new ForkJoinPool();
107 < * ...
108 < * public void sort(long[] array) {
109 < *   mainPool.invoke(new SortTask(array, 0, array.length));
110 < * }
111 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 127 | Line 125 | public class ForkJoinPool extends Abstra
125      /*
126       * Implementation Overview
127       *
128 <     * This class provides the central bookkeeping and control for a
129 <     * set of worker threads: Submissions from non-FJ threads enter
130 <     * into a submission queue. Workers take these tasks and typically
131 <     * split them into subtasks that may be stolen by other workers.
132 <     * Preference rules give first priority to processing tasks from
133 <     * their own queues (LIFO or FIFO, depending on mode), then to
134 <     * randomized FIFO steals of tasks in other worker queues, and
135 <     * lastly to new submissions.
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
220       * decentralized control -- workers mostly take tasks from
221       * themselves or each other. We cannot negate this in the
222       * implementation of other management responsibilities. The main
223       * tactic for avoiding bottlenecks is packing nearly all
224 <     * essentially atomic control state into a single 64bit volatile
225 <     * variable ("ctl"). This variable is read on the order of 10-100
226 <     * times as often as it is modified (always via CAS). (There is
227 <     * some additional control state, for example variable "shutdown"
228 <     * for which we can cope with uncoordinated updates.)  This
229 <     * streamlines synchronization and control at the expense of messy
230 <     * constructions needed to repack status bits upon updates.
231 <     * Updates tend not to contend with each other except during
232 <     * bursts while submitted tasks begin or end.  In some cases when
233 <     * they do contend, threads can instead do something else
234 <     * (usually, scan for tesks) until contention subsides.
235 <     *
236 <     * To enable packing, we restrict maximum parallelism to (1<<15)-1
237 <     * (which is far in excess of normal operating range) to allow
238 <     * ids, counts, and their negations (used for thresholding) to fit
239 <     * into 16bit fields.
240 <     *
241 <     * Recording Workers.  Workers are recorded in the "workers" array
242 <     * that is created upon pool construction and expanded if (rarely)
243 <     * necessary.  This is an array as opposed to some other data
244 <     * structure to support index-based random steals by workers.
245 <     * Updates to the array recording new workers and unrecording
246 <     * terminated ones are protected from each other by a seqLock
247 <     * (scanGuard) but the array is otherwise concurrently readable,
248 <     * and accessed directly by workers. To simplify index-based
249 <     * operations, the array size is always a power of two, and all
250 <     * readers must tolerate null slots. To avoid flailing during
251 <     * start-up, the array is presized to hold twice #parallelism
252 <     * workers (which is unlikely to need further resizing during
253 <     * execution). But to avoid dealing with so many null slots,
254 <     * variable scanGuard includes a mask for the nearest power of two
255 <     * that contains all current workers.  All worker thread creation
256 <     * is on-demand, triggered by task submissions, replacement of
257 <     * terminated workers, and/or compensation for blocked
258 <     * workers. However, all other support code is set up to work with
259 <     * other policies.  To ensure that we do not hold on to worker
260 <     * references that would prevent GC, ALL accesses to workers are
261 <     * via indices into the workers array (which is one source of some
262 <     * of the messy code constructions here). In essence, the workers
263 <     * array serves as a weak reference mechanism. Thus for example
264 <     * the wait queue field of ctl stores worker indices, not worker
265 <     * references.  Access to the workers in associated methods (for
266 <     * example signalWork) must both index-check and null-check the
267 <     * IDs. All such accesses ignore bad IDs by returning out early
268 <     * from what they are doing, since this can only be associated
269 <     * with termination, in which case it is OK to give up.
270 <     *
271 <     * All uses of the workers array, as well as queue arrays, check
272 <     * that the array is non-null (even if previously non-null). This
273 <     * allows nulling during termination, which is currently not
274 <     * necessary, but remains an option for resource-revocation-based
275 <     * shutdown schemes.
276 <     *
277 <     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
278 <     * let workers spin indefinitely scanning for tasks when none are
279 <     * can be immediately found, and we cannot start/resume workers
280 <     * unless there appear to be tasks available.  On the other hand,
281 <     * we must quickly prod them into action when new tasks are
282 <     * submitted or generated.  We park/unpark workers after placing
283 <     * in an event wait queue when they cannot find work. This "queue"
284 <     * is actually a simple Treiber stack, headed by the "id" field of
285 <     * ctl, plus a 15bit counter value to both wake up waiters (by
286 <     * advancing their count) and avoid ABA effects. Successors are
287 <     * held in worker field "nextWait".  Queuing deals with several
288 <     * intrinsic races, mainly that a task-producing thread can miss
289 <     * seeing (and signalling) another thread that gave up looking for
290 <     * work but has not yet entered the wait queue. We solve this by
291 <     * requiring a full sweep of all workers both before (in scan())
292 <     * and after (in awaitWork()) a newly waiting worker is added to
293 <     * the wait queue. During a rescan, the worker might release some
294 <     * other queued worker rather than itself, which has the same net
295 <     * effect.
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had two or fewer tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans
321 <     * as well as those performed when a worker steals a task and
322 <     * notices that there are more tasks too; together these cover the
323 <     * signals needed in cases when more than two tasks are pushed
324 <     * but untaken.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that is
320 >     * apparently empty, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism
322 >     * level).  These primary signals are buttressed by signals
323 >     * whenever other threads scan for work or do not have a task to
324 >     * process (including the case of leaving a hint to unparked
325 >     * threads to help signal others upon wakeup).  On most platforms,
326 >     * signalling (unpark) overhead time is noticeably long, and the
327 >     * time between signalling a thread and it actually making
328 >     * progress can be very noticeably long, so it is worth offloading
329 >     * these delays from critical paths as much as possible.
330       *
331       * Trimming workers. To release resources after periods of lack of
332       * use, a worker starting to wait when the pool is quiescent will
333 <     * time out and terminate if the pool has remained quiescent for
334 <     * SHRINK_RATE nanosecs.
333 >     * time out and terminate if the pool has remained quiescent for a
334 >     * given period -- a short period if there are more threads than
335 >     * parallelism, longer as the number of threads decreases. This
336 >     * will slowly propagate, eventually terminating all workers after
337 >     * periods of non-use.
338       *
339 <     * Submissions. External submissions are maintained in an
340 <     * array-based queue that is structured identically to
341 <     * ForkJoinWorkerThread queues (which see) except for the use of
342 <     * submissionLock in method addSubmission. Unlike worker queues,
343 <     * multiple external threads can add new submissions.
344 <     *
345 <     * Compensation. Beyond work-stealing support and lifecycle
346 <     * control, the main responsibility of this framework is to take
347 <     * actions when one worker is waiting to join a task stolen (or
348 <     * always held by) another.  Because we are multiplexing many
349 <     * tasks on to a pool of workers, we can't just let them block (as
350 <     * in Thread.join).  We also cannot just reassign the joiner's
351 <     * run-time stack with another and replace it later, which would
352 <     * be a form of "continuation", that even if possible is not
353 <     * necessarily a good idea since we sometimes need both an
354 <     * unblocked task and its continuation to progress. Instead we
355 <     * combine two tactics:
339 >     * Shutdown and Termination. A call to shutdownNow atomically sets
340 >     * a plock bit and then (non-atomically) sets each worker's
341 >     * qlock status, cancels all unprocessed tasks, and wakes up
342 >     * all waiting workers.  Detecting whether termination should
343 >     * commence after a non-abrupt shutdown() call requires more work
344 >     * and bookkeeping. We need consensus about quiescence (i.e., that
345 >     * there is no more work). The active count provides a primary
346 >     * indication but non-abrupt shutdown still requires a rechecking
347 >     * scan for any workers that are inactive but not queued.
348 >     *
349 >     * Joining Tasks
350 >     * =============
351 >     *
352 >     * Any of several actions may be taken when one worker is waiting
353 >     * to join a task stolen (or always held) by another.  Because we
354 >     * are multiplexing many tasks on to a pool of workers, we can't
355 >     * just let them block (as in Thread.join).  We also cannot just
356 >     * reassign the joiner's run-time stack with another and replace
357 >     * it later, which would be a form of "continuation", that even if
358 >     * possible is not necessarily a good idea since we sometimes need
359 >     * both an unblocked task and its continuation to progress.
360 >     * Instead we combine two tactics:
361       *
362       *   Helping: Arranging for the joiner to execute some task that it
363 <     *      would be running if the steal had not occurred.  Method
254 <     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255 <     *      links to try to find such a task.
363 >     *      would be running if the steal had not occurred.
364       *
365       *   Compensating: Unless there are already enough live threads,
366 <     *      method tryPreBlock() may create or re-activate a spare
367 <     *      thread to compensate for blocked joiners until they
368 <     *      unblock.
366 >     *      method tryCompensate() may create or re-activate a spare
367 >     *      thread to compensate for blocked joiners until they unblock.
368 >     *
369 >     * A third form (implemented in tryRemoveAndExec) amounts to
370 >     * helping a hypothetical compensator: If we can readily tell that
371 >     * a possible action of a compensator is to steal and execute the
372 >     * task being joined, the joining thread can do so directly,
373 >     * without the need for a compensation thread (although at the
374 >     * expense of larger run-time stacks, but the tradeoff is
375 >     * typically worthwhile).
376       *
377       * The ManagedBlocker extension API can't use helping so relies
378       * only on compensation in method awaitBlocker.
379       *
380 +     * The algorithm in tryHelpStealer entails a form of "linear"
381 +     * helping: Each worker records (in field currentSteal) the most
382 +     * recent task it stole from some other worker. Plus, it records
383 +     * (in field currentJoin) the task it is currently actively
384 +     * joining. Method tryHelpStealer uses these markers to try to
385 +     * find a worker to help (i.e., steal back a task from and execute
386 +     * it) that could hasten completion of the actively joined task.
387 +     * In essence, the joiner executes a task that would be on its own
388 +     * local deque had the to-be-joined task not been stolen. This may
389 +     * be seen as a conservative variant of the approach in Wagner &
390 +     * Calder "Leapfrogging: a portable technique for implementing
391 +     * efficient futures" SIGPLAN Notices, 1993
392 +     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
393 +     * that: (1) We only maintain dependency links across workers upon
394 +     * steals, rather than use per-task bookkeeping.  This sometimes
395 +     * requires a linear scan of workQueues array to locate stealers,
396 +     * but often doesn't because stealers leave hints (that may become
397 +     * stale/wrong) of where to locate them.  It is only a hint
398 +     * because a worker might have had multiple steals and the hint
399 +     * records only one of them (usually the most current).  Hinting
400 +     * isolates cost to when it is needed, rather than adding to
401 +     * per-task overhead.  (2) It is "shallow", ignoring nesting and
402 +     * potentially cyclic mutual steals.  (3) It is intentionally
403 +     * racy: field currentJoin is updated only while actively joining,
404 +     * which means that we miss links in the chain during long-lived
405 +     * tasks, GC stalls etc (which is OK since blocking in such cases
406 +     * is usually a good idea).  (4) We bound the number of attempts
407 +     * to find work (see MAX_HELP) and fall back to suspending the
408 +     * worker and if necessary replacing it with another.
409 +     *
410 +     * Helping actions for CountedCompleters are much simpler: Method
411 +     * helpComplete can take and execute any task with the same root
412 +     * as the task being waited on. However, this still entails some
413 +     * traversal of completer chains, so is less efficient than using
414 +     * CountedCompleters without explicit joins.
415 +     *
416       * It is impossible to keep exactly the target parallelism number
417       * of threads running at any given time.  Determining the
418       * existence of conservatively safe helping targets, the
419       * availability of already-created spares, and the apparent need
420 <     * to create new spares are all racy and require heuristic
421 <     * guidance, so we rely on multiple retries of each.  Currently,
422 <     * in keeping with on-demand signalling policy, we compensate only
423 <     * if blocking would leave less than one active (non-waiting,
424 <     * non-blocked) worker. Additionally, to avoid some false alarms
425 <     * due to GC, lagging counters, system activity, etc, compensated
426 <     * blocking for joins is only attempted after a number of rechecks
427 <     * proportional to the current apparent deficit (where retries are
428 <     * interspersed with Thread.yield, for good citizenship).  The
429 <     * variable blockedCount, incremented before blocking and
430 <     * decremented after, is sometimes needed to distinguish cases of
431 <     * waiting for work vs blocking on joins or other managed sync,
432 <     * but both the cases are equivalent for most pool control, so we
433 <     * can update non-atomically. (Additionally, contention on
434 <     * blockedCount alleviates some contention on ctl).
435 <     *
436 <     * Shutdown and Termination. A call to shutdownNow atomically sets
437 <     * the ctl stop bit and then (non-atomically) sets each workers
438 <     * "terminate" status, cancels all unprocessed tasks, and wakes up
439 <     * all waiting workers.  Detecting whether termination should
440 <     * commence after a non-abrupt shutdown() call requires more work
441 <     * and bookkeeping. We need consensus about quiesence (i.e., that
442 <     * there is no more work) which is reflected in active counts so
443 <     * long as there are no current blockers, as well as possible
444 <     * re-evaluations during independent changes in blocking or
445 <     * quiescing workers.
446 <     *
447 <     * Style notes: There is a lot of representation-level coupling
448 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
449 <     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
450 <     * data structures managed by ForkJoinPool, so are directly
451 <     * accessed.  Conversely we allow access to "workers" array by
452 <     * workers, and direct access to ForkJoinTask.status by both
453 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
420 >     * to create new spares are all racy, so we rely on multiple
421 >     * retries of each.  Compensation in the apparent absence of
422 >     * helping opportunities is challenging to control on JVMs, where
423 >     * GC and other activities can stall progress of tasks that in
424 >     * turn stall out many other dependent tasks, without us being
425 >     * able to determine whether they will ever require compensation.
426 >     * Even though work-stealing otherwise encounters little
427 >     * degradation in the presence of more threads than cores,
428 >     * aggressively adding new threads in such cases entails risk of
429 >     * unwanted positive feedback control loops in which more threads
430 >     * cause more dependent stalls (as well as delayed progress of
431 >     * unblocked threads to the point that we know they are available)
432 >     * leading to more situations requiring more threads, and so
433 >     * on. This aspect of control can be seen as an (analytically
434 >     * intractable) game with an opponent that may choose the worst
435 >     * (for us) active thread to stall at any time.  We take several
436 >     * precautions to bound losses (and thus bound gains), mainly in
437 >     * methods tryCompensate and awaitJoin.
438 >     *
439 >     * Common Pool
440 >     * ===========
441 >     *
442 >     * The static commonPool always exists after static
443 >     * initialization.  Since it (or any other created pool) need
444 >     * never be used, we minimize initial construction overhead and
445 >     * footprint to the setup of about a dozen fields, with no nested
446 >     * allocation. Most bootstrapping occurs within method
447 >     * fullExternalPush during the first submission to the pool.
448 >     *
449 >     * When external threads submit to the common pool, they can
450 >     * perform some subtask processing (see externalHelpJoin and
451 >     * related methods).  We do not need to record whether these
452 >     * submissions are to the common pool -- if not, externalHelpJoin
453 >     * returns quickly (at the most helping to signal some common pool
454 >     * workers). These submitters would otherwise be blocked waiting
455 >     * for completion, so the extra effort (with liberally sprinkled
456 >     * task status checks) in inapplicable cases amounts to an odd
457 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
458 >     *
459 >     * Style notes
460 >     * ===========
461 >     *
462 >     * There is a lot of representation-level coupling among classes
463 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
464 >     * fields of WorkQueue maintain data structures managed by
465 >     * ForkJoinPool, so are directly accessed.  There is little point
466       * trying to reduce this, since any associated future changes in
467       * representations will need to be accompanied by algorithmic
468 <     * changes anyway. All together, these low-level implementation
469 <     * choices produce as much as a factor of 4 performance
470 <     * improvement compared to naive implementations, and enable the
471 <     * processing of billions of tasks per second, at the expense of
472 <     * some ugliness.
473 <     *
474 <     * Methods signalWork() and scan() are the main bottlenecks so are
475 <     * especially heavily micro-optimized/mangled.  There are lots of
476 <     * inline assignments (of form "while ((local = field) != 0)")
477 <     * which are usually the simplest way to ensure the required read
478 <     * orderings (which are sometimes critical). This leads to a
479 <     * "C"-like style of listing declarations of these locals at the
480 <     * heads of methods or blocks.  There are several occurrences of
481 <     * the unusual "do {} while (!cas...)"  which is the simplest way
482 <     * to force an update of a CAS'ed variable. There are also other
483 <     * coding oddities that help some methods perform reasonably even
484 <     * when interpreted (not compiled).
485 <     *
486 <     * The order of declarations in this file is: (1) declarations of
487 <     * statics (2) fields (along with constants used when unpacking
488 <     * some of them), listed in an order that tends to reduce
489 <     * contention among them a bit under most JVMs.  (3) internal
490 <     * control methods (4) callbacks and other support for
491 <     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
492 <     * methods (plus a few little helpers). (6) static block
330 <     * initializing all statics in a minimally dependent order.
468 >     * changes anyway. Several methods intrinsically sprawl because
469 >     * they must accumulate sets of consistent reads of volatiles held
470 >     * in local variables.  Methods signalWork() and scan() are the
471 >     * main bottlenecks, so are especially heavily
472 >     * micro-optimized/mangled.  There are lots of inline assignments
473 >     * (of form "while ((local = field) != 0)") which are usually the
474 >     * simplest way to ensure the required read orderings (which are
475 >     * sometimes critical). This leads to a "C"-like style of listing
476 >     * declarations of these locals at the heads of methods or blocks.
477 >     * There are several occurrences of the unusual "do {} while
478 >     * (!cas...)"  which is the simplest way to force an update of a
479 >     * CAS'ed variable. There are also other coding oddities (including
480 >     * several unnecessary-looking hoisted null checks) that help
481 >     * some methods perform reasonably even when interpreted (not
482 >     * compiled).
483 >     *
484 >     * The order of declarations in this file is:
485 >     * (1) Static utility functions
486 >     * (2) Nested (static) classes
487 >     * (3) Static fields
488 >     * (4) Fields, along with constants used when unpacking some of them
489 >     * (5) Internal control methods
490 >     * (6) Callbacks and other support for ForkJoinTask methods
491 >     * (7) Exported methods
492 >     * (8) Static block initializing statics in minimally dependent order
493       */
494  
495 +    // Static utilities
496 +
497 +    /**
498 +     * If there is a security manager, makes sure caller has
499 +     * permission to modify threads.
500 +     */
501 +    private static void checkPermission() {
502 +        SecurityManager security = System.getSecurityManager();
503 +        if (security != null)
504 +            security.checkPermission(modifyThreadPermission);
505 +    }
506 +
507 +    // Nested classes
508 +
509      /**
510       * Factory for creating new {@link ForkJoinWorkerThread}s.
511       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 350 | Line 526 | public class ForkJoinPool extends Abstra
526       * Default ForkJoinWorkerThreadFactory implementation; creates a
527       * new ForkJoinWorkerThread.
528       */
529 <    static class DefaultForkJoinWorkerThreadFactory
529 >    static final class DefaultForkJoinWorkerThreadFactory
530          implements ForkJoinWorkerThreadFactory {
531 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
531 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532              return new ForkJoinWorkerThread(pool);
533          }
534      }
535  
536      /**
537 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
538 <     * overridden in ForkJoinPool constructors.
537 >     * Class for artificial tasks that are used to replace the target
538 >     * of local joins if they are removed from an interior queue slot
539 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
540 >     * actually do anything beyond having a unique identity.
541 >     */
542 >    static final class EmptyTask extends ForkJoinTask<Void> {
543 >        private static final long serialVersionUID = -7721805057305804111L;
544 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
545 >        public final Void getRawResult() { return null; }
546 >        public final void setRawResult(Void x) {}
547 >        public final boolean exec() { return true; }
548 >    }
549 >
550 >    /**
551 >     * Queues supporting work-stealing as well as external task
552 >     * submission. See above for main rationale and algorithms.
553 >     * Implementation relies heavily on "Unsafe" intrinsics
554 >     * and selective use of "volatile":
555 >     *
556 >     * Field "base" is the index (mod array.length) of the least valid
557 >     * queue slot, which is always the next position to steal (poll)
558 >     * from if nonempty. Reads and writes require volatile orderings
559 >     * but not CAS, because updates are only performed after slot
560 >     * CASes.
561 >     *
562 >     * Field "top" is the index (mod array.length) of the next queue
563 >     * slot to push to or pop from. It is written only by owner thread
564 >     * for push, or under lock for external/shared push, and accessed
565 >     * by other threads only after reading (volatile) base.  Both top
566 >     * and base are allowed to wrap around on overflow, but (top -
567 >     * base) (or more commonly -(base - top) to force volatile read of
568 >     * base before top) still estimates size. The lock ("qlock") is
569 >     * forced to -1 on termination, causing all further lock attempts
570 >     * to fail. (Note: we don't need CAS for termination state because
571 >     * upon pool shutdown, all shared-queues will stop being used
572 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
573 >     * within lock bodies are "impossible" (modulo JVM errors that
574 >     * would cause failure anyway.)
575 >     *
576 >     * The array slots are read and written using the emulation of
577 >     * volatiles/atomics provided by Unsafe. Insertions must in
578 >     * general use putOrderedObject as a form of releasing store to
579 >     * ensure that all writes to the task object are ordered before
580 >     * its publication in the queue.  All removals entail a CAS to
581 >     * null.  The array is always a power of two. To ensure safety of
582 >     * Unsafe array operations, all accesses perform explicit null
583 >     * checks and implicit bounds checks via power-of-two masking.
584 >     *
585 >     * In addition to basic queuing support, this class contains
586 >     * fields described elsewhere to control execution. It turns out
587 >     * to work better memory-layout-wise to include them in this class
588 >     * rather than a separate class.
589 >     *
590 >     * Performance on most platforms is very sensitive to placement of
591 >     * instances of both WorkQueues and their arrays -- we absolutely
592 >     * do not want multiple WorkQueue instances or multiple queue
593 >     * arrays sharing cache lines. (It would be best for queue objects
594 >     * and their arrays to share, but there is nothing available to
595 >     * help arrange that).  Unfortunately, because they are recorded
596 >     * in a common array, WorkQueue instances are often moved to be
597 >     * adjacent by garbage collectors. To reduce impact, we use field
598 >     * padding that works OK on common platforms; this effectively
599 >     * trades off slightly slower average field access for the sake of
600 >     * avoiding really bad worst-case access. (Until better JVM
601 >     * support is in place, this padding is dependent on transient
602 >     * properties of JVM field layout rules.)
603       */
604 <    public static final ForkJoinWorkerThreadFactory
605 <        defaultForkJoinWorkerThreadFactory;
604 >    static final class WorkQueue {
605 >        /**
606 >         * Capacity of work-stealing queue array upon initialization.
607 >         * Must be a power of two; at least 4, but should be larger to
608 >         * reduce or eliminate cacheline sharing among queues.
609 >         * Currently, it is much larger, as a partial workaround for
610 >         * the fact that JVMs often place arrays in locations that
611 >         * share GC bookkeeping (especially cardmarks) such that
612 >         * per-write accesses encounter serious memory contention.
613 >         */
614 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
615  
616 <    /**
617 <     * Permission required for callers of methods that may start or
618 <     * kill threads.
619 <     */
620 <    private static final RuntimePermission modifyThreadPermission;
616 >        /**
617 >         * Maximum size for queue arrays. Must be a power of two less
618 >         * than or equal to 1 << (31 - width of array entry) to ensure
619 >         * lack of wraparound of index calculations, but defined to a
620 >         * value a bit less than this to help users trap runaway
621 >         * programs before saturating systems.
622 >         */
623 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
624  
625 <    /**
626 <     * If there is a security manager, makes sure caller has
627 <     * permission to modify threads.
628 <     */
629 <    private static void checkPermission() {
630 <        SecurityManager security = System.getSecurityManager();
631 <        if (security != null)
632 <            security.checkPermission(modifyThreadPermission);
625 >        int seed;                  // for random scanning; initialize nonzero
626 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
627 >        int nextWait;              // encoded record of next event waiter
628 >        int hint;                  // steal or signal hint (index)
629 >        int poolIndex;             // index of this queue in pool (or 0)
630 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
631 >        int nsteals;               // number of steals
632 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
633 >        volatile int base;         // index of next slot for poll
634 >        int top;                   // index of next slot for push
635 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
636 >        final ForkJoinPool pool;   // the containing pool (may be null)
637 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
638 >        volatile Thread parker;    // == owner during call to park; else null
639 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
640 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
641 >
642 >        // Heuristic padding to ameliorate unfortunate memory placements
643 >        Object p00, p01, p02, p03, p04, p05, p06, p07;
644 >        Object p08, p09, p0a, p0b, p0c;
645 >
646 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
647 >                  int seed) {
648 >            this.array = new ForkJoinTask<?>[WorkQueue.INITIAL_QUEUE_CAPACITY];
649 >            this.pool = pool;
650 >            this.owner = owner;
651 >            this.mode = mode;
652 >            this.seed = seed;
653 >            // Place indices in the center of array
654 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
655 >        }
656 >
657 >        /**
658 >         * Pushes a task. Call only by owner in unshared queues.
659 >         * Cases needing resizing or rejection are relayed to fullPush
660 >         * (that also handles shared queues).
661 >         *
662 >         * @param task the task. Caller must ensure non-null.
663 >         * @throw RejectedExecutionException if array cannot be resized
664 >         */
665 >        final void push(ForkJoinTask<?> task) {
666 >            ForkJoinTask<?>[] a; ForkJoinPool p;
667 >            int s = top, m, n;
668 >            if ((a = array) != null) {    // ignore if queue removed
669 >                U.putOrderedObject
670 >                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
671 >                if ((n = (top = s + 1) - base) <= 1) {
672 >                    if ((p = pool) != null)
673 >                        p.signalWork(this, 0);
674 >                }
675 >                else if (n >= m)
676 >                    growArray();
677 >            }
678 >        }
679 >
680 >        /**
681 >         * Pushes a task if lock is free and array is either big
682 >         * enough or can be resized to be big enough.
683 >         *
684 >         * @param task the task. Caller must ensure non-null.
685 >         * @return true if submitted
686 >         */
687 >        final boolean trySharedPush(ForkJoinTask<?> task) {
688 >            boolean submitted = false;
689 >            if (qlock == 0 && U.compareAndSwapInt(this, QLOCK, 0, 1)) {
690 >                ForkJoinTask<?>[] a = array;  ForkJoinPool p;
691 >                int s = top;
692 >                try {
693 >                    if ((a != null && a.length > s + 1 - base) ||
694 >                        (a = growArray()) != null) {   // must presize
695 >                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
696 >                        U.putOrderedObject(a, j, task);
697 >                        top = s + 1;
698 >                        submitted = true;
699 >                    }
700 >                } finally {
701 >                    qlock = 0;                         // unlock
702 >                }
703 >                if (submitted && (p = pool) != null)
704 >                    p.signalWork(this, 0);
705 >            }
706 >            return submitted;
707 >        }
708 >
709 >       /**
710 >         * Initializes or doubles the capacity of array. Call either
711 >         * by owner or with lock held -- it is OK for base, but not
712 >         * top, to move while resizings are in progress.
713 >         */
714 >        final ForkJoinTask<?>[] growArray() {
715 >            ForkJoinTask<?>[] oldA = array;
716 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
717 >            if (size > MAXIMUM_QUEUE_CAPACITY)
718 >                throw new RejectedExecutionException("Queue capacity exceeded");
719 >            int oldMask, t, b;
720 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
721 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
722 >                (t = top) - (b = base) > 0) {
723 >                int mask = size - 1;
724 >                do {
725 >                    ForkJoinTask<?> x;
726 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
727 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
728 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
729 >                    if (x != null &&
730 >                        U.compareAndSwapObject(oldA, oldj, x, null))
731 >                        U.putObjectVolatile(a, j, x);
732 >                } while (++b != t);
733 >            }
734 >            return a;
735 >        }
736 >
737 >        /**
738 >         * Takes next task, if one exists, in LIFO order.  Call only
739 >         * by owner in unshared queues.
740 >         */
741 >        final ForkJoinTask<?> pop() {
742 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
743 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
744 >                for (int s; (s = top - 1) - base >= 0;) {
745 >                    long j = ((m & s) << ASHIFT) + ABASE;
746 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
747 >                        break;
748 >                    if (U.compareAndSwapObject(a, j, t, null)) {
749 >                        top = s;
750 >                        return t;
751 >                    }
752 >                }
753 >            }
754 >            return null;
755 >        }
756 >
757 >        /**
758 >         * Takes a task in FIFO order if b is base of queue and a task
759 >         * can be claimed without contention. Specialized versions
760 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
761 >         */
762 >        final ForkJoinTask<?> pollAt(int b) {
763 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
764 >            if ((a = array) != null) {
765 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
766 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
767 >                    base == b &&
768 >                    U.compareAndSwapObject(a, j, t, null)) {
769 >                    base = b + 1;
770 >                    return t;
771 >                }
772 >            }
773 >            return null;
774 >        }
775 >
776 >        /**
777 >         * Takes next task, if one exists, in FIFO order.
778 >         */
779 >        final ForkJoinTask<?> poll() {
780 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
781 >            while ((b = base) - top < 0 && (a = array) != null) {
782 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
783 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
784 >                if (t != null) {
785 >                    if (base == b &&
786 >                        U.compareAndSwapObject(a, j, t, null)) {
787 >                        base = b + 1;
788 >                        return t;
789 >                    }
790 >                }
791 >                else if (base == b) {
792 >                    if (b + 1 == top)
793 >                        break;
794 >                    Thread.yield(); // wait for lagging update (very rare)
795 >                }
796 >            }
797 >            return null;
798 >        }
799 >
800 >        /**
801 >         * Takes next task, if one exists, in order specified by mode.
802 >         */
803 >        final ForkJoinTask<?> nextLocalTask() {
804 >            return mode == 0 ? pop() : poll();
805 >        }
806 >
807 >        /**
808 >         * Returns next task, if one exists, in order specified by mode.
809 >         */
810 >        final ForkJoinTask<?> peek() {
811 >            ForkJoinTask<?>[] a = array; int m;
812 >            if (a == null || (m = a.length - 1) < 0)
813 >                return null;
814 >            int i = mode == 0 ? top - 1 : base;
815 >            int j = ((i & m) << ASHIFT) + ABASE;
816 >            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
817 >        }
818 >
819 >        /**
820 >         * Pops the given task only if it is at the current top.
821 >         * (A shared version is available only via FJP.tryExternalUnpush)
822 >         */
823 >        final boolean tryUnpush(ForkJoinTask<?> t) {
824 >            ForkJoinTask<?>[] a; int s;
825 >            if ((a = array) != null && (s = top) != base &&
826 >                U.compareAndSwapObject
827 >                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
828 >                top = s;
829 >                return true;
830 >            }
831 >            return false;
832 >        }
833 >
834 >        /**
835 >         * Removes and cancels all known tasks, ignoring any exceptions.
836 >         */
837 >        final void cancelAll() {
838 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
839 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
840 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
841 >                ForkJoinTask.cancelIgnoringExceptions(t);
842 >        }
843 >
844 >        /**
845 >         * Computes next value for random probes.  Scans don't require
846 >         * a very high quality generator, but also not a crummy one.
847 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
848 >         * This is manually inlined in its usages in ForkJoinPool to
849 >         * avoid writes inside busy scan loops.
850 >         */
851 >        final int nextSeed() {
852 >            int r = seed;
853 >            r ^= r << 13;
854 >            r ^= r >>> 17;
855 >            return seed = r ^= r << 5;
856 >        }
857 >
858 >        /**
859 >         * Provides a more accurate estimate of size than (top - base)
860 >         * by ordering reads and checking whether a near-empty queue
861 >         * has at least one unclaimed task.
862 >         */
863 >        final int queueSize() {
864 >            ForkJoinTask<?>[] a; int k, s, n;
865 >            return ((n = base - (s = top)) < 0 &&
866 >                    (n != -1 ||
867 >                     ((a = array) != null && (k = a.length) > 0 &&
868 >                      U.getObject
869 >                      (a, (long)((((k - 1) & (s - 1)) << ASHIFT) + ABASE)) != null))) ?
870 >                -n : 0;
871 >        }
872 >
873 >        // Specialized execution methods
874 >
875 >        /**
876 >         * Pops and runs tasks until empty.
877 >         */
878 >        private void popAndExecAll() {
879 >            // A bit faster than repeated pop calls
880 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
881 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
882 >                   (s = top - 1) - base >= 0 &&
883 >                   (t = ((ForkJoinTask<?>)
884 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
885 >                   != null) {
886 >                if (U.compareAndSwapObject(a, j, t, null)) {
887 >                    top = s;
888 >                    t.doExec();
889 >                }
890 >            }
891 >        }
892 >
893 >        /**
894 >         * Polls and runs tasks until empty.
895 >         */
896 >        private void pollAndExecAll() {
897 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
898 >                t.doExec();
899 >        }
900 >
901 >        /**
902 >         * If present, removes from queue and executes the given task,
903 >         * or any other cancelled task. Returns (true) on any CAS
904 >         * or consistency check failure so caller can retry.
905 >         *
906 >         * @return false if no progress can be made, else true;
907 >         */
908 >        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
909 >            boolean stat = true, removed = false, empty = true;
910 >            ForkJoinTask<?>[] a; int m, s, b, n;
911 >            if ((a = array) != null && (m = a.length - 1) >= 0 &&
912 >                (n = (s = top) - (b = base)) > 0) {
913 >                for (ForkJoinTask<?> t;;) {           // traverse from s to b
914 >                    int j = ((--s & m) << ASHIFT) + ABASE;
915 >                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
916 >                    if (t == null)                    // inconsistent length
917 >                        break;
918 >                    else if (t == task) {
919 >                        if (s + 1 == top) {           // pop
920 >                            if (!U.compareAndSwapObject(a, j, task, null))
921 >                                break;
922 >                            top = s;
923 >                            removed = true;
924 >                        }
925 >                        else if (base == b)           // replace with proxy
926 >                            removed = U.compareAndSwapObject(a, j, task,
927 >                                                             new EmptyTask());
928 >                        break;
929 >                    }
930 >                    else if (t.status >= 0)
931 >                        empty = false;
932 >                    else if (s + 1 == top) {          // pop and throw away
933 >                        if (U.compareAndSwapObject(a, j, t, null))
934 >                            top = s;
935 >                        break;
936 >                    }
937 >                    if (--n == 0) {
938 >                        if (!empty && base == b)
939 >                            stat = false;
940 >                        break;
941 >                    }
942 >                }
943 >            }
944 >            if (removed)
945 >                task.doExec();
946 >            return stat;
947 >        }
948 >
949 >        /**
950 >         * Polls for and executes the given task or any other task in
951 >         * its CountedCompleter computation
952 >         */
953 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
954 >            ForkJoinTask<?>[] a; int b; Object o;
955 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
956 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
957 >                if ((o = U.getObject(a, j)) == null ||
958 >                    !(o instanceof CountedCompleter))
959 >                    break;
960 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
961 >                    if (r == root) {
962 >                        if (base == b &&
963 >                            U.compareAndSwapObject(a, j, t, null)) {
964 >                            base = b + 1;
965 >                            t.doExec();
966 >                            return true;
967 >                        }
968 >                        else
969 >                            break; // restart
970 >                    }
971 >                    if ((r = r.completer) == null)
972 >                        break outer; // not part of root computation
973 >                }
974 >            }
975 >            return false;
976 >        }
977 >
978 >        /**
979 >         * Executes a top-level task and any local tasks remaining
980 >         * after execution.
981 >         */
982 >        final void runTask(ForkJoinTask<?> t) {
983 >            if (t != null) {
984 >                (currentSteal = t).doExec();
985 >                currentSteal = null;
986 >                ++nsteals;
987 >                if (top != base) {       // process remaining local tasks
988 >                    if (mode == 0)
989 >                        popAndExecAll();
990 >                    else
991 >                        pollAndExecAll();
992 >                }
993 >            }
994 >        }
995 >
996 >        /**
997 >         * Executes a non-top-level (stolen) task.
998 >         */
999 >        final void runSubtask(ForkJoinTask<?> t) {
1000 >            if (t != null) {
1001 >                ForkJoinTask<?> ps = currentSteal;
1002 >                (currentSteal = t).doExec();
1003 >                currentSteal = ps;
1004 >            }
1005 >        }
1006 >
1007 >        /**
1008 >         * Returns true if owned and not known to be blocked.
1009 >         */
1010 >        final boolean isApparentlyUnblocked() {
1011 >            Thread wt; Thread.State s;
1012 >            return (eventCount >= 0 &&
1013 >                    (wt = owner) != null &&
1014 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1015 >                    s != Thread.State.WAITING &&
1016 >                    s != Thread.State.TIMED_WAITING);
1017 >        }
1018 >
1019 >        /**
1020 >         * If this owned and is not already interrupted, try to
1021 >         * interrupt and/or unpark, ignoring exceptions.
1022 >         */
1023 >        final void interruptOwner() {
1024 >            Thread wt, p;
1025 >            if ((wt = owner) != null && !wt.isInterrupted()) {
1026 >                try {
1027 >                    wt.interrupt();
1028 >                } catch (SecurityException ignore) {
1029 >                }
1030 >            }
1031 >            if ((p = parker) != null)
1032 >                U.unpark(p);
1033 >        }
1034 >
1035 >        // Unsafe mechanics
1036 >        private static final sun.misc.Unsafe U;
1037 >        private static final long QLOCK;
1038 >        private static final int ABASE;
1039 >        private static final int ASHIFT;
1040 >        static {
1041 >            int s;
1042 >            try {
1043 >                U = getUnsafe();
1044 >                Class<?> k = WorkQueue.class;
1045 >                Class<?> ak = ForkJoinTask[].class;
1046 >                QLOCK = U.objectFieldOffset
1047 >                    (k.getDeclaredField("qlock"));
1048 >                ABASE = U.arrayBaseOffset(ak);
1049 >                s = U.arrayIndexScale(ak);
1050 >            } catch (Exception e) {
1051 >                throw new Error(e);
1052 >            }
1053 >            if ((s & (s-1)) != 0)
1054 >                throw new Error("data type scale not a power of two");
1055 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1056 >        }
1057      }
1058  
1059 +    // static fields (initialized in static initializer below)
1060 +
1061      /**
1062 <     * Generator for assigning sequence numbers as pool names.
1062 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1063 >     * overridden in ForkJoinPool constructors.
1064       */
1065 <    private static final AtomicInteger poolNumberGenerator;
1065 >    public static final ForkJoinWorkerThreadFactory
1066 >        defaultForkJoinWorkerThreadFactory;
1067  
1068      /**
1069 <     * Generator for initial random seeds for worker victim
1070 <     * selection. This is used only to create initial seeds. Random
1071 <     * steals use a cheaper xorshift generator per steal attempt. We
1072 <     * don't expect much contention on seedGenerator, so just use a
1073 <     * plain Random.
1069 >     * Per-thread records for threads that submit to pools. Currently
1070 >     * holds only pseudo-random seed / index that is used to choose
1071 >     * submission queues in method externalPush. In the future, this may
1072 >     * also incorporate a means to implement different task rejection
1073 >     * and resubmission policies.
1074 >     *
1075 >     * Seeds for submitters and workers/workQueues work in basically
1076 >     * the same way but are initialized and updated using slightly
1077 >     * different mechanics. Both are initialized using the same
1078 >     * approach as in class ThreadLocal, where successive values are
1079 >     * unlikely to collide with previous values. Seeds are then
1080 >     * randomly modified upon collisions using xorshifts, which
1081 >     * requires a non-zero seed.
1082       */
1083 <    static final Random workerSeedGenerator;
1083 >    static final class Submitter {
1084 >        int seed;
1085 >        Submitter(int s) { seed = s; }
1086 >    }
1087  
1088      /**
1089 <     * Array holding all worker threads in the pool.  Initialized upon
1090 <     * construction. Array size must be a power of two.  Updates and
1091 <     * replacements are protected by scanGuard, but the array is
1092 <     * always kept in a consistent enough state to be randomly
1093 <     * accessed without locking by workers performing work-stealing,
403 <     * as well as other traversal-based methods in this class, so long
404 <     * as reads memory-acquire by first reading ctl. All readers must
405 <     * tolerate that some array slots may be null.
1089 >     * Per-thread submission bookkeeping. Shared across all pools
1090 >     * to reduce ThreadLocal pollution and because random motion
1091 >     * to avoid contention in one pool is likely to hold for others.
1092 >     * Lazily initialized on first submission (but null-checked
1093 >     * in other contexts to avoid unnecessary initialization).
1094       */
1095 <    ForkJoinWorkerThread[] workers;
1095 >    static final ThreadLocal<Submitter> submitters;
1096  
1097      /**
1098 <     * Initial size for submission queue array. Must be a power of
1099 <     * two.  In many applications, these always stay small so we use a
1100 <     * small initial cap.
1098 >     * Common (static) pool. Non-null for public use unless a static
1099 >     * construction exception, but internal usages null-check on use
1100 >     * to paranoically avoid potential initialization circularities
1101 >     * as well as to simplify generated code.
1102       */
1103 <    private static final int INITIAL_QUEUE_CAPACITY = 8;
1103 >    static final ForkJoinPool commonPool;
1104  
1105      /**
1106 <     * Maximum size for submission queue array. Must be a power of two
1107 <     * less than or equal to 1 << (31 - width of array entry) to
419 <     * ensure lack of index wraparound, but is capped at a lower
420 <     * value to help users trap runaway computations.
1106 >     * Permission required for callers of methods that may start or
1107 >     * kill threads.
1108       */
1109 <    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
1109 >    private static final RuntimePermission modifyThreadPermission;
1110  
1111      /**
1112 <     * Array serving as submission queue. Initialized upon construction.
1112 >     * Common pool parallelism. Must equal commonPool.parallelism.
1113       */
1114 <    private ForkJoinTask<?>[] submissionQueue;
1114 >    static final int commonPoolParallelism;
1115  
1116      /**
1117 <     * Lock protecting submissions array for addSubmission
1117 >     * Sequence number for creating workerNamePrefix.
1118       */
1119 <    private final ReentrantLock submissionLock;
1119 >    private static int poolNumberSequence;
1120  
1121      /**
1122 <     * Condition for awaitTermination, using submissionLock for
1123 <     * convenience.
1122 >     * Return the next sequence number. We don't expect this to
1123 >     * ever contend so use simple builtin sync.
1124       */
1125 <    private final Condition termination;
1125 >    private static final synchronized int nextPoolId() {
1126 >        return ++poolNumberSequence;
1127 >    }
1128 >
1129 >    // static constants
1130  
1131      /**
1132 <     * Creation factory for worker threads.
1132 >     * Initial timeout value (in nanoseconds) for the thread
1133 >     * triggering quiescence to park waiting for new work. On timeout,
1134 >     * the thread will instead try to shrink the number of
1135 >     * workers. The value should be large enough to avoid overly
1136 >     * aggressive shrinkage during most transient stalls (long GCs
1137 >     * etc).
1138       */
1139 <    private final ForkJoinWorkerThreadFactory factory;
1139 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1140  
1141      /**
1142 <     * The uncaught exception handler used when any worker abruptly
447 <     * terminates.
1142 >     * Timeout value when there are more threads than parallelism level
1143       */
1144 <    final Thread.UncaughtExceptionHandler ueh;
1144 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1145  
1146      /**
1147 <     * Prefix for assigning names to worker threads
1147 >     * The maximum stolen->joining link depth allowed in method
1148 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1149 >     * chains are unbounded, but we use a fixed constant to avoid
1150 >     * (otherwise unchecked) cycles and to bound staleness of
1151 >     * traversal parameters at the expense of sometimes blocking when
1152 >     * we could be helping.
1153       */
1154 <    private final String workerNamePrefix;
1154 >    private static final int MAX_HELP = 64;
1155  
1156      /**
1157 <     * Sum of per-thread steal counts, updated only when threads are
1158 <     * idle or terminating.
1157 >     * Increment for seed generators. See class ThreadLocal for
1158 >     * explanation.
1159       */
1160 <    private volatile long stealCount;
1160 >    private static final int SEED_INCREMENT = 0x61c88647;
1161  
1162      /**
1163 <     * Main pool control -- a long packed with:
1163 >     * Bits and masks for control variables
1164 >     *
1165 >     * Field ctl is a long packed with:
1166       * AC: Number of active running workers minus target parallelism (16 bits)
1167 <     * TC: Number of total workers minus target parallelism (16bits)
1167 >     * TC: Number of total workers minus target parallelism (16 bits)
1168       * ST: true if pool is terminating (1 bit)
1169       * EC: the wait count of top waiting thread (15 bits)
1170 <     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
1170 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1171       *
1172       * When convenient, we can extract the upper 32 bits of counts and
1173       * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
# Line 474 | Line 1176 | public class ForkJoinPool extends Abstra
1176       * parallelism and the positionings of fields makes it possible to
1177       * perform the most common checks via sign tests of fields: When
1178       * ac is negative, there are not enough active workers, when tc is
1179 <     * negative, there are not enough total workers, when id is
478 <     * negative, there is at least one waiting worker, and when e is
1179 >     * negative, there are not enough total workers, and when e is
1180       * negative, the pool is terminating.  To deal with these possibly
1181       * negative fields, we use casts in and out of "short" and/or
1182 <     * signed shifts to maintain signedness.  Note: AC_SHIFT is
1183 <     * redundantly declared in ForkJoinWorkerThread in order to
1184 <     * integrate a surplus-threads check.
1182 >     * signed shifts to maintain signedness.
1183 >     *
1184 >     * When a thread is queued (inactivated), its eventCount field is
1185 >     * set negative, which is the only way to tell if a worker is
1186 >     * prevented from executing tasks, even though it must continue to
1187 >     * scan for them to avoid queuing races. Note however that
1188 >     * eventCount updates lag releases so usage requires care.
1189 >     *
1190 >     * Field plock is an int packed with:
1191 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1192 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1193 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1194 >     *
1195 >     * The sequence number enables simple consistency checks:
1196 >     * Staleness of read-only operations on the workQueues array can
1197 >     * be checked by comparing plock before vs after the reads.
1198       */
485    volatile long ctl;
1199  
1200      // bit positions/shifts for fields
1201      private static final int  AC_SHIFT   = 48;
# Line 491 | Line 1204 | public class ForkJoinPool extends Abstra
1204      private static final int  EC_SHIFT   = 16;
1205  
1206      // bounds
1207 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
1208 <    private static final int  SMASK      = 0xffff;  // mask short bits
1207 >    private static final int  SMASK      = 0xffff;  // short bits
1208 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1209 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1210 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1211      private static final int  SHORT_SIGN = 1 << 15;
1212      private static final int  INT_SIGN   = 1 << 31;
1213  
# Line 514 | Line 1229 | public class ForkJoinPool extends Abstra
1229      private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1230  
1231      // masks and units for dealing with e = (int)ctl
1232 <    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
1233 <    private static final int  EC_UNIT    = 1 << EC_SHIFT;
1232 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1233 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1234  
1235 <    /**
1236 <     * The target parallelism level.
1237 <     */
1238 <    final int parallelism;
1235 >    // plock bits
1236 >    private static final int SHUTDOWN    = 1 << 31;
1237 >    private static final int PL_LOCK     = 2;
1238 >    private static final int PL_SIGNAL   = 1;
1239 >    private static final int PL_SPINS    = 1 << 8;
1240 >
1241 >    // access mode for WorkQueue
1242 >    static final int LIFO_QUEUE          =  0;
1243 >    static final int FIFO_QUEUE          =  1;
1244 >    static final int SHARED_QUEUE        = -1;
1245 >
1246 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1247 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1248 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1249  
1250 <    /**
526 <     * Index (mod submission queue length) of next element to take
527 <     * from submission queue.
528 <     */
529 <    volatile int queueBase;
1250 >    // Instance fields
1251  
1252 <    /**
1253 <     * Index (mod submission queue length) of next element to add
1254 <     * in submission queue.
1255 <     */
1256 <    int queueTop;
1252 >    /*
1253 >     * Field layout of this class tends to matter more than one would
1254 >     * like. Runtime layout order is only loosely related to
1255 >     * declaration order and may differ across JVMs, but the following
1256 >     * empirically works OK on current JVMs.
1257 >     */
1258 >    volatile long stealCount;                  // collects worker counts
1259 >    volatile long ctl;                         // main pool control
1260 >    volatile int plock;                        // shutdown status and seqLock
1261 >    volatile int indexSeed;                    // worker/submitter index seed
1262 >    final int config;                          // mode and parallelism level
1263 >    WorkQueue[] workQueues;                    // main registry
1264 >    final ForkJoinWorkerThreadFactory factory;
1265 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1266 >    final String workerNamePrefix;             // to create worker name string
1267  
1268 <    /**
1269 <     * True when shutdown() has been called.
1270 <     */
1271 <    volatile boolean shutdown;
1268 >    /*
1269 >     * Acquires the plock lock to protect worker array and related
1270 >     * updates. This method is called only if an initial CAS on plock
1271 >     * fails. This acts as a spinLock for normal cases, but falls back
1272 >     * to builtin monitor to block when (rarely) needed. This would be
1273 >     * a terrible idea for a highly contended lock, but works fine as
1274 >     * a more conservative alternative to a pure spinlock.  See
1275 >     * internal ConcurrentHashMap documentation for further
1276 >     * explanation of nearly the same construction.
1277 >     */
1278 >    private int acquirePlock() {
1279 >        int spins = PL_SPINS, r = 0, ps, nps;
1280 >        for (;;) {
1281 >            if (((ps = plock) & PL_LOCK) == 0 &&
1282 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1283 >                return nps;
1284 >            else if (r == 0) { // randomize spins if possible
1285 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1286 >                if ((t instanceof ForkJoinWorkerThread) &&
1287 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1288 >                    r = w.seed;
1289 >                else if ((z = submitters.get()) != null)
1290 >                    r = z.seed;
1291 >                else
1292 >                    r = 1;
1293 >            }
1294 >            else if (spins >= 0) {
1295 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1296 >                if (r >= 0)
1297 >                    --spins;
1298 >            }
1299 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1300 >                synchronized (this) {
1301 >                    if ((plock & PL_SIGNAL) != 0) {
1302 >                        try {
1303 >                            wait();
1304 >                        } catch (InterruptedException ie) {
1305 >                            try {
1306 >                                Thread.currentThread().interrupt();
1307 >                            } catch (SecurityException ignore) {
1308 >                            }
1309 >                        }
1310 >                    }
1311 >                    else
1312 >                        notifyAll();
1313 >                }
1314 >            }
1315 >        }
1316 >    }
1317  
1318      /**
1319 <     * True if use local fifo, not default lifo, for local polling
1320 <     * Read by, and replicated by ForkJoinWorkerThreads
1319 >     * Unlocks and signals any thread waiting for plock. Called only
1320 >     * when CAS of seq value for unlock fails.
1321       */
1322 <    final boolean locallyFifo;
1322 >    private void releasePlock(int ps) {
1323 >        plock = ps;
1324 >        synchronized (this) { notifyAll(); }
1325 >    }
1326  
1327      /**
1328 <     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
550 <     * When non-zero, suppresses automatic shutdown when active
551 <     * counts become zero.
1328 >     * Tries to create and start a worker; adjusts counts etc on failure
1329       */
1330 <    volatile int quiescerCount;
1330 >    private void addWorker() {
1331 >        ForkJoinWorkerThread wt = null;
1332 >        try {
1333 >            (wt = factory.newThread(this)).start();
1334 >        } catch (Throwable ex) {
1335 >            deregisterWorker(wt, ex); // adjust on failure
1336 >        }
1337 >    }
1338  
1339      /**
1340 <     * The number of threads blocked in join.
1341 <     */
1342 <    volatile int blockedCount;
1340 >     * Performs secondary initialization, called when plock is zero.
1341 >     * Creates workQueue array and sets plock to a valid value.  The
1342 >     * lock body must be exception-free (so no try/finally) so we
1343 >     * optimistically allocate new array outside the lock and throw
1344 >     * away if (very rarely) not needed. (A similar tactic is used in
1345 >     * fullExternalPush.)  Because the plock seq value can eventually
1346 >     * wrap around zero, this method harmlessly fails to reinitialize
1347 >     * if workQueues exists, while still advancing plock.
1348 >     */
1349 >    private void initWorkQueuesArray() {
1350 >        WorkQueue[] ws; int ps;
1351 >        int p = config & SMASK;        // find power of two table size
1352 >        int n = (p > 1) ? p - 1 : 1;   // ensure at least 2 slots
1353 >        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
1354 >        WorkQueue[] nws = new WorkQueue[(n + 1) << 1];
1355 >        if (((ps = plock) & PL_LOCK) != 0 ||
1356 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357 >            ps = acquirePlock();
1358 >        if ((ws = workQueues) == null || ws.length == 0)
1359 >            workQueues = nws;
1360 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1361 >        if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1362 >            releasePlock(nps);
1363 >        long c; int u;
1364 >        if ((u = (int)((c = ctl) >>> 32)) < 0 && (int)c == 0) {
1365 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1366 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1367 >            if (U.compareAndSwapLong(this, CTL, c, nc))
1368 >                addWorker();
1369 >        }
1370  
1371 <    /**
561 <     * Counter for worker Thread names (unrelated to their poolIndex)
562 <     */
563 <    private volatile int nextWorkerNumber;
1371 >    }
1372  
1373 <    /**
566 <     * The index for the next created worker. Accessed under scanGuard.
567 <     */
568 <    private int nextWorkerIndex;
1373 >    //  Registering and deregistering workers
1374  
1375      /**
1376 <     * SeqLock and index masking for for updates to workers array.
1377 <     * Locked when SG_UNIT is set. Unlocking clears bit by adding
1378 <     * SG_UNIT. Staleness of read-only operations can be checked by
1379 <     * comparing scanGuard to value before the reads. The low 16 bits
1380 <     * (i.e, anding with SMASK) hold (the smallest power of two
1381 <     * covering all worker indices, minus one, and is used to avoid
1382 <     * dealing with large numbers of null slots when the workers array
1383 <     * is overallocated.
1384 <     */
1385 <    volatile int scanGuard;
1386 <
1387 <    private static final int SG_UNIT = 1 << 16;
1376 >     * Callback from ForkJoinWorkerThread to establish and record its
1377 >     * WorkQueue. To avoid scanning bias due to packing entries in
1378 >     * front of the workQueues array, we treat the array as a simple
1379 >     * power-of-two hash table using per-thread seed as hash,
1380 >     * expanding as needed.
1381 >     *
1382 >     * @param wt the worker thread
1383 >     */
1384 >    final void registerWorker(ForkJoinWorkerThread wt) {
1385 >        if (wt != null && wt.workQueue == null) {
1386 >            int s, ps;    // generate a rarely colliding candidate index seed
1387 >            do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1388 >                                              s += SEED_INCREMENT) ||
1389 >                         s == 0); // skip 0
1390 >            WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1391 >            if (((ps = plock) & PL_LOCK) != 0 ||
1392 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1393 >                ps = acquirePlock();
1394 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1395 >            try {
1396 >                WorkQueue[] ws;
1397 >                if ((ws = workQueues) != null && wt.workQueue == null) {
1398 >                    int n = ws.length, m = n - 1;
1399 >                    int r = (s << 1) | 1;           // use odd-numbered indices
1400 >                    if (ws[r &= m] != null) {       // collision
1401 >                        int probes = 0;             // step by approx half size
1402 >                        int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1403 >                        while (ws[r = (r + step) & m] != null) {
1404 >                            if (++probes >= n) {
1405 >                                workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1406 >                                m = n - 1;
1407 >                                probes = 0;
1408 >                            }
1409 >                        }
1410 >                    }
1411 >                    w.eventCount = w.poolIndex = r; // volatile write orders
1412 >                    wt.workQueue = ws[r] = w;
1413 >                }
1414 >            } finally {
1415 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1416 >                    releasePlock(nps);
1417 >            }
1418 >        }
1419 >    }
1420  
1421      /**
1422 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1423 <     * task when the pool is quiescent to instead try to shrink the
1424 <     * number of workers.  The exact value does not matter too
1425 <     * much. It must be short enough to release resources during
1426 <     * sustained periods of idleness, but not so short that threads
1427 <     * are continually re-created.
1428 <     */
1429 <    private static final long SHRINK_RATE =
1430 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1422 >     * Final callback from terminating worker, as well as upon failure
1423 >     * to construct or start a worker.  Removes record of worker from
1424 >     * array, and adjusts counts. If pool is shutting down, tries to
1425 >     * complete termination.
1426 >     *
1427 >     * @param wt the worker thread or null if construction failed
1428 >     * @param ex the exception causing failure, or null if none
1429 >     */
1430 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1431 >        WorkQueue w = null;
1432 >        if (wt != null && (w = wt.workQueue) != null) {
1433 >            int ps;
1434 >            w.qlock = -1;                // ensure set
1435 >            long ns = w.nsteals, sc;     // collect steal count
1436 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1437 >                                               sc = stealCount, sc + ns));
1438 >            if (((ps = plock) & PL_LOCK) != 0 ||
1439 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1440 >                ps = acquirePlock();
1441 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1442 >            try {
1443 >                int idx = w.poolIndex;
1444 >                WorkQueue[] ws = workQueues;
1445 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1446 >                    ws[idx] = null;
1447 >            } finally {
1448 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1449 >                    releasePlock(nps);
1450 >            }
1451 >        }
1452  
1453 <    /**
1454 <     * Top-level loop for worker threads: On each step: if the
1455 <     * previous step swept through all queues and found no tasks, or
1456 <     * there are excess threads, then possibly blocks. Otherwise,
1457 <     * scans for and, if found, executes a task. Returns when pool
1458 <     * and/or worker terminate.
1459 <     *
1460 <     * @param w the worker
1461 <     */
1462 <    final void work(ForkJoinWorkerThread w) {
1463 <        boolean swept = false;                // true on empty scans
1464 <        long c;
607 <        while (!w.terminate && (int)(c = ctl) >= 0) {
608 <            int a;                            // active count
609 <            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 <                swept = scan(w, a);
611 <            else if (tryAwaitWork(w, c))
612 <                swept = false;
1453 >        long c;                             // adjust ctl counts
1454 >        do {} while (!U.compareAndSwapLong
1455 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1456 >                                           ((c - TC_UNIT) & TC_MASK) |
1457 >                                           (c & ~(AC_MASK|TC_MASK)))));
1458 >
1459 >        if (!tryTerminate(false, false) && w != null) {
1460 >            w.cancelAll();                  // cancel remaining tasks
1461 >            if (w.array != null)            // suppress signal if never ran
1462 >                helpSignal(null, 0);        // wake up or create replacement
1463 >            if (ex == null)                 // help clean refs on way out
1464 >                ForkJoinTask.helpExpungeStaleExceptions();
1465          }
1466 +
1467 +        if (ex != null)                     // rethrow
1468 +            ForkJoinTask.rethrow(ex);
1469      }
1470  
1471 <    // Signalling
1471 >    // Submissions
1472  
1473      /**
1474 <     * Wakes up or creates a worker.
1475 <     */
1476 <    final void signalWork() {
1477 <        /*
1478 <         * The while condition is true if: (there is are too few total
1479 <         * workers OR there is at least one waiter) AND (there are too
1480 <         * few active workers OR the pool is terminating).  The value
1481 <         * of e distinguishes the remaining cases: zero (no waiters)
1482 <         * for create, negative if terminating (in which case do
1483 <         * nothing), else release a waiter. The secondary checks for
1484 <         * release (non-null array etc) can fail if the pool begins
1485 <         * terminating after the test, and don't impose any added cost
1486 <         * because JVMs must perform null and bounds checks anyway.
1487 <         */
1488 <        long c; int e, u;
1489 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1490 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
1491 <            if (e > 0) {                         // release a waiting worker
1492 <                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
1493 <                if ((ws = workers) == null ||
1494 <                    (i = ~e & SMASK) >= ws.length ||
1495 <                    (w = ws[i]) == null)
1496 <                    break;
1497 <                long nc = (((long)(w.nextWait & E_MASK)) |
1498 <                           ((long)(u + UAC_UNIT) << 32));
1499 <                if (w.eventCount == e &&
1500 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1501 <                    w.eventCount = (e + EC_UNIT) & E_MASK;
1502 <                    if (w.parked)
1503 <                        UNSAFE.unpark(w);
1504 <                    break;
1505 <                }
1474 >     * Unless shutting down, adds the given task to a submission queue
1475 >     * at submitter's current queue index (modulo submission
1476 >     * range). Only the most common path is directly handled in this
1477 >     * method. All others are relayed to fullExternalPush.
1478 >     *
1479 >     * @param task the task. Caller must ensure non-null.
1480 >     */
1481 >    final void externalPush(ForkJoinTask<?> task) {
1482 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1483 >        if ((z = submitters.get()) != null && plock > 0 &&
1484 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1485 >            (q = ws[m & z.seed & SQMASK]) != null &&
1486 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1487 >            int b = q.base, s = q.top, n, an;
1488 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1489 >                U.putObject(a, (long)(((an - 1) & s) << ASHIFT) + ABASE, task);
1490 >                q.top = s + 1;                     // push on to deque
1491 >                q.qlock = 0;
1492 >                if (n <= 2)
1493 >                    signalWork(q, 0);
1494 >                return;
1495 >            }
1496 >            q.qlock = 0;
1497 >        }
1498 >        fullExternalPush(task);
1499 >    }
1500 >
1501 >    /**
1502 >     * Full version of externalPush. This method is called, among
1503 >     * other times, upon the first submission of the first task to the
1504 >     * pool, so must perform secondary initialization (via
1505 >     * initWorkQueuesArray). It also detects first submission by an
1506 >     * external thread by looking up its ThreadLocal, and creates a
1507 >     * new shared queue if the one at index if empty or contended. The
1508 >     * lock body must be exception-free (so no try/finally) so we
1509 >     * optimistically allocate new queues outside the lock and throw
1510 >     * them away if (very rarely) not needed.
1511 >     */
1512 >    private void fullExternalPush(ForkJoinTask<?> task) {
1513 >        int r = 0;
1514 >        for (Submitter z = submitters.get();;) {
1515 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1516 >            if (z == null) {
1517 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1518 >                                        r += SEED_INCREMENT) && r != 0)
1519 >                    submitters.set(z = new Submitter(r));
1520 >            }
1521 >            else if (r == 0) {               // move to a different index
1522 >                r = z.seed;
1523 >                r ^= r << 13;                // same xorshift as WorkQueues
1524 >                r ^= r >>> 17;
1525 >                z.seed = r ^ (r << 5);
1526 >            }
1527 >            else if ((ps = plock) < 0)
1528 >                throw new RejectedExecutionException();
1529 >            else if (ps == 0 || (ws = workQueues) == null ||
1530 >                     (m = ws.length - 1) < 0)
1531 >                initWorkQueuesArray();
1532 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1533 >                if (q.trySharedPush(task))
1534 >                    return;
1535 >                else
1536 >                    r = 0; // move on contention
1537              }
1538 <            else if (UNSAFE.compareAndSwapLong
1539 <                     (this, ctlOffset, c,
1540 <                      (long)(((u + UTC_UNIT) & UTC_MASK) |
1541 <                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1542 <                addWorker();
1543 <                break;
1538 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1539 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1540 >                if (((ps = plock) & PL_LOCK) != 0 ||
1541 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1542 >                    ps = acquirePlock();
1543 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1544 >                    ws[k] = q;
1545 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1546 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1547 >                    releasePlock(nps);
1548              }
1549 +            else
1550 +                r = 0; // try elsewhere while lock held
1551          }
1552      }
1553  
1554 +    // Maintaining ctl counts
1555 +
1556      /**
1557 <     * Variant of signalWork to help release waiters on rescans.
664 <     * Tries once to release a waiter if active count < 0.
665 <     *
666 <     * @return false if failed due to contention, else true
1557 >     * Increments active count; mainly called upon return from blocking.
1558       */
1559 <    private boolean tryReleaseWaiter() {
1560 <        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
1561 <        if ((e = (int)(c = ctl)) > 0 &&
671 <            (int)(c >> AC_SHIFT) < 0 &&
672 <            (ws = workers) != null &&
673 <            (i = ~e & SMASK) < ws.length &&
674 <            (w = ws[i]) != null) {
675 <            long nc = ((long)(w.nextWait & E_MASK) |
676 <                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677 <            if (w.eventCount != e ||
678 <                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679 <                return false;
680 <            w.eventCount = (e + EC_UNIT) & E_MASK;
681 <            if (w.parked)
682 <                UNSAFE.unpark(w);
683 <        }
684 <        return true;
1559 >    final void incrementActiveCount() {
1560 >        long c;
1561 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1562      }
1563  
687    // Scanning for tasks
688
1564      /**
1565 <     * Scans for and, if found, executes one task. Scans start at a
1566 <     * random index of workers array, and randomly select the first
1567 <     * (2*#workers)-1 probes, and then, if all empty, resort to 2
1568 <     * circular sweeps, which is necessary to check quiescence. and
1569 <     * taking a submission only if no stealable tasks were found.  The
1570 <     * steal code inside the loop is a specialized form of
1571 <     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
1572 <     * helpJoinTask and signal propagation. The code for submission
1573 <     * queues is almost identical. On each steal, the worker completes
1574 <     * not only the task, but also all local tasks that this task may
1575 <     * have generated. On detecting staleness or contention when
1576 <     * trying to take a task, this method returns without finishing
1577 <     * sweep, which allows global state rechecks before retry.
1578 <     *
1579 <     * @param w the worker
1580 <     * @param a the number of active workers
1581 <     * @return true if swept all queues without finding a task
1582 <     */
1583 <    private boolean scan(ForkJoinWorkerThread w, int a) {
1584 <        int g = scanGuard; // mask 0 avoids useless scans if only one active
1585 <        int m = parallelism == 1 - a? 0 : g & SMASK;
1586 <        ForkJoinWorkerThread[] ws = workers;
1587 <        if (ws == null || ws.length <= m)         // staleness check
1588 <            return false;
1589 <        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
1590 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1591 <            ForkJoinWorkerThread v = ws[k & m];
1592 <            if (v != null && (b = v.queueBase) != v.queueTop &&
1593 <                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
1594 <                long u = (i << ASHIFT) + ABASE;
720 <                if ((t = q[i]) != null && v.queueBase == b &&
721 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
722 <                    int d = (v.queueBase = b + 1) - v.queueTop;
723 <                    v.stealHint = w.poolIndex;
724 <                    if (d != 0)
725 <                        signalWork();             // propagate if nonempty
726 <                    w.execTask(t);
1565 >     * Tries to create (at most one) or activate (possibly several)
1566 >     * workers if too few are active. On contention failure, continues
1567 >     * until at least one worker is signalled or the given queue is
1568 >     * empty or all workers are active.
1569 >     *
1570 >     * @param q if non-null, the queue holding tasks to be signalled
1571 >     * @param signals the target number of signals (at least one --
1572 >     * if argument is zero also sets signallee hint if parked).
1573 >     */
1574 >    final void signalWork(WorkQueue q, int signals) {
1575 >        long c; int e, u, i, s; WorkQueue[] ws; WorkQueue w; Thread p;
1576 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1577 >            if ((e = (int)c) > 0) {
1578 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1579 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1580 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1581 >                               ((long)(u + UAC_UNIT) << 32));
1582 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1583 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1584 >                        if ((p = w.parker) != null) {
1585 >                            if (q != null && signals == 0)
1586 >                                w.hint = q.poolIndex;
1587 >                            U.unpark(p);
1588 >                        }
1589 >                        if (--signals <= 0)
1590 >                            break;
1591 >                    }
1592 >                    if (q != null && (s = q.queueSize()) <= signals &&
1593 >                         (signals = s) <= 0)
1594 >                        break;
1595                  }
1596 <                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
1597 <                return false;                     // store next seed
730 <            }
731 <            else if (j < 0) {                     // xorshift
732 <                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1596 >                else
1597 >                    break;
1598              }
1599 <            else
1600 <                ++k;
1601 <        }
1602 <        if (scanGuard != g)                       // staleness check
1603 <            return false;
1604 <        else {                                    // try to take submission
740 <            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
741 <            if ((b = queueBase) != queueTop &&
742 <                (q = submissionQueue) != null &&
743 <                (i = (q.length - 1) & b) >= 0) {
744 <                long u = (i << ASHIFT) + ABASE;
745 <                if ((t = q[i]) != null && queueBase == b &&
746 <                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
747 <                    queueBase = b + 1;
748 <                    w.execTask(t);
1599 >            else if (e == 0 && (u & SHORT_SIGN) != 0) {
1600 >                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1601 >                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1602 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1603 >                    addWorker();
1604 >                    break;
1605                  }
750                return false;
1606              }
1607 <            return true;                         // all queues empty
1607 >            else
1608 >                break;
1609          }
1610      }
1611  
1612 +    // Scanning for tasks
1613 +
1614      /**
1615 <     * Tries to enqueue worker in wait queue and await change in
758 <     * worker's eventCount.  Before blocking, rescans queues to avoid
759 <     * missed signals.  If the pool is quiescent, possibly terminates
760 <     * worker upon exit.
761 <     *
762 <     * @param w the calling worker
763 <     * @param c the ctl value on entry
764 <     * @return true if waited or another thread was released upon enq
1615 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1616       */
1617 <    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
1618 <        int v = w.eventCount;
1619 <        w.nextWait = (int)c;                       // w's successor record
1620 <        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1621 <        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1622 <            long d = ctl; // return true if lost to a deq, to force rescan
1623 <            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
1624 <        }
1625 <        boolean rescanned = false;
1626 <        for (int sc;;) {
1627 <            if (w.eventCount != v)
1628 <                return true;
1629 <            if ((sc = w.stealCount) != 0) {
1630 <                long s = stealCount;               // accumulate stealCount
1631 <                if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s+sc))
1632 <                    w.stealCount = 0;
1633 <            }
1634 <            else if (!rescanned) {
1635 <                int g = scanGuard, m = g & SMASK;
1636 <                ForkJoinWorkerThread[] ws = workers;
1637 <                if (ws != null && m < ws.length) {
1638 <                    rescanned = true;
1639 <                    for (int i = 0; i <= m; ++i) {
1640 <                        ForkJoinWorkerThread u = ws[i];
1641 <                        if (u != null) {
1642 <                            if (u.queueBase != u.queueTop &&
1643 <                                !tryReleaseWaiter())
1644 <                                rescanned = false; // contended
1645 <                            if (w.eventCount != v)
1646 <                                return true;
1647 <                        }
1617 >    final void runWorker(WorkQueue w) {
1618 >        if (w != null) // skip on initialization failure
1619 >            do { w.runTask(scan(w)); } while (w.qlock >= 0);
1620 >    }
1621 >
1622 >    /**
1623 >     * Scans for and, if found, returns one task, else possibly
1624 >     * inactivates the worker. This method operates on single reads of
1625 >     * volatile state and is designed to be re-invoked continuously,
1626 >     * in part because it returns upon detecting inconsistencies,
1627 >     * contention, or state changes that indicate possible success on
1628 >     * re-invocation.
1629 >     *
1630 >     * The scan searches for tasks across queues (starting at a random
1631 >     * index, and relying on registerWorker to irregularly scatter
1632 >     * them within array to avoid bias), checking each at least twice.
1633 >     * The scan terminates upon either finding a non-empty queue, or
1634 >     * completing the sweep. If the worker is not inactivated, it
1635 >     * takes and returns a task from this queue. Otherwise, if not
1636 >     * activated, it signals workers (that may include itself) and
1637 >     * returns so caller can retry. Also returns for true if the
1638 >     * worker array may have changed during an empty scan.  On failure
1639 >     * to find a task, we take one of the following actions, after
1640 >     * which the caller will retry calling this method unless
1641 >     * terminated.
1642 >     *
1643 >     * * If pool is terminating, terminate the worker.
1644 >     *
1645 >     * * If not already enqueued, try to inactivate and enqueue the
1646 >     * worker on wait queue. Or, if inactivating has caused the pool
1647 >     * to be quiescent, relay to idleAwaitWork to check for
1648 >     * termination and possibly shrink pool.
1649 >     *
1650 >     * * If already enqueued and none of the above apply, possibly
1651 >     * (with 1/2 probability) park awaiting signal, else lingering to
1652 >     * help scan and signal.
1653 >     *
1654 >     * @param w the worker (via its WorkQueue)
1655 >     * @return a task or null if none found
1656 >     */
1657 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1658 >        WorkQueue[] ws; int m, hint;
1659 >        int ps = plock;                          // read plock before ws
1660 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1661 >            int ec = w.eventCount;               // ec is negative if inactive
1662 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1663 >            for (int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN; ; --j) {
1664 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1665 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1666 >                    (a = q.array) != null) {     // probably nonempty
1667 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1668 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1669 >                        U.getObjectVolatile(a, i);
1670 >                    if (q.base == b && ec >= 0 && t != null &&
1671 >                        U.compareAndSwapObject(a, i, t, null)) {
1672 >                        if ((q.base = b + 1) - q.top < 0)
1673 >                            signalWork(q, 0);
1674 >                        return t;                // taken
1675 >                    }
1676 >                    else if (ec < 0 || j < m) {  // cannot take or cannot rescan
1677 >                        w.hint = q.poolIndex;    // use hint below
1678 >                        break;                   // let caller retry after signal
1679                      }
1680                  }
1681 <                if (scanGuard != g ||              // stale
1682 <                    (queueBase != queueTop && !tryReleaseWaiter()))
1683 <                    rescanned = false;
1684 <                if (!rescanned)
1685 <                    Thread.yield();                // reduce contention
1686 <                else
1687 <                    Thread.interrupted();          // clear before park
1688 <            }
1689 <            else if (parallelism + (int)(ctl >> AC_SHIFT) == 0 &&
1690 <                     blockedCount == 0 && quiescerCount == 0)
1691 <                idleAwaitWork(w, v);               // quiescent -- maybe shrink
1692 <            else {
1693 <                w.parked = true;                   // must recheck
1694 <                if (w.eventCount != v) {
1695 <                    w.parked = false;
1696 <                    return true;
1681 >                else if (j < 0) { // end of scan; in loop to simplify code
1682 >                    long c, sc; int e, ns;
1683 >                    if ((ns = w.nsteals) != 0) {
1684 >                        if (U.compareAndSwapLong(this, STEALCOUNT,
1685 >                                                 sc = stealCount, sc + ns))
1686 >                            w.nsteals = 0;       // collect steals
1687 >                    }
1688 >                    else if (plock != ps)        // ws may have changed
1689 >                        break;
1690 >                    else if ((e = (int)(c = ctl)) < 0)
1691 >                        w.qlock = -1;            // pool is terminating
1692 >                    else if (ec >= 0) {          // try to enqueue/inactivate
1693 >                        long nc = ((long)ec |
1694 >                                   ((c - AC_UNIT) & (AC_MASK|TC_MASK)));
1695 >                        w.nextWait = e;          // link and mark inactive
1696 >                        w.hint = -1;             // use hint if set while parked
1697 >                        w.eventCount = ec | INT_SIGN;
1698 >                        if (ctl != c ||
1699 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1700 >                            w.eventCount = ec;  // unmark on CAS failure
1701 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1702 >                            idleAwaitWork(w, nc, c);
1703 >                    }
1704 >                    else if (w.eventCount < 0) { // block
1705 >                        Thread wt = Thread.currentThread();
1706 >                        Thread.interrupted();    // clear status
1707 >                        U.putObject(wt, PARKBLOCKER, this);
1708 >                        w.parker = wt;           // emulate LockSupport.park
1709 >                        if (w.eventCount < 0)    // recheck
1710 >                            U.park(false, 0L);
1711 >                        w.parker = null;
1712 >                        U.putObject(wt, PARKBLOCKER, null);
1713 >                    }
1714 >                    break;
1715                  }
1716 <                LockSupport.park(this);
1717 <                rescanned = w.parked = false;
1716 >            }
1717 >            if ((hint = w.hint) >= 0) {          // help signal
1718 >                WorkQueue[] vs; WorkQueue v; int k;
1719 >                w.hint = -1;                     // suppress resignal
1720 >                if ((vs = workQueues) != null && hint < vs.length &&
1721 >                    (v = vs[hint]) != null && (k = v.base - v.top) < -1)
1722 >                    signalWork(v, 1 - k);
1723              }
1724          }
1725 +        return null;
1726      }
1727  
1728      /**
1729 <     * If pool is quiescent, checks for termination, and waits for
1730 <     * event signal for up to SHRINK_RATE nanosecs. On timeout, if ctl
1731 <     * has not changed, terminates the worker. Upon its termination
1732 <     * (see deregisterWorker), it may wake up another worker to
1733 <     * possibly repeat this process.
1729 >     * If inactivating worker w has caused the pool to become
1730 >     * quiescent, checks for pool termination, and, so long as this is
1731 >     * not the only worker, waits for event for up to a given
1732 >     * duration.  On timeout, if ctl has not changed, terminates the
1733 >     * worker, which will in turn wake up another worker to possibly
1734 >     * repeat this process.
1735       *
1736       * @param w the calling worker
1737 <     * @param v the eventCount w must wait until changed
1737 >     * @param currentCtl the ctl value triggering possible quiescence
1738 >     * @param prevCtl the ctl value to restore if thread is terminated
1739       */
1740 <    private void idleAwaitWork(ForkJoinWorkerThread w, int v) {
1741 <        ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
1742 <        if (shutdown)
1743 <            tryTerminate(false);
1744 <        long c = ctl;
1745 <        long nc = (((c & (AC_MASK|TC_MASK)) + AC_UNIT) |
1746 <                   (long)(w.nextWait & E_MASK)); // ctl value to release w
1747 <        if (w.eventCount == v &&
1748 <            parallelism + (int)(c >> AC_SHIFT) == 0 &&
1749 <            blockedCount == 0 && quiescerCount == 0) {
1750 <            long startTime = System.nanoTime();
1751 <            Thread.interrupted();
1752 <            if (w.eventCount == v) {
1753 <                w.parked = true;
1754 <                if (w.eventCount == v)
1755 <                    LockSupport.parkNanos(this, SHRINK_RATE);
1756 <                w.parked = false;
1757 <                if (w.eventCount == v && ctl == c &&
1758 <                    System.nanoTime() - startTime >= SHRINK_RATE &&
1759 <                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1760 <                    w.terminate = true;
1761 <                    w.eventCount = ((int)c + EC_UNIT) & E_MASK;
1740 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1741 >        if (w != null && w.eventCount < 0 &&
1742 >            !tryTerminate(false, false) && (int)prevCtl != 0) {
1743 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1744 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1745 >            long deadline = System.nanoTime() + parkTime - 100000L; // 1ms slop
1746 >            Thread wt = Thread.currentThread();
1747 >            while (ctl == currentCtl) {
1748 >                Thread.interrupted();  // timed variant of version in scan()
1749 >                U.putObject(wt, PARKBLOCKER, this);
1750 >                w.parker = wt;
1751 >                if (ctl == currentCtl)
1752 >                    U.park(false, parkTime);
1753 >                w.parker = null;
1754 >                U.putObject(wt, PARKBLOCKER, null);
1755 >                if (ctl != currentCtl)
1756 >                    break;
1757 >                if (deadline - System.nanoTime() <= 0L &&
1758 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1759 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1760 >                    w.qlock = -1;   // shrink
1761 >                    w.hint = -1;    // suppress helping
1762 >                    break;
1763                  }
1764              }
1765          }
1766      }
1767  
859    // Submissions
860
1768      /**
1769 <     * Enqueues the given task in the submissionQueue.  Same idea as
1770 <     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
1771 <     *
1772 <     * @param t the task
1773 <     */
1774 <    private void addSubmission(ForkJoinTask<?> t) {
1775 <        final ReentrantLock lock = this.submissionLock;
1776 <        lock.lock();
1777 <        try {
1778 <            ForkJoinTask<?>[] q; int s, m;
1779 <            if ((q = submissionQueue) != null) {    // ignore if queue removed
1780 <                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
1781 <                UNSAFE.putOrderedObject(q, u, t);
1782 <                queueTop = s + 1;
1783 <                if (s - queueBase == m)
1784 <                    growSubmissionQueue();
1769 >     * Scans through queues looking for work (optionally, while
1770 >     * joining a task); if any are present, signals. May return early
1771 >     * if more signalling is detectably unneeded.
1772 >     *
1773 >     * @param task if non-null, return early if done
1774 >     * @param origin an index to start scan
1775 >     */
1776 >    final int helpSignal(ForkJoinTask<?> task, int origin) {
1777 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1778 >        if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1779 >            for (int i = 0; i <= m; ++i) {
1780 >                if (task != null && (s = task.status) < 0)
1781 >                    return s;
1782 >                if ((q = ws[(i + origin) & m]) != null &&
1783 >                    (n = q.queueSize()) > 0) {
1784 >                    signalWork(q, n);
1785 >                    if ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
1786 >                        break;
1787 >                }
1788              }
879        } finally {
880            lock.unlock();
1789          }
1790 <        signalWork();
1790 >        return 0;
1791      }
1792  
885    //  (pollSubmission is defined below with exported methods)
886
1793      /**
1794 <     * Creates or doubles submissionQueue array.
1795 <     * Basically identical to ForkJoinWorkerThread version
1796 <     */
1797 <    private void growSubmissionQueue() {
1798 <        ForkJoinTask<?>[] oldQ = submissionQueue;
1799 <        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
1800 <        if (size > MAXIMUM_QUEUE_CAPACITY)
1801 <            throw new RejectedExecutionException("Queue capacity exceeded");
1802 <        if (size < INITIAL_QUEUE_CAPACITY)
1803 <            size = INITIAL_QUEUE_CAPACITY;
1804 <        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
1805 <        int mask = size - 1;
1806 <        int top = queueTop;
1807 <        int oldMask;
1808 <        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
1809 <            for (int b = queueBase; b != top; ++b) {
1810 <                long u = ((b & oldMask) << ASHIFT) + ABASE;
1811 <                Object x = UNSAFE.getObjectVolatile(oldQ, u);
1812 <                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
1813 <                    UNSAFE.putObjectVolatile
1814 <                        (q, ((b & mask) << ASHIFT) + ABASE, x);
1815 <            }
1816 <        }
1817 <    }
1818 <
1819 <    // Blocking support
1820 <
1821 <    /**
1822 <     * Tries to increment blockedCount, decrement active count
1823 <     * (sometimes implicitly) and possibly release or create a
1824 <     * compensating worker in preparation for blocking. Fails
1825 <     * on contention or termination.
1826 <     *
1827 <     * @return true if the caller can block, else should recheck and retry
1828 <     */
1829 <    private boolean tryPreBlock() {
1830 <        int b = blockedCount;
1831 <        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
1832 <            int pc = parallelism;
1833 <            do {
1834 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
1835 <                int e, ac, tc, rc, i;
1836 <                long c = ctl;
1837 <                int u = (int)(c >>> 32);
1838 <                if ((e = (int)c) < 0) {
1839 <                                                 // skip -- terminating
1840 <                }
1841 <                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
1842 <                         (ws = workers) != null &&
1843 <                         (i = ~e & SMASK) < ws.length &&
1844 <                         (w = ws[i]) != null) {
1845 <                    long nc = ((long)(w.nextWait & E_MASK) |
1846 <                               (c & (AC_MASK|TC_MASK)));
1847 <                    if (w.eventCount == e &&
1848 <                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1849 <                        w.eventCount = (e + EC_UNIT) & E_MASK;
1850 <                        if (w.parked)
1851 <                            UNSAFE.unpark(w);
1852 <                        return true;             // release an idle worker
1853 <                    }
1854 <                }
1855 <                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1856 <                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1857 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
1858 <                        return true;             // no compensation needed
1859 <                }
1860 <                else if (tc + pc < MAX_ID) {
1861 <                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1862 <                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
1863 <                        addWorker();
1864 <                        return true;            // create a replacement
1865 <                    }
1866 <                }
1867 <                // try to back out on any failure and let caller retry
1868 <            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
1869 <                                               b = blockedCount, b - 1));
1794 >     * Tries to locate and execute tasks for a stealer of the given
1795 >     * task, or in turn one of its stealers, Traces currentSteal ->
1796 >     * currentJoin links looking for a thread working on a descendant
1797 >     * of the given task and with a non-empty queue to steal back and
1798 >     * execute tasks from. The first call to this method upon a
1799 >     * waiting join will often entail scanning/search, (which is OK
1800 >     * because the joiner has nothing better to do), but this method
1801 >     * leaves hints in workers to speed up subsequent calls. The
1802 >     * implementation is very branchy to cope with potential
1803 >     * inconsistencies or loops encountering chains that are stale,
1804 >     * unknown, or so long that they are likely cyclic.
1805 >     *
1806 >     * @param joiner the joining worker
1807 >     * @param task the task to join
1808 >     * @return 0 if no progress can be made, negative if task
1809 >     * known complete, else positive
1810 >     */
1811 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1812 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1813 >        if (joiner != null && task != null) {       // hoist null checks
1814 >            restart: for (;;) {
1815 >                ForkJoinTask<?> subtask = task;     // current target
1816 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1817 >                    WorkQueue[] ws; int m, s, h;
1818 >                    if ((s = task.status) < 0) {
1819 >                        stat = s;
1820 >                        break restart;
1821 >                    }
1822 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1823 >                        break restart;              // shutting down
1824 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1825 >                        v.currentSteal != subtask) {
1826 >                        for (int origin = h;;) {    // find stealer
1827 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1828 >                                (subtask.status < 0 || j.currentJoin != subtask))
1829 >                                continue restart;   // occasional staleness check
1830 >                            if ((v = ws[h]) != null &&
1831 >                                v.currentSteal == subtask) {
1832 >                                j.hint = h;        // save hint
1833 >                                break;
1834 >                            }
1835 >                            if (h == origin)
1836 >                                break restart;      // cannot find stealer
1837 >                        }
1838 >                    }
1839 >                    for (;;) { // help stealer or descend to its stealer
1840 >                        ForkJoinTask[] a;  int b;
1841 >                        if (subtask.status < 0)     // surround probes with
1842 >                            continue restart;       //   consistency checks
1843 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1844 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1845 >                            ForkJoinTask<?> t =
1846 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1847 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1848 >                                v.currentSteal != subtask)
1849 >                                continue restart;   // stale
1850 >                            stat = 1;               // apparent progress
1851 >                            if (t != null && v.base == b &&
1852 >                                U.compareAndSwapObject(a, i, t, null)) {
1853 >                                v.base = b + 1;     // help stealer
1854 >                                joiner.runSubtask(t);
1855 >                            }
1856 >                            else if (v.base == b && ++steps == MAX_HELP)
1857 >                                break restart;      // v apparently stalled
1858 >                        }
1859 >                        else {                      // empty -- try to descend
1860 >                            ForkJoinTask<?> next = v.currentJoin;
1861 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1862 >                                v.currentSteal != subtask)
1863 >                                continue restart;   // stale
1864 >                            else if (next == null || ++steps == MAX_HELP)
1865 >                                break restart;      // dead-end or maybe cyclic
1866 >                            else {
1867 >                                subtask = next;
1868 >                                j = v;
1869 >                                break;
1870 >                            }
1871 >                        }
1872 >                    }
1873 >                }
1874 >            }
1875          }
1876 <        return false;
1876 >        return stat;
1877      }
1878  
1879      /**
1880 <     * Decrements blockedCount and increments active count
1881 <     */
1882 <    private void postBlock() {
1883 <        long c;
1884 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
1885 <                                                c = ctl, c + AC_UNIT));
975 <        int b;
976 <        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
977 <                                              b = blockedCount, b - 1));
978 <    }
979 <
980 <    /**
981 <     * Possibly blocks waiting for the given task to complete, or
982 <     * cancels the task if terminating.  Fails to wait if contended.
1880 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1881 >     * and run tasks within the target's computation.
1882 >     *
1883 >     * @param task the task to join
1884 >     * @param mode if shared, exit upon completing any task
1885 >     * if all workers are active
1886       *
984     * @param joinMe the task
1887       */
1888 <    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1889 <        int s;
1890 <        Thread.interrupted(); // clear interrupts before checking termination
1891 <        if (joinMe.status >= 0) {
1892 <            if (tryPreBlock()) {
1893 <                joinMe.tryAwaitDone(0L);
1894 <                postBlock();
1888 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1889 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1890 >        if (task != null && (ws = workQueues) != null &&
1891 >            (m = ws.length - 1) >= 0) {
1892 >            for (int j = 1, origin = j;;) {
1893 >                if ((s = task.status) < 0)
1894 >                    return s;
1895 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1896 >                    origin = j;
1897 >                    if (mode == SHARED_QUEUE &&
1898 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1899 >                        break;
1900 >                }
1901 >                else if ((j = (j + 2) & m) == origin)
1902 >                    break;
1903              }
994            if ((ctl & STOP_BIT) != 0L)
995                joinMe.cancelIgnoringExceptions();
1904          }
1905 +        return 0;
1906      }
1907  
1908      /**
1909 <     * Possibly blocks the given worker waiting for joinMe to
1910 <     * complete or timeout
1911 <     *
1912 <     * @param joinMe the task
1913 <     * @param millis the wait time for underlying Object.wait
1914 <     */
1915 <    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1916 <        while (joinMe.status >= 0) {
1917 <            Thread.interrupted();
1918 <            if ((ctl & STOP_BIT) != 0L) {
1919 <                joinMe.cancelIgnoringExceptions();
1920 <                break;
1909 >     * Tries to decrement active count (sometimes implicitly) and
1910 >     * possibly release or create a compensating worker in preparation
1911 >     * for blocking. Fails on contention or termination. Otherwise,
1912 >     * adds a new thread if no idle workers are available and pool
1913 >     * may become starved.
1914 >     */
1915 >    final boolean tryCompensate() {
1916 >        int pc = config & SMASK, e, i, tc; long c;
1917 >        WorkQueue[] ws; WorkQueue w; Thread p;
1918 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1919 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1920 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1921 >                long nc = ((long)(w.nextWait & E_MASK) |
1922 >                           (c & (AC_MASK|TC_MASK)));
1923 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1924 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1925 >                    if ((p = w.parker) != null)
1926 >                        U.unpark(p);
1927 >                    return true;   // replace with idle worker
1928 >                }
1929              }
1930 <            if (tryPreBlock()) {
1931 <                long last = System.nanoTime();
1932 <                while (joinMe.status >= 0) {
1933 <                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1934 <                    if (millis <= 0)
1935 <                        break;
1936 <                    joinMe.tryAwaitDone(millis);
1937 <                    if (joinMe.status < 0)
1938 <                        break;
1939 <                    if ((ctl & STOP_BIT) != 0L) {
1940 <                        joinMe.cancelIgnoringExceptions();
1024 <                        break;
1025 <                    }
1026 <                    long now = System.nanoTime();
1027 <                    nanos -= now - last;
1028 <                    last = now;
1930 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1931 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1932 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1933 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1934 >                    return true;   // no compensation
1935 >            }
1936 >            else if (tc + pc < MAX_CAP) {
1937 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1938 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1939 >                    addWorker();
1940 >                    return true;
1941                  }
1030                postBlock();
1031                break;
1942              }
1943          }
1944 +        return false;
1945      }
1946  
1947      /**
1948 <     * If necessary, compensates for blocker, and blocks
1948 >     * Helps and/or blocks until the given task is done.
1949 >     *
1950 >     * @param joiner the joining worker
1951 >     * @param task the task
1952 >     * @return task status on exit
1953       */
1954 <    private void awaitBlocker(ManagedBlocker blocker)
1955 <        throws InterruptedException {
1956 <        while (!blocker.isReleasable()) {
1957 <            if (tryPreBlock()) {
1958 <                try {
1959 <                    do {} while (!blocker.isReleasable() && !blocker.block());
1960 <                } finally {
1961 <                    postBlock();
1954 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1955 >        int s = 0;
1956 >        if (joiner != null && task != null && (s = task.status) >= 0) {
1957 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
1958 >            joiner.currentJoin = task;
1959 >            do {} while ((s = task.status) >= 0 &&
1960 >                         joiner.queueSize() > 0 &&
1961 >                         joiner.tryRemoveAndExec(task)); // process local tasks
1962 >            if (s >= 0 && (s = task.status) >= 0 &&
1963 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
1964 >                (task instanceof CountedCompleter))
1965 >                s = helpComplete(task, LIFO_QUEUE);
1966 >            int k = 0; // to perform pre-block yield for politeness
1967 >            while (s >= 0 && (s = task.status) >= 0) {
1968 >                if ((joiner.queueSize() > 0 ||           // try helping
1969 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
1970 >                    (s = task.status) >= 0) {
1971 >                    if (k < 3) {
1972 >                        if (++k < 3)
1973 >                            s = helpSignal(task, joiner.poolIndex);
1974 >                        else
1975 >                            Thread.yield();
1976 >                    }
1977 >                    else if (!tryCompensate())
1978 >                        k = 0;
1979 >                    else {
1980 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
1981 >                            synchronized (task) {
1982 >                                if (task.status >= 0) {
1983 >                                    try {                // see ForkJoinTask
1984 >                                        task.wait();     //  for explanation
1985 >                                    } catch (InterruptedException ie) {
1986 >                                    }
1987 >                                }
1988 >                                else
1989 >                                    task.notifyAll();
1990 >                            }
1991 >                        }
1992 >                        long c;                          // re-activate
1993 >                        do {} while (!U.compareAndSwapLong
1994 >                                     (this, CTL, c = ctl, c + AC_UNIT));
1995 >                    }
1996                  }
1048                break;
1997              }
1998 +            joiner.currentJoin = prevJoin;
1999          }
2000 +        return s;
2001      }
2002  
1053    // Creating, registering and deregistring workers
1054
2003      /**
2004 <     * Tries to create and start a worker; minimally rolls back counts
2005 <     * on failure.
2004 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2005 >     * to help join only while there is continuous progress. (Caller
2006 >     * will then enter a timed wait.)
2007 >     *
2008 >     * @param joiner the joining worker
2009 >     * @param task the task
2010       */
2011 <    private void addWorker() {
2012 <        Throwable ex = null;
2013 <        ForkJoinWorkerThread t = null;
2014 <        try {
2015 <            t = factory.newThread(this);
2016 <        } catch (Throwable e) {
2017 <            ex = e;
2018 <        }
2019 <        if (t == null) {  // null or exceptional factory return
2020 <            long c;       // adjust counts
2021 <            do {} while (!UNSAFE.compareAndSwapLong
2022 <                         (this, ctlOffset, c = ctl,
2023 <                          (((c - AC_UNIT) & AC_MASK) |
2024 <                           ((c - TC_UNIT) & TC_MASK) |
2025 <                           (c & ~(AC_MASK|TC_MASK)))));
2026 <            // Propagate exception if originating from an external caller
2027 <            if (!tryTerminate(false) && ex != null &&
1076 <                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1077 <                UNSAFE.throwException(ex);
2011 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2012 >        int s;
2013 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2014 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2015 >            joiner.currentJoin = task;
2016 >            do {} while ((s = task.status) >= 0 &&
2017 >                         joiner.queueSize() > 0 &&
2018 >                         joiner.tryRemoveAndExec(task));
2019 >            if (s >= 0 && (s = task.status) >= 0 &&
2020 >                (s = helpSignal(task, joiner.poolIndex)) >= 0 &&
2021 >                (task instanceof CountedCompleter))
2022 >                s = helpComplete(task, LIFO_QUEUE);
2023 >            if (s >= 0 && joiner.queueSize() == 0) {
2024 >                do {} while (task.status >= 0 &&
2025 >                             tryHelpStealer(joiner, task) > 0);
2026 >            }
2027 >            joiner.currentJoin = prevJoin;
2028          }
1079        else
1080            t.start();
2029      }
2030  
2031      /**
2032 <     * Callback from ForkJoinWorkerThread constructor to assign a
2033 <     * public name
2034 <     */
2035 <    final String nextWorkerName() {
2036 <        for (int n;;) {
2037 <            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
2038 <                                         n = nextWorkerNumber, ++n))
2039 <                return workerNamePrefix + n;
2032 >     * Returns a (probably) non-empty steal queue, if one is found
2033 >     * during a random, then cyclic scan, else null.  This method must
2034 >     * be retried by caller if, by the time it tries to use the queue,
2035 >     * it is empty.
2036 >     * @param r a (random) seed for scanning
2037 >     */
2038 >    private WorkQueue findNonEmptyStealQueue(int r) {
2039 >        for (WorkQueue[] ws;;) {
2040 >            int ps = plock, m, n;
2041 >            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2042 >                return null;
2043 >            for (int j = (m + 1) << 2; ;) {
2044 >                WorkQueue q = ws[(((r + j) << 1) | 1) & m];
2045 >                if (q != null && (n = q.queueSize()) > 0) {
2046 >                    if (n > 1)
2047 >                        signalWork(q, 0);
2048 >                    return q;
2049 >                }
2050 >                else if (--j < 0) {
2051 >                    if (plock == ps)
2052 >                        return null;
2053 >                    break;
2054 >                }
2055 >            }
2056          }
2057      }
2058  
2059      /**
2060 <     * Callback from ForkJoinWorkerThread constructor to
2061 <     * determine its poolIndex and record in workers array.
2062 <     *
2063 <     * @param w the worker
2064 <     * @return the worker's pool index
2065 <     */
2066 <    final int registerWorker(ForkJoinWorkerThread w) {
2067 <        /*
2068 <         * In the typical case, a new worker acquires the lock, uses
2069 <         * next available index and returns quickly.  Since we should
2070 <         * not block callers (ultimately from signalWork or
2071 <         * tryPreBlock) waiting for the lock needed to do this, we
2072 <         * instead help release other workers while waiting for the
2073 <         * lock.
2074 <         */
2075 <        for (int g;;) {
2076 <            ForkJoinWorkerThread[] ws;
2077 <            if (((g = scanGuard) & SG_UNIT) == 0 &&
2078 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1115 <                                         g, g | SG_UNIT)) {
1116 <                int k = nextWorkerIndex;
1117 <                try {
1118 <                    if ((ws = workers) != null) { // ignore on shutdown
1119 <                        int n = ws.length;
1120 <                        if (k < 0 || k >= n || ws[k] != null) {
1121 <                            for (k = 0; k < n && ws[k] != null; ++k)
1122 <                                ;
1123 <                            if (k == n)
1124 <                                ws = workers = Arrays.copyOf(ws, n << 1);
1125 <                        }
1126 <                        ws[k] = w;
1127 <                        nextWorkerIndex = k + 1;
1128 <                        int m = g & SMASK;
1129 <                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1130 <                    }
1131 <                } finally {
1132 <                    scanGuard = g;
2060 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2061 >     * active count ctl maintenance, but rather than blocking
2062 >     * when tasks cannot be found, we rescan until all others cannot
2063 >     * find tasks either.
2064 >     */
2065 >    final void helpQuiescePool(WorkQueue w) {
2066 >        for (boolean active = true;;) {
2067 >            ForkJoinTask<?> localTask; // exhaust local queue
2068 >            while ((localTask = w.nextLocalTask()) != null)
2069 >                localTask.doExec();
2070 >            // Similar to loop in scan(), but ignoring submissions
2071 >            WorkQueue q = findNonEmptyStealQueue(w.nextSeed());
2072 >            if (q != null) {
2073 >                ForkJoinTask<?> t; int b;
2074 >                if (!active) {      // re-establish active count
2075 >                    long c;
2076 >                    active = true;
2077 >                    do {} while (!U.compareAndSwapLong
2078 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2079                  }
2080 <                return k;
2080 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2081 >                    w.runSubtask(t);
2082              }
2083 <            else if ((ws = workers) != null) { // help release others
2084 <                for (ForkJoinWorkerThread u : ws) {
2085 <                    if (u != null && u.queueBase != u.queueTop) {
2086 <                        if (tryReleaseWaiter())
2087 <                            break;
2088 <                    }
2083 >            else {
2084 >                long c;
2085 >                if (active) {       // decrement active count without queuing
2086 >                    active = false;
2087 >                    do {} while (!U.compareAndSwapLong
2088 >                                 (this, CTL, c = ctl, c -= AC_UNIT));
2089 >                }
2090 >                else
2091 >                    c = ctl;        // re-increment on exit
2092 >                if ((int)(c >> AC_SHIFT) + (config & SMASK) == 0) {
2093 >                    do {} while (!U.compareAndSwapLong
2094 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2095 >                    break;
2096                  }
2097              }
2098          }
2099      }
2100  
2101      /**
2102 <     * Final callback from terminating worker.  Removes record of
2103 <     * worker from array, and adjusts counts. If pool is shutting
2104 <     * down, tries to complete termination.
2105 <     *
2106 <     * @param w the worker
2107 <     */
2108 <    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
2109 <        int idx = w.poolIndex;
2110 <        int sc = w.stealCount;
2111 <        int steps = 0;
2112 <        // Remove from array, adjust worker counts and collect steal count.
2113 <        // We can intermix failed removes or adjusts with steal updates
2114 <        do {
1161 <            long s, c;
1162 <            int g;
1163 <            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1164 <                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1165 <                                         g, g |= SG_UNIT)) {
1166 <                ForkJoinWorkerThread[] ws = workers;
1167 <                if (ws != null && idx >= 0 &&
1168 <                    idx < ws.length && ws[idx] == w)
1169 <                    ws[idx] = null;    // verify
1170 <                nextWorkerIndex = idx;
1171 <                scanGuard = g + SG_UNIT;
1172 <                steps = 1;
1173 <            }
1174 <            if (steps == 1 &&
1175 <                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1176 <                                          (((c - AC_UNIT) & AC_MASK) |
1177 <                                           ((c - TC_UNIT) & TC_MASK) |
1178 <                                           (c & ~(AC_MASK|TC_MASK)))))
1179 <                steps = 2;
1180 <            if (sc != 0 &&
1181 <                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1182 <                                          s = stealCount, s + sc))
1183 <                sc = 0;
1184 <        } while (steps != 2 || sc != 0);
1185 <        if (!tryTerminate(false)) {
1186 <            if (ex != null)   // possibly replace if died abnormally
1187 <                signalWork();
1188 <            else
1189 <                tryReleaseWaiter();
2102 >     * Gets and removes a local or stolen task for the given worker.
2103 >     *
2104 >     * @return a task, if available
2105 >     */
2106 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2107 >        for (ForkJoinTask<?> t;;) {
2108 >            WorkQueue q; int b;
2109 >            if ((t = w.nextLocalTask()) != null)
2110 >                return t;
2111 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2112 >                return null;
2113 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2114 >                return t;
2115          }
2116      }
2117  
1193    // Shutdown and termination
1194
2118      /**
2119 <     * Possibly initiates and/or completes termination.
2119 >     * Returns a cheap heuristic guide for task partitioning when
2120 >     * programmers, frameworks, tools, or languages have little or no
2121 >     * idea about task granularity.  In essence by offering this
2122 >     * method, we ask users only about tradeoffs in overhead vs
2123 >     * expected throughput and its variance, rather than how finely to
2124 >     * partition tasks.
2125 >     *
2126 >     * In a steady state strict (tree-structured) computation, each
2127 >     * thread makes available for stealing enough tasks for other
2128 >     * threads to remain active. Inductively, if all threads play by
2129 >     * the same rules, each thread should make available only a
2130 >     * constant number of tasks.
2131 >     *
2132 >     * The minimum useful constant is just 1. But using a value of 1
2133 >     * would require immediate replenishment upon each steal to
2134 >     * maintain enough tasks, which is infeasible.  Further,
2135 >     * partitionings/granularities of offered tasks should minimize
2136 >     * steal rates, which in general means that threads nearer the top
2137 >     * of computation tree should generate more than those nearer the
2138 >     * bottom. In perfect steady state, each thread is at
2139 >     * approximately the same level of computation tree. However,
2140 >     * producing extra tasks amortizes the uncertainty of progress and
2141 >     * diffusion assumptions.
2142 >     *
2143 >     * So, users will want to use values larger, but not much larger
2144 >     * than 1 to both smooth over transient shortages and hedge
2145 >     * against uneven progress; as traded off against the cost of
2146 >     * extra task overhead. We leave the user to pick a threshold
2147 >     * value to compare with the results of this call to guide
2148 >     * decisions, but recommend values such as 3.
2149 >     *
2150 >     * When all threads are active, it is on average OK to estimate
2151 >     * surplus strictly locally. In steady-state, if one thread is
2152 >     * maintaining say 2 surplus tasks, then so are others. So we can
2153 >     * just use estimated queue length.  However, this strategy alone
2154 >     * leads to serious mis-estimates in some non-steady-state
2155 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2156 >     * many of these by further considering the number of "idle"
2157 >     * threads, that are known to have zero queued tasks, so
2158 >     * compensate by a factor of (#idle/#active) threads.
2159 >     *
2160 >     * Note: The approximation of #busy workers as #active workers is
2161 >     * not very good under current signalling scheme, and should be
2162 >     * improved.
2163 >     */
2164 >    static int getSurplusQueuedTaskCount() {
2165 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2166 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2167 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2168 >            int n = (q = wt.workQueue).top - q.base;
2169 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2170 >            return n - (a > (p >>>= 1) ? 0 :
2171 >                        a > (p >>>= 1) ? 1 :
2172 >                        a > (p >>>= 1) ? 2 :
2173 >                        a > (p >>>= 1) ? 4 :
2174 >                        8);
2175 >        }
2176 >        return 0;
2177 >    }
2178 >
2179 >    //  Termination
2180 >
2181 >    /**
2182 >     * Possibly initiates and/or completes termination.  The caller
2183 >     * triggering termination runs three passes through workQueues:
2184 >     * (0) Setting termination status, followed by wakeups of queued
2185 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2186 >     * threads (likely in external tasks, but possibly also blocked in
2187 >     * joins).  Each pass repeats previous steps because of potential
2188 >     * lagging thread creation.
2189       *
2190       * @param now if true, unconditionally terminate, else only
2191 <     * if shutdown and empty queue and no active workers
2191 >     * if no work and no active workers
2192 >     * @param enable if true, enable shutdown when next possible
2193       * @return true if now terminating or terminated
2194       */
2195 <    private boolean tryTerminate(boolean now) {
2196 <        long c;
2197 <        while (((c = ctl) & STOP_BIT) == 0) {
2198 <            if (!now) {
2199 <                if ((int)(c >> AC_SHIFT) != -parallelism)
2195 >    private boolean tryTerminate(boolean now, boolean enable) {
2196 >        if (this == commonPool)                     // cannot shut down
2197 >            return false;
2198 >        for (long c;;) {
2199 >            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2200 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2201 >                    synchronized (this) {
2202 >                        notifyAll();                // signal when 0 workers
2203 >                    }
2204 >                }
2205 >                return true;
2206 >            }
2207 >            if (plock >= 0) {                       // not yet enabled
2208 >                int ps;
2209 >                if (!enable)
2210                      return false;
2211 <                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
2212 <                    queueTop - queueBase > 0) {
2213 <                    if (ctl == c) // staleness check
2214 <                        return false;
2215 <                    continue;
2216 <                }
2217 <            }
2218 <            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
2219 <                startTerminating();
2220 <        }
2221 <        if ((short)(c >>> TC_SHIFT) == -parallelism) {
2222 <            submissionLock.lock();
2223 <            termination.signalAll();
2224 <            submissionLock.unlock();
2225 <        }
2226 <        return true;
2227 <    }
2228 <
2229 <    /**
2230 <     * Runs up to three passes through workers: (0) Setting
2231 <     * termination status for each worker, followed by wakeups up
2232 <     * queued workers (1) helping cancel tasks (2) interrupting
2233 <     * lagging threads (likely in external tasks, but possibly also
2234 <     * blocked in joins).  Each pass repeats previous steps because of
2235 <     * potential lagging thread creation.
2236 <     */
2237 <    private void startTerminating() {
2238 <        cancelSubmissions();
2239 <        for (int pass = 0; pass < 3; ++pass) {
2240 <            ForkJoinWorkerThread[] ws = workers;
2241 <            if (ws != null) {
2242 <                for (ForkJoinWorkerThread w : ws) {
2243 <                    if (w != null) {
1241 <                        w.terminate = true;
1242 <                        if (pass > 0) {
1243 <                            w.cancelTasks();
1244 <                            if (pass > 1 && !w.isInterrupted()) {
1245 <                                try {
1246 <                                    w.interrupt();
1247 <                                } catch (SecurityException ignore) {
2211 >                if (((ps = plock) & PL_LOCK) != 0 ||
2212 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2213 >                    ps = acquirePlock();
2214 >                int nps = SHUTDOWN;
2215 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2216 >                    releasePlock(nps);
2217 >            }
2218 >            if (!now) {                             // check if idle & no tasks
2219 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK) ||
2220 >                    hasQueuedSubmissions())
2221 >                    return false;
2222 >                // Check for unqueued inactive workers. One pass suffices.
2223 >                WorkQueue[] ws = workQueues; WorkQueue w;
2224 >                if (ws != null) {
2225 >                    for (int i = 1; i < ws.length; i += 2) {
2226 >                        if ((w = ws[i]) != null && w.eventCount >= 0)
2227 >                            return false;
2228 >                    }
2229 >                }
2230 >            }
2231 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2232 >                for (int pass = 0; pass < 3; ++pass) {
2233 >                    WorkQueue[] ws = workQueues;
2234 >                    if (ws != null) {
2235 >                        WorkQueue w;
2236 >                        int n = ws.length;
2237 >                        for (int i = 0; i < n; ++i) {
2238 >                            if ((w = ws[i]) != null) {
2239 >                                w.qlock = -1;
2240 >                                if (pass > 0) {
2241 >                                    w.cancelAll();
2242 >                                    if (pass > 1)
2243 >                                        w.interruptOwner();
2244                                  }
2245                              }
2246                          }
2247 +                        // Wake up workers parked on event queue
2248 +                        int i, e; long cc; Thread p;
2249 +                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2250 +                               (i = e & SMASK) < n &&
2251 +                               (w = ws[i]) != null) {
2252 +                            long nc = ((long)(w.nextWait & E_MASK) |
2253 +                                       ((cc + AC_UNIT) & AC_MASK) |
2254 +                                       (cc & (TC_MASK|STOP_BIT)));
2255 +                            if (w.eventCount == (e | INT_SIGN) &&
2256 +                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2257 +                                w.eventCount = (e + E_SEQ) & E_MASK;
2258 +                                w.qlock = -1;
2259 +                                if ((p = w.parker) != null)
2260 +                                    U.unpark(p);
2261 +                            }
2262 +                        }
2263                      }
2264                  }
1253                terminateWaiters();
2265              }
2266          }
2267      }
2268  
2269 +    // external operations on common pool
2270 +
2271      /**
2272 <     * Polls and cancels all submissions. Called only during termination.
2272 >     * Returns common pool queue for a thread that has submitted at
2273 >     * least one task.
2274       */
2275 <    private void cancelSubmissions() {
2276 <        while (queueBase != queueTop) {
2277 <            ForkJoinTask<?> task = pollSubmission();
2278 <            if (task != null) {
2279 <                try {
2280 <                    task.cancel(false);
2281 <                } catch (Throwable ignore) {
2282 <                }
2275 >    static WorkQueue commonSubmitterQueue() {
2276 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2277 >        return ((z = submitters.get()) != null &&
2278 >                (p = commonPool) != null &&
2279 >                (ws = p.workQueues) != null &&
2280 >                (m = ws.length - 1) >= 0) ?
2281 >            ws[m & z.seed & SQMASK] : null;
2282 >    }
2283 >
2284 >    /**
2285 >     * Tries to pop the given task from submitter's queue in common pool.
2286 >     */
2287 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2288 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2289 >        ForkJoinTask<?>[] a;  int m, s; long j;
2290 >        if ((z = submitters.get()) != null &&
2291 >            (p = commonPool) != null &&
2292 >            (ws = p.workQueues) != null &&
2293 >            (m = ws.length - 1) >= 0 &&
2294 >            (q = ws[m & z.seed & SQMASK]) != null &&
2295 >            (s = q.top) != q.base &&
2296 >            (a = q.array) != null &&
2297 >            U.getObjectVolatile
2298 >            (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2299 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2300 >            if (q.array == a && q.top == s && // recheck
2301 >                U.compareAndSwapObject(a, j, t, null)) {
2302 >                q.top = s - 1;
2303 >                q.qlock = 0;
2304 >                return true;
2305              }
2306 +            q.qlock = 0;
2307          }
2308 +        return false;
2309      }
2310  
2311      /**
2312 <     * Tries to set the termination status of waiting workers, and
2313 <     * then wake them up (after which they will terminate).
2314 <     */
2315 <    private void terminateWaiters() {
2316 <        ForkJoinWorkerThread[] ws = workers;
2317 <        if (ws != null) {
2318 <            ForkJoinWorkerThread w; long c; int i, e;
2319 <            int n = ws.length;
2320 <            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
2321 <                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
2322 <                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
2323 <                                              (long)(w.nextWait & E_MASK) |
2324 <                                              ((c + AC_UNIT) & AC_MASK) |
2325 <                                              (c & (TC_MASK|STOP_BIT)))) {
2326 <                    w.terminate = true;
2327 <                    w.eventCount = e + EC_UNIT;
2328 <                    if (w.parked)
2329 <                        UNSAFE.unpark(w);
2312 >     * Tries to pop and run local tasks within the same computation
2313 >     * as the given root. On failure, tries to help complete from
2314 >     * other queues via helpComplete.
2315 >     */
2316 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2317 >        ForkJoinTask<?>[] a; int m;
2318 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2319 >            root != null && root.status >= 0) {
2320 >            for (;;) {
2321 >                int s, u; Object o; CountedCompleter<?> task = null;
2322 >                if ((s = q.top) - q.base > 0) {
2323 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2324 >                    if ((o = U.getObject(a, j)) != null &&
2325 >                        (o instanceof CountedCompleter)) {
2326 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2327 >                        do {
2328 >                            if (r == root) {
2329 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2330 >                                    if (q.array == a && q.top == s &&
2331 >                                        U.compareAndSwapObject(a, j, t, null)) {
2332 >                                        q.top = s - 1;
2333 >                                        task = t;
2334 >                                    }
2335 >                                    q.qlock = 0;
2336 >                                }
2337 >                                break;
2338 >                            }
2339 >                        } while ((r = r.completer) != null);
2340 >                    }
2341 >                }
2342 >                if (task != null)
2343 >                    task.doExec();
2344 >                if (root.status < 0 ||
2345 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2346 >                    break;
2347 >                if (task == null) {
2348 >                    if (helpSignal(root, q.poolIndex) >= 0)
2349 >                        helpComplete(root, SHARED_QUEUE);
2350 >                    break;
2351                  }
2352              }
2353          }
2354      }
2355  
1297    // misc ForkJoinWorkerThread support
1298
2356      /**
2357 <     * Increment or decrement quiescerCount. Needed only to prevent
2358 <     * triggering shutdown if a worker is transiently inactive while
1302 <     * checking quiescence.
1303 <     *
1304 <     * @param delta 1 for increment, -1 for decrement
2357 >     * Tries to help execute or signal availability of the given task
2358 >     * from submitter's queue in common pool.
2359       */
2360 <    final void addQuiescerCount(int delta) {
2361 <        int c;
2362 <        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
2363 <                                              c = quiescerCount, c + delta));
2360 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2361 >        // Some hard-to-avoid overlap with tryExternalUnpush
2362 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2363 >        ForkJoinTask<?>[] a;  int m, s, n; long j;
2364 >        if (t != null &&
2365 >            (z = submitters.get()) != null &&
2366 >            (p = commonPool) != null &&
2367 >            (ws = p.workQueues) != null &&
2368 >            (m = ws.length - 1) >= 0 &&
2369 >            (q = ws[m & z.seed & SQMASK]) != null &&
2370 >            (a = q.array) != null &&
2371 >            t.status >= 0) {
2372 >            if ((s = q.top) != q.base &&
2373 >                U.getObjectVolatile
2374 >                (a, j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE) == t &&
2375 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2376 >                if (q.array == a && q.top == s &&
2377 >                    U.compareAndSwapObject(a, j, t, null)) {
2378 >                    q.top = s - 1;
2379 >                    q.qlock = 0;
2380 >                    t.doExec();
2381 >                }
2382 >                else
2383 >                    q.qlock = 0;
2384 >            }
2385 >            if (t.status >= 0) {
2386 >                if (t instanceof CountedCompleter)
2387 >                    p.externalHelpComplete(q, t);
2388 >                else
2389 >                    p.helpSignal(t, q.poolIndex);
2390 >            }
2391 >        }
2392      }
2393  
2394      /**
2395 <     * Directly increment or decrement active count without
1314 <     * queuing. This method is used to transiently assert inactivation
1315 <     * while checking quiescence.
1316 <     *
1317 <     * @param delta 1 for increment, -1 for decrement
2395 >     * Restricted version of helpQuiescePool for external callers
2396       */
2397 <    final void addActiveCount(int delta) {
2398 <        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
2399 <        long c;
2400 <        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
2401 <                                                ((c + d) & AC_MASK) |
2402 <                                                (c & ~AC_MASK)));
2403 <    }
1326 <
1327 <    /**
1328 <     * Returns the approximate (non-atomic) number of idle threads per
1329 <     * active thread.
1330 <     */
1331 <    final int idlePerActive() {
1332 <        // Approximate at powers of two for small values, saturate past 4
1333 <        int p = parallelism;
1334 <        int a = p + (int)(ctl >> AC_SHIFT);
1335 <        return (a > (p >>>= 1) ? 0 :
1336 <                a > (p >>>= 1) ? 1 :
1337 <                a > (p >>>= 1) ? 2 :
1338 <                a > (p >>>= 1) ? 4 :
1339 <                8);
2397 >    static void externalHelpQuiescePool() {
2398 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2399 >        if ((p = commonPool) != null &&
2400 >            (q = p.findNonEmptyStealQueue(1)) != null &&
2401 >            (b = q.base) - q.top < 0 &&
2402 >            (t = q.pollAt(b)) != null)
2403 >            t.doExec();
2404      }
2405  
2406      // Exported methods
# Line 1408 | Line 2472 | public class ForkJoinPool extends Abstra
2472          checkPermission();
2473          if (factory == null)
2474              throw new NullPointerException();
2475 <        if (parallelism <= 0 || parallelism > MAX_ID)
2475 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2476              throw new IllegalArgumentException();
1413        this.parallelism = parallelism;
2477          this.factory = factory;
2478          this.ueh = handler;
2479 <        this.locallyFifo = asyncMode;
2479 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2480          long np = (long)(-parallelism); // offset ctl counts
2481          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2482 <        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1420 <        // initialize workers array with room for 2*parallelism if possible
1421 <        int n = parallelism << 1;
1422 <        if (n >= MAX_ID)
1423 <            n = MAX_ID;
1424 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1425 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1426 <        }
1427 <        workers = new ForkJoinWorkerThread[n + 1];
1428 <        this.submissionLock = new ReentrantLock();
1429 <        this.termination = submissionLock.newCondition();
2482 >        int pn = nextPoolId();
2483          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2484 <        sb.append(poolNumberGenerator.incrementAndGet());
2484 >        sb.append(Integer.toString(pn));
2485          sb.append("-worker-");
2486          this.workerNamePrefix = sb.toString();
2487      }
2488  
2489 +    /**
2490 +     * Constructor for common pool, suitable only for static initialization.
2491 +     * Basically the same as above, but uses smallest possible initial footprint.
2492 +     */
2493 +    ForkJoinPool(int parallelism, long ctl,
2494 +                 ForkJoinWorkerThreadFactory factory,
2495 +                 Thread.UncaughtExceptionHandler handler) {
2496 +        this.config = parallelism;
2497 +        this.ctl = ctl;
2498 +        this.factory = factory;
2499 +        this.ueh = handler;
2500 +        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2501 +    }
2502 +
2503 +    /**
2504 +     * Returns the common pool instance.
2505 +     *
2506 +     * @return the common pool instance
2507 +     */
2508 +    public static ForkJoinPool commonPool() {
2509 +        // assert commonPool != null : "static init error";
2510 +        return commonPool;
2511 +    }
2512 +
2513      // Execution methods
2514  
2515      /**
# Line 1452 | Line 2529 | public class ForkJoinPool extends Abstra
2529       *         scheduled for execution
2530       */
2531      public <T> T invoke(ForkJoinTask<T> task) {
1455        Thread t = Thread.currentThread();
2532          if (task == null)
2533              throw new NullPointerException();
2534 <        if (shutdown)
2535 <            throw new RejectedExecutionException();
1460 <        if ((t instanceof ForkJoinWorkerThread) &&
1461 <            ((ForkJoinWorkerThread)t).pool == this)
1462 <            return task.invoke();  // bypass submit if in same pool
1463 <        else {
1464 <            addSubmission(task);
1465 <            return task.join();
1466 <        }
1467 <    }
1468 <
1469 <    /**
1470 <     * Unless terminating, forks task if within an ongoing FJ
1471 <     * computation in the current pool, else submits as external task.
1472 <     */
1473 <    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1474 <        ForkJoinWorkerThread w;
1475 <        Thread t = Thread.currentThread();
1476 <        if (shutdown)
1477 <            throw new RejectedExecutionException();
1478 <        if ((t instanceof ForkJoinWorkerThread) &&
1479 <            (w = (ForkJoinWorkerThread)t).pool == this)
1480 <            w.pushTask(task);
1481 <        else
1482 <            addSubmission(task);
2534 >        externalPush(task);
2535 >        return task.join();
2536      }
2537  
2538      /**
# Line 1493 | Line 2546 | public class ForkJoinPool extends Abstra
2546      public void execute(ForkJoinTask<?> task) {
2547          if (task == null)
2548              throw new NullPointerException();
2549 <        forkOrSubmit(task);
2549 >        externalPush(task);
2550      }
2551  
2552      // AbstractExecutorService methods
# Line 1510 | Line 2563 | public class ForkJoinPool extends Abstra
2563          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2564              job = (ForkJoinTask<?>) task;
2565          else
2566 <            job = ForkJoinTask.adapt(task, null);
2567 <        forkOrSubmit(job);
2566 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2567 >        externalPush(job);
2568      }
2569  
2570      /**
# Line 1526 | Line 2579 | public class ForkJoinPool extends Abstra
2579      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2580          if (task == null)
2581              throw new NullPointerException();
2582 <        forkOrSubmit(task);
2582 >        externalPush(task);
2583          return task;
2584      }
2585  
# Line 1536 | Line 2589 | public class ForkJoinPool extends Abstra
2589       *         scheduled for execution
2590       */
2591      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2592 <        if (task == null)
2593 <            throw new NullPointerException();
1541 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1542 <        forkOrSubmit(job);
2592 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2593 >        externalPush(job);
2594          return job;
2595      }
2596  
# Line 1549 | Line 2600 | public class ForkJoinPool extends Abstra
2600       *         scheduled for execution
2601       */
2602      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2603 <        if (task == null)
2604 <            throw new NullPointerException();
1554 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1555 <        forkOrSubmit(job);
2603 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2604 >        externalPush(job);
2605          return job;
2606      }
2607  
# Line 1568 | Line 2617 | public class ForkJoinPool extends Abstra
2617          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2618              job = (ForkJoinTask<?>) task;
2619          else
2620 <            job = ForkJoinTask.adapt(task, null);
2621 <        forkOrSubmit(job);
2620 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2621 >        externalPush(job);
2622          return job;
2623      }
2624  
# Line 1578 | Line 2627 | public class ForkJoinPool extends Abstra
2627       * @throws RejectedExecutionException {@inheritDoc}
2628       */
2629      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2630 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2631 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2632 <        for (Callable<T> task : tasks)
2633 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2634 <        invoke(new InvokeAll<T>(forkJoinTasks));
2635 <
2630 >        // In previous versions of this class, this method constructed
2631 >        // a task to run ForkJoinTask.invokeAll, but now external
2632 >        // invocation of multiple tasks is at least as efficient.
2633 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2634 >        // Workaround needed because method wasn't declared with
2635 >        // wildcards in return type but should have been.
2636          @SuppressWarnings({"unchecked", "rawtypes"})
2637 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1589 <        return futures;
1590 <    }
2637 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2638  
2639 <    static final class InvokeAll<T> extends RecursiveAction {
2640 <        final ArrayList<ForkJoinTask<T>> tasks;
2641 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2642 <        public void compute() {
2643 <            try { invokeAll(tasks); }
2644 <            catch (Exception ignore) {}
2639 >        boolean done = false;
2640 >        try {
2641 >            for (Callable<T> t : tasks) {
2642 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2643 >                externalPush(f);
2644 >                fs.add(f);
2645 >            }
2646 >            for (ForkJoinTask<T> f : fs)
2647 >                f.quietlyJoin();
2648 >            done = true;
2649 >            return futures;
2650 >        } finally {
2651 >            if (!done)
2652 >                for (ForkJoinTask<T> f : fs)
2653 >                    f.cancel(false);
2654          }
1599        private static final long serialVersionUID = -7914297376763021607L;
2655      }
2656  
2657      /**
# Line 1624 | Line 2679 | public class ForkJoinPool extends Abstra
2679       * @return the targeted parallelism level of this pool
2680       */
2681      public int getParallelism() {
2682 <        return parallelism;
2682 >        return config & SMASK;
2683 >    }
2684 >
2685 >    /**
2686 >     * Returns the targeted parallelism level of the common pool.
2687 >     *
2688 >     * @return the targeted parallelism level of the common pool
2689 >     */
2690 >    public static int getCommonPoolParallelism() {
2691 >        return commonPoolParallelism;
2692      }
2693  
2694      /**
# Line 1636 | Line 2700 | public class ForkJoinPool extends Abstra
2700       * @return the number of worker threads
2701       */
2702      public int getPoolSize() {
2703 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2703 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2704      }
2705  
2706      /**
# Line 1646 | Line 2710 | public class ForkJoinPool extends Abstra
2710       * @return {@code true} if this pool uses async mode
2711       */
2712      public boolean getAsyncMode() {
2713 <        return locallyFifo;
2713 >        return (config >>> 16) == FIFO_QUEUE;
2714      }
2715  
2716      /**
# Line 1658 | Line 2722 | public class ForkJoinPool extends Abstra
2722       * @return the number of worker threads
2723       */
2724      public int getRunningThreadCount() {
2725 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2726 <        return r <= 0? 0 : r; // suppress momentarily negative values
2725 >        int rc = 0;
2726 >        WorkQueue[] ws; WorkQueue w;
2727 >        if ((ws = workQueues) != null) {
2728 >            for (int i = 1; i < ws.length; i += 2) {
2729 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2730 >                    ++rc;
2731 >            }
2732 >        }
2733 >        return rc;
2734      }
2735  
2736      /**
# Line 1670 | Line 2741 | public class ForkJoinPool extends Abstra
2741       * @return the number of active threads
2742       */
2743      public int getActiveThreadCount() {
2744 <        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
2745 <        return r <= 0? 0 : r; // suppress momentarily negative values
2744 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2745 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2746      }
2747  
2748      /**
# Line 1686 | Line 2757 | public class ForkJoinPool extends Abstra
2757       * @return {@code true} if all threads are currently idle
2758       */
2759      public boolean isQuiescent() {
2760 <        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
2760 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2761      }
2762  
2763      /**
# Line 1701 | Line 2772 | public class ForkJoinPool extends Abstra
2772       * @return the number of steals
2773       */
2774      public long getStealCount() {
2775 <        return stealCount;
2775 >        long count = stealCount;
2776 >        WorkQueue[] ws; WorkQueue w;
2777 >        if ((ws = workQueues) != null) {
2778 >            for (int i = 1; i < ws.length; i += 2) {
2779 >                if ((w = ws[i]) != null)
2780 >                    count += w.nsteals;
2781 >            }
2782 >        }
2783 >        return count;
2784      }
2785  
2786      /**
# Line 1716 | Line 2795 | public class ForkJoinPool extends Abstra
2795       */
2796      public long getQueuedTaskCount() {
2797          long count = 0;
2798 <        ForkJoinWorkerThread[] ws;
2799 <        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
2800 <            (ws = workers) != null) {
2801 <            for (ForkJoinWorkerThread w : ws)
2802 <                if (w != null)
2803 <                    count -= w.queueBase - w.queueTop; // must read base first
2798 >        WorkQueue[] ws; WorkQueue w;
2799 >        if ((ws = workQueues) != null) {
2800 >            for (int i = 1; i < ws.length; i += 2) {
2801 >                if ((w = ws[i]) != null)
2802 >                    count += w.queueSize();
2803 >            }
2804          }
2805          return count;
2806      }
2807  
2808      /**
2809       * Returns an estimate of the number of tasks submitted to this
2810 <     * pool that have not yet begun executing.  This meThod may take
2810 >     * pool that have not yet begun executing.  This method may take
2811       * time proportional to the number of submissions.
2812       *
2813       * @return the number of queued submissions
2814       */
2815      public int getQueuedSubmissionCount() {
2816 <        return -queueBase + queueTop;
2816 >        int count = 0;
2817 >        WorkQueue[] ws; WorkQueue w;
2818 >        if ((ws = workQueues) != null) {
2819 >            for (int i = 0; i < ws.length; i += 2) {
2820 >                if ((w = ws[i]) != null)
2821 >                    count += w.queueSize();
2822 >            }
2823 >        }
2824 >        return count;
2825      }
2826  
2827      /**
# Line 1744 | Line 2831 | public class ForkJoinPool extends Abstra
2831       * @return {@code true} if there are any queued submissions
2832       */
2833      public boolean hasQueuedSubmissions() {
2834 <        return queueBase != queueTop;
2834 >        WorkQueue[] ws; WorkQueue w;
2835 >        if ((ws = workQueues) != null) {
2836 >            for (int i = 0; i < ws.length; i += 2) {
2837 >                if ((w = ws[i]) != null && w.queueSize() != 0)
2838 >                    return true;
2839 >            }
2840 >        }
2841 >        return false;
2842      }
2843  
2844      /**
# Line 1755 | Line 2849 | public class ForkJoinPool extends Abstra
2849       * @return the next submission, or {@code null} if none
2850       */
2851      protected ForkJoinTask<?> pollSubmission() {
2852 <        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
2853 <        while ((b = queueBase) != queueTop &&
2854 <               (q = submissionQueue) != null &&
2855 <               (i = (q.length - 1) & b) >= 0) {
2856 <            long u = (i << ASHIFT) + ABASE;
1763 <            if ((t = q[i]) != null &&
1764 <                queueBase == b &&
1765 <                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1766 <                queueBase = b + 1;
1767 <                return t;
2852 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2853 >        if ((ws = workQueues) != null) {
2854 >            for (int i = 0; i < ws.length; i += 2) {
2855 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2856 >                    return t;
2857              }
2858          }
2859          return null;
# Line 1789 | Line 2878 | public class ForkJoinPool extends Abstra
2878       */
2879      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2880          int count = 0;
2881 <        while (queueBase != queueTop) {
2882 <            ForkJoinTask<?> t = pollSubmission();
2883 <            if (t != null) {
2884 <                c.add(t);
2885 <                ++count;
2881 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2882 >        if ((ws = workQueues) != null) {
2883 >            for (int i = 0; i < ws.length; ++i) {
2884 >                if ((w = ws[i]) != null) {
2885 >                    while ((t = w.poll()) != null) {
2886 >                        c.add(t);
2887 >                        ++count;
2888 >                    }
2889 >                }
2890              }
2891          }
1799        ForkJoinWorkerThread[] ws;
1800        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1801            (ws = workers) != null) {
1802            for (ForkJoinWorkerThread w : ws)
1803                if (w != null)
1804                    count += w.drainTasksTo(c);
1805        }
2892          return count;
2893      }
2894  
# Line 1814 | Line 2900 | public class ForkJoinPool extends Abstra
2900       * @return a string identifying this pool, as well as its state
2901       */
2902      public String toString() {
2903 <        long st = getStealCount();
2904 <        long qt = getQueuedTaskCount();
2905 <        long qs = getQueuedSubmissionCount();
1820 <        int pc = parallelism;
2903 >        // Use a single pass through workQueues to collect counts
2904 >        long qt = 0L, qs = 0L; int rc = 0;
2905 >        long st = stealCount;
2906          long c = ctl;
2907 +        WorkQueue[] ws; WorkQueue w;
2908 +        if ((ws = workQueues) != null) {
2909 +            for (int i = 0; i < ws.length; ++i) {
2910 +                if ((w = ws[i]) != null) {
2911 +                    int size = w.queueSize();
2912 +                    if ((i & 1) == 0)
2913 +                        qs += size;
2914 +                    else {
2915 +                        qt += size;
2916 +                        st += w.nsteals;
2917 +                        if (w.isApparentlyUnblocked())
2918 +                            ++rc;
2919 +                    }
2920 +                }
2921 +            }
2922 +        }
2923 +        int pc = (config & SMASK);
2924          int tc = pc + (short)(c >>> TC_SHIFT);
2925 <        int rc = pc + (int)(c >> AC_SHIFT);
2926 <        if (rc < 0) // ignore transient negative
2927 <            rc = 0;
1826 <        int ac = rc + blockedCount;
2925 >        int ac = pc + (int)(c >> AC_SHIFT);
2926 >        if (ac < 0) // ignore transient negative
2927 >            ac = 0;
2928          String level;
2929          if ((c & STOP_BIT) != 0)
2930 <            level = (tc == 0)? "Terminated" : "Terminating";
2930 >            level = (tc == 0) ? "Terminated" : "Terminating";
2931          else
2932 <            level = shutdown? "Shutting down" : "Running";
2932 >            level = plock < 0 ? "Shutting down" : "Running";
2933          return super.toString() +
2934              "[" + level +
2935              ", parallelism = " + pc +
# Line 1842 | Line 2943 | public class ForkJoinPool extends Abstra
2943      }
2944  
2945      /**
2946 <     * Initiates an orderly shutdown in which previously submitted
2947 <     * tasks are executed, but no new tasks will be accepted.
2948 <     * Invocation has no additional effect if already shut down.
2949 <     * Tasks that are in the process of being submitted concurrently
2950 <     * during the course of this method may or may not be rejected.
2946 >     * Possibly initiates an orderly shutdown in which previously
2947 >     * submitted tasks are executed, but no new tasks will be
2948 >     * accepted. Invocation has no effect on execution state if this
2949 >     * is the {@link #commonPool}, and no additional effect if
2950 >     * already shut down.  Tasks that are in the process of being
2951 >     * submitted concurrently during the course of this method may or
2952 >     * may not be rejected.
2953       *
2954       * @throws SecurityException if a security manager exists and
2955       *         the caller is not permitted to modify threads
# Line 1855 | Line 2958 | public class ForkJoinPool extends Abstra
2958       */
2959      public void shutdown() {
2960          checkPermission();
2961 <        shutdown = true;
1859 <        tryTerminate(false);
2961 >        tryTerminate(false, true);
2962      }
2963  
2964      /**
2965 <     * Attempts to cancel and/or stop all tasks, and reject all
2966 <     * subsequently submitted tasks.  Tasks that are in the process of
2967 <     * being submitted or executed concurrently during the course of
2968 <     * this method may or may not be rejected. This method cancels
2969 <     * both existing and unexecuted tasks, in order to permit
2970 <     * termination in the presence of task dependencies. So the method
2971 <     * always returns an empty list (unlike the case for some other
2972 <     * Executors).
2965 >     * Possibly attempts to cancel and/or stop all tasks, and reject
2966 >     * all subsequently submitted tasks.  Invocation has no effect on
2967 >     * execution state if this is the {@link #commonPool}, and no
2968 >     * additional effect if already shut down. Otherwise, tasks that
2969 >     * are in the process of being submitted or executed concurrently
2970 >     * during the course of this method may or may not be
2971 >     * rejected. This method cancels both existing and unexecuted
2972 >     * tasks, in order to permit termination in the presence of task
2973 >     * dependencies. So the method always returns an empty list
2974 >     * (unlike the case for some other Executors).
2975       *
2976       * @return an empty list
2977       * @throws SecurityException if a security manager exists and
# Line 1877 | Line 2981 | public class ForkJoinPool extends Abstra
2981       */
2982      public List<Runnable> shutdownNow() {
2983          checkPermission();
2984 <        shutdown = true;
1881 <        tryTerminate(true);
2984 >        tryTerminate(true, true);
2985          return Collections.emptyList();
2986      }
2987  
# Line 1890 | Line 2993 | public class ForkJoinPool extends Abstra
2993      public boolean isTerminated() {
2994          long c = ctl;
2995          return ((c & STOP_BIT) != 0L &&
2996 <                (short)(c >>> TC_SHIFT) == -parallelism);
2996 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
2997      }
2998  
2999      /**
# Line 1909 | Line 3012 | public class ForkJoinPool extends Abstra
3012      public boolean isTerminating() {
3013          long c = ctl;
3014          return ((c & STOP_BIT) != 0L &&
3015 <                (short)(c >>> TC_SHIFT) != -parallelism);
1913 <    }
1914 <
1915 <    /**
1916 <     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1917 <     */
1918 <    final boolean isAtLeastTerminating() {
1919 <        return (ctl & STOP_BIT) != 0L;
3015 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3016      }
3017  
3018      /**
# Line 1925 | Line 3021 | public class ForkJoinPool extends Abstra
3021       * @return {@code true} if this pool has been shut down
3022       */
3023      public boolean isShutdown() {
3024 <        return shutdown;
3024 >        return plock < 0;
3025      }
3026  
3027      /**
3028 <     * Blocks until all tasks have completed execution after a shutdown
3029 <     * request, or the timeout occurs, or the current thread is
3030 <     * interrupted, whichever happens first.
3028 >     * Blocks until all tasks have completed execution after a
3029 >     * shutdown request, or the timeout occurs, or the current thread
3030 >     * is interrupted, whichever happens first. Note that the {@link
3031 >     * #commonPool()} never terminates until program shutdown so
3032 >     * this method will always time out.
3033       *
3034       * @param timeout the maximum time to wait
3035       * @param unit the time unit of the timeout argument
# Line 1942 | Line 3040 | public class ForkJoinPool extends Abstra
3040      public boolean awaitTermination(long timeout, TimeUnit unit)
3041          throws InterruptedException {
3042          long nanos = unit.toNanos(timeout);
3043 <        final ReentrantLock lock = this.submissionLock;
3044 <        lock.lock();
3045 <        try {
3046 <            for (;;) {
3047 <                if (isTerminated())
3048 <                    return true;
3049 <                if (nanos <= 0)
3050 <                    return false;
3051 <                nanos = termination.awaitNanos(nanos);
3043 >        if (isTerminated())
3044 >            return true;
3045 >        long startTime = System.nanoTime();
3046 >        boolean terminated = false;
3047 >        synchronized (this) {
3048 >            for (long waitTime = nanos, millis = 0L;;) {
3049 >                if (terminated = isTerminated() ||
3050 >                    waitTime <= 0L ||
3051 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3052 >                    break;
3053 >                wait(millis);
3054 >                waitTime = nanos - (System.nanoTime() - startTime);
3055              }
1955        } finally {
1956            lock.unlock();
3056          }
3057 +        return terminated;
3058      }
3059  
3060      /**
# Line 1965 | Line 3065 | public class ForkJoinPool extends Abstra
3065       * {@code isReleasable} must return {@code true} if blocking is
3066       * not necessary. Method {@code block} blocks the current thread
3067       * if necessary (perhaps internally invoking {@code isReleasable}
3068 <     * before actually blocking). The unusual methods in this API
3069 <     * accommodate synchronizers that may, but don't usually, block
3070 <     * for long periods. Similarly, they allow more efficient internal
3071 <     * handling of cases in which additional workers may be, but
3072 <     * usually are not, needed to ensure sufficient parallelism.
3073 <     * Toward this end, implementations of method {@code isReleasable}
3074 <     * must be amenable to repeated invocation.
3068 >     * before actually blocking). These actions are performed by any
3069 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3070 >     * unusual methods in this API accommodate synchronizers that may,
3071 >     * but don't usually, block for long periods. Similarly, they
3072 >     * allow more efficient internal handling of cases in which
3073 >     * additional workers may be, but usually are not, needed to
3074 >     * ensure sufficient parallelism.  Toward this end,
3075 >     * implementations of method {@code isReleasable} must be amenable
3076 >     * to repeated invocation.
3077       *
3078       * <p>For example, here is a ManagedBlocker based on a
3079       * ReentrantLock:
# Line 2052 | Line 3154 | public class ForkJoinPool extends Abstra
3154          throws InterruptedException {
3155          Thread t = Thread.currentThread();
3156          if (t instanceof ForkJoinWorkerThread) {
3157 <            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
3158 <            w.pool.awaitBlocker(blocker);
3157 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3158 >            while (!blocker.isReleasable()) { // variant of helpSignal
3159 >                WorkQueue[] ws; WorkQueue q; int m, n, u;
3160 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3161 >                    for (int i = 0; i <= m; ++i) {
3162 >                        if (blocker.isReleasable())
3163 >                            return;
3164 >                        if ((q = ws[i]) != null && (n = q.queueSize()) > 0) {
3165 >                            p.signalWork(q, n);
3166 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3167 >                                (u >> UAC_SHIFT) >= 0)
3168 >                                break;
3169 >                        }
3170 >                    }
3171 >                }
3172 >                if (p.tryCompensate()) {
3173 >                    try {
3174 >                        do {} while (!blocker.isReleasable() &&
3175 >                                     !blocker.block());
3176 >                    } finally {
3177 >                        p.incrementActiveCount();
3178 >                    }
3179 >                    break;
3180 >                }
3181 >            }
3182          }
3183          else {
3184 <            do {} while (!blocker.isReleasable() && !blocker.block());
3184 >            do {} while (!blocker.isReleasable() &&
3185 >                         !blocker.block());
3186          }
3187      }
3188  
# Line 2065 | Line 3191 | public class ForkJoinPool extends Abstra
3191      // implement RunnableFuture.
3192  
3193      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3194 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3194 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3195      }
3196  
3197      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3198 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3198 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3199      }
3200  
3201      // Unsafe mechanics
3202 <    private static final sun.misc.Unsafe UNSAFE;
3203 <    private static final long ctlOffset;
3204 <    private static final long stealCountOffset;
3205 <    private static final long blockedCountOffset;
2080 <    private static final long quiescerCountOffset;
2081 <    private static final long scanGuardOffset;
2082 <    private static final long nextWorkerNumberOffset;
2083 <    private static final long ABASE;
3202 >    private static final sun.misc.Unsafe U;
3203 >    private static final long CTL;
3204 >    private static final long PARKBLOCKER;
3205 >    private static final int ABASE;
3206      private static final int ASHIFT;
3207 +    private static final long STEALCOUNT;
3208 +    private static final long PLOCK;
3209 +    private static final long INDEXSEED;
3210 +    private static final long QLOCK;
3211  
3212      static {
3213 <        poolNumberGenerator = new AtomicInteger();
2088 <        workerSeedGenerator = new Random();
2089 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2090 <        defaultForkJoinWorkerThreadFactory =
2091 <            new DefaultForkJoinWorkerThreadFactory();
2092 <        int s;
3213 >        int s; // initialize field offsets for CAS etc
3214          try {
3215 <            UNSAFE = getUnsafe();
3216 <            Class k = ForkJoinPool.class;
3217 <            ctlOffset = UNSAFE.objectFieldOffset
3215 >            U = getUnsafe();
3216 >            Class<?> k = ForkJoinPool.class;
3217 >            CTL = U.objectFieldOffset
3218                  (k.getDeclaredField("ctl"));
3219 <            stealCountOffset = UNSAFE.objectFieldOffset
3219 >            STEALCOUNT = U.objectFieldOffset
3220                  (k.getDeclaredField("stealCount"));
3221 <            blockedCountOffset = UNSAFE.objectFieldOffset
3222 <                (k.getDeclaredField("blockedCount"));
3223 <            quiescerCountOffset = UNSAFE.objectFieldOffset
3224 <                (k.getDeclaredField("quiescerCount"));
3225 <            scanGuardOffset = UNSAFE.objectFieldOffset
3226 <                (k.getDeclaredField("scanGuard"));
3227 <            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
3228 <                (k.getDeclaredField("nextWorkerNumber"));
3229 <            Class a = ForkJoinTask[].class;
3230 <            ABASE = UNSAFE.arrayBaseOffset(a);
3231 <            s = UNSAFE.arrayIndexScale(a);
3221 >            PLOCK = U.objectFieldOffset
3222 >                (k.getDeclaredField("plock"));
3223 >            INDEXSEED = U.objectFieldOffset
3224 >                (k.getDeclaredField("indexSeed"));
3225 >            Class<?> tk = Thread.class;
3226 >            PARKBLOCKER = U.objectFieldOffset
3227 >                (tk.getDeclaredField("parkBlocker"));
3228 >            Class<?> wk = WorkQueue.class;
3229 >            QLOCK = U.objectFieldOffset
3230 >                (wk.getDeclaredField("qlock"));
3231 >            Class<?> ak = ForkJoinTask[].class;
3232 >            ABASE = U.arrayBaseOffset(ak);
3233 >            s = U.arrayIndexScale(ak);
3234 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3235          } catch (Exception e) {
3236              throw new Error(e);
3237          }
3238          if ((s & (s-1)) != 0)
3239              throw new Error("data type scale not a power of two");
3240 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3240 >
3241 >        submitters = new ThreadLocal<Submitter>();
3242 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3243 >            new DefaultForkJoinWorkerThreadFactory();
3244 >        /*
3245 >         * Establish common pool parameters.  For extra caution,
3246 >         * computations to set up common pool state are here; the
3247 >         * constructor just assigns these values to fields.
3248 >         */
3249 >
3250 >        int par = 0;
3251 >        Thread.UncaughtExceptionHandler handler = null;
3252 >        try {  // TBD: limit or report ignored exceptions?
3253 >            String pp = System.getProperty
3254 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3255 >            String hp = System.getProperty
3256 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3257 >            String fp = System.getProperty
3258 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3259 >            if (fp != null)
3260 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3261 >                       getSystemClassLoader().loadClass(fp).newInstance());
3262 >            if (hp != null)
3263 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3264 >                           getSystemClassLoader().loadClass(hp).newInstance());
3265 >            if (pp != null)
3266 >                par = Integer.parseInt(pp);
3267 >        } catch (Exception ignore) {
3268 >        }
3269 >
3270 >        if (par <= 0)
3271 >            par = Runtime.getRuntime().availableProcessors();
3272 >        if (par > MAX_CAP)
3273 >            par = MAX_CAP;
3274 >        commonPoolParallelism = par;
3275 >        long np = (long)(-par); // precompute initial ctl value
3276 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3277 >
3278 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3279 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3280      }
3281  
3282      /**
# Line 2143 | Line 3306 | public class ForkJoinPool extends Abstra
3306              }
3307          }
3308      }
3309 +
3310   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines