ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.120 by jsr166, Tue Jan 31 01:32:25 2012 UTC vs.
Revision 1.181 by jsr166, Tue Feb 5 17:25:09 2013 UTC

# Line 11 | Line 11 | import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 19 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
22 import java.util.concurrent.atomic.AtomicInteger;
23 import java.util.concurrent.atomic.AtomicLong;
24 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
25 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 42 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 59 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
65 > * <p>As is the case with other ExecutorServices, there are three
66   * main task execution methods summarized in the following table.
67   * These are designed to be used primarily by clients not already
68   * engaged in fork/join computations in the current pool.  The main
# Line 94 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
107 < *  <pre> {@code
108 < * static final ForkJoinPool mainPool = new ForkJoinPool();
109 < * ...
110 < * public void sort(long[] array) {
111 < *   mainPool.invoke(new SortTask(array, 0, array.length));
112 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 177 | Line 174 | public class ForkJoinPool extends Abstra
174       * If an attempted steal fails, a thief always chooses a different
175       * random victim target to try next. So, in order for one thief to
176       * progress, it suffices for any in-progress poll or new push on
177 <     * any empty queue to complete.
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181       *
182       * This approach also enables support of a user mode in which local
183       * task processing is in FIFO, not LIFO order, simply by using
# Line 194 | Line 194 | public class ForkJoinPool extends Abstra
194       * WorkQueues are also used in a similar way for tasks submitted
195       * to the pool. We cannot mix these tasks in the same queues used
196       * for work-stealing (this would contaminate lifo/fifo
197 <     * processing). Instead, we loosely associate submission queues
197 >     * processing). Instead, we randomly associate submission queues
198       * with submitting threads, using a form of hashing.  The
199       * ThreadLocal Submitter class contains a value initially used as
200       * a hash code for choosing existing queues, but may be randomly
201       * repositioned upon contention with other submitters.  In
202 <     * essence, submitters act like workers except that they never
203 <     * take tasks, and they are multiplexed on to a finite number of
204 <     * shared work queues. However, classes are set up so that future
205 <     * extensions could allow submitters to optionally help perform
206 <     * tasks as well. Insertion of tasks in shared mode requires a
207 <     * lock (mainly to protect in the case of resizing) but we use
208 <     * only a simple spinlock (using bits in field runState), because
209 <     * submitters encountering a busy queue move on to try or create
210 <     * other queues, so never block.
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216       * Management
217       * ==========
# Line 229 | Line 233 | public class ForkJoinPool extends Abstra
233       * and their negations (used for thresholding) to fit into 16bit
234       * fields.
235       *
236 <     * Field "runState" contains 32 bits needed to register and
237 <     * deregister WorkQueues, as well as to enable shutdown. It is
238 <     * only modified under a lock (normally briefly held, but
239 <     * occasionally protecting allocations and resizings) but even
240 <     * when locked remains available to check consistency. An
241 <     * auxiliary field "growHints", also only modified under lock,
242 <     * contains a candidate index for the next WorkQueue and
239 <     * a mask for submission queue indices.
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243       *
244       * Recording WorkQueues.  WorkQueues are recorded in the
245 <     * "workQueues" array that is created upon pool construction and
246 <     * expanded if necessary.  Updates to the array while recording
247 <     * new workers and unrecording terminated ones are protected from
248 <     * each other by a lock but the array is otherwise concurrently
249 <     * readable, and accessed directly.  To simplify index-based
250 <     * operations, the array size is always a power of two, and all
251 <     * readers must tolerate null slots. Shared (submission) queues
252 <     * are at even indices, worker queues at odd indices. Grouping
253 <     * them together in this way simplifies and speeds up task
254 <     * scanning. To avoid flailing during start-up, the array is
255 <     * presized to hold twice #parallelism workers (which is unlikely
253 <     * to need further resizing during execution). But to avoid
254 <     * dealing with so many null slots, variable runState includes a
255 <     * mask for the nearest power of two that contains all currently
256 <     * used indices.
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256       *
257       * All worker thread creation is on-demand, triggered by task
258       * submissions, replacement of terminated workers, and/or
# Line 314 | Line 313 | public class ForkJoinPool extends Abstra
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had fewer than two tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans;
321 <     * together these cover the signals needed in cases when more
322 <     * tasks are pushed but untaken, and improve performance compared
323 <     * to having one thread wake up all workers.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331       *
332       * Trimming workers. To release resources after periods of lack of
333       * use, a worker starting to wait when the pool is quiescent will
334 <     * time out and terminate if the pool has remained quiescent for
335 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
336 <     * terminating all workers after long periods of non-use.
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339       *
340       * Shutdown and Termination. A call to shutdownNow atomically sets
341 <     * a runState bit and then (non-atomically) sets each worker's
342 <     * runState status, cancels all unprocessed tasks, and wakes up
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343       * all waiting workers.  Detecting whether termination should
344       * commence after a non-abrupt shutdown() call requires more work
345       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 359 | Line 367 | public class ForkJoinPool extends Abstra
367       *      method tryCompensate() may create or re-activate a spare
368       *      thread to compensate for blocked joiners until they unblock.
369       *
370 <     * A third form (implemented in tryRemoveAndExec and
371 <     * tryPollForAndExec) amounts to helping a hypothetical
372 <     * compensator: If we can readily tell that a possible action of a
373 <     * compensator is to steal and execute the task being joined, the
374 <     * joining thread can do so directly, without the need for a
375 <     * compensation thread (although at the expense of larger run-time
376 <     * stacks, but the tradeoff is typically worthwhile).
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377       *
378       * The ManagedBlocker extension API can't use helping so relies
379       * only on compensation in method awaitBlocker.
# Line 385 | Line 393 | public class ForkJoinPool extends Abstra
393       * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394       * that: (1) We only maintain dependency links across workers upon
395       * steals, rather than use per-task bookkeeping.  This sometimes
396 <     * requires a linear scan of workQueues array to locate stealers, but
397 <     * often doesn't because stealers leave hints (that may become
398 <     * stale/wrong) of where to locate them.  A stealHint is only a
399 <     * hint because a worker might have had multiple steals and the
400 <     * hint records only one of them (usually the most current).
401 <     * Hinting isolates cost to when it is needed, rather than adding
402 <     * to per-task overhead.  (2) It is "shallow", ignoring nesting
403 <     * and potentially cyclic mutual steals.  (3) It is intentionally
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404       * racy: field currentJoin is updated only while actively joining,
405       * which means that we miss links in the chain during long-lived
406       * tasks, GC stalls etc (which is OK since blocking in such cases
407       * is usually a good idea).  (4) We bound the number of attempts
408 <     * to find work (see MAX_HELP_DEPTH) and fall back to suspending
409 <     * the worker and if necessary replacing it with another.
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416       *
417       * It is impossible to keep exactly the target parallelism number
418       * of threads running at any given time.  Determining the
419       * existence of conservatively safe helping targets, the
420       * availability of already-created spares, and the apparent need
421       * to create new spares are all racy, so we rely on multiple
422 <     * retries of each.  Currently, in keeping with on-demand
423 <     * signalling policy, we compensate only if blocking would leave
424 <     * less than one active (non-waiting, non-blocked) worker.
425 <     * Additionally, to avoid some false alarms due to GC, lagging
426 <     * counters, system activity, etc, compensated blocking for joins
427 <     * is only attempted after rechecks stabilize in
428 <     * ForkJoinTask.awaitJoin. (Retries are interspersed with
429 <     * Thread.yield, for good citizenship.)
430 <     *
431 <     * Style notes: There is a lot of representation-level coupling
432 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
433 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
434 <     * managed by ForkJoinPool, so are directly accessed.  There is
435 <     * little point trying to reduce this, since any associated future
436 <     * changes in representations will need to be accompanied by
437 <     * algorithmic changes anyway. Several methods intrinsically
438 <     * sprawl because they must accumulate sets of consistent reads of
439 <     * volatiles held in local variables.  Methods signalWork() and
440 <     * scan() are the main bottlenecks, so are especially heavily
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static common Pool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467 >     * trying to reduce this, since any associated future changes in
468 >     * representations will need to be accompanied by algorithmic
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473       * micro-optimized/mangled.  There are lots of inline assignments
474       * (of form "while ((local = field) != 0)") which are usually the
475       * simplest way to ensure the required read orderings (which are
# Line 431 | Line 477 | public class ForkJoinPool extends Abstra
477       * declarations of these locals at the heads of methods or blocks.
478       * There are several occurrences of the unusual "do {} while
479       * (!cas...)"  which is the simplest way to force an update of a
480 <     * CAS'ed variable. There are also other coding oddities that help
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482       * some methods perform reasonably even when interpreted (not
483       * compiled).
484       *
# Line 449 | Line 496 | public class ForkJoinPool extends Abstra
496      // Static utilities
497  
498      /**
452     * Computes an initial hash code (also serving as a non-zero
453     * random seed) for a thread id. This method is expected to
454     * provide higher-quality hash codes than using method hashCode().
455     */
456    static final int hashId(long id) {
457        int h = (int)id ^ (int)(id >>> 32); // Use MurmurHash of thread id
458        h ^= h >>> 16; h *= 0x85ebca6b;
459        h ^= h >>> 13; h *= 0xc2b2ae35;
460        h ^= h >>> 16;
461        return (h == 0)? 1 : h; // ensure nonzero
462    }
463
464    /**
499       * If there is a security manager, makes sure caller has
500       * permission to modify threads.
501       */
# Line 493 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 <     * A simple non-reentrant lock used for exclusion when managing
539 <     * queues and workers. We use a custom lock so that we can readily
540 <     * probe lock state in constructions that check among alternative
541 <     * actions. The lock is normally only very briefly held, and
542 <     * sometimes treated as a spinlock, but other usages block to
543 <     * reduce overall contention in those cases where locked code
544 <     * bodies perform allocation/resizing.
545 <     */
546 <    static final class Mutex extends AbstractQueuedSynchronizer {
547 <        public final boolean tryAcquire(int ignore) {
548 <            return compareAndSetState(0, 1);
549 <        }
550 <        public final boolean tryRelease(int ignore) {
551 <            setState(0);
552 <            return true;
553 <        }
554 <        public final void lock() { acquire(0); }
521 <        public final void unlock() { release(0); }
522 <        public final boolean isHeldExclusively() { return getState() == 1; }
523 <        public final Condition newCondition() { return new ConditionObject(); }
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555      }
556  
557      /**
# Line 530 | Line 561 | public class ForkJoinPool extends Abstra
561       * actually do anything beyond having a unique identity.
562       */
563      static final class EmptyTask extends ForkJoinTask<Void> {
564 +        private static final long serialVersionUID = -7721805057305804111L;
565          EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566          public final Void getRawResult() { return null; }
567          public final void setRawResult(Void x) {}
# Line 550 | Line 582 | public class ForkJoinPool extends Abstra
582       *
583       * Field "top" is the index (mod array.length) of the next queue
584       * slot to push to or pop from. It is written only by owner thread
585 <     * for push, or under lock for trySharedPush, and accessed by
586 <     * other threads only after reading (volatile) base.  Both top and
587 <     * base are allowed to wrap around on overflow, but (top - base)
588 <     * (or more commonly -(base - top) to force volatile read of base
589 <     * before top) still estimates size.
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596       *
597       * The array slots are read and written using the emulation of
598       * volatiles/atomics provided by Unsafe. Insertions must in
599       * general use putOrderedObject as a form of releasing store to
600       * ensure that all writes to the task object are ordered before
601 <     * its publication in the queue. (Although we can avoid one case
602 <     * of this when locked in trySharedPush.) All removals entail a
603 <     * CAS to null.  The array is always a power of two. To ensure
604 <     * safety of Unsafe array operations, all accesses perform
567 <     * explicit null checks and implicit bounds checks via
568 <     * power-of-two masking.
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605       *
606       * In addition to basic queuing support, this class contains
607       * fields described elsewhere to control execution. It turns out
608 <     * to work better memory-layout-wise to include them in this
609 <     * class rather than a separate class.
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610       *
611       * Performance on most platforms is very sensitive to placement of
612       * instances of both WorkQueues and their arrays -- we absolutely
# Line 584 | Line 620 | public class ForkJoinPool extends Abstra
620       * trades off slightly slower average field access for the sake of
621       * avoiding really bad worst-case access. (Until better JVM
622       * support is in place, this padding is dependent on transient
623 <     * properties of JVM field layout rules.)  We also take care in
623 >     * properties of JVM field layout rules.) We also take care in
624       * allocating, sizing and resizing the array. Non-shared queue
625 <     * arrays are initialized (via method growArray) by workers before
626 <     * use. Others are allocated on first use.
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627       */
628      static final class WorkQueue {
629          /**
630           * Capacity of work-stealing queue array upon initialization.
631 <         * Must be a power of two; at least 4, but set larger to
632 <         * reduce cacheline sharing among queues.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637           */
638 <        static final int INITIAL_QUEUE_CAPACITY = 1 << 8;
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639  
640          /**
641           * Maximum size for queue arrays. Must be a power of two less
# Line 606 | Line 646 | public class ForkJoinPool extends Abstra
646           */
647          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648  
649 <        volatile long totalSteals; // cumulative number of steals
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652          int seed;                  // for random scanning; initialize nonzero
653          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654          int nextWait;              // encoded record of next event waiter
655 <        int rescans;               // remaining scans until block
614 <        int nsteals;               // top-level task executions since last idle
615 <        final int mode;            // lifo, fifo, or shared
655 >        int hint;                  // steal or signal hint (index)
656          int poolIndex;             // index of this queue in pool (or 0)
657 <        int stealHint;             // index of most recent known stealer
658 <        volatile int runState;     // 1: locked, -1: terminate; else 0
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660          volatile int base;         // index of next slot for poll
661          int top;                   // index of next slot for push
662          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 +        final ForkJoinPool pool;   // the containing pool (may be null)
664          final ForkJoinWorkerThread owner; // owning thread or null if shared
665          volatile Thread parker;    // == owner during call to park; else null
666 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667          ForkJoinTask<?> currentSteal; // current non-local task being executed
626        // Heuristic padding to ameliorate unfortunate memory placements
627        Object p00, p01, p02, p03, p04, p05, p06, p07, p08, p09, p0a;
668  
669 <        WorkQueue(ForkJoinWorkerThread owner, int mode) {
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675              this.owner = owner;
676              this.mode = mode;
677 +            this.seed = seed;
678              // Place indices in the center of array (that is not yet allocated)
679              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680          }
681  
682          /**
683 <         * Returns number of tasks in the queue.
683 >         * Returns the approximate number of tasks in the queue.
684           */
685          final int queueSize() {
686 <            int n = base - top; // non-owner callers must read base first
687 <            return (n >= 0) ? 0 : -n;
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689 >
690 >       /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704          }
705  
706          /**
707 <         * Pushes a task. Call only by owner in unshared queues.
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709           *
710           * @param task the task. Caller must ensure non-null.
711 <         * @param p if non-null, pool to signal if necessary
649 <         * @throw RejectedExecutionException if array cannot be resized
711 >         * @throws RejectedExecutionException if array cannot be resized
712           */
713 <        final void push(ForkJoinTask<?> task, ForkJoinPool p) {
714 <            ForkJoinTask<?>[] a;
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715              int s = top, m, n;
716              if ((a = array) != null) {    // ignore if queue removed
717 <                U.putOrderedObject
718 <                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719                  if ((n = (top = s + 1) - base) <= 2) {
720 <                    if (p != null)
721 <                        p.signalWork();
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722                  }
723                  else if (n >= m)
724 <                    growArray(true);
724 >                    growArray();
725 >            }
726 >        }
727 >
728 >       /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752              }
753 +            return a;
754          }
755  
756          /**
757 <         * Pushes a task if lock is free and array is either big
758 <         * enough or can be resized to be big enough.
669 <         *
670 <         * @param task the task. Caller must ensure non-null.
671 <         * @return true if submitted
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759           */
760 <        final boolean trySharedPush(ForkJoinTask<?> task) {
761 <            boolean submitted = false;
762 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
763 <                ForkJoinTask<?>[] a = array;
764 <                int s = top;
765 <                try {
766 <                    if ((a != null && a.length > s + 1 - base) ||
767 <                        (a = growArray(false)) != null) { // must presize
768 <                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
769 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
683 <                        top = s + 1;
684 <                        submitted = true;
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770                      }
686                } finally {
687                    runState = 0;                         // unlock
771                  }
772              }
773 <            return submitted;
773 >            return null;
774          }
775  
776          /**
777 <         * Takes next task, if one exists, in FIFO order.
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780           */
781 <        final ForkJoinTask<?> poll() {
782 <            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
783 <            while ((b = base) - top < 0 && (a = array) != null) {
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784                  int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785                  if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786                      base == b &&
# Line 708 | Line 793 | public class ForkJoinPool extends Abstra
793          }
794  
795          /**
796 <         * Takes next task, if one exists, in LIFO order.  Call only
712 <         * by owner in unshared queues. (We do not have a shared
713 <         * version of this method because it is never needed.)
796 >         * Takes next task, if one exists, in FIFO order.
797           */
798 <        final ForkJoinTask<?> pop() {
799 <            ForkJoinTask<?> t; int m;
800 <            ForkJoinTask<?>[] a = array;
801 <            if (a != null && (m = a.length - 1) >= 0) {
802 <                for (int s; (s = top - 1) - base >= 0;) {
803 <                    int j = ((m & s) << ASHIFT) + ABASE;
804 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
805 <                        break;
806 <                    if (U.compareAndSwapObject(a, j, t, null)) {
724 <                        top = s;
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807                          return t;
808                      }
809                  }
810 +                else if (base == b) {
811 +                    if (b + 1 == top)
812 +                        break;
813 +                    Thread.yield(); // wait for lagging update (very rare)
814 +                }
815              }
816              return null;
817          }
# Line 749 | Line 836 | public class ForkJoinPool extends Abstra
836          }
837  
838          /**
752         * Returns task at index b if b is current base of queue.
753         */
754        final ForkJoinTask<?> pollAt(int b) {
755            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
756            if ((a = array) != null) {
757                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
758                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
759                    base == b &&
760                    U.compareAndSwapObject(a, j, t, null)) {
761                    base = b + 1;
762                    return t;
763                }
764            }
765            return null;
766        }
767
768        /**
839           * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841           */
842          final boolean tryUnpush(ForkJoinTask<?> t) {
843              ForkJoinTask<?>[] a; int s;
# Line 780 | Line 851 | public class ForkJoinPool extends Abstra
851          }
852  
853          /**
854 <         * Polls the given task only if it is at the current base.
854 >         * Removes and cancels all known tasks, ignoring any exceptions.
855           */
856 <        final boolean pollFor(ForkJoinTask<?> task) {
857 <            ForkJoinTask<?>[] a; int b;
858 <            if ((b = base) - top < 0 && (a = array) != null) {
859 <                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
860 <                if (U.getObjectVolatile(a, j) == task && base == b &&
861 <                    U.compareAndSwapObject(a, j, task, null)) {
862 <                    base = b + 1;
863 <                    return true;
856 >        final void cancelAll() {
857 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 >                ForkJoinTask.cancelIgnoringExceptions(t);
861 >        }
862 >
863 >        /**
864 >         * Computes next value for random probes.  Scans don't require
865 >         * a very high quality generator, but also not a crummy one.
866 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 >         * This is manually inlined in its usages in ForkJoinPool to
868 >         * avoid writes inside busy scan loops.
869 >         */
870 >        final int nextSeed() {
871 >            int r = seed;
872 >            r ^= r << 13;
873 >            r ^= r >>> 17;
874 >            return seed = r ^= r << 5;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893                  }
894              }
795            return false;
895          }
896  
897          /**
898 <         * If present, removes from queue and executes the given task, or
899 <         * any other cancelled task. Returns (true) immediately on any CAS
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908           * or consistency check failure so caller can retry.
909           *
910 <         * @return false if no progress can be made
910 >         * @return false if no progress can be made, else true;
911           */
912          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 <            boolean removed = false, empty = true, progress = true;
913 >            boolean stat = true, removed = false, empty = true;
914              ForkJoinTask<?>[] a; int m, s, b, n;
915              if ((a = array) != null && (m = a.length - 1) >= 0 &&
916                  (n = (s = top) - (b = base)) > 0) {
# Line 833 | Line 940 | public class ForkJoinPool extends Abstra
940                      }
941                      if (--n == 0) {
942                          if (!empty && base == b)
943 <                            progress = false;
943 >                            stat = false;
944                          break;
945                      }
946                  }
947              }
948              if (removed)
949                  task.doExec();
950 <            return progress;
950 >            return stat;
951          }
952  
953          /**
954 <         * Initializes or doubles the capacity of array. Call either
955 <         * by owner or with lock held -- it is OK for base, but not
849 <         * top, to move while resizings are in progress.
850 <         *
851 <         * @param rejectOnFailure if true, throw exception if capacity
852 <         * exceeded (relayed ultimately to user); else return null.
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation.
956           */
957 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
958 <            ForkJoinTask<?>[] oldA = array;
959 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
960 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
961 <                int oldMask, t, b;
962 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
963 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
964 <                    (t = top) - (b = base) > 0) {
965 <                    int mask = size - 1;
966 <                    do {
967 <                        ForkJoinTask<?> x;
968 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
969 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
970 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
971 <                        if (x != null &&
972 <                            U.compareAndSwapObject(oldA, oldj, x, null))
973 <                            U.putObjectVolatile(a, j, x);
974 <                    } while (++b != t);
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971 >                        }
972 >                        else
973 >                            break; // restart
974 >                    }
975 >                    if ((r = r.completer) == null)
976 >                        break outer; // not part of root computation
977                  }
873                return a;
874            }
875            else if (!rejectOnFailure)
876                return null;
877            else
878                throw new RejectedExecutionException("Queue capacity exceeded");
879        }
880
881        /**
882         * Removes and cancels all known tasks, ignoring any exceptions.
883         */
884        final void cancelAll() {
885            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
886            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
887            for (ForkJoinTask<?> t; (t = poll()) != null; )
888                ForkJoinTask.cancelIgnoringExceptions(t);
889        }
890
891        /**
892         * Computes next value for random probes.  Scans don't require
893         * a very high quality generator, but also not a crummy one.
894         * Marsaglia xor-shift is cheap and works well enough.  Note:
895         * This is manually inlined in several usages in ForkJoinPool
896         * to avoid writes inside busy scan loops.
897         */
898        final int nextSeed() {
899            int r = seed;
900            r ^= r << 13;
901            r ^= r >>> 17;
902            return seed = r ^= r << 5;
903        }
904
905        // Execution methods
906
907        /**
908         * Removes and runs tasks until empty, using local mode
909         * ordering.
910         */
911        final void runLocalTasks() {
912            if (base - top < 0) {
913                for (ForkJoinTask<?> t; (t = nextLocalTask()) != null; )
914                    t.doExec();
978              }
979 +            return false;
980          }
981  
982          /**
983           * Executes a top-level task and any local tasks remaining
984           * after execution.
921         *
922         * @return true unless terminating
985           */
986 <        final boolean runTask(ForkJoinTask<?> t) {
925 <            boolean alive = true;
986 >        final void runTask(ForkJoinTask<?> t) {
987              if (t != null) {
988 <                currentSteal = t;
928 <                t.doExec();
929 <                runLocalTasks();
930 <                ++nsteals;
988 >                (currentSteal = t).doExec();
989                  currentSteal = null;
990 +                ++nsteals;
991 +                if (base - top < 0) {       // process remaining local tasks
992 +                    if (mode == 0)
993 +                        popAndExecAll();
994 +                    else
995 +                        pollAndExecAll();
996 +                }
997              }
933            else if (runState < 0)            // terminating
934                alive = false;
935            return alive;
998          }
999  
1000          /**
# Line 941 | Line 1003 | public class ForkJoinPool extends Abstra
1003          final void runSubtask(ForkJoinTask<?> t) {
1004              if (t != null) {
1005                  ForkJoinTask<?> ps = currentSteal;
1006 <                currentSteal = t;
945 <                t.doExec();
1006 >                (currentSteal = t).doExec();
1007                  currentSteal = ps;
1008              }
1009          }
# Line 959 | Line 1020 | public class ForkJoinPool extends Abstra
1020                      s != Thread.State.TIMED_WAITING);
1021          }
1022  
962        /**
963         * If this owned and is not already interrupted, try to
964         * interrupt and/or unpark, ignoring exceptions.
965         */
966        final void interruptOwner() {
967            Thread wt, p;
968            if ((wt = owner) != null && !wt.isInterrupted()) {
969                try {
970                    wt.interrupt();
971                } catch (SecurityException ignore) {
972                }
973            }
974            if ((p = parker) != null)
975                U.unpark(p);
976        }
977
1023          // Unsafe mechanics
1024          private static final sun.misc.Unsafe U;
1025 <        private static final long RUNSTATE;
1025 >        private static final long QLOCK;
1026          private static final int ABASE;
1027          private static final int ASHIFT;
1028          static {
984            int s;
1029              try {
1030                  U = getUnsafe();
1031                  Class<?> k = WorkQueue.class;
1032                  Class<?> ak = ForkJoinTask[].class;
1033 <                RUNSTATE = U.objectFieldOffset
1034 <                    (k.getDeclaredField("runState"));
1033 >                QLOCK = U.objectFieldOffset
1034 >                    (k.getDeclaredField("qlock"));
1035                  ABASE = U.arrayBaseOffset(ak);
1036 <                s = U.arrayIndexScale(ak);
1036 >                int scale = U.arrayIndexScale(ak);
1037 >                if ((scale & (scale - 1)) != 0)
1038 >                    throw new Error("data type scale not a power of two");
1039 >                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1040              } catch (Exception e) {
1041                  throw new Error(e);
1042              }
996            if ((s & (s-1)) != 0)
997                throw new Error("data type scale not a power of two");
998            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1043          }
1044      }
1045  
1002    /**
1003     * Per-thread records for threads that submit to pools. Currently
1004     * holds only pseudo-random seed / index that is used to choose
1005     * submission queues in method doSubmit. In the future, this may
1006     * also incorporate a means to implement different task rejection
1007     * and resubmission policies.
1008     */
1009    static final class Submitter {
1010        int seed;
1011        Submitter() { seed = hashId(Thread.currentThread().getId()); }
1012    }
1013
1014    /** ThreadLocal class for Submitters */
1015    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1016        public Submitter initialValue() { return new Submitter(); }
1017    }
1018
1046      // static fields (initialized in static initializer below)
1047  
1048      /**
# Line 1026 | Line 1053 | public class ForkJoinPool extends Abstra
1053          defaultForkJoinWorkerThreadFactory;
1054  
1055      /**
1056 <     * Generator for assigning sequence numbers as pool names.
1056 >     * Per-thread submission bookkeeping. Shared across all pools
1057 >     * to reduce ThreadLocal pollution and because random motion
1058 >     * to avoid contention in one pool is likely to hold for others.
1059 >     * Lazily initialized on first submission (but null-checked
1060 >     * in other contexts to avoid unnecessary initialization).
1061       */
1062 <    private static final AtomicInteger poolNumberGenerator;
1062 >    static final ThreadLocal<Submitter> submitters;
1063  
1064      /**
1065       * Permission required for callers of methods that may start or
# Line 1037 | Line 1068 | public class ForkJoinPool extends Abstra
1068      private static final RuntimePermission modifyThreadPermission;
1069  
1070      /**
1071 <     * Per-thread submission bookeeping. Shared across all pools
1072 <     * to reduce ThreadLocal pollution and because random motion
1073 <     * to avoid contention in one pool is likely to hold for others.
1071 >     * Common (static) pool. Non-null for public use unless a static
1072 >     * construction exception, but internal usages null-check on use
1073 >     * to paranoically avoid potential initialization circularities
1074 >     * as well as to simplify generated code.
1075       */
1076 <    private static final ThreadSubmitter submitters;
1076 >    static final ForkJoinPool common;
1077 >
1078 >    /**
1079 >     * Common pool parallelism. Must equal common.parallelism.
1080 >     */
1081 >    static final int commonParallelism;
1082 >
1083 >    /**
1084 >     * Sequence number for creating workerNamePrefix.
1085 >     */
1086 >    private static int poolNumberSequence;
1087 >
1088 >    /**
1089 >     * Returns the next sequence number. We don't expect this to
1090 >     * ever contend, so use simple builtin sync.
1091 >     */
1092 >    private static final synchronized int nextPoolId() {
1093 >        return ++poolNumberSequence;
1094 >    }
1095  
1096      // static constants
1097  
1098      /**
1099 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1100 <     * task when the pool is quiescent to instead try to shrink the
1101 <     * number of workers.  The exact value does not matter too
1102 <     * much. It must be short enough to release resources during
1103 <     * sustained periods of idleness, but not so short that threads
1104 <     * are continually re-created.
1099 >     * Initial timeout value (in nanoseconds) for the thread
1100 >     * triggering quiescence to park waiting for new work. On timeout,
1101 >     * the thread will instead try to shrink the number of
1102 >     * workers. The value should be large enough to avoid overly
1103 >     * aggressive shrinkage during most transient stalls (long GCs
1104 >     * etc).
1105 >     */
1106 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1107 >
1108 >    /**
1109 >     * Timeout value when there are more threads than parallelism level
1110       */
1111 <    private static final long SHRINK_RATE =
1057 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1111 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1112  
1113      /**
1114 <     * The timeout value for attempted shrinkage, includes
1061 <     * some slop to cope with system timer imprecision.
1114 >     * Tolerance for idle timeouts, to cope with timer undershoots
1115       */
1116 <    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1116 >    private static final long TIMEOUT_SLOP = 2000000L;
1117  
1118      /**
1119 <     * The maximum stolen->joining link depth allowed in tryHelpStealer.
1120 <     * Depths for legitimate chains are unbounded, but we use a fixed
1121 <     * constant to avoid (otherwise unchecked) cycles and to bound
1122 <     * staleness of traversal parameters at the expense of sometimes
1123 <     * blocking when we could be helping.
1119 >     * The maximum stolen->joining link depth allowed in method
1120 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1121 >     * chains are unbounded, but we use a fixed constant to avoid
1122 >     * (otherwise unchecked) cycles and to bound staleness of
1123 >     * traversal parameters at the expense of sometimes blocking when
1124 >     * we could be helping.
1125       */
1126 <    private static final int MAX_HELP_DEPTH = 16;
1126 >    private static final int MAX_HELP = 64;
1127 >
1128 >    /**
1129 >     * Increment for seed generators. See class ThreadLocal for
1130 >     * explanation.
1131 >     */
1132 >    private static final int SEED_INCREMENT = 0x61c88647;
1133  
1134      /**
1135       * Bits and masks for control variables
# Line 1099 | Line 1159 | public class ForkJoinPool extends Abstra
1159       * scan for them to avoid queuing races. Note however that
1160       * eventCount updates lag releases so usage requires care.
1161       *
1162 <     * Field runState is an int packed with:
1162 >     * Field plock is an int packed with:
1163       * SHUTDOWN: true if shutdown is enabled (1 bit)
1164 <     * SEQ:  a sequence number updated upon (de)registering workers (15 bits)
1165 <     * MASK: mask (power of 2 - 1) covering all registered poolIndexes (16 bits)
1164 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1165 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1166       *
1167 <     * The combination of mask and sequence number enables simple
1168 <     * consistency checks: Staleness of read-only operations on the
1169 <     * workQueues array can be checked by comparing runState before vs
1110 <     * after the reads. The low 16 bits (i.e, anding with SMASK) hold
1111 <     * the smallest power of two covering all indices, minus
1112 <     * one.
1167 >     * The sequence number enables simple consistency checks:
1168 >     * Staleness of read-only operations on the workQueues array can
1169 >     * be checked by comparing plock before vs after the reads.
1170       */
1171  
1172      // bit positions/shifts for fields
# Line 1119 | Line 1176 | public class ForkJoinPool extends Abstra
1176      private static final int  EC_SHIFT   = 16;
1177  
1178      // bounds
1122    private static final int  POOL_MAX   = 0x7fff;  // max #workers - 1
1179      private static final int  SMASK      = 0xffff;  // short bits
1180 <    private static final int  SQMASK     = 0xfffe;  // even short bits
1180 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1181 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1182 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1183      private static final int  SHORT_SIGN = 1 << 15;
1184      private static final int  INT_SIGN   = 1 << 31;
1185  
# Line 1146 | Line 1204 | public class ForkJoinPool extends Abstra
1204      private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1205      private static final int E_SEQ       = 1 << EC_SHIFT;
1206  
1207 <    // runState bits
1207 >    // plock bits
1208      private static final int SHUTDOWN    = 1 << 31;
1209 <    private static final int RS_SEQ      = 1 << 16;
1210 <    private static final int RS_SEQ_MASK = 0x7fff0000;
1209 >    private static final int PL_LOCK     = 2;
1210 >    private static final int PL_SIGNAL   = 1;
1211 >    private static final int PL_SPINS    = 1 << 8;
1212  
1213      // access mode for WorkQueue
1214      static final int LIFO_QUEUE          =  0;
1215      static final int FIFO_QUEUE          =  1;
1216      static final int SHARED_QUEUE        = -1;
1217  
1218 +    // bounds for #steps in scan loop -- must be power 2 minus 1
1219 +    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1220 +    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1221 +
1222      // Instance fields
1223  
1224      /*
1225 <     * Field layout order in this class tends to matter more than one
1226 <     * would like. Runtime layout order is only loosely related to
1225 >     * Field layout of this class tends to matter more than one would
1226 >     * like. Runtime layout order is only loosely related to
1227       * declaration order and may differ across JVMs, but the following
1228       * empirically works OK on current JVMs.
1229       */
1230  
1231 +    // Heuristic padding to ameliorate unfortunate memory placements
1232 +    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1233 +
1234 +    volatile long stealCount;                  // collects worker counts
1235      volatile long ctl;                         // main pool control
1236 <    final int parallelism;                     // parallelism level
1237 <    final int localMode;                       // per-worker scheduling mode
1238 <    int growHints;                             // for expanding indices/ranges
1172 <    volatile int runState;                     // shutdown status, seq, and mask
1236 >    volatile int plock;                        // shutdown status and seqLock
1237 >    volatile int indexSeed;                    // worker/submitter index seed
1238 >    final int config;                          // mode and parallelism level
1239      WorkQueue[] workQueues;                    // main registry
1240 <    final Mutex lock;                          // for registration
1175 <    final Condition termination;               // for awaitTermination
1176 <    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1240 >    final ForkJoinWorkerThreadFactory factory;
1241      final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1178    final AtomicLong stealCount;               // collect counts when terminated
1179    final AtomicInteger nextWorkerNumber;      // to create worker name string
1242      final String workerNamePrefix;             // to create worker name string
1243  
1244 <    //  Creating, registering, deregistering and running workers
1244 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245 >    volatile Object pad18, pad19, pad1a, pad1b;
1246  
1247      /**
1248 <     * Tries to create and start a worker
1249 <     */
1250 <    private void addWorker() {
1251 <        Throwable ex = null;
1252 <        ForkJoinWorkerThread wt = null;
1253 <        try {
1254 <            if ((wt = factory.newThread(this)) != null) {
1255 <                wt.start();
1256 <                return;
1248 >     * Acquires the plock lock to protect worker array and related
1249 >     * updates. This method is called only if an initial CAS on plock
1250 >     * fails. This acts as a spinlock for normal cases, but falls back
1251 >     * to builtin monitor to block when (rarely) needed. This would be
1252 >     * a terrible idea for a highly contended lock, but works fine as
1253 >     * a more conservative alternative to a pure spinlock.
1254 >     */
1255 >    private int acquirePlock() {
1256 >        int spins = PL_SPINS, r = 0, ps, nps;
1257 >        for (;;) {
1258 >            if (((ps = plock) & PL_LOCK) == 0 &&
1259 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260 >                return nps;
1261 >            else if (r == 0) { // randomize spins if possible
1262 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1263 >                if ((t instanceof ForkJoinWorkerThread) &&
1264 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1265 >                    r = w.seed;
1266 >                else if ((z = submitters.get()) != null)
1267 >                    r = z.seed;
1268 >                else
1269 >                    r = 1;
1270 >            }
1271 >            else if (spins >= 0) {
1272 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1273 >                if (r >= 0)
1274 >                    --spins;
1275 >            }
1276 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1277 >                synchronized (this) {
1278 >                    if ((plock & PL_SIGNAL) != 0) {
1279 >                        try {
1280 >                            wait();
1281 >                        } catch (InterruptedException ie) {
1282 >                            try {
1283 >                                Thread.currentThread().interrupt();
1284 >                            } catch (SecurityException ignore) {
1285 >                            }
1286 >                        }
1287 >                    }
1288 >                    else
1289 >                        notifyAll();
1290 >                }
1291              }
1195        } catch (Throwable e) {
1196            ex = e;
1292          }
1198        deregisterWorker(wt, ex); // adjust counts etc on failure
1293      }
1294  
1295      /**
1296 <     * Callback from ForkJoinWorkerThread constructor to assign a
1297 <     * public name. This must be separate from registerWorker because
1298 <     * it is called during the "super" constructor call in
1299 <     * ForkJoinWorkerThread.
1296 >     * Unlocks and signals any thread waiting for plock. Called only
1297 >     * when CAS of seq value for unlock fails.
1298 >     */
1299 >    private void releasePlock(int ps) {
1300 >        plock = ps;
1301 >        synchronized (this) { notifyAll(); }
1302 >    }
1303 >
1304 >    /**
1305 >     * Tries to create and start one worker if fewer than target
1306 >     * parallelism level exist. Adjusts counts etc on failure.
1307       */
1308 <    final String nextWorkerName() {
1309 <        return workerNamePrefix.concat
1310 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1308 >    private void tryAddWorker() {
1309 >        long c; int u;
1310 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1311 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1312 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1313 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1314 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1315 >                ForkJoinWorkerThreadFactory fac;
1316 >                Throwable ex = null;
1317 >                ForkJoinWorkerThread wt = null;
1318 >                try {
1319 >                    if ((fac = factory) != null &&
1320 >                        (wt = fac.newThread(this)) != null) {
1321 >                        wt.start();
1322 >                        break;
1323 >                    }
1324 >                } catch (Throwable e) {
1325 >                    ex = e;
1326 >                }
1327 >                deregisterWorker(wt, ex);
1328 >                break;
1329 >            }
1330 >        }
1331      }
1332  
1333 +    //  Registering and deregistering workers
1334 +
1335      /**
1336 <     * Callback from ForkJoinWorkerThread constructor to establish and
1337 <     * record its WorkQueue.
1336 >     * Callback from ForkJoinWorkerThread to establish and record its
1337 >     * WorkQueue. To avoid scanning bias due to packing entries in
1338 >     * front of the workQueues array, we treat the array as a simple
1339 >     * power-of-two hash table using per-thread seed as hash,
1340 >     * expanding as needed.
1341       *
1342       * @param wt the worker thread
1343 +     * @return the worker's queue
1344       */
1345 <    final void registerWorker(ForkJoinWorkerThread wt) {
1346 <        WorkQueue w = wt.workQueue;
1347 <        Mutex lock = this.lock;
1348 <        lock.lock();
1345 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1346 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1347 >        wt.setDaemon(true);
1348 >        if ((handler = ueh) != null)
1349 >            wt.setUncaughtExceptionHandler(handler);
1350 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1351 >                                          s += SEED_INCREMENT) ||
1352 >                     s == 0); // skip 0
1353 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1354 >        if (((ps = plock) & PL_LOCK) != 0 ||
1355 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1356 >            ps = acquirePlock();
1357 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1358          try {
1359 <            int g = growHints, k = g & SMASK;
1360 <            WorkQueue[] ws = workQueues;
1361 <            if (ws != null) {                       // ignore on shutdown
1362 <                int n = ws.length;
1363 <                if ((k & 1) == 0 || k >= n || ws[k] != null) {
1364 <                    for (k = 1; k < n && ws[k] != null; k += 2)
1365 <                        ;                           // workers are at odd indices
1366 <                    if (k >= n)                     // resize
1367 <                        workQueues = ws = Arrays.copyOf(ws, n << 1);
1368 <                }
1369 <                w.eventCount = w.poolIndex = k;     // establish before recording
1370 <                ws[k] = w;
1371 <                growHints = (g & ~SMASK) | ((k + 2) & SMASK);
1372 <                int rs = runState;
1373 <                int m = rs & SMASK;                 // recalculate runState mask
1374 <                if (k > m)
1239 <                    m = (m << 1) + 1;
1240 <                runState = (rs & SHUTDOWN) | ((rs + RS_SEQ) & RS_SEQ_MASK) | m;
1359 >            if ((ws = workQueues) != null) {    // skip if shutting down
1360 >                int n = ws.length, m = n - 1;
1361 >                int r = (s << 1) | 1;           // use odd-numbered indices
1362 >                if (ws[r &= m] != null) {       // collision
1363 >                    int probes = 0;             // step by approx half size
1364 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1365 >                    while (ws[r = (r + step) & m] != null) {
1366 >                        if (++probes >= n) {
1367 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1368 >                            m = n - 1;
1369 >                            probes = 0;
1370 >                        }
1371 >                    }
1372 >                }
1373 >                w.eventCount = w.poolIndex = r; // volatile write orders
1374 >                ws[r] = w;
1375              }
1376          } finally {
1377 <            lock.unlock();
1377 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1378 >                releasePlock(nps);
1379          }
1380 +        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1381 +        return w;
1382      }
1383  
1384      /**
1385       * Final callback from terminating worker, as well as upon failure
1386 <     * to construct or start a worker in addWorker.  Removes record of
1387 <     * worker from array, and adjusts counts. If pool is shutting
1388 <     * down, tries to complete termination.
1386 >     * to construct or start a worker.  Removes record of worker from
1387 >     * array, and adjusts counts. If pool is shutting down, tries to
1388 >     * complete termination.
1389       *
1390 <     * @param wt the worker thread or null if addWorker failed
1390 >     * @param wt the worker thread or null if construction failed
1391       * @param ex the exception causing failure, or null if none
1392       */
1393      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1394          WorkQueue w = null;
1395          if (wt != null && (w = wt.workQueue) != null) {
1396 <            w.runState = -1;                // ensure runState is set
1397 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1398 <            int idx = w.poolIndex;
1399 <            Mutex lock = this.lock;
1400 <            lock.lock();
1401 <            try {                           // remove record from array
1396 >            int ps;
1397 >            w.qlock = -1;                // ensure set
1398 >            long ns = w.nsteals, sc;     // collect steal count
1399 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1400 >                                               sc = stealCount, sc + ns));
1401 >            if (((ps = plock) & PL_LOCK) != 0 ||
1402 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1403 >                ps = acquirePlock();
1404 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1405 >            try {
1406 >                int idx = w.poolIndex;
1407                  WorkQueue[] ws = workQueues;
1408 <                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w) {
1408 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1409                      ws[idx] = null;
1268                    growHints = (growHints & ~SMASK) | idx;
1269                }
1410              } finally {
1411 <                lock.unlock();
1411 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1412 >                    releasePlock(nps);
1413              }
1414          }
1415  
1416 <        long c;                             // adjust ctl counts
1416 >        long c;                          // adjust ctl counts
1417          do {} while (!U.compareAndSwapLong
1418                       (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1419                                             ((c - TC_UNIT) & TC_MASK) |
1420                                             (c & ~(AC_MASK|TC_MASK)))));
1421  
1422 <        if (!tryTerminate(false, false) && w != null) {
1423 <            w.cancelAll();                  // cancel remaining tasks
1424 <            if (w.array != null)            // suppress signal if never ran
1425 <                signalWork();               // wake up or create replacement
1426 <            if (ex == null)                 // help clean refs on way out
1427 <                ForkJoinTask.helpExpungeStaleExceptions();
1422 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1423 >            w.cancelAll();               // cancel remaining tasks
1424 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1425 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1426 >                if (e > 0) {             // activate or create replacement
1427 >                    if ((ws = workQueues) == null ||
1428 >                        (i = e & SMASK) >= ws.length ||
1429 >                        (v = ws[i]) == null)
1430 >                        break;
1431 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1432 >                               ((long)(u + UAC_UNIT) << 32));
1433 >                    if (v.eventCount != (e | INT_SIGN))
1434 >                        break;
1435 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1436 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1437 >                        if ((p = v.parker) != null)
1438 >                            U.unpark(p);
1439 >                        break;
1440 >                    }
1441 >                }
1442 >                else {
1443 >                    if ((short)u < 0)
1444 >                        tryAddWorker();
1445 >                    break;
1446 >                }
1447 >            }
1448          }
1449 <
1450 <        if (ex != null)                     // rethrow
1451 <            U.throwException(ex);
1452 <    }
1292 <
1293 <    /**
1294 <     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1295 <     */
1296 <    final void runWorker(ForkJoinWorkerThread wt) {
1297 <        // Initialize queue array and seed in this thread
1298 <        WorkQueue w = wt.workQueue;
1299 <        w.growArray(false);
1300 <        w.seed = hashId(Thread.currentThread().getId());
1301 <
1302 <        do {} while (w.runTask(scan(w)));
1449 >        if (ex == null)                     // help clean refs on way out
1450 >            ForkJoinTask.helpExpungeStaleExceptions();
1451 >        else                                // rethrow
1452 >            ForkJoinTask.rethrow(ex);
1453      }
1454  
1455      // Submissions
# Line 1307 | Line 1457 | public class ForkJoinPool extends Abstra
1457      /**
1458       * Unless shutting down, adds the given task to a submission queue
1459       * at submitter's current queue index (modulo submission
1460 <     * range). If no queue exists at the index, one is created unless
1461 <     * pool lock is busy.  If the queue and/or lock are busy, another
1462 <     * index is randomly chosen. The mask in growHints controls the
1463 <     * effective index range of queues considered. The mask is
1314 <     * expanded, up to the current workerQueue mask, upon any detected
1315 <     * contention but otherwise remains small to avoid needlessly
1316 <     * creating queues when there is no contention.
1460 >     * range). Only the most common path is directly handled in this
1461 >     * method. All others are relayed to fullExternalPush.
1462 >     *
1463 >     * @param task the task. Caller must ensure non-null.
1464       */
1465 <    private void doSubmit(ForkJoinTask<?> task) {
1466 <        if (task == null)
1467 <            throw new NullPointerException();
1468 <        Submitter s = submitters.get();
1469 <        for (int r = s.seed, m = growHints >>> 16;;) {
1470 <            WorkQueue[] ws; WorkQueue q; Mutex lk;
1471 <            int k = r & m & SQMASK;          // use only even indices
1472 <            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1473 <                throw new RejectedExecutionException(); // shutting down
1474 <            if ((q = ws[k]) == null && (lk = lock).tryAcquire(0)) {
1475 <                try {                        // try to create new queue
1476 <                    if (ws == workQueues && (q = ws[k]) == null) {
1477 <                        int rs;              // update runState seq
1478 <                        ws[k] = q = new WorkQueue(null, SHARED_QUEUE);
1479 <                        runState = (((rs = runState) & SHUTDOWN) |
1333 <                                    ((rs + RS_SEQ) & ~SHUTDOWN));
1334 <                    }
1335 <                } finally {
1336 <                    lk.unlock();
1337 <                }
1338 <            }
1339 <            if (q != null) {
1340 <                if (q.trySharedPush(task)) {
1341 <                    signalWork();
1342 <                    return;
1343 <                }
1344 <                else if (m < parallelism - 1 && m < (runState & SMASK)) {
1345 <                    Mutex lock = this.lock;
1346 <                    lock.lock();             // block until lock free
1347 <                    int g = growHints;
1348 <                    if (g >>> 16 == m)       // expand range
1349 <                        growHints = (((m << 1) + 1) << 16) | (g & SMASK);
1350 <                    lock.unlock();           // no need for try/finally
1351 <                }
1352 <                else if ((r & m) == 0)
1353 <                    Thread.yield();          // occasionally yield if busy
1354 <            }
1355 <            if (m == (m = growHints >>> 16)) {
1356 <                r ^= r << 13;                // update seed unless new range
1357 <                r ^= r >>> 17;               // same xorshift as WorkQueues
1358 <                s.seed = r ^= r << 5;
1465 >    final void externalPush(ForkJoinTask<?> task) {
1466 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1467 >        if ((z = submitters.get()) != null && plock > 0 &&
1468 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1469 >            (q = ws[m & z.seed & SQMASK]) != null &&
1470 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1471 >            int b = q.base, s = q.top, n, an;
1472 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1473 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1474 >                U.putOrderedObject(a, j, task);
1475 >                q.top = s + 1;                     // push on to deque
1476 >                q.qlock = 0;
1477 >                if (n <= 2)
1478 >                    signalWork(q);
1479 >                return;
1480              }
1481 +            q.qlock = 0;
1482 +        }
1483 +        fullExternalPush(task);
1484 +    }
1485 +
1486 +    /**
1487 +     * Full version of externalPush. This method is called, among
1488 +     * other times, upon the first submission of the first task to the
1489 +     * pool, so must perform secondary initialization.  It also
1490 +     * detects first submission by an external thread by looking up
1491 +     * its ThreadLocal, and creates a new shared queue if the one at
1492 +     * index if empty or contended. The plock lock body must be
1493 +     * exception-free (so no try/finally) so we optimistically
1494 +     * allocate new queues outside the lock and throw them away if
1495 +     * (very rarely) not needed.
1496 +     *
1497 +     * Secondary initialization occurs when plock is zero, to create
1498 +     * workQueue array and set plock to a valid value.  This lock body
1499 +     * must also be exception-free. Because the plock seq value can
1500 +     * eventually wrap around zero, this method harmlessly fails to
1501 +     * reinitialize if workQueues exists, while still advancing plock.
1502 +     */
1503 +    private void fullExternalPush(ForkJoinTask<?> task) {
1504 +        int r = 0; // random index seed
1505 +        for (Submitter z = submitters.get();;) {
1506 +            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1507 +            if (z == null) {
1508 +                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1509 +                                        r += SEED_INCREMENT) && r != 0)
1510 +                    submitters.set(z = new Submitter(r));
1511 +            }
1512 +            else if (r == 0) {                  // move to a different index
1513 +                r = z.seed;
1514 +                r ^= r << 13;                   // same xorshift as WorkQueues
1515 +                r ^= r >>> 17;
1516 +                z.seed = r ^ (r << 5);
1517 +            }
1518 +            else if ((ps = plock) < 0)
1519 +                throw new RejectedExecutionException();
1520 +            else if (ps == 0 || (ws = workQueues) == null ||
1521 +                     (m = ws.length - 1) < 0) { // initialize workQueues
1522 +                int p = config & SMASK;         // find power of two table size
1523 +                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1524 +                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1525 +                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1526 +                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1527 +                                   new WorkQueue[n] : null);
1528 +                if (((ps = plock) & PL_LOCK) != 0 ||
1529 +                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1530 +                    ps = acquirePlock();
1531 +                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1532 +                    workQueues = nws;
1533 +                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1534 +                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1535 +                    releasePlock(nps);
1536 +            }
1537 +            else if ((q = ws[k = r & m & SQMASK]) != null) {
1538 +                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1539 +                    ForkJoinTask<?>[] a = q.array;
1540 +                    int s = q.top;
1541 +                    boolean submitted = false;
1542 +                    try {                      // locked version of push
1543 +                        if ((a != null && a.length > s + 1 - q.base) ||
1544 +                            (a = q.growArray()) != null) {   // must presize
1545 +                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1546 +                            U.putOrderedObject(a, j, task);
1547 +                            q.top = s + 1;
1548 +                            submitted = true;
1549 +                        }
1550 +                    } finally {
1551 +                        q.qlock = 0;  // unlock
1552 +                    }
1553 +                    if (submitted) {
1554 +                        signalWork(q);
1555 +                        return;
1556 +                    }
1557 +                }
1558 +                r = 0; // move on failure
1559 +            }
1560 +            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1561 +                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1562 +                if (((ps = plock) & PL_LOCK) != 0 ||
1563 +                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1564 +                    ps = acquirePlock();
1565 +                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1566 +                    ws[k] = q;
1567 +                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1568 +                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1569 +                    releasePlock(nps);
1570 +            }
1571 +            else
1572 +                r = 0; // try elsewhere while lock held
1573          }
1574      }
1575  
# Line 1371 | Line 1584 | public class ForkJoinPool extends Abstra
1584      }
1585  
1586      /**
1587 <     * Tries to activate or create a worker if too few are active.
1587 >     * Tries to create or activate a worker if too few are active.
1588 >     *
1589 >     * @param q the (non-null) queue holding tasks to be signalled
1590       */
1591 <    final void signalWork() {
1592 <        long c; int u;
1593 <        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1594 <            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1595 <            if ((e = (int)c) > 0) {                     // at least one waiting
1596 <                if (ws != null && (i = e & SMASK) < ws.length &&
1591 >    final void signalWork(WorkQueue q) {
1592 >        int hint = q.poolIndex;
1593 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1594 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1595 >            if ((e = (int)c) > 0) {
1596 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1597                      (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1598                      long nc = (((long)(w.nextWait & E_MASK)) |
1599                                 ((long)(u + UAC_UNIT) << 32));
1600                      if (U.compareAndSwapLong(this, CTL, c, nc)) {
1601 +                        w.hint = hint;
1602                          w.eventCount = (e + E_SEQ) & E_MASK;
1603                          if ((p = w.parker) != null)
1604 <                            U.unpark(p);                // activate and release
1604 >                            U.unpark(p);
1605                          break;
1606                      }
1607 +                    if (q.top - q.base <= 0)
1608 +                        break;
1609                  }
1610                  else
1611                      break;
1612              }
1613 <            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1614 <                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1615 <                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1398 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1399 <                    addWorker();
1400 <                    break;
1401 <                }
1402 <            }
1403 <            else
1613 >            else {
1614 >                if ((short)u < 0)
1615 >                    tryAddWorker();
1616                  break;
1617 +            }
1618          }
1619      }
1620  
1621 +    // Scanning for tasks
1622 +
1623      /**
1624 <     * Tries to decrement active count (sometimes implicitly) and
1410 <     * possibly release or create a compensating worker in preparation
1411 <     * for blocking. Fails on contention or termination.
1412 <     *
1413 <     * @return true if the caller can block, else should recheck and retry
1624 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1625       */
1626 <    final boolean tryCompensate() {
1627 <        WorkQueue w; Thread p;
1628 <        int pc = parallelism, e, u, ac, tc, i;
1418 <        long c = ctl;
1419 <        WorkQueue[] ws = workQueues;
1420 <        if ((e = (int)c) >= 0) {
1421 <            if ((ac = ((u = (int)(c >>> 32)) >> UAC_SHIFT)) <= 0 &&
1422 <                e != 0 && ws != null && (i = e & SMASK) < ws.length &&
1423 <                (w = ws[i]) != null) {
1424 <                long nc = (long)(w.nextWait & E_MASK) | (c & (AC_MASK|TC_MASK));
1425 <                if (w.eventCount == (e | INT_SIGN) &&
1426 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1427 <                    w.eventCount = (e + E_SEQ) & E_MASK;
1428 <                    if ((p = w.parker) != null)
1429 <                        U.unpark(p);
1430 <                    return true;             // release an idle worker
1431 <                }
1432 <            }
1433 <            else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
1434 <                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1435 <                if (U.compareAndSwapLong(this, CTL, c, nc))
1436 <                    return true;             // no compensation needed
1437 <            }
1438 <            else if (tc + pc < POOL_MAX) {
1439 <                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1440 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1441 <                    addWorker();
1442 <                    return true;             // create replacement
1443 <                }
1444 <            }
1445 <        }
1446 <        return false;
1626 >    final void runWorker(WorkQueue w) {
1627 >        w.growArray(); // allocate queue
1628 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1629      }
1630  
1449    // Scanning for tasks
1450
1631      /**
1632       * Scans for and, if found, returns one task, else possibly
1633       * inactivates the worker. This method operates on single reads of
1634 <     * volatile state and is designed to be re-invoked continuously in
1635 <     * part because it returns upon detecting inconsistencies,
1634 >     * volatile state and is designed to be re-invoked continuously,
1635 >     * in part because it returns upon detecting inconsistencies,
1636       * contention, or state changes that indicate possible success on
1637       * re-invocation.
1638       *
1639 <     * The scan searches for tasks across queues, randomly selecting
1640 <     * the first #queues probes, favoring steals over submissions
1641 <     * (by exploiting even/odd indexing), and then performing a
1642 <     * circular sweep of all queues.  The scan terminates upon either
1643 <     * finding a non-empty queue, or completing a full sweep. If the
1644 <     * worker is not inactivated, it takes and returns a task from
1645 <     * this queue.  On failure to find a task, we take one of the
1646 <     * following actions, after which the caller will retry calling
1647 <     * this method unless terminated.
1639 >     * The scan searches for tasks across queues (starting at a random
1640 >     * index, and relying on registerWorker to irregularly scatter
1641 >     * them within array to avoid bias), checking each at least twice.
1642 >     * The scan terminates upon either finding a non-empty queue, or
1643 >     * completing the sweep. If the worker is not inactivated, it
1644 >     * takes and returns a task from this queue. Otherwise, if not
1645 >     * activated, it signals workers (that may include itself) and
1646 >     * returns so caller can retry. Also returns for true if the
1647 >     * worker array may have changed during an empty scan.  On failure
1648 >     * to find a task, we take one of the following actions, after
1649 >     * which the caller will retry calling this method unless
1650 >     * terminated.
1651       *
1652       * * If pool is terminating, terminate the worker.
1653       *
1471     * * If not a complete sweep, try to release a waiting worker.  If
1472     * the scan terminated because the worker is inactivated, then the
1473     * released worker will often be the calling worker, and it can
1474     * succeed obtaining a task on the next call. Or maybe it is
1475     * another worker, but with same net effect. Releasing in other
1476     * cases as well ensures that we have enough workers running.
1477     *
1478     * * If the caller has run a task since the last empty scan,
1479     * return (to allow rescan) if other workers are not also yet
1480     * enqueued.  Field WorkQueue.rescans counts down on each scan to
1481     * ensure eventual inactivation and blocking.
1482     *
1654       * * If not already enqueued, try to inactivate and enqueue the
1655 <     * worker on wait queue.
1655 >     * worker on wait queue. Or, if inactivating has caused the pool
1656 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1657 >     * pool.
1658 >     *
1659 >     * * If already enqueued and none of the above apply, possibly
1660 >     * park awaiting signal, else lingering to help scan and signal.
1661       *
1662 <     * * If already enqueued and none of the above apply, either park
1663 <     * awaiting signal, or if this is the most recent waiter and pool
1488 <     * is quiescent, relay to idleAwaitWork to check for termination
1489 <     * and possibly shrink pool.
1662 >     * * If a non-empty queue discovered or left as a hint,
1663 >     * help wake up other workers before return.
1664       *
1665       * @param w the worker (via its WorkQueue)
1666 <     * @return a task or null of none found
1666 >     * @return a task or null if none found
1667       */
1668      private final ForkJoinTask<?> scan(WorkQueue w) {
1669 <        boolean swept = false;               // true after full empty scan
1670 <        WorkQueue[] ws;                      // volatile read order matters
1671 <        int r = w.seed, ec = w.eventCount;   // ec is negative if inactive
1672 <        int rs = runState, m = rs & SMASK;
1673 <        if ((ws = workQueues) != null && ws.length > m) { // consistency check
1674 <            for (int k = 0, j = -1 - m; ; ++j) {
1675 <                WorkQueue q; int b;
1676 <                if (j < 0) {                 // random probes while j negative
1677 <                    r ^= r << 13; r ^= r >>> 17; k = (r ^= r << 5) | (j & 1);
1678 <                }                            // worker (not submit) for odd j
1679 <                else                         // cyclic scan when j >= 0
1680 <                    k += 7;                  // step 7 reduces array packing bias
1681 <                if ((q = ws[k & m]) != null && (b = q.base) - q.top < 0) {
1682 <                    ForkJoinTask<?> t = (ec >= 0) ? q.pollAt(b) : null;
1683 <                    w.seed = r;              // save seed for next scan
1684 <                    if (t != null)
1685 <                        return t;
1686 <                    break;
1687 <                }
1688 <                else if (j - m > m) {
1689 <                    if (rs == runState)      // staleness check
1690 <                        swept = true;
1691 <                    break;
1669 >        WorkQueue[] ws; int m;
1670 >        int ps = plock;                          // read plock before ws
1671 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1672 >            int ec = w.eventCount;               // ec is negative if inactive
1673 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1674 >            w.hint = -1;                         // update seed and clear hint
1675 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1676 >            do {
1677 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1678 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1679 >                    (a = q.array) != null) {     // probably nonempty
1680 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1681 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1682 >                        U.getObjectVolatile(a, i);
1683 >                    if (q.base == b && ec >= 0 && t != null &&
1684 >                        U.compareAndSwapObject(a, i, t, null)) {
1685 >                        if ((q.base = b + 1) - q.top < 0)
1686 >                            signalWork(q);
1687 >                        return t;                // taken
1688 >                    }
1689 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1690 >                        w.hint = (r + j) & m;    // help signal below
1691 >                        break;                   // cannot take
1692 >                    }
1693                  }
1694 <            }
1694 >            } while (--j >= 0);
1695  
1696 <            // Decode ctl on empty scan
1697 <            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1698 <            if (e < 0)                       // pool is terminating
1699 <                w.runState = -1;
1700 <            else if (!swept) {               // try to release a waiter
1701 <                WorkQueue v; Thread p;
1702 <                if (e > 0 && a < 0 && (v = ws[e & m]) != null &&
1703 <                    v.eventCount == (e | INT_SIGN)) {
1704 <                    long nc = ((long)(v.nextWait & E_MASK) |
1705 <                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1706 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1696 >            int h, e, ns; long c, sc; WorkQueue q;
1697 >            if ((ns = w.nsteals) != 0) {
1698 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1699 >                                         sc = stealCount, sc + ns))
1700 >                    w.nsteals = 0;               // collect steals and rescan
1701 >            }
1702 >            else if (plock != ps)                // consistency check
1703 >                ;                                // skip
1704 >            else if ((e = (int)(c = ctl)) < 0)
1705 >                w.qlock = -1;                    // pool is terminating
1706 >            else {
1707 >                if ((h = w.hint) < 0) {
1708 >                    if (ec >= 0) {               // try to enqueue/inactivate
1709 >                        long nc = (((long)ec |
1710 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1711 >                        w.nextWait = e;          // link and mark inactive
1712 >                        w.eventCount = ec | INT_SIGN;
1713 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1714 >                            w.eventCount = ec;   // unmark on CAS failure
1715 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1716 >                            idleAwaitWork(w, nc, c);
1717 >                    }
1718 >                    else if (w.eventCount < 0 && ctl == c) {
1719 >                        Thread wt = Thread.currentThread();
1720 >                        Thread.interrupted();    // clear status
1721 >                        U.putObject(wt, PARKBLOCKER, this);
1722 >                        w.parker = wt;           // emulate LockSupport.park
1723 >                        if (w.eventCount < 0)    // recheck
1724 >                            U.park(false, 0L);   // block
1725 >                        w.parker = null;
1726 >                        U.putObject(wt, PARKBLOCKER, null);
1727 >                    }
1728 >                }
1729 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1730 >                    (ws = workQueues) != null && h < ws.length &&
1731 >                    (q = ws[h]) != null) {      // signal others before retry
1732 >                    WorkQueue v; Thread p; int u, i, s;
1733 >                    for (int n = (config & SMASK) - 1;;) {
1734 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1735 >                        if (((s = idleCount - q.base + q.top) <= n &&
1736 >                             (n = s) <= 0) ||
1737 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1738 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1739 >                            (v = ws[i]) == null)
1740 >                            break;
1741 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1742 >                                   ((long)(u + UAC_UNIT) << 32));
1743 >                        if (v.eventCount != (e | INT_SIGN) ||
1744 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1745 >                            break;
1746 >                        v.hint = h;
1747                          v.eventCount = (e + E_SEQ) & E_MASK;
1748                          if ((p = v.parker) != null)
1749                              U.unpark(p);
1750 +                        if (--n <= 0)
1751 +                            break;
1752                      }
1753                  }
1754              }
1538            else if ((nr = w.rescans) > 0) { // continue rescanning
1539                int ac = a + parallelism;
1540                if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0 &&
1541                    w.eventCount == ec)
1542                    Thread.yield();          // occasionally yield
1543            }
1544            else if (ec >= 0) {              // try to enqueue
1545                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1546                w.nextWait = e;
1547                w.eventCount = ec | INT_SIGN;// mark as inactive
1548                if (!U.compareAndSwapLong(this, CTL, c, nc))
1549                    w.eventCount = ec;       // unmark on CAS failure
1550                else if ((ns = w.nsteals) != 0) {
1551                    w.nsteals = 0;           // set rescans if ran task
1552                    w.rescans = a + parallelism;
1553                    w.totalSteals += ns;
1554                }
1555            }
1556            else{                            // already queued
1557                if (parallelism == -a)
1558                    idleAwaitWork(w);        // quiescent
1559                if (w.eventCount == ec) {
1560                    Thread.interrupted();    // clear status
1561                    ForkJoinWorkerThread wt = w.owner;
1562                    U.putObject(wt, PARKBLOCKER, this);
1563                    w.parker = wt;           // emulate LockSupport.park
1564                    if (w.eventCount == ec)  // recheck
1565                        U.park(false, 0L);   // block
1566                    w.parker = null;
1567                    U.putObject(wt, PARKBLOCKER, null);
1568                }
1569            }
1755          }
1756          return null;
1757      }
1758  
1759      /**
1760 <     * If inactivating worker w has caused pool to become quiescent,
1761 <     * checks for pool termination, and, so long as this is not the
1762 <     * only worker, waits for event for up to SHRINK_RATE nanosecs.
1763 <     * On timeout, if ctl has not changed, terminates the worker,
1764 <     * which will in turn wake up another worker to possibly repeat
1765 <     * this process.
1760 >     * If inactivating worker w has caused the pool to become
1761 >     * quiescent, checks for pool termination, and, so long as this is
1762 >     * not the only worker, waits for event for up to a given
1763 >     * duration.  On timeout, if ctl has not changed, terminates the
1764 >     * worker, which will in turn wake up another worker to possibly
1765 >     * repeat this process.
1766       *
1767       * @param w the calling worker
1768 +     * @param currentCtl the ctl value triggering possible quiescence
1769 +     * @param prevCtl the ctl value to restore if thread is terminated
1770       */
1771 <    private void idleAwaitWork(WorkQueue w) {
1772 <        long c; int nw, ec;
1773 <        if (!tryTerminate(false, false) &&
1774 <            (int)((c = ctl) >> AC_SHIFT) + parallelism == 0 &&
1775 <            (ec = w.eventCount) == ((int)c | INT_SIGN) &&
1776 <            (nw = w.nextWait) != 0) {
1777 <            long nc = ((long)(nw & E_MASK) | // ctl to restore on timeout
1778 <                       ((c + AC_UNIT) & AC_MASK) | (c & TC_MASK));
1779 <            ForkJoinWorkerThread wt = w.owner;
1593 <            while (ctl == c) {
1594 <                long startTime = System.nanoTime();
1771 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1772 >        if (w != null && w.eventCount < 0 &&
1773 >            !tryTerminate(false, false) && (int)prevCtl != 0 &&
1774 >            ctl == currentCtl) {
1775 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1776 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1777 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1778 >            Thread wt = Thread.currentThread();
1779 >            while (ctl == currentCtl) {
1780                  Thread.interrupted();  // timed variant of version in scan()
1781                  U.putObject(wt, PARKBLOCKER, this);
1782                  w.parker = wt;
1783 <                if (ctl == c)
1784 <                    U.park(false, SHRINK_RATE);
1783 >                if (ctl == currentCtl)
1784 >                    U.park(false, parkTime);
1785                  w.parker = null;
1786                  U.putObject(wt, PARKBLOCKER, null);
1787 <                if (ctl != c)
1787 >                if (ctl != currentCtl)
1788                      break;
1789 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1790 <                    U.compareAndSwapLong(this, CTL, c, nc)) {
1791 <                    w.eventCount = (ec + E_SEQ) | E_MASK;
1792 <                    w.runState = -1;          // shrink
1789 >                if (deadline - System.nanoTime() <= 0L &&
1790 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1791 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1792 >                    w.hint = -1;
1793 >                    w.qlock = -1;   // shrink
1794                      break;
1795                  }
1796              }
# Line 1612 | Line 1798 | public class ForkJoinPool extends Abstra
1798      }
1799  
1800      /**
1801 +     * Scans through queues looking for work while joining a task; if
1802 +     * any present, signals. May return early if more signalling is
1803 +     * detectably unneeded.
1804 +     *
1805 +     * @param task return early if done
1806 +     * @param origin an index to start scan
1807 +     */
1808 +    private void helpSignal(ForkJoinTask<?> task, int origin) {
1809 +        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1810 +        if (task != null && task.status >= 0 &&
1811 +            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1812 +            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1813 +            outer: for (int k = origin, j = m; j >= 0; --j) {
1814 +                WorkQueue q = ws[k++ & m];
1815 +                for (int n = m;;) { // limit to at most m signals
1816 +                    if (task.status < 0)
1817 +                        break outer;
1818 +                    if (q == null ||
1819 +                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1820 +                        break;
1821 +                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1822 +                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1823 +                        (w = ws[i]) == null)
1824 +                        break outer;
1825 +                    long nc = (((long)(w.nextWait & E_MASK)) |
1826 +                               ((long)(u + UAC_UNIT) << 32));
1827 +                    if (w.eventCount != (e | INT_SIGN))
1828 +                        break outer;
1829 +                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1830 +                        w.eventCount = (e + E_SEQ) & E_MASK;
1831 +                        if ((p = w.parker) != null)
1832 +                            U.unpark(p);
1833 +                        if (--n <= 0)
1834 +                            break;
1835 +                    }
1836 +                }
1837 +            }
1838 +        }
1839 +    }
1840 +
1841 +    /**
1842       * Tries to locate and execute tasks for a stealer of the given
1843       * task, or in turn one of its stealers, Traces currentSteal ->
1844       * currentJoin links looking for a thread working on a descendant
# Line 1622 | Line 1849 | public class ForkJoinPool extends Abstra
1849       * leaves hints in workers to speed up subsequent calls. The
1850       * implementation is very branchy to cope with potential
1851       * inconsistencies or loops encountering chains that are stale,
1852 <     * unknown, or of length greater than MAX_HELP_DEPTH links.  All
1626 <     * of these cases are dealt with by just retrying by caller.
1852 >     * unknown, or so long that they are likely cyclic.
1853       *
1854       * @param joiner the joining worker
1855       * @param task the task to join
1856 <     * @return true if found or ran a task (and so is immediately retryable)
1856 >     * @return 0 if no progress can be made, negative if task
1857 >     * known complete, else positive
1858       */
1859 <    final boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1860 <        ForkJoinTask<?> subtask;    // current target
1861 <        boolean progress = false;
1862 <        int depth = 0;              // current chain depth
1863 <        int m = runState & SMASK;
1864 <        WorkQueue[] ws = workQueues;
1865 <
1866 <        if (ws != null && ws.length > m && (subtask = task).status >= 0) {
1867 <            outer:for (WorkQueue j = joiner;;) {
1868 <                // Try to find the stealer of subtask, by first using hint
1869 <                WorkQueue stealer = null;
1870 <                WorkQueue v = ws[j.stealHint & m];
1871 <                if (v != null && v.currentSteal == subtask)
1872 <                    stealer = v;
1873 <                else {
1874 <                    for (int i = 1; i <= m; i += 2) {
1875 <                        if ((v = ws[i]) != null && v.currentSteal == subtask) {
1876 <                            stealer = v;
1877 <                            j.stealHint = i; // save hint
1878 <                            break;
1859 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1860 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1861 >        if (joiner != null && task != null) {       // hoist null checks
1862 >            restart: for (;;) {
1863 >                ForkJoinTask<?> subtask = task;     // current target
1864 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1865 >                    WorkQueue[] ws; int m, s, h;
1866 >                    if ((s = task.status) < 0) {
1867 >                        stat = s;
1868 >                        break restart;
1869 >                    }
1870 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1871 >                        break restart;              // shutting down
1872 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1873 >                        v.currentSteal != subtask) {
1874 >                        for (int origin = h;;) {    // find stealer
1875 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1876 >                                (subtask.status < 0 || j.currentJoin != subtask))
1877 >                                continue restart;   // occasional staleness check
1878 >                            if ((v = ws[h]) != null &&
1879 >                                v.currentSteal == subtask) {
1880 >                                j.hint = h;        // save hint
1881 >                                break;
1882 >                            }
1883 >                            if (h == origin)
1884 >                                break restart;      // cannot find stealer
1885                          }
1886                      }
1887 <                    if (stealer == null)
1887 >                    for (;;) { // help stealer or descend to its stealer
1888 >                        ForkJoinTask[] a;  int b;
1889 >                        if (subtask.status < 0)     // surround probes with
1890 >                            continue restart;       //   consistency checks
1891 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1892 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1893 >                            ForkJoinTask<?> t =
1894 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1895 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1896 >                                v.currentSteal != subtask)
1897 >                                continue restart;   // stale
1898 >                            stat = 1;               // apparent progress
1899 >                            if (t != null && v.base == b &&
1900 >                                U.compareAndSwapObject(a, i, t, null)) {
1901 >                                v.base = b + 1;     // help stealer
1902 >                                joiner.runSubtask(t);
1903 >                            }
1904 >                            else if (v.base == b && ++steps == MAX_HELP)
1905 >                                break restart;      // v apparently stalled
1906 >                        }
1907 >                        else {                      // empty -- try to descend
1908 >                            ForkJoinTask<?> next = v.currentJoin;
1909 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1910 >                                v.currentSteal != subtask)
1911 >                                continue restart;   // stale
1912 >                            else if (next == null || ++steps == MAX_HELP)
1913 >                                break restart;      // dead-end or maybe cyclic
1914 >                            else {
1915 >                                subtask = next;
1916 >                                j = v;
1917 >                                break;
1918 >                            }
1919 >                        }
1920 >                    }
1921 >                }
1922 >            }
1923 >        }
1924 >        return stat;
1925 >    }
1926 >
1927 >    /**
1928 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1929 >     * and run tasks within the target's computation.
1930 >     *
1931 >     * @param task the task to join
1932 >     * @param mode if shared, exit upon completing any task
1933 >     * if all workers are active
1934 >     */
1935 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1936 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1937 >        if (task != null && (ws = workQueues) != null &&
1938 >            (m = ws.length - 1) >= 0) {
1939 >            for (int j = 1, origin = j;;) {
1940 >                if ((s = task.status) < 0)
1941 >                    return s;
1942 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1943 >                    origin = j;
1944 >                    if (mode == SHARED_QUEUE &&
1945 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1946                          break;
1947                  }
1948 +                else if ((j = (j + 2) & m) == origin)
1949 +                    break;
1950 +            }
1951 +        }
1952 +        return 0;
1953 +    }
1954  
1955 <                for (WorkQueue q = stealer;;) { // Try to help stealer
1956 <                    ForkJoinTask<?> t; int b;
1957 <                    if (task.status < 0)
1958 <                        break outer;
1959 <                    if ((b = q.base) - q.top < 0) {
1960 <                        progress = true;
1961 <                        if (subtask.status < 0)
1962 <                            break outer;               // stale
1963 <                        if ((t = q.pollAt(b)) != null) {
1964 <                            stealer.stealHint = joiner.poolIndex;
1965 <                            joiner.runSubtask(t);
1955 >    /**
1956 >     * Tries to decrement active count (sometimes implicitly) and
1957 >     * possibly release or create a compensating worker in preparation
1958 >     * for blocking. Fails on contention or termination. Otherwise,
1959 >     * adds a new thread if no idle workers are available and pool
1960 >     * may become starved.
1961 >     */
1962 >    final boolean tryCompensate() {
1963 >        int pc = config & SMASK, e, i, tc; long c;
1964 >        WorkQueue[] ws; WorkQueue w; Thread p;
1965 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1966 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1967 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1968 >                long nc = ((long)(w.nextWait & E_MASK) |
1969 >                           (c & (AC_MASK|TC_MASK)));
1970 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1971 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1972 >                    if ((p = w.parker) != null)
1973 >                        U.unpark(p);
1974 >                    return true;   // replace with idle worker
1975 >                }
1976 >            }
1977 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1978 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1979 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1980 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1981 >                    return true;   // no compensation
1982 >            }
1983 >            else if (tc + pc < MAX_CAP) {
1984 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1985 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1986 >                    ForkJoinWorkerThreadFactory fac;
1987 >                    Throwable ex = null;
1988 >                    ForkJoinWorkerThread wt = null;
1989 >                    try {
1990 >                        if ((fac = factory) != null &&
1991 >                            (wt = fac.newThread(this)) != null) {
1992 >                            wt.start();
1993 >                            return true;
1994                          }
1995 +                    } catch (Throwable rex) {
1996 +                        ex = rex;
1997                      }
1998 <                    else { // empty - try to descend to find stealer's stealer
1672 <                        ForkJoinTask<?> next = stealer.currentJoin;
1673 <                        if (++depth == MAX_HELP_DEPTH || subtask.status < 0 ||
1674 <                            next == null || next == subtask)
1675 <                            break outer;  // max depth, stale, dead-end, cyclic
1676 <                        subtask = next;
1677 <                        j = stealer;
1678 <                        break;
1679 <                    }
1998 >                    deregisterWorker(wt, ex); // clean up and return false
1999                  }
2000              }
2001          }
2002 <        return progress;
2002 >        return false;
2003      }
2004  
2005      /**
2006 <     * If task is at base of some steal queue, steals and executes it.
2006 >     * Helps and/or blocks until the given task is done.
2007       *
2008       * @param joiner the joining worker
2009       * @param task the task
2010 +     * @return task status on exit
2011       */
2012 <    final void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
2013 <        WorkQueue[] ws;
2014 <        int m = runState & SMASK;
2015 <        if ((ws = workQueues) != null && ws.length > m) {
2016 <            for (int j = 1; j <= m && task.status >= 0; j += 2) {
2017 <                WorkQueue q = ws[j];
2018 <                if (q != null && q.pollFor(task)) {
2019 <                    joiner.runSubtask(task);
2020 <                    break;
2012 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2013 >        int s = 0;
2014 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2015 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2016 >            joiner.currentJoin = task;
2017 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2018 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2019 >            if (s >= 0 && (s = task.status) >= 0) {
2020 >                helpSignal(task, joiner.poolIndex);
2021 >                if ((s = task.status) >= 0 &&
2022 >                    (task instanceof CountedCompleter))
2023 >                    s = helpComplete(task, LIFO_QUEUE);
2024 >            }
2025 >            while (s >= 0 && (s = task.status) >= 0) {
2026 >                if ((!joiner.isEmpty() ||           // try helping
2027 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2028 >                    (s = task.status) >= 0) {
2029 >                    helpSignal(task, joiner.poolIndex);
2030 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2031 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2032 >                            synchronized (task) {
2033 >                                if (task.status >= 0) {
2034 >                                    try {                // see ForkJoinTask
2035 >                                        task.wait();     //  for explanation
2036 >                                    } catch (InterruptedException ie) {
2037 >                                    }
2038 >                                }
2039 >                                else
2040 >                                    task.notifyAll();
2041 >                            }
2042 >                        }
2043 >                        long c;                          // re-activate
2044 >                        do {} while (!U.compareAndSwapLong
2045 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2046 >                    }
2047                  }
2048              }
2049 +            joiner.currentJoin = prevJoin;
2050          }
2051 +        return s;
2052      }
2053  
2054      /**
2055 <     * Returns a non-empty steal queue, if one is found during a random,
2056 <     * then cyclic scan, else null.  This method must be retried by
2055 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2056 >     * to help join only while there is continuous progress. (Caller
2057 >     * will then enter a timed wait.)
2058 >     *
2059 >     * @param joiner the joining worker
2060 >     * @param task the task
2061 >     */
2062 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2063 >        int s;
2064 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2065 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2066 >            joiner.currentJoin = task;
2067 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2068 >                         joiner.tryRemoveAndExec(task));
2069 >            if (s >= 0 && (s = task.status) >= 0) {
2070 >                helpSignal(task, joiner.poolIndex);
2071 >                if ((s = task.status) >= 0 &&
2072 >                    (task instanceof CountedCompleter))
2073 >                    s = helpComplete(task, LIFO_QUEUE);
2074 >            }
2075 >            if (s >= 0 && joiner.isEmpty()) {
2076 >                do {} while (task.status >= 0 &&
2077 >                             tryHelpStealer(joiner, task) > 0);
2078 >            }
2079 >            joiner.currentJoin = prevJoin;
2080 >        }
2081 >    }
2082 >
2083 >    /**
2084 >     * Returns a (probably) non-empty steal queue, if one is found
2085 >     * during a scan, else null.  This method must be retried by
2086       * caller if, by the time it tries to use the queue, it is empty.
2087 +     * @param r a (random) seed for scanning
2088       */
2089 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2090 <        int r = w.seed;    // Same idea as scan(), but ignoring submissions
2091 <        for (WorkQueue[] ws;;) {
2092 <            int m = runState & SMASK;
2093 <            if ((ws = workQueues) == null)
2094 <                return null;
2095 <            if (ws.length > m) {
1718 <                WorkQueue q;
1719 <                for (int k = 0, j = -1 - m;; ++j) {
1720 <                    if (j < 0) {
1721 <                        r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
1722 <                    }
1723 <                    else
1724 <                        k += 7;
1725 <                    if ((q = ws[(k | 1) & m]) != null && q.base - q.top < 0) {
1726 <                        w.seed = r;
2089 >    private WorkQueue findNonEmptyStealQueue(int r) {
2090 >        for (;;) {
2091 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2092 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2093 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2094 >                    if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2095 >                        q.base - q.top < 0)
2096                          return q;
1728                    }
1729                    else if (j - m > m)
1730                        return null;
2097                  }
2098              }
2099 +            if (plock == ps)
2100 +                return null;
2101          }
2102      }
2103  
# Line 1741 | Line 2109 | public class ForkJoinPool extends Abstra
2109       */
2110      final void helpQuiescePool(WorkQueue w) {
2111          for (boolean active = true;;) {
2112 <            w.runLocalTasks();      // exhaust local queue
2113 <            WorkQueue q = findNonEmptyStealQueue(w);
2114 <            if (q != null) {
2115 <                ForkJoinTask<?> t;
2112 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2113 >            while ((t = w.nextLocalTask()) != null) {
2114 >                if (w.base - w.top < 0)
2115 >                    signalWork(w);
2116 >                t.doExec();
2117 >            }
2118 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2119                  if (!active) {      // re-establish active count
1749                    long c;
2120                      active = true;
2121                      do {} while (!U.compareAndSwapLong
2122                                   (this, CTL, c = ctl, c + AC_UNIT));
2123                  }
2124 <                if ((t = q.poll()) != null)
2124 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2125 >                    if (q.base - q.top < 0)
2126 >                        signalWork(q);
2127                      w.runSubtask(t);
2128 +                }
2129              }
2130 <            else {
2131 <                long c;
2132 <                if (active) {       // decrement active count without queuing
2130 >            else if (active) {       // decrement active count without queuing
2131 >                long nc = (c = ctl) - AC_UNIT;
2132 >                if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2133 >                    return;          // bypass decrement-then-increment
2134 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2135                      active = false;
1761                    do {} while (!U.compareAndSwapLong
1762                                 (this, CTL, c = ctl, c -= AC_UNIT));
1763                }
1764                else
1765                    c = ctl;        // re-increment on exit
1766                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1767                    do {} while (!U.compareAndSwapLong
1768                                 (this, CTL, c = ctl, c + AC_UNIT));
1769                    break;
1770                }
2136              }
2137 +            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2138 +                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2139 +                return;
2140          }
2141      }
2142  
# Line 1779 | Line 2147 | public class ForkJoinPool extends Abstra
2147       */
2148      final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2149          for (ForkJoinTask<?> t;;) {
2150 <            WorkQueue q;
2150 >            WorkQueue q; int b;
2151              if ((t = w.nextLocalTask()) != null)
2152                  return t;
2153 <            if ((q = findNonEmptyStealQueue(w)) == null)
2153 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2154                  return null;
2155 <            if ((t = q.poll()) != null)
2155 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2156 >                if (q.base - q.top < 0)
2157 >                    signalWork(q);
2158                  return t;
2159 +            }
2160          }
2161      }
2162  
2163      /**
2164 <     * Returns the approximate (non-atomic) number of idle threads per
2165 <     * active thread to offset steal queue size for method
2166 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2167 <     */
2168 <    final int idlePerActive() {
2169 <        // Approximate at powers of two for small values, saturate past 4
2170 <        int p = parallelism;
2171 <        int a = p + (int)(ctl >> AC_SHIFT);
2172 <        return (a > (p >>>= 1) ? 0 :
2173 <                a > (p >>>= 1) ? 1 :
2174 <                a > (p >>>= 1) ? 2 :
2175 <                a > (p >>>= 1) ? 4 :
2176 <                8);
2164 >     * Returns a cheap heuristic guide for task partitioning when
2165 >     * programmers, frameworks, tools, or languages have little or no
2166 >     * idea about task granularity.  In essence by offering this
2167 >     * method, we ask users only about tradeoffs in overhead vs
2168 >     * expected throughput and its variance, rather than how finely to
2169 >     * partition tasks.
2170 >     *
2171 >     * In a steady state strict (tree-structured) computation, each
2172 >     * thread makes available for stealing enough tasks for other
2173 >     * threads to remain active. Inductively, if all threads play by
2174 >     * the same rules, each thread should make available only a
2175 >     * constant number of tasks.
2176 >     *
2177 >     * The minimum useful constant is just 1. But using a value of 1
2178 >     * would require immediate replenishment upon each steal to
2179 >     * maintain enough tasks, which is infeasible.  Further,
2180 >     * partitionings/granularities of offered tasks should minimize
2181 >     * steal rates, which in general means that threads nearer the top
2182 >     * of computation tree should generate more than those nearer the
2183 >     * bottom. In perfect steady state, each thread is at
2184 >     * approximately the same level of computation tree. However,
2185 >     * producing extra tasks amortizes the uncertainty of progress and
2186 >     * diffusion assumptions.
2187 >     *
2188 >     * So, users will want to use values larger, but not much larger
2189 >     * than 1 to both smooth over transient shortages and hedge
2190 >     * against uneven progress; as traded off against the cost of
2191 >     * extra task overhead. We leave the user to pick a threshold
2192 >     * value to compare with the results of this call to guide
2193 >     * decisions, but recommend values such as 3.
2194 >     *
2195 >     * When all threads are active, it is on average OK to estimate
2196 >     * surplus strictly locally. In steady-state, if one thread is
2197 >     * maintaining say 2 surplus tasks, then so are others. So we can
2198 >     * just use estimated queue length.  However, this strategy alone
2199 >     * leads to serious mis-estimates in some non-steady-state
2200 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2201 >     * many of these by further considering the number of "idle"
2202 >     * threads, that are known to have zero queued tasks, so
2203 >     * compensate by a factor of (#idle/#active) threads.
2204 >     *
2205 >     * Note: The approximation of #busy workers as #active workers is
2206 >     * not very good under current signalling scheme, and should be
2207 >     * improved.
2208 >     */
2209 >    static int getSurplusQueuedTaskCount() {
2210 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2211 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2212 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2213 >            int n = (q = wt.workQueue).top - q.base;
2214 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2215 >            return n - (a > (p >>>= 1) ? 0 :
2216 >                        a > (p >>>= 1) ? 1 :
2217 >                        a > (p >>>= 1) ? 2 :
2218 >                        a > (p >>>= 1) ? 4 :
2219 >                        8);
2220 >        }
2221 >        return 0;
2222      }
2223  
2224      //  Termination
# Line 1822 | Line 2238 | public class ForkJoinPool extends Abstra
2238       * @return true if now terminating or terminated
2239       */
2240      private boolean tryTerminate(boolean now, boolean enable) {
2241 <        Mutex lock = this.lock;
2241 >        int ps;
2242 >        if (this == common)                    // cannot shut down
2243 >            return false;
2244 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2245 >            if (!enable)
2246 >                return false;
2247 >            if ((ps & PL_LOCK) != 0 ||
2248 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2249 >                ps = acquirePlock();
2250 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2251 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2252 >                releasePlock(nps);
2253 >        }
2254          for (long c;;) {
2255 <            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2256 <                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2257 <                    lock.lock();                    // don't need try/finally
2258 <                    termination.signalAll();        // signal when 0 workers
2259 <                    lock.unlock();
2255 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2256 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2257 >                    synchronized (this) {
2258 >                        notifyAll();               // signal when 0 workers
2259 >                    }
2260                  }
2261                  return true;
2262              }
2263 <            if (runState >= 0) {                    // not yet enabled
2264 <                if (!enable)
2263 >            if (!now) {                            // check if idle & no tasks
2264 >                WorkQueue[] ws; WorkQueue w;
2265 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2266                      return false;
2267 <                lock.lock();
2268 <                runState |= SHUTDOWN;
2269 <                lock.unlock();
2270 <            }
2271 <            if (!now) {                             // check if idle & no tasks
2272 <                if ((int)(c >> AC_SHIFT) != -parallelism ||
2273 <                    hasQueuedSubmissions())
2274 <                    return false;
2275 <                // Check for unqueued inactive workers. One pass suffices.
2276 <                WorkQueue[] ws = workQueues; WorkQueue w;
1848 <                if (ws != null) {
1849 <                    for (int i = 1; i < ws.length; i += 2) {
1850 <                        if ((w = ws[i]) != null && w.eventCount >= 0)
1851 <                            return false;
2267 >                if ((ws = workQueues) != null) {
2268 >                    for (int i = 0; i < ws.length; ++i) {
2269 >                        if ((w = ws[i]) != null) {
2270 >                            if (!w.isEmpty()) {    // signal unprocessed tasks
2271 >                                signalWork(w);
2272 >                                return false;
2273 >                            }
2274 >                            if ((i & 1) != 0 && w.eventCount >= 0)
2275 >                                return false;      // unqueued inactive worker
2276 >                        }
2277                      }
2278                  }
2279              }
2280              if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2281                  for (int pass = 0; pass < 3; ++pass) {
2282 <                    WorkQueue[] ws = workQueues;
2283 <                    if (ws != null) {
1859 <                        WorkQueue w;
2282 >                    WorkQueue[] ws; WorkQueue w; Thread wt;
2283 >                    if ((ws = workQueues) != null) {
2284                          int n = ws.length;
2285                          for (int i = 0; i < n; ++i) {
2286                              if ((w = ws[i]) != null) {
2287 <                                w.runState = -1;
2287 >                                w.qlock = -1;
2288                                  if (pass > 0) {
2289                                      w.cancelAll();
2290 <                                    if (pass > 1)
2291 <                                        w.interruptOwner();
2290 >                                    if (pass > 1 && (wt = w.owner) != null) {
2291 >                                        if (!wt.isInterrupted()) {
2292 >                                            try {
2293 >                                                wt.interrupt();
2294 >                                            } catch (Throwable ignore) {
2295 >                                            }
2296 >                                        }
2297 >                                        U.unpark(wt);
2298 >                                    }
2299                                  }
2300                              }
2301                          }
2302                          // Wake up workers parked on event queue
2303                          int i, e; long cc; Thread p;
2304                          while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2305 <                               (i = e & SMASK) < n &&
2305 >                               (i = e & SMASK) < n && i >= 0 &&
2306                                 (w = ws[i]) != null) {
2307                              long nc = ((long)(w.nextWait & E_MASK) |
2308                                         ((cc + AC_UNIT) & AC_MASK) |
# Line 1879 | Line 2310 | public class ForkJoinPool extends Abstra
2310                              if (w.eventCount == (e | INT_SIGN) &&
2311                                  U.compareAndSwapLong(this, CTL, cc, nc)) {
2312                                  w.eventCount = (e + E_SEQ) & E_MASK;
2313 <                                w.runState = -1;
2313 >                                w.qlock = -1;
2314                                  if ((p = w.parker) != null)
2315                                      U.unpark(p);
2316                              }
# Line 1890 | Line 2321 | public class ForkJoinPool extends Abstra
2321          }
2322      }
2323  
2324 +    // external operations on common pool
2325 +
2326 +    /**
2327 +     * Returns common pool queue for a thread that has submitted at
2328 +     * least one task.
2329 +     */
2330 +    static WorkQueue commonSubmitterQueue() {
2331 +        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2332 +        return ((z = submitters.get()) != null &&
2333 +                (p = common) != null &&
2334 +                (ws = p.workQueues) != null &&
2335 +                (m = ws.length - 1) >= 0) ?
2336 +            ws[m & z.seed & SQMASK] : null;
2337 +    }
2338 +
2339 +    /**
2340 +     * Tries to pop the given task from submitter's queue in common pool.
2341 +     */
2342 +    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2343 +        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2344 +        ForkJoinTask<?>[] a;  int m, s;
2345 +        if (t != null &&
2346 +            (z = submitters.get()) != null &&
2347 +            (p = common) != null &&
2348 +            (ws = p.workQueues) != null &&
2349 +            (m = ws.length - 1) >= 0 &&
2350 +            (q = ws[m & z.seed & SQMASK]) != null &&
2351 +            (s = q.top) != q.base &&
2352 +            (a = q.array) != null) {
2353 +            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2354 +            if (U.getObject(a, j) == t &&
2355 +                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2356 +                if (q.array == a && q.top == s && // recheck
2357 +                    U.compareAndSwapObject(a, j, t, null)) {
2358 +                    q.top = s - 1;
2359 +                    q.qlock = 0;
2360 +                    return true;
2361 +                }
2362 +                q.qlock = 0;
2363 +            }
2364 +        }
2365 +        return false;
2366 +    }
2367 +
2368 +    /**
2369 +     * Tries to pop and run local tasks within the same computation
2370 +     * as the given root. On failure, tries to help complete from
2371 +     * other queues via helpComplete.
2372 +     */
2373 +    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2374 +        ForkJoinTask<?>[] a; int m;
2375 +        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2376 +            root != null && root.status >= 0) {
2377 +            for (;;) {
2378 +                int s, u; Object o; CountedCompleter<?> task = null;
2379 +                if ((s = q.top) - q.base > 0) {
2380 +                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2381 +                    if ((o = U.getObject(a, j)) != null &&
2382 +                        (o instanceof CountedCompleter)) {
2383 +                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2384 +                        do {
2385 +                            if (r == root) {
2386 +                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2387 +                                    if (q.array == a && q.top == s &&
2388 +                                        U.compareAndSwapObject(a, j, t, null)) {
2389 +                                        q.top = s - 1;
2390 +                                        task = t;
2391 +                                    }
2392 +                                    q.qlock = 0;
2393 +                                }
2394 +                                break;
2395 +                            }
2396 +                        } while ((r = r.completer) != null);
2397 +                    }
2398 +                }
2399 +                if (task != null)
2400 +                    task.doExec();
2401 +                if (root.status < 0 ||
2402 +                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2403 +                    break;
2404 +                if (task == null) {
2405 +                    helpSignal(root, q.poolIndex);
2406 +                    if (root.status >= 0)
2407 +                        helpComplete(root, SHARED_QUEUE);
2408 +                    break;
2409 +                }
2410 +            }
2411 +        }
2412 +    }
2413 +
2414 +    /**
2415 +     * Tries to help execute or signal availability of the given task
2416 +     * from submitter's queue in common pool.
2417 +     */
2418 +    static void externalHelpJoin(ForkJoinTask<?> t) {
2419 +        // Some hard-to-avoid overlap with tryExternalUnpush
2420 +        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2421 +        ForkJoinTask<?>[] a;  int m, s, n;
2422 +        if (t != null &&
2423 +            (z = submitters.get()) != null &&
2424 +            (p = common) != null &&
2425 +            (ws = p.workQueues) != null &&
2426 +            (m = ws.length - 1) >= 0 &&
2427 +            (q = ws[m & z.seed & SQMASK]) != null &&
2428 +            (a = q.array) != null) {
2429 +            int am = a.length - 1;
2430 +            if ((s = q.top) != q.base) {
2431 +                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2432 +                if (U.getObject(a, j) == t &&
2433 +                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2434 +                    if (q.array == a && q.top == s &&
2435 +                        U.compareAndSwapObject(a, j, t, null)) {
2436 +                        q.top = s - 1;
2437 +                        q.qlock = 0;
2438 +                        t.doExec();
2439 +                    }
2440 +                    else
2441 +                        q.qlock = 0;
2442 +                }
2443 +            }
2444 +            if (t.status >= 0) {
2445 +                if (t instanceof CountedCompleter)
2446 +                    p.externalHelpComplete(q, t);
2447 +                else
2448 +                    p.helpSignal(t, q.poolIndex);
2449 +            }
2450 +        }
2451 +    }
2452 +
2453      // Exported methods
2454  
2455      // Constructors
# Line 1906 | Line 2466 | public class ForkJoinPool extends Abstra
2466       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2467       */
2468      public ForkJoinPool() {
2469 <        this(Runtime.getRuntime().availableProcessors(),
2469 >        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2470               defaultForkJoinWorkerThreadFactory, null, false);
2471      }
2472  
# Line 1959 | Line 2519 | public class ForkJoinPool extends Abstra
2519          checkPermission();
2520          if (factory == null)
2521              throw new NullPointerException();
2522 <        if (parallelism <= 0 || parallelism > POOL_MAX)
2522 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2523              throw new IllegalArgumentException();
1964        this.parallelism = parallelism;
2524          this.factory = factory;
2525          this.ueh = handler;
2526 <        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
1968 <        this.growHints = 1;
2526 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2527          long np = (long)(-parallelism); // offset ctl counts
2528          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2529 <        // initialize workQueues array with room for 2*parallelism if possible
1972 <        int n = parallelism << 1;
1973 <        if (n >= POOL_MAX)
1974 <            n = POOL_MAX;
1975 <        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1976 <            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1977 <        }
1978 <        this.workQueues = new WorkQueue[(n + 1) << 1]; // #slots = 2 * #workers
1979 <        this.termination = (this.lock = new Mutex()).newCondition();
1980 <        this.stealCount = new AtomicLong();
1981 <        this.nextWorkerNumber = new AtomicInteger();
2529 >        int pn = nextPoolId();
2530          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2531 <        sb.append(poolNumberGenerator.incrementAndGet());
2531 >        sb.append(Integer.toString(pn));
2532          sb.append("-worker-");
2533          this.workerNamePrefix = sb.toString();
2534      }
2535  
2536 +    /**
2537 +     * Constructor for common pool, suitable only for static initialization.
2538 +     * Basically the same as above, but uses smallest possible initial footprint.
2539 +     */
2540 +    ForkJoinPool(int parallelism, long ctl,
2541 +                 ForkJoinWorkerThreadFactory factory,
2542 +                 Thread.UncaughtExceptionHandler handler) {
2543 +        this.config = parallelism;
2544 +        this.ctl = ctl;
2545 +        this.factory = factory;
2546 +        this.ueh = handler;
2547 +        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2548 +    }
2549 +
2550 +    /**
2551 +     * Returns the common pool instance. This pool is statically
2552 +     * constructed; its run state is unaffected by attempts to {@link
2553 +     * #shutdown} or {@link #shutdownNow}. However this pool and any
2554 +     * ongoing processing are automatically terminated upon program
2555 +     * {@link System#exit}.  Any program that relies on asynchronous
2556 +     * task processing to complete before program termination should
2557 +     * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2558 +     * exit.
2559 +     *
2560 +     * @return the common pool instance
2561 +     * @since 1.8
2562 +     */
2563 +    public static ForkJoinPool commonPool() {
2564 +        // assert common != null : "static init error";
2565 +        return common;
2566 +    }
2567 +
2568      // Execution methods
2569  
2570      /**
# Line 2004 | Line 2584 | public class ForkJoinPool extends Abstra
2584       *         scheduled for execution
2585       */
2586      public <T> T invoke(ForkJoinTask<T> task) {
2587 <        doSubmit(task);
2587 >        if (task == null)
2588 >            throw new NullPointerException();
2589 >        externalPush(task);
2590          return task.join();
2591      }
2592  
# Line 2017 | Line 2599 | public class ForkJoinPool extends Abstra
2599       *         scheduled for execution
2600       */
2601      public void execute(ForkJoinTask<?> task) {
2602 <        doSubmit(task);
2602 >        if (task == null)
2603 >            throw new NullPointerException();
2604 >        externalPush(task);
2605      }
2606  
2607      // AbstractExecutorService methods
# Line 2034 | Line 2618 | public class ForkJoinPool extends Abstra
2618          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2619              job = (ForkJoinTask<?>) task;
2620          else
2621 <            job = ForkJoinTask.adapt(task, null);
2622 <        doSubmit(job);
2621 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2622 >        externalPush(job);
2623      }
2624  
2625      /**
# Line 2048 | Line 2632 | public class ForkJoinPool extends Abstra
2632       *         scheduled for execution
2633       */
2634      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2635 <        doSubmit(task);
2635 >        if (task == null)
2636 >            throw new NullPointerException();
2637 >        externalPush(task);
2638          return task;
2639      }
2640  
# Line 2058 | Line 2644 | public class ForkJoinPool extends Abstra
2644       *         scheduled for execution
2645       */
2646      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2647 <        if (task == null)
2648 <            throw new NullPointerException();
2063 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
2064 <        doSubmit(job);
2647 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2648 >        externalPush(job);
2649          return job;
2650      }
2651  
# Line 2071 | Line 2655 | public class ForkJoinPool extends Abstra
2655       *         scheduled for execution
2656       */
2657      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2658 <        if (task == null)
2659 <            throw new NullPointerException();
2076 <        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
2077 <        doSubmit(job);
2658 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2659 >        externalPush(job);
2660          return job;
2661      }
2662  
# Line 2090 | Line 2672 | public class ForkJoinPool extends Abstra
2672          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2673              job = (ForkJoinTask<?>) task;
2674          else
2675 <            job = ForkJoinTask.adapt(task, null);
2676 <        doSubmit(job);
2675 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2676 >        externalPush(job);
2677          return job;
2678      }
2679  
# Line 2103 | Line 2685 | public class ForkJoinPool extends Abstra
2685          // In previous versions of this class, this method constructed
2686          // a task to run ForkJoinTask.invokeAll, but now external
2687          // invocation of multiple tasks is at least as efficient.
2688 <        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2107 <        // Workaround needed because method wasn't declared with
2108 <        // wildcards in return type but should have been.
2109 <        @SuppressWarnings({"unchecked", "rawtypes"})
2110 <            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2688 >        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2689  
2690          boolean done = false;
2691          try {
2692              for (Callable<T> t : tasks) {
2693 <                ForkJoinTask<T> f = ForkJoinTask.adapt(t);
2694 <                doSubmit(f);
2695 <                fs.add(f);
2693 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2694 >                futures.add(f);
2695 >                externalPush(f);
2696              }
2697 <            for (ForkJoinTask<T> f : fs)
2698 <                f.quietlyJoin();
2697 >            for (int i = 0, size = futures.size(); i < size; i++)
2698 >                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2699              done = true;
2700              return futures;
2701          } finally {
2702              if (!done)
2703 <                for (ForkJoinTask<T> f : fs)
2704 <                    f.cancel(false);
2703 >                for (int i = 0, size = futures.size(); i < size; i++)
2704 >                    futures.get(i).cancel(false);
2705          }
2706      }
2707  
# Line 2152 | Line 2730 | public class ForkJoinPool extends Abstra
2730       * @return the targeted parallelism level of this pool
2731       */
2732      public int getParallelism() {
2733 <        return parallelism;
2733 >        return config & SMASK;
2734 >    }
2735 >
2736 >    /**
2737 >     * Returns the targeted parallelism level of the common pool.
2738 >     *
2739 >     * @return the targeted parallelism level of the common pool
2740 >     * @since 1.8
2741 >     */
2742 >    public static int getCommonPoolParallelism() {
2743 >        return commonParallelism;
2744      }
2745  
2746      /**
# Line 2164 | Line 2752 | public class ForkJoinPool extends Abstra
2752       * @return the number of worker threads
2753       */
2754      public int getPoolSize() {
2755 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2755 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2756      }
2757  
2758      /**
# Line 2174 | Line 2762 | public class ForkJoinPool extends Abstra
2762       * @return {@code true} if this pool uses async mode
2763       */
2764      public boolean getAsyncMode() {
2765 <        return localMode != 0;
2765 >        return (config >>> 16) == FIFO_QUEUE;
2766      }
2767  
2768      /**
# Line 2205 | Line 2793 | public class ForkJoinPool extends Abstra
2793       * @return the number of active threads
2794       */
2795      public int getActiveThreadCount() {
2796 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2796 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2797          return (r <= 0) ? 0 : r; // suppress momentarily negative values
2798      }
2799  
# Line 2221 | Line 2809 | public class ForkJoinPool extends Abstra
2809       * @return {@code true} if all threads are currently idle
2810       */
2811      public boolean isQuiescent() {
2812 <        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2812 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2813      }
2814  
2815      /**
# Line 2236 | Line 2824 | public class ForkJoinPool extends Abstra
2824       * @return the number of steals
2825       */
2826      public long getStealCount() {
2827 <        long count = stealCount.get();
2827 >        long count = stealCount;
2828          WorkQueue[] ws; WorkQueue w;
2829          if ((ws = workQueues) != null) {
2830              for (int i = 1; i < ws.length; i += 2) {
2831                  if ((w = ws[i]) != null)
2832 <                    count += w.totalSteals;
2832 >                    count += w.nsteals;
2833              }
2834          }
2835          return count;
# Line 2298 | Line 2886 | public class ForkJoinPool extends Abstra
2886          WorkQueue[] ws; WorkQueue w;
2887          if ((ws = workQueues) != null) {
2888              for (int i = 0; i < ws.length; i += 2) {
2889 <                if ((w = ws[i]) != null && w.queueSize() != 0)
2889 >                if ((w = ws[i]) != null && !w.isEmpty())
2890                      return true;
2891              }
2892          }
# Line 2366 | Line 2954 | public class ForkJoinPool extends Abstra
2954      public String toString() {
2955          // Use a single pass through workQueues to collect counts
2956          long qt = 0L, qs = 0L; int rc = 0;
2957 <        long st = stealCount.get();
2957 >        long st = stealCount;
2958          long c = ctl;
2959          WorkQueue[] ws; WorkQueue w;
2960          if ((ws = workQueues) != null) {
# Line 2377 | Line 2965 | public class ForkJoinPool extends Abstra
2965                          qs += size;
2966                      else {
2967                          qt += size;
2968 <                        st += w.totalSteals;
2968 >                        st += w.nsteals;
2969                          if (w.isApparentlyUnblocked())
2970                              ++rc;
2971                      }
2972                  }
2973              }
2974          }
2975 <        int pc = parallelism;
2975 >        int pc = (config & SMASK);
2976          int tc = pc + (short)(c >>> TC_SHIFT);
2977          int ac = pc + (int)(c >> AC_SHIFT);
2978          if (ac < 0) // ignore transient negative
# Line 2393 | Line 2981 | public class ForkJoinPool extends Abstra
2981          if ((c & STOP_BIT) != 0)
2982              level = (tc == 0) ? "Terminated" : "Terminating";
2983          else
2984 <            level = runState < 0 ? "Shutting down" : "Running";
2984 >            level = plock < 0 ? "Shutting down" : "Running";
2985          return super.toString() +
2986              "[" + level +
2987              ", parallelism = " + pc +
# Line 2407 | Line 2995 | public class ForkJoinPool extends Abstra
2995      }
2996  
2997      /**
2998 <     * Initiates an orderly shutdown in which previously submitted
2999 <     * tasks are executed, but no new tasks will be accepted.
3000 <     * Invocation has no additional effect if already shut down.
3001 <     * Tasks that are in the process of being submitted concurrently
3002 <     * during the course of this method may or may not be rejected.
2998 >     * Possibly initiates an orderly shutdown in which previously
2999 >     * submitted tasks are executed, but no new tasks will be
3000 >     * accepted. Invocation has no effect on execution state if this
3001 >     * is the {@link #commonPool()}, and no additional effect if
3002 >     * already shut down.  Tasks that are in the process of being
3003 >     * submitted concurrently during the course of this method may or
3004 >     * may not be rejected.
3005       *
3006       * @throws SecurityException if a security manager exists and
3007       *         the caller is not permitted to modify threads
# Line 2424 | Line 3014 | public class ForkJoinPool extends Abstra
3014      }
3015  
3016      /**
3017 <     * Attempts to cancel and/or stop all tasks, and reject all
3018 <     * subsequently submitted tasks.  Tasks that are in the process of
3019 <     * being submitted or executed concurrently during the course of
3020 <     * this method may or may not be rejected. This method cancels
3021 <     * both existing and unexecuted tasks, in order to permit
3022 <     * termination in the presence of task dependencies. So the method
3023 <     * always returns an empty list (unlike the case for some other
3024 <     * Executors).
3017 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3018 >     * all subsequently submitted tasks.  Invocation has no effect on
3019 >     * execution state if this is the {@link #commonPool()}, and no
3020 >     * additional effect if already shut down. Otherwise, tasks that
3021 >     * are in the process of being submitted or executed concurrently
3022 >     * during the course of this method may or may not be
3023 >     * rejected. This method cancels both existing and unexecuted
3024 >     * tasks, in order to permit termination in the presence of task
3025 >     * dependencies. So the method always returns an empty list
3026 >     * (unlike the case for some other Executors).
3027       *
3028       * @return an empty list
3029       * @throws SecurityException if a security manager exists and
# Line 2453 | Line 3045 | public class ForkJoinPool extends Abstra
3045      public boolean isTerminated() {
3046          long c = ctl;
3047          return ((c & STOP_BIT) != 0L &&
3048 <                (short)(c >>> TC_SHIFT) == -parallelism);
3048 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3049      }
3050  
3051      /**
# Line 2461 | Line 3053 | public class ForkJoinPool extends Abstra
3053       * commenced but not yet completed.  This method may be useful for
3054       * debugging. A return of {@code true} reported a sufficient
3055       * period after shutdown may indicate that submitted tasks have
3056 <     * ignored or suppressed interruption, or are waiting for IO,
3056 >     * ignored or suppressed interruption, or are waiting for I/O,
3057       * causing this executor not to properly terminate. (See the
3058       * advisory notes for class {@link ForkJoinTask} stating that
3059       * tasks should not normally entail blocking operations.  But if
# Line 2472 | Line 3064 | public class ForkJoinPool extends Abstra
3064      public boolean isTerminating() {
3065          long c = ctl;
3066          return ((c & STOP_BIT) != 0L &&
3067 <                (short)(c >>> TC_SHIFT) != -parallelism);
3067 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3068      }
3069  
3070      /**
# Line 2481 | Line 3073 | public class ForkJoinPool extends Abstra
3073       * @return {@code true} if this pool has been shut down
3074       */
3075      public boolean isShutdown() {
3076 <        return runState < 0;
3076 >        return plock < 0;
3077      }
3078  
3079      /**
3080 <     * Blocks until all tasks have completed execution after a shutdown
3081 <     * request, or the timeout occurs, or the current thread is
3082 <     * interrupted, whichever happens first.
3080 >     * Blocks until all tasks have completed execution after a
3081 >     * shutdown request, or the timeout occurs, or the current thread
3082 >     * is interrupted, whichever happens first. Because the {@link
3083 >     * #commonPool()} never terminates until program shutdown, when
3084 >     * applied to the common pool, this method is equivalent to {@link
3085 >     * #awaitQuiescence} but always returns {@code false}.
3086       *
3087       * @param timeout the maximum time to wait
3088       * @param unit the time unit of the timeout argument
# Line 2497 | Line 3092 | public class ForkJoinPool extends Abstra
3092       */
3093      public boolean awaitTermination(long timeout, TimeUnit unit)
3094          throws InterruptedException {
3095 +        if (Thread.interrupted())
3096 +            throw new InterruptedException();
3097 +        if (this == common) {
3098 +            awaitQuiescence(timeout, unit);
3099 +            return false;
3100 +        }
3101          long nanos = unit.toNanos(timeout);
3102 <        final Mutex lock = this.lock;
3103 <        lock.lock();
3104 <        try {
3105 <            for (;;) {
3106 <                if (isTerminated())
3107 <                    return true;
3108 <                if (nanos <= 0)
3102 >        if (isTerminated())
3103 >            return true;
3104 >        long startTime = System.nanoTime();
3105 >        boolean terminated = false;
3106 >        synchronized (this) {
3107 >            for (long waitTime = nanos, millis = 0L;;) {
3108 >                if (terminated = isTerminated() ||
3109 >                    waitTime <= 0L ||
3110 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3111 >                    break;
3112 >                wait(millis);
3113 >                waitTime = nanos - (System.nanoTime() - startTime);
3114 >            }
3115 >        }
3116 >        return terminated;
3117 >    }
3118 >
3119 >    /**
3120 >     * If called by a ForkJoinTask operating in this pool, equivalent
3121 >     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3122 >     * waits and/or attempts to assist performing tasks until this
3123 >     * pool {@link #isQuiescent} or the indicated timeout elapses.
3124 >     *
3125 >     * @param timeout the maximum time to wait
3126 >     * @param unit the time unit of the timeout argument
3127 >     * @return {@code true} if quiescent; {@code false} if the
3128 >     * timeout elapsed.
3129 >     */
3130 >    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3131 >        long nanos = unit.toNanos(timeout);
3132 >        ForkJoinWorkerThread wt;
3133 >        Thread thread = Thread.currentThread();
3134 >        if ((thread instanceof ForkJoinWorkerThread) &&
3135 >            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3136 >            helpQuiescePool(wt.workQueue);
3137 >            return true;
3138 >        }
3139 >        long startTime = System.nanoTime();
3140 >        WorkQueue[] ws;
3141 >        int r = 0, m;
3142 >        boolean found = true;
3143 >        while (!isQuiescent() && (ws = workQueues) != null &&
3144 >               (m = ws.length - 1) >= 0) {
3145 >            if (!found) {
3146 >                if ((System.nanoTime() - startTime) > nanos)
3147                      return false;
3148 <                nanos = termination.awaitNanos(nanos);
3148 >                Thread.yield(); // cannot block
3149 >            }
3150 >            found = false;
3151 >            for (int j = (m + 1) << 2; j >= 0; --j) {
3152 >                ForkJoinTask<?> t; WorkQueue q; int b;
3153 >                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3154 >                    found = true;
3155 >                    if ((t = q.pollAt(b)) != null) {
3156 >                        if (q.base - q.top < 0)
3157 >                            signalWork(q);
3158 >                        t.doExec();
3159 >                    }
3160 >                    break;
3161 >                }
3162              }
2511        } finally {
2512            lock.unlock();
3163          }
3164 +        return true;
3165 +    }
3166 +
3167 +    /**
3168 +     * Waits and/or attempts to assist performing tasks indefinitely
3169 +     * until the {@link #commonPool()} {@link #isQuiescent}
3170 +     */
3171 +    static void quiesceCommonPool() {
3172 +        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3173      }
3174  
3175      /**
# Line 2609 | Line 3268 | public class ForkJoinPool extends Abstra
3268      public static void managedBlock(ManagedBlocker blocker)
3269          throws InterruptedException {
3270          Thread t = Thread.currentThread();
3271 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3272 <                          ((ForkJoinWorkerThread)t).pool : null);
3273 <        while (!blocker.isReleasable()) {
3274 <            if (p == null || p.tryCompensate()) {
3275 <                try {
3276 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3277 <                } finally {
3278 <                    if (p != null)
3271 >        if (t instanceof ForkJoinWorkerThread) {
3272 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3273 >            while (!blocker.isReleasable()) { // variant of helpSignal
3274 >                WorkQueue[] ws; WorkQueue q; int m, u;
3275 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3276 >                    for (int i = 0; i <= m; ++i) {
3277 >                        if (blocker.isReleasable())
3278 >                            return;
3279 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3280 >                            p.signalWork(q);
3281 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3282 >                                (u >> UAC_SHIFT) >= 0)
3283 >                                break;
3284 >                        }
3285 >                    }
3286 >                }
3287 >                if (p.tryCompensate()) {
3288 >                    try {
3289 >                        do {} while (!blocker.isReleasable() &&
3290 >                                     !blocker.block());
3291 >                    } finally {
3292                          p.incrementActiveCount();
3293 +                    }
3294 +                    break;
3295                  }
2622                break;
3296              }
3297          }
3298 +        else {
3299 +            do {} while (!blocker.isReleasable() &&
3300 +                         !blocker.block());
3301 +        }
3302      }
3303  
3304      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2629 | Line 3306 | public class ForkJoinPool extends Abstra
3306      // implement RunnableFuture.
3307  
3308      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3309 <        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
3309 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3310      }
3311  
3312      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3313 <        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
3313 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3314      }
3315  
3316      // Unsafe mechanics
3317      private static final sun.misc.Unsafe U;
3318      private static final long CTL;
3319      private static final long PARKBLOCKER;
3320 +    private static final int ABASE;
3321 +    private static final int ASHIFT;
3322 +    private static final long STEALCOUNT;
3323 +    private static final long PLOCK;
3324 +    private static final long INDEXSEED;
3325 +    private static final long QLOCK;
3326  
3327      static {
3328 <        poolNumberGenerator = new AtomicInteger();
2646 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2647 <        defaultForkJoinWorkerThreadFactory =
2648 <            new DefaultForkJoinWorkerThreadFactory();
2649 <        submitters = new ThreadSubmitter();
3328 >        // initialize field offsets for CAS etc
3329          try {
3330              U = getUnsafe();
3331              Class<?> k = ForkJoinPool.class;
3332              CTL = U.objectFieldOffset
3333                  (k.getDeclaredField("ctl"));
3334 +            STEALCOUNT = U.objectFieldOffset
3335 +                (k.getDeclaredField("stealCount"));
3336 +            PLOCK = U.objectFieldOffset
3337 +                (k.getDeclaredField("plock"));
3338 +            INDEXSEED = U.objectFieldOffset
3339 +                (k.getDeclaredField("indexSeed"));
3340              Class<?> tk = Thread.class;
3341              PARKBLOCKER = U.objectFieldOffset
3342                  (tk.getDeclaredField("parkBlocker"));
3343 +            Class<?> wk = WorkQueue.class;
3344 +            QLOCK = U.objectFieldOffset
3345 +                (wk.getDeclaredField("qlock"));
3346 +            Class<?> ak = ForkJoinTask[].class;
3347 +            ABASE = U.arrayBaseOffset(ak);
3348 +            int scale = U.arrayIndexScale(ak);
3349 +            if ((scale & (scale - 1)) != 0)
3350 +                throw new Error("data type scale not a power of two");
3351 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3352          } catch (Exception e) {
3353              throw new Error(e);
3354          }
3355 +
3356 +        submitters = new ThreadLocal<Submitter>();
3357 +        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3358 +            new DefaultForkJoinWorkerThreadFactory();
3359 +        modifyThreadPermission = new RuntimePermission("modifyThread");
3360 +
3361 +        /*
3362 +         * Establish common pool parameters.  For extra caution,
3363 +         * computations to set up common pool state are here; the
3364 +         * constructor just assigns these values to fields.
3365 +         */
3366 +
3367 +        int par = 0;
3368 +        Thread.UncaughtExceptionHandler handler = null;
3369 +        try {  // TBD: limit or report ignored exceptions?
3370 +            String pp = System.getProperty
3371 +                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3372 +            String hp = System.getProperty
3373 +                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3374 +            String fp = System.getProperty
3375 +                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3376 +            if (fp != null)
3377 +                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3378 +                       getSystemClassLoader().loadClass(fp).newInstance());
3379 +            if (hp != null)
3380 +                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3381 +                           getSystemClassLoader().loadClass(hp).newInstance());
3382 +            if (pp != null)
3383 +                par = Integer.parseInt(pp);
3384 +        } catch (Exception ignore) {
3385 +        }
3386 +
3387 +        if (par <= 0)
3388 +            par = Runtime.getRuntime().availableProcessors();
3389 +        if (par > MAX_CAP)
3390 +            par = MAX_CAP;
3391 +        commonParallelism = par;
3392 +        long np = (long)(-par); // precompute initial ctl value
3393 +        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3394 +
3395 +        common = new ForkJoinPool(par, ct, fac, handler);
3396      }
3397  
3398      /**
# Line 2670 | Line 3405 | public class ForkJoinPool extends Abstra
3405      private static sun.misc.Unsafe getUnsafe() {
3406          try {
3407              return sun.misc.Unsafe.getUnsafe();
3408 <        } catch (SecurityException se) {
3409 <            try {
3410 <                return java.security.AccessController.doPrivileged
3411 <                    (new java.security
3412 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3413 <                        public sun.misc.Unsafe run() throws Exception {
3414 <                            java.lang.reflect.Field f = sun.misc
3415 <                                .Unsafe.class.getDeclaredField("theUnsafe");
3416 <                            f.setAccessible(true);
3417 <                            return (sun.misc.Unsafe) f.get(null);
3418 <                        }});
3419 <            } catch (java.security.PrivilegedActionException e) {
3420 <                throw new RuntimeException("Could not initialize intrinsics",
3421 <                                           e.getCause());
3422 <            }
3408 >        } catch (SecurityException tryReflectionInstead) {}
3409 >        try {
3410 >            return java.security.AccessController.doPrivileged
3411 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3412 >                public sun.misc.Unsafe run() throws Exception {
3413 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3414 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3415 >                        f.setAccessible(true);
3416 >                        Object x = f.get(null);
3417 >                        if (k.isInstance(x))
3418 >                            return k.cast(x);
3419 >                    }
3420 >                    throw new NoSuchFieldError("the Unsafe");
3421 >                }});
3422 >        } catch (java.security.PrivilegedActionException e) {
3423 >            throw new RuntimeException("Could not initialize intrinsics",
3424 >                                       e.getCause());
3425          }
3426      }
2690
3427   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines