ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.118 by jsr166, Sat Jan 28 04:34:54 2012 UTC vs.
Revision 1.174 by jsr166, Sun Jan 13 21:56:12 2013 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.atomic.AtomicInteger;
23 import java.util.concurrent.atomic.AtomicLong;
24 import java.util.concurrent.locks.ReentrantLock;
25 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 42 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
65 > * <p>As is the case with other ExecutorServices, there are three
66   * main task execution methods summarized in the following table.
67   * These are designed to be used primarily by clients not already
68   * engaged in fork/join computations in the current pool.  The main
# Line 94 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
107 < *  <pre> {@code
108 < * static final ForkJoinPool mainPool = new ForkJoinPool();
109 < * ...
110 < * public void sort(long[] array) {
111 < *   mainPool.invoke(new SortTask(array, 0, array.length));
112 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 177 | Line 174 | public class ForkJoinPool extends Abstra
174       * If an attempted steal fails, a thief always chooses a different
175       * random victim target to try next. So, in order for one thief to
176       * progress, it suffices for any in-progress poll or new push on
177 <     * any empty queue to complete.
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181       *
182       * This approach also enables support of a user mode in which local
183       * task processing is in FIFO, not LIFO order, simply by using
# Line 194 | Line 194 | public class ForkJoinPool extends Abstra
194       * WorkQueues are also used in a similar way for tasks submitted
195       * to the pool. We cannot mix these tasks in the same queues used
196       * for work-stealing (this would contaminate lifo/fifo
197 <     * processing). Instead, we loosely associate submission queues
197 >     * processing). Instead, we randomly associate submission queues
198       * with submitting threads, using a form of hashing.  The
199       * ThreadLocal Submitter class contains a value initially used as
200       * a hash code for choosing existing queues, but may be randomly
201       * repositioned upon contention with other submitters.  In
202 <     * essence, submitters act like workers except that they never
203 <     * take tasks, and they are multiplexed on to a finite number of
204 <     * shared work queues. However, classes are set up so that future
205 <     * extensions could allow submitters to optionally help perform
206 <     * tasks as well. Pool submissions from internal workers are also
207 <     * allowed, but use randomized rather than thread-hashed queue
208 <     * indices to avoid imbalance.  Insertion of tasks in shared mode
209 <     * requires a lock (mainly to protect in the case of resizing) but
210 <     * we use only a simple spinlock (using bits in field runState),
211 <     * because submitters encountering a busy queue try or create
212 <     * others so never block.
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216       * Management
217       * ==========
# Line 231 | Line 233 | public class ForkJoinPool extends Abstra
233       * and their negations (used for thresholding) to fit into 16bit
234       * fields.
235       *
236 <     * Field "runState" contains 32 bits needed to register and
237 <     * deregister WorkQueues, as well as to enable shutdown. It is
238 <     * only modified under a lock (normally briefly held, but
239 <     * occasionally protecting allocations and resizings) but even
240 <     * when locked remains available to check consistency.
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243       *
244       * Recording WorkQueues.  WorkQueues are recorded in the
245 <     * "workQueues" array that is created upon pool construction and
246 <     * expanded if necessary.  Updates to the array while recording
247 <     * new workers and unrecording terminated ones are protected from
248 <     * each other by a lock but the array is otherwise concurrently
249 <     * readable, and accessed directly.  To simplify index-based
250 <     * operations, the array size is always a power of two, and all
251 <     * readers must tolerate null slots. Shared (submission) queues
252 <     * are at even indices, worker queues at odd indices. Grouping
253 <     * them together in this way simplifies and speeds up task
254 <     * scanning. To avoid flailing during start-up, the array is
255 <     * presized to hold twice #parallelism workers (which is unlikely
256 <     * to need further resizing during execution). But to avoid
257 <     * dealing with so many null slots, variable runState includes a
258 <     * mask for the nearest power of two that contains all current
255 <     * workers.  All worker thread creation is on-demand, triggered by
256 <     * task submissions, replacement of terminated workers, and/or
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259       * compensation for blocked workers. However, all other support
260       * code is set up to work with other policies.  To ensure that we
261       * do not hold on to worker references that would prevent GC, ALL
# Line 266 | Line 268 | public class ForkJoinPool extends Abstra
268       * both index-check and null-check the IDs. All such accesses
269       * ignore bad IDs by returning out early from what they are doing,
270       * since this can only be associated with termination, in which
271 <     * case it is OK to give up.
272 <     *
273 <     * All uses of the workQueues array check that it is non-null
274 <     * (even if previously non-null). This allows nulling during
275 <     * termination, which is currently not necessary, but remains an
276 <     * option for resource-revocation-based shutdown schemes. It also
275 <     * helps reduce JIT issuance of uncommon-trap code, which tends to
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277       * unnecessarily complicate control flow in some methods.
278       *
279       * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
# Line 312 | Line 313 | public class ForkJoinPool extends Abstra
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had fewer than two tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans;
321 <     * together these cover the signals needed in cases when more
322 <     * tasks are pushed but untaken, and improve performance compared
323 <     * to having one thread wake up all workers.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331       *
332       * Trimming workers. To release resources after periods of lack of
333       * use, a worker starting to wait when the pool is quiescent will
334 <     * time out and terminate if the pool has remained quiescent for
335 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
336 <     * terminating all workers after long periods of non-use.
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339       *
340       * Shutdown and Termination. A call to shutdownNow atomically sets
341 <     * a runState bit and then (non-atomically) sets each worker's
342 <     * runState status, cancels all unprocessed tasks, and wakes up
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343       * all waiting workers.  Detecting whether termination should
344       * commence after a non-abrupt shutdown() call requires more work
345       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 357 | Line 367 | public class ForkJoinPool extends Abstra
367       *      method tryCompensate() may create or re-activate a spare
368       *      thread to compensate for blocked joiners until they unblock.
369       *
370 <     * A third form (implemented in tryRemoveAndExec and
371 <     * tryPollForAndExec) amounts to helping a hypothetical
372 <     * compensator: If we can readily tell that a possible action of a
373 <     * compensator is to steal and execute the task being joined, the
374 <     * joining thread can do so directly, without the need for a
375 <     * compensation thread (although at the expense of larger run-time
376 <     * stacks, but the tradeoff is typically worthwhile).
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377       *
378       * The ManagedBlocker extension API can't use helping so relies
379       * only on compensation in method awaitBlocker.
# Line 383 | Line 393 | public class ForkJoinPool extends Abstra
393       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394       * that: (1) We only maintain dependency links across workers upon
395       * steals, rather than use per-task bookkeeping.  This sometimes
396 <     * requires a linear scan of workers array to locate stealers, but
397 <     * often doesn't because stealers leave hints (that may become
398 <     * stale/wrong) of where to locate them.  A stealHint is only a
399 <     * hint because a worker might have had multiple steals and the
400 <     * hint records only one of them (usually the most current).
401 <     * Hinting isolates cost to when it is needed, rather than adding
402 <     * to per-task overhead.  (2) It is "shallow", ignoring nesting
403 <     * and potentially cyclic mutual steals.  (3) It is intentionally
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404       * racy: field currentJoin is updated only while actively joining,
405       * which means that we miss links in the chain during long-lived
406       * tasks, GC stalls etc (which is OK since blocking in such cases
407       * is usually a good idea).  (4) We bound the number of attempts
408 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
409 <     * the worker and if necessary replacing it with another.
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416       *
417       * It is impossible to keep exactly the target parallelism number
418       * of threads running at any given time.  Determining the
419       * existence of conservatively safe helping targets, the
420       * availability of already-created spares, and the apparent need
421       * to create new spares are all racy, so we rely on multiple
422 <     * retries of each.  Currently, in keeping with on-demand
423 <     * signalling policy, we compensate only if blocking would leave
424 <     * less than one active (non-waiting, non-blocked) worker.
425 <     * Additionally, to avoid some false alarms due to GC, lagging
426 <     * counters, system activity, etc, compensated blocking for joins
427 <     * is only attempted after rechecks stabilize in
428 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
429 <     * Thread.yield, for good citizenship.)
430 <     *
431 <     * Style notes: There is a lot of representation-level coupling
432 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
433 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
434 <     * managed by ForkJoinPool, so are directly accessed.  There is
435 <     * little point trying to reduce this, since any associated future
436 <     * changes in representations will need to be accompanied by
437 <     * algorithmic changes anyway. All together, these low-level
438 <     * implementation choices produce as much as a factor of 4
439 <     * performance improvement compared to naive implementations, and
440 <     * enable the processing of billions of tasks per second, at the
441 <     * expense of some ugliness.
442 <     *
443 <     * Methods signalWork() and scan() are the main bottlenecks, so are
444 <     * especially heavily micro-optimized/mangled.  There are lots of
445 <     * inline assignments (of form "while ((local = field) != 0)")
446 <     * which are usually the simplest way to ensure the required read
447 <     * orderings (which are sometimes critical). This leads to a
448 <     * "C"-like style of listing declarations of these locals at the
449 <     * heads of methods or blocks.  There are several occurrences of
450 <     * the unusual "do {} while (!cas...)"  which is the simplest way
451 <     * to force an update of a CAS'ed variable. There are also other
452 <     * coding oddities that help some methods perform reasonably even
453 <     * when interpreted (not compiled).
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static common Pool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467 >     * trying to reduce this, since any associated future changes in
468 >     * representations will need to be accompanied by algorithmic
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484       *
485       * The order of declarations in this file is:
486 <     * (1) statics
487 <     * (2) fields (along with constants used when unpacking some of
488 <     *     them), listed in an order that tends to reduce contention
489 <     *     among them a bit under most JVMs;
490 <     * (3) nested classes
491 <     * (4) internal control methods
492 <     * (5) callbacks and other support for ForkJoinTask methods
493 <     * (6) exported methods (plus a few little helpers)
494 <     * (7) static block initializing all statics in a minimally
495 <     *     dependent order.
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494 >     */
495 >
496 >    // Static utilities
497 >
498 >    /**
499 >     * If there is a security manager, makes sure caller has
500 >     * permission to modify threads.
501       */
502 +    private static void checkPermission() {
503 +        SecurityManager security = System.getSecurityManager();
504 +        if (security != null)
505 +            security.checkPermission(modifyThreadPermission);
506 +    }
507 +
508 +    // Nested classes
509  
510      /**
511       * Factory for creating new {@link ForkJoinWorkerThread}s.
# Line 469 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 <     * Creates a new ForkJoinWorkerThread. This factory is used unless
539 <     * overridden in ForkJoinPool constructors.
540 <     */
541 <    public static final ForkJoinWorkerThreadFactory
542 <        defaultForkJoinWorkerThreadFactory;
543 <
544 <    /**
545 <     * Permission required for callers of methods that may start or
546 <     * kill threads.
547 <     */
548 <    private static final RuntimePermission modifyThreadPermission;
549 <
550 <    /**
493 <     * If there is a security manager, makes sure caller has
494 <     * permission to modify threads.
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551       */
552 <    private static void checkPermission() {
553 <        SecurityManager security = System.getSecurityManager();
554 <        if (security != null)
499 <            security.checkPermission(modifyThreadPermission);
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555      }
556  
557      /**
558 <     * Generator for assigning sequence numbers as pool names.
559 <     */
560 <    private static final AtomicInteger poolNumberGenerator;
561 <
507 <    /**
508 <     * Bits and masks for control variables
509 <     *
510 <     * Field ctl is a long packed with:
511 <     * AC: Number of active running workers minus target parallelism (16 bits)
512 <     * TC: Number of total workers minus target parallelism (16 bits)
513 <     * ST: true if pool is terminating (1 bit)
514 <     * EC: the wait count of top waiting thread (15 bits)
515 <     * ID: ~(poolIndex >>> 1) of top of Treiber stack of waiters (16 bits)
516 <     *
517 <     * When convenient, we can extract the upper 32 bits of counts and
518 <     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
519 <     * (int)ctl.  The ec field is never accessed alone, but always
520 <     * together with id and st. The offsets of counts by the target
521 <     * parallelism and the positionings of fields makes it possible to
522 <     * perform the most common checks via sign tests of fields: When
523 <     * ac is negative, there are not enough active workers, when tc is
524 <     * negative, there are not enough total workers, when id is
525 <     * negative, there is at least one waiting worker, and when e is
526 <     * negative, the pool is terminating.  To deal with these possibly
527 <     * negative fields, we use casts in and out of "short" and/or
528 <     * signed shifts to maintain signedness.
529 <     *
530 <     * When a thread is queued (inactivated), its eventCount field is
531 <     * negative, which is the only way to tell if a worker is
532 <     * prevented from executing tasks, even though it must continue to
533 <     * scan for them to avoid queuing races.
534 <     *
535 <     * Field runState is an int packed with:
536 <     * SHUTDOWN: true if shutdown is enabled (1 bit)
537 <     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
538 <     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
539 <     *
540 <     * The combination of mask and sequence number enables simple
541 <     * consistency checks: Staleness of read-only operations on the
542 <     * workers and queues arrays can be checked by comparing runState
543 <     * before vs after the reads. The low 16 bits (i.e, anding with
544 <     * SMASK) hold the smallest power of two covering all worker
545 <     * indices, minus one.  The mask for queues (vs workers) is twice
546 <     * this value plus 1.
547 <     */
548 <
549 <    // bit positions/shifts for fields
550 <    private static final int  AC_SHIFT   = 48;
551 <    private static final int  TC_SHIFT   = 32;
552 <    private static final int  ST_SHIFT   = 31;
553 <    private static final int  EC_SHIFT   = 16;
554 <
555 <    // bounds
556 <    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
557 <    private static final int  SMASK      = 0xffff;  // mask short bits
558 <    private static final int  SHORT_SIGN = 1 << 15;
559 <    private static final int  INT_SIGN   = 1 << 31;
560 <
561 <    // masks
562 <    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
563 <    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
564 <    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
565 <
566 <    // units for incrementing and decrementing
567 <    private static final long TC_UNIT    = 1L << TC_SHIFT;
568 <    private static final long AC_UNIT    = 1L << AC_SHIFT;
569 <
570 <    // masks and units for dealing with u = (int)(ctl >>> 32)
571 <    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
572 <    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
573 <    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
574 <    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
575 <    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
576 <    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
577 <
578 <    // masks and units for dealing with e = (int)ctl
579 <    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
580 <    private static final int E_SEQ       = 1 << EC_SHIFT;
581 <
582 <    // runState bits
583 <    private static final int SHUTDOWN    = 1 << 31;
584 <    private static final int RS_SEQ      = 1 << 16;
585 <    private static final int RS_SEQ_MASK = 0x7fff0000;
586 <
587 <    // access mode for WorkQueue
588 <    static final int LIFO_QUEUE          =  0;
589 <    static final int FIFO_QUEUE          =  1;
590 <    static final int SHARED_QUEUE        = -1;
591 <
592 <    /**
593 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
594 <     * task when the pool is quiescent to instead try to shrink the
595 <     * number of workers.  The exact value does not matter too
596 <     * much. It must be short enough to release resources during
597 <     * sustained periods of idleness, but not so short that threads
598 <     * are continually re-created.
599 <     */
600 <    private static final long SHRINK_RATE =
601 <        4L * 1000L * 1000L * 1000L; // 4 seconds
602 <
603 <    /**
604 <     * The timeout value for attempted shrinkage, includes
605 <     * some slop to cope with system timer imprecision.
606 <     */
607 <    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
608 <
609 <    /**
610 <     * The maximum stolen->joining link depth allowed in tryHelpStealer.
611 <     * Depths for legitimate chains are unbounded, but we use a fixed
612 <     * constant to avoid (otherwise unchecked) cycles and to bound
613 <     * staleness of traversal parameters at the expense of sometimes
614 <     * blocking when we could be helping.
615 <     */
616 <    private static final int MAX_HELP_DEPTH = 16;
617 <
618 <    /*
619 <     * Field layout order in this class tends to matter more than one
620 <     * would like. Runtime layout order is only loosely related to
621 <     * declaration order and may differ across JVMs, but the following
622 <     * empirically works OK on current JVMs.
558 >     * Class for artificial tasks that are used to replace the target
559 >     * of local joins if they are removed from an interior queue slot
560 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 >     * actually do anything beyond having a unique identity.
562       */
563 <
564 <    volatile long ctl;                       // main pool control
565 <    final int parallelism;                   // parallelism level
566 <    final int localMode;                     // per-worker scheduling mode
567 <    int nextPoolIndex;                       // hint used in registerWorker
568 <    volatile int runState;                   // shutdown status, seq, and mask
569 <    WorkQueue[] workQueues;                  // main registry
631 <    final ReentrantLock lock;                // for registration
632 <    final Condition termination;             // for awaitTermination
633 <    final ForkJoinWorkerThreadFactory factory; // factory for new workers
634 <    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
635 <    final AtomicLong stealCount;             // collect counts when terminated
636 <    final AtomicInteger nextWorkerNumber;    // to create worker name string
637 <    final String workerNamePrefix;           // Prefix for assigning worker names
563 >    static final class EmptyTask extends ForkJoinTask<Void> {
564 >        private static final long serialVersionUID = -7721805057305804111L;
565 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 >        public final Void getRawResult() { return null; }
567 >        public final void setRawResult(Void x) {}
568 >        public final boolean exec() { return true; }
569 >    }
570  
571      /**
572       * Queues supporting work-stealing as well as external task
# Line 650 | Line 582 | public class ForkJoinPool extends Abstra
582       *
583       * Field "top" is the index (mod array.length) of the next queue
584       * slot to push to or pop from. It is written only by owner thread
585 <     * for push, or under lock for trySharedPush, and accessed by
586 <     * other threads only after reading (volatile) base.  Both top and
587 <     * base are allowed to wrap around on overflow, but (top - base)
588 <     * (or more commonly -(base - top) to force volatile read of base
589 <     * before top) still estimates size.
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596       *
597       * The array slots are read and written using the emulation of
598       * volatiles/atomics provided by Unsafe. Insertions must in
599       * general use putOrderedObject as a form of releasing store to
600       * ensure that all writes to the task object are ordered before
601 <     * its publication in the queue. (Although we can avoid one case
602 <     * of this when locked in trySharedPush.) All removals entail a
603 <     * CAS to null.  The array is always a power of two. To ensure
604 <     * safety of Unsafe array operations, all accesses perform
667 <     * explicit null checks and implicit bounds checks via
668 <     * power-of-two masking.
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605       *
606       * In addition to basic queuing support, this class contains
607       * fields described elsewhere to control execution. It turns out
608 <     * to work better memory-layout-wise to include them in this
609 <     * class rather than a separate class.
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610       *
611       * Performance on most platforms is very sensitive to placement of
612       * instances of both WorkQueues and their arrays -- we absolutely
# Line 684 | Line 620 | public class ForkJoinPool extends Abstra
620       * trades off slightly slower average field access for the sake of
621       * avoiding really bad worst-case access. (Until better JVM
622       * support is in place, this padding is dependent on transient
623 <     * properties of JVM field layout rules.)  We also take care in
624 <     * allocating and sizing and resizing the array. Non-shared queue
625 <     * arrays are initialized (via method growArray) by workers before
626 <     * use. Others are allocated on first use.
623 >     * properties of JVM field layout rules.) We also take care in
624 >     * allocating, sizing and resizing the array. Non-shared queue
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627       */
628      static final class WorkQueue {
629          /**
630           * Capacity of work-stealing queue array upon initialization.
631 <         * Must be a power of two; at least 4, but set larger to
632 <         * reduce cacheline sharing among queues.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637           */
638 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639  
640          /**
641           * Maximum size for queue arrays. Must be a power of two less
# Line 706 | Line 646 | public class ForkJoinPool extends Abstra
646           */
647          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648  
649 <        volatile long totalSteals; // cumulative number of steals
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652          int seed;                  // for random scanning; initialize nonzero
653          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654          int nextWait;              // encoded record of next event waiter
655 <        int rescans;               // remaining scans until block
714 <        int nsteals;               // top-level task executions since last idle
715 <        final int mode;            // lifo, fifo, or shared
655 >        int hint;                  // steal or signal hint (index)
656          int poolIndex;             // index of this queue in pool (or 0)
657 <        int stealHint;             // index of most recent known stealer
658 <        volatile int runState;     // 1: locked, -1: terminate; else 0
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660          volatile int base;         // index of next slot for poll
661          int top;                   // index of next slot for push
662          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 +        final ForkJoinPool pool;   // the containing pool (may be null)
664          final ForkJoinWorkerThread owner; // owning thread or null if shared
665          volatile Thread parker;    // == owner during call to park; else null
666 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667          ForkJoinTask<?> currentSteal; // current non-local task being executed
726        // Heuristic padding to ameliorate unfortunate memory placements
727        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
668  
669 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675              this.owner = owner;
676              this.mode = mode;
677 +            this.seed = seed;
678              // Place indices in the center of array (that is not yet allocated)
679              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680          }
681  
682          /**
683 <         * Returns number of tasks in the queue.
683 >         * Returns the approximate number of tasks in the queue.
684           */
685          final int queueSize() {
686 <            int n = base - top; // non-owner callers must read base first
687 <            return (n >= 0) ? 0 : -n;
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689 >
690 >       /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704          }
705  
706          /**
707 <         * Pushes a task. Call only by owner in unshared queues.
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709           *
710           * @param task the task. Caller must ensure non-null.
748         * @param p if non-null, pool to signal if necessary
711           * @throw RejectedExecutionException if array cannot be resized
712           */
713 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
714 <            ForkJoinTask<?>[] a;
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715              int s = top, m, n;
716              if ((a = array) != null) {    // ignore if queue removed
717 <                U.putOrderedObject
718 <                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719                  if ((n = (top = s + 1) - base) <= 2) {
720 <                    if (p != null)
721 <                        p.signalWork();
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722                  }
723                  else if (n >= m)
724 <                    growArray(true);
724 >                    growArray();
725 >            }
726 >        }
727 >
728 >       /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752              }
753 +            return a;
754          }
755  
756          /**
757 <         * Pushes a task if lock is free and array is either big
758 <         * enough or can be resized to be big enough.
769 <         *
770 <         * @param task the task. Caller must ensure non-null.
771 <         * @return true if submitted
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759           */
760 <        final boolean trySharedPush(ForkJoinTask<?> task) {
761 <            boolean submitted = false;
762 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
763 <                ForkJoinTask<?>[] a = array;
764 <                int s = top, n = s - base;
765 <                try {
766 <                    if ((a != null && n < a.length - 1) ||
767 <                        (a = growArray(false)) != null) { // must presize
768 <                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
769 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
783 <                        top = s + 1;
784 <                        submitted = true;
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770                      }
786                } finally {
787                    runState = 0;                         // unlock
771                  }
772              }
773 <            return submitted;
773 >            return null;
774          }
775  
776          /**
777 <         * Takes next task, if one exists, in FIFO order.
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780           */
781 <        final ForkJoinTask<?> poll() {
782 <            ForkJoinTask<?>[] a; int b, i;
783 <            while ((b = base) - top < 0 && (a = array) != null &&
784 <                   (i = (a.length - 1) & b) >= 0) {
785 <                int j = (i << ASHIFT) + ABASE;
786 <                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
802 <                if (t != null && base == b &&
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 >                    base == b &&
787                      U.compareAndSwapObject(a, j, t, null)) {
788                      base = b + 1;
789                      return t;
# Line 809 | Line 793 | public class ForkJoinPool extends Abstra
793          }
794  
795          /**
796 <         * Takes next task, if one exists, in LIFO order.
813 <         * Call only by owner in unshared queues.
796 >         * Takes next task, if one exists, in FIFO order.
797           */
798 <        final ForkJoinTask<?> pop() {
799 <            ForkJoinTask<?> t; int m;
800 <            ForkJoinTask<?>[] a = array;
801 <            if (a != null && (m = a.length - 1) >= 0) {
802 <                for (int s; (s = top - 1) - base >= 0;) {
803 <                    int j = ((m & s) << ASHIFT) + ABASE;
804 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
805 <                        break;
806 <                    if (U.compareAndSwapObject(a, j, t, null)) {
824 <                        top = s;
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807                          return t;
808                      }
809                  }
810 +                else if (base == b) {
811 +                    if (b + 1 == top)
812 +                        break;
813 +                    Thread.yield(); // wait for lagging update (very rare)
814 +                }
815              }
816              return null;
817          }
# Line 849 | Line 836 | public class ForkJoinPool extends Abstra
836          }
837  
838          /**
852         * Returns task at index b if b is current base of queue.
853         */
854        final ForkJoinTask<?> pollAt(int b) {
855            ForkJoinTask<?>[] a; int i;
856            ForkJoinTask<?> task = null;
857            if ((a = array) != null && (i = ((a.length - 1) & b)) >= 0) {
858                int j = (i << ASHIFT) + ABASE;
859                ForkJoinTask<?> t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
860                if (t != null && base == b &&
861                    U.compareAndSwapObject(a, j, t, null)) {
862                    base = b + 1;
863                    task = t;
864                }
865            }
866            return task;
867        }
868
869        /**
839           * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841           */
842          final boolean tryUnpush(ForkJoinTask<?> t) {
843              ForkJoinTask<?>[] a; int s;
# Line 881 | Line 851 | public class ForkJoinPool extends Abstra
851          }
852  
853          /**
854 <         * Polls the given task only if it is at the current base.
854 >         * Removes and cancels all known tasks, ignoring any exceptions.
855           */
856 <        final boolean pollFor(ForkJoinTask<?> task) {
857 <            ForkJoinTask<?>[] a; int b, i;
858 <            if ((b = base) - top < 0 && (a = array) != null &&
859 <                (i = (a.length - 1) & b) >= 0) {
860 <                int j = (i << ASHIFT) + ABASE;
861 <                if (U.getObjectVolatile(a, j) == task && base == b &&
862 <                    U.compareAndSwapObject(a, j, task, null)) {
863 <                    base = b + 1;
864 <                    return true;
856 >        final void cancelAll() {
857 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 >                ForkJoinTask.cancelIgnoringExceptions(t);
861 >        }
862 >
863 >        /**
864 >         * Computes next value for random probes.  Scans don't require
865 >         * a very high quality generator, but also not a crummy one.
866 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 >         * This is manually inlined in its usages in ForkJoinPool to
868 >         * avoid writes inside busy scan loops.
869 >         */
870 >        final int nextSeed() {
871 >            int r = seed;
872 >            r ^= r << 13;
873 >            r ^= r >>> 17;
874 >            return seed = r ^= r << 5;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893                  }
894              }
897            return false;
895          }
896  
897          /**
898 <         * If present, removes from queue and executes the given task, or
899 <         * any other cancelled task. Returns (true) immediately on any CAS
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908           * or consistency check failure so caller can retry.
909           *
910 <         * @return false if no progress can be made
910 >         * @return false if no progress can be made, else true;
911           */
912          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 <            boolean removed = false, empty = true, progress = true;
913 >            boolean stat = true, removed = false, empty = true;
914              ForkJoinTask<?>[] a; int m, s, b, n;
915              if ((a = array) != null && (m = a.length - 1) >= 0 &&
916                  (n = (s = top) - (b = base)) > 0) {
# Line 935 | Line 940 | public class ForkJoinPool extends Abstra
940                      }
941                      if (--n == 0) {
942                          if (!empty && base == b)
943 <                            progress = false;
943 >                            stat = false;
944                          break;
945                      }
946                  }
947              }
948              if (removed)
949                  task.doExec();
950 <            return progress;
950 >            return stat;
951          }
952  
953          /**
954 <         * Initializes or doubles the capacity of array. Call either
955 <         * by owner or with lock held -- it is OK for base, but not
951 <         * top, to move while resizings are in progress.
952 <         *
953 <         * @param rejectOnFailure if true, throw exception if capacity
954 <         * exceeded (relayed ultimately to user); else return null.
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation
956           */
957 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
958 <            ForkJoinTask<?>[] oldA = array;
959 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
960 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
961 <                int oldMask, t, b;
962 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
963 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
964 <                    (t = top) - (b = base) > 0) {
965 <                    int mask = size - 1;
966 <                    do {
967 <                        ForkJoinTask<?> x;
968 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
969 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
970 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
971 <                        if (x != null &&
972 <                            U.compareAndSwapObject(oldA, oldj, x, null))
973 <                            U.putObjectVolatile(a, j, x);
974 <                    } while (++b != t);
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971 >                        }
972 >                        else
973 >                            break; // restart
974 >                    }
975 >                    if ((r = r.completer) == null)
976 >                        break outer; // not part of root computation
977                  }
975                return a;
976            }
977            else if (!rejectOnFailure)
978                return null;
979            else
980                throw new RejectedExecutionException("Queue capacity exceeded");
981        }
982
983        /**
984         * Removes and cancels all known tasks, ignoring any exceptions.
985         */
986        final void cancelAll() {
987            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
988            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
989            for (ForkJoinTask<?> t; (t = poll()) != null; )
990                ForkJoinTask.cancelIgnoringExceptions(t);
991        }
992
993        // Execution methods
994
995        /**
996         * Removes and runs tasks until empty, using local mode
997         * ordering.
998         */
999        final void runLocalTasks() {
1000            if (base - top < 0) {
1001                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
1002                    t.doExec();
978              }
979 +            return false;
980          }
981  
982          /**
983           * Executes a top-level task and any local tasks remaining
984           * after execution.
1009         *
1010         * @return true unless terminating
985           */
986 <        final boolean runTask(ForkJoinTask<?> t) {
1013 <            boolean alive = true;
986 >        final void runTask(ForkJoinTask<?> t) {
987              if (t != null) {
988 <                currentSteal = t;
1016 <                t.doExec();
1017 <                runLocalTasks();
1018 <                ++nsteals;
988 >                (currentSteal = t).doExec();
989                  currentSteal = null;
990 +                ++nsteals;
991 +                if (base - top < 0) {       // process remaining local tasks
992 +                    if (mode == 0)
993 +                        popAndExecAll();
994 +                    else
995 +                        pollAndExecAll();
996 +                }
997              }
1021            else if (runState < 0)            // terminating
1022                alive = false;
1023            return alive;
998          }
999  
1000          /**
# Line 1029 | Line 1003 | public class ForkJoinPool extends Abstra
1003          final void runSubtask(ForkJoinTask<?> t) {
1004              if (t != null) {
1005                  ForkJoinTask<?> ps = currentSteal;
1006 <                currentSteal = t;
1033 <                t.doExec();
1006 >                (currentSteal = t).doExec();
1007                  currentSteal = ps;
1008              }
1009          }
1010  
1011          /**
1012 <         * Computes next value for random probes.  Scans don't require
1040 <         * a very high quality generator, but also not a crummy one.
1041 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
1042 <         * This is manually inlined in several usages in ForkJoinPool
1043 <         * to avoid writes inside busy scan loops.
1012 >         * Returns true if owned and not known to be blocked.
1013           */
1014 <        final int nextSeed() {
1015 <            int r = seed;
1016 <            r ^= r << 13;
1017 <            r ^= r >>> 17;
1018 <            r ^= r << 5;
1019 <            return seed = r;
1014 >        final boolean isApparentlyUnblocked() {
1015 >            Thread wt; Thread.State s;
1016 >            return (eventCount >= 0 &&
1017 >                    (wt = owner) != null &&
1018 >                    (s = wt.getState()) != Thread.State.BLOCKED &&
1019 >                    s != Thread.State.WAITING &&
1020 >                    s != Thread.State.TIMED_WAITING);
1021          }
1022  
1023          // Unsafe mechanics
1024          private static final sun.misc.Unsafe U;
1025 <        private static final long RUNSTATE;
1025 >        private static final long QLOCK;
1026          private static final int ABASE;
1027          private static final int ASHIFT;
1028          static {
# Line 1061 | Line 1031 | public class ForkJoinPool extends Abstra
1031                  U = getUnsafe();
1032                  Class<?> k = WorkQueue.class;
1033                  Class<?> ak = ForkJoinTask[].class;
1034 <                RUNSTATE = U.objectFieldOffset
1035 <                    (k.getDeclaredField("runState"));
1034 >                QLOCK = U.objectFieldOffset
1035 >                    (k.getDeclaredField("qlock"));
1036                  ABASE = U.arrayBaseOffset(ak);
1037                  s = U.arrayIndexScale(ak);
1038              } catch (Exception e) {
# Line 1074 | Line 1044 | public class ForkJoinPool extends Abstra
1044          }
1045      }
1046  
1047 +    // static fields (initialized in static initializer below)
1048 +
1049      /**
1050 <     * Class for artificial tasks that are used to replace the target
1051 <     * of local joins if they are removed from an interior queue slot
1080 <     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
1081 <     * actually do anything beyond having a unique identity.
1050 >     * Creates a new ForkJoinWorkerThread. This factory is used unless
1051 >     * overridden in ForkJoinPool constructors.
1052       */
1053 <    static final class EmptyTask extends ForkJoinTask<Void> {
1054 <        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
1085 <        public Void getRawResult() { return null; }
1086 <        public void setRawResult(Void x) {}
1087 <        public boolean exec() { return true; }
1088 <    }
1053 >    public static final ForkJoinWorkerThreadFactory
1054 >        defaultForkJoinWorkerThreadFactory;
1055  
1056      /**
1057 <     * Per-thread records for (typically non-FJ) threads that submit
1058 <     * to pools. Cureently holds only psuedo-random seed / index that
1059 <     * is used to choose submission queues in method doSubmit. In the
1060 <     * future, this may incorporate a means to implement different
1061 <     * task rejection and resubmission policies.
1057 >     * Per-thread submission bookkeeping. Shared across all pools
1058 >     * to reduce ThreadLocal pollution and because random motion
1059 >     * to avoid contention in one pool is likely to hold for others.
1060 >     * Lazily initialized on first submission (but null-checked
1061 >     * in other contexts to avoid unnecessary initialization).
1062       */
1063 <    static final class Submitter {
1098 <        int seed; // seed for random submission queue selection
1063 >    static final ThreadLocal<Submitter> submitters;
1064  
1065 <        // Heuristic padding to ameliorate unfortunate memory placements
1066 <        int p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pa, pb, pc, pd, pe;
1065 >    /**
1066 >     * Permission required for callers of methods that may start or
1067 >     * kill threads.
1068 >     */
1069 >    private static final RuntimePermission modifyThreadPermission;
1070  
1071 <        Submitter() {
1072 <            // Use identityHashCode, forced negative, for seed
1073 <            seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1074 <        }
1071 >    /**
1072 >     * Common (static) pool. Non-null for public use unless a static
1073 >     * construction exception, but internal usages null-check on use
1074 >     * to paranoically avoid potential initialization circularities
1075 >     * as well as to simplify generated code.
1076 >     */
1077 >    static final ForkJoinPool common;
1078  
1079 <        /**
1080 <         * Computes next value for random probes.  Like method
1081 <         * WorkQueue.nextSeed, this is manually inlined in several
1082 <         * usages to avoid writes inside busy loops.
1083 <         */
1084 <        final int nextSeed() {
1085 <            int r = seed;
1086 <            r ^= r << 13;
1087 <            r ^= r >>> 17;
1117 <            return seed = r ^= r << 5;
1118 <        }
1119 <    }
1079 >    /**
1080 >     * Common pool parallelism. Must equal common.parallelism.
1081 >     */
1082 >    static final int commonParallelism;
1083 >
1084 >    /**
1085 >     * Sequence number for creating workerNamePrefix.
1086 >     */
1087 >    private static int poolNumberSequence;
1088  
1089 <    /** ThreadLocal class for Submitters */
1090 <    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1091 <        public Submitter initialValue() { return new Submitter(); }
1089 >    /**
1090 >     * Returns the next sequence number. We don't expect this to
1091 >     * ever contend, so use simple builtin sync.
1092 >     */
1093 >    private static final synchronized int nextPoolId() {
1094 >        return ++poolNumberSequence;
1095      }
1096  
1097 +    // static constants
1098 +
1099      /**
1100 <     * Per-thread submission bookeeping. Shared across all pools
1101 <     * to reduce ThreadLocal pollution and because random motion
1102 <     * to avoid contention in one pool is likely to hold for others.
1100 >     * Initial timeout value (in nanoseconds) for the thread
1101 >     * triggering quiescence to park waiting for new work. On timeout,
1102 >     * the thread will instead try to shrink the number of
1103 >     * workers. The value should be large enough to avoid overly
1104 >     * aggressive shrinkage during most transient stalls (long GCs
1105 >     * etc).
1106       */
1107 <    static final ThreadSubmitter submitters = new ThreadSubmitter();
1107 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1108  
1109      /**
1110 <     * Top-level runloop for workers
1110 >     * Timeout value when there are more threads than parallelism level
1111       */
1112 <    final void runWorker(ForkJoinWorkerThread wt) {
1137 <        // Initialize queue array and seed in this thread
1138 <        WorkQueue w = wt.workQueue;
1139 <        w.growArray(false);
1140 <        // Same initial hash as Submitters
1141 <        w.seed = System.identityHashCode(Thread.currentThread()) | (1 << 31);
1112 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1113  
1114 <        do {} while (w.runTask(scan(w)));
1115 <    }
1114 >    /**
1115 >     * Tolerance for idle timeouts, to cope with timer undershoots
1116 >     */
1117 >    private static final long TIMEOUT_SLOP = 2000000L;
1118  
1119 <    // Creating, registering and deregistering workers
1119 >    /**
1120 >     * The maximum stolen->joining link depth allowed in method
1121 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1122 >     * chains are unbounded, but we use a fixed constant to avoid
1123 >     * (otherwise unchecked) cycles and to bound staleness of
1124 >     * traversal parameters at the expense of sometimes blocking when
1125 >     * we could be helping.
1126 >     */
1127 >    private static final int MAX_HELP = 64;
1128  
1129      /**
1130 <     * Tries to create and start a worker
1130 >     * Increment for seed generators. See class ThreadLocal for
1131 >     * explanation.
1132       */
1133 <    private void addWorker() {
1134 <        Throwable ex = null;
1135 <        ForkJoinWorkerThread w = null;
1136 <        try {
1137 <            if ((w = factory.newThread(this)) != null) {
1138 <                w.start();
1139 <                return;
1133 >    private static final int SEED_INCREMENT = 0x61c88647;
1134 >
1135 >    /**
1136 >     * Bits and masks for control variables
1137 >     *
1138 >     * Field ctl is a long packed with:
1139 >     * AC: Number of active running workers minus target parallelism (16 bits)
1140 >     * TC: Number of total workers minus target parallelism (16 bits)
1141 >     * ST: true if pool is terminating (1 bit)
1142 >     * EC: the wait count of top waiting thread (15 bits)
1143 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144 >     *
1145 >     * When convenient, we can extract the upper 32 bits of counts and
1146 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1147 >     * (int)ctl.  The ec field is never accessed alone, but always
1148 >     * together with id and st. The offsets of counts by the target
1149 >     * parallelism and the positionings of fields makes it possible to
1150 >     * perform the most common checks via sign tests of fields: When
1151 >     * ac is negative, there are not enough active workers, when tc is
1152 >     * negative, there are not enough total workers, and when e is
1153 >     * negative, the pool is terminating.  To deal with these possibly
1154 >     * negative fields, we use casts in and out of "short" and/or
1155 >     * signed shifts to maintain signedness.
1156 >     *
1157 >     * When a thread is queued (inactivated), its eventCount field is
1158 >     * set negative, which is the only way to tell if a worker is
1159 >     * prevented from executing tasks, even though it must continue to
1160 >     * scan for them to avoid queuing races. Note however that
1161 >     * eventCount updates lag releases so usage requires care.
1162 >     *
1163 >     * Field plock is an int packed with:
1164 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 >     *
1168 >     * The sequence number enables simple consistency checks:
1169 >     * Staleness of read-only operations on the workQueues array can
1170 >     * be checked by comparing plock before vs after the reads.
1171 >     */
1172 >
1173 >    // bit positions/shifts for fields
1174 >    private static final int  AC_SHIFT   = 48;
1175 >    private static final int  TC_SHIFT   = 32;
1176 >    private static final int  ST_SHIFT   = 31;
1177 >    private static final int  EC_SHIFT   = 16;
1178 >
1179 >    // bounds
1180 >    private static final int  SMASK      = 0xffff;  // short bits
1181 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1182 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1183 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1184 >    private static final int  SHORT_SIGN = 1 << 15;
1185 >    private static final int  INT_SIGN   = 1 << 31;
1186 >
1187 >    // masks
1188 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1189 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1190 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1191 >
1192 >    // units for incrementing and decrementing
1193 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1194 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1195 >
1196 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1197 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1198 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1199 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1200 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1201 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1202 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1203 >
1204 >    // masks and units for dealing with e = (int)ctl
1205 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1206 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1207 >
1208 >    // plock bits
1209 >    private static final int SHUTDOWN    = 1 << 31;
1210 >    private static final int PL_LOCK     = 2;
1211 >    private static final int PL_SIGNAL   = 1;
1212 >    private static final int PL_SPINS    = 1 << 8;
1213 >
1214 >    // access mode for WorkQueue
1215 >    static final int LIFO_QUEUE          =  0;
1216 >    static final int FIFO_QUEUE          =  1;
1217 >    static final int SHARED_QUEUE        = -1;
1218 >
1219 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1220 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1221 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1222 >
1223 >    // Instance fields
1224 >
1225 >    /*
1226 >     * Field layout of this class tends to matter more than one would
1227 >     * like. Runtime layout order is only loosely related to
1228 >     * declaration order and may differ across JVMs, but the following
1229 >     * empirically works OK on current JVMs.
1230 >     */
1231 >
1232 >    // Heuristic padding to ameliorate unfortunate memory placements
1233 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234 >
1235 >    volatile long stealCount;                  // collects worker counts
1236 >    volatile long ctl;                         // main pool control
1237 >    volatile int plock;                        // shutdown status and seqLock
1238 >    volatile int indexSeed;                    // worker/submitter index seed
1239 >    final int config;                          // mode and parallelism level
1240 >    WorkQueue[] workQueues;                    // main registry
1241 >    final ForkJoinWorkerThreadFactory factory;
1242 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 >    final String workerNamePrefix;             // to create worker name string
1244 >
1245 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246 >    volatile Object pad18, pad19, pad1a, pad1b;
1247 >
1248 >    /*
1249 >     * Acquires the plock lock to protect worker array and related
1250 >     * updates. This method is called only if an initial CAS on plock
1251 >     * fails. This acts as a spinlock for normal cases, but falls back
1252 >     * to builtin monitor to block when (rarely) needed. This would be
1253 >     * a terrible idea for a highly contended lock, but works fine as
1254 >     * a more conservative alternative to a pure spinlock.
1255 >     */
1256 >    private int acquirePlock() {
1257 >        int spins = PL_SPINS, r = 0, ps, nps;
1258 >        for (;;) {
1259 >            if (((ps = plock) & PL_LOCK) == 0 &&
1260 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261 >                return nps;
1262 >            else if (r == 0) { // randomize spins if possible
1263 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264 >                if ((t instanceof ForkJoinWorkerThread) &&
1265 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266 >                    r = w.seed;
1267 >                else if ((z = submitters.get()) != null)
1268 >                    r = z.seed;
1269 >                else
1270 >                    r = 1;
1271 >            }
1272 >            else if (spins >= 0) {
1273 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274 >                if (r >= 0)
1275 >                    --spins;
1276 >            }
1277 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 >                synchronized (this) {
1279 >                    if ((plock & PL_SIGNAL) != 0) {
1280 >                        try {
1281 >                            wait();
1282 >                        } catch (InterruptedException ie) {
1283 >                            try {
1284 >                                Thread.currentThread().interrupt();
1285 >                            } catch (SecurityException ignore) {
1286 >                            }
1287 >                        }
1288 >                    }
1289 >                    else
1290 >                        notifyAll();
1291 >                }
1292              }
1159        } catch (Throwable e) {
1160            ex = e;
1293          }
1162        deregisterWorker(w, ex);
1294      }
1295  
1296      /**
1297 <     * Callback from ForkJoinWorkerThread constructor to assign a
1298 <     * public name. This must be separate from registerWorker because
1299 <     * it is called during the "super" constructor call in
1300 <     * ForkJoinWorkerThread.
1297 >     * Unlocks and signals any thread waiting for plock. Called only
1298 >     * when CAS of seq value for unlock fails.
1299 >     */
1300 >    private void releasePlock(int ps) {
1301 >        plock = ps;
1302 >        synchronized (this) { notifyAll(); }
1303 >    }
1304 >
1305 >    /**
1306 >     * Tries to create and start one worker if fewer than target
1307 >     * parallelism level exist. Adjusts counts etc on failure.
1308       */
1309 <    final String nextWorkerName() {
1310 <        return workerNamePrefix.concat
1311 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1309 >    private void tryAddWorker() {
1310 >        long c; int u;
1311 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1312 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1313 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1314 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1315 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1316 >                ForkJoinWorkerThreadFactory fac;
1317 >                Throwable ex = null;
1318 >                ForkJoinWorkerThread wt = null;
1319 >                try {
1320 >                    if ((fac = factory) != null &&
1321 >                        (wt = fac.newThread(this)) != null) {
1322 >                        wt.start();
1323 >                        break;
1324 >                    }
1325 >                } catch (Throwable e) {
1326 >                    ex = e;
1327 >                }
1328 >                deregisterWorker(wt, ex);
1329 >                break;
1330 >            }
1331 >        }
1332      }
1333  
1334 +    //  Registering and deregistering workers
1335 +
1336      /**
1337 <     * Callback from ForkJoinWorkerThread constructor to establish and
1338 <     * record its WorkQueue.
1337 >     * Callback from ForkJoinWorkerThread to establish and record its
1338 >     * WorkQueue. To avoid scanning bias due to packing entries in
1339 >     * front of the workQueues array, we treat the array as a simple
1340 >     * power-of-two hash table using per-thread seed as hash,
1341 >     * expanding as needed.
1342       *
1343       * @param wt the worker thread
1344 +     * @return the worker's queue
1345       */
1346 <    final void registerWorker(ForkJoinWorkerThread wt) {
1347 <        WorkQueue w = wt.workQueue;
1348 <        ReentrantLock lock = this.lock;
1349 <        lock.lock();
1346 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1347 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1348 >        wt.setDaemon(true);
1349 >        if ((handler = ueh) != null)
1350 >            wt.setUncaughtExceptionHandler(handler);
1351 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1352 >                                          s += SEED_INCREMENT) ||
1353 >                     s == 0); // skip 0
1354 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1355 >        if (((ps = plock) & PL_LOCK) != 0 ||
1356 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357 >            ps = acquirePlock();
1358 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1359          try {
1360 <            int k = nextPoolIndex;
1361 <            WorkQueue[] ws = workQueues;
1362 <            if (ws != null) {                       // ignore on shutdown
1363 <                int n = ws.length;
1364 <                if (k < 0 || (k & 1) == 0 || k >= n || ws[k] != null) {
1365 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1366 <                        ;                           // workers are at odd indices
1367 <                    if (k >= n)                     // resize
1368 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1369 <                }
1370 <                w.poolIndex = k;
1371 <                w.eventCount = ~(k >>> 1) & SMASK;  // Set up wait count
1372 <                ws[k] = w;                          // record worker
1373 <                nextPoolIndex = k + 2;
1374 <                int rs = runState;
1375 <                int m = rs & SMASK;                 // recalculate runState mask
1203 <                if (k > m)
1204 <                    m = (m << 1) + 1;
1205 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1360 >            if ((ws = workQueues) != null) {    // skip if shutting down
1361 >                int n = ws.length, m = n - 1;
1362 >                int r = (s << 1) | 1;           // use odd-numbered indices
1363 >                if (ws[r &= m] != null) {       // collision
1364 >                    int probes = 0;             // step by approx half size
1365 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1366 >                    while (ws[r = (r + step) & m] != null) {
1367 >                        if (++probes >= n) {
1368 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1369 >                            m = n - 1;
1370 >                            probes = 0;
1371 >                        }
1372 >                    }
1373 >                }
1374 >                w.eventCount = w.poolIndex = r; // volatile write orders
1375 >                ws[r] = w;
1376              }
1377          } finally {
1378 <            lock.unlock();
1378 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1379 >                releasePlock(nps);
1380          }
1381 +        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1382 +        return w;
1383      }
1384  
1385      /**
1386 <     * Final callback from terminating worker, as well as failure to
1387 <     * construct or start a worker in addWorker.  Removes record of
1388 <     * worker from array, and adjusts counts. If pool is shutting
1389 <     * down, tries to complete termination.
1386 >     * Final callback from terminating worker, as well as upon failure
1387 >     * to construct or start a worker.  Removes record of worker from
1388 >     * array, and adjusts counts. If pool is shutting down, tries to
1389 >     * complete termination.
1390       *
1391 <     * @param wt the worker thread or null if addWorker failed
1391 >     * @param wt the worker thread or null if construction failed
1392       * @param ex the exception causing failure, or null if none
1393       */
1394      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1395          WorkQueue w = null;
1396          if (wt != null && (w = wt.workQueue) != null) {
1397 <            w.runState = -1;                // ensure runState is set
1398 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1399 <            int idx = w.poolIndex;
1400 <            ReentrantLock lock = this.lock;
1401 <            lock.lock();
1402 <            try {                           // remove record from array
1397 >            int ps;
1398 >            w.qlock = -1;                // ensure set
1399 >            long ns = w.nsteals, sc;     // collect steal count
1400 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1401 >                                               sc = stealCount, sc + ns));
1402 >            if (((ps = plock) & PL_LOCK) != 0 ||
1403 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1404 >                ps = acquirePlock();
1405 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1406 >            try {
1407 >                int idx = w.poolIndex;
1408                  WorkQueue[] ws = workQueues;
1409                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1410 <                    ws[nextPoolIndex = idx] = null;
1410 >                    ws[idx] = null;
1411              } finally {
1412 <                lock.unlock();
1412 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1413 >                    releasePlock(nps);
1414              }
1415          }
1416  
1417 <        long c;                             // adjust ctl counts
1417 >        long c;                          // adjust ctl counts
1418          do {} while (!U.compareAndSwapLong
1419                       (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1420                                             ((c - TC_UNIT) & TC_MASK) |
1421                                             (c & ~(AC_MASK|TC_MASK)))));
1422  
1423 <        if (!tryTerminate(false) && w != null) {
1424 <            w.cancelAll();                  // cancel remaining tasks
1425 <            if (w.array != null)            // suppress signal if never ran
1426 <                signalWork();               // wake up or create replacement
1423 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1424 >            w.cancelAll();               // cancel remaining tasks
1425 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1426 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1427 >                if (e > 0) {             // activate or create replacement
1428 >                    if ((ws = workQueues) == null ||
1429 >                        (i = e & SMASK) >= ws.length ||
1430 >                        (v = ws[i]) == null)
1431 >                        break;
1432 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1433 >                               ((long)(u + UAC_UNIT) << 32));
1434 >                    if (v.eventCount != (e | INT_SIGN))
1435 >                        break;
1436 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1437 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1438 >                        if ((p = v.parker) != null)
1439 >                            U.unpark(p);
1440 >                        break;
1441 >                    }
1442 >                }
1443 >                else {
1444 >                    if ((short)u < 0)
1445 >                        tryAddWorker();
1446 >                    break;
1447 >                }
1448 >            }
1449          }
1450 +        if (ex == null)                     // help clean refs on way out
1451 +            ForkJoinTask.helpExpungeStaleExceptions();
1452 +        else                                // rethrow
1453 +            ForkJoinTask.rethrow(ex);
1454 +    }
1455  
1456 <        if (ex != null)                     // rethrow
1457 <            U.throwException(ex);
1456 >    // Submissions
1457 >
1458 >    /**
1459 >     * Unless shutting down, adds the given task to a submission queue
1460 >     * at submitter's current queue index (modulo submission
1461 >     * range). Only the most common path is directly handled in this
1462 >     * method. All others are relayed to fullExternalPush.
1463 >     *
1464 >     * @param task the task. Caller must ensure non-null.
1465 >     */
1466 >    final void externalPush(ForkJoinTask<?> task) {
1467 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1468 >        if ((z = submitters.get()) != null && plock > 0 &&
1469 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1470 >            (q = ws[m & z.seed & SQMASK]) != null &&
1471 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1472 >            int b = q.base, s = q.top, n, an;
1473 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1474 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1475 >                U.putOrderedObject(a, j, task);
1476 >                q.top = s + 1;                     // push on to deque
1477 >                q.qlock = 0;
1478 >                if (n <= 2)
1479 >                    signalWork(q);
1480 >                return;
1481 >            }
1482 >            q.qlock = 0;
1483 >        }
1484 >        fullExternalPush(task);
1485      }
1486  
1487      /**
1488 <     * Tries to add and register a new queue at the given index.
1489 <     *
1490 <     * @param idx the workQueues array index to register the queue
1491 <     * @return the queue, or null if could not add because could
1492 <     * not acquire lock or idx is unusable
1493 <     */
1494 <    private WorkQueue tryAddSharedQueue(int idx) {
1495 <        WorkQueue q = null;
1496 <        ReentrantLock lock = this.lock;
1497 <        if (idx >= 0 && (idx & 1) == 0 && !lock.isLocked()) {
1498 <            // create queue outside of lock but only if apparently free
1499 <            WorkQueue nq = new WorkQueue(null, SHARED_QUEUE);
1500 <            if (lock.tryLock()) {
1501 <                try {
1502 <                    WorkQueue[] ws = workQueues;
1503 <                    if (ws != null && idx < ws.length) {
1504 <                        if ((q = ws[idx]) == null) {
1505 <                            int rs;         // update runState seq
1506 <                            ws[idx] = q = nq;
1507 <                            runState = (((rs = runState) & SHUTDOWN) |
1508 <                                        ((rs + RS_SEQ) & ~SHUTDOWN));
1488 >     * Full version of externalPush. This method is called, among
1489 >     * other times, upon the first submission of the first task to the
1490 >     * pool, so must perform secondary initialization.  It also
1491 >     * detects first submission by an external thread by looking up
1492 >     * its ThreadLocal, and creates a new shared queue if the one at
1493 >     * index if empty or contended. The plock lock body must be
1494 >     * exception-free (so no try/finally) so we optimistically
1495 >     * allocate new queues outside the lock and throw them away if
1496 >     * (very rarely) not needed.
1497 >     *
1498 >     * Secondary initialization occurs when plock is zero, to create
1499 >     * workQueue array and set plock to a valid value.  This lock body
1500 >     * must also be exception-free. Because the plock seq value can
1501 >     * eventually wrap around zero, this method harmlessly fails to
1502 >     * reinitialize if workQueues exists, while still advancing plock.
1503 >     */
1504 >    private void fullExternalPush(ForkJoinTask<?> task) {
1505 >        int r = 0; // random index seed
1506 >        for (Submitter z = submitters.get();;) {
1507 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1508 >            if (z == null) {
1509 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1510 >                                        r += SEED_INCREMENT) && r != 0)
1511 >                    submitters.set(z = new Submitter(r));
1512 >            }
1513 >            else if (r == 0) {                  // move to a different index
1514 >                r = z.seed;
1515 >                r ^= r << 13;                   // same xorshift as WorkQueues
1516 >                r ^= r >>> 17;
1517 >                z.seed = r ^ (r << 5);
1518 >            }
1519 >            else if ((ps = plock) < 0)
1520 >                throw new RejectedExecutionException();
1521 >            else if (ps == 0 || (ws = workQueues) == null ||
1522 >                     (m = ws.length - 1) < 0) { // initialize workQueues
1523 >                int p = config & SMASK;         // find power of two table size
1524 >                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1525 >                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1526 >                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1527 >                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1528 >                                   new WorkQueue[n] : null);
1529 >                if (((ps = plock) & PL_LOCK) != 0 ||
1530 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1531 >                    ps = acquirePlock();
1532 >                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1533 >                    workQueues = nws;
1534 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1535 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1536 >                    releasePlock(nps);
1537 >            }
1538 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1539 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1540 >                    ForkJoinTask<?>[] a = q.array;
1541 >                    int s = q.top;
1542 >                    boolean submitted = false;
1543 >                    try {                      // locked version of push
1544 >                        if ((a != null && a.length > s + 1 - q.base) ||
1545 >                            (a = q.growArray()) != null) {   // must presize
1546 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1547 >                            U.putOrderedObject(a, j, task);
1548 >                            q.top = s + 1;
1549 >                            submitted = true;
1550                          }
1551 +                    } finally {
1552 +                        q.qlock = 0;  // unlock
1553 +                    }
1554 +                    if (submitted) {
1555 +                        signalWork(q);
1556 +                        return;
1557                      }
1278                } finally {
1279                    lock.unlock();
1558                  }
1559 +                r = 0; // move on failure
1560 +            }
1561 +            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1562 +                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1563 +                if (((ps = plock) & PL_LOCK) != 0 ||
1564 +                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1565 +                    ps = acquirePlock();
1566 +                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1567 +                    ws[k] = q;
1568 +                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1569 +                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1570 +                    releasePlock(nps);
1571              }
1572 +            else
1573 +                r = 0; // try elsewhere while lock held
1574          }
1283        return q;
1575      }
1576  
1577      // Maintaining ctl counts
# Line 1294 | Line 1585 | public class ForkJoinPool extends Abstra
1585      }
1586  
1587      /**
1588 <     * Activates or creates a worker.
1588 >     * Tries to create or activate a worker if too few are active.
1589 >     *
1590 >     * @param q the (non-null) queue holding tasks to be signalled
1591       */
1592 <    final void signalWork() {
1593 <        /*
1594 <         * The while condition is true if: (there is are too few total
1595 <         * workers OR there is at least one waiter) AND (there are too
1596 <         * few active workers OR the pool is terminating).  The value
1597 <         * of e distinguishes the remaining cases: zero (no waiters)
1598 <         * for create, negative if terminating (in which case do
1599 <         * nothing), else release a waiter. The secondary checks for
1600 <         * release (non-null array etc) can fail if the pool begins
1601 <         * terminating after the test, and don't impose any added cost
1602 <         * because JVMs must perform null and bounds checks anyway.
1603 <         */
1604 <        long c; int e, u;
1605 <        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
1606 <                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN)) {
1607 <            WorkQueue[] ws = workQueues; int i; WorkQueue w; Thread p;
1608 <            if (e == 0) {                    // add a new worker
1609 <                if (U.compareAndSwapLong
1317 <                    (this, CTL, c, (long)(((u + UTC_UNIT) & UTC_MASK) |
1318 <                                          ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
1319 <                    addWorker();
1320 <                    break;
1592 >    final void signalWork(WorkQueue q) {
1593 >        int hint = q.poolIndex;
1594 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1595 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1596 >            if ((e = (int)c) > 0) {
1597 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1598 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1599 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1600 >                               ((long)(u + UAC_UNIT) << 32));
1601 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1602 >                        w.hint = hint;
1603 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1604 >                        if ((p = w.parker) != null)
1605 >                            U.unpark(p);
1606 >                        break;
1607 >                    }
1608 >                    if (q.top - q.base <= 0)
1609 >                        break;
1610                  }
1611 <            }
1323 <            else if (e > 0 && ws != null &&
1324 <                     (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1325 <                     (w = ws[i]) != null &&
1326 <                     w.eventCount == (e | INT_SIGN)) {
1327 <                if (U.compareAndSwapLong
1328 <                    (this, CTL, c, (((long)(w.nextWait & E_MASK)) |
1329 <                                    ((long)(u + UAC_UNIT) << 32)))) {
1330 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1331 <                    if ((p = w.parker) != null)
1332 <                        U.unpark(p);         // release a waiting worker
1611 >                else
1612                      break;
1334                }
1613              }
1614 <            else
1614 >            else {
1615 >                if ((short)u < 0)
1616 >                    tryAddWorker();
1617                  break;
1338        }
1339    }
1340
1341    /**
1342     * Tries to decrement active count (sometimes implicitly) and
1343     * possibly release or create a compensating worker in preparation
1344     * for blocking. Fails on contention or termination.
1345     *
1346     * @return true if the caller can block, else should recheck and retry
1347     */
1348    final boolean tryCompensate() {
1349        WorkQueue[] ws; WorkQueue w; Thread p;
1350        int pc = parallelism, e, u, ac, tc, i;
1351        long c = ctl;
1352
1353        if ((e = (int)c) >= 0) {
1354            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1355                e != 0 && (ws = workQueues) != null &&
1356                (i = ((~e << 1) | 1) & SMASK) < ws.length &&
1357                (w = ws[i]) != null) {
1358                if (w.eventCount == (e | INT_SIGN) &&
1359                    U.compareAndSwapLong
1360                    (this, CTL, c, ((long)(w.nextWait & E_MASK) |
1361                                    (c & (AC_MASK|TC_MASK))))) {
1362                    w.eventCount = (e + E_SEQ) & E_MASK;
1363                    if ((p = w.parker) != null)
1364                        U.unpark(p);
1365                    return true;             // release an idle worker
1366                }
1367            }
1368            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1369                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1370                if (U.compareAndSwapLong(this, CTL, c, nc))
1371                    return true;             // no compensation needed
1372            }
1373            else if (tc + pc < MAX_ID) {
1374                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1375                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1376                    addWorker();
1377                    return true;             // create replacement
1378                }
1618              }
1619          }
1381        return false;
1620      }
1621  
1622 <    // Submissions
1622 >    // Scanning for tasks
1623  
1624      /**
1625 <     * Unless shutting down, adds the given task to a submission queue
1388 <     * at submitter's current queue index. If no queue exists at the
1389 <     * index, one is created unless pool lock is busy.  If the queue
1390 <     * and/or lock are busy, another index is randomly chosen.
1625 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1626       */
1627 <    private void doSubmit(ForkJoinTask<?> task) {
1628 <        if (task == null)
1629 <            throw new NullPointerException();
1395 <        Submitter s = submitters.get();
1396 <        for (int r = s.seed;;) {
1397 <            WorkQueue q; int k;
1398 <            int rs = runState, m = rs & SMASK;
1399 <            WorkQueue[] ws = workQueues;
1400 <            if (rs < 0 || ws == null)   // shutting down
1401 <                throw new RejectedExecutionException();
1402 <            if (ws.length > m &&        // k must be at index
1403 <                ((q = ws[k = (r << 1) & m]) != null ||
1404 <                 (q = tryAddSharedQueue(k)) != null) &&
1405 <                q.trySharedPush(task)) {
1406 <                signalWork();
1407 <                return;
1408 <            }
1409 <            r ^= r << 13;               // xorshift seed to new position
1410 <            r ^= r >>> 17;
1411 <            if (((s.seed = r ^= r << 5) & m) == 0)
1412 <                Thread.yield();         // occasionally yield if busy
1413 <        }
1627 >    final void runWorker(WorkQueue w) {
1628 >        w.growArray(); // allocate queue
1629 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1630      }
1631  
1416
1417    // Scanning for tasks
1418
1632      /**
1633       * Scans for and, if found, returns one task, else possibly
1634       * inactivates the worker. This method operates on single reads of
1635 <     * volatile state and is designed to be re-invoked continuously in
1636 <     * part because it returns upon detecting inconsistencies,
1635 >     * volatile state and is designed to be re-invoked continuously,
1636 >     * in part because it returns upon detecting inconsistencies,
1637       * contention, or state changes that indicate possible success on
1638       * re-invocation.
1639       *
1640 <     * The scan searches for tasks across queues, randomly selecting
1641 <     * the first #queues probes, favoring steals 2:1 over submissions
1642 <     * (by exploiting even/odd indexing), and then performing a
1643 <     * circular sweep of all queues.  The scan terminates upon either
1644 <     * finding a non-empty queue, or completing a full sweep. If the
1645 <     * worker is not inactivated, it takes and returns a task from
1646 <     * this queue.  On failure to find a task, we take one of the
1647 <     * following actions, after which the caller will retry calling
1648 <     * this method unless terminated.
1649 <     *
1650 <     * * If not a complete sweep, try to release a waiting worker.  If
1651 <     * the scan terminated because the worker is inactivated, then the
1439 <     * released worker will often be the calling worker, and it can
1440 <     * succeed obtaining a task on the next call. Or maybe it is
1441 <     * another worker, but with same net effect. Releasing in other
1442 <     * cases as well ensures that we have enough workers running.
1443 <     *
1444 <     * * If the caller has run a task since the last empty scan,
1445 <     * return (to allow rescan) if other workers are not also yet
1446 <     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1447 <     * ensure eventual inactivation, and occasional calls to
1448 <     * Thread.yield to help avoid interference with more useful
1449 <     * activities on the system.
1640 >     * The scan searches for tasks across queues (starting at a random
1641 >     * index, and relying on registerWorker to irregularly scatter
1642 >     * them within array to avoid bias), checking each at least twice.
1643 >     * The scan terminates upon either finding a non-empty queue, or
1644 >     * completing the sweep. If the worker is not inactivated, it
1645 >     * takes and returns a task from this queue. Otherwise, if not
1646 >     * activated, it signals workers (that may include itself) and
1647 >     * returns so caller can retry. Also returns for true if the
1648 >     * worker array may have changed during an empty scan.  On failure
1649 >     * to find a task, we take one of the following actions, after
1650 >     * which the caller will retry calling this method unless
1651 >     * terminated.
1652       *
1653       * * If pool is terminating, terminate the worker.
1654       *
1655       * * If not already enqueued, try to inactivate and enqueue the
1656 <     * worker on wait queue.
1656 >     * worker on wait queue. Or, if inactivating has caused the pool
1657 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1658 >     * pool.
1659 >     *
1660 >     * * If already enqueued and none of the above apply, possibly
1661 >     * park awaiting signal, else lingering to help scan and signal.
1662       *
1663 <     * * If already enqueued and none of the above apply, either park
1664 <     * awaiting signal, or if this is the most recent waiter and pool
1458 <     * is quiescent, relay to idleAwaitWork to check for termination
1459 <     * and possibly shrink pool.
1663 >     * * If a non-empty queue discovered or left as a hint,
1664 >     * help wake up other workers before return.
1665       *
1666       * @param w the worker (via its WorkQueue)
1667 <     * @return a task or null of none found
1667 >     * @return a task or null if none found
1668       */
1669      private final ForkJoinTask<?> scan(WorkQueue w) {
1670 <        boolean swept = false;                 // true after full empty scan
1671 <        WorkQueue[] ws;                        // volatile read order matters
1672 <        int r = w.seed, ec = w.eventCount;     // ec is negative if inactive
1673 <        int rs = runState, m = rs & SMASK;
1674 <        if ((ws = workQueues) != null && ws.length > m) {
1675 <            ForkJoinTask<?> task = null;
1676 <            for (int k = 0, j = -2 - m; ; ++j) {
1677 <                WorkQueue q; int b;
1678 <                if (j < 0) {                   // random probes while j negative
1679 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1680 <                }                              // worker (not submit) for odd j
1681 <                else                           // cyclic scan when j >= 0
1682 <                    k += (m >>> 1) | 1;        // step by half to reduce bias
1683 <
1684 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1685 <                    if (ec >= 0)
1686 <                        task = q.pollAt(b);    // steal
1687 <                    break;
1670 >        WorkQueue[] ws; int m;
1671 >        int ps = plock;                          // read plock before ws
1672 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1673 >            int ec = w.eventCount;               // ec is negative if inactive
1674 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1675 >            w.hint = -1;                         // update seed and clear hint
1676 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1677 >            do {
1678 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1679 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1680 >                    (a = q.array) != null) {     // probably nonempty
1681 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1682 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1683 >                        U.getObjectVolatile(a, i);
1684 >                    if (q.base == b && ec >= 0 && t != null &&
1685 >                        U.compareAndSwapObject(a, i, t, null)) {
1686 >                        if ((q.base = b + 1) - q.top < 0)
1687 >                            signalWork(q);
1688 >                        return t;                // taken
1689 >                    }
1690 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1691 >                        w.hint = (r + j) & m;    // help signal below
1692 >                        break;                   // cannot take
1693 >                    }
1694                  }
1695 <                else if (j > m) {
1696 <                    if (rs == runState)        // staleness check
1697 <                        swept = true;
1698 <                    break;
1695 >            } while (--j >= 0);
1696 >
1697 >            int h, e, ns; long c, sc; WorkQueue q;
1698 >            if ((ns = w.nsteals) != 0) {
1699 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1700 >                                         sc = stealCount, sc + ns))
1701 >                    w.nsteals = 0;               // collect steals and rescan
1702 >            }
1703 >            else if (plock != ps)                // consistency check
1704 >                ;                                // skip
1705 >            else if ((e = (int)(c = ctl)) < 0)
1706 >                w.qlock = -1;                    // pool is terminating
1707 >            else {
1708 >                if ((h = w.hint) < 0) {
1709 >                    if (ec >= 0) {               // try to enqueue/inactivate
1710 >                        long nc = (((long)ec |
1711 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1712 >                        w.nextWait = e;          // link and mark inactive
1713 >                        w.eventCount = ec | INT_SIGN;
1714 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1715 >                            w.eventCount = ec;   // unmark on CAS failure
1716 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1717 >                            idleAwaitWork(w, nc, c);
1718 >                    }
1719 >                    else if (w.eventCount < 0 && ctl == c) {
1720 >                        Thread wt = Thread.currentThread();
1721 >                        Thread.interrupted();    // clear status
1722 >                        U.putObject(wt, PARKBLOCKER, this);
1723 >                        w.parker = wt;           // emulate LockSupport.park
1724 >                        if (w.eventCount < 0)    // recheck
1725 >                            U.park(false, 0L);   // block
1726 >                        w.parker = null;
1727 >                        U.putObject(wt, PARKBLOCKER, null);
1728 >                    }
1729 >                }
1730 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1731 >                    (ws = workQueues) != null && h < ws.length &&
1732 >                    (q = ws[h]) != null) {      // signal others before retry
1733 >                    WorkQueue v; Thread p; int u, i, s;
1734 >                    for (int n = (config & SMASK) - 1;;) {
1735 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1736 >                        if (((s = idleCount - q.base + q.top) <= n &&
1737 >                             (n = s) <= 0) ||
1738 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1739 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1740 >                            (v = ws[i]) == null)
1741 >                            break;
1742 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1743 >                                   ((long)(u + UAC_UNIT) << 32));
1744 >                        if (v.eventCount != (e | INT_SIGN) ||
1745 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1746 >                            break;
1747 >                        v.hint = h;
1748 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1749 >                        if ((p = v.parker) != null)
1750 >                            U.unpark(p);
1751 >                        if (--n <= 0)
1752 >                            break;
1753 >                    }
1754                  }
1489            }
1490            w.seed = r;                        // save seed for next scan
1491            if (task != null)
1492                return task;
1493        }
1494
1495        // Decode ctl on empty scan
1496        long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1497        if (!swept) {                          // try to release a waiter
1498            WorkQueue v; Thread p;
1499            if (e > 0 && a < 0 && ws != null &&
1500                (v = ws[((~e << 1) | 1) & m]) != null &&
1501                v.eventCount == (e | INT_SIGN) && U.compareAndSwapLong
1502                (this, CTL, c, ((long)(v.nextWait & E_MASK) |
1503                                ((c + AC_UNIT) & (AC_MASK|TC_MASK))))) {
1504                v.eventCount = (e + E_SEQ) & E_MASK;
1505                if ((p = v.parker) != null)
1506                    U.unpark(p);
1507            }
1508        }
1509        else if ((nr = w.rescans) > 0) {       // continue rescanning
1510            int ac = a + parallelism;
1511            if ((w.rescans = (ac < nr) ? ac : nr - 1) > 0 && w.seed < 0 &&
1512                w.eventCount == ec)
1513                Thread.yield();                // 1 bit randomness for yield call
1514        }
1515        else if (e < 0)                        // pool is terminating
1516            w.runState = -1;
1517        else if (ec >= 0) {                    // try to enqueue
1518            long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1519            w.nextWait = e;
1520            w.eventCount = ec | INT_SIGN;      // mark as inactive
1521            if (!U.compareAndSwapLong(this, CTL, c, nc))
1522                w.eventCount = ec;             // back out on CAS failure
1523            else if ((ns = w.nsteals) != 0) {  // set rescans if ran task
1524                if (a <= 0)                    // ... unless too many active
1525                    w.rescans = a + parallelism;
1526                w.nsteals = 0;
1527                w.totalSteals += ns;
1528            }
1529        }
1530        else{                                  // already queued
1531            if (parallelism == -a)
1532                idleAwaitWork(w);              // quiescent
1533            if (w.eventCount == ec) {
1534                Thread.interrupted();          // clear status
1535                ForkJoinWorkerThread wt = w.owner;
1536                U.putObject(wt, PARKBLOCKER, this);
1537                w.parker = wt;                 // emulate LockSupport.park
1538                if (w.eventCount == ec)        // recheck
1539                    U.park(false, 0L);         // block
1540                w.parker = null;
1541                U.putObject(wt, PARKBLOCKER, null);
1755              }
1756          }
1757          return null;
1758      }
1759  
1760      /**
1761 <     * If inactivating worker w has caused pool to become quiescent,
1762 <     * checks for pool termination, and, so long as this is not the
1763 <     * only worker, waits for event for up to SHRINK_RATE nanosecs.
1764 <     * On timeout, if ctl has not changed, terminates the worker,
1765 <     * which will in turn wake up another worker to possibly repeat
1766 <     * this process.
1761 >     * If inactivating worker w has caused the pool to become
1762 >     * quiescent, checks for pool termination, and, so long as this is
1763 >     * not the only worker, waits for event for up to a given
1764 >     * duration.  On timeout, if ctl has not changed, terminates the
1765 >     * worker, which will in turn wake up another worker to possibly
1766 >     * repeat this process.
1767       *
1768       * @param w the calling worker
1769 +     * @param currentCtl the ctl value triggering possible quiescence
1770 +     * @param prevCtl the ctl value to restore if thread is terminated
1771       */
1772 <    private void idleAwaitWork(WorkQueue w) {
1773 <        long c; int nw, ec;
1774 <        if (!tryTerminate(false) &&
1775 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1776 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1777 <            (nw = w.nextWait) != 0) {
1778 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1779 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1780 <            ForkJoinTask.helpExpungeStaleExceptions(); // help clean
1566 <            ForkJoinWorkerThread wt = w.owner;
1567 <            while (ctl == c) {
1568 <                long startTime = System.nanoTime();
1772 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1773 >        if (w != null && w.eventCount < 0 &&
1774 >            !tryTerminate(false, false) && (int)prevCtl != 0 &&
1775 >            ctl == currentCtl) {
1776 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1777 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1778 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1779 >            Thread wt = Thread.currentThread();
1780 >            while (ctl == currentCtl) {
1781                  Thread.interrupted();  // timed variant of version in scan()
1782                  U.putObject(wt, PARKBLOCKER, this);
1783                  w.parker = wt;
1784 <                if (ctl == c)
1785 <                    U.park(false, SHRINK_RATE);
1784 >                if (ctl == currentCtl)
1785 >                    U.park(false, parkTime);
1786                  w.parker = null;
1787                  U.putObject(wt, PARKBLOCKER, null);
1788 <                if (ctl != c)
1788 >                if (ctl != currentCtl)
1789                      break;
1790 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1791 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1792 <                    w.runState = -1;          // shrink
1793 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1790 >                if (deadline - System.nanoTime() <= 0L &&
1791 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1792 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1793 >                    w.hint = -1;
1794 >                    w.qlock = -1;   // shrink
1795                      break;
1796                  }
1797              }
# Line 1586 | Line 1799 | public class ForkJoinPool extends Abstra
1799      }
1800  
1801      /**
1802 +     * Scans through queues looking for work while joining a task; if
1803 +     * any present, signals. May return early if more signalling is
1804 +     * detectably unneeded.
1805 +     *
1806 +     * @param task return early if done
1807 +     * @param origin an index to start scan
1808 +     */
1809 +    private void helpSignal(ForkJoinTask<?> task, int origin) {
1810 +        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1811 +        if (task != null && task.status >= 0 &&
1812 +            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1813 +            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1814 +            outer: for (int k = origin, j = m; j >= 0; --j) {
1815 +                WorkQueue q = ws[k++ & m];
1816 +                for (int n = m;;) { // limit to at most m signals
1817 +                    if (task.status < 0)
1818 +                        break outer;
1819 +                    if (q == null ||
1820 +                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1821 +                        break;
1822 +                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1823 +                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1824 +                        (w = ws[i]) == null)
1825 +                        break outer;
1826 +                    long nc = (((long)(w.nextWait & E_MASK)) |
1827 +                               ((long)(u + UAC_UNIT) << 32));
1828 +                    if (w.eventCount != (e | INT_SIGN))
1829 +                        break outer;
1830 +                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1831 +                        w.eventCount = (e + E_SEQ) & E_MASK;
1832 +                        if ((p = w.parker) != null)
1833 +                            U.unpark(p);
1834 +                        if (--n <= 0)
1835 +                            break;
1836 +                    }
1837 +                }
1838 +            }
1839 +        }
1840 +    }
1841 +
1842 +    /**
1843       * Tries to locate and execute tasks for a stealer of the given
1844       * task, or in turn one of its stealers, Traces currentSteal ->
1845       * currentJoin links looking for a thread working on a descendant
# Line 1596 | Line 1850 | public class ForkJoinPool extends Abstra
1850       * leaves hints in workers to speed up subsequent calls. The
1851       * implementation is very branchy to cope with potential
1852       * inconsistencies or loops encountering chains that are stale,
1853 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1600 <     * of these cases are dealt with by just retrying by caller.
1853 >     * unknown, or so long that they are likely cyclic.
1854       *
1855       * @param joiner the joining worker
1856       * @param task the task to join
1857 <     * @return true if found or ran a task (and so is immediately retryable)
1857 >     * @return 0 if no progress can be made, negative if task
1858 >     * known complete, else positive
1859       */
1860 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1861 <        ForkJoinTask<?> subtask;    // current target
1862 <        boolean progress = false;
1863 <        int depth = 0;              // current chain depth
1864 <        int m = runState & SMASK;
1865 <        WorkQueue[] ws = workQueues;
1866 <
1867 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1868 <            outer:for (WorkQueue j = joiner;;) {
1869 <                // Try to find the stealer of subtask, by first using hint
1870 <                WorkQueue stealer = null;
1871 <                WorkQueue v = ws[j.stealHint & m];
1872 <                if (v != null && v.currentSteal == subtask)
1873 <                    stealer = v;
1874 <                else {
1875 <                    for (int i = 1; i <= m; i += 2) {
1876 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1877 <                            stealer = v;
1878 <                            j.stealHint = i; // save hint
1879 <                            break;
1860 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1861 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1862 >        if (joiner != null && task != null) {       // hoist null checks
1863 >            restart: for (;;) {
1864 >                ForkJoinTask<?> subtask = task;     // current target
1865 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1866 >                    WorkQueue[] ws; int m, s, h;
1867 >                    if ((s = task.status) < 0) {
1868 >                        stat = s;
1869 >                        break restart;
1870 >                    }
1871 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1872 >                        break restart;              // shutting down
1873 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1874 >                        v.currentSteal != subtask) {
1875 >                        for (int origin = h;;) {    // find stealer
1876 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1877 >                                (subtask.status < 0 || j.currentJoin != subtask))
1878 >                                continue restart;   // occasional staleness check
1879 >                            if ((v = ws[h]) != null &&
1880 >                                v.currentSteal == subtask) {
1881 >                                j.hint = h;        // save hint
1882 >                                break;
1883 >                            }
1884 >                            if (h == origin)
1885 >                                break restart;      // cannot find stealer
1886 >                        }
1887 >                    }
1888 >                    for (;;) { // help stealer or descend to its stealer
1889 >                        ForkJoinTask[] a;  int b;
1890 >                        if (subtask.status < 0)     // surround probes with
1891 >                            continue restart;       //   consistency checks
1892 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1893 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1894 >                            ForkJoinTask<?> t =
1895 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1896 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1897 >                                v.currentSteal != subtask)
1898 >                                continue restart;   // stale
1899 >                            stat = 1;               // apparent progress
1900 >                            if (t != null && v.base == b &&
1901 >                                U.compareAndSwapObject(a, i, t, null)) {
1902 >                                v.base = b + 1;     // help stealer
1903 >                                joiner.runSubtask(t);
1904 >                            }
1905 >                            else if (v.base == b && ++steps == MAX_HELP)
1906 >                                break restart;      // v apparently stalled
1907 >                        }
1908 >                        else {                      // empty -- try to descend
1909 >                            ForkJoinTask<?> next = v.currentJoin;
1910 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1911 >                                v.currentSteal != subtask)
1912 >                                continue restart;   // stale
1913 >                            else if (next == null || ++steps == MAX_HELP)
1914 >                                break restart;      // dead-end or maybe cyclic
1915 >                            else {
1916 >                                subtask = next;
1917 >                                j = v;
1918 >                                break;
1919 >                            }
1920                          }
1921                      }
1922 <                    if (stealer == null)
1922 >                }
1923 >            }
1924 >        }
1925 >        return stat;
1926 >    }
1927 >
1928 >    /**
1929 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1930 >     * and run tasks within the target's computation.
1931 >     *
1932 >     * @param task the task to join
1933 >     * @param mode if shared, exit upon completing any task
1934 >     * if all workers are active
1935 >     */
1936 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1937 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1938 >        if (task != null && (ws = workQueues) != null &&
1939 >            (m = ws.length - 1) >= 0) {
1940 >            for (int j = 1, origin = j;;) {
1941 >                if ((s = task.status) < 0)
1942 >                    return s;
1943 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1944 >                    origin = j;
1945 >                    if (mode == SHARED_QUEUE &&
1946 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1947                          break;
1948                  }
1949 +                else if ((j = (j + 2) & m) == origin)
1950 +                    break;
1951 +            }
1952 +        }
1953 +        return 0;
1954 +    }
1955  
1956 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1957 <                    ForkJoinTask<?> t; int b;
1958 <                    if (task.status < 0)
1959 <                        break outer;
1960 <                    if ((b = q.base) - q.top < 0) {
1961 <                        progress = true;
1962 <                        if (subtask.status < 0)
1963 <                            break outer;               // stale
1964 <                        if ((t = q.pollAt(b)) != null) {
1965 <                            stealer.stealHint = joiner.poolIndex;
1966 <                            joiner.runSubtask(t);
1956 >    /**
1957 >     * Tries to decrement active count (sometimes implicitly) and
1958 >     * possibly release or create a compensating worker in preparation
1959 >     * for blocking. Fails on contention or termination. Otherwise,
1960 >     * adds a new thread if no idle workers are available and pool
1961 >     * may become starved.
1962 >     */
1963 >    final boolean tryCompensate() {
1964 >        int pc = config & SMASK, e, i, tc; long c;
1965 >        WorkQueue[] ws; WorkQueue w; Thread p;
1966 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1967 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1968 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1969 >                long nc = ((long)(w.nextWait & E_MASK) |
1970 >                           (c & (AC_MASK|TC_MASK)));
1971 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1972 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1973 >                    if ((p = w.parker) != null)
1974 >                        U.unpark(p);
1975 >                    return true;   // replace with idle worker
1976 >                }
1977 >            }
1978 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1979 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1980 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1981 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1982 >                    return true;   // no compensation
1983 >            }
1984 >            else if (tc + pc < MAX_CAP) {
1985 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1986 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1987 >                    ForkJoinWorkerThreadFactory fac;
1988 >                    Throwable ex = null;
1989 >                    ForkJoinWorkerThread wt = null;
1990 >                    try {
1991 >                        if ((fac = factory) != null &&
1992 >                            (wt = fac.newThread(this)) != null) {
1993 >                            wt.start();
1994 >                            return true;
1995                          }
1996 +                    } catch (Throwable rex) {
1997 +                        ex = rex;
1998                      }
1999 <                    else { // empty - try to descend to find stealer's stealer
1646 <                        ForkJoinTask<?> next = stealer.currentJoin;
1647 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1648 <                            next == null || next == subtask)
1649 <                            break outer;  // max depth, stale, dead-end, cyclic
1650 <                        subtask = next;
1651 <                        j = stealer;
1652 <                        break;
1653 <                    }
1999 >                    deregisterWorker(wt, ex); // clean up and return false
2000                  }
2001              }
2002          }
2003 <        return progress;
2003 >        return false;
2004      }
2005  
2006      /**
2007 <     * If task is at base of some steal queue, steals and executes it.
2007 >     * Helps and/or blocks until the given task is done.
2008       *
2009       * @param joiner the joining worker
2010       * @param task the task
2011 +     * @return task status on exit
2012       */
2013 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
2014 <        WorkQueue[] ws;
2015 <        int m = runState & SMASK;
2016 <        if ((ws = workQueues) != null && ws.length > m) {
2017 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
2018 <                WorkQueue q = ws[j];
2019 <                if (q != null && q.pollFor(task)) {
2020 <                    joiner.runSubtask(task);
2021 <                    break;
2013 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2014 >        int s = 0;
2015 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2016 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2017 >            joiner.currentJoin = task;
2018 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2019 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2020 >            if (s >= 0 && (s = task.status) >= 0) {
2021 >                helpSignal(task, joiner.poolIndex);
2022 >                if ((s = task.status) >= 0 &&
2023 >                    (task instanceof CountedCompleter))
2024 >                    s = helpComplete(task, LIFO_QUEUE);
2025 >            }
2026 >            while (s >= 0 && (s = task.status) >= 0) {
2027 >                if ((!joiner.isEmpty() ||           // try helping
2028 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2029 >                    (s = task.status) >= 0) {
2030 >                    helpSignal(task, joiner.poolIndex);
2031 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2032 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2033 >                            synchronized (task) {
2034 >                                if (task.status >= 0) {
2035 >                                    try {                // see ForkJoinTask
2036 >                                        task.wait();     //  for explanation
2037 >                                    } catch (InterruptedException ie) {
2038 >                                    }
2039 >                                }
2040 >                                else
2041 >                                    task.notifyAll();
2042 >                            }
2043 >                        }
2044 >                        long c;                          // re-activate
2045 >                        do {} while (!U.compareAndSwapLong
2046 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2047 >                    }
2048                  }
2049              }
2050 +            joiner.currentJoin = prevJoin;
2051 +        }
2052 +        return s;
2053 +    }
2054 +
2055 +    /**
2056 +     * Stripped-down variant of awaitJoin used by timed joins. Tries
2057 +     * to help join only while there is continuous progress. (Caller
2058 +     * will then enter a timed wait.)
2059 +     *
2060 +     * @param joiner the joining worker
2061 +     * @param task the task
2062 +     */
2063 +    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2064 +        int s;
2065 +        if (joiner != null && task != null && (s = task.status) >= 0) {
2066 +            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2067 +            joiner.currentJoin = task;
2068 +            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2069 +                         joiner.tryRemoveAndExec(task));
2070 +            if (s >= 0 && (s = task.status) >= 0) {
2071 +                helpSignal(task, joiner.poolIndex);
2072 +                if ((s = task.status) >= 0 &&
2073 +                    (task instanceof CountedCompleter))
2074 +                    s = helpComplete(task, LIFO_QUEUE);
2075 +            }
2076 +            if (s >= 0 && joiner.isEmpty()) {
2077 +                do {} while (task.status >= 0 &&
2078 +                             tryHelpStealer(joiner, task) > 0);
2079 +            }
2080 +            joiner.currentJoin = prevJoin;
2081          }
2082      }
2083  
2084      /**
2085 <     * Returns a non-empty steal queue, if one is found during a random,
2086 <     * then cyclic scan, else null.  This method must be retried by
2085 >     * Returns a (probably) non-empty steal queue, if one is found
2086 >     * during a scan, else null.  This method must be retried by
2087       * caller if, by the time it tries to use the queue, it is empty.
2088 +     * @param r a (random) seed for scanning
2089       */
2090 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2091 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
2092 <        for (WorkQueue[] ws;;) {
2093 <            int m = runState & SMASK;
2094 <            if ((ws = workQueues) == null)
2095 <                return null;
2096 <            if (ws.length > m) {
1692 <                WorkQueue q;
1693 <                for (int n = m << 2, k = r, j = -n;;) {
1694 <                    r ^= r << 13; r ^= r >>> 17; r ^= r << 5;
1695 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1696 <                        w.seed = r;
2090 >    private WorkQueue findNonEmptyStealQueue(int r) {
2091 >        for (;;) {
2092 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2093 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2094 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2095 >                    if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2096 >                        q.base - q.top < 0)
2097                          return q;
1698                    }
1699                    else if (j > n)
1700                        return null;
1701                    else
1702                        k = (j++ < 0) ? r : k + ((m >>> 1) | 1);
1703
2098                  }
2099              }
2100 +            if (plock == ps)
2101 +                return null;
2102          }
2103      }
2104  
# Line 1714 | Line 2110 | public class ForkJoinPool extends Abstra
2110       */
2111      final void helpQuiescePool(WorkQueue w) {
2112          for (boolean active = true;;) {
2113 <            w.runLocalTasks();      // exhaust local queue
2114 <            WorkQueue q = findNonEmptyStealQueue(w);
2115 <            if (q != null) {
2116 <                ForkJoinTask<?> t;
2113 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2114 >            while ((t = w.nextLocalTask()) != null) {
2115 >                if (w.base - w.top < 0)
2116 >                    signalWork(w);
2117 >                t.doExec();
2118 >            }
2119 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2120                  if (!active) {      // re-establish active count
1722                    long c;
2121                      active = true;
2122                      do {} while (!U.compareAndSwapLong
2123                                   (this, CTL, c = ctl, c + AC_UNIT));
2124                  }
2125 <                if ((t = q.poll()) != null)
2125 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2126 >                    if (q.base - q.top < 0)
2127 >                        signalWork(q);
2128                      w.runSubtask(t);
2129 +                }
2130              }
2131 <            else {
2132 <                long c;
2133 <                if (active) {       // decrement active count without queuing
2131 >            else if (active) {       // decrement active count without queuing
2132 >                long nc = (c = ctl) - AC_UNIT;
2133 >                if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2134 >                    return;          // bypass decrement-then-increment
2135 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2136                      active = false;
1734                    do {} while (!U.compareAndSwapLong
1735                                 (this, CTL, c = ctl, c -= AC_UNIT));
1736                }
1737                else
1738                    c = ctl;        // re-increment on exit
1739                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1740                    do {} while (!U.compareAndSwapLong
1741                                 (this, CTL, c = ctl, c + AC_UNIT));
1742                    break;
1743                }
2137              }
2138 +            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2139 +                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2140 +                return;
2141          }
2142      }
2143  
# Line 1752 | Line 2148 | public class ForkJoinPool extends Abstra
2148       */
2149      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2150          for (ForkJoinTask<?> t;;) {
2151 <            WorkQueue q;
2151 >            WorkQueue q; int b;
2152              if ((t = w.nextLocalTask()) != null)
2153                  return t;
2154 <            if ((q = findNonEmptyStealQueue(w)) == null)
2154 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2155                  return null;
2156 <            if ((t = q.poll()) != null)
2156 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2157 >                if (q.base - q.top < 0)
2158 >                    signalWork(q);
2159                  return t;
2160 +            }
2161          }
2162      }
2163  
2164      /**
2165 <     * Returns the approximate (non-atomic) number of idle threads per
2166 <     * active thread to offset steal queue size for method
2167 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2168 <     */
2169 <    final int idlePerActive() {
2170 <        // Approximate at powers of two for small values, saturate past 4
2171 <        int p = parallelism;
2172 <        int a = p + (int)(ctl >> AC_SHIFT);
2173 <        return (a > (p >>>= 1) ? 0 :
2174 <                a > (p >>>= 1) ? 1 :
2175 <                a > (p >>>= 1) ? 2 :
2176 <                a > (p >>>= 1) ? 4 :
2177 <                8);
2178 <    }
2179 <
2180 <    // Termination
2181 <
2182 <    /**
2183 <     * Sets SHUTDOWN bit of runState under lock
2184 <     */
2185 <    private void enableShutdown() {
2186 <        ReentrantLock lock = this.lock;
2187 <        if (runState >= 0) {
2188 <            lock.lock();                       // don't need try/finally
2189 <            runState |= SHUTDOWN;
2190 <            lock.unlock();
2165 >     * Returns a cheap heuristic guide for task partitioning when
2166 >     * programmers, frameworks, tools, or languages have little or no
2167 >     * idea about task granularity.  In essence by offering this
2168 >     * method, we ask users only about tradeoffs in overhead vs
2169 >     * expected throughput and its variance, rather than how finely to
2170 >     * partition tasks.
2171 >     *
2172 >     * In a steady state strict (tree-structured) computation, each
2173 >     * thread makes available for stealing enough tasks for other
2174 >     * threads to remain active. Inductively, if all threads play by
2175 >     * the same rules, each thread should make available only a
2176 >     * constant number of tasks.
2177 >     *
2178 >     * The minimum useful constant is just 1. But using a value of 1
2179 >     * would require immediate replenishment upon each steal to
2180 >     * maintain enough tasks, which is infeasible.  Further,
2181 >     * partitionings/granularities of offered tasks should minimize
2182 >     * steal rates, which in general means that threads nearer the top
2183 >     * of computation tree should generate more than those nearer the
2184 >     * bottom. In perfect steady state, each thread is at
2185 >     * approximately the same level of computation tree. However,
2186 >     * producing extra tasks amortizes the uncertainty of progress and
2187 >     * diffusion assumptions.
2188 >     *
2189 >     * So, users will want to use values larger, but not much larger
2190 >     * than 1 to both smooth over transient shortages and hedge
2191 >     * against uneven progress; as traded off against the cost of
2192 >     * extra task overhead. We leave the user to pick a threshold
2193 >     * value to compare with the results of this call to guide
2194 >     * decisions, but recommend values such as 3.
2195 >     *
2196 >     * When all threads are active, it is on average OK to estimate
2197 >     * surplus strictly locally. In steady-state, if one thread is
2198 >     * maintaining say 2 surplus tasks, then so are others. So we can
2199 >     * just use estimated queue length.  However, this strategy alone
2200 >     * leads to serious mis-estimates in some non-steady-state
2201 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2202 >     * many of these by further considering the number of "idle"
2203 >     * threads, that are known to have zero queued tasks, so
2204 >     * compensate by a factor of (#idle/#active) threads.
2205 >     *
2206 >     * Note: The approximation of #busy workers as #active workers is
2207 >     * not very good under current signalling scheme, and should be
2208 >     * improved.
2209 >     */
2210 >    static int getSurplusQueuedTaskCount() {
2211 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2212 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2213 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2214 >            int n = (q = wt.workQueue).top - q.base;
2215 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2216 >            return n - (a > (p >>>= 1) ? 0 :
2217 >                        a > (p >>>= 1) ? 1 :
2218 >                        a > (p >>>= 1) ? 2 :
2219 >                        a > (p >>>= 1) ? 4 :
2220 >                        8);
2221          }
2222 +        return 0;
2223      }
2224  
2225 +    //  Termination
2226 +
2227      /**
2228 <     * Possibly initiates and/or completes termination.  Upon
2229 <     * termination, cancels all queued tasks and then
2228 >     * Possibly initiates and/or completes termination.  The caller
2229 >     * triggering termination runs three passes through workQueues:
2230 >     * (0) Setting termination status, followed by wakeups of queued
2231 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2232 >     * threads (likely in external tasks, but possibly also blocked in
2233 >     * joins).  Each pass repeats previous steps because of potential
2234 >     * lagging thread creation.
2235       *
2236       * @param now if true, unconditionally terminate, else only
2237       * if no work and no active workers
2238 +     * @param enable if true, enable shutdown when next possible
2239       * @return true if now terminating or terminated
2240       */
2241 <    private boolean tryTerminate(boolean now) {
2241 >    private boolean tryTerminate(boolean now, boolean enable) {
2242 >        int ps;
2243 >        if (this == common)                    // cannot shut down
2244 >            return false;
2245 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2246 >            if (!enable)
2247 >                return false;
2248 >            if ((ps & PL_LOCK) != 0 ||
2249 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2250 >                ps = acquirePlock();
2251 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2252 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2253 >                releasePlock(nps);
2254 >        }
2255          for (long c;;) {
2256 <            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2257 <                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2258 <                    ReentrantLock lock = this.lock; // signal when no workers
2259 <                    lock.lock();                    // don't need try/finally
2260 <                    termination.signalAll();        // signal when 0 workers
1810 <                    lock.unlock();
2256 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2257 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2258 >                    synchronized (this) {
2259 >                        notifyAll();               // signal when 0 workers
2260 >                    }
2261                  }
2262                  return true;
2263              }
2264 <            if (!now) {
2265 <                if ((int)(c >> AC_SHIFT) != -parallelism || runState >= 0 ||
2266 <                    hasQueuedSubmissions())
2264 >            if (!now) {                            // check if idle & no tasks
2265 >                WorkQueue[] ws; WorkQueue w;
2266 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2267                      return false;
2268 <                // Check for unqueued inactive workers. One pass suffices.
2269 <                WorkQueue[] ws = workQueues; WorkQueue w;
2270 <                if (ws != null) {
2271 <                    int n = ws.length;
2272 <                    for (int i = 1; i < n; i += 2) {
2273 <                        if ((w = ws[i]) != null && w.eventCount >= 0)
2274 <                            return false;
2268 >                if ((ws = workQueues) != null) {
2269 >                    for (int i = 0; i < ws.length; ++i) {
2270 >                        if ((w = ws[i]) != null) {
2271 >                            if (!w.isEmpty()) {    // signal unprocessed tasks
2272 >                                signalWork(w);
2273 >                                return false;
2274 >                            }
2275 >                            if ((i & 1) != 0 && w.eventCount >= 0)
2276 >                                return false;      // unqueued inactive worker
2277 >                        }
2278 >                    }
2279 >                }
2280 >            }
2281 >            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2282 >                for (int pass = 0; pass < 3; ++pass) {
2283 >                    WorkQueue[] ws; WorkQueue w; Thread wt;
2284 >                    if ((ws = workQueues) != null) {
2285 >                        int n = ws.length;
2286 >                        for (int i = 0; i < n; ++i) {
2287 >                            if ((w = ws[i]) != null) {
2288 >                                w.qlock = -1;
2289 >                                if (pass > 0) {
2290 >                                    w.cancelAll();
2291 >                                    if (pass > 1 && (wt = w.owner) != null) {
2292 >                                        if (!wt.isInterrupted()) {
2293 >                                            try {
2294 >                                                wt.interrupt();
2295 >                                            } catch (Throwable ignore) {
2296 >                                            }
2297 >                                        }
2298 >                                        U.unpark(wt);
2299 >                                    }
2300 >                                }
2301 >                            }
2302 >                        }
2303 >                        // Wake up workers parked on event queue
2304 >                        int i, e; long cc; Thread p;
2305 >                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2306 >                               (i = e & SMASK) < n && i >= 0 &&
2307 >                               (w = ws[i]) != null) {
2308 >                            long nc = ((long)(w.nextWait & E_MASK) |
2309 >                                       ((cc + AC_UNIT) & AC_MASK) |
2310 >                                       (cc & (TC_MASK|STOP_BIT)));
2311 >                            if (w.eventCount == (e | INT_SIGN) &&
2312 >                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2313 >                                w.eventCount = (e + E_SEQ) & E_MASK;
2314 >                                w.qlock = -1;
2315 >                                if ((p = w.parker) != null)
2316 >                                    U.unpark(p);
2317 >                            }
2318 >                        }
2319                      }
2320                  }
2321              }
1828            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT))
1829                startTerminating();
2322          }
2323      }
2324  
2325 +    // external operations on common pool
2326 +
2327      /**
2328 <     * Initiates termination: Runs three passes through workQueues:
2329 <     * (0) Setting termination status, followed by wakeups of queued
1836 <     * workers; (1) cancelling all tasks; (2) interrupting lagging
1837 <     * threads (likely in external tasks, but possibly also blocked in
1838 <     * joins).  Each pass repeats previous steps because of potential
1839 <     * lagging thread creation.
2328 >     * Returns common pool queue for a thread that has submitted at
2329 >     * least one task.
2330       */
2331 <    private void startTerminating() {
2332 <        for (int pass = 0; pass < 3; ++pass) {
2333 <            WorkQueue[] ws = workQueues;
2334 <            if (ws != null) {
2335 <                WorkQueue w; Thread wt;
2336 <                int n = ws.length;
2337 <                for (int j = 0; j < n; ++j) {
2338 <                    if ((w = ws[j]) != null) {
2339 <                        w.runState = -1;
2340 <                        if (pass > 0) {
2341 <                            w.cancelAll();
2342 <                            if (pass > 1 && (wt = w.owner) != null &&
2343 <                                !wt.isInterrupted()) {
2344 <                                try {
2345 <                                    wt.interrupt();
2346 <                                } catch (SecurityException ignore) {
2331 >    static WorkQueue commonSubmitterQueue() {
2332 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2333 >        return ((z = submitters.get()) != null &&
2334 >                (p = common) != null &&
2335 >                (ws = p.workQueues) != null &&
2336 >                (m = ws.length - 1) >= 0) ?
2337 >            ws[m & z.seed & SQMASK] : null;
2338 >    }
2339 >
2340 >    /**
2341 >     * Tries to pop the given task from submitter's queue in common pool.
2342 >     */
2343 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2344 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2345 >        ForkJoinTask<?>[] a;  int m, s;
2346 >        if (t != null &&
2347 >            (z = submitters.get()) != null &&
2348 >            (p = common) != null &&
2349 >            (ws = p.workQueues) != null &&
2350 >            (m = ws.length - 1) >= 0 &&
2351 >            (q = ws[m & z.seed & SQMASK]) != null &&
2352 >            (s = q.top) != q.base &&
2353 >            (a = q.array) != null) {
2354 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2355 >            if (U.getObject(a, j) == t &&
2356 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2357 >                if (q.array == a && q.top == s && // recheck
2358 >                    U.compareAndSwapObject(a, j, t, null)) {
2359 >                    q.top = s - 1;
2360 >                    q.qlock = 0;
2361 >                    return true;
2362 >                }
2363 >                q.qlock = 0;
2364 >            }
2365 >        }
2366 >        return false;
2367 >    }
2368 >
2369 >    /**
2370 >     * Tries to pop and run local tasks within the same computation
2371 >     * as the given root. On failure, tries to help complete from
2372 >     * other queues via helpComplete.
2373 >     */
2374 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2375 >        ForkJoinTask<?>[] a; int m;
2376 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2377 >            root != null && root.status >= 0) {
2378 >            for (;;) {
2379 >                int s, u; Object o; CountedCompleter<?> task = null;
2380 >                if ((s = q.top) - q.base > 0) {
2381 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2382 >                    if ((o = U.getObject(a, j)) != null &&
2383 >                        (o instanceof CountedCompleter)) {
2384 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2385 >                        do {
2386 >                            if (r == root) {
2387 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2388 >                                    if (q.array == a && q.top == s &&
2389 >                                        U.compareAndSwapObject(a, j, t, null)) {
2390 >                                        q.top = s - 1;
2391 >                                        task = t;
2392 >                                    }
2393 >                                    q.qlock = 0;
2394                                  }
2395 +                                break;
2396                              }
2397 <                        }
2397 >                        } while ((r = r.completer) != null);
2398                      }
2399                  }
2400 <                // Wake up workers parked on event queue
2401 <                int i, e; long c; Thread p;
2402 <                while ((i = ((~(e = (int)(c = ctl)) << 1) | 1) & SMASK) < n &&
2403 <                       (w = ws[i]) != null &&
2404 <                       w.eventCount == (e | INT_SIGN)) {
2405 <                    long nc = ((long)(w.nextWait & E_MASK) |
2406 <                               ((c + AC_UNIT) & AC_MASK) |
2407 <                               (c & (TC_MASK|STOP_BIT)));
2408 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
2409 <                        w.eventCount = (e + E_SEQ) & E_MASK;
2410 <                        if ((p = w.parker) != null)
2411 <                            U.unpark(p);
2400 >                if (task != null)
2401 >                    task.doExec();
2402 >                if (root.status < 0 ||
2403 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2404 >                    break;
2405 >                if (task == null) {
2406 >                    helpSignal(root, q.poolIndex);
2407 >                    if (root.status >= 0)
2408 >                        helpComplete(root, SHARED_QUEUE);
2409 >                    break;
2410 >                }
2411 >            }
2412 >        }
2413 >    }
2414 >
2415 >    /**
2416 >     * Tries to help execute or signal availability of the given task
2417 >     * from submitter's queue in common pool.
2418 >     */
2419 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2420 >        // Some hard-to-avoid overlap with tryExternalUnpush
2421 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2422 >        ForkJoinTask<?>[] a;  int m, s, n;
2423 >        if (t != null &&
2424 >            (z = submitters.get()) != null &&
2425 >            (p = common) != null &&
2426 >            (ws = p.workQueues) != null &&
2427 >            (m = ws.length - 1) >= 0 &&
2428 >            (q = ws[m & z.seed & SQMASK]) != null &&
2429 >            (a = q.array) != null) {
2430 >            int am = a.length - 1;
2431 >            if ((s = q.top) != q.base) {
2432 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2433 >                if (U.getObject(a, j) == t &&
2434 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2435 >                    if (q.array == a && q.top == s &&
2436 >                        U.compareAndSwapObject(a, j, t, null)) {
2437 >                        q.top = s - 1;
2438 >                        q.qlock = 0;
2439 >                        t.doExec();
2440                      }
2441 +                    else
2442 +                        q.qlock = 0;
2443                  }
2444              }
2445 +            if (t.status >= 0) {
2446 +                if (t instanceof CountedCompleter)
2447 +                    p.externalHelpComplete(q, t);
2448 +                else
2449 +                    p.helpSignal(t, q.poolIndex);
2450 +            }
2451          }
2452      }
2453  
# Line 1946 | Line 2520 | public class ForkJoinPool extends Abstra
2520          checkPermission();
2521          if (factory == null)
2522              throw new NullPointerException();
2523 <        if (parallelism <= 0 || parallelism > MAX_ID)
2523 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2524              throw new IllegalArgumentException();
1951        this.parallelism = parallelism;
2525          this.factory = factory;
2526          this.ueh = handler;
2527 <        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1955 <        this.nextPoolIndex = 1;
2527 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2528          long np = (long)(-parallelism); // offset ctl counts
2529          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2530 <        // initialize workQueues array with room for 2*parallelism if possible
1959 <        int n = parallelism << 1;
1960 <        if (n >= MAX_ID)
1961 <            n = MAX_ID;
1962 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1963 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1964 <        }
1965 <        this.workQueues = new WorkQueue[(n + 1) << 1];
1966 <        ReentrantLock lck = this.lock = new ReentrantLock();
1967 <        this.termination = lck.newCondition();
1968 <        this.stealCount = new AtomicLong();
1969 <        this.nextWorkerNumber = new AtomicInteger();
2530 >        int pn = nextPoolId();
2531          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2532 <        sb.append(poolNumberGenerator.incrementAndGet());
2532 >        sb.append(Integer.toString(pn));
2533          sb.append("-worker-");
2534          this.workerNamePrefix = sb.toString();
2535 <        // Create initial submission queue
2536 <        WorkQueue sq = tryAddSharedQueue(0);
2537 <        if (sq != null)
2538 <            sq.growArray(false);
2535 >    }
2536 >
2537 >    /**
2538 >     * Constructor for common pool, suitable only for static initialization.
2539 >     * Basically the same as above, but uses smallest possible initial footprint.
2540 >     */
2541 >    ForkJoinPool(int parallelism, long ctl,
2542 >                 ForkJoinWorkerThreadFactory factory,
2543 >                 Thread.UncaughtExceptionHandler handler) {
2544 >        this.config = parallelism;
2545 >        this.ctl = ctl;
2546 >        this.factory = factory;
2547 >        this.ueh = handler;
2548 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2549 >    }
2550 >
2551 >    /**
2552 >     * Returns the common pool instance. This pool is statically
2553 >     * constructed; its run state is unaffected by attempts to {@link
2554 >     * #shutdown} or {@link #shutdownNow}. However this pool and any
2555 >     * ongoing processing are automatically terminated upon program
2556 >     * {@link System#exit}.  Any program that relies on asynchronous
2557 >     * task processing to complete before program termination should
2558 >     * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2559 >     * exit.
2560 >     *
2561 >     * @return the common pool instance
2562 >     * @since 1.8
2563 >     */
2564 >    public static ForkJoinPool commonPool() {
2565 >        // assert common != null : "static init error";
2566 >        return common;
2567      }
2568  
2569      // Execution methods
# Line 1996 | Line 2585 | public class ForkJoinPool extends Abstra
2585       *         scheduled for execution
2586       */
2587      public <T> T invoke(ForkJoinTask<T> task) {
2588 <        doSubmit(task);
2588 >        if (task == null)
2589 >            throw new NullPointerException();
2590 >        externalPush(task);
2591          return task.join();
2592      }
2593  
# Line 2009 | Line 2600 | public class ForkJoinPool extends Abstra
2600       *         scheduled for execution
2601       */
2602      public void execute(ForkJoinTask<?> task) {
2603 <        doSubmit(task);
2603 >        if (task == null)
2604 >            throw new NullPointerException();
2605 >        externalPush(task);
2606      }
2607  
2608      // AbstractExecutorService methods
# Line 2026 | Line 2619 | public class ForkJoinPool extends Abstra
2619          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2620              job = (ForkJoinTask<?>) task;
2621          else
2622 <            job = ForkJoinTask.adapt(task, null);
2623 <        doSubmit(job);
2622 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2623 >        externalPush(job);
2624      }
2625  
2626      /**
# Line 2040 | Line 2633 | public class ForkJoinPool extends Abstra
2633       *         scheduled for execution
2634       */
2635      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2636 <        doSubmit(task);
2636 >        if (task == null)
2637 >            throw new NullPointerException();
2638 >        externalPush(task);
2639          return task;
2640      }
2641  
# Line 2050 | Line 2645 | public class ForkJoinPool extends Abstra
2645       *         scheduled for execution
2646       */
2647      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2648 <        if (task == null)
2649 <            throw new NullPointerException();
2055 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2056 <        doSubmit(job);
2648 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2649 >        externalPush(job);
2650          return job;
2651      }
2652  
# Line 2063 | Line 2656 | public class ForkJoinPool extends Abstra
2656       *         scheduled for execution
2657       */
2658      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2659 <        if (task == null)
2660 <            throw new NullPointerException();
2068 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2069 <        doSubmit(job);
2659 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2660 >        externalPush(job);
2661          return job;
2662      }
2663  
# Line 2082 | Line 2673 | public class ForkJoinPool extends Abstra
2673          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2674              job = (ForkJoinTask<?>) task;
2675          else
2676 <            job = ForkJoinTask.adapt(task, null);
2677 <        doSubmit(job);
2676 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2677 >        externalPush(job);
2678          return job;
2679      }
2680  
# Line 2092 | Line 2683 | public class ForkJoinPool extends Abstra
2683       * @throws RejectedExecutionException {@inheritDoc}
2684       */
2685      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2686 <        ArrayList<ForkJoinTask<T>> forkJoinTasks =
2687 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2688 <        for (Callable<T> task : tasks)
2689 <            forkJoinTasks.add(ForkJoinTask.adapt(task));
2690 <        invoke(new InvokeAll<T>(forkJoinTasks));
2691 <
2686 >        // In previous versions of this class, this method constructed
2687 >        // a task to run ForkJoinTask.invokeAll, but now external
2688 >        // invocation of multiple tasks is at least as efficient.
2689 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2690 >        // Workaround needed because method wasn't declared with
2691 >        // wildcards in return type but should have been.
2692          @SuppressWarnings({"unchecked", "rawtypes"})
2693 <            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
2103 <        return futures;
2104 <    }
2693 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2694  
2695 <    static final class InvokeAll<T> extends RecursiveAction {
2696 <        final ArrayList<ForkJoinTask<T>> tasks;
2697 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2698 <        public void compute() {
2699 <            try { invokeAll(tasks); }
2700 <            catch (Exception ignore) {}
2695 >        boolean done = false;
2696 >        try {
2697 >            for (Callable<T> t : tasks) {
2698 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2699 >                externalPush(f);
2700 >                fs.add(f);
2701 >            }
2702 >            for (ForkJoinTask<T> f : fs)
2703 >                f.quietlyJoin();
2704 >            done = true;
2705 >            return futures;
2706 >        } finally {
2707 >            if (!done)
2708 >                for (ForkJoinTask<T> f : fs)
2709 >                    f.cancel(false);
2710          }
2113        private static final long serialVersionUID = -7914297376763021607L;
2711      }
2712  
2713      /**
# Line 2138 | Line 2735 | public class ForkJoinPool extends Abstra
2735       * @return the targeted parallelism level of this pool
2736       */
2737      public int getParallelism() {
2738 <        return parallelism;
2738 >        return config & SMASK;
2739 >    }
2740 >
2741 >    /**
2742 >     * Returns the targeted parallelism level of the common pool.
2743 >     *
2744 >     * @return the targeted parallelism level of the common pool
2745 >     * @since 1.8
2746 >     */
2747 >    public static int getCommonPoolParallelism() {
2748 >        return commonParallelism;
2749      }
2750  
2751      /**
# Line 2150 | Line 2757 | public class ForkJoinPool extends Abstra
2757       * @return the number of worker threads
2758       */
2759      public int getPoolSize() {
2760 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2760 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2761      }
2762  
2763      /**
# Line 2160 | Line 2767 | public class ForkJoinPool extends Abstra
2767       * @return {@code true} if this pool uses async mode
2768       */
2769      public boolean getAsyncMode() {
2770 <        return localMode != 0;
2770 >        return (config >>> 16) == FIFO_QUEUE;
2771      }
2772  
2773      /**
# Line 2175 | Line 2782 | public class ForkJoinPool extends Abstra
2782          int rc = 0;
2783          WorkQueue[] ws; WorkQueue w;
2784          if ((ws = workQueues) != null) {
2785 <            int n = ws.length;
2786 <            for (int i = 1; i < n; i += 2) {
2180 <                Thread.State s; ForkJoinWorkerThread wt;
2181 <                if ((w = ws[i]) != null && (wt = w.owner) != null &&
2182 <                    w.eventCount >= 0 &&
2183 <                    (s = wt.getState()) != Thread.State.BLOCKED &&
2184 <                    s != Thread.State.WAITING &&
2185 <                    s != Thread.State.TIMED_WAITING)
2785 >            for (int i = 1; i < ws.length; i += 2) {
2786 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2787                      ++rc;
2788              }
2789          }
# Line 2197 | Line 2798 | public class ForkJoinPool extends Abstra
2798       * @return the number of active threads
2799       */
2800      public int getActiveThreadCount() {
2801 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2801 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2802          return (r <= 0) ? 0 : r; // suppress momentarily negative values
2803      }
2804  
# Line 2213 | Line 2814 | public class ForkJoinPool extends Abstra
2814       * @return {@code true} if all threads are currently idle
2815       */
2816      public boolean isQuiescent() {
2817 <        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2817 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2818      }
2819  
2820      /**
# Line 2228 | Line 2829 | public class ForkJoinPool extends Abstra
2829       * @return the number of steals
2830       */
2831      public long getStealCount() {
2832 <        long count = stealCount.get();
2832 >        long count = stealCount;
2833          WorkQueue[] ws; WorkQueue w;
2834          if ((ws = workQueues) != null) {
2835 <            int n = ws.length;
2235 <            for (int i = 1; i < n; i += 2) {
2835 >            for (int i = 1; i < ws.length; i += 2) {
2836                  if ((w = ws[i]) != null)
2837 <                    count += w.totalSteals;
2837 >                    count += w.nsteals;
2838              }
2839          }
2840          return count;
# Line 2254 | Line 2854 | public class ForkJoinPool extends Abstra
2854          long count = 0;
2855          WorkQueue[] ws; WorkQueue w;
2856          if ((ws = workQueues) != null) {
2857 <            int n = ws.length;
2258 <            for (int i = 1; i < n; i += 2) {
2857 >            for (int i = 1; i < ws.length; i += 2) {
2858                  if ((w = ws[i]) != null)
2859                      count += w.queueSize();
2860              }
# Line 2274 | Line 2873 | public class ForkJoinPool extends Abstra
2873          int count = 0;
2874          WorkQueue[] ws; WorkQueue w;
2875          if ((ws = workQueues) != null) {
2876 <            int n = ws.length;
2278 <            for (int i = 0; i < n; i += 2) {
2876 >            for (int i = 0; i < ws.length; i += 2) {
2877                  if ((w = ws[i]) != null)
2878                      count += w.queueSize();
2879              }
# Line 2292 | Line 2890 | public class ForkJoinPool extends Abstra
2890      public boolean hasQueuedSubmissions() {
2891          WorkQueue[] ws; WorkQueue w;
2892          if ((ws = workQueues) != null) {
2893 <            int n = ws.length;
2894 <            for (int i = 0; i < n; i += 2) {
2297 <                if ((w = ws[i]) != null && w.queueSize() != 0)
2893 >            for (int i = 0; i < ws.length; i += 2) {
2894 >                if ((w = ws[i]) != null && !w.isEmpty())
2895                      return true;
2896              }
2897          }
# Line 2311 | Line 2908 | public class ForkJoinPool extends Abstra
2908      protected ForkJoinTask<?> pollSubmission() {
2909          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2910          if ((ws = workQueues) != null) {
2911 <            int n = ws.length;
2315 <            for (int i = 0; i < n; i += 2) {
2911 >            for (int i = 0; i < ws.length; i += 2) {
2912                  if ((w = ws[i]) != null && (t = w.poll()) != null)
2913                      return t;
2914              }
# Line 2341 | Line 2937 | public class ForkJoinPool extends Abstra
2937          int count = 0;
2938          WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2939          if ((ws = workQueues) != null) {
2940 <            int n = ws.length;
2345 <            for (int i = 0; i < n; ++i) {
2940 >            for (int i = 0; i < ws.length; ++i) {
2941                  if ((w = ws[i]) != null) {
2942                      while ((t = w.poll()) != null) {
2943                          c.add(t);
# Line 2362 | Line 2957 | public class ForkJoinPool extends Abstra
2957       * @return a string identifying this pool, as well as its state
2958       */
2959      public String toString() {
2960 <        long st = getStealCount();
2961 <        long qt = getQueuedTaskCount();
2962 <        long qs = getQueuedSubmissionCount();
2368 <        int rc = getRunningThreadCount();
2369 <        int pc = parallelism;
2960 >        // Use a single pass through workQueues to collect counts
2961 >        long qt = 0L, qs = 0L; int rc = 0;
2962 >        long st = stealCount;
2963          long c = ctl;
2964 +        WorkQueue[] ws; WorkQueue w;
2965 +        if ((ws = workQueues) != null) {
2966 +            for (int i = 0; i < ws.length; ++i) {
2967 +                if ((w = ws[i]) != null) {
2968 +                    int size = w.queueSize();
2969 +                    if ((i & 1) == 0)
2970 +                        qs += size;
2971 +                    else {
2972 +                        qt += size;
2973 +                        st += w.nsteals;
2974 +                        if (w.isApparentlyUnblocked())
2975 +                            ++rc;
2976 +                    }
2977 +                }
2978 +            }
2979 +        }
2980 +        int pc = (config & SMASK);
2981          int tc = pc + (short)(c >>> TC_SHIFT);
2982          int ac = pc + (int)(c >> AC_SHIFT);
2983          if (ac < 0) // ignore transient negative
# Line 2376 | Line 2986 | public class ForkJoinPool extends Abstra
2986          if ((c & STOP_BIT) != 0)
2987              level = (tc == 0) ? "Terminated" : "Terminating";
2988          else
2989 <            level = runState < 0 ? "Shutting down" : "Running";
2989 >            level = plock < 0 ? "Shutting down" : "Running";
2990          return super.toString() +
2991              "[" + level +
2992              ", parallelism = " + pc +
# Line 2390 | Line 3000 | public class ForkJoinPool extends Abstra
3000      }
3001  
3002      /**
3003 <     * Initiates an orderly shutdown in which previously submitted
3004 <     * tasks are executed, but no new tasks will be accepted.
3005 <     * Invocation has no additional effect if already shut down.
3006 <     * Tasks that are in the process of being submitted concurrently
3007 <     * during the course of this method may or may not be rejected.
3003 >     * Possibly initiates an orderly shutdown in which previously
3004 >     * submitted tasks are executed, but no new tasks will be
3005 >     * accepted. Invocation has no effect on execution state if this
3006 >     * is the {@link #commonPool()}, and no additional effect if
3007 >     * already shut down.  Tasks that are in the process of being
3008 >     * submitted concurrently during the course of this method may or
3009 >     * may not be rejected.
3010       *
3011       * @throws SecurityException if a security manager exists and
3012       *         the caller is not permitted to modify threads
# Line 2403 | Line 3015 | public class ForkJoinPool extends Abstra
3015       */
3016      public void shutdown() {
3017          checkPermission();
3018 <        enableShutdown();
2407 <        tryTerminate(false);
3018 >        tryTerminate(false, true);
3019      }
3020  
3021      /**
3022 <     * Attempts to cancel and/or stop all tasks, and reject all
3023 <     * subsequently submitted tasks.  Tasks that are in the process of
3024 <     * being submitted or executed concurrently during the course of
3025 <     * this method may or may not be rejected. This method cancels
3026 <     * both existing and unexecuted tasks, in order to permit
3027 <     * termination in the presence of task dependencies. So the method
3028 <     * always returns an empty list (unlike the case for some other
3029 <     * Executors).
3022 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3023 >     * all subsequently submitted tasks.  Invocation has no effect on
3024 >     * execution state if this is the {@link #commonPool()}, and no
3025 >     * additional effect if already shut down. Otherwise, tasks that
3026 >     * are in the process of being submitted or executed concurrently
3027 >     * during the course of this method may or may not be
3028 >     * rejected. This method cancels both existing and unexecuted
3029 >     * tasks, in order to permit termination in the presence of task
3030 >     * dependencies. So the method always returns an empty list
3031 >     * (unlike the case for some other Executors).
3032       *
3033       * @return an empty list
3034       * @throws SecurityException if a security manager exists and
# Line 2425 | Line 3038 | public class ForkJoinPool extends Abstra
3038       */
3039      public List<Runnable> shutdownNow() {
3040          checkPermission();
3041 <        enableShutdown();
2429 <        tryTerminate(true);
3041 >        tryTerminate(true, true);
3042          return Collections.emptyList();
3043      }
3044  
# Line 2438 | Line 3050 | public class ForkJoinPool extends Abstra
3050      public boolean isTerminated() {
3051          long c = ctl;
3052          return ((c & STOP_BIT) != 0L &&
3053 <                (short)(c >>> TC_SHIFT) == -parallelism);
3053 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3054      }
3055  
3056      /**
# Line 2446 | Line 3058 | public class ForkJoinPool extends Abstra
3058       * commenced but not yet completed.  This method may be useful for
3059       * debugging. A return of {@code true} reported a sufficient
3060       * period after shutdown may indicate that submitted tasks have
3061 <     * ignored or suppressed interruption, or are waiting for IO,
3061 >     * ignored or suppressed interruption, or are waiting for I/O,
3062       * causing this executor not to properly terminate. (See the
3063       * advisory notes for class {@link ForkJoinTask} stating that
3064       * tasks should not normally entail blocking operations.  But if
# Line 2457 | Line 3069 | public class ForkJoinPool extends Abstra
3069      public boolean isTerminating() {
3070          long c = ctl;
3071          return ((c & STOP_BIT) != 0L &&
3072 <                (short)(c >>> TC_SHIFT) != -parallelism);
3072 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3073      }
3074  
3075      /**
# Line 2466 | Line 3078 | public class ForkJoinPool extends Abstra
3078       * @return {@code true} if this pool has been shut down
3079       */
3080      public boolean isShutdown() {
3081 <        return runState < 0;
3081 >        return plock < 0;
3082      }
3083  
3084      /**
3085 <     * Blocks until all tasks have completed execution after a shutdown
3086 <     * request, or the timeout occurs, or the current thread is
3087 <     * interrupted, whichever happens first.
3085 >     * Blocks until all tasks have completed execution after a
3086 >     * shutdown request, or the timeout occurs, or the current thread
3087 >     * is interrupted, whichever happens first. Because the {@link
3088 >     * #commonPool()} never terminates until program shutdown, when
3089 >     * applied to the common pool, this method is equivalent to {@link
3090 >     * #awaitQuiescence} but always returns {@code false}.
3091       *
3092       * @param timeout the maximum time to wait
3093       * @param unit the time unit of the timeout argument
# Line 2482 | Line 3097 | public class ForkJoinPool extends Abstra
3097       */
3098      public boolean awaitTermination(long timeout, TimeUnit unit)
3099          throws InterruptedException {
3100 +        if (Thread.interrupted())
3101 +            throw new InterruptedException();
3102 +        if (this == common) {
3103 +            awaitQuiescence(timeout, unit);
3104 +            return false;
3105 +        }
3106          long nanos = unit.toNanos(timeout);
3107 <        final ReentrantLock lock = this.lock;
3108 <        lock.lock();
3109 <        try {
3110 <            for (;;) {
3111 <                if (isTerminated())
3112 <                    return true;
3113 <                if (nanos <= 0)
3107 >        if (isTerminated())
3108 >            return true;
3109 >        long startTime = System.nanoTime();
3110 >        boolean terminated = false;
3111 >        synchronized (this) {
3112 >            for (long waitTime = nanos, millis = 0L;;) {
3113 >                if (terminated = isTerminated() ||
3114 >                    waitTime <= 0L ||
3115 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3116 >                    break;
3117 >                wait(millis);
3118 >                waitTime = nanos - (System.nanoTime() - startTime);
3119 >            }
3120 >        }
3121 >        return terminated;
3122 >    }
3123 >
3124 >    /**
3125 >     * If called by a ForkJoinTask operating in this pool, equivalent
3126 >     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3127 >     * waits and/or attempts to assist performing tasks until this
3128 >     * pool {@link #isQuiescent} or the indicated timeout elapses.
3129 >     *
3130 >     * @param timeout the maximum time to wait
3131 >     * @param unit the time unit of the timeout argument
3132 >     * @return {@code true} if quiescent; {@code false} if the
3133 >     * timeout elapsed.
3134 >     */
3135 >    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3136 >        long nanos = unit.toNanos(timeout);
3137 >        ForkJoinWorkerThread wt;
3138 >        Thread thread = Thread.currentThread();
3139 >        if ((thread instanceof ForkJoinWorkerThread) &&
3140 >            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3141 >            helpQuiescePool(wt.workQueue);
3142 >            return true;
3143 >        }
3144 >        long startTime = System.nanoTime();
3145 >        WorkQueue[] ws;
3146 >        int r = 0, m;
3147 >        boolean found = true;
3148 >        while (!isQuiescent() && (ws = workQueues) != null &&
3149 >               (m = ws.length - 1) >= 0) {
3150 >            if (!found) {
3151 >                if ((System.nanoTime() - startTime) > nanos)
3152                      return false;
3153 <                nanos = termination.awaitNanos(nanos);
3153 >                Thread.yield(); // cannot block
3154 >            }
3155 >            found = false;
3156 >            for (int j = (m + 1) << 2; j >= 0; --j) {
3157 >                ForkJoinTask<?> t; WorkQueue q; int b;
3158 >                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3159 >                    found = true;
3160 >                    if ((t = q.pollAt(b)) != null) {
3161 >                        if (q.base - q.top < 0)
3162 >                            signalWork(q);
3163 >                        t.doExec();
3164 >                    }
3165 >                    break;
3166 >                }
3167              }
2496        } finally {
2497            lock.unlock();
3168          }
3169 +        return true;
3170 +    }
3171 +
3172 +    /**
3173 +     * Waits and/or attempts to assist performing tasks indefinitely
3174 +     * until the {@link #commonPool()} {@link #isQuiescent}
3175 +     */
3176 +    static void quiesceCommonPool() {
3177 +        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3178      }
3179  
3180      /**
# Line 2594 | Line 3273 | public class ForkJoinPool extends Abstra
3273      public static void managedBlock(ManagedBlocker blocker)
3274          throws InterruptedException {
3275          Thread t = Thread.currentThread();
3276 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3277 <                          ((ForkJoinWorkerThread)t).pool : null);
3278 <        while (!blocker.isReleasable()) {
3279 <            if (p == null || p.tryCompensate()) {
3280 <                try {
3281 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3282 <                } finally {
3283 <                    if (p != null)
3276 >        if (t instanceof ForkJoinWorkerThread) {
3277 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3278 >            while (!blocker.isReleasable()) { // variant of helpSignal
3279 >                WorkQueue[] ws; WorkQueue q; int m, u;
3280 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3281 >                    for (int i = 0; i <= m; ++i) {
3282 >                        if (blocker.isReleasable())
3283 >                            return;
3284 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3285 >                            p.signalWork(q);
3286 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3287 >                                (u >> UAC_SHIFT) >= 0)
3288 >                                break;
3289 >                        }
3290 >                    }
3291 >                }
3292 >                if (p.tryCompensate()) {
3293 >                    try {
3294 >                        do {} while (!blocker.isReleasable() &&
3295 >                                     !blocker.block());
3296 >                    } finally {
3297                          p.incrementActiveCount();
3298 +                    }
3299 +                    break;
3300                  }
2607                break;
3301              }
3302          }
3303 +        else {
3304 +            do {} while (!blocker.isReleasable() &&
3305 +                         !blocker.block());
3306 +        }
3307      }
3308  
3309      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2614 | Line 3311 | public class ForkJoinPool extends Abstra
3311      // implement RunnableFuture.
3312  
3313      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3314 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3314 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3315      }
3316  
3317      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3318 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3318 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3319      }
3320  
3321      // Unsafe mechanics
3322      private static final sun.misc.Unsafe U;
3323      private static final long CTL;
2627    private static final long RUNSTATE;
3324      private static final long PARKBLOCKER;
3325 +    private static final int ABASE;
3326 +    private static final int ASHIFT;
3327 +    private static final long STEALCOUNT;
3328 +    private static final long PLOCK;
3329 +    private static final long INDEXSEED;
3330 +    private static final long QLOCK;
3331  
3332      static {
3333 <        poolNumberGenerator = new AtomicInteger();
2632 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2633 <        defaultForkJoinWorkerThreadFactory =
2634 <            new DefaultForkJoinWorkerThreadFactory();
2635 <        int s;
3333 >        int s; // initialize field offsets for CAS etc
3334          try {
3335              U = getUnsafe();
3336              Class<?> k = ForkJoinPool.class;
2639            Class<?> tk = Thread.class;
3337              CTL = U.objectFieldOffset
3338                  (k.getDeclaredField("ctl"));
3339 <            RUNSTATE = U.objectFieldOffset
3340 <                (k.getDeclaredField("runState"));
3339 >            STEALCOUNT = U.objectFieldOffset
3340 >                (k.getDeclaredField("stealCount"));
3341 >            PLOCK = U.objectFieldOffset
3342 >                (k.getDeclaredField("plock"));
3343 >            INDEXSEED = U.objectFieldOffset
3344 >                (k.getDeclaredField("indexSeed"));
3345 >            Class<?> tk = Thread.class;
3346              PARKBLOCKER = U.objectFieldOffset
3347                  (tk.getDeclaredField("parkBlocker"));
3348 +            Class<?> wk = WorkQueue.class;
3349 +            QLOCK = U.objectFieldOffset
3350 +                (wk.getDeclaredField("qlock"));
3351 +            Class<?> ak = ForkJoinTask[].class;
3352 +            ABASE = U.arrayBaseOffset(ak);
3353 +            s = U.arrayIndexScale(ak);
3354 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3355          } catch (Exception e) {
3356              throw new Error(e);
3357          }
3358 +        if ((s & (s-1)) != 0)
3359 +            throw new Error("data type scale not a power of two");
3360 +
3361 +        submitters = new ThreadLocal<Submitter>();
3362 +        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3363 +            new DefaultForkJoinWorkerThreadFactory();
3364 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3365 +
3366 +        /*
3367 +         * Establish common pool parameters.  For extra caution,
3368 +         * computations to set up common pool state are here; the
3369 +         * constructor just assigns these values to fields.
3370 +         */
3371 +
3372 +        int par = 0;
3373 +        Thread.UncaughtExceptionHandler handler = null;
3374 +        try {  // TBD: limit or report ignored exceptions?
3375 +            String pp = System.getProperty
3376 +                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3377 +            String hp = System.getProperty
3378 +                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3379 +            String fp = System.getProperty
3380 +                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3381 +            if (fp != null)
3382 +                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3383 +                       getSystemClassLoader().loadClass(fp).newInstance());
3384 +            if (hp != null)
3385 +                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3386 +                           getSystemClassLoader().loadClass(hp).newInstance());
3387 +            if (pp != null)
3388 +                par = Integer.parseInt(pp);
3389 +        } catch (Exception ignore) {
3390 +        }
3391 +
3392 +        if (par <= 0)
3393 +            par = Runtime.getRuntime().availableProcessors();
3394 +        if (par > MAX_CAP)
3395 +            par = MAX_CAP;
3396 +        commonParallelism = par;
3397 +        long np = (long)(-par); // precompute initial ctl value
3398 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3399 +
3400 +        common = new ForkJoinPool(par, ct, fac, handler);
3401      }
3402  
3403      /**
# Line 2658 | Line 3410 | public class ForkJoinPool extends Abstra
3410      private static sun.misc.Unsafe getUnsafe() {
3411          try {
3412              return sun.misc.Unsafe.getUnsafe();
3413 <        } catch (SecurityException se) {
3414 <            try {
3415 <                return java.security.AccessController.doPrivileged
3416 <                    (new java.security
3417 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3418 <                        public sun.misc.Unsafe run() throws Exception {
3419 <                            java.lang.reflect.Field f = sun.misc
3420 <                                .Unsafe.class.getDeclaredField("theUnsafe");
3421 <                            f.setAccessible(true);
3422 <                            return (sun.misc.Unsafe) f.get(null);
3423 <                        }});
3424 <            } catch (java.security.PrivilegedActionException e) {
3425 <                throw new RuntimeException("Could not initialize intrinsics",
3426 <                                           e.getCause());
3427 <            }
3413 >        } catch (SecurityException tryReflectionInstead) {}
3414 >        try {
3415 >            return java.security.AccessController.doPrivileged
3416 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3417 >                public sun.misc.Unsafe run() throws Exception {
3418 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3419 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3420 >                        f.setAccessible(true);
3421 >                        Object x = f.get(null);
3422 >                        if (k.isInstance(x))
3423 >                            return k.cast(x);
3424 >                    }
3425 >                    throw new NoSuchFieldError("the Unsafe");
3426 >                }});
3427 >        } catch (java.security.PrivilegedActionException e) {
3428 >            throw new RuntimeException("Could not initialize intrinsics",
3429 >                                       e.getCause());
3430          }
3431      }
2678
3432   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines