ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.59 by dl, Fri Jul 23 14:09:17 2010 UTC vs.
Revision 1.165 by dl, Thu Dec 20 17:14:39 2012 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.LockSupport;
15 < import java.util.concurrent.locks.ReentrantLock;
16 < import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.CountDownLatch;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 27 | Line 28 | import java.util.concurrent.CountDownLat
28   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29   * ExecutorService} mainly by virtue of employing
30   * <em>work-stealing</em>: all threads in the pool attempt to find and
31 < * execute subtasks created by other active tasks (eventually blocking
32 < * waiting for work if none exist). This enables efficient processing
33 < * when most tasks spawn other subtasks (as do most {@code
34 < * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
35 < * constructors, {@code ForkJoinPool}s may also be appropriate for use
36 < * with event-style tasks that are never joined.
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39 > *
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A {@code ForkJoinPool} is constructed with a given target
48 < * parallelism level; by default, equal to the number of available
49 < * processors. The pool attempts to maintain enough active (or
50 < * available) threads by dynamically adding, suspending, or resuming
51 < * internal worker threads, even if some tasks are stalled waiting to
52 < * join others. However, no such adjustments are guaranteed in the
53 < * face of blocked IO or other unmanaged synchronization. The nested
54 < * {@link ManagedBlocker} interface enables extension of the kinds of
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 51 | Line 62 | import java.util.concurrent.CountDownLat
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
66 < * main task execution methods summarized in the follwoing
67 < * table. These are designed to be used by clients not already engaged
68 < * in fork/join computations in the current pool.  The main forms of
69 < * these methods accept instances of {@code ForkJoinTask}, but
70 < * overloaded forms also allow mixed execution of plain {@code
65 > * <p>As is the case with other ExecutorServices, there are three
66 > * main task execution methods summarized in the following table.
67 > * These are designed to be used primarily by clients not already
68 > * engaged in fork/join computations in the current pool.  The main
69 > * forms of these methods accept instances of {@code ForkJoinTask},
70 > * but overloaded forms also allow mixed execution of plain {@code
71   * Runnable}- or {@code Callable}- based activities as well.  However,
72 < * tasks that are already executing in a pool should normally
73 < * <em>NOT</em> use these pool execution methods, but instead use the
74 < * within-computation forms listed in the table.
72 > * tasks that are already executing in a pool should normally instead
73 > * use the within-computation forms listed in the table unless using
74 > * async event-style tasks that are not usually joined, in which case
75 > * there is little difference among choice of methods.
76   *
77   * <table BORDER CELLPADDING=3 CELLSPACING=1>
78   *  <tr>
# Line 69 | Line 81 | import java.util.concurrent.CountDownLat
81   *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82   *  </tr>
83   *  <tr>
84 < *    <td> <b>Arange async execution</td>
84 > *    <td> <b>Arrange async execution</td>
85   *    <td> {@link #execute(ForkJoinTask)}</td>
86   *    <td> {@link ForkJoinTask#fork}</td>
87   *  </tr>
# Line 85 | Line 97 | import java.util.concurrent.CountDownLat
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
98 < * <pre>
99 < * static final ForkJoinPool mainPool = new ForkJoinPool();
100 < * ...
101 < * public void sort(long[] array) {
102 < *   mainPool.invoke(new SortTask(array, 0, array.length));
103 < * }
104 < * </pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 110 | Line 115 | import java.util.concurrent.CountDownLat
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117   * {@link RejectedExecutionException}) only when the pool is shut down
118 < * or internal resources have been exhuasted.
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 120 | Line 125 | public class ForkJoinPool extends Abstra
125      /*
126       * Implementation Overview
127       *
128 <     * This class provides the central bookkeeping and control for a
129 <     * set of worker threads: Submissions from non-FJ threads enter
130 <     * into a submission queue. Workers take these tasks and typically
131 <     * split them into subtasks that may be stolen by other workers.
132 <     * The main work-stealing mechanics implemented in class
133 <     * ForkJoinWorkerThread give first priority to processing tasks
134 <     * from their own queues (LIFO or FIFO, depending on mode), then
135 <     * to randomized FIFO steals of tasks in other worker queues, and
136 <     * lastly to new submissions. These mechanics do not consider
137 <     * affinities, loads, cache localities, etc, so rarely provide the
138 <     * best possible performance on a given machine, but portably
139 <     * provide good throughput by averaging over these factors.
140 <     * (Further, even if we did try to use such information, we do not
141 <     * usually have a basis for exploiting it. For example, some sets
142 <     * of tasks profit from cache affinities, but others are harmed by
143 <     * cache pollution effects.)
144 <     *
145 <     * Beyond work-stealing support and essential bookkeeping, the
146 <     * main responsibility of this framework is to arrange tactics for
147 <     * when one worker is waiting to join a task stolen (or always
148 <     * held by) another.  Becauae we are multiplexing many tasks on to
149 <     * a pool of workers, we can't just let them block (as in
150 <     * Thread.join).  We also cannot just reassign the joiner's
151 <     * run-time stack with another and replace it later, which would
152 <     * be a form of "continuation", that even if possible is not
153 <     * necessarily a good idea. Given that the creation costs of most
154 <     * threads on most systems mainly surrounds setting up runtime
155 <     * stacks, thread creation and switching is usually not much more
156 <     * expensive than stack creation and switching, and is more
157 <     * flexible). Instead we combine two tactics:
158 <     *
159 <     *   1. Arranging for the joiner to execute some task that it
160 <     *      would be running if the steal had not occurred.  Method
161 <     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162 <     *      links to try to find such a task.
163 <     *
164 <     *   2. Unless there are already enough live threads, creating or
165 <     *      or re-activating a spare thread to compensate for the
166 <     *      (blocked) joiner until it unblocks.  Spares then suspend
167 <     *      at their next opportunity or eventually die if unused for
168 <     *      too long.  See below and the internal documentation
169 <     *      for tryAwaitJoin for more details about compensation
170 <     *      rules.
171 <     *
172 <     * Because the determining existence of conservatively safe
173 <     * helping targets, the availability of already-created spares,
174 <     * and the apparent need to create new spares are all racy and
175 <     * require heuristic guidance, joins (in
176 <     * ForkJoinWorkerThread.joinTask) interleave these options until
177 <     * successful.  Creating a new spare always succeeds, but also
178 <     * increases application footprint, so we try to avoid it, within
179 <     * reason.
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216 <     * The ManagedBlocker extension API can't use option (1) so uses a
217 <     * special version of (2) in method awaitBlocker.
216 >     * Management
217 >     * ==========
218       *
219       * The main throughput advantages of work-stealing stem from
220 <     * decentralized control -- workers mostly steal tasks from each
221 <     * other. We do not want to negate this by creating bottlenecks
222 <     * implementing other management responsibilities. So we use a
223 <     * collection of techniques that avoid, reduce, or cope well with
224 <     * contention. These entail several instances of bit-packing into
225 <     * CASable fields to maintain only the minimally required
226 <     * atomicity. To enable such packing, we restrict maximum
227 <     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
228 <     * unbalanced increments and decrements) to fit into a 16 bit
229 <     * field, which is far in excess of normal operating range.  Even
230 <     * though updates to some of these bookkeeping fields do sometimes
231 <     * contend with each other, they don't normally cache-contend with
232 <     * updates to others enough to warrant memory padding or
233 <     * isolation. So they are all held as fields of ForkJoinPool
234 <     * objects.  The main capabilities are as follows:
235 <     *
236 <     * 1. Creating and removing workers. Workers are recorded in the
237 <     * "workers" array. This is an array as opposed to some other data
238 <     * structure to support index-based random steals by workers.
239 <     * Updates to the array recording new workers and unrecording
240 <     * terminated ones are protected from each other by a lock
241 <     * (workerLock) but the array is otherwise concurrently readable,
242 <     * and accessed directly by workers. To simplify index-based
243 <     * operations, the array size is always a power of two, and all
244 <     * readers must tolerate null slots. Currently, all worker thread
245 <     * creation is on-demand, triggered by task submissions,
246 <     * replacement of terminated workers, and/or compensation for
247 <     * blocked workers. However, all other support code is set up to
248 <     * work with other policies.
249 <     *
250 <     * 2. Bookkeeping for dynamically adding and removing workers. We
251 <     * aim to approximately maintain the given level of parallelism.
252 <     * When some workers are known to be blocked (on joins or via
253 <     * ManagedBlocker), we may create or resume others to take their
254 <     * place until they unblock (see below). Implementing this
255 <     * requires counts of the number of "running" threads (i.e., those
256 <     * that are neither blocked nor artifically suspended) as well as
257 <     * the total number.  These two values are packed into one field,
258 <     * "workerCounts" because we need accurate snapshots when deciding
259 <     * to create, resume or suspend.  Note however that the
260 <     * correspondance of these counts to reality is not guaranteed. In
261 <     * particular updates for unblocked threads may lag until they
262 <     * actually wake up.
263 <     *
264 <     * 3. Maintaining global run state. The run state of the pool
265 <     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
266 <     * those in other Executor implementations, as well as a count of
267 <     * "active" workers -- those that are, or soon will be, or
268 <     * recently were executing tasks. The runLevel and active count
269 <     * are packed together in order to correctly trigger shutdown and
270 <     * termination. Without care, active counts can be subject to very
271 <     * high contention.  We substantially reduce this contention by
272 <     * relaxing update rules.  A worker must claim active status
273 <     * prospectively, by activating if it sees that a submitted or
274 <     * stealable task exists (it may find after activating that the
275 <     * task no longer exists). It stays active while processing this
276 <     * task (if it exists) and any other local subtasks it produces,
277 <     * until it cannot find any other tasks. It then tries
278 <     * inactivating (see method preStep), but upon update contention
279 <     * instead scans for more tasks, later retrying inactivation if it
280 <     * doesn't find any.
281 <     *
282 <     * 4. Managing idle workers waiting for tasks. We cannot let
283 <     * workers spin indefinitely scanning for tasks when none are
284 <     * available. On the other hand, we must quickly prod them into
285 <     * action when new tasks are submitted or generated.  We
286 <     * park/unpark these idle workers using an event-count scheme.
287 <     * Field eventCount is incremented upon events that may enable
288 <     * workers that previously could not find a task to now find one:
289 <     * Submission of a new task to the pool, or another worker pushing
290 <     * a task onto a previously empty queue.  (We also use this
291 <     * mechanism for termination and reconfiguration actions that
292 <     * require wakeups of idle workers).  Each worker maintains its
293 <     * last known event count, and blocks when a scan for work did not
294 <     * find a task AND its lastEventCount matches the current
295 <     * eventCount. Waiting idle workers are recorded in a variant of
296 <     * Treiber stack headed by field eventWaiters which, when nonzero,
297 <     * encodes the thread index and count awaited for by the worker
298 <     * thread most recently calling eventSync. This thread in turn has
299 <     * a record (field nextEventWaiter) for the next waiting worker.
300 <     * In addition to allowing simpler decisions about need for
301 <     * wakeup, the event count bits in eventWaiters serve the role of
302 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
303 <     * in task diffusion, workers not otherwise occupied may invoke
304 <     * method releaseWaiters, that removes and signals (unparks)
305 <     * workers not waiting on current count. To minimize task
306 <     * production stalls associate with signalling, any worker pushing
307 <     * a task on an empty queue invokes the weaker method signalWork,
308 <     * that only releases idle workers until it detects interference
309 <     * by other threads trying to release, and lets them take
310 <     * over. The net effect is a tree-like diffusion of signals, where
311 <     * released threads (and possibly others) help with unparks.  To
312 <     * further reduce contention effects a bit, failed CASes to
313 <     * increment field eventCount are tolerated without retries.
314 <     * Conceptually they are merged into the same event, which is OK
315 <     * when their only purpose is to enable workers to scan for work.
316 <     *
317 <     * 5. Managing suspension of extra workers. When a worker is about
318 <     * to block waiting for a join (or via ManagedBlockers), we may
319 <     * create a new thread to maintain parallelism level, or at least
320 <     * avoid starvation. Usually, extra threads are needed for only
321 <     * very short periods, yet join dependencies are such that we
322 <     * sometimes need them in bursts. Rather than create new threads
323 <     * each time this happens, we suspend no-longer-needed extra ones
324 <     * as "spares". For most purposes, we don't distinguish "extra"
325 <     * spare threads from normal "core" threads: On each call to
326 <     * preStep (the only point at which we can do this) a worker
327 <     * checks to see if there are now too many running workers, and if
328 <     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
329 <     * look for suspended threads to resume before considering
330 <     * creating a new replacement. We don't need a special data
331 <     * structure to maintain spares; simply scanning the workers array
332 <     * looking for worker.isSuspended() is fine because the calling
333 <     * thread is otherwise not doing anything useful anyway; we are at
334 <     * least as happy if after locating a spare, the caller doesn't
335 <     * actually block because the join is ready before we try to
336 <     * adjust and compensate.  Note that this is intrinsically racy.
337 <     * One thread may become a spare at about the same time as another
338 <     * is needlessly being created. We counteract this and related
339 <     * slop in part by requiring resumed spares to immediately recheck
340 <     * (in preStep) to see whether they they should re-suspend. The
341 <     * only effective difference between "extra" and "core" threads is
342 <     * that we allow the "extra" ones to time out and die if they are
343 <     * not resumed within a keep-alive interval of a few seconds. This
344 <     * is implemented mainly within ForkJoinWorkerThread, but requires
345 <     * some coordination (isTrimmed() -- meaning killed while
346 <     * suspended) to correctly maintain pool counts.
347 <     *
348 <     * 6. Deciding when to create new workers. The main dynamic
349 <     * control in this class is deciding when to create extra threads,
350 <     * in methods awaitJoin and awaitBlocker. We always need to create
351 <     * one when the number of running threads would become zero and
352 <     * all workers are busy. However, this is not easy to detect
353 <     * reliably in the presence of transients so we use retries and
354 <     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
355 <     * effectively reduce churn at the price of systematically
356 <     * undershooting target parallelism when many threads are blocked.
357 <     * However, biasing toward undeshooting partially compensates for
358 <     * the above mechanics to suspend extra threads, that normally
359 <     * lead to overshoot because we can only suspend workers
360 <     * in-between top-level actions. It also better copes with the
361 <     * fact that some of the methods in this class tend to never
362 <     * become compiled (but are interpreted), so some components of
363 <     * the entire set of controls might execute many times faster than
364 <     * others. And similarly for cases where the apparent lack of work
365 <     * is just due to GC stalls and other transient system activity.
366 <     *
367 <     * Beware that there is a lot of representation-level coupling
368 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
369 <     * ForkJoinTask.  For example, direct access to "workers" array by
370 <     * workers, and direct access to ForkJoinTask.status by both
371 <     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331 >     *
332 >     * Trimming workers. To release resources after periods of lack of
333 >     * use, a worker starting to wait when the pool is quiescent will
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339 >     *
340 >     * Shutdown and Termination. A call to shutdownNow atomically sets
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343 >     * all waiting workers.  Detecting whether termination should
344 >     * commence after a non-abrupt shutdown() call requires more work
345 >     * and bookkeeping. We need consensus about quiescence (i.e., that
346 >     * there is no more work). The active count provides a primary
347 >     * indication but non-abrupt shutdown still requires a rechecking
348 >     * scan for any workers that are inactive but not queued.
349 >     *
350 >     * Joining Tasks
351 >     * =============
352 >     *
353 >     * Any of several actions may be taken when one worker is waiting
354 >     * to join a task stolen (or always held) by another.  Because we
355 >     * are multiplexing many tasks on to a pool of workers, we can't
356 >     * just let them block (as in Thread.join).  We also cannot just
357 >     * reassign the joiner's run-time stack with another and replace
358 >     * it later, which would be a form of "continuation", that even if
359 >     * possible is not necessarily a good idea since we sometimes need
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362 >     *
363 >     *   Helping: Arranging for the joiner to execute some task that it
364 >     *      would be running if the steal had not occurred.
365 >     *
366 >     *   Compensating: Unless there are already enough live threads,
367 >     *      method tryCompensate() may create or re-activate a spare
368 >     *      thread to compensate for blocked joiners until they unblock.
369 >     *
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377 >     *
378 >     * The ManagedBlocker extension API can't use helping so relies
379 >     * only on compensation in method awaitBlocker.
380 >     *
381 >     * The algorithm in tryHelpStealer entails a form of "linear"
382 >     * helping: Each worker records (in field currentSteal) the most
383 >     * recent task it stole from some other worker. Plus, it records
384 >     * (in field currentJoin) the task it is currently actively
385 >     * joining. Method tryHelpStealer uses these markers to try to
386 >     * find a worker to help (i.e., steal back a task from and execute
387 >     * it) that could hasten completion of the actively joined task.
388 >     * In essence, the joiner executes a task that would be on its own
389 >     * local deque had the to-be-joined task not been stolen. This may
390 >     * be seen as a conservative variant of the approach in Wagner &
391 >     * Calder "Leapfrogging: a portable technique for implementing
392 >     * efficient futures" SIGPLAN Notices, 1993
393 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 >     * that: (1) We only maintain dependency links across workers upon
395 >     * steals, rather than use per-task bookkeeping.  This sometimes
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404 >     * racy: field currentJoin is updated only while actively joining,
405 >     * which means that we miss links in the chain during long-lived
406 >     * tasks, GC stalls etc (which is OK since blocking in such cases
407 >     * is usually a good idea).  (4) We bound the number of attempts
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416 >     *
417 >     * It is impossible to keep exactly the target parallelism number
418 >     * of threads running at any given time.  Determining the
419 >     * existence of conservatively safe helping targets, the
420 >     * availability of already-created spares, and the apparent need
421 >     * to create new spares are all racy, so we rely on multiple
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static commonPool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467       * trying to reduce this, since any associated future changes in
468       * representations will need to be accompanied by algorithmic
469 <     * changes anyway.
470 <     *
471 <     * Style notes: There are lots of inline assignments (of form
472 <     * "while ((local = field) != 0)") which are usually the simplest
473 <     * way to ensure read orderings. Also several occurrences of the
474 <     * unusual "do {} while(!cas...)" which is the simplest way to
475 <     * force an update of a CAS'ed variable. There are also other
476 <     * coding oddities that help some methods perform reasonably even
477 <     * when interpreted (not compiled), at the expense of messiness.
478 <     *
479 <     * The order of declarations in this file is: (1) statics (2)
480 <     * fields (along with constants used when unpacking some of them)
481 <     * (3) internal control methods (4) callbacks and other support
482 <     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
483 <     * methods (plus a few little helpers).
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494 >     */
495 >
496 >    // Static utilities
497 >
498 >    /**
499 >     * If there is a security manager, makes sure caller has
500 >     * permission to modify threads.
501       */
502 +    private static void checkPermission() {
503 +        SecurityManager security = System.getSecurityManager();
504 +        if (security != null)
505 +            security.checkPermission(modifyThreadPermission);
506 +    }
507 +
508 +    // Nested classes
509  
510      /**
511       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 368 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 +     * Per-thread records for threads that submit to pools. Currently
539 +     * holds only pseudo-random seed / index that is used to choose
540 +     * submission queues in method externalPush. In the future, this may
541 +     * also incorporate a means to implement different task rejection
542 +     * and resubmission policies.
543 +     *
544 +     * Seeds for submitters and workers/workQueues work in basically
545 +     * the same way but are initialized and updated using slightly
546 +     * different mechanics. Both are initialized using the same
547 +     * approach as in class ThreadLocal, where successive values are
548 +     * unlikely to collide with previous values. Seeds are then
549 +     * randomly modified upon collisions using xorshifts, which
550 +     * requires a non-zero seed.
551 +     */
552 +    static final class Submitter {
553 +        int seed;
554 +        Submitter(int s) { seed = s; }
555 +    }
556 +
557 +    /**
558 +     * Class for artificial tasks that are used to replace the target
559 +     * of local joins if they are removed from an interior queue slot
560 +     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 +     * actually do anything beyond having a unique identity.
562 +     */
563 +    static final class EmptyTask extends ForkJoinTask<Void> {
564 +        private static final long serialVersionUID = -7721805057305804111L;
565 +        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 +        public final Void getRawResult() { return null; }
567 +        public final void setRawResult(Void x) {}
568 +        public final boolean exec() { return true; }
569 +    }
570 +
571 +    /**
572 +     * Queues supporting work-stealing as well as external task
573 +     * submission. See above for main rationale and algorithms.
574 +     * Implementation relies heavily on "Unsafe" intrinsics
575 +     * and selective use of "volatile":
576 +     *
577 +     * Field "base" is the index (mod array.length) of the least valid
578 +     * queue slot, which is always the next position to steal (poll)
579 +     * from if nonempty. Reads and writes require volatile orderings
580 +     * but not CAS, because updates are only performed after slot
581 +     * CASes.
582 +     *
583 +     * Field "top" is the index (mod array.length) of the next queue
584 +     * slot to push to or pop from. It is written only by owner thread
585 +     * for push, or under lock for external/shared push, and accessed
586 +     * by other threads only after reading (volatile) base.  Both top
587 +     * and base are allowed to wrap around on overflow, but (top -
588 +     * base) (or more commonly -(base - top) to force volatile read of
589 +     * base before top) still estimates size. The lock ("qlock") is
590 +     * forced to -1 on termination, causing all further lock attempts
591 +     * to fail. (Note: we don't need CAS for termination state because
592 +     * upon pool shutdown, all shared-queues will stop being used
593 +     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 +     * within lock bodies are "impossible" (modulo JVM errors that
595 +     * would cause failure anyway.)
596 +     *
597 +     * The array slots are read and written using the emulation of
598 +     * volatiles/atomics provided by Unsafe. Insertions must in
599 +     * general use putOrderedObject as a form of releasing store to
600 +     * ensure that all writes to the task object are ordered before
601 +     * its publication in the queue.  All removals entail a CAS to
602 +     * null.  The array is always a power of two. To ensure safety of
603 +     * Unsafe array operations, all accesses perform explicit null
604 +     * checks and implicit bounds checks via power-of-two masking.
605 +     *
606 +     * In addition to basic queuing support, this class contains
607 +     * fields described elsewhere to control execution. It turns out
608 +     * to work better memory-layout-wise to include them in this class
609 +     * rather than a separate class.
610 +     *
611 +     * Performance on most platforms is very sensitive to placement of
612 +     * instances of both WorkQueues and their arrays -- we absolutely
613 +     * do not want multiple WorkQueue instances or multiple queue
614 +     * arrays sharing cache lines. (It would be best for queue objects
615 +     * and their arrays to share, but there is nothing available to
616 +     * help arrange that).  Unfortunately, because they are recorded
617 +     * in a common array, WorkQueue instances are often moved to be
618 +     * adjacent by garbage collectors. To reduce impact, we use field
619 +     * padding that works OK on common platforms; this effectively
620 +     * trades off slightly slower average field access for the sake of
621 +     * avoiding really bad worst-case access. (Until better JVM
622 +     * support is in place, this padding is dependent on transient
623 +     * properties of JVM field layout rules.) We also take care in
624 +     * allocating, sizing and resizing the array. Non-shared queue
625 +     * arrays are initialized by workers before use. Others are
626 +     * allocated on first use.
627 +     */
628 +    static final class WorkQueue {
629 +        /**
630 +         * Capacity of work-stealing queue array upon initialization.
631 +         * Must be a power of two; at least 4, but should be larger to
632 +         * reduce or eliminate cacheline sharing among queues.
633 +         * Currently, it is much larger, as a partial workaround for
634 +         * the fact that JVMs often place arrays in locations that
635 +         * share GC bookkeeping (especially cardmarks) such that
636 +         * per-write accesses encounter serious memory contention.
637 +         */
638 +        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639 +
640 +        /**
641 +         * Maximum size for queue arrays. Must be a power of two less
642 +         * than or equal to 1 << (31 - width of array entry) to ensure
643 +         * lack of wraparound of index calculations, but defined to a
644 +         * value a bit less than this to help users trap runaway
645 +         * programs before saturating systems.
646 +         */
647 +        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648 +
649 +        // Heuristic padding to ameliorate unfortunate memory placements
650 +        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 +
652 +        int seed;                  // for random scanning; initialize nonzero
653 +        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654 +        int nextWait;              // encoded record of next event waiter
655 +        int hint;                  // steal or signal hint (index)
656 +        int poolIndex;             // index of this queue in pool (or 0)
657 +        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 +        int nsteals;               // number of steals
659 +        volatile int qlock;        // 1: locked, -1: terminate; else 0
660 +        volatile int base;         // index of next slot for poll
661 +        int top;                   // index of next slot for push
662 +        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 +        final ForkJoinPool pool;   // the containing pool (may be null)
664 +        final ForkJoinWorkerThread owner; // owning thread or null if shared
665 +        volatile Thread parker;    // == owner during call to park; else null
666 +        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667 +        ForkJoinTask<?> currentSteal; // current non-local task being executed
668 +
669 +        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 +        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 +
672 +        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 +                  int seed) {
674 +            this.pool = pool;
675 +            this.owner = owner;
676 +            this.mode = mode;
677 +            this.seed = seed;
678 +            // Place indices in the center of array (that is not yet allocated)
679 +            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 +        }
681 +
682 +        /**
683 +         * Returns the approximate number of tasks in the queue.
684 +         */
685 +        final int queueSize() {
686 +            int n = base - top;       // non-owner callers must read base first
687 +            return (n >= 0) ? 0 : -n; // ignore transient negative
688 +        }
689 +
690 +       /**
691 +         * Provides a more accurate estimate of whether this queue has
692 +         * any tasks than does queueSize, by checking whether a
693 +         * near-empty queue has at least one unclaimed task.
694 +         */
695 +        final boolean isEmpty() {
696 +            ForkJoinTask<?>[] a; int m, s;
697 +            int n = base - (s = top);
698 +            return (n >= 0 ||
699 +                    (n == -1 &&
700 +                     ((a = array) == null ||
701 +                      (m = a.length - 1) < 0 ||
702 +                      U.getObject
703 +                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 +        }
705 +
706 +        /**
707 +         * Pushes a task. Call only by owner in unshared queues.  (The
708 +         * shared-queue version is embedded in method externalPush.)
709 +         *
710 +         * @param task the task. Caller must ensure non-null.
711 +         * @throw RejectedExecutionException if array cannot be resized
712 +         */
713 +        final void push(ForkJoinTask<?> task) {
714 +            ForkJoinTask<?>[] a; ForkJoinPool p;
715 +            int s = top, m, n;
716 +            if ((a = array) != null) {    // ignore if queue removed
717 +                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 +                U.putOrderedObject(a, j, task);
719 +                if ((n = (top = s + 1) - base) <= 2) {
720 +                    if ((p = pool) != null)
721 +                        p.signalWork(this);
722 +                }
723 +                else if (n >= m)
724 +                    growArray();
725 +            }
726 +        }
727 +
728 +       /**
729 +         * Initializes or doubles the capacity of array. Call either
730 +         * by owner or with lock held -- it is OK for base, but not
731 +         * top, to move while resizings are in progress.
732 +         */
733 +        final ForkJoinTask<?>[] growArray() {
734 +            ForkJoinTask<?>[] oldA = array;
735 +            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 +            if (size > MAXIMUM_QUEUE_CAPACITY)
737 +                throw new RejectedExecutionException("Queue capacity exceeded");
738 +            int oldMask, t, b;
739 +            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 +            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 +                (t = top) - (b = base) > 0) {
742 +                int mask = size - 1;
743 +                do {
744 +                    ForkJoinTask<?> x;
745 +                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 +                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 +                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 +                    if (x != null &&
749 +                        U.compareAndSwapObject(oldA, oldj, x, null))
750 +                        U.putObjectVolatile(a, j, x);
751 +                } while (++b != t);
752 +            }
753 +            return a;
754 +        }
755 +
756 +        /**
757 +         * Takes next task, if one exists, in LIFO order.  Call only
758 +         * by owner in unshared queues.
759 +         */
760 +        final ForkJoinTask<?> pop() {
761 +            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 +            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 +                for (int s; (s = top - 1) - base >= 0;) {
764 +                    long j = ((m & s) << ASHIFT) + ABASE;
765 +                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 +                        break;
767 +                    if (U.compareAndSwapObject(a, j, t, null)) {
768 +                        top = s;
769 +                        return t;
770 +                    }
771 +                }
772 +            }
773 +            return null;
774 +        }
775 +
776 +        /**
777 +         * Takes a task in FIFO order if b is base of queue and a task
778 +         * can be claimed without contention. Specialized versions
779 +         * appear in ForkJoinPool methods scan and tryHelpStealer.
780 +         */
781 +        final ForkJoinTask<?> pollAt(int b) {
782 +            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 +            if ((a = array) != null) {
784 +                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 +                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 +                    base == b &&
787 +                    U.compareAndSwapObject(a, j, t, null)) {
788 +                    base = b + 1;
789 +                    return t;
790 +                }
791 +            }
792 +            return null;
793 +        }
794 +
795 +        /**
796 +         * Takes next task, if one exists, in FIFO order.
797 +         */
798 +        final ForkJoinTask<?> poll() {
799 +            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 +            while ((b = base) - top < 0 && (a = array) != null) {
801 +                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 +                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 +                if (t != null) {
804 +                    if (base == b &&
805 +                        U.compareAndSwapObject(a, j, t, null)) {
806 +                        base = b + 1;
807 +                        return t;
808 +                    }
809 +                }
810 +                else if (base == b) {
811 +                    if (b + 1 == top)
812 +                        break;
813 +                    Thread.yield(); // wait for lagging update (very rare)
814 +                }
815 +            }
816 +            return null;
817 +        }
818 +
819 +        /**
820 +         * Takes next task, if one exists, in order specified by mode.
821 +         */
822 +        final ForkJoinTask<?> nextLocalTask() {
823 +            return mode == 0 ? pop() : poll();
824 +        }
825 +
826 +        /**
827 +         * Returns next task, if one exists, in order specified by mode.
828 +         */
829 +        final ForkJoinTask<?> peek() {
830 +            ForkJoinTask<?>[] a = array; int m;
831 +            if (a == null || (m = a.length - 1) < 0)
832 +                return null;
833 +            int i = mode == 0 ? top - 1 : base;
834 +            int j = ((i & m) << ASHIFT) + ABASE;
835 +            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 +        }
837 +
838 +        /**
839 +         * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841 +         */
842 +        final boolean tryUnpush(ForkJoinTask<?> t) {
843 +            ForkJoinTask<?>[] a; int s;
844 +            if ((a = array) != null && (s = top) != base &&
845 +                U.compareAndSwapObject
846 +                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 +                top = s;
848 +                return true;
849 +            }
850 +            return false;
851 +        }
852 +
853 +        /**
854 +         * Removes and cancels all known tasks, ignoring any exceptions.
855 +         */
856 +        final void cancelAll() {
857 +            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 +            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 +            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 +                ForkJoinTask.cancelIgnoringExceptions(t);
861 +        }
862 +
863 +        /**
864 +         * Computes next value for random probes.  Scans don't require
865 +         * a very high quality generator, but also not a crummy one.
866 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 +         * This is manually inlined in its usages in ForkJoinPool to
868 +         * avoid writes inside busy scan loops.
869 +         */
870 +        final int nextSeed() {
871 +            int r = seed;
872 +            r ^= r << 13;
873 +            r ^= r >>> 17;
874 +            return seed = r ^= r << 5;
875 +        }
876 +
877 +        // Specialized execution methods
878 +
879 +        /**
880 +         * Pops and runs tasks until empty.
881 +         */
882 +        private void popAndExecAll() {
883 +            // A bit faster than repeated pop calls
884 +            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 +            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 +                   (s = top - 1) - base >= 0 &&
887 +                   (t = ((ForkJoinTask<?>)
888 +                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 +                   != null) {
890 +                if (U.compareAndSwapObject(a, j, t, null)) {
891 +                    top = s;
892 +                    t.doExec();
893 +                }
894 +            }
895 +        }
896 +
897 +        /**
898 +         * Polls and runs tasks until empty.
899 +         */
900 +        private void pollAndExecAll() {
901 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 +                t.doExec();
903 +        }
904 +
905 +        /**
906 +         * If present, removes from queue and executes the given task,
907 +         * or any other cancelled task. Returns (true) on any CAS
908 +         * or consistency check failure so caller can retry.
909 +         *
910 +         * @return false if no progress can be made, else true;
911 +         */
912 +        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 +            boolean stat = true, removed = false, empty = true;
914 +            ForkJoinTask<?>[] a; int m, s, b, n;
915 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 +                (n = (s = top) - (b = base)) > 0) {
917 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 +                    int j = ((--s & m) << ASHIFT) + ABASE;
919 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 +                    if (t == null)                    // inconsistent length
921 +                        break;
922 +                    else if (t == task) {
923 +                        if (s + 1 == top) {           // pop
924 +                            if (!U.compareAndSwapObject(a, j, task, null))
925 +                                break;
926 +                            top = s;
927 +                            removed = true;
928 +                        }
929 +                        else if (base == b)           // replace with proxy
930 +                            removed = U.compareAndSwapObject(a, j, task,
931 +                                                             new EmptyTask());
932 +                        break;
933 +                    }
934 +                    else if (t.status >= 0)
935 +                        empty = false;
936 +                    else if (s + 1 == top) {          // pop and throw away
937 +                        if (U.compareAndSwapObject(a, j, t, null))
938 +                            top = s;
939 +                        break;
940 +                    }
941 +                    if (--n == 0) {
942 +                        if (!empty && base == b)
943 +                            stat = false;
944 +                        break;
945 +                    }
946 +                }
947 +            }
948 +            if (removed)
949 +                task.doExec();
950 +            return stat;
951 +        }
952 +
953 +        /**
954 +         * Polls for and executes the given task or any other task in
955 +         * its CountedCompleter computation
956 +         */
957 +        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 +            ForkJoinTask<?>[] a; int b; Object o;
959 +            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 +                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 +                if ((o = U.getObject(a, j)) == null ||
962 +                    !(o instanceof CountedCompleter))
963 +                    break;
964 +                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 +                    if (r == root) {
966 +                        if (base == b &&
967 +                            U.compareAndSwapObject(a, j, t, null)) {
968 +                            base = b + 1;
969 +                            t.doExec();
970 +                            return true;
971 +                        }
972 +                        else
973 +                            break; // restart
974 +                    }
975 +                    if ((r = r.completer) == null)
976 +                        break outer; // not part of root computation
977 +                }
978 +            }
979 +            return false;
980 +        }
981 +
982 +        /**
983 +         * Executes a top-level task and any local tasks remaining
984 +         * after execution.
985 +         */
986 +        final void runTask(ForkJoinTask<?> t) {
987 +            if (t != null) {
988 +                (currentSteal = t).doExec();
989 +                currentSteal = null;
990 +                ++nsteals;
991 +                if (base - top < 0) {       // process remaining local tasks
992 +                    if (mode == 0)
993 +                        popAndExecAll();
994 +                    else
995 +                        pollAndExecAll();
996 +                }
997 +            }
998 +        }
999 +
1000 +        /**
1001 +         * Executes a non-top-level (stolen) task.
1002 +         */
1003 +        final void runSubtask(ForkJoinTask<?> t) {
1004 +            if (t != null) {
1005 +                ForkJoinTask<?> ps = currentSteal;
1006 +                (currentSteal = t).doExec();
1007 +                currentSteal = ps;
1008 +            }
1009 +        }
1010 +
1011 +        /**
1012 +         * Returns true if owned and not known to be blocked.
1013 +         */
1014 +        final boolean isApparentlyUnblocked() {
1015 +            Thread wt; Thread.State s;
1016 +            return (eventCount >= 0 &&
1017 +                    (wt = owner) != null &&
1018 +                    (s = wt.getState()) != Thread.State.BLOCKED &&
1019 +                    s != Thread.State.WAITING &&
1020 +                    s != Thread.State.TIMED_WAITING);
1021 +        }
1022 +
1023 +        // Unsafe mechanics
1024 +        private static final sun.misc.Unsafe U;
1025 +        private static final long QLOCK;
1026 +        private static final int ABASE;
1027 +        private static final int ASHIFT;
1028 +        static {
1029 +            int s;
1030 +            try {
1031 +                U = getUnsafe();
1032 +                Class<?> k = WorkQueue.class;
1033 +                Class<?> ak = ForkJoinTask[].class;
1034 +                QLOCK = U.objectFieldOffset
1035 +                    (k.getDeclaredField("qlock"));
1036 +                ABASE = U.arrayBaseOffset(ak);
1037 +                s = U.arrayIndexScale(ak);
1038 +            } catch (Exception e) {
1039 +                throw new Error(e);
1040 +            }
1041 +            if ((s & (s-1)) != 0)
1042 +                throw new Error("data type scale not a power of two");
1043 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044 +        }
1045 +    }
1046 +
1047 +    // static fields (initialized in static initializer below)
1048 +
1049 +    /**
1050       * Creates a new ForkJoinWorkerThread. This factory is used unless
1051       * overridden in ForkJoinPool constructors.
1052       */
1053      public static final ForkJoinWorkerThreadFactory
1054 <        defaultForkJoinWorkerThreadFactory =
384 <        new DefaultForkJoinWorkerThreadFactory();
1054 >        defaultForkJoinWorkerThreadFactory;
1055  
1056      /**
1057 <     * Permission required for callers of methods that may start or
1058 <     * kill threads.
1057 >     * Per-thread submission bookkeeping. Shared across all pools
1058 >     * to reduce ThreadLocal pollution and because random motion
1059 >     * to avoid contention in one pool is likely to hold for others.
1060 >     * Lazily initialized on first submission (but null-checked
1061 >     * in other contexts to avoid unnecessary initialization).
1062       */
1063 <    private static final RuntimePermission modifyThreadPermission =
391 <        new RuntimePermission("modifyThread");
1063 >    static final ThreadLocal<Submitter> submitters;
1064  
1065      /**
1066 <     * If there is a security manager, makes sure caller has
1067 <     * permission to modify threads.
1066 >     * Permission required for callers of methods that may start or
1067 >     * kill threads.
1068       */
1069 <    private static void checkPermission() {
398 <        SecurityManager security = System.getSecurityManager();
399 <        if (security != null)
400 <            security.checkPermission(modifyThreadPermission);
401 <    }
1069 >    private static final RuntimePermission modifyThreadPermission;
1070  
1071      /**
1072 <     * Generator for assigning sequence numbers as pool names.
1072 >     * Common (static) pool. Non-null for public use unless a static
1073 >     * construction exception, but internal usages null-check on use
1074 >     * to paranoically avoid potential initialization circularities
1075 >     * as well as to simplify generated code.
1076       */
1077 <    private static final AtomicInteger poolNumberGenerator =
407 <        new AtomicInteger();
1077 >    static final ForkJoinPool commonPool;
1078  
1079      /**
1080 <     * Absolute bound for parallelism level. Twice this number must
411 <     * fit into a 16bit field to enable word-packing for some counts.
1080 >     * Common pool parallelism. Must equal commonPool.parallelism.
1081       */
1082 <    private static final int MAX_THREADS = 0x7fff;
1082 >    static final int commonPoolParallelism;
1083  
1084      /**
1085 <     * Array holding all worker threads in the pool.  Array size must
417 <     * be a power of two.  Updates and replacements are protected by
418 <     * workerLock, but the array is always kept in a consistent enough
419 <     * state to be randomly accessed without locking by workers
420 <     * performing work-stealing, as well as other traversal-based
421 <     * methods in this class. All readers must tolerate that some
422 <     * array slots may be null.
1085 >     * Sequence number for creating workerNamePrefix.
1086       */
1087 <    volatile ForkJoinWorkerThread[] workers;
1087 >    private static int poolNumberSequence;
1088  
1089      /**
1090 <     * Queue for external submissions.
1090 >     * Return the next sequence number. We don't expect this to
1091 >     * ever contend so use simple builtin sync.
1092       */
1093 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1093 >    private static final synchronized int nextPoolId() {
1094 >        return ++poolNumberSequence;
1095 >    }
1096  
1097 <    /**
432 <     * Lock protecting updates to workers array.
433 <     */
434 <    private final ReentrantLock workerLock;
1097 >    // static constants
1098  
1099      /**
1100 <     * Latch released upon termination.
1100 >     * Initial timeout value (in nanoseconds) for the thread
1101 >     * triggering quiescence to park waiting for new work. On timeout,
1102 >     * the thread will instead try to shrink the number of
1103 >     * workers. The value should be large enough to avoid overly
1104 >     * aggressive shrinkage during most transient stalls (long GCs
1105 >     * etc).
1106       */
1107 <    private final Phaser termination;
1107 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1108  
1109      /**
1110 <     * Creation factory for worker threads.
1110 >     * Timeout value when there are more threads than parallelism level
1111       */
1112 <    private final ForkJoinWorkerThreadFactory factory;
1112 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1113  
1114      /**
1115 <     * Sum of per-thread steal counts, updated only when threads are
448 <     * idle or terminating.
1115 >     * Tolerance for idle timeouts, to cope with timer undershoots
1116       */
1117 <    private volatile long stealCount;
1117 >    private static final long TIMEOUT_SLOP = 2000000L;
1118  
1119      /**
1120 <     * Encoded record of top of treiber stack of threads waiting for
1121 <     * events. The top 32 bits contain the count being waited for. The
1122 <     * bottom word contains one plus the pool index of waiting worker
1123 <     * thread.
1120 >     * The maximum stolen->joining link depth allowed in method
1121 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1122 >     * chains are unbounded, but we use a fixed constant to avoid
1123 >     * (otherwise unchecked) cycles and to bound staleness of
1124 >     * traversal parameters at the expense of sometimes blocking when
1125 >     * we could be helping.
1126       */
1127 <    private volatile long eventWaiters;
459 <
460 <    private static final int  EVENT_COUNT_SHIFT = 32;
461 <    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
1127 >    private static final int MAX_HELP = 64;
1128  
1129      /**
1130 <     * A counter for events that may wake up worker threads:
1131 <     *   - Submission of a new task to the pool
466 <     *   - A worker pushing a task on an empty queue
467 <     *   - termination and reconfiguration
1130 >     * Increment for seed generators. See class ThreadLocal for
1131 >     * explanation.
1132       */
1133 <    private volatile int eventCount;
1133 >    private static final int SEED_INCREMENT = 0x61c88647;
1134  
1135      /**
1136 <     * Lifecycle control. The low word contains the number of workers
1137 <     * that are (probably) executing tasks. This value is atomically
1138 <     * incremented before a worker gets a task to run, and decremented
1139 <     * when worker has no tasks and cannot find any.  Bits 16-18
1140 <     * contain runLevel value. When all are zero, the pool is
1141 <     * running. Level transitions are monotonic (running -> shutdown
1142 <     * -> terminating -> terminated) so each transition adds a bit.
1143 <     * These are bundled together to ensure consistent read for
1144 <     * termination checks (i.e., that runLevel is at least SHUTDOWN
1145 <     * and active threads is zero).
1136 >     * Bits and masks for control variables
1137 >     *
1138 >     * Field ctl is a long packed with:
1139 >     * AC: Number of active running workers minus target parallelism (16 bits)
1140 >     * TC: Number of total workers minus target parallelism (16 bits)
1141 >     * ST: true if pool is terminating (1 bit)
1142 >     * EC: the wait count of top waiting thread (15 bits)
1143 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144 >     *
1145 >     * When convenient, we can extract the upper 32 bits of counts and
1146 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1147 >     * (int)ctl.  The ec field is never accessed alone, but always
1148 >     * together with id and st. The offsets of counts by the target
1149 >     * parallelism and the positionings of fields makes it possible to
1150 >     * perform the most common checks via sign tests of fields: When
1151 >     * ac is negative, there are not enough active workers, when tc is
1152 >     * negative, there are not enough total workers, and when e is
1153 >     * negative, the pool is terminating.  To deal with these possibly
1154 >     * negative fields, we use casts in and out of "short" and/or
1155 >     * signed shifts to maintain signedness.
1156 >     *
1157 >     * When a thread is queued (inactivated), its eventCount field is
1158 >     * set negative, which is the only way to tell if a worker is
1159 >     * prevented from executing tasks, even though it must continue to
1160 >     * scan for them to avoid queuing races. Note however that
1161 >     * eventCount updates lag releases so usage requires care.
1162 >     *
1163 >     * Field plock is an int packed with:
1164 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 >     *
1168 >     * The sequence number enables simple consistency checks:
1169 >     * Staleness of read-only operations on the workQueues array can
1170 >     * be checked by comparing plock before vs after the reads.
1171       */
483    private volatile int runState;
1172  
1173 <    // Note: The order among run level values matters.
1174 <    private static final int RUNLEVEL_SHIFT     = 16;
1175 <    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
1176 <    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
1177 <    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
490 <    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491 <    private static final int ONE_ACTIVE         = 1; // active update delta
1173 >    // bit positions/shifts for fields
1174 >    private static final int  AC_SHIFT   = 48;
1175 >    private static final int  TC_SHIFT   = 32;
1176 >    private static final int  ST_SHIFT   = 31;
1177 >    private static final int  EC_SHIFT   = 16;
1178  
1179 <    /**
1180 <     * Holds number of total (i.e., created and not yet terminated)
1181 <     * and running (i.e., not blocked on joins or other managed sync)
1182 <     * threads, packed together to ensure consistent snapshot when
1183 <     * making decisions about creating and suspending spare
1184 <     * threads. Updated only by CAS. Note that adding a new worker
1185 <     * requires incrementing both counts, since workers start off in
500 <     * running state.  This field is also used for memory-fencing
501 <     * configuration parameters.
502 <     */
503 <    private volatile int workerCounts;
1179 >    // bounds
1180 >    private static final int  SMASK      = 0xffff;  // short bits
1181 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1182 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1183 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1184 >    private static final int  SHORT_SIGN = 1 << 15;
1185 >    private static final int  INT_SIGN   = 1 << 31;
1186  
1187 <    private static final int TOTAL_COUNT_SHIFT  = 16;
1188 <    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
1189 <    private static final int ONE_RUNNING        = 1;
1190 <    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
1187 >    // masks
1188 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1189 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1190 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1191  
1192 <    /**
1193 <     * The target parallelism level.
1194 <     * Accessed directly by ForkJoinWorkerThreads.
513 <     */
514 <    final int parallelism;
1192 >    // units for incrementing and decrementing
1193 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1194 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1195  
1196 <    /**
1197 <     * True if use local fifo, not default lifo, for local polling
1198 <     * Read by, and replicated by ForkJoinWorkerThreads
1199 <     */
1200 <    final boolean locallyFifo;
1196 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1197 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1198 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1199 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1200 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1201 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1202 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1203  
1204 <    /**
1205 <     * The uncaught exception handler used when any worker abruptly
1206 <     * terminates.
525 <     */
526 <    private final Thread.UncaughtExceptionHandler ueh;
1204 >    // masks and units for dealing with e = (int)ctl
1205 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1206 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1207  
1208 <    /**
1209 <     * Pool number, just for assigning useful names to worker threads
1210 <     */
1211 <    private final int poolNumber;
1208 >    // plock bits
1209 >    private static final int SHUTDOWN    = 1 << 31;
1210 >    private static final int PL_LOCK     = 2;
1211 >    private static final int PL_SIGNAL   = 1;
1212 >    private static final int PL_SPINS    = 1 << 8;
1213  
1214 <    // Utilities for CASing fields. Note that several of these
1215 <    // are manually inlined by callers
1214 >    // access mode for WorkQueue
1215 >    static final int LIFO_QUEUE          =  0;
1216 >    static final int FIFO_QUEUE          =  1;
1217 >    static final int SHARED_QUEUE        = -1;
1218  
1219 <    /**
1220 <     * Increments running count.  Also used by ForkJoinTask.
1221 <     */
539 <    final void incrementRunningCount() {
540 <        int c;
541 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
542 <                                               c = workerCounts,
543 <                                               c + ONE_RUNNING));
544 <    }
1219 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1220 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1221 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1222  
1223 <    /**
547 <     * Tries to decrement running count unless already zero
548 <     */
549 <    final boolean tryDecrementRunningCount() {
550 <        int wc = workerCounts;
551 <        if ((wc & RUNNING_COUNT_MASK) == 0)
552 <            return false;
553 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
554 <                                        wc, wc - ONE_RUNNING);
555 <    }
1223 >    // Instance fields
1224  
1225 <    /**
1226 <     * Tries to increment running count
1227 <     */
1228 <    final boolean tryIncrementRunningCount() {
1229 <        int wc;
1230 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1231 <                                        wc = workerCounts, wc + ONE_RUNNING);
1232 <    }
1225 >    /*
1226 >     * Field layout of this class tends to matter more than one would
1227 >     * like. Runtime layout order is only loosely related to
1228 >     * declaration order and may differ across JVMs, but the following
1229 >     * empirically works OK on current JVMs.
1230 >     */
1231 >
1232 >    // Heuristic padding to ameliorate unfortunate memory placements
1233 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234 >
1235 >    volatile long stealCount;                  // collects worker counts
1236 >    volatile long ctl;                         // main pool control
1237 >    volatile int plock;                        // shutdown status and seqLock
1238 >    volatile int indexSeed;                    // worker/submitter index seed
1239 >    final int config;                          // mode and parallelism level
1240 >    WorkQueue[] workQueues;                    // main registry
1241 >    final ForkJoinWorkerThreadFactory factory;
1242 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 >    final String workerNamePrefix;             // to create worker name string
1244  
1245 <    /**
1246 <     * Tries incrementing active count; fails on contention.
1247 <     * Called by workers before executing tasks.
1248 <     *
1249 <     * @return true on success
1245 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246 >    volatile Object pad18, pad19, pad1a, pad1b;
1247 >
1248 >    /*
1249 >     * Acquires the plock lock to protect worker array and related
1250 >     * updates. This method is called only if an initial CAS on plock
1251 >     * fails. This acts as a spinLock for normal cases, but falls back
1252 >     * to builtin monitor to block when (rarely) needed. This would be
1253 >     * a terrible idea for a highly contended lock, but works fine as
1254 >     * a more conservative alternative to a pure spinlock.
1255       */
1256 <    final boolean tryIncrementActiveCount() {
1257 <        int c;
1258 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
1259 <                                        c = runState, c + ONE_ACTIVE);
1256 >    private int acquirePlock() {
1257 >        int spins = PL_SPINS, r = 0, ps, nps;
1258 >        for (;;) {
1259 >            if (((ps = plock) & PL_LOCK) == 0 &&
1260 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261 >                return nps;
1262 >            else if (r == 0) { // randomize spins if possible
1263 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264 >                if ((t instanceof ForkJoinWorkerThread) &&
1265 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266 >                    r = w.seed;
1267 >                else if ((z = submitters.get()) != null)
1268 >                    r = z.seed;
1269 >                else
1270 >                    r = 1;
1271 >            }
1272 >            else if (spins >= 0) {
1273 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274 >                if (r >= 0)
1275 >                    --spins;
1276 >            }
1277 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 >                synchronized (this) {
1279 >                    if ((plock & PL_SIGNAL) != 0) {
1280 >                        try {
1281 >                            wait();
1282 >                        } catch (InterruptedException ie) {
1283 >                            try {
1284 >                                Thread.currentThread().interrupt();
1285 >                            } catch (SecurityException ignore) {
1286 >                            }
1287 >                        }
1288 >                    }
1289 >                    else
1290 >                        notifyAll();
1291 >                }
1292 >            }
1293 >        }
1294      }
1295  
1296      /**
1297 <     * Tries decrementing active count; fails on contention.
1298 <     * Called when workers cannot find tasks to run.
1297 >     * Unlocks and signals any thread waiting for plock. Called only
1298 >     * when CAS of seq value for unlock fails.
1299       */
1300 <    final boolean tryDecrementActiveCount() {
1301 <        int c;
1302 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
585 <                                        c = runState, c - ONE_ACTIVE);
1300 >    private void releasePlock(int ps) {
1301 >        plock = ps;
1302 >        synchronized (this) { notifyAll(); }
1303      }
1304  
1305      /**
1306 <     * Advances to at least the given level. Returns true if not
1307 <     * already in at least the given level.
1308 <     */
1309 <    private boolean advanceRunLevel(int level) {
1310 <        for (;;) {
1311 <            int s = runState;
1312 <            if ((s & level) != 0)
1313 <                return false;
1314 <            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
1315 <                return true;
1306 >     * Tries to create and start one worker if fewer than target
1307 >     * parallelism level exist. Adjusts counts etc on failure.
1308 >     */
1309 >    private void tryAddWorker() {
1310 >        long c; int u;
1311 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1312 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1313 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1314 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1315 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1316 >                ForkJoinWorkerThreadFactory fac;
1317 >                Throwable ex = null;
1318 >                ForkJoinWorkerThread wt = null;
1319 >                try {
1320 >                    if ((fac = factory) != null &&
1321 >                        (wt = fac.newThread(this)) != null) {
1322 >                        wt.start();
1323 >                        break;
1324 >                    }
1325 >                } catch (Throwable e) {
1326 >                    ex = e;
1327 >                }
1328 >                deregisterWorker(wt, ex);
1329 >                break;
1330 >            }
1331          }
1332      }
1333  
1334 <    // workers array maintenance
1334 >    //  Registering and deregistering workers
1335  
1336      /**
1337 <     * Records and returns a workers array index for new worker.
1338 <     */
1339 <    private int recordWorker(ForkJoinWorkerThread w) {
1340 <        // Try using slot totalCount-1. If not available, scan and/or resize
1341 <        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
1342 <        final ReentrantLock lock = this.workerLock;
1343 <        lock.lock();
1337 >     * Callback from ForkJoinWorkerThread to establish and record its
1338 >     * WorkQueue. To avoid scanning bias due to packing entries in
1339 >     * front of the workQueues array, we treat the array as a simple
1340 >     * power-of-two hash table using per-thread seed as hash,
1341 >     * expanding as needed.
1342 >     *
1343 >     * @param wt the worker thread
1344 >     * @return the worker's queue
1345 >     */
1346 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1347 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1348 >        wt.setDaemon(true);
1349 >        if ((handler = ueh) != null)
1350 >            wt.setUncaughtExceptionHandler(handler);
1351 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1352 >                                          s += SEED_INCREMENT) ||
1353 >                     s == 0); // skip 0
1354 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1355 >        if (((ps = plock) & PL_LOCK) != 0 ||
1356 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357 >            ps = acquirePlock();
1358 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1359          try {
1360 <            ForkJoinWorkerThread[] ws = workers;
1361 <            int nws = ws.length;
1362 <            if (k < 0 || k >= nws || ws[k] != null) {
1363 <                for (k = 0; k < nws && ws[k] != null; ++k)
1364 <                    ;
1365 <                if (k == nws)
1366 <                    ws = Arrays.copyOf(ws, nws << 1);
1360 >            if ((ws = workQueues) != null) {    // skip if shutting down
1361 >                int n = ws.length, m = n - 1;
1362 >                int r = (s << 1) | 1;           // use odd-numbered indices
1363 >                if (ws[r &= m] != null) {       // collision
1364 >                    int probes = 0;             // step by approx half size
1365 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1366 >                    while (ws[r = (r + step) & m] != null) {
1367 >                        if (++probes >= n) {
1368 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1369 >                            m = n - 1;
1370 >                            probes = 0;
1371 >                        }
1372 >                    }
1373 >                }
1374 >                w.eventCount = w.poolIndex = r; // volatile write orders
1375 >                ws[r] = w;
1376              }
621            ws[k] = w;
622            workers = ws; // volatile array write ensures slot visibility
1377          } finally {
1378 <            lock.unlock();
1378 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1379 >                releasePlock(nps);
1380          }
1381 <        return k;
1381 >        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1382 >        return w;
1383      }
1384  
1385      /**
1386 <     * Nulls out record of worker in workers array
1387 <     */
1388 <    private void forgetWorker(ForkJoinWorkerThread w) {
1389 <        int idx = w.poolIndex;
1390 <        // Locking helps method recordWorker avoid unecessary expansion
1391 <        final ReentrantLock lock = this.workerLock;
1392 <        lock.lock();
1393 <        try {
1394 <            ForkJoinWorkerThread[] ws = workers;
1395 <            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
1396 <                ws[idx] = null;
1397 <        } finally {
1398 <            lock.unlock();
1386 >     * Final callback from terminating worker, as well as upon failure
1387 >     * to construct or start a worker.  Removes record of worker from
1388 >     * array, and adjusts counts. If pool is shutting down, tries to
1389 >     * complete termination.
1390 >     *
1391 >     * @param wt the worker thread or null if construction failed
1392 >     * @param ex the exception causing failure, or null if none
1393 >     */
1394 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1395 >        WorkQueue w = null;
1396 >        if (wt != null && (w = wt.workQueue) != null) {
1397 >            int ps;
1398 >            w.qlock = -1;                // ensure set
1399 >            long ns = w.nsteals, sc;     // collect steal count
1400 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1401 >                                               sc = stealCount, sc + ns));
1402 >            if (((ps = plock) & PL_LOCK) != 0 ||
1403 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1404 >                ps = acquirePlock();
1405 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1406 >            try {
1407 >                int idx = w.poolIndex;
1408 >                WorkQueue[] ws = workQueues;
1409 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1410 >                    ws[idx] = null;
1411 >            } finally {
1412 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1413 >                    releasePlock(nps);
1414 >            }
1415          }
644    }
1416  
1417 <    // adding and removing workers
1418 <
1419 <    /**
1420 <     * Tries to create and add new worker. Assumes that worker counts
1421 <     * are already updated to accommodate the worker, so adjusts on
1422 <     * failure.
1423 <     *
1424 <     * @return new worker or null if creation failed
1425 <     */
1426 <    private ForkJoinWorkerThread addWorker() {
1427 <        ForkJoinWorkerThread w = null;
1428 <        try {
1429 <            w = factory.newThread(this);
1430 <        } finally { // Adjust on either null or exceptional factory return
1431 <            if (w == null) {
1432 <                onWorkerCreationFailure();
1433 <                return null;
1417 >        long c;                          // adjust ctl counts
1418 >        do {} while (!U.compareAndSwapLong
1419 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1420 >                                           ((c - TC_UNIT) & TC_MASK) |
1421 >                                           (c & ~(AC_MASK|TC_MASK)))));
1422 >
1423 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1424 >            w.cancelAll();               // cancel remaining tasks
1425 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1426 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1427 >                if (e > 0) {             // activate or create replacement
1428 >                    if ((ws = workQueues) == null ||
1429 >                        (i = e & SMASK) >= ws.length ||
1430 >                        (v = ws[i]) == null)
1431 >                        break;
1432 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1433 >                               ((long)(u + UAC_UNIT) << 32));
1434 >                    if (v.eventCount != (e | INT_SIGN))
1435 >                        break;
1436 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1437 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1438 >                        if ((p = v.parker) != null)
1439 >                            U.unpark(p);
1440 >                        break;
1441 >                    }
1442 >                }
1443 >                else {
1444 >                    if ((short)u < 0)
1445 >                        tryAddWorker();
1446 >                    break;
1447 >                }
1448              }
1449          }
1450 <        w.start(recordWorker(w), ueh);
1451 <        return w;
1452 <    }
1453 <
1454 <    /**
1455 <     * Adjusts counts upon failure to create worker
1456 <     */
1457 <    private void onWorkerCreationFailure() {
1458 <        for (;;) {
1459 <            int wc = workerCounts;
1460 <            if ((wc >>> TOTAL_COUNT_SHIFT) == 0)
1461 <                Thread.yield(); // wait for other counts to settle
1462 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1463 <                                              wc - (ONE_RUNNING|ONE_TOTAL)))
1464 <                break;
1450 >        if (ex == null)                     // help clean refs on way out
1451 >            ForkJoinTask.helpExpungeStaleExceptions();
1452 >        else                                // rethrow
1453 >            ForkJoinTask.rethrow(ex);
1454 >    }
1455 >
1456 >    // Submissions
1457 >
1458 >    /**
1459 >     * Unless shutting down, adds the given task to a submission queue
1460 >     * at submitter's current queue index (modulo submission
1461 >     * range). Only the most common path is directly handled in this
1462 >     * method. All others are relayed to fullExternalPush.
1463 >     *
1464 >     * @param task the task. Caller must ensure non-null.
1465 >     */
1466 >    final void externalPush(ForkJoinTask<?> task) {
1467 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1468 >        if ((z = submitters.get()) != null && plock > 0 &&
1469 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1470 >            (q = ws[m & z.seed & SQMASK]) != null &&
1471 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1472 >            int b = q.base, s = q.top, n, an;
1473 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1474 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1475 >                U.putOrderedObject(a, j, task);
1476 >                q.top = s + 1;                     // push on to deque
1477 >                q.qlock = 0;
1478 >                if (n <= 2)
1479 >                    signalWork(q);
1480 >                return;
1481 >            }
1482 >            q.qlock = 0;
1483          }
1484 <        tryTerminate(false); // in case of failure during shutdown
1484 >        fullExternalPush(task);
1485      }
1486  
1487      /**
1488 <     * Creates and/or resumes enough workers to establish target
1489 <     * parallelism, giving up if terminating or addWorker fails
1490 <     *
1491 <     * TODO: recast this to support lazier creation and automated
1492 <     * parallelism maintenance
1493 <     */
1494 <    private void ensureEnoughWorkers() {
1495 <        while ((runState & TERMINATING) == 0) {
1496 <            int pc = parallelism;
1497 <            int wc = workerCounts;
1498 <            int rc = wc & RUNNING_COUNT_MASK;
1499 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1500 <            if (tc < pc) {
1501 <                if (UNSAFE.compareAndSwapInt
1502 <                    (this, workerCountsOffset,
1503 <                     wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
1504 <                    addWorker() == null)
1505 <                    break;
1488 >     * Full version of externalPush. This method is called, among
1489 >     * other times, upon the first submission of the first task to the
1490 >     * pool, so must perform secondary initialization.  It also
1491 >     * detects first submission by an external thread by looking up
1492 >     * its ThreadLocal, and creates a new shared queue if the one at
1493 >     * index if empty or contended. The plock lock body must be
1494 >     * exception-free (so no try/finally) so we optimistically
1495 >     * allocate new queues outside the lock and throw them away if
1496 >     * (very rarely) not needed.
1497 >     *
1498 >     * Secondary initialization occurs when plock is zero, to create
1499 >     * workQueue array and set plock to a valid value.  This lock body
1500 >     * must also be exception-free. Because the plock seq value can
1501 >     * eventually wrap around zero, this method harmlessly fails to
1502 >     * reinitialize if workQueues exists, while still advancing plock.
1503 >     */
1504 >    private void fullExternalPush(ForkJoinTask<?> task) {
1505 >        int r = 0; // random index seed
1506 >        for (Submitter z = submitters.get();;) {
1507 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1508 >            if (z == null) {
1509 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1510 >                                        r += SEED_INCREMENT) && r != 0)
1511 >                    submitters.set(z = new Submitter(r));
1512              }
1513 <            else if (tc > pc && rc < pc &&
1514 <                     tc > (runState & ACTIVE_COUNT_MASK)) {
1515 <                ForkJoinWorkerThread spare = null;
1516 <                ForkJoinWorkerThread[] ws = workers;
1517 <                int nws = ws.length;
1518 <                for (int i = 0; i < nws; ++i) {
1519 <                    ForkJoinWorkerThread w = ws[i];
1520 <                    if (w != null && w.isSuspended()) {
1521 <                        if ((workerCounts & RUNNING_COUNT_MASK) > pc)
1522 <                            return;
1523 <                        if (w.tryResumeSpare())
1524 <                            incrementRunningCount();
1525 <                        break;
1513 >            else if (r == 0) {                  // move to a different index
1514 >                r = z.seed;
1515 >                r ^= r << 13;                   // same xorshift as WorkQueues
1516 >                r ^= r >>> 17;
1517 >                z.seed = r ^ (r << 5);
1518 >            }
1519 >            else if ((ps = plock) < 0)
1520 >                throw new RejectedExecutionException();
1521 >            else if (ps == 0 || (ws = workQueues) == null ||
1522 >                     (m = ws.length - 1) < 0) { // initialize workQueues
1523 >                int p = config & SMASK;         // find power of two table size
1524 >                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1525 >                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1526 >                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1527 >                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1528 >                                   new WorkQueue[n] : null);
1529 >                if (((ps = plock) & PL_LOCK) != 0 ||
1530 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1531 >                    ps = acquirePlock();
1532 >                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1533 >                    workQueues = nws;
1534 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1535 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1536 >                    releasePlock(nps);
1537 >            }
1538 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1539 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1540 >                    ForkJoinTask<?>[] a = q.array;
1541 >                    int s = q.top;
1542 >                    boolean submitted = false;
1543 >                    try {                      // locked version of push
1544 >                        if ((a != null && a.length > s + 1 - q.base) ||
1545 >                            (a = q.growArray()) != null) {   // must presize
1546 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1547 >                            U.putOrderedObject(a, j, task);
1548 >                            q.top = s + 1;
1549 >                            submitted = true;
1550 >                        }
1551 >                    } finally {
1552 >                        q.qlock = 0;  // unlock
1553 >                    }
1554 >                    if (submitted) {
1555 >                        signalWork(q);
1556 >                        return;
1557                      }
1558                  }
1559 +                r = 0; // move on failure
1560 +            }
1561 +            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1562 +                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1563 +                if (((ps = plock) & PL_LOCK) != 0 ||
1564 +                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1565 +                    ps = acquirePlock();
1566 +                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1567 +                    ws[k] = q;
1568 +                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1569 +                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1570 +                    releasePlock(nps);
1571              }
1572              else
1573 <                break;
1573 >                r = 0; // try elsewhere while lock held
1574          }
1575      }
1576  
1577 <    /**
726 <     * Final callback from terminating worker.  Removes record of
727 <     * worker from array, and adjusts counts. If pool is shutting
728 <     * down, tries to complete terminatation, else possibly replaces
729 <     * the worker.
730 <     *
731 <     * @param w the worker
732 <     */
733 <    final void workerTerminated(ForkJoinWorkerThread w) {
734 <        if (w.active) { // force inactive
735 <            w.active = false;
736 <            do {} while (!tryDecrementActiveCount());
737 <        }
738 <        forgetWorker(w);
739 <
740 <        // Decrement total count, and if was running, running count
741 <        // Spin (waiting for other updates) if either would be negative
742 <        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
743 <        int unit = ONE_TOTAL + nr;
744 <        for (;;) {
745 <            int wc = workerCounts;
746 <            int rc = wc & RUNNING_COUNT_MASK;
747 <            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
748 <                Thread.yield(); // back off if waiting for other updates
749 <            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
750 <                                              wc, wc - unit))
751 <                break;
752 <        }
1577 >    // Maintaining ctl counts
1578  
1579 <        accumulateStealCount(w); // collect final count
1580 <        if (!tryTerminate(false))
1581 <            ensureEnoughWorkers();
1579 >    /**
1580 >     * Increments active count; mainly called upon return from blocking.
1581 >     */
1582 >    final void incrementActiveCount() {
1583 >        long c;
1584 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1585      }
1586  
759    // Waiting for and signalling events
760
1587      /**
1588 <     * Releases workers blocked on a count not equal to current count.
1589 <     * @return true if any released
1588 >     * Tries to create or activate a worker if too few are active.
1589 >     *
1590 >     * @param q the (non-null) queue holding tasks to be signalled
1591       */
1592 <    private void releaseWaiters() {
1593 <        long top;
1594 <        while ((top = eventWaiters) != 0L) {
1595 <            ForkJoinWorkerThread[] ws = workers;
1596 <            int n = ws.length;
1597 <            for (;;) {
1598 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
1599 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == eventCount)
1600 <                    return;
1601 <                ForkJoinWorkerThread w;
1602 <                if (i < n && (w = ws[i]) != null &&
1603 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1604 <                                              top, w.nextWaiter)) {
1605 <                    LockSupport.unpark(w);
1606 <                    top = eventWaiters;
1592 >    final void signalWork(WorkQueue q) {
1593 >        int hint = q.poolIndex;
1594 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1595 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1596 >            if ((e = (int)c) > 0) {
1597 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1598 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1599 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1600 >                               ((long)(u + UAC_UNIT) << 32));
1601 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1602 >                        w.hint = hint;
1603 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1604 >                        if ((p = w.parker) != null)
1605 >                            U.unpark(p);
1606 >                        break;
1607 >                    }
1608 >                    if (q.top - q.base <= 0)
1609 >                        break;
1610                  }
1611                  else
1612 <                    break;      // possibly stale; reread
1612 >                    break;
1613 >            }
1614 >            else {
1615 >                if ((short)u < 0)
1616 >                    tryAddWorker();
1617 >                break;
1618              }
1619          }
1620      }
1621  
1622 <    /**
788 <     * Ensures eventCount on exit is different (mod 2^32) than on
789 <     * entry and wakes up all waiters
790 <     */
791 <    private void signalEvent() {
792 <        int c;
793 <        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
794 <                                               c = eventCount, c+1));
795 <        releaseWaiters();
796 <    }
1622 >    // Scanning for tasks
1623  
1624      /**
1625 <     * Advances eventCount and releases waiters until interference by
800 <     * other releasing threads is detected.
1625 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1626       */
1627 <    final void signalWork() {
1628 <        int c;
1629 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
1630 <        long top;
1631 <        while ((top = eventWaiters) != 0L) {
1632 <            int ec = eventCount;
1633 <            ForkJoinWorkerThread[] ws = workers;
1634 <            int n = ws.length;
1635 <            for (;;) {
1636 <                int i = ((int)(top & WAITER_ID_MASK)) - 1;
1637 <                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
1638 <                    return;
1639 <                ForkJoinWorkerThread w;
1640 <                if (i < n && (w = ws[i]) != null &&
1641 <                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1642 <                                              top, top = w.nextWaiter)) {
1643 <                    LockSupport.unpark(w);
1644 <                    if (top != eventWaiters) // let someone else take over
1645 <                        return;
1627 >    final void runWorker(WorkQueue w) {
1628 >        w.growArray(); // allocate queue
1629 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1630 >    }
1631 >
1632 >    /**
1633 >     * Scans for and, if found, returns one task, else possibly
1634 >     * inactivates the worker. This method operates on single reads of
1635 >     * volatile state and is designed to be re-invoked continuously,
1636 >     * in part because it returns upon detecting inconsistencies,
1637 >     * contention, or state changes that indicate possible success on
1638 >     * re-invocation.
1639 >     *
1640 >     * The scan searches for tasks across queues (starting at a random
1641 >     * index, and relying on registerWorker to irregularly scatter
1642 >     * them within array to avoid bias), checking each at least twice.
1643 >     * The scan terminates upon either finding a non-empty queue, or
1644 >     * completing the sweep. If the worker is not inactivated, it
1645 >     * takes and returns a task from this queue. Otherwise, if not
1646 >     * activated, it signals workers (that may include itself) and
1647 >     * returns so caller can retry. Also returns for true if the
1648 >     * worker array may have changed during an empty scan.  On failure
1649 >     * to find a task, we take one of the following actions, after
1650 >     * which the caller will retry calling this method unless
1651 >     * terminated.
1652 >     *
1653 >     * * If pool is terminating, terminate the worker.
1654 >     *
1655 >     * * If not already enqueued, try to inactivate and enqueue the
1656 >     * worker on wait queue. Or, if inactivating has caused the pool
1657 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1658 >     * pool.
1659 >     *
1660 >     * * If already enqueued and none of the above apply, possibly
1661 >     * park awaiting signal, else lingering to help scan and signal.
1662 >     *
1663 >     * * If a non-empty queue discovered or left as a hint,
1664 >     * help wake up other workers before return
1665 >     *
1666 >     * @param w the worker (via its WorkQueue)
1667 >     * @return a task or null if none found
1668 >     */
1669 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1670 >        WorkQueue[] ws; int m;
1671 >        int ps = plock;                          // read plock before ws
1672 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1673 >            int ec = w.eventCount;               // ec is negative if inactive
1674 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1675 >            w.hint = -1;                         // update seed and clear hint
1676 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1677 >            do {
1678 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1679 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1680 >                    (a = q.array) != null) {     // probably nonempty
1681 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1682 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1683 >                        U.getObjectVolatile(a, i);
1684 >                    if (q.base == b && ec >= 0 && t != null &&
1685 >                        U.compareAndSwapObject(a, i, t, null)) {
1686 >                        if ((q.base = b + 1) - q.top < 0)
1687 >                            signalWork(q);
1688 >                        return t;                // taken
1689 >                    }
1690 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1691 >                        w.hint = (r + j) & m;    // help signal below
1692 >                        break;                   // cannot take
1693 >                    }
1694 >                }
1695 >            } while (--j >= 0);
1696 >
1697 >            int h, e, ns; long c, sc; WorkQueue q;
1698 >            if ((ns = w.nsteals) != 0) {
1699 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1700 >                                         sc = stealCount, sc + ns))
1701 >                    w.nsteals = 0;               // collect steals and rescan
1702 >            }
1703 >            else if (plock != ps)                // consistency check
1704 >                ;                                // skip
1705 >            else if ((e = (int)(c = ctl)) < 0)
1706 >                w.qlock = -1;                    // pool is terminating
1707 >            else {
1708 >                if ((h = w.hint) < 0) {
1709 >                    if (ec >= 0) {               // try to enqueue/inactivate
1710 >                        long nc = (((long)ec |
1711 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1712 >                        w.nextWait = e;          // link and mark inactive
1713 >                        w.eventCount = ec | INT_SIGN;
1714 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1715 >                            w.eventCount = ec;   // unmark on CAS failure
1716 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1717 >                            idleAwaitWork(w, nc, c);
1718 >                    }
1719 >                    else if (w.eventCount < 0 && ctl == c) {
1720 >                        Thread wt = Thread.currentThread();
1721 >                        Thread.interrupted();    // clear status
1722 >                        U.putObject(wt, PARKBLOCKER, this);
1723 >                        w.parker = wt;           // emulate LockSupport.park
1724 >                        if (w.eventCount < 0)    // recheck
1725 >                            U.park(false, 0L);   // block
1726 >                        w.parker = null;
1727 >                        U.putObject(wt, PARKBLOCKER, null);
1728 >                    }
1729 >                }
1730 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1731 >                    (ws = workQueues) != null && h < ws.length &&
1732 >                    (q = ws[h]) != null) {      // signal others before retry
1733 >                    WorkQueue v; Thread p; int u, i, s;
1734 >                    for (int n = (config & SMASK) - 1;;) {
1735 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1736 >                        if (((s = idleCount - q.base + q.top) <= n &&
1737 >                             (n = s) <= 0) ||
1738 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1739 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1740 >                            (v = ws[i]) == null)
1741 >                            break;
1742 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1743 >                                   ((long)(u + UAC_UNIT) << 32));
1744 >                        if (v.eventCount != (e | INT_SIGN) ||
1745 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1746 >                            break;
1747 >                        v.hint = h;
1748 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1749 >                        if ((p = v.parker) != null)
1750 >                            U.unpark(p);
1751 >                        if (--n <= 0)
1752 >                            break;
1753 >                    }
1754                  }
822                else
823                    break;      // possibly stale; reread
1755              }
1756          }
1757 +        return null;
1758      }
1759  
1760      /**
1761 <     * If worker is inactive, blocks until terminating or event count
1762 <     * advances from last value held by worker; in any case helps
1763 <     * release others.
1764 <     *
1765 <     * @param w the calling worker thread
1766 <     * @param retries the number of scans by caller failing to find work
1767 <     * @return false if now too many threads running
1768 <     */
1769 <    private boolean eventSync(ForkJoinWorkerThread w, int retries) {
1770 <        int wec = w.lastEventCount;
1771 <        if (retries > 1) { // can only block after 2nd miss
1772 <            long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
1773 <                            ((long)(w.poolIndex + 1)));
1774 <            long top;
1775 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
1776 <                   (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
1777 <                    (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
1778 <                   eventCount == wec) {
1779 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
1780 <                                              w.nextWaiter = top, nextTop)) {
1781 <                    accumulateStealCount(w); // transfer steals while idle
1782 <                    Thread.interrupted();    // clear/ignore interrupt
1783 <                    while (eventCount == wec)
1784 <                        w.doPark();
1761 >     * If inactivating worker w has caused the pool to become
1762 >     * quiescent, checks for pool termination, and, so long as this is
1763 >     * not the only worker, waits for event for up to a given
1764 >     * duration.  On timeout, if ctl has not changed, terminates the
1765 >     * worker, which will in turn wake up another worker to possibly
1766 >     * repeat this process.
1767 >     *
1768 >     * @param w the calling worker
1769 >     * @param currentCtl the ctl value triggering possible quiescence
1770 >     * @param prevCtl the ctl value to restore if thread is terminated
1771 >     */
1772 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1773 >        if (w != null && w.eventCount < 0 &&
1774 >            !tryTerminate(false, false) && (int)prevCtl != 0 &&
1775 >            ctl == currentCtl) {
1776 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1777 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1778 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1779 >            Thread wt = Thread.currentThread();
1780 >            while (ctl == currentCtl) {
1781 >                Thread.interrupted();  // timed variant of version in scan()
1782 >                U.putObject(wt, PARKBLOCKER, this);
1783 >                w.parker = wt;
1784 >                if (ctl == currentCtl)
1785 >                    U.park(false, parkTime);
1786 >                w.parker = null;
1787 >                U.putObject(wt, PARKBLOCKER, null);
1788 >                if (ctl != currentCtl)
1789 >                    break;
1790 >                if (deadline - System.nanoTime() <= 0L &&
1791 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1792 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1793 >                    w.hint = -1;
1794 >                    w.qlock = -1;   // shrink
1795                      break;
1796                  }
1797              }
856            wec = eventCount;
857        }
858        releaseWaiters();
859        int wc = workerCounts;
860        if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
861            w.lastEventCount = wec;
862            return true;
1798          }
864        if (wec != w.lastEventCount) // back up if may re-wait
865            w.lastEventCount = wec - (wc >>> TOTAL_COUNT_SHIFT);
866        return false;
1799      }
1800  
1801      /**
1802 <     * Callback from workers invoked upon each top-level action (i.e.,
1803 <     * stealing a task or taking a submission and running
1804 <     * it). Performs one or both of the following:
1805 <     *
1806 <     * * If the worker cannot find work, updates its active status to
1807 <     * inactive and updates activeCount unless there is contention, in
1808 <     * which case it may try again (either in this or a subsequent
1809 <     * call).  Additionally, awaits the next task event and/or helps
1810 <     * wake up other releasable waiters.
1811 <     *
1812 <     * * If there are too many running threads, suspends this worker
1813 <     * (first forcing inactivation if necessary).  If it is not
1814 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
1815 <     * -- killed while suspended within suspendAsSpare. Otherwise,
1816 <     * upon resume it rechecks to make sure that it is still needed.
1817 <     *
1818 <     * @param w the worker
1819 <     * @param retries the number of scans by caller failing to find work
1820 <     * find any (in which case it may block waiting for work).
1821 <     */
1822 <    final void preStep(ForkJoinWorkerThread w, int retries) {
1823 <        boolean active = w.active;
1824 <        boolean inactivate = active && retries != 0;
1825 <        for (;;) {
1826 <            int rs, wc;
1827 <            if (inactivate &&
1828 <                UNSAFE.compareAndSwapInt(this, runStateOffset,
1829 <                                         rs = runState, rs - ONE_ACTIVE))
1830 <                inactivate = active = w.active = false;
1831 <            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
1832 <                if (active || eventSync(w, retries))
1833 <                    break;
1802 >     * Scans through queues looking for work while joining a task; if
1803 >     * any present, signals. May return early if more signalling is
1804 >     * detectably unneeded.
1805 >     *
1806 >     * @param task return early if done
1807 >     * @param origin an index to start scan
1808 >     */
1809 >    private void helpSignal(ForkJoinTask<?> task, int origin) {
1810 >        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1811 >        if (task != null && task.status >= 0 &&
1812 >            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1813 >            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1814 >            outer: for (int k = origin, j = m; j >= 0; --j) {
1815 >                WorkQueue q = ws[k++ & m];
1816 >                for (int n = m;;) { // limit to at most m signals
1817 >                    if (task.status < 0)
1818 >                        break outer;
1819 >                    if (q == null ||
1820 >                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1821 >                        break;
1822 >                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1823 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1824 >                        (w = ws[i]) == null)
1825 >                        break outer;
1826 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1827 >                               ((long)(u + UAC_UNIT) << 32));
1828 >                    if (w.eventCount != (e | INT_SIGN))
1829 >                        break outer;
1830 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1831 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1832 >                        if ((p = w.parker) != null)
1833 >                            U.unpark(p);
1834 >                        if (--n <= 0)
1835 >                            break;
1836 >                    }
1837 >                }
1838              }
903            else if (!(inactivate |= active) &&  // must inactivate to suspend
904                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
905                                         wc, wc - ONE_RUNNING) &&
906                !w.suspendAsSpare())             // false if trimmed
907                break;
1839          }
1840      }
1841  
1842      /**
1843 <     * Awaits join of the given task if enough threads, or can resume
1844 <     * or create a spare. Fails (in which case the given task might
1845 <     * not be done) upon contention or lack of decision about
1846 <     * blocking. Returns void because caller must check
1847 <     * task status on return anyway.
1848 <     *
1849 <     * We allow blocking if:
1850 <     *
1851 <     * 1. There would still be at least as many running threads as
1852 <     *    parallelism level if this thread blocks.
1853 <     *
1854 <     * 2. A spare is resumed to replace this worker. We tolerate
1855 <     *    slop in the decision to replace if a spare is found without
1856 <     *    first decrementing run count.  This may release too many,
1857 <     *    but if so, the superfluous ones will re-suspend via
1858 <     *    preStep().
1859 <     *
1860 <     * 3. After #spares repeated checks, there are no fewer than #spare
1861 <     *    threads not running. We allow this slack to avoid hysteresis
1862 <     *    and as a hedge against lag/uncertainty of running count
1863 <     *    estimates when signalling or unblocking stalls.
1864 <     *
1865 <     * 4. All existing workers are busy (as rechecked via repeated
1866 <     *    retries by caller) and a new spare is created.
1867 <     *
1868 <     * If none of the above hold, we try to escape out by
1869 <     * re-incrementing count and returning to caller, which can retry
1870 <     * later.
1871 <     *
1872 <     * @param joinMe the task to join
1873 <     * @param retries if negative, then serve only as a precheck
1874 <     *   that the thread can be replaced by a spare. Otherwise,
1875 <     *   the number of repeated calls to this method returning busy
1876 <     * @return true if the call must be retried because there
1877 <     *   none of the blocking checks hold
1878 <     */
1879 <    final boolean tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
1880 <        if (joinMe.status < 0) // precheck for cancellation
1881 <            return false;
1882 <        if ((runState & TERMINATING) != 0) { // shutting down
1883 <            joinMe.cancelIgnoringExceptions();
1884 <            return false;
1885 <        }
1886 <
1887 <        int pc = parallelism;
1888 <        boolean running = true; // false when running count decremented
1889 <        outer:for (;;) {
1890 <            int wc = workerCounts;
1891 <            int rc = wc & RUNNING_COUNT_MASK;
1892 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
1893 <            if (running) { // replace with spare or decrement count
1894 <                if (rc <= pc && tc > pc &&
1895 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1896 <                    ForkJoinWorkerThread[] ws = workers;
1897 <                    int nws = ws.length;
1898 <                    for (int i = 0; i < nws; ++i) { // search for spare
1899 <                        ForkJoinWorkerThread w = ws[i];
1900 <                        if (w != null) {
1901 <                            if (joinMe.status < 0)
1902 <                                return false;
1903 <                            if (w.isSuspended()) {
1904 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1905 <                                    w.tryResumeSpare()) {
1906 <                                    running = false;
1907 <                                    break outer;
1908 <                                }
1909 <                                continue outer; // rescan
1843 >     * Tries to locate and execute tasks for a stealer of the given
1844 >     * task, or in turn one of its stealers, Traces currentSteal ->
1845 >     * currentJoin links looking for a thread working on a descendant
1846 >     * of the given task and with a non-empty queue to steal back and
1847 >     * execute tasks from. The first call to this method upon a
1848 >     * waiting join will often entail scanning/search, (which is OK
1849 >     * because the joiner has nothing better to do), but this method
1850 >     * leaves hints in workers to speed up subsequent calls. The
1851 >     * implementation is very branchy to cope with potential
1852 >     * inconsistencies or loops encountering chains that are stale,
1853 >     * unknown, or so long that they are likely cyclic.
1854 >     *
1855 >     * @param joiner the joining worker
1856 >     * @param task the task to join
1857 >     * @return 0 if no progress can be made, negative if task
1858 >     * known complete, else positive
1859 >     */
1860 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1861 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1862 >        if (joiner != null && task != null) {       // hoist null checks
1863 >            restart: for (;;) {
1864 >                ForkJoinTask<?> subtask = task;     // current target
1865 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1866 >                    WorkQueue[] ws; int m, s, h;
1867 >                    if ((s = task.status) < 0) {
1868 >                        stat = s;
1869 >                        break restart;
1870 >                    }
1871 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1872 >                        break restart;              // shutting down
1873 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1874 >                        v.currentSteal != subtask) {
1875 >                        for (int origin = h;;) {    // find stealer
1876 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1877 >                                (subtask.status < 0 || j.currentJoin != subtask))
1878 >                                continue restart;   // occasional staleness check
1879 >                            if ((v = ws[h]) != null &&
1880 >                                v.currentSteal == subtask) {
1881 >                                j.hint = h;        // save hint
1882 >                                break;
1883 >                            }
1884 >                            if (h == origin)
1885 >                                break restart;      // cannot find stealer
1886 >                        }
1887 >                    }
1888 >                    for (;;) { // help stealer or descend to its stealer
1889 >                        ForkJoinTask[] a;  int b;
1890 >                        if (subtask.status < 0)     // surround probes with
1891 >                            continue restart;       //   consistency checks
1892 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1893 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1894 >                            ForkJoinTask<?> t =
1895 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1896 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1897 >                                v.currentSteal != subtask)
1898 >                                continue restart;   // stale
1899 >                            stat = 1;               // apparent progress
1900 >                            if (t != null && v.base == b &&
1901 >                                U.compareAndSwapObject(a, i, t, null)) {
1902 >                                v.base = b + 1;     // help stealer
1903 >                                joiner.runSubtask(t);
1904 >                            }
1905 >                            else if (v.base == b && ++steps == MAX_HELP)
1906 >                                break restart;      // v apparently stalled
1907 >                        }
1908 >                        else {                      // empty -- try to descend
1909 >                            ForkJoinTask<?> next = v.currentJoin;
1910 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1911 >                                v.currentSteal != subtask)
1912 >                                continue restart;   // stale
1913 >                            else if (next == null || ++steps == MAX_HELP)
1914 >                                break restart;      // dead-end or maybe cyclic
1915 >                            else {
1916 >                                subtask = next;
1917 >                                j = v;
1918 >                                break;
1919                              }
1920                          }
1921                      }
1922                  }
983                if (retries < 0 || // < 0 means replacement check only
984                    rc == 0 || joinMe.status < 0 || workerCounts != wc ||
985                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
986                                              wc, wc - ONE_RUNNING))
987                    return false; // done or inconsistent or contended
988                running = false;
989                if (rc > pc)
990                    break;
1923              }
1924 <            else { // allow blocking if enough threads
1925 <                if (rc >= pc || joinMe.status < 0)
1926 <                    break;
1927 <                int sc = tc - pc + 1; // = spare threads, plus the one to add
1928 <                if (retries > sc) {
1929 <                    if (rc > 0 && rc >= pc - sc) // allow slack
1930 <                        break;
1931 <                    if (tc < MAX_THREADS &&
1932 <                        tc == (runState & ACTIVE_COUNT_MASK) &&
1933 <                        workerCounts == wc &&
1934 <                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1935 <                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1936 <                        addWorker();
1924 >        }
1925 >        return stat;
1926 >    }
1927 >
1928 >    /**
1929 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1930 >     * and run tasks within the target's computation.
1931 >     *
1932 >     * @param task the task to join
1933 >     * @param mode if shared, exit upon completing any task
1934 >     * if all workers are active
1935 >     *
1936 >     */
1937 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1938 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1939 >        if (task != null && (ws = workQueues) != null &&
1940 >            (m = ws.length - 1) >= 0) {
1941 >            for (int j = 1, origin = j;;) {
1942 >                if ((s = task.status) < 0)
1943 >                    return s;
1944 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1945 >                    origin = j;
1946 >                    if (mode == SHARED_QUEUE &&
1947 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1948                          break;
1006                    }
1949                  }
1950 <                if (workerCounts == wc &&        // back out to allow rescan
1951 <                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1952 <                                              wc, wc + ONE_RUNNING)) {
1953 <                    releaseWaiters();            // help others progress
1954 <                    return true;                 // let caller retry
1950 >                else if ((j = (j + 2) & m) == origin)
1951 >                    break;
1952 >            }
1953 >        }
1954 >        return 0;
1955 >    }
1956 >
1957 >    /**
1958 >     * Tries to decrement active count (sometimes implicitly) and
1959 >     * possibly release or create a compensating worker in preparation
1960 >     * for blocking. Fails on contention or termination. Otherwise,
1961 >     * adds a new thread if no idle workers are available and pool
1962 >     * may become starved.
1963 >     */
1964 >    final boolean tryCompensate() {
1965 >        int pc = config & SMASK, e, i, tc; long c;
1966 >        WorkQueue[] ws; WorkQueue w; Thread p;
1967 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1968 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1969 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1970 >                long nc = ((long)(w.nextWait & E_MASK) |
1971 >                           (c & (AC_MASK|TC_MASK)));
1972 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1973 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1974 >                    if ((p = w.parker) != null)
1975 >                        U.unpark(p);
1976 >                    return true;   // replace with idle worker
1977 >                }
1978 >            }
1979 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1980 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1981 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1982 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1983 >                    return true;   // no compensation
1984 >            }
1985 >            else if (tc + pc < MAX_CAP) {
1986 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1987 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1988 >                    ForkJoinWorkerThreadFactory fac;
1989 >                    Throwable ex = null;
1990 >                    ForkJoinWorkerThread wt = null;
1991 >                    try {
1992 >                        if ((fac = factory) != null &&
1993 >                            (wt = fac.newThread(this)) != null) {
1994 >                            wt.start();
1995 >                            return true;
1996 >                        }
1997 >                    } catch (Throwable rex) {
1998 >                        ex = rex;
1999 >                    }
2000 >                    deregisterWorker(wt, ex); // clean up and return false
2001                  }
2002              }
2003          }
1016        // arrive here if can block
1017        joinMe.internalAwaitDone();
1018        int c;                      // to inline incrementRunningCount
1019        do {} while (!UNSAFE.compareAndSwapInt
1020                     (this, workerCountsOffset,
1021                      c = workerCounts, c + ONE_RUNNING));
2004          return false;
2005      }
2006  
2007      /**
2008 <     * Same idea as (and shares many code snippets with) tryAwaitJoin,
2009 <     * but self-contained because there are no caller retries.
2010 <     * TODO: Rework to use simpler API.
2008 >     * Helps and/or blocks until the given task is done.
2009 >     *
2010 >     * @param joiner the joining worker
2011 >     * @param task the task
2012 >     * @return task status on exit
2013       */
2014 <    final void awaitBlocker(ManagedBlocker blocker)
2015 <        throws InterruptedException {
2016 <        boolean done;
2017 <        if (done = blocker.isReleasable())
2018 <            return;
2019 <        int pc = parallelism;
2020 <        int retries = 0;
2021 <        boolean running = true; // false when running count decremented
2022 <        outer:for (;;) {
2023 <            int wc = workerCounts;
2024 <            int rc = wc & RUNNING_COUNT_MASK;
2025 <            int tc = wc >>> TOTAL_COUNT_SHIFT;
2026 <            if (running) {
2027 <                if (rc <= pc && tc > pc &&
2028 <                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
2029 <                    ForkJoinWorkerThread[] ws = workers;
2030 <                    int nws = ws.length;
2031 <                    for (int i = 0; i < nws; ++i) {
2032 <                        ForkJoinWorkerThread w = ws[i];
2033 <                        if (w != null) {
2034 <                            if (done = blocker.isReleasable())
2035 <                                return;
2036 <                            if (w.isSuspended()) {
2037 <                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
2038 <                                    w.tryResumeSpare()) {
2039 <                                    running = false;
1056 <                                    break outer;
2014 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2015 >        int s = 0;
2016 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2017 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2018 >            joiner.currentJoin = task;
2019 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2020 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2021 >            if (s >= 0 && (s = task.status) >= 0) {
2022 >                helpSignal(task, joiner.poolIndex);
2023 >                if ((s = task.status) >= 0 &&
2024 >                    (task instanceof CountedCompleter))
2025 >                    s = helpComplete(task, LIFO_QUEUE);
2026 >            }
2027 >            while (s >= 0 && (s = task.status) >= 0) {
2028 >                if ((!joiner.isEmpty() ||           // try helping
2029 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2030 >                    (s = task.status) >= 0) {
2031 >                    helpSignal(task, joiner.poolIndex);
2032 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2033 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2034 >                            synchronized (task) {
2035 >                                if (task.status >= 0) {
2036 >                                    try {                // see ForkJoinTask
2037 >                                        task.wait();     //  for explanation
2038 >                                    } catch (InterruptedException ie) {
2039 >                                    }
2040                                  }
2041 <                                continue outer; // rescan
2041 >                                else
2042 >                                    task.notifyAll();
2043                              }
2044                          }
2045 +                        long c;                          // re-activate
2046 +                        do {} while (!U.compareAndSwapLong
2047 +                                     (this, CTL, c = ctl, c + AC_UNIT));
2048                      }
2049                  }
1063                if (done = blocker.isReleasable())
1064                    return;
1065                if (rc == 0 || workerCounts != wc ||
1066                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1067                                              wc, wc - ONE_RUNNING))
1068                    continue;
1069                running = false;
1070                if (rc > pc)
1071                    break;
1072            }
1073            else {
1074                if (rc >= pc || (done = blocker.isReleasable()))
1075                    break;
1076                int sc = tc - pc + 1;
1077                if (retries++ > sc) {
1078                    if (rc > 0 && rc >= pc - sc)
1079                        break;
1080                    if (tc < MAX_THREADS &&
1081                        tc == (runState & ACTIVE_COUNT_MASK) &&
1082                        workerCounts == wc &&
1083                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1084                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1085                        addWorker();
1086                        break;
1087                    }
1088                }
1089                Thread.yield();
1090            }
1091        }
1092
1093        try {
1094            if (!done)
1095                do {} while (!blocker.isReleasable() && !blocker.block());
1096        } finally {
1097            if (!running) {
1098                int c;
1099                do {} while (!UNSAFE.compareAndSwapInt
1100                             (this, workerCountsOffset,
1101                              c = workerCounts, c + ONE_RUNNING));
2050              }
2051 +            joiner.currentJoin = prevJoin;
2052          }
2053 +        return s;
2054      }
2055  
2056      /**
2057 <     * Possibly initiates and/or completes termination.
2057 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2058 >     * to help join only while there is continuous progress. (Caller
2059 >     * will then enter a timed wait.)
2060       *
2061 <     * @param now if true, unconditionally terminate, else only
2062 <     * if shutdown and empty queue and no active workers
1111 <     * @return true if now terminating or terminated
2061 >     * @param joiner the joining worker
2062 >     * @param task the task
2063       */
2064 <    private boolean tryTerminate(boolean now) {
2065 <        if (now)
2066 <            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
2067 <        else if (runState < SHUTDOWN ||
2068 <                 !submissionQueue.isEmpty() ||
2069 <                 (runState & ACTIVE_COUNT_MASK) != 0)
2070 <            return false;
2071 <
2072 <        if (advanceRunLevel(TERMINATING))
2073 <            startTerminating();
2074 <
2075 <        // Finish now if all threads terminated; else in some subsequent call
2076 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
2077 <            advanceRunLevel(TERMINATED);
2078 <            termination.arrive();
2064 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2065 >        int s;
2066 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2067 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2068 >            joiner.currentJoin = task;
2069 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2070 >                         joiner.tryRemoveAndExec(task));
2071 >            if (s >= 0 && (s = task.status) >= 0) {
2072 >                helpSignal(task, joiner.poolIndex);
2073 >                if ((s = task.status) >= 0 &&
2074 >                    (task instanceof CountedCompleter))
2075 >                    s = helpComplete(task, LIFO_QUEUE);
2076 >            }
2077 >            if (s >= 0 && joiner.isEmpty()) {
2078 >                do {} while (task.status >= 0 &&
2079 >                             tryHelpStealer(joiner, task) > 0);
2080 >            }
2081 >            joiner.currentJoin = prevJoin;
2082          }
1129        return true;
2083      }
2084  
2085      /**
2086 <     * Actions on transition to TERMINATING
2086 >     * Returns a (probably) non-empty steal queue, if one is found
2087 >     * during a scan, else null.  This method must be retried by
2088 >     * caller if, by the time it tries to use the queue, it is empty.
2089 >     * @param r a (random) seed for scanning
2090       */
2091 <    private void startTerminating() {
2092 <        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
2093 <            cancelSubmissions();
2094 <            shutdownWorkers();
2095 <            cancelWorkerTasks();
2096 <            signalEvent();
2097 <            interruptWorkers();
2091 >    private WorkQueue findNonEmptyStealQueue(int r) {
2092 >        for (;;) {
2093 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2094 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2095 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2096 >                    if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2097 >                        q.base - q.top < 0)
2098 >                        return q;
2099 >                }
2100 >            }
2101 >            if (plock == ps)
2102 >                return null;
2103          }
2104      }
2105  
2106      /**
2107 <     * Clear out and cancel submissions, ignoring exceptions
2108 <     */
2109 <    private void cancelSubmissions() {
2110 <        ForkJoinTask<?> task;
2111 <        while ((task = submissionQueue.poll()) != null) {
2112 <            try {
2113 <                task.cancel(false);
2114 <            } catch (Throwable ignore) {
2107 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2108 >     * active count ctl maintenance, but rather than blocking
2109 >     * when tasks cannot be found, we rescan until all others cannot
2110 >     * find tasks either.
2111 >     */
2112 >    final void helpQuiescePool(WorkQueue w) {
2113 >        for (boolean active = true;;) {
2114 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2115 >            while ((t = w.nextLocalTask()) != null) {
2116 >                if (w.base - w.top < 0)
2117 >                    signalWork(w);
2118 >                t.doExec();
2119              }
2120 +            if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2121 +                if (!active) {      // re-establish active count
2122 +                    active = true;
2123 +                    do {} while (!U.compareAndSwapLong
2124 +                                 (this, CTL, c = ctl, c + AC_UNIT));
2125 +                }
2126 +                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2127 +                    if (q.base - q.top < 0)
2128 +                        signalWork(q);
2129 +                    w.runSubtask(t);
2130 +                }
2131 +            }
2132 +            else if (active) {       // decrement active count without queuing
2133 +                long nc = (c = ctl) - AC_UNIT;
2134 +                if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2135 +                    return;          // bypass decrement-then-increment
2136 +                if (U.compareAndSwapLong(this, CTL, c, nc))
2137 +                    active = false;
2138 +            }
2139 +            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2140 +                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2141 +                return;
2142          }
2143      }
2144  
2145      /**
2146 <     * Sets all worker run states to at least shutdown,
2147 <     * also resuming suspended workers
2146 >     * Gets and removes a local or stolen task for the given worker.
2147 >     *
2148 >     * @return a task, if available
2149       */
2150 <    private void shutdownWorkers() {
2151 <        ForkJoinWorkerThread[] ws = workers;
2152 <        int nws = ws.length;
2153 <        for (int i = 0; i < nws; ++i) {
2154 <            ForkJoinWorkerThread w = ws[i];
2155 <            if (w != null)
2156 <                w.shutdown();
2150 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2151 >        for (ForkJoinTask<?> t;;) {
2152 >            WorkQueue q; int b;
2153 >            if ((t = w.nextLocalTask()) != null)
2154 >                return t;
2155 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2156 >                return null;
2157 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2158 >                if (q.base - q.top < 0)
2159 >                    signalWork(q);
2160 >                return t;
2161 >            }
2162          }
2163      }
2164  
2165      /**
2166 <     * Clears out and cancels all locally queued tasks
2166 >     * Returns a cheap heuristic guide for task partitioning when
2167 >     * programmers, frameworks, tools, or languages have little or no
2168 >     * idea about task granularity.  In essence by offering this
2169 >     * method, we ask users only about tradeoffs in overhead vs
2170 >     * expected throughput and its variance, rather than how finely to
2171 >     * partition tasks.
2172 >     *
2173 >     * In a steady state strict (tree-structured) computation, each
2174 >     * thread makes available for stealing enough tasks for other
2175 >     * threads to remain active. Inductively, if all threads play by
2176 >     * the same rules, each thread should make available only a
2177 >     * constant number of tasks.
2178 >     *
2179 >     * The minimum useful constant is just 1. But using a value of 1
2180 >     * would require immediate replenishment upon each steal to
2181 >     * maintain enough tasks, which is infeasible.  Further,
2182 >     * partitionings/granularities of offered tasks should minimize
2183 >     * steal rates, which in general means that threads nearer the top
2184 >     * of computation tree should generate more than those nearer the
2185 >     * bottom. In perfect steady state, each thread is at
2186 >     * approximately the same level of computation tree. However,
2187 >     * producing extra tasks amortizes the uncertainty of progress and
2188 >     * diffusion assumptions.
2189 >     *
2190 >     * So, users will want to use values larger, but not much larger
2191 >     * than 1 to both smooth over transient shortages and hedge
2192 >     * against uneven progress; as traded off against the cost of
2193 >     * extra task overhead. We leave the user to pick a threshold
2194 >     * value to compare with the results of this call to guide
2195 >     * decisions, but recommend values such as 3.
2196 >     *
2197 >     * When all threads are active, it is on average OK to estimate
2198 >     * surplus strictly locally. In steady-state, if one thread is
2199 >     * maintaining say 2 surplus tasks, then so are others. So we can
2200 >     * just use estimated queue length.  However, this strategy alone
2201 >     * leads to serious mis-estimates in some non-steady-state
2202 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2203 >     * many of these by further considering the number of "idle"
2204 >     * threads, that are known to have zero queued tasks, so
2205 >     * compensate by a factor of (#idle/#active) threads.
2206 >     *
2207 >     * Note: The approximation of #busy workers as #active workers is
2208 >     * not very good under current signalling scheme, and should be
2209 >     * improved.
2210 >     */
2211 >    static int getSurplusQueuedTaskCount() {
2212 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2213 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2214 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2215 >            int n = (q = wt.workQueue).top - q.base;
2216 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2217 >            return n - (a > (p >>>= 1) ? 0 :
2218 >                        a > (p >>>= 1) ? 1 :
2219 >                        a > (p >>>= 1) ? 2 :
2220 >                        a > (p >>>= 1) ? 4 :
2221 >                        8);
2222 >        }
2223 >        return 0;
2224 >    }
2225 >
2226 >    //  Termination
2227 >
2228 >    /**
2229 >     * Possibly initiates and/or completes termination.  The caller
2230 >     * triggering termination runs three passes through workQueues:
2231 >     * (0) Setting termination status, followed by wakeups of queued
2232 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2233 >     * threads (likely in external tasks, but possibly also blocked in
2234 >     * joins).  Each pass repeats previous steps because of potential
2235 >     * lagging thread creation.
2236 >     *
2237 >     * @param now if true, unconditionally terminate, else only
2238 >     * if no work and no active workers
2239 >     * @param enable if true, enable shutdown when next possible
2240 >     * @return true if now terminating or terminated
2241       */
2242 <    private void cancelWorkerTasks() {
2243 <        ForkJoinWorkerThread[] ws = workers;
2244 <        int nws = ws.length;
2245 <        for (int i = 0; i < nws; ++i) {
2246 <            ForkJoinWorkerThread w = ws[i];
2247 <            if (w != null)
2248 <                w.cancelTasks();
2242 >    private boolean tryTerminate(boolean now, boolean enable) {
2243 >        int ps;
2244 >        if (this == commonPool)                    // cannot shut down
2245 >            return false;
2246 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2247 >            if (!enable)
2248 >                return false;
2249 >            if ((ps & PL_LOCK) != 0 ||
2250 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2251 >                ps = acquirePlock();
2252 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2253 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2254 >                releasePlock(nps);
2255 >        }
2256 >        for (long c;;) {
2257 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2258 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2259 >                    synchronized (this) {
2260 >                        notifyAll();               // signal when 0 workers
2261 >                    }
2262 >                }
2263 >                return true;
2264 >            }
2265 >            if (!now) {                            // check if idle & no tasks
2266 >                WorkQueue[] ws; WorkQueue w;
2267 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2268 >                    return false;
2269 >                if ((ws = workQueues) != null) {
2270 >                    for (int i = 0; i < ws.length; ++i) {
2271 >                        if ((w = ws[i]) != null) {
2272 >                            if (!w.isEmpty()) {    // signal unprocessed tasks
2273 >                                signalWork(w);
2274 >                                return false;
2275 >                            }
2276 >                            if ((i & 1) != 0 && w.eventCount >= 0)
2277 >                                return false;      // unqueued inactive worker
2278 >                        }
2279 >                    }
2280 >                }
2281 >            }
2282 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2283 >                for (int pass = 0; pass < 3; ++pass) {
2284 >                    WorkQueue[] ws; WorkQueue w; Thread wt;
2285 >                    if ((ws = workQueues) != null) {
2286 >                        int n = ws.length;
2287 >                        for (int i = 0; i < n; ++i) {
2288 >                            if ((w = ws[i]) != null) {
2289 >                                w.qlock = -1;
2290 >                                if (pass > 0) {
2291 >                                    w.cancelAll();
2292 >                                    if (pass > 1 && (wt = w.owner) != null) {
2293 >                                        if (!wt.isInterrupted()) {
2294 >                                            try {
2295 >                                                wt.interrupt();
2296 >                                            } catch (Throwable ignore) {
2297 >                                            }
2298 >                                        }
2299 >                                        U.unpark(wt);
2300 >                                    }
2301 >                                }
2302 >                            }
2303 >                        }
2304 >                        // Wake up workers parked on event queue
2305 >                        int i, e; long cc; Thread p;
2306 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2307 >                               (i = e & SMASK) < n && i >= 0 &&
2308 >                               (w = ws[i]) != null) {
2309 >                            long nc = ((long)(w.nextWait & E_MASK) |
2310 >                                       ((cc + AC_UNIT) & AC_MASK) |
2311 >                                       (cc & (TC_MASK|STOP_BIT)));
2312 >                            if (w.eventCount == (e | INT_SIGN) &&
2313 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2314 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2315 >                                w.qlock = -1;
2316 >                                if ((p = w.parker) != null)
2317 >                                    U.unpark(p);
2318 >                            }
2319 >                        }
2320 >                    }
2321 >                }
2322 >            }
2323          }
2324      }
2325  
2326 +    // external operations on common pool
2327 +
2328      /**
2329 <     * Unsticks all workers blocked on joins etc
2329 >     * Returns common pool queue for a thread that has submitted at
2330 >     * least one task.
2331       */
2332 <    private void interruptWorkers() {
2333 <        ForkJoinWorkerThread[] ws = workers;
2334 <        int nws = ws.length;
2335 <        for (int i = 0; i < nws; ++i) {
2336 <            ForkJoinWorkerThread w = ws[i];
2337 <            if (w != null && !w.isTerminated()) {
2338 <                try {
2339 <                    w.interrupt();
2340 <                } catch (SecurityException ignore) {
2332 >    static WorkQueue commonSubmitterQueue() {
2333 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2334 >        return ((z = submitters.get()) != null &&
2335 >                (p = commonPool) != null &&
2336 >                (ws = p.workQueues) != null &&
2337 >                (m = ws.length - 1) >= 0) ?
2338 >            ws[m & z.seed & SQMASK] : null;
2339 >    }
2340 >
2341 >    /**
2342 >     * Tries to pop the given task from submitter's queue in common pool.
2343 >     */
2344 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2345 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2346 >        ForkJoinTask<?>[] a;  int m, s;
2347 >        if (t != null &&
2348 >            (z = submitters.get()) != null &&
2349 >            (p = commonPool) != null &&
2350 >            (ws = p.workQueues) != null &&
2351 >            (m = ws.length - 1) >= 0 &&
2352 >            (q = ws[m & z.seed & SQMASK]) != null &&
2353 >            (s = q.top) != q.base &&
2354 >            (a = q.array) != null) {
2355 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2356 >            if (U.getObject(a, j) == t &&
2357 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2358 >                if (q.array == a && q.top == s && // recheck
2359 >                    U.compareAndSwapObject(a, j, t, null)) {
2360 >                    q.top = s - 1;
2361 >                    q.qlock = 0;
2362 >                    return true;
2363                  }
2364 +                q.qlock = 0;
2365              }
2366          }
2367 +        return false;
2368      }
2369  
1202    // misc support for ForkJoinWorkerThread
1203
2370      /**
2371 <     * Returns pool number
2372 <     */
2373 <    final int getPoolNumber() {
2374 <        return poolNumber;
2371 >     * Tries to pop and run local tasks within the same computation
2372 >     * as the given root. On failure, tries to help complete from
2373 >     * other queues via helpComplete.
2374 >     */
2375 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2376 >        ForkJoinTask<?>[] a; int m;
2377 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2378 >            root != null && root.status >= 0) {
2379 >            for (;;) {
2380 >                int s, u; Object o; CountedCompleter<?> task = null;
2381 >                if ((s = q.top) - q.base > 0) {
2382 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2383 >                    if ((o = U.getObject(a, j)) != null &&
2384 >                        (o instanceof CountedCompleter)) {
2385 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2386 >                        do {
2387 >                            if (r == root) {
2388 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2389 >                                    if (q.array == a && q.top == s &&
2390 >                                        U.compareAndSwapObject(a, j, t, null)) {
2391 >                                        q.top = s - 1;
2392 >                                        task = t;
2393 >                                    }
2394 >                                    q.qlock = 0;
2395 >                                }
2396 >                                break;
2397 >                            }
2398 >                        } while ((r = r.completer) != null);
2399 >                    }
2400 >                }
2401 >                if (task != null)
2402 >                    task.doExec();
2403 >                if (root.status < 0 ||
2404 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2405 >                    break;
2406 >                if (task == null) {
2407 >                    helpSignal(root, q.poolIndex);
2408 >                    if (root.status >= 0)
2409 >                        helpComplete(root, SHARED_QUEUE);
2410 >                    break;
2411 >                }
2412 >            }
2413 >        }
2414      }
2415  
2416      /**
2417 <     * Accumulates steal count from a worker, clearing
2418 <     * the worker's value
2417 >     * Tries to help execute or signal availability of the given task
2418 >     * from submitter's queue in common pool.
2419       */
2420 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
2421 <        int sc = w.stealCount;
2422 <        if (sc != 0) {
2423 <            long c;
2424 <            w.stealCount = 0;
2425 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
2426 <                                                    c = stealCount, c + sc));
2420 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2421 >        // Some hard-to-avoid overlap with tryExternalUnpush
2422 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2423 >        ForkJoinTask<?>[] a;  int m, s, n;
2424 >        if (t != null &&
2425 >            (z = submitters.get()) != null &&
2426 >            (p = commonPool) != null &&
2427 >            (ws = p.workQueues) != null &&
2428 >            (m = ws.length - 1) >= 0 &&
2429 >            (q = ws[m & z.seed & SQMASK]) != null &&
2430 >            (a = q.array) != null) {
2431 >            int am = a.length - 1;
2432 >            if ((s = q.top) != q.base) {
2433 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2434 >                if (U.getObject(a, j) == t &&
2435 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2436 >                    if (q.array == a && q.top == s &&
2437 >                        U.compareAndSwapObject(a, j, t, null)) {
2438 >                        q.top = s - 1;
2439 >                        q.qlock = 0;
2440 >                        t.doExec();
2441 >                    }
2442 >                    else
2443 >                        q.qlock = 0;
2444 >                }
2445 >            }
2446 >            if (t.status >= 0) {
2447 >                if (t instanceof CountedCompleter)
2448 >                    p.externalHelpComplete(q, t);
2449 >                else
2450 >                    p.helpSignal(t, q.poolIndex);
2451 >            }
2452          }
2453      }
2454  
2455      /**
2456 <     * Returns the approximate (non-atomic) number of idle threads per
1227 <     * active thread.
2456 >     * Restricted version of helpQuiescePool for external callers
2457       */
2458 <    final int idlePerActive() {
2459 <        int pc = parallelism; // use parallelism, not rc
2460 <        int ac = runState;    // no mask -- artifically boosts during shutdown
2461 <        // Use exact results for small values, saturate past 4
2462 <        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
2458 >    static void externalHelpQuiescePool() {
2459 >        ForkJoinPool p; ForkJoinTask<?> t; WorkQueue q; int b;
2460 >        if ((p = commonPool) != null &&
2461 >            (q = p.findNonEmptyStealQueue(1)) != null &&
2462 >            (b = q.base) - q.top < 0 &&
2463 >            (t = q.pollAt(b)) != null) {
2464 >            if (q.base - q.top < 0)
2465 >                p.signalWork(q);
2466 >            t.doExec();
2467 >        }
2468      }
2469  
2470 <    // Public and protected methods
2470 >    // Exported methods
2471  
2472      // Constructors
2473  
# Line 1280 | Line 2514 | public class ForkJoinPool extends Abstra
2514       * use {@link #defaultForkJoinWorkerThreadFactory}.
2515       * @param handler the handler for internal worker threads that
2516       * terminate due to unrecoverable errors encountered while executing
2517 <     * tasks. For default value, use <code>null</code>.
2517 >     * tasks. For default value, use {@code null}.
2518       * @param asyncMode if true,
2519       * establishes local first-in-first-out scheduling mode for forked
2520       * tasks that are never joined. This mode may be more appropriate
2521       * than default locally stack-based mode in applications in which
2522       * worker threads only process event-style asynchronous tasks.
2523 <     * For default value, use <code>false</code>.
2523 >     * For default value, use {@code false}.
2524       * @throws IllegalArgumentException if parallelism less than or
2525       *         equal to zero, or greater than implementation limit
2526       * @throws NullPointerException if the factory is null
# Line 1302 | Line 2536 | public class ForkJoinPool extends Abstra
2536          checkPermission();
2537          if (factory == null)
2538              throw new NullPointerException();
2539 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2539 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2540              throw new IllegalArgumentException();
1307        this.parallelism = parallelism;
2541          this.factory = factory;
2542          this.ueh = handler;
2543 <        this.locallyFifo = asyncMode;
2544 <        int arraySize = initialArraySizeFor(parallelism);
2545 <        this.workers = new ForkJoinWorkerThread[arraySize];
2546 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2547 <        this.workerLock = new ReentrantLock();
2548 <        this.termination = new Phaser(1);
2549 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2543 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2544 >        long np = (long)(-parallelism); // offset ctl counts
2545 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2546 >        int pn = nextPoolId();
2547 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2548 >        sb.append(Integer.toString(pn));
2549 >        sb.append("-worker-");
2550 >        this.workerNamePrefix = sb.toString();
2551      }
2552  
2553      /**
2554 <     * Returns initial power of two size for workers array.
2555 <     * @param pc the initial parallelism level
2556 <     */
2557 <    private static int initialArraySizeFor(int pc) {
2558 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
2559 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
2560 <        size |= size >>> 1;
2561 <        size |= size >>> 2;
2562 <        size |= size >>> 4;
2563 <        size |= size >>> 8;
2564 <        return size + 1;
2554 >     * Constructor for common pool, suitable only for static initialization.
2555 >     * Basically the same as above, but uses smallest possible initial footprint.
2556 >     */
2557 >    ForkJoinPool(int parallelism, long ctl,
2558 >                 ForkJoinWorkerThreadFactory factory,
2559 >                 Thread.UncaughtExceptionHandler handler) {
2560 >        this.config = parallelism;
2561 >        this.ctl = ctl;
2562 >        this.factory = factory;
2563 >        this.ueh = handler;
2564 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2565      }
2566  
1333    // Execution methods
1334
2567      /**
2568 <     * Common code for execute, invoke and submit
2568 >     * Returns the common pool instance. This pool is statically
2569 >     * constructed; its run state is unaffected by attempts to
2570 >     * {@link #shutdown} or {@link #shutdownNow}.
2571 >     *
2572 >     * @return the common pool instance
2573       */
2574 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2575 <        if (task == null)
2576 <            throw new NullPointerException();
1341 <        if (runState >= SHUTDOWN)
1342 <            throw new RejectedExecutionException();
1343 <        submissionQueue.offer(task);
1344 <        signalEvent();
1345 <        ensureEnoughWorkers();
2574 >    public static ForkJoinPool commonPool() {
2575 >        // assert commonPool != null : "static init error";
2576 >        return commonPool;
2577      }
2578  
2579 +    // Execution methods
2580 +
2581      /**
2582       * Performs the given task, returning its result upon completion.
2583 <     * If the caller is already engaged in a fork/join computation in
2584 <     * the current pool, this method is equivalent in effect to
2585 <     * {@link ForkJoinTask#invoke}.
2583 >     * If the computation encounters an unchecked Exception or Error,
2584 >     * it is rethrown as the outcome of this invocation.  Rethrown
2585 >     * exceptions behave in the same way as regular exceptions, but,
2586 >     * when possible, contain stack traces (as displayed for example
2587 >     * using {@code ex.printStackTrace()}) of both the current thread
2588 >     * as well as the thread actually encountering the exception;
2589 >     * minimally only the latter.
2590       *
2591       * @param task the task
2592       * @return the task's result
# Line 1358 | Line 2595 | public class ForkJoinPool extends Abstra
2595       *         scheduled for execution
2596       */
2597      public <T> T invoke(ForkJoinTask<T> task) {
2598 <        doSubmit(task);
2598 >        if (task == null)
2599 >            throw new NullPointerException();
2600 >        externalPush(task);
2601          return task.join();
2602      }
2603  
2604      /**
2605       * Arranges for (asynchronous) execution of the given task.
1367     * If the caller is already engaged in a fork/join computation in
1368     * the current pool, this method is equivalent in effect to
1369     * {@link ForkJoinTask#fork}.
2606       *
2607       * @param task the task
2608       * @throws NullPointerException if the task is null
# Line 1374 | Line 2610 | public class ForkJoinPool extends Abstra
2610       *         scheduled for execution
2611       */
2612      public void execute(ForkJoinTask<?> task) {
2613 <        doSubmit(task);
2613 >        if (task == null)
2614 >            throw new NullPointerException();
2615 >        externalPush(task);
2616      }
2617  
2618      // AbstractExecutorService methods
# Line 1385 | Line 2623 | public class ForkJoinPool extends Abstra
2623       *         scheduled for execution
2624       */
2625      public void execute(Runnable task) {
2626 +        if (task == null)
2627 +            throw new NullPointerException();
2628          ForkJoinTask<?> job;
2629          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2630              job = (ForkJoinTask<?>) task;
2631          else
2632 <            job = ForkJoinTask.adapt(task, null);
2633 <        doSubmit(job);
2632 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2633 >        externalPush(job);
2634      }
2635  
2636      /**
2637       * Submits a ForkJoinTask for execution.
1398     * If the caller is already engaged in a fork/join computation in
1399     * the current pool, this method is equivalent in effect to
1400     * {@link ForkJoinTask#fork}.
2638       *
2639       * @param task the task to submit
2640       * @return the task
# Line 1406 | Line 2643 | public class ForkJoinPool extends Abstra
2643       *         scheduled for execution
2644       */
2645      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2646 <        doSubmit(task);
2646 >        if (task == null)
2647 >            throw new NullPointerException();
2648 >        externalPush(task);
2649          return task;
2650      }
2651  
# Line 1416 | Line 2655 | public class ForkJoinPool extends Abstra
2655       *         scheduled for execution
2656       */
2657      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2658 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2659 <        doSubmit(job);
2658 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2659 >        externalPush(job);
2660          return job;
2661      }
2662  
# Line 1427 | Line 2666 | public class ForkJoinPool extends Abstra
2666       *         scheduled for execution
2667       */
2668      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2669 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2670 <        doSubmit(job);
2669 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2670 >        externalPush(job);
2671          return job;
2672      }
2673  
# Line 1438 | Line 2677 | public class ForkJoinPool extends Abstra
2677       *         scheduled for execution
2678       */
2679      public ForkJoinTask<?> submit(Runnable task) {
2680 +        if (task == null)
2681 +            throw new NullPointerException();
2682          ForkJoinTask<?> job;
2683          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2684              job = (ForkJoinTask<?>) task;
2685          else
2686 <            job = ForkJoinTask.adapt(task, null);
2687 <        doSubmit(job);
2686 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2687 >        externalPush(job);
2688          return job;
2689      }
2690  
# Line 1452 | Line 2693 | public class ForkJoinPool extends Abstra
2693       * @throws RejectedExecutionException {@inheritDoc}
2694       */
2695      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2696 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2697 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2698 <        for (Callable<T> task : tasks)
2699 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2700 <        invoke(new InvokeAll<T>(forkJoinTasks));
2701 <
2696 >        // In previous versions of this class, this method constructed
2697 >        // a task to run ForkJoinTask.invokeAll, but now external
2698 >        // invocation of multiple tasks is at least as efficient.
2699 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2700 >        // Workaround needed because method wasn't declared with
2701 >        // wildcards in return type but should have been.
2702          @SuppressWarnings({"unchecked", "rawtypes"})
2703 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1463 <        return futures;
1464 <    }
2703 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2704  
2705 <    static final class InvokeAll<T> extends RecursiveAction {
2706 <        final ArrayList<ForkJoinTask<T>> tasks;
2707 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2708 <        public void compute() {
2709 <            try { invokeAll(tasks); }
2710 <            catch (Exception ignore) {}
2705 >        boolean done = false;
2706 >        try {
2707 >            for (Callable<T> t : tasks) {
2708 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2709 >                externalPush(f);
2710 >                fs.add(f);
2711 >            }
2712 >            for (ForkJoinTask<T> f : fs)
2713 >                f.quietlyJoin();
2714 >            done = true;
2715 >            return futures;
2716 >        } finally {
2717 >            if (!done)
2718 >                for (ForkJoinTask<T> f : fs)
2719 >                    f.cancel(false);
2720          }
1473        private static final long serialVersionUID = -7914297376763021607L;
2721      }
2722  
2723      /**
# Line 1498 | Line 2745 | public class ForkJoinPool extends Abstra
2745       * @return the targeted parallelism level of this pool
2746       */
2747      public int getParallelism() {
2748 <        return parallelism;
2748 >        return config & SMASK;
2749 >    }
2750 >
2751 >    /**
2752 >     * Returns the targeted parallelism level of the common pool.
2753 >     *
2754 >     * @return the targeted parallelism level of the common pool
2755 >     */
2756 >    public static int getCommonPoolParallelism() {
2757 >        return commonPoolParallelism;
2758      }
2759  
2760      /**
2761       * Returns the number of worker threads that have started but not
2762 <     * yet terminated.  This result returned by this method may differ
2762 >     * yet terminated.  The result returned by this method may differ
2763       * from {@link #getParallelism} when threads are created to
2764       * maintain parallelism when others are cooperatively blocked.
2765       *
2766       * @return the number of worker threads
2767       */
2768      public int getPoolSize() {
2769 <        return workerCounts >>> TOTAL_COUNT_SHIFT;
2769 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2770      }
2771  
2772      /**
# Line 1520 | Line 2776 | public class ForkJoinPool extends Abstra
2776       * @return {@code true} if this pool uses async mode
2777       */
2778      public boolean getAsyncMode() {
2779 <        return locallyFifo;
2779 >        return (config >>> 16) == FIFO_QUEUE;
2780      }
2781  
2782      /**
# Line 1532 | Line 2788 | public class ForkJoinPool extends Abstra
2788       * @return the number of worker threads
2789       */
2790      public int getRunningThreadCount() {
2791 <        return workerCounts & RUNNING_COUNT_MASK;
2791 >        int rc = 0;
2792 >        WorkQueue[] ws; WorkQueue w;
2793 >        if ((ws = workQueues) != null) {
2794 >            for (int i = 1; i < ws.length; i += 2) {
2795 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2796 >                    ++rc;
2797 >            }
2798 >        }
2799 >        return rc;
2800      }
2801  
2802      /**
# Line 1543 | Line 2807 | public class ForkJoinPool extends Abstra
2807       * @return the number of active threads
2808       */
2809      public int getActiveThreadCount() {
2810 <        return runState & ACTIVE_COUNT_MASK;
2810 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2811 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2812      }
2813  
2814      /**
# Line 1558 | Line 2823 | public class ForkJoinPool extends Abstra
2823       * @return {@code true} if all threads are currently idle
2824       */
2825      public boolean isQuiescent() {
2826 <        return (runState & ACTIVE_COUNT_MASK) == 0;
2826 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2827      }
2828  
2829      /**
# Line 1573 | Line 2838 | public class ForkJoinPool extends Abstra
2838       * @return the number of steals
2839       */
2840      public long getStealCount() {
2841 <        return stealCount;
2841 >        long count = stealCount;
2842 >        WorkQueue[] ws; WorkQueue w;
2843 >        if ((ws = workQueues) != null) {
2844 >            for (int i = 1; i < ws.length; i += 2) {
2845 >                if ((w = ws[i]) != null)
2846 >                    count += w.nsteals;
2847 >            }
2848 >        }
2849 >        return count;
2850      }
2851  
2852      /**
# Line 1588 | Line 2861 | public class ForkJoinPool extends Abstra
2861       */
2862      public long getQueuedTaskCount() {
2863          long count = 0;
2864 <        ForkJoinWorkerThread[] ws = workers;
2865 <        int nws = ws.length;
2866 <        for (int i = 0; i < nws; ++i) {
2867 <            ForkJoinWorkerThread w = ws[i];
2868 <            if (w != null)
2869 <                count += w.getQueueSize();
2864 >        WorkQueue[] ws; WorkQueue w;
2865 >        if ((ws = workQueues) != null) {
2866 >            for (int i = 1; i < ws.length; i += 2) {
2867 >                if ((w = ws[i]) != null)
2868 >                    count += w.queueSize();
2869 >            }
2870          }
2871          return count;
2872      }
2873  
2874      /**
2875       * Returns an estimate of the number of tasks submitted to this
2876 <     * pool that have not yet begun executing.  This method takes time
2877 <     * proportional to the number of submissions.
2876 >     * pool that have not yet begun executing.  This method may take
2877 >     * time proportional to the number of submissions.
2878       *
2879       * @return the number of queued submissions
2880       */
2881      public int getQueuedSubmissionCount() {
2882 <        return submissionQueue.size();
2882 >        int count = 0;
2883 >        WorkQueue[] ws; WorkQueue w;
2884 >        if ((ws = workQueues) != null) {
2885 >            for (int i = 0; i < ws.length; i += 2) {
2886 >                if ((w = ws[i]) != null)
2887 >                    count += w.queueSize();
2888 >            }
2889 >        }
2890 >        return count;
2891      }
2892  
2893      /**
# Line 1616 | Line 2897 | public class ForkJoinPool extends Abstra
2897       * @return {@code true} if there are any queued submissions
2898       */
2899      public boolean hasQueuedSubmissions() {
2900 <        return !submissionQueue.isEmpty();
2900 >        WorkQueue[] ws; WorkQueue w;
2901 >        if ((ws = workQueues) != null) {
2902 >            for (int i = 0; i < ws.length; i += 2) {
2903 >                if ((w = ws[i]) != null && !w.isEmpty())
2904 >                    return true;
2905 >            }
2906 >        }
2907 >        return false;
2908      }
2909  
2910      /**
# Line 1627 | Line 2915 | public class ForkJoinPool extends Abstra
2915       * @return the next submission, or {@code null} if none
2916       */
2917      protected ForkJoinTask<?> pollSubmission() {
2918 <        return submissionQueue.poll();
2918 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2919 >        if ((ws = workQueues) != null) {
2920 >            for (int i = 0; i < ws.length; i += 2) {
2921 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2922 >                    return t;
2923 >            }
2924 >        }
2925 >        return null;
2926      }
2927  
2928      /**
# Line 1648 | Line 2943 | public class ForkJoinPool extends Abstra
2943       * @return the number of elements transferred
2944       */
2945      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1651        int n = submissionQueue.drainTo(c);
1652        ForkJoinWorkerThread[] ws = workers;
1653        int nws = ws.length;
1654        for (int i = 0; i < nws; ++i) {
1655            ForkJoinWorkerThread w = ws[i];
1656            if (w != null)
1657                n += w.drainTasksTo(c);
1658        }
1659        return n;
1660    }
1661
1662    /**
1663     * Returns count of total parks by existing workers.
1664     * Used during development only since not meaningful to users.
1665     */
1666    private int collectParkCount() {
2946          int count = 0;
2947 <        ForkJoinWorkerThread[] ws = workers;
2948 <        int nws = ws.length;
2949 <        for (int i = 0; i < nws; ++i) {
2950 <            ForkJoinWorkerThread w = ws[i];
2951 <            if (w != null)
2952 <                count += w.parkCount;
2947 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2948 >        if ((ws = workQueues) != null) {
2949 >            for (int i = 0; i < ws.length; ++i) {
2950 >                if ((w = ws[i]) != null) {
2951 >                    while ((t = w.poll()) != null) {
2952 >                        c.add(t);
2953 >                        ++count;
2954 >                    }
2955 >                }
2956 >            }
2957          }
2958          return count;
2959      }
# Line 1683 | Line 2966 | public class ForkJoinPool extends Abstra
2966       * @return a string identifying this pool, as well as its state
2967       */
2968      public String toString() {
2969 <        long st = getStealCount();
2970 <        long qt = getQueuedTaskCount();
2971 <        long qs = getQueuedSubmissionCount();
2972 <        int wc = workerCounts;
2973 <        int tc = wc >>> TOTAL_COUNT_SHIFT;
2974 <        int rc = wc & RUNNING_COUNT_MASK;
2975 <        int pc = parallelism;
2976 <        int rs = runState;
2977 <        int ac = rs & ACTIVE_COUNT_MASK;
2978 <        //        int pk = collectParkCount();
2969 >        // Use a single pass through workQueues to collect counts
2970 >        long qt = 0L, qs = 0L; int rc = 0;
2971 >        long st = stealCount;
2972 >        long c = ctl;
2973 >        WorkQueue[] ws; WorkQueue w;
2974 >        if ((ws = workQueues) != null) {
2975 >            for (int i = 0; i < ws.length; ++i) {
2976 >                if ((w = ws[i]) != null) {
2977 >                    int size = w.queueSize();
2978 >                    if ((i & 1) == 0)
2979 >                        qs += size;
2980 >                    else {
2981 >                        qt += size;
2982 >                        st += w.nsteals;
2983 >                        if (w.isApparentlyUnblocked())
2984 >                            ++rc;
2985 >                    }
2986 >                }
2987 >            }
2988 >        }
2989 >        int pc = (config & SMASK);
2990 >        int tc = pc + (short)(c >>> TC_SHIFT);
2991 >        int ac = pc + (int)(c >> AC_SHIFT);
2992 >        if (ac < 0) // ignore transient negative
2993 >            ac = 0;
2994 >        String level;
2995 >        if ((c & STOP_BIT) != 0)
2996 >            level = (tc == 0) ? "Terminated" : "Terminating";
2997 >        else
2998 >            level = plock < 0 ? "Shutting down" : "Running";
2999          return super.toString() +
3000 <            "[" + runLevelToString(rs) +
3000 >            "[" + level +
3001              ", parallelism = " + pc +
3002              ", size = " + tc +
3003              ", active = " + ac +
# Line 1702 | Line 3005 | public class ForkJoinPool extends Abstra
3005              ", steals = " + st +
3006              ", tasks = " + qt +
3007              ", submissions = " + qs +
1705            //            ", parks = " + pk +
3008              "]";
3009      }
3010  
1709    private static String runLevelToString(int s) {
1710        return ((s & TERMINATED) != 0 ? "Terminated" :
1711                ((s & TERMINATING) != 0 ? "Terminating" :
1712                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1713                  "Running")));
1714    }
1715
3011      /**
3012 <     * Initiates an orderly shutdown in which previously submitted
3013 <     * tasks are executed, but no new tasks will be accepted.
3014 <     * Invocation has no additional effect if already shut down.
3015 <     * Tasks that are in the process of being submitted concurrently
3016 <     * during the course of this method may or may not be rejected.
3012 >     * Possibly initiates an orderly shutdown in which previously
3013 >     * submitted tasks are executed, but no new tasks will be
3014 >     * accepted. Invocation has no effect on execution state if this
3015 >     * is the {@link #commonPool}, and no additional effect if
3016 >     * already shut down.  Tasks that are in the process of being
3017 >     * submitted concurrently during the course of this method may or
3018 >     * may not be rejected.
3019       *
3020       * @throws SecurityException if a security manager exists and
3021       *         the caller is not permitted to modify threads
# Line 1727 | Line 3024 | public class ForkJoinPool extends Abstra
3024       */
3025      public void shutdown() {
3026          checkPermission();
3027 <        advanceRunLevel(SHUTDOWN);
1731 <        tryTerminate(false);
3027 >        tryTerminate(false, true);
3028      }
3029  
3030      /**
3031 <     * Attempts to cancel and/or stop all tasks, and reject all
3032 <     * subsequently submitted tasks.  Tasks that are in the process of
3033 <     * being submitted or executed concurrently during the course of
3034 <     * this method may or may not be rejected. This method cancels
3035 <     * both existing and unexecuted tasks, in order to permit
3036 <     * termination in the presence of task dependencies. So the method
3037 <     * always returns an empty list (unlike the case for some other
3038 <     * Executors).
3031 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3032 >     * all subsequently submitted tasks.  Invocation has no effect on
3033 >     * execution state if this is the {@link #commonPool}, and no
3034 >     * additional effect if already shut down. Otherwise, tasks that
3035 >     * are in the process of being submitted or executed concurrently
3036 >     * during the course of this method may or may not be
3037 >     * rejected. This method cancels both existing and unexecuted
3038 >     * tasks, in order to permit termination in the presence of task
3039 >     * dependencies. So the method always returns an empty list
3040 >     * (unlike the case for some other Executors).
3041       *
3042       * @return an empty list
3043       * @throws SecurityException if a security manager exists and
# Line 1749 | Line 3047 | public class ForkJoinPool extends Abstra
3047       */
3048      public List<Runnable> shutdownNow() {
3049          checkPermission();
3050 <        tryTerminate(true);
3050 >        tryTerminate(true, true);
3051          return Collections.emptyList();
3052      }
3053  
# Line 1759 | Line 3057 | public class ForkJoinPool extends Abstra
3057       * @return {@code true} if all tasks have completed following shut down
3058       */
3059      public boolean isTerminated() {
3060 <        return runState >= TERMINATED;
3060 >        long c = ctl;
3061 >        return ((c & STOP_BIT) != 0L &&
3062 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3063      }
3064  
3065      /**
# Line 1767 | Line 3067 | public class ForkJoinPool extends Abstra
3067       * commenced but not yet completed.  This method may be useful for
3068       * debugging. A return of {@code true} reported a sufficient
3069       * period after shutdown may indicate that submitted tasks have
3070 <     * ignored or suppressed interruption, causing this executor not
3071 <     * to properly terminate.
3070 >     * ignored or suppressed interruption, or are waiting for I/O,
3071 >     * causing this executor not to properly terminate. (See the
3072 >     * advisory notes for class {@link ForkJoinTask} stating that
3073 >     * tasks should not normally entail blocking operations.  But if
3074 >     * they do, they must abort them on interrupt.)
3075       *
3076       * @return {@code true} if terminating but not yet terminated
3077       */
3078      public boolean isTerminating() {
3079 <        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
3079 >        long c = ctl;
3080 >        return ((c & STOP_BIT) != 0L &&
3081 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3082      }
3083  
3084      /**
# Line 1782 | Line 3087 | public class ForkJoinPool extends Abstra
3087       * @return {@code true} if this pool has been shut down
3088       */
3089      public boolean isShutdown() {
3090 <        return runState >= SHUTDOWN;
3090 >        return plock < 0;
3091      }
3092  
3093      /**
3094 <     * Blocks until all tasks have completed execution after a shutdown
3095 <     * request, or the timeout occurs, or the current thread is
3096 <     * interrupted, whichever happens first.
3094 >     * Blocks until all tasks have completed execution after a
3095 >     * shutdown request, or the timeout occurs, or the current thread
3096 >     * is interrupted, whichever happens first. Note that the {@link
3097 >     * #commonPool()} never terminates until program shutdown so
3098 >     * this method will always time out.
3099       *
3100       * @param timeout the maximum time to wait
3101       * @param unit the time unit of the timeout argument
# Line 1798 | Line 3105 | public class ForkJoinPool extends Abstra
3105       */
3106      public boolean awaitTermination(long timeout, TimeUnit unit)
3107          throws InterruptedException {
3108 <        try {
3109 <            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
3110 <        } catch(TimeoutException ex) {
3111 <            return false;
3108 >        long nanos = unit.toNanos(timeout);
3109 >        if (isTerminated())
3110 >            return true;
3111 >        long startTime = System.nanoTime();
3112 >        boolean terminated = false;
3113 >        synchronized (this) {
3114 >            for (long waitTime = nanos, millis = 0L;;) {
3115 >                if (terminated = isTerminated() ||
3116 >                    waitTime <= 0L ||
3117 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3118 >                    break;
3119 >                wait(millis);
3120 >                waitTime = nanos - (System.nanoTime() - startTime);
3121 >            }
3122          }
3123 +        return terminated;
3124      }
3125  
3126      /**
3127       * Interface for extending managed parallelism for tasks running
3128       * in {@link ForkJoinPool}s.
3129       *
3130 <     * <p>A {@code ManagedBlocker} provides two methods.
3131 <     * Method {@code isReleasable} must return {@code true} if
3132 <     * blocking is not necessary. Method {@code block} blocks the
3133 <     * current thread if necessary (perhaps internally invoking
3134 <     * {@code isReleasable} before actually blocking).
3130 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3131 >     * {@code isReleasable} must return {@code true} if blocking is
3132 >     * not necessary. Method {@code block} blocks the current thread
3133 >     * if necessary (perhaps internally invoking {@code isReleasable}
3134 >     * before actually blocking). These actions are performed by any
3135 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3136 >     * unusual methods in this API accommodate synchronizers that may,
3137 >     * but don't usually, block for long periods. Similarly, they
3138 >     * allow more efficient internal handling of cases in which
3139 >     * additional workers may be, but usually are not, needed to
3140 >     * ensure sufficient parallelism.  Toward this end,
3141 >     * implementations of method {@code isReleasable} must be amenable
3142 >     * to repeated invocation.
3143       *
3144       * <p>For example, here is a ManagedBlocker based on a
3145       * ReentrantLock:
# Line 1831 | Line 3157 | public class ForkJoinPool extends Abstra
3157       *     return hasLock || (hasLock = lock.tryLock());
3158       *   }
3159       * }}</pre>
3160 +     *
3161 +     * <p>Here is a class that possibly blocks waiting for an
3162 +     * item on a given queue:
3163 +     *  <pre> {@code
3164 +     * class QueueTaker<E> implements ManagedBlocker {
3165 +     *   final BlockingQueue<E> queue;
3166 +     *   volatile E item = null;
3167 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3168 +     *   public boolean block() throws InterruptedException {
3169 +     *     if (item == null)
3170 +     *       item = queue.take();
3171 +     *     return true;
3172 +     *   }
3173 +     *   public boolean isReleasable() {
3174 +     *     return item != null || (item = queue.poll()) != null;
3175 +     *   }
3176 +     *   public E getItem() { // call after pool.managedBlock completes
3177 +     *     return item;
3178 +     *   }
3179 +     * }}</pre>
3180       */
3181      public static interface ManagedBlocker {
3182          /**
# Line 1873 | Line 3219 | public class ForkJoinPool extends Abstra
3219      public static void managedBlock(ManagedBlocker blocker)
3220          throws InterruptedException {
3221          Thread t = Thread.currentThread();
3222 <        if (t instanceof ForkJoinWorkerThread)
3223 <            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
3222 >        if (t instanceof ForkJoinWorkerThread) {
3223 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3224 >            while (!blocker.isReleasable()) { // variant of helpSignal
3225 >                WorkQueue[] ws; WorkQueue q; int m, u;
3226 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3227 >                    for (int i = 0; i <= m; ++i) {
3228 >                        if (blocker.isReleasable())
3229 >                            return;
3230 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3231 >                            p.signalWork(q);
3232 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3233 >                                (u >> UAC_SHIFT) >= 0)
3234 >                                break;
3235 >                        }
3236 >                    }
3237 >                }
3238 >                if (p.tryCompensate()) {
3239 >                    try {
3240 >                        do {} while (!blocker.isReleasable() &&
3241 >                                     !blocker.block());
3242 >                    } finally {
3243 >                        p.incrementActiveCount();
3244 >                    }
3245 >                    break;
3246 >                }
3247 >            }
3248 >        }
3249          else {
3250 <            do {} while (!blocker.isReleasable() && !blocker.block());
3250 >            do {} while (!blocker.isReleasable() &&
3251 >                         !blocker.block());
3252          }
3253      }
3254  
# Line 1885 | Line 3257 | public class ForkJoinPool extends Abstra
3257      // implement RunnableFuture.
3258  
3259      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3260 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3260 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3261      }
3262  
3263      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3264 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3264 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3265      }
3266  
3267      // Unsafe mechanics
3268 +    private static final sun.misc.Unsafe U;
3269 +    private static final long CTL;
3270 +    private static final long PARKBLOCKER;
3271 +    private static final int ABASE;
3272 +    private static final int ASHIFT;
3273 +    private static final long STEALCOUNT;
3274 +    private static final long PLOCK;
3275 +    private static final long INDEXSEED;
3276 +    private static final long QLOCK;
3277  
3278 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
3279 <    private static final long workerCountsOffset =
1899 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
1900 <    private static final long runStateOffset =
1901 <        objectFieldOffset("runState", ForkJoinPool.class);
1902 <    private static final long eventCountOffset =
1903 <        objectFieldOffset("eventCount", ForkJoinPool.class);
1904 <    private static final long eventWaitersOffset =
1905 <        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1906 <    private static final long stealCountOffset =
1907 <        objectFieldOffset("stealCount",ForkJoinPool.class);
1908 <
1909 <    private static long objectFieldOffset(String field, Class<?> klazz) {
3278 >    static {
3279 >        int s; // initialize field offsets for CAS etc
3280          try {
3281 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
3282 <        } catch (NoSuchFieldException e) {
3283 <            // Convert Exception to corresponding Error
3284 <            NoSuchFieldError error = new NoSuchFieldError(field);
3285 <            error.initCause(e);
3286 <            throw error;
3287 <        }
3281 >            U = getUnsafe();
3282 >            Class<?> k = ForkJoinPool.class;
3283 >            CTL = U.objectFieldOffset
3284 >                (k.getDeclaredField("ctl"));
3285 >            STEALCOUNT = U.objectFieldOffset
3286 >                (k.getDeclaredField("stealCount"));
3287 >            PLOCK = U.objectFieldOffset
3288 >                (k.getDeclaredField("plock"));
3289 >            INDEXSEED = U.objectFieldOffset
3290 >                (k.getDeclaredField("indexSeed"));
3291 >            Class<?> tk = Thread.class;
3292 >            PARKBLOCKER = U.objectFieldOffset
3293 >                (tk.getDeclaredField("parkBlocker"));
3294 >            Class<?> wk = WorkQueue.class;
3295 >            QLOCK = U.objectFieldOffset
3296 >                (wk.getDeclaredField("qlock"));
3297 >            Class<?> ak = ForkJoinTask[].class;
3298 >            ABASE = U.arrayBaseOffset(ak);
3299 >            s = U.arrayIndexScale(ak);
3300 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3301 >        } catch (Exception e) {
3302 >            throw new Error(e);
3303 >        }
3304 >        if ((s & (s-1)) != 0)
3305 >            throw new Error("data type scale not a power of two");
3306 >
3307 >        submitters = new ThreadLocal<Submitter>();
3308 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3309 >            new DefaultForkJoinWorkerThreadFactory();
3310 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3311 >
3312 >        /*
3313 >         * Establish common pool parameters.  For extra caution,
3314 >         * computations to set up common pool state are here; the
3315 >         * constructor just assigns these values to fields.
3316 >         */
3317 >
3318 >        int par = 0;
3319 >        Thread.UncaughtExceptionHandler handler = null;
3320 >        try {  // TBD: limit or report ignored exceptions?
3321 >            String pp = System.getProperty
3322 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3323 >            String hp = System.getProperty
3324 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3325 >            String fp = System.getProperty
3326 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3327 >            if (fp != null)
3328 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3329 >                       getSystemClassLoader().loadClass(fp).newInstance());
3330 >            if (hp != null)
3331 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3332 >                           getSystemClassLoader().loadClass(hp).newInstance());
3333 >            if (pp != null)
3334 >                par = Integer.parseInt(pp);
3335 >        } catch (Exception ignore) {
3336 >        }
3337 >
3338 >        if (par <= 0)
3339 >            par = Runtime.getRuntime().availableProcessors();
3340 >        if (par > MAX_CAP)
3341 >            par = MAX_CAP;
3342 >        commonPoolParallelism = par;
3343 >        long np = (long)(-par); // precompute initial ctl value
3344 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3345 >
3346 >        commonPool = new ForkJoinPool(par, ct, fac, handler);
3347      }
3348  
3349 +
3350      /**
3351       * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
3352       * Replace with a simple call to Unsafe.getUnsafe when integrating
# Line 1944 | Line 3374 | public class ForkJoinPool extends Abstra
3374              }
3375          }
3376      }
3377 +
3378   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines