ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.125 by jsr166, Tue Feb 21 00:19:23 2012 UTC vs.
Revision 1.189 by jsr166, Sat Sep 12 19:16:45 2015 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 +
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
13 import java.util.Random;
14   import java.util.concurrent.AbstractExecutorService;
15   import java.util.concurrent.Callable;
16   import java.util.concurrent.ExecutorService;
# Line 18 | Line 18 | import java.util.concurrent.Future;
18   import java.util.concurrent.RejectedExecutionException;
19   import java.util.concurrent.RunnableFuture;
20   import java.util.concurrent.TimeUnit;
21 import java.util.concurrent.atomic.AtomicInteger;
22 import java.util.concurrent.atomic.AtomicLong;
23 import java.util.concurrent.locks.AbstractQueuedSynchronizer;
24 import java.util.concurrent.locks.Condition;
21  
22   /**
23   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 41 | Line 37 | import java.util.concurrent.locks.Condit
37   * ForkJoinPool}s may also be appropriate for use with event-style
38   * tasks that are never joined.
39   *
40 < * <p>A {@code ForkJoinPool} is constructed with a given target
41 < * parallelism level; by default, equal to the number of available
42 < * processors. The pool attempts to maintain enough active (or
43 < * available) threads by dynamically adding, suspending, or resuming
44 < * internal worker threads, even if some tasks are stalled waiting to
45 < * join others. However, no such adjustments are guaranteed in the
46 < * face of blocked IO or other unmanaged synchronization. The nested
47 < * {@link ManagedBlocker} interface enables extension of the kinds of
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46 > *
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56   * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
# Line 58 | Line 62 | import java.util.concurrent.locks.Condit
62   * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 < * <p> As is the case with other ExecutorServices, there are three
65 > * <p>As is the case with other ExecutorServices, there are three
66   * main task execution methods summarized in the following table.
67   * These are designed to be used primarily by clients not already
68   * engaged in fork/join computations in the current pool.  The main
# Line 93 | Line 97 | import java.util.concurrent.locks.Condit
97   *  </tr>
98   * </table>
99   *
100 < * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
101 < * used for all parallel task execution in a program or subsystem.
102 < * Otherwise, use would not usually outweigh the construction and
103 < * bookkeeping overhead of creating a large set of threads. For
104 < * example, a common pool could be used for the {@code SortTasks}
105 < * illustrated in {@link RecursiveAction}. Because {@code
106 < * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
107 < * daemon} mode, there is typically no need to explicitly {@link
108 < * #shutdown} such a pool upon program exit.
109 < *
106 < *  <pre> {@code
107 < * static final ForkJoinPool mainPool = new ForkJoinPool();
108 < * ...
109 < * public void sort(long[] array) {
110 < *   mainPool.invoke(new SortTask(array, 0, array.length));
111 < * }}</pre>
100 > * <p>The common pool is by default constructed with default
101 > * parameters, but these may be controlled by setting three {@link
102 > * System#getProperty system properties} with prefix {@code
103 > * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 > * an integer greater than zero, {@code threadFactory} -- the class
105 > * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 > * exceptionHandler} -- the class name of a {@link
107 > * java.lang.Thread.UncaughtExceptionHandler
108 > * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 > * these settings, default parameters are used.
110   *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
# Line 196 | Line 194 | public class ForkJoinPool extends Abstra
194       * WorkQueues are also used in a similar way for tasks submitted
195       * to the pool. We cannot mix these tasks in the same queues used
196       * for work-stealing (this would contaminate lifo/fifo
197 <     * processing). Instead, we loosely associate submission queues
197 >     * processing). Instead, we randomly associate submission queues
198       * with submitting threads, using a form of hashing.  The
199       * ThreadLocal Submitter class contains a value initially used as
200       * a hash code for choosing existing queues, but may be randomly
201       * repositioned upon contention with other submitters.  In
202 <     * essence, submitters act like workers except that they never
203 <     * take tasks, and they are multiplexed on to a finite number of
204 <     * shared work queues. However, classes are set up so that future
205 <     * extensions could allow submitters to optionally help perform
206 <     * tasks as well. Insertion of tasks in shared mode requires a
207 <     * lock (mainly to protect in the case of resizing) but we use
208 <     * only a simple spinlock (using bits in field runState), because
209 <     * submitters encountering a busy queue move on to try or create
210 <     * other queues -- they block only when creating and registering
211 <     * new queues.
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215       *
216       * Management
217       * ==========
# Line 232 | Line 233 | public class ForkJoinPool extends Abstra
233       * and their negations (used for thresholding) to fit into 16bit
234       * fields.
235       *
236 <     * Field "runState" contains 32 bits needed to register and
237 <     * deregister WorkQueues, as well as to enable shutdown. It is
238 <     * only modified under a lock (normally briefly held, but
239 <     * occasionally protecting allocations and resizings) but even
240 <     * when locked remains available to check consistency.
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243       *
244       * Recording WorkQueues.  WorkQueues are recorded in the
245 <     * "workQueues" array that is created upon pool construction and
246 <     * expanded if necessary.  Updates to the array while recording
247 <     * new workers and unrecording terminated ones are protected from
248 <     * each other by a lock but the array is otherwise concurrently
249 <     * readable, and accessed directly.  To simplify index-based
250 <     * operations, the array size is always a power of two, and all
251 <     * readers must tolerate null slots. Shared (submission) queues
252 <     * are at even indices, worker queues at odd indices. Grouping
253 <     * them together in this way simplifies and speeds up task
254 <     * scanning.
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256       *
257       * All worker thread creation is on-demand, triggered by task
258       * submissions, replacement of terminated workers, and/or
# Line 309 | Line 313 | public class ForkJoinPool extends Abstra
313       *
314       * Signalling.  We create or wake up workers only when there
315       * appears to be at least one task they might be able to find and
316 <     * execute.  When a submission is added or another worker adds a
317 <     * task to a queue that previously had fewer than two tasks, they
318 <     * signal waiting workers (or trigger creation of new ones if
319 <     * fewer than the given parallelism level -- see signalWork).
320 <     * These primary signals are buttressed by signals during rescans;
321 <     * together these cover the signals needed in cases when more
322 <     * tasks are pushed but untaken, and improve performance compared
323 <     * to having one thread wake up all workers.
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331       *
332       * Trimming workers. To release resources after periods of lack of
333       * use, a worker starting to wait when the pool is quiescent will
334 <     * time out and terminate if the pool has remained quiescent for
335 <     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
336 <     * terminating all workers after long periods of non-use.
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339       *
340       * Shutdown and Termination. A call to shutdownNow atomically sets
341 <     * a runState bit and then (non-atomically) sets each worker's
342 <     * runState status, cancels all unprocessed tasks, and wakes up
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343       * all waiting workers.  Detecting whether termination should
344       * commence after a non-abrupt shutdown() call requires more work
345       * and bookkeeping. We need consensus about quiescence (i.e., that
# Line 354 | Line 367 | public class ForkJoinPool extends Abstra
367       *      method tryCompensate() may create or re-activate a spare
368       *      thread to compensate for blocked joiners until they unblock.
369       *
370 <     * A third form (implemented in tryRemoveAndExec and
371 <     * tryPollForAndExec) amounts to helping a hypothetical
372 <     * compensator: If we can readily tell that a possible action of a
373 <     * compensator is to steal and execute the task being joined, the
374 <     * joining thread can do so directly, without the need for a
375 <     * compensation thread (although at the expense of larger run-time
376 <     * stacks, but the tradeoff is typically worthwhile).
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377       *
378       * The ManagedBlocker extension API can't use helping so relies
379       * only on compensation in method awaitBlocker.
# Line 382 | Line 395 | public class ForkJoinPool extends Abstra
395       * steals, rather than use per-task bookkeeping.  This sometimes
396       * requires a linear scan of workQueues array to locate stealers,
397       * but often doesn't because stealers leave hints (that may become
398 <     * stale/wrong) of where to locate them.  A stealHint is only a
399 <     * hint because a worker might have had multiple steals and the
400 <     * hint records only one of them (usually the most current).
401 <     * Hinting isolates cost to when it is needed, rather than adding
402 <     * to per-task overhead.  (2) It is "shallow", ignoring nesting
403 <     * and potentially cyclic mutual steals.  (3) It is intentionally
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404       * racy: field currentJoin is updated only while actively joining,
405       * which means that we miss links in the chain during long-lived
406       * tasks, GC stalls etc (which is OK since blocking in such cases
# Line 395 | Line 408 | public class ForkJoinPool extends Abstra
408       * to find work (see MAX_HELP) and fall back to suspending the
409       * worker and if necessary replacing it with another.
410       *
411 +     * Helping actions for CountedCompleters are much simpler: Method
412 +     * helpComplete can take and execute any task with the same root
413 +     * as the task being waited on. However, this still entails some
414 +     * traversal of completer chains, so is less efficient than using
415 +     * CountedCompleters without explicit joins.
416 +     *
417       * It is impossible to keep exactly the target parallelism number
418       * of threads running at any given time.  Determining the
419       * existence of conservatively safe helping targets, the
# Line 416 | Line 435 | public class ForkJoinPool extends Abstra
435       * intractable) game with an opponent that may choose the worst
436       * (for us) active thread to stall at any time.  We take several
437       * precautions to bound losses (and thus bound gains), mainly in
438 <     * methods tryCompensate and awaitJoin: (1) We only try
439 <     * compensation after attempting enough helping steps (measured
440 <     * via counting and timing) that we have already consumed the
441 <     * estimated cost of creating and activating a new thread.  (2) We
442 <     * allow up to 50% of threads to be blocked before initially
443 <     * adding any others, and unless completely saturated, check that
444 <     * some work is available for a new worker before adding. Also, we
445 <     * create up to only 50% more threads until entering a mode that
446 <     * only adds a thread if all others are possibly blocked.  All
447 <     * together, this means that we might be half as fast to react,
448 <     * and create half as many threads as possible in the ideal case,
449 <     * but present vastly fewer anomalies in all other cases compared
450 <     * to both more aggressive and more conservative alternatives.
451 <     *
452 <     * Style notes: There is a lot of representation-level coupling
453 <     * among classes ForkJoinPool, ForkJoinWorkerThread, and
454 <     * ForkJoinTask.  The fields of WorkQueue maintain data structures
455 <     * managed by ForkJoinPool, so are directly accessed.  There is
456 <     * little point trying to reduce this, since any associated future
457 <     * changes in representations will need to be accompanied by
458 <     * algorithmic changes anyway. Several methods intrinsically
459 <     * sprawl because they must accumulate sets of consistent reads of
460 <     * volatiles held in local variables.  Methods signalWork() and
461 <     * scan() are the main bottlenecks, so are especially heavily
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static common Pool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467 >     * trying to reduce this, since any associated future changes in
468 >     * representations will need to be accompanied by algorithmic
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473       * micro-optimized/mangled.  There are lots of inline assignments
474       * (of form "while ((local = field) != 0)") which are usually the
475       * simplest way to ensure the required read orderings (which are
# Line 447 | Line 477 | public class ForkJoinPool extends Abstra
477       * declarations of these locals at the heads of methods or blocks.
478       * There are several occurrences of the unusual "do {} while
479       * (!cas...)"  which is the simplest way to force an update of a
480 <     * CAS'ed variable. There are also other coding oddities that help
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482       * some methods perform reasonably even when interpreted (not
483       * compiled).
484       *
# Line 496 | Line 527 | public class ForkJoinPool extends Abstra
527       * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533              return new ForkJoinWorkerThread(pool);
534          }
535      }
536  
537      /**
538 <     * A simple non-reentrant lock used for exclusion when managing
539 <     * queues and workers. We use a custom lock so that we can readily
540 <     * probe lock state in constructions that check among alternative
541 <     * actions. The lock is normally only very briefly held, and
542 <     * sometimes treated as a spinlock, but other usages block to
543 <     * reduce overall contention in those cases where locked code
544 <     * bodies perform allocation/resizing.
545 <     */
546 <    static final class Mutex extends AbstractQueuedSynchronizer {
547 <        public final boolean tryAcquire(int ignore) {
548 <            return compareAndSetState(0, 1);
549 <        }
550 <        public final boolean tryRelease(int ignore) {
551 <            setState(0);
552 <            return true;
553 <        }
554 <        public final void lock() { acquire(0); }
524 <        public final void unlock() { release(0); }
525 <        public final boolean isHeldExclusively() { return getState() == 1; }
526 <        public final Condition newCondition() { return new ConditionObject(); }
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555      }
556  
557      /**
# Line 533 | Line 561 | public class ForkJoinPool extends Abstra
561       * actually do anything beyond having a unique identity.
562       */
563      static final class EmptyTask extends ForkJoinTask<Void> {
564 +        private static final long serialVersionUID = -7721805057305804111L;
565          EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566          public final Void getRawResult() { return null; }
567          public final void setRawResult(Void x) {}
# Line 553 | Line 582 | public class ForkJoinPool extends Abstra
582       *
583       * Field "top" is the index (mod array.length) of the next queue
584       * slot to push to or pop from. It is written only by owner thread
585 <     * for push, or under lock for trySharedPush, and accessed by
586 <     * other threads only after reading (volatile) base.  Both top and
587 <     * base are allowed to wrap around on overflow, but (top - base)
588 <     * (or more commonly -(base - top) to force volatile read of base
589 <     * before top) still estimates size.
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596       *
597       * The array slots are read and written using the emulation of
598       * volatiles/atomics provided by Unsafe. Insertions must in
599       * general use putOrderedObject as a form of releasing store to
600       * ensure that all writes to the task object are ordered before
601 <     * its publication in the queue. (Although we can avoid one case
602 <     * of this when locked in trySharedPush.) All removals entail a
603 <     * CAS to null.  The array is always a power of two. To ensure
604 <     * safety of Unsafe array operations, all accesses perform
570 <     * explicit null checks and implicit bounds checks via
571 <     * power-of-two masking.
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605       *
606       * In addition to basic queuing support, this class contains
607       * fields described elsewhere to control execution. It turns out
608 <     * to work better memory-layout-wise to include them in this
609 <     * class rather than a separate class.
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610       *
611       * Performance on most platforms is very sensitive to placement of
612       * instances of both WorkQueues and their arrays -- we absolutely
# Line 587 | Line 620 | public class ForkJoinPool extends Abstra
620       * trades off slightly slower average field access for the sake of
621       * avoiding really bad worst-case access. (Until better JVM
622       * support is in place, this padding is dependent on transient
623 <     * properties of JVM field layout rules.)  We also take care in
623 >     * properties of JVM field layout rules.) We also take care in
624       * allocating, sizing and resizing the array. Non-shared queue
625 <     * arrays are initialized (via method growArray) by workers before
626 <     * use. Others are allocated on first use.
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627       */
628      static final class WorkQueue {
629          /**
# Line 613 | Line 646 | public class ForkJoinPool extends Abstra
646           */
647          static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648  
649 <        volatile long totalSteals; // cumulative number of steals
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652          int seed;                  // for random scanning; initialize nonzero
653          volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654          int nextWait;              // encoded record of next event waiter
655 <        int rescans;               // remaining scans until block
621 <        int nsteals;               // top-level task executions since last idle
622 <        final int mode;            // lifo, fifo, or shared
655 >        int hint;                  // steal or signal hint (index)
656          int poolIndex;             // index of this queue in pool (or 0)
657 <        int stealHint;             // index of most recent known stealer
658 <        volatile int runState;     // 1: locked, -1: terminate; else 0
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660          volatile int base;         // index of next slot for poll
661          int top;                   // index of next slot for push
662          ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663          final ForkJoinPool pool;   // the containing pool (may be null)
664          final ForkJoinWorkerThread owner; // owning thread or null if shared
665          volatile Thread parker;    // == owner during call to park; else null
666 <        ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667          ForkJoinTask<?> currentSteal; // current non-local task being executed
634        // Heuristic padding to ameliorate unfortunate memory placements
635        Object p00, p01, p02, p03, p04, p05, p06, p07;
636        Object p08, p09, p0a, p0b, p0c, p0d, p0e;
668  
669 <        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode) {
670 <            this.mode = mode;
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674              this.pool = pool;
675              this.owner = owner;
676 +            this.mode = mode;
677 +            this.seed = seed;
678              // Place indices in the center of array (that is not yet allocated)
679              base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680          }
# Line 663 | Line 699 | public class ForkJoinPool extends Abstra
699                      (n == -1 &&
700                       ((a = array) == null ||
701                        (m = a.length - 1) < 0 ||
702 <                      U.getObjectVolatile
703 <                      (a, ((m & (s - 1)) << ASHIFT) + ABASE) == null)));
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704          }
705  
706          /**
707 <         * Pushes a task. Call only by owner in unshared queues.
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709           *
710           * @param task the task. Caller must ensure non-null.
711 <         * @throw RejectedExecutionException if array cannot be resized
711 >         * @throws RejectedExecutionException if array cannot be resized
712           */
713          final void push(ForkJoinTask<?> task) {
714              ForkJoinTask<?>[] a; ForkJoinPool p;
715              int s = top, m, n;
716              if ((a = array) != null) {    // ignore if queue removed
717 <                U.putOrderedObject
718 <                    (a, (((m = a.length - 1) & s) << ASHIFT) + ABASE, task);
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719                  if ((n = (top = s + 1) - base) <= 2) {
720                      if ((p = pool) != null)
721 <                        p.signalWork();
721 >                        p.signalWork(this);
722                  }
723                  else if (n >= m)
724 <                    growArray(true);
724 >                    growArray();
725              }
726          }
727  
728          /**
729 <         * Pushes a task if lock is free and array is either big
730 <         * enough or can be resized to be big enough.
731 <         *
695 <         * @param task the task. Caller must ensure non-null.
696 <         * @return true if submitted
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732           */
733 <        final boolean trySharedPush(ForkJoinTask<?> task) {
734 <            boolean submitted = false;
735 <            if (runState == 0 && U.compareAndSwapInt(this, RUNSTATE, 0, 1)) {
736 <                ForkJoinTask<?>[] a = array;
737 <                int s = top;
738 <                try {
739 <                    if ((a != null && a.length > s + 1 - base) ||
740 <                        (a = growArray(false)) != null) { // must presize
741 <                        int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
742 <                        U.putObject(a, (long)j, task);    // don't need "ordered"
743 <                        top = s + 1;
744 <                        submitted = true;
745 <                    }
746 <                } finally {
747 <                    runState = 0;                         // unlock
748 <                }
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752              }
753 <            return submitted;
753 >            return a;
754          }
755  
756          /**
757           * Takes next task, if one exists, in LIFO order.  Call only
758 <         * by owner in unshared queues. (We do not have a shared
721 <         * version of this method because it is never needed.)
758 >         * by owner in unshared queues.
759           */
760          final ForkJoinTask<?> pop() {
761 <            ForkJoinTask<?> t; int m;
762 <            ForkJoinTask<?>[] a = array;
726 <            if (a != null && (m = a.length - 1) >= 0) {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763                  for (int s; (s = top - 1) - base >= 0;) {
764 <                    int j = ((m & s) << ASHIFT) + ABASE;
765 <                    if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) == null)
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766                          break;
767                      if (U.compareAndSwapObject(a, j, t, null)) {
768                          top = s;
# Line 774 | Line 810 | public class ForkJoinPool extends Abstra
810                  else if (base == b) {
811                      if (b + 1 == top)
812                          break;
813 <                    Thread.yield(); // wait for lagging update
813 >                    Thread.yield(); // wait for lagging update (very rare)
814                  }
815              }
816              return null;
# Line 801 | Line 837 | public class ForkJoinPool extends Abstra
837  
838          /**
839           * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841           */
842          final boolean tryUnpush(ForkJoinTask<?> t) {
843              ForkJoinTask<?>[] a; int s;
# Line 814 | Line 851 | public class ForkJoinPool extends Abstra
851          }
852  
853          /**
854 <         * Polls the given task only if it is at the current base.
854 >         * Removes and cancels all known tasks, ignoring any exceptions.
855           */
856 <        final boolean pollFor(ForkJoinTask<?> task) {
857 <            ForkJoinTask<?>[] a; int b;
858 <            if ((b = base) - top < 0 && (a = array) != null) {
859 <                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
860 <                if (U.getObjectVolatile(a, j) == task && base == b &&
861 <                    U.compareAndSwapObject(a, j, task, null)) {
862 <                    base = b + 1;
863 <                    return true;
856 >        final void cancelAll() {
857 >            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 >            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 >            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 >                ForkJoinTask.cancelIgnoringExceptions(t);
861 >        }
862 >
863 >        /**
864 >         * Computes next value for random probes.  Scans don't require
865 >         * a very high quality generator, but also not a crummy one.
866 >         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 >         * This is manually inlined in its usages in ForkJoinPool to
868 >         * avoid writes inside busy scan loops.
869 >         */
870 >        final int nextSeed() {
871 >            int r = seed;
872 >            r ^= r << 13;
873 >            r ^= r >>> 17;
874 >            return seed = r ^= r << 5;
875 >        }
876 >
877 >        // Specialized execution methods
878 >
879 >        /**
880 >         * Pops and runs tasks until empty.
881 >         */
882 >        private void popAndExecAll() {
883 >            // A bit faster than repeated pop calls
884 >            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 >            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 >                   (s = top - 1) - base >= 0 &&
887 >                   (t = ((ForkJoinTask<?>)
888 >                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 >                   != null) {
890 >                if (U.compareAndSwapObject(a, j, t, null)) {
891 >                    top = s;
892 >                    t.doExec();
893                  }
894              }
829            return false;
895          }
896  
897          /**
898 <         * If present, removes from queue and executes the given task, or
899 <         * any other cancelled task. Returns (true) immediately on any CAS
898 >         * Polls and runs tasks until empty.
899 >         */
900 >        private void pollAndExecAll() {
901 >            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 >                t.doExec();
903 >        }
904 >
905 >        /**
906 >         * If present, removes from queue and executes the given task,
907 >         * or any other cancelled task. Returns (true) on any CAS
908           * or consistency check failure so caller can retry.
909           *
910 <         * @return false if no progress can be made
910 >         * @return false if no progress can be made, else true
911           */
912          final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 <            boolean removed = false, empty = true, progress = true;
913 >            boolean stat = true, removed = false, empty = true;
914              ForkJoinTask<?>[] a; int m, s, b, n;
915              if ((a = array) != null && (m = a.length - 1) >= 0 &&
916                  (n = (s = top) - (b = base)) > 0) {
# Line 867 | Line 940 | public class ForkJoinPool extends Abstra
940                      }
941                      if (--n == 0) {
942                          if (!empty && base == b)
943 <                            progress = false;
943 >                            stat = false;
944                          break;
945                      }
946                  }
947              }
948              if (removed)
949                  task.doExec();
950 <            return progress;
950 >            return stat;
951          }
952  
953          /**
954 <         * Initializes or doubles the capacity of array. Call either
955 <         * by owner or with lock held -- it is OK for base, but not
883 <         * top, to move while resizings are in progress.
884 <         *
885 <         * @param rejectOnFailure if true, throw exception if capacity
886 <         * exceeded (relayed ultimately to user); else return null.
954 >         * Polls for and executes the given task or any other task in
955 >         * its CountedCompleter computation.
956           */
957 <        final ForkJoinTask<?>[] growArray(boolean rejectOnFailure) {
958 <            ForkJoinTask<?>[] oldA = array;
959 <            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
960 <            if (size <= MAXIMUM_QUEUE_CAPACITY) {
961 <                int oldMask, t, b;
962 <                ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
963 <                if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
964 <                    (t = top) - (b = base) > 0) {
965 <                    int mask = size - 1;
966 <                    do {
967 <                        ForkJoinTask<?> x;
968 <                        int oldj = ((b & oldMask) << ASHIFT) + ABASE;
969 <                        int j    = ((b &    mask) << ASHIFT) + ABASE;
970 <                        x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
902 <                        if (x != null &&
903 <                            U.compareAndSwapObject(oldA, oldj, x, null))
904 <                            U.putObjectVolatile(a, j, x);
905 <                    } while (++b != t);
906 <                }
907 <                return a;
908 <            }
909 <            else if (!rejectOnFailure)
910 <                return null;
911 <            else
912 <                throw new RejectedExecutionException("Queue capacity exceeded");
913 <        }
914 <
915 <        /**
916 <         * Removes and cancels all known tasks, ignoring any exceptions.
917 <         */
918 <        final void cancelAll() {
919 <            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
920 <            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
921 <            for (ForkJoinTask<?> t; (t = poll()) != null; )
922 <                ForkJoinTask.cancelIgnoringExceptions(t);
923 <        }
924 <
925 <        /**
926 <         * Computes next value for random probes.  Scans don't require
927 <         * a very high quality generator, but also not a crummy one.
928 <         * Marsaglia xor-shift is cheap and works well enough.  Note:
929 <         * This is manually inlined in its usages in ForkJoinPool to
930 <         * avoid writes inside busy scan loops.
931 <         */
932 <        final int nextSeed() {
933 <            int r = seed;
934 <            r ^= r << 13;
935 <            r ^= r >>> 17;
936 <            return seed = r ^= r << 5;
937 <        }
938 <
939 <        // Execution methods
940 <
941 <        /**
942 <         * Removes and runs tasks until empty, using local mode
943 <         * ordering. Normally called only after checking for apparent
944 <         * non-emptiness.
945 <         */
946 <        final void runLocalTasks() {
947 <            // hoist checks from repeated pop/poll
948 <            ForkJoinTask<?>[] a; int m;
949 <            if ((a = array) != null && (m = a.length - 1) >= 0) {
950 <                if (mode == 0) {
951 <                    for (int s; (s = top - 1) - base >= 0;) {
952 <                        int j = ((m & s) << ASHIFT) + ABASE;
953 <                        ForkJoinTask<?> t =
954 <                            (ForkJoinTask<?>)U.getObjectVolatile(a, j);
955 <                        if (t != null) {
956 <                            if (U.compareAndSwapObject(a, j, t, null)) {
957 <                                top = s;
958 <                                t.doExec();
959 <                            }
957 >        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 >            ForkJoinTask<?>[] a; int b; Object o;
959 >            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 >                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 >                if ((o = U.getObject(a, j)) == null ||
962 >                    !(o instanceof CountedCompleter))
963 >                    break;
964 >                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 >                    if (r == root) {
966 >                        if (base == b &&
967 >                            U.compareAndSwapObject(a, j, t, null)) {
968 >                            base = b + 1;
969 >                            t.doExec();
970 >                            return true;
971                          }
972                          else
973 <                            break;
963 <                    }
964 <                }
965 <                else {
966 <                    for (int b; (b = base) - top < 0;) {
967 <                        int j = ((m & b) << ASHIFT) + ABASE;
968 <                        ForkJoinTask<?> t =
969 <                            (ForkJoinTask<?>)U.getObjectVolatile(a, j);
970 <                        if (t != null) {
971 <                            if (base == b &&
972 <                                U.compareAndSwapObject(a, j, t, null)) {
973 <                                base = b + 1;
974 <                                t.doExec();
975 <                            }
976 <                        } else if (base == b) {
977 <                            if (b + 1 == top)
978 <                                break;
979 <                            Thread.yield(); // wait for lagging update
980 <                        }
973 >                            break; // restart
974                      }
975 +                    if ((r = r.completer) == null)
976 +                        break outer; // not part of root computation
977                  }
978              }
979 +            return false;
980          }
981  
982          /**
983           * Executes a top-level task and any local tasks remaining
984           * after execution.
989         *
990         * @return true unless terminating
985           */
986 <        final boolean runTask(ForkJoinTask<?> t) {
993 <            boolean alive = true;
986 >        final void runTask(ForkJoinTask<?> t) {
987              if (t != null) {
988 <                currentSteal = t;
996 <                t.doExec();
997 <                if (top != base)        // conservative guard
998 <                    runLocalTasks();
999 <                ++nsteals;
988 >                (currentSteal = t).doExec();
989                  currentSteal = null;
990 +                ++nsteals;
991 +                if (base - top < 0) {       // process remaining local tasks
992 +                    if (mode == 0)
993 +                        popAndExecAll();
994 +                    else
995 +                        pollAndExecAll();
996 +                }
997              }
1002            else if (runState < 0)      // terminating
1003                alive = false;
1004            return alive;
998          }
999  
1000          /**
# Line 1010 | Line 1003 | public class ForkJoinPool extends Abstra
1003          final void runSubtask(ForkJoinTask<?> t) {
1004              if (t != null) {
1005                  ForkJoinTask<?> ps = currentSteal;
1006 <                currentSteal = t;
1014 <                t.doExec();
1006 >                (currentSteal = t).doExec();
1007                  currentSteal = ps;
1008              }
1009          }
# Line 1028 | Line 1020 | public class ForkJoinPool extends Abstra
1020                      s != Thread.State.TIMED_WAITING);
1021          }
1022  
1031        /**
1032         * If this owned and is not already interrupted, try to
1033         * interrupt and/or unpark, ignoring exceptions.
1034         */
1035        final void interruptOwner() {
1036            Thread wt, p;
1037            if ((wt = owner) != null && !wt.isInterrupted()) {
1038                try {
1039                    wt.interrupt();
1040                } catch (SecurityException ignore) {
1041                }
1042            }
1043            if ((p = parker) != null)
1044                U.unpark(p);
1045        }
1046
1023          // Unsafe mechanics
1024          private static final sun.misc.Unsafe U;
1025 <        private static final long RUNSTATE;
1025 >        private static final long QLOCK;
1026          private static final int ABASE;
1027          private static final int ASHIFT;
1028          static {
1053            int s;
1029              try {
1030                  U = getUnsafe();
1031                  Class<?> k = WorkQueue.class;
1032                  Class<?> ak = ForkJoinTask[].class;
1033 <                RUNSTATE = U.objectFieldOffset
1034 <                    (k.getDeclaredField("runState"));
1033 >                QLOCK = U.objectFieldOffset
1034 >                    (k.getDeclaredField("qlock"));
1035                  ABASE = U.arrayBaseOffset(ak);
1036 <                s = U.arrayIndexScale(ak);
1036 >                int scale = U.arrayIndexScale(ak);
1037 >                if ((scale & (scale - 1)) != 0)
1038 >                    throw new Error("data type scale not a power of two");
1039 >                ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1040              } catch (Exception e) {
1041                  throw new Error(e);
1042              }
1065            if ((s & (s-1)) != 0)
1066                throw new Error("data type scale not a power of two");
1067            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1043          }
1044      }
1045  
1071    /**
1072     * Per-thread records for threads that submit to pools. Currently
1073     * holds only pseudo-random seed / index that is used to choose
1074     * submission queues in method doSubmit. In the future, this may
1075     * also incorporate a means to implement different task rejection
1076     * and resubmission policies.
1077     *
1078     * Seeds for submitters and workers/workQueues work in basically
1079     * the same way but are initialized and updated using slightly
1080     * different mechanics. Both are initialized using the same
1081     * approach as in class ThreadLocal, where successive values are
1082     * unlikely to collide with previous values. This is done during
1083     * registration for workers, but requires a separate AtomicInteger
1084     * for submitters. Seeds are then randomly modified upon
1085     * collisions using xorshifts, which requires a non-zero seed.
1086     */
1087    static final class Submitter {
1088        int seed;
1089        Submitter() {
1090            int s = nextSubmitterSeed.getAndAdd(SEED_INCREMENT);
1091            seed = (s == 0) ? 1 : s; // ensure non-zero
1092        }
1093    }
1094
1095    /** ThreadLocal class for Submitters */
1096    static final class ThreadSubmitter extends ThreadLocal<Submitter> {
1097        public Submitter initialValue() { return new Submitter(); }
1098    }
1099
1046      // static fields (initialized in static initializer below)
1047  
1048      /**
# Line 1107 | Line 1053 | public class ForkJoinPool extends Abstra
1053          defaultForkJoinWorkerThreadFactory;
1054  
1055      /**
1056 <     * Generator for assigning sequence numbers as pool names.
1057 <     */
1058 <    private static final AtomicInteger poolNumberGenerator;
1059 <
1060 <    /**
1115 <     * Generator for initial hashes/seeds for submitters. Accessed by
1116 <     * Submitter class constructor.
1056 >     * Per-thread submission bookkeeping. Shared across all pools
1057 >     * to reduce ThreadLocal pollution and because random motion
1058 >     * to avoid contention in one pool is likely to hold for others.
1059 >     * Lazily initialized on first submission (but null-checked
1060 >     * in other contexts to avoid unnecessary initialization).
1061       */
1062 <    static final AtomicInteger nextSubmitterSeed;
1062 >    static final ThreadLocal<Submitter> submitters;
1063  
1064      /**
1065       * Permission required for callers of methods that may start or
# Line 1124 | Line 1068 | public class ForkJoinPool extends Abstra
1068      private static final RuntimePermission modifyThreadPermission;
1069  
1070      /**
1071 <     * Per-thread submission bookeeping. Shared across all pools
1072 <     * to reduce ThreadLocal pollution and because random motion
1073 <     * to avoid contention in one pool is likely to hold for others.
1071 >     * Common (static) pool. Non-null for public use unless a static
1072 >     * construction exception, but internal usages null-check on use
1073 >     * to paranoically avoid potential initialization circularities
1074 >     * as well as to simplify generated code.
1075 >     */
1076 >    static final ForkJoinPool common;
1077 >
1078 >    /**
1079 >     * Common pool parallelism. Must equal common.parallelism.
1080 >     */
1081 >    static final int commonParallelism;
1082 >
1083 >    /**
1084 >     * Sequence number for creating workerNamePrefix.
1085 >     */
1086 >    private static int poolNumberSequence;
1087 >
1088 >    /**
1089 >     * Returns the next sequence number. We don't expect this to
1090 >     * ever contend, so use simple builtin sync.
1091       */
1092 <    private static final ThreadSubmitter submitters;
1092 >    private static final synchronized int nextPoolId() {
1093 >        return ++poolNumberSequence;
1094 >    }
1095  
1096      // static constants
1097  
1098      /**
1099 <     * The wakeup interval (in nanoseconds) for a worker waiting for a
1100 <     * task when the pool is quiescent to instead try to shrink the
1101 <     * number of workers.  The exact value does not matter too
1102 <     * much. It must be short enough to release resources during
1103 <     * sustained periods of idleness, but not so short that threads
1104 <     * are continually re-created.
1099 >     * Initial timeout value (in nanoseconds) for the thread
1100 >     * triggering quiescence to park waiting for new work. On timeout,
1101 >     * the thread will instead try to shrink the number of
1102 >     * workers. The value should be large enough to avoid overly
1103 >     * aggressive shrinkage during most transient stalls (long GCs
1104 >     * etc).
1105 >     */
1106 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1107 >
1108 >    /**
1109 >     * Timeout value when there are more threads than parallelism level
1110       */
1111 <    private static final long SHRINK_RATE =
1144 <        4L * 1000L * 1000L * 1000L; // 4 seconds
1111 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1112  
1113      /**
1114 <     * The timeout value for attempted shrinkage, includes
1148 <     * some slop to cope with system timer imprecision.
1114 >     * Tolerance for idle timeouts, to cope with timer undershoots
1115       */
1116 <    private static final long SHRINK_TIMEOUT = SHRINK_RATE - (SHRINK_RATE / 10);
1116 >    private static final long TIMEOUT_SLOP = 2000000L;
1117  
1118      /**
1119       * The maximum stolen->joining link depth allowed in method
1120 <     * tryHelpStealer.  Must be a power of two. This value also
1155 <     * controls the maximum number of times to try to help join a task
1156 <     * without any apparent progress or change in pool state before
1157 <     * giving up and blocking (see awaitJoin).  Depths for legitimate
1120 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1121       * chains are unbounded, but we use a fixed constant to avoid
1122       * (otherwise unchecked) cycles and to bound staleness of
1123       * traversal parameters at the expense of sometimes blocking when
1124       * we could be helping.
1125       */
1126 <    private static final int MAX_HELP = 32;
1164 <
1165 <    /**
1166 <     * Secondary time-based bound (in nanosecs) for helping attempts
1167 <     * before trying compensated blocking in awaitJoin. Used in
1168 <     * conjunction with MAX_HELP to reduce variance due to different
1169 <     * polling rates associated with different helping options. The
1170 <     * value should roughly approximate the time required to create
1171 <     * and/or activate a worker thread.
1172 <     */
1173 <    private static final long COMPENSATION_DELAY = 100L * 1000L; // 0.1 millisec
1126 >    private static final int MAX_HELP = 64;
1127  
1128      /**
1129       * Increment for seed generators. See class ThreadLocal for
# Line 1178 | Line 1131 | public class ForkJoinPool extends Abstra
1131       */
1132      private static final int SEED_INCREMENT = 0x61c88647;
1133  
1134 <    /**
1134 >    /*
1135       * Bits and masks for control variables
1136       *
1137       * Field ctl is a long packed with:
# Line 1206 | Line 1159 | public class ForkJoinPool extends Abstra
1159       * scan for them to avoid queuing races. Note however that
1160       * eventCount updates lag releases so usage requires care.
1161       *
1162 <     * Field runState is an int packed with:
1162 >     * Field plock is an int packed with:
1163       * SHUTDOWN: true if shutdown is enabled (1 bit)
1164 <     * SEQ:  a sequence number updated upon (de)registering workers (30 bits)
1165 <     * INIT: set true after workQueues array construction (1 bit)
1164 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1165 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1166       *
1167       * The sequence number enables simple consistency checks:
1168       * Staleness of read-only operations on the workQueues array can
1169 <     * be checked by comparing runState before vs after the reads.
1169 >     * be checked by comparing plock before vs after the reads.
1170       */
1171  
1172      // bit positions/shifts for fields
# Line 1225 | Line 1178 | public class ForkJoinPool extends Abstra
1178      // bounds
1179      private static final int  SMASK      = 0xffff;  // short bits
1180      private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1181 <    private static final int  SQMASK     = 0xfffe;  // even short bits
1181 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1182 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1183      private static final int  SHORT_SIGN = 1 << 15;
1184      private static final int  INT_SIGN   = 1 << 31;
1185  
# Line 1250 | Line 1204 | public class ForkJoinPool extends Abstra
1204      private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1205      private static final int E_SEQ       = 1 << EC_SHIFT;
1206  
1207 <    // runState bits
1207 >    // plock bits
1208      private static final int SHUTDOWN    = 1 << 31;
1209 +    private static final int PL_LOCK     = 2;
1210 +    private static final int PL_SIGNAL   = 1;
1211 +    private static final int PL_SPINS    = 1 << 8;
1212  
1213      // access mode for WorkQueue
1214      static final int LIFO_QUEUE          =  0;
1215      static final int FIFO_QUEUE          =  1;
1216      static final int SHARED_QUEUE        = -1;
1217  
1218 +    // bounds for #steps in scan loop -- must be power 2 minus 1
1219 +    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1220 +    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1221 +
1222      // Instance fields
1223  
1224      /*
1225 <     * Field layout order in this class tends to matter more than one
1226 <     * would like. Runtime layout order is only loosely related to
1225 >     * Field layout of this class tends to matter more than one would
1226 >     * like. Runtime layout order is only loosely related to
1227       * declaration order and may differ across JVMs, but the following
1228       * empirically works OK on current JVMs.
1229       */
1230  
1231 +    // Heuristic padding to ameliorate unfortunate memory placements
1232 +    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1233 +
1234 +    volatile long stealCount;                  // collects worker counts
1235      volatile long ctl;                         // main pool control
1236 <    final int parallelism;                     // parallelism level
1237 <    final int localMode;                       // per-worker scheduling mode
1238 <    final int submitMask;                      // submit queue index bound
1274 <    int nextSeed;                              // for initializing worker seeds
1275 <    volatile int runState;                     // shutdown status and seq
1236 >    volatile int plock;                        // shutdown status and seqLock
1237 >    volatile int indexSeed;                    // worker/submitter index seed
1238 >    final int config;                          // mode and parallelism level
1239      WorkQueue[] workQueues;                    // main registry
1240 <    final Mutex lock;                          // for registration
1278 <    final Condition termination;               // for awaitTermination
1279 <    final ForkJoinWorkerThreadFactory factory; // factory for new workers
1240 >    final ForkJoinWorkerThreadFactory factory;
1241      final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1281    final AtomicLong stealCount;               // collect counts when terminated
1282    final AtomicInteger nextWorkerNumber;      // to create worker name string
1242      final String workerNamePrefix;             // to create worker name string
1243  
1244 <    //  Creating, registering, and deregistering workers
1244 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1245 >    volatile Object pad18, pad19, pad1a, pad1b;
1246  
1247      /**
1248 <     * Tries to create and start a worker
1249 <     */
1250 <    private void addWorker() {
1251 <        Throwable ex = null;
1252 <        ForkJoinWorkerThread wt = null;
1253 <        try {
1254 <            if ((wt = factory.newThread(this)) != null) {
1255 <                wt.start();
1256 <                return;
1248 >     * Acquires the plock lock to protect worker array and related
1249 >     * updates. This method is called only if an initial CAS on plock
1250 >     * fails. This acts as a spinlock for normal cases, but falls back
1251 >     * to builtin monitor to block when (rarely) needed. This would be
1252 >     * a terrible idea for a highly contended lock, but works fine as
1253 >     * a more conservative alternative to a pure spinlock.
1254 >     */
1255 >    private int acquirePlock() {
1256 >        int spins = PL_SPINS, r = 0, ps, nps;
1257 >        for (;;) {
1258 >            if (((ps = plock) & PL_LOCK) == 0 &&
1259 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1260 >                return nps;
1261 >            else if (r == 0) { // randomize spins if possible
1262 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1263 >                if ((t instanceof ForkJoinWorkerThread) &&
1264 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1265 >                    r = w.seed;
1266 >                else if ((z = submitters.get()) != null)
1267 >                    r = z.seed;
1268 >                else
1269 >                    r = 1;
1270 >            }
1271 >            else if (spins >= 0) {
1272 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1273 >                if (r >= 0)
1274 >                    --spins;
1275 >            }
1276 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1277 >                synchronized (this) {
1278 >                    if ((plock & PL_SIGNAL) != 0) {
1279 >                        try {
1280 >                            wait();
1281 >                        } catch (InterruptedException ie) {
1282 >                            try {
1283 >                                Thread.currentThread().interrupt();
1284 >                            } catch (SecurityException ignore) {
1285 >                            }
1286 >                        }
1287 >                    }
1288 >                    else
1289 >                        notifyAll();
1290 >                }
1291              }
1298        } catch (Throwable e) {
1299            ex = e;
1292          }
1301        deregisterWorker(wt, ex); // adjust counts etc on failure
1293      }
1294  
1295      /**
1296 <     * Callback from ForkJoinWorkerThread constructor to assign a
1297 <     * public name. This must be separate from registerWorker because
1307 <     * it is called during the "super" constructor call in
1308 <     * ForkJoinWorkerThread.
1296 >     * Unlocks and signals any thread waiting for plock. Called only
1297 >     * when CAS of seq value for unlock fails.
1298       */
1299 <    final String nextWorkerName() {
1300 <        return workerNamePrefix.concat
1301 <            (Integer.toString(nextWorkerNumber.addAndGet(1)));
1299 >    private void releasePlock(int ps) {
1300 >        plock = ps;
1301 >        synchronized (this) { notifyAll(); }
1302      }
1303  
1304      /**
1305 <     * Callback from ForkJoinWorkerThread constructor to establish its
1306 <     * poolIndex and record its WorkQueue. To avoid scanning bias due
1318 <     * to packing entries in front of the workQueues array, we treat
1319 <     * the array as a simple power-of-two hash table using per-thread
1320 <     * seed as hash, expanding as needed.
1321 <     *
1322 <     * @param w the worker's queue
1305 >     * Tries to create and start one worker if fewer than target
1306 >     * parallelism level exist. Adjusts counts etc on failure.
1307       */
1308 <    final void registerWorker(WorkQueue w) {
1309 <        Mutex lock = this.lock;
1310 <        lock.lock();
1308 >    private void tryAddWorker() {
1309 >        long c; int u;
1310 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1311 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1312 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1313 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1314 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1315 >                ForkJoinWorkerThreadFactory fac;
1316 >                Throwable ex = null;
1317 >                ForkJoinWorkerThread wt = null;
1318 >                try {
1319 >                    if ((fac = factory) != null &&
1320 >                        (wt = fac.newThread(this)) != null) {
1321 >                        wt.start();
1322 >                        break;
1323 >                    }
1324 >                } catch (Throwable e) {
1325 >                    ex = e;
1326 >                }
1327 >                deregisterWorker(wt, ex);
1328 >                break;
1329 >            }
1330 >        }
1331 >    }
1332 >
1333 >    //  Registering and deregistering workers
1334 >
1335 >    /**
1336 >     * Callback from ForkJoinWorkerThread to establish and record its
1337 >     * WorkQueue. To avoid scanning bias due to packing entries in
1338 >     * front of the workQueues array, we treat the array as a simple
1339 >     * power-of-two hash table using per-thread seed as hash,
1340 >     * expanding as needed.
1341 >     *
1342 >     * @param wt the worker thread
1343 >     * @return the worker's queue
1344 >     */
1345 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1346 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1347 >        wt.setDaemon(true);
1348 >        if ((handler = ueh) != null)
1349 >            wt.setUncaughtExceptionHandler(handler);
1350 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1351 >                                          s += SEED_INCREMENT) ||
1352 >                     s == 0); // skip 0
1353 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1354 >        if (((ps = plock) & PL_LOCK) != 0 ||
1355 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1356 >            ps = acquirePlock();
1357 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1358          try {
1359 <            WorkQueue[] ws = workQueues;
1360 <            if (w != null && ws != null) {          // skip on shutdown/failure
1361 <                int rs, n;
1362 <                while ((n = ws.length) <            // ensure can hold total
1363 <                       (parallelism + (short)(ctl >>> TC_SHIFT) << 1))
1364 <                    workQueues = ws = Arrays.copyOf(ws, n << 1);
1365 <                int m = n - 1;
1366 <                int s = nextSeed += SEED_INCREMENT; // rarely-colliding sequence
1367 <                w.seed = (s == 0) ? 1 : s;          // ensure non-zero seed
1368 <                int r = (s << 1) | 1;               // use odd-numbered indices
1369 <                while (ws[r &= m] != null)          // step by approx half size
1370 <                    r += ((n >>> 1) & SQMASK) + 2;
1371 <                w.eventCount = w.poolIndex = r;     // establish before recording
1372 <                ws[r] = w;                          // also update seq
1373 <                runState = ((rs = runState) & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN);
1359 >            if ((ws = workQueues) != null) {    // skip if shutting down
1360 >                int n = ws.length, m = n - 1;
1361 >                int r = (s << 1) | 1;           // use odd-numbered indices
1362 >                if (ws[r &= m] != null) {       // collision
1363 >                    int probes = 0;             // step by approx half size
1364 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1365 >                    while (ws[r = (r + step) & m] != null) {
1366 >                        if (++probes >= n) {
1367 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1368 >                            m = n - 1;
1369 >                            probes = 0;
1370 >                        }
1371 >                    }
1372 >                }
1373 >                w.eventCount = w.poolIndex = r; // volatile write orders
1374 >                ws[r] = w;
1375              }
1376          } finally {
1377 <            lock.unlock();
1377 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1378 >                releasePlock(nps);
1379          }
1380 +        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1381 +        return w;
1382      }
1383  
1384      /**
1385       * Final callback from terminating worker, as well as upon failure
1386 <     * to construct or start a worker in addWorker.  Removes record of
1387 <     * worker from array, and adjusts counts. If pool is shutting
1388 <     * down, tries to complete termination.
1386 >     * to construct or start a worker.  Removes record of worker from
1387 >     * array, and adjusts counts. If pool is shutting down, tries to
1388 >     * complete termination.
1389       *
1390 <     * @param wt the worker thread or null if addWorker failed
1390 >     * @param wt the worker thread or null if construction failed
1391       * @param ex the exception causing failure, or null if none
1392       */
1393      final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1359        Mutex lock = this.lock;
1394          WorkQueue w = null;
1395          if (wt != null && (w = wt.workQueue) != null) {
1396 <            w.runState = -1;                // ensure runState is set
1397 <            stealCount.getAndAdd(w.totalSteals + w.nsteals);
1398 <            int idx = w.poolIndex;
1399 <            lock.lock();
1400 <            try {                           // remove record from array
1396 >            int ps;
1397 >            w.qlock = -1;                // ensure set
1398 >            long ns = w.nsteals, sc;     // collect steal count
1399 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1400 >                                               sc = stealCount, sc + ns));
1401 >            if (((ps = plock) & PL_LOCK) != 0 ||
1402 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1403 >                ps = acquirePlock();
1404 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1405 >            try {
1406 >                int idx = w.poolIndex;
1407                  WorkQueue[] ws = workQueues;
1408                  if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1409                      ws[idx] = null;
1410              } finally {
1411 <                lock.unlock();
1411 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1412 >                    releasePlock(nps);
1413              }
1414          }
1415  
1416 <        long c;                             // adjust ctl counts
1416 >        long c;                          // adjust ctl counts
1417          do {} while (!U.compareAndSwapLong
1418                       (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1419                                             ((c - TC_UNIT) & TC_MASK) |
1420                                             (c & ~(AC_MASK|TC_MASK)))));
1421  
1422 <        if (!tryTerminate(false, false) && w != null) {
1423 <            w.cancelAll();                  // cancel remaining tasks
1424 <            if (w.array != null)            // suppress signal if never ran
1425 <                signalWork();               // wake up or create replacement
1426 <            if (ex == null)                 // help clean refs on way out
1427 <                ForkJoinTask.helpExpungeStaleExceptions();
1422 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1423 >            w.cancelAll();               // cancel remaining tasks
1424 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1425 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1426 >                if (e > 0) {             // activate or create replacement
1427 >                    if ((ws = workQueues) == null ||
1428 >                        (i = e & SMASK) >= ws.length ||
1429 >                        (v = ws[i]) == null)
1430 >                        break;
1431 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1432 >                               ((long)(u + UAC_UNIT) << 32));
1433 >                    if (v.eventCount != (e | INT_SIGN))
1434 >                        break;
1435 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1436 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1437 >                        if ((p = v.parker) != null)
1438 >                            U.unpark(p);
1439 >                        break;
1440 >                    }
1441 >                }
1442 >                else {
1443 >                    if ((short)u < 0)
1444 >                        tryAddWorker();
1445 >                    break;
1446 >                }
1447 >            }
1448          }
1449 <
1450 <        if (ex != null)                     // rethrow
1451 <            U.throwException(ex);
1449 >        if (ex == null)                     // help clean refs on way out
1450 >            ForkJoinTask.helpExpungeStaleExceptions();
1451 >        else                                // rethrow
1452 >            ForkJoinTask.rethrow(ex);
1453      }
1454  
1393
1455      // Submissions
1456  
1457      /**
1458       * Unless shutting down, adds the given task to a submission queue
1459       * at submitter's current queue index (modulo submission
1460 <     * range). If no queue exists at the index, one is created.  If
1461 <     * the queue is busy, another index is randomly chosen. The
1401 <     * submitMask bounds the effective number of queues to the
1402 <     * (nearest power of two for) parallelism level.
1460 >     * range). Only the most common path is directly handled in this
1461 >     * method. All others are relayed to fullExternalPush.
1462       *
1463       * @param task the task. Caller must ensure non-null.
1464       */
1465 <    private void doSubmit(ForkJoinTask<?> task) {
1466 <        Submitter s = submitters.get();
1467 <        for (int r = s.seed, m = submitMask;;) {
1468 <            WorkQueue[] ws; WorkQueue q;
1469 <            int k = r & m & SQMASK;          // use only even indices
1470 <            if (runState < 0 || (ws = workQueues) == null || ws.length <= k)
1471 <                throw new RejectedExecutionException(); // shutting down
1472 <            else if ((q = ws[k]) == null) {  // create new queue
1473 <                WorkQueue nq = new WorkQueue(this, null, SHARED_QUEUE);
1474 <                Mutex lock = this.lock;      // construct outside lock
1475 <                lock.lock();
1476 <                try {                        // recheck under lock
1477 <                    int rs = runState;       // to update seq
1478 <                    if (ws == workQueues && ws[k] == null) {
1420 <                        ws[k] = nq;
1421 <                        runState = ((rs & SHUTDOWN) | ((rs + 2) & ~SHUTDOWN));
1422 <                    }
1423 <                } finally {
1424 <                    lock.unlock();
1425 <                }
1426 <            }
1427 <            else if (q.trySharedPush(task)) {
1428 <                signalWork();
1465 >    final void externalPush(ForkJoinTask<?> task) {
1466 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1467 >        if ((z = submitters.get()) != null && plock > 0 &&
1468 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1469 >            (q = ws[m & z.seed & SQMASK]) != null &&
1470 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1471 >            int b = q.base, s = q.top, n, an;
1472 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1473 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1474 >                U.putOrderedObject(a, j, task);
1475 >                q.top = s + 1;                     // push on to deque
1476 >                q.qlock = 0;
1477 >                if (n <= 2)
1478 >                    signalWork(q);
1479                  return;
1480              }
1481 <            else if (m > 1) {                // move to a different index
1482 <                r ^= r << 13;                // same xorshift as WorkQueues
1481 >            q.qlock = 0;
1482 >        }
1483 >        fullExternalPush(task);
1484 >    }
1485 >
1486 >    /**
1487 >     * Full version of externalPush. This method is called, among
1488 >     * other times, upon the first submission of the first task to the
1489 >     * pool, so must perform secondary initialization.  It also
1490 >     * detects first submission by an external thread by looking up
1491 >     * its ThreadLocal, and creates a new shared queue if the one at
1492 >     * index if empty or contended. The plock lock body must be
1493 >     * exception-free (so no try/finally) so we optimistically
1494 >     * allocate new queues outside the lock and throw them away if
1495 >     * (very rarely) not needed.
1496 >     *
1497 >     * Secondary initialization occurs when plock is zero, to create
1498 >     * workQueue array and set plock to a valid value.  This lock body
1499 >     * must also be exception-free. Because the plock seq value can
1500 >     * eventually wrap around zero, this method harmlessly fails to
1501 >     * reinitialize if workQueues exists, while still advancing plock.
1502 >     */
1503 >    private void fullExternalPush(ForkJoinTask<?> task) {
1504 >        int r = 0; // random index seed
1505 >        for (Submitter z = submitters.get();;) {
1506 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1507 >            if (z == null) {
1508 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1509 >                                        r += SEED_INCREMENT) && r != 0)
1510 >                    submitters.set(z = new Submitter(r));
1511 >            }
1512 >            else if (r == 0) {                  // move to a different index
1513 >                r = z.seed;
1514 >                r ^= r << 13;                   // same xorshift as WorkQueues
1515                  r ^= r >>> 17;
1516 <                s.seed = r ^= r << 5;
1516 >                z.seed = r ^ (r << 5);
1517 >            }
1518 >            else if ((ps = plock) < 0)
1519 >                throw new RejectedExecutionException();
1520 >            else if (ps == 0 || (ws = workQueues) == null ||
1521 >                     (m = ws.length - 1) < 0) { // initialize workQueues
1522 >                int p = config & SMASK;         // find power of two table size
1523 >                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1524 >                n |= n >>> 1;
1525 >                n |= n >>> 2;
1526 >                n |= n >>> 4;
1527 >                n |= n >>> 8;
1528 >                n |= n >>> 16;
1529 >                n = (n + 1) << 1;
1530 >                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1531 >                                   new WorkQueue[n] : null);
1532 >                if (((ps = plock) & PL_LOCK) != 0 ||
1533 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1534 >                    ps = acquirePlock();
1535 >                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1536 >                    workQueues = nws;
1537 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1538 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1539 >                    releasePlock(nps);
1540 >            }
1541 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1542 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1543 >                    ForkJoinTask<?>[] a = q.array;
1544 >                    int s = q.top;
1545 >                    boolean submitted = false;
1546 >                    try {                      // locked version of push
1547 >                        if ((a != null && a.length > s + 1 - q.base) ||
1548 >                            (a = q.growArray()) != null) {   // must presize
1549 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1550 >                            U.putOrderedObject(a, j, task);
1551 >                            q.top = s + 1;
1552 >                            submitted = true;
1553 >                        }
1554 >                    } finally {
1555 >                        q.qlock = 0;  // unlock
1556 >                    }
1557 >                    if (submitted) {
1558 >                        signalWork(q);
1559 >                        return;
1560 >                    }
1561 >                }
1562 >                r = 0; // move on failure
1563 >            }
1564 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1565 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1566 >                if (((ps = plock) & PL_LOCK) != 0 ||
1567 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1568 >                    ps = acquirePlock();
1569 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1570 >                    ws[k] = q;
1571 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1572 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1573 >                    releasePlock(nps);
1574              }
1575              else
1576 <                Thread.yield();              // yield if no alternatives
1576 >                r = 0; // try elsewhere while lock held
1577          }
1578      }
1579  
# Line 1449 | Line 1588 | public class ForkJoinPool extends Abstra
1588      }
1589  
1590      /**
1591 <     * Tries to activate or create a worker if too few are active.
1591 >     * Tries to create or activate a worker if too few are active.
1592 >     *
1593 >     * @param q the (non-null) queue holding tasks to be signalled
1594       */
1595 <    final void signalWork() {
1596 <        long c; int u;
1597 <        while ((u = (int)((c = ctl) >>> 32)) < 0) {     // too few active
1598 <            WorkQueue[] ws = workQueues; int e, i; WorkQueue w; Thread p;
1599 <            if ((e = (int)c) > 0) {                     // at least one waiting
1600 <                if (ws != null && (i = e & SMASK) < ws.length &&
1595 >    final void signalWork(WorkQueue q) {
1596 >        int hint = q.poolIndex;
1597 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1598 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1599 >            if ((e = (int)c) > 0) {
1600 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1601                      (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1602                      long nc = (((long)(w.nextWait & E_MASK)) |
1603                                 ((long)(u + UAC_UNIT) << 32));
1604                      if (U.compareAndSwapLong(this, CTL, c, nc)) {
1605 +                        w.hint = hint;
1606                          w.eventCount = (e + E_SEQ) & E_MASK;
1607                          if ((p = w.parker) != null)
1608 <                            U.unpark(p);                // activate and release
1608 >                            U.unpark(p);
1609                          break;
1610                      }
1611 +                    if (q.top - q.base <= 0)
1612 +                        break;
1613                  }
1614                  else
1615                      break;
1616              }
1617 <            else if (e == 0 && (u & SHORT_SIGN) != 0) { // too few total
1618 <                long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1619 <                                 ((u + UAC_UNIT) & UAC_MASK)) << 32;
1476 <                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1477 <                    addWorker();
1478 <                    break;
1479 <                }
1480 <            }
1481 <            else
1617 >            else {
1618 >                if ((short)u < 0)
1619 >                    tryAddWorker();
1620                  break;
1621 +            }
1622          }
1623      }
1624  
1486
1625      // Scanning for tasks
1626  
1627      /**
1628       * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1629       */
1630      final void runWorker(WorkQueue w) {
1631 <        w.growArray(false);         // initialize queue array in this thread
1632 <        do {} while (w.runTask(scan(w)));
1631 >        w.growArray(); // allocate queue
1632 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1633      }
1634  
1635      /**
# Line 1502 | Line 1640 | public class ForkJoinPool extends Abstra
1640       * contention, or state changes that indicate possible success on
1641       * re-invocation.
1642       *
1643 <     * The scan searches for tasks across a random permutation of
1644 <     * queues (starting at a random index and stepping by a random
1645 <     * relative prime, checking each at least once).  The scan
1646 <     * terminates upon either finding a non-empty queue, or completing
1647 <     * the sweep. If the worker is not inactivated, it takes and
1648 <     * returns a task from this queue.  On failure to find a task, we
1649 <     * take one of the following actions, after which the caller will
1650 <     * retry calling this method unless terminated.
1643 >     * The scan searches for tasks across queues (starting at a random
1644 >     * index, and relying on registerWorker to irregularly scatter
1645 >     * them within array to avoid bias), checking each at least twice.
1646 >     * The scan terminates upon either finding a non-empty queue, or
1647 >     * completing the sweep. If the worker is not inactivated, it
1648 >     * takes and returns a task from this queue. Otherwise, if not
1649 >     * activated, it signals workers (that may include itself) and
1650 >     * returns so caller can retry. Also returns for true if the
1651 >     * worker array may have changed during an empty scan.  On failure
1652 >     * to find a task, we take one of the following actions, after
1653 >     * which the caller will retry calling this method unless
1654 >     * terminated.
1655       *
1656       * * If pool is terminating, terminate the worker.
1657       *
1516     * * If not a complete sweep, try to release a waiting worker.  If
1517     * the scan terminated because the worker is inactivated, then the
1518     * released worker will often be the calling worker, and it can
1519     * succeed obtaining a task on the next call. Or maybe it is
1520     * another worker, but with same net effect. Releasing in other
1521     * cases as well ensures that we have enough workers running.
1522     *
1658       * * If not already enqueued, try to inactivate and enqueue the
1659       * worker on wait queue. Or, if inactivating has caused the pool
1660 <     * to be quiescent, relay to idleAwaitWork to check for
1661 <     * termination and possibly shrink pool.
1660 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1661 >     * pool.
1662       *
1663 <     * * If already inactive, and the caller has run a task since the
1664 <     * last empty scan, return (to allow rescan) unless others are
1530 <     * also inactivated.  Field WorkQueue.rescans counts down on each
1531 <     * scan to ensure eventual inactivation and blocking.
1663 >     * * If already enqueued and none of the above apply, possibly
1664 >     * park awaiting signal, else lingering to help scan and signal.
1665       *
1666 <     * * If already enqueued and none of the above apply, park
1667 <     * awaiting signal,
1666 >     * * If a non-empty queue discovered or left as a hint,
1667 >     * help wake up other workers before return.
1668       *
1669       * @param w the worker (via its WorkQueue)
1670 <     * @return a task or null of none found
1670 >     * @return a task or null if none found
1671       */
1672      private final ForkJoinTask<?> scan(WorkQueue w) {
1673 <        WorkQueue[] ws;                       // first update random seed
1674 <        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1675 <        int rs = runState, m;                 // volatile read order matters
1676 <        if ((ws = workQueues) != null && (m = ws.length - 1) > 0) {
1677 <            int ec = w.eventCount;            // ec is negative if inactive
1678 <            int step = (r >>> 16) | 1;        // relative prime
1679 <            for (int j = (m + 1) << 2; ; r += step) {
1680 <                WorkQueue q; ForkJoinTask<?> t; ForkJoinTask<?>[] a; int b;
1681 <                if ((q = ws[r & m]) != null && (b = q.base) - q.top < 0 &&
1682 <                    (a = q.array) != null) {  // probably nonempty
1673 >        WorkQueue[] ws; int m;
1674 >        int ps = plock;                          // read plock before ws
1675 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1676 >            int ec = w.eventCount;               // ec is negative if inactive
1677 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1678 >            w.hint = -1;                         // update seed and clear hint
1679 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1680 >            do {
1681 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1682 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1683 >                    (a = q.array) != null) {     // probably nonempty
1684                      int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1685 <                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1685 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1686 >                        U.getObjectVolatile(a, i);
1687                      if (q.base == b && ec >= 0 && t != null &&
1688                          U.compareAndSwapObject(a, i, t, null)) {
1689 <                        q.base = b + 1;       // specialization of pollAt
1690 <                        return t;
1691 <                    }
1692 <                    else if ((t != null || b + 1 != q.top) &&
1693 <                             (ec < 0 || j <= m)) {
1694 <                        rs = 0;               // mark scan as imcomplete
1695 <                        break;                // caller can retry after release
1696 <                    }
1697 <                }
1698 <                if (--j < 0)
1699 <                    break;
1700 <            }
1701 <            long c = ctl; int e = (int)c, a = (int)(c >> AC_SHIFT), nr, ns;
1702 <            if (e < 0)                        // decode ctl on empty scan
1703 <                w.runState = -1;              // pool is terminating
1704 <            else if (rs == 0 || rs != runState) { // incomplete scan
1705 <                WorkQueue v; Thread p;        // try to release a waiter
1706 <                if (e > 0 && a < 0 && w.eventCount == ec &&
1707 <                    (v = ws[e & m]) != null && v.eventCount == (e | INT_SIGN)) {
1708 <                    long nc = ((long)(v.nextWait & E_MASK) |
1709 <                               ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
1710 <                    if (ctl == c && U.compareAndSwapLong(this, CTL, c, nc)) {
1689 >                        if ((q.base = b + 1) - q.top < 0)
1690 >                            signalWork(q);
1691 >                        return t;                // taken
1692 >                    }
1693 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1694 >                        w.hint = (r + j) & m;    // help signal below
1695 >                        break;                   // cannot take
1696 >                    }
1697 >                }
1698 >            } while (--j >= 0);
1699 >
1700 >            int h, e, ns; long c, sc; WorkQueue q;
1701 >            if ((ns = w.nsteals) != 0) {
1702 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1703 >                                         sc = stealCount, sc + ns))
1704 >                    w.nsteals = 0;               // collect steals and rescan
1705 >            }
1706 >            else if (plock != ps)                // consistency check
1707 >                ;                                // skip
1708 >            else if ((e = (int)(c = ctl)) < 0)
1709 >                w.qlock = -1;                    // pool is terminating
1710 >            else {
1711 >                if ((h = w.hint) < 0) {
1712 >                    if (ec >= 0) {               // try to enqueue/inactivate
1713 >                        long nc = (((long)ec |
1714 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1715 >                        w.nextWait = e;          // link and mark inactive
1716 >                        w.eventCount = ec | INT_SIGN;
1717 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1718 >                            w.eventCount = ec;   // unmark on CAS failure
1719 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1720 >                            idleAwaitWork(w, nc, c);
1721 >                    }
1722 >                    else if (w.eventCount < 0 && ctl == c) {
1723 >                        Thread wt = Thread.currentThread();
1724 >                        Thread.interrupted();    // clear status
1725 >                        U.putObject(wt, PARKBLOCKER, this);
1726 >                        w.parker = wt;           // emulate LockSupport.park
1727 >                        if (w.eventCount < 0)    // recheck
1728 >                            U.park(false, 0L);   // block
1729 >                        w.parker = null;
1730 >                        U.putObject(wt, PARKBLOCKER, null);
1731 >                    }
1732 >                }
1733 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1734 >                    (ws = workQueues) != null && h < ws.length &&
1735 >                    (q = ws[h]) != null) {      // signal others before retry
1736 >                    WorkQueue v; Thread p; int u, i, s;
1737 >                    for (int n = (config & SMASK) - 1;;) {
1738 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1739 >                        if (((s = idleCount - q.base + q.top) <= n &&
1740 >                             (n = s) <= 0) ||
1741 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1742 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1743 >                            (v = ws[i]) == null)
1744 >                            break;
1745 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1746 >                                   ((long)(u + UAC_UNIT) << 32));
1747 >                        if (v.eventCount != (e | INT_SIGN) ||
1748 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1749 >                            break;
1750 >                        v.hint = h;
1751                          v.eventCount = (e + E_SEQ) & E_MASK;
1752                          if ((p = v.parker) != null)
1753                              U.unpark(p);
1754 +                        if (--n <= 0)
1755 +                            break;
1756                      }
1757                  }
1758              }
1582            else if (ec >= 0) {               // try to enqueue/inactivate
1583                long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1584                w.nextWait = e;
1585                w.eventCount = ec | INT_SIGN; // mark as inactive
1586                if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1587                    w.eventCount = ec;        // unmark on CAS failure
1588                else {
1589                    if ((ns = w.nsteals) != 0) {
1590                        w.nsteals = 0;        // set rescans if ran task
1591                        w.rescans = (a > 0) ? 0 : a + parallelism;
1592                        w.totalSteals += ns;
1593                    }
1594                    if (a == 1 - parallelism) // quiescent
1595                        idleAwaitWork(w, nc, c);
1596                }
1597            }
1598            else if (w.eventCount < 0) {      // already queued
1599                if ((nr = w.rescans) > 0) {   // continue rescanning
1600                    int ac = a + parallelism;
1601                    if (((w.rescans = (ac < nr) ? ac : nr - 1) & 3) == 0)
1602                        Thread.yield();       // yield before block
1603                }
1604                else {
1605                    Thread.interrupted();     // clear status
1606                    Thread wt = Thread.currentThread();
1607                    U.putObject(wt, PARKBLOCKER, this);
1608                    w.parker = wt;            // emulate LockSupport.park
1609                    if (w.eventCount < 0)     // recheck
1610                        U.park(false, 0L);
1611                    w.parker = null;
1612                    U.putObject(wt, PARKBLOCKER, null);
1613                }
1614            }
1759          }
1760          return null;
1761      }
# Line 1619 | Line 1763 | public class ForkJoinPool extends Abstra
1763      /**
1764       * If inactivating worker w has caused the pool to become
1765       * quiescent, checks for pool termination, and, so long as this is
1766 <     * not the only worker, waits for event for up to SHRINK_RATE
1767 <     * nanosecs.  On timeout, if ctl has not changed, terminates the
1766 >     * not the only worker, waits for event for up to a given
1767 >     * duration.  On timeout, if ctl has not changed, terminates the
1768       * worker, which will in turn wake up another worker to possibly
1769       * repeat this process.
1770       *
# Line 1629 | Line 1773 | public class ForkJoinPool extends Abstra
1773       * @param prevCtl the ctl value to restore if thread is terminated
1774       */
1775      private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1776 <        if (w.eventCount < 0 && !tryTerminate(false, false) &&
1777 <            (int)prevCtl != 0 && ctl == currentCtl) {
1776 >        if (w != null && w.eventCount < 0 &&
1777 >            !tryTerminate(false, false) && (int)prevCtl != 0 &&
1778 >            ctl == currentCtl) {
1779 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1780 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1781 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1782              Thread wt = Thread.currentThread();
1635            Thread.yield();            // yield before block
1783              while (ctl == currentCtl) {
1637                long startTime = System.nanoTime();
1784                  Thread.interrupted();  // timed variant of version in scan()
1785                  U.putObject(wt, PARKBLOCKER, this);
1786                  w.parker = wt;
1787                  if (ctl == currentCtl)
1788 <                    U.park(false, SHRINK_RATE);
1788 >                    U.park(false, parkTime);
1789                  w.parker = null;
1790                  U.putObject(wt, PARKBLOCKER, null);
1791                  if (ctl != currentCtl)
1792                      break;
1793 <                if (System.nanoTime() - startTime >= SHRINK_TIMEOUT &&
1793 >                if (deadline - System.nanoTime() <= 0L &&
1794                      U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1795                      w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1796 <                    w.runState = -1;   // shrink
1796 >                    w.hint = -1;
1797 >                    w.qlock = -1;   // shrink
1798                      break;
1799                  }
1800              }
# Line 1655 | Line 1802 | public class ForkJoinPool extends Abstra
1802      }
1803  
1804      /**
1805 +     * Scans through queues looking for work while joining a task; if
1806 +     * any present, signals. May return early if more signalling is
1807 +     * detectably unneeded.
1808 +     *
1809 +     * @param task return early if done
1810 +     * @param origin an index to start scan
1811 +     */
1812 +    private void helpSignal(ForkJoinTask<?> task, int origin) {
1813 +        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1814 +        if (task != null && task.status >= 0 &&
1815 +            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1816 +            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1817 +            outer: for (int k = origin, j = m; j >= 0; --j) {
1818 +                WorkQueue q = ws[k++ & m];
1819 +                for (int n = m;;) { // limit to at most m signals
1820 +                    if (task.status < 0)
1821 +                        break outer;
1822 +                    if (q == null ||
1823 +                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1824 +                        break;
1825 +                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1826 +                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1827 +                        (w = ws[i]) == null)
1828 +                        break outer;
1829 +                    long nc = (((long)(w.nextWait & E_MASK)) |
1830 +                               ((long)(u + UAC_UNIT) << 32));
1831 +                    if (w.eventCount != (e | INT_SIGN))
1832 +                        break outer;
1833 +                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1834 +                        w.eventCount = (e + E_SEQ) & E_MASK;
1835 +                        if ((p = w.parker) != null)
1836 +                            U.unpark(p);
1837 +                        if (--n <= 0)
1838 +                            break;
1839 +                    }
1840 +                }
1841 +            }
1842 +        }
1843 +    }
1844 +
1845 +    /**
1846       * Tries to locate and execute tasks for a stealer of the given
1847       * task, or in turn one of its stealers, Traces currentSteal ->
1848       * currentJoin links looking for a thread working on a descendant
# Line 1665 | Line 1853 | public class ForkJoinPool extends Abstra
1853       * leaves hints in workers to speed up subsequent calls. The
1854       * implementation is very branchy to cope with potential
1855       * inconsistencies or loops encountering chains that are stale,
1856 <     * unknown, or so long that they are likely cyclic.  All of these
1669 <     * cases are dealt with by just retrying by caller.
1856 >     * unknown, or so long that they are likely cyclic.
1857       *
1858       * @param joiner the joining worker
1859       * @param task the task to join
1860 <     * @return true if found or ran a task (and so is immediately retryable)
1860 >     * @return 0 if no progress can be made, negative if task
1861 >     * known complete, else positive
1862       */
1863 <    private boolean tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1864 <        WorkQueue[] ws;
1865 <        int m, depth = MAX_HELP;                // remaining chain depth
1866 <        boolean progress = false;
1867 <        if ((ws = workQueues) != null && (m = ws.length - 1) > 0 &&
1868 <            task.status >= 0) {
1869 <            ForkJoinTask<?> subtask = task;     // current target
1870 <            outer: for (WorkQueue j = joiner;;) {
1871 <                WorkQueue stealer = null;       // find stealer of subtask
1872 <                WorkQueue v = ws[j.stealHint & m]; // try hint
1873 <                if (v != null && v.currentSteal == subtask)
1874 <                    stealer = v;
1875 <                else {                          // scan
1876 <                    for (int i = 1; i <= m; i += 2) {
1877 <                        if ((v = ws[i]) != null && v.currentSteal == subtask &&
1878 <                            v != joiner) {
1879 <                            stealer = v;
1880 <                            j.stealHint = i;    // save hint
1881 <                            break;
1863 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1864 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1865 >        if (joiner != null && task != null) {       // hoist null checks
1866 >            restart: for (;;) {
1867 >                ForkJoinTask<?> subtask = task;     // current target
1868 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1869 >                    WorkQueue[] ws; int m, s, h;
1870 >                    if ((s = task.status) < 0) {
1871 >                        stat = s;
1872 >                        break restart;
1873 >                    }
1874 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1875 >                        break restart;              // shutting down
1876 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1877 >                        v.currentSteal != subtask) {
1878 >                        for (int origin = h;;) {    // find stealer
1879 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1880 >                                (subtask.status < 0 || j.currentJoin != subtask))
1881 >                                continue restart;   // occasional staleness check
1882 >                            if ((v = ws[h]) != null &&
1883 >                                v.currentSteal == subtask) {
1884 >                                j.hint = h;        // save hint
1885 >                                break;
1886 >                            }
1887 >                            if (h == origin)
1888 >                                break restart;      // cannot find stealer
1889                          }
1890                      }
1891 <                    if (stealer == null)
1892 <                        break;
1893 <                }
1894 <
1895 <                for (WorkQueue q = stealer;;) { // try to help stealer
1896 <                    ForkJoinTask[] a; ForkJoinTask<?> t; int b;
1897 <                    if (task.status < 0)
1898 <                        break outer;
1899 <                    if ((b = q.base) - q.top < 0 && (a = q.array) != null) {
1900 <                        progress = true;
1901 <                        int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1902 <                        t = (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1903 <                        if (subtask.status < 0) // must recheck before taking
1904 <                            break outer;
1905 <                        if (t != null &&
1906 <                            q.base == b &&
1907 <                            U.compareAndSwapObject(a, i, t, null)) {
1908 <                            q.base = b + 1;
1909 <                            joiner.runSubtask(t);
1891 >                    for (;;) { // help stealer or descend to its stealer
1892 >                        ForkJoinTask[] a;  int b;
1893 >                        if (subtask.status < 0)     // surround probes with
1894 >                            continue restart;       //   consistency checks
1895 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1896 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1897 >                            ForkJoinTask<?> t =
1898 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1899 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1900 >                                v.currentSteal != subtask)
1901 >                                continue restart;   // stale
1902 >                            stat = 1;               // apparent progress
1903 >                            if (t != null && v.base == b &&
1904 >                                U.compareAndSwapObject(a, i, t, null)) {
1905 >                                v.base = b + 1;     // help stealer
1906 >                                joiner.runSubtask(t);
1907 >                            }
1908 >                            else if (v.base == b && ++steps == MAX_HELP)
1909 >                                break restart;      // v apparently stalled
1910 >                        }
1911 >                        else {                      // empty -- try to descend
1912 >                            ForkJoinTask<?> next = v.currentJoin;
1913 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1914 >                                v.currentSteal != subtask)
1915 >                                continue restart;   // stale
1916 >                            else if (next == null || ++steps == MAX_HELP)
1917 >                                break restart;      // dead-end or maybe cyclic
1918 >                            else {
1919 >                                subtask = next;
1920 >                                j = v;
1921 >                                break;
1922 >                            }
1923                          }
1716                        else if (q.base == b)
1717                            break outer;        // possibly stalled
1718                    }
1719                    else {                      // descend
1720                        ForkJoinTask<?> next = stealer.currentJoin;
1721                        if (--depth <= 0 || subtask.status < 0 ||
1722                            next == null || next == subtask)
1723                            break outer;        // stale, dead-end, or cyclic
1724                        subtask = next;
1725                        j = stealer;
1726                        break;
1924                      }
1925                  }
1926              }
1927          }
1928 <        return progress;
1928 >        return stat;
1929      }
1930  
1931      /**
1932 <     * If task is at base of some steal queue, steals and executes it.
1932 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1933 >     * and run tasks within the target's computation.
1934       *
1935 <     * @param joiner the joining worker
1936 <     * @param task the task
1935 >     * @param task the task to join
1936 >     * @param mode if shared, exit upon completing any task
1937 >     * if all workers are active
1938       */
1939 <    private void tryPollForAndExec(WorkQueue joiner, ForkJoinTask<?> task) {
1940 <        WorkQueue[] ws;
1941 <        if ((ws = workQueues) != null) {
1942 <            for (int j = 1; j < ws.length && task.status >= 0; j += 2) {
1943 <                WorkQueue q = ws[j];
1944 <                if (q != null && q.pollFor(task)) {
1945 <                    joiner.runSubtask(task);
1946 <                    break;
1939 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1940 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1941 >        if (task != null && (ws = workQueues) != null &&
1942 >            (m = ws.length - 1) >= 0) {
1943 >            for (int j = 1, origin = j;;) {
1944 >                if ((s = task.status) < 0)
1945 >                    return s;
1946 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1947 >                    origin = j;
1948 >                    if (mode == SHARED_QUEUE &&
1949 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1950 >                        break;
1951                  }
1952 +                else if ((j = (j + 2) & m) == origin)
1953 +                    break;
1954              }
1955          }
1956 +        return 0;
1957      }
1958  
1959      /**
1960       * Tries to decrement active count (sometimes implicitly) and
1961       * possibly release or create a compensating worker in preparation
1962       * for blocking. Fails on contention or termination. Otherwise,
1963 <     * adds a new thread if no idle workers are available and either
1964 <     * pool would become completely starved or: (at least half
1759 <     * starved, and fewer than 50% spares exist, and there is at least
1760 <     * one task apparently available). Even though the availability
1761 <     * check requires a full scan, it is worthwhile in reducing false
1762 <     * alarms.
1763 <     *
1764 <     * @param task if nonnull, a task being waited for
1765 <     * @param blocker if nonnull, a blocker being waited for
1766 <     * @return true if the caller can block, else should recheck and retry
1963 >     * adds a new thread if no idle workers are available and pool
1964 >     * may become starved.
1965       */
1966 <    final boolean tryCompensate(ForkJoinTask<?> task, ManagedBlocker blocker) {
1967 <        int pc = parallelism, e;
1968 <        long c = ctl;
1969 <        WorkQueue[] ws = workQueues;
1970 <        if ((e = (int)c) >= 0 && ws != null) {
1971 <            int u, a, ac, hc;
1972 <            int tc = (short)((u = (int)(c >>> 32)) >>> UTC_SHIFT) + pc;
1973 <            boolean replace = false;
1974 <            if ((a = u >> UAC_SHIFT) <= 0) {
1975 <                if ((ac = a + pc) <= 1)
1976 <                    replace = true;
1977 <                else if ((e > 0 || (task != null &&
1978 <                                    ac <= (hc = pc >>> 1) && tc < pc + hc))) {
1781 <                    WorkQueue w;
1782 <                    for (int j = 0; j < ws.length; ++j) {
1783 <                        if ((w = ws[j]) != null && !w.isEmpty()) {
1784 <                            replace = true;
1785 <                            break;   // in compensation range and tasks available
1786 <                        }
1787 <                    }
1966 >    final boolean tryCompensate() {
1967 >        int pc = config & SMASK, e, i, tc; long c;
1968 >        WorkQueue[] ws; WorkQueue w; Thread p;
1969 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1970 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1971 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1972 >                long nc = ((long)(w.nextWait & E_MASK) |
1973 >                           (c & (AC_MASK|TC_MASK)));
1974 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1975 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1976 >                    if ((p = w.parker) != null)
1977 >                        U.unpark(p);
1978 >                    return true;   // replace with idle worker
1979                  }
1980              }
1981 <            if ((task == null || task.status >= 0) && // recheck need to block
1982 <                (blocker == null || !blocker.isReleasable()) && ctl == c) {
1983 <                if (!replace) {          // no compensation
1984 <                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1985 <                    if (U.compareAndSwapLong(this, CTL, c, nc))
1986 <                        return true;
1987 <                }
1988 <                else if (e != 0) {       // release an idle worker
1989 <                    WorkQueue w; Thread p; int i;
1990 <                    if ((i = e & SMASK) < ws.length && (w = ws[i]) != null) {
1991 <                        long nc = ((long)(w.nextWait & E_MASK) |
1992 <                                   (c & (AC_MASK|TC_MASK)));
1993 <                        if (w.eventCount == (e | INT_SIGN) &&
1994 <                            U.compareAndSwapLong(this, CTL, c, nc)) {
1995 <                            w.eventCount = (e + E_SEQ) & E_MASK;
1996 <                            if ((p = w.parker) != null)
1806 <                                U.unpark(p);
1981 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1982 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1983 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1984 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1985 >                    return true;   // no compensation
1986 >            }
1987 >            else if (tc + pc < MAX_CAP) {
1988 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1989 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1990 >                    ForkJoinWorkerThreadFactory fac;
1991 >                    Throwable ex = null;
1992 >                    ForkJoinWorkerThread wt = null;
1993 >                    try {
1994 >                        if ((fac = factory) != null &&
1995 >                            (wt = fac.newThread(this)) != null) {
1996 >                            wt.start();
1997                              return true;
1998                          }
1999 +                    } catch (Throwable rex) {
2000 +                        ex = rex;
2001                      }
2002 <                }
1811 <                else if (tc < MAX_CAP) { // create replacement
1812 <                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1813 <                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1814 <                        addWorker();
1815 <                        return true;
1816 <                    }
2002 >                    deregisterWorker(wt, ex); // clean up and return false
2003                  }
2004              }
2005          }
# Line 1821 | Line 2007 | public class ForkJoinPool extends Abstra
2007      }
2008  
2009      /**
2010 <     * Helps and/or blocks until the given task is done
2010 >     * Helps and/or blocks until the given task is done.
2011       *
2012       * @param joiner the joining worker
2013       * @param task the task
2014       * @return task status on exit
2015       */
2016      final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2017 <        ForkJoinTask<?> prevJoin = joiner.currentJoin;
2018 <        joiner.currentJoin = task;
2019 <        long startTime = 0L;
2020 <        for (int k = 0, s; ; ++k) {
2021 <            if ((joiner.isEmpty() ?                  // try to help
2022 <                 !tryHelpStealer(joiner, task) :
2023 <                 !joiner.tryRemoveAndExec(task))) {
2024 <                if (k == 0) {
2025 <                    startTime = System.nanoTime();
2026 <                    tryPollForAndExec(joiner, task); // check uncommon case
2027 <                }
2028 <                else if ((k & (MAX_HELP - 1)) == 0 &&
2029 <                         System.nanoTime() - startTime >= COMPENSATION_DELAY &&
2030 <                         tryCompensate(task, null)) {
2031 <                    if (task.trySetSignal() && task.status >= 0) {
2032 <                        synchronized (task) {
2033 <                            if (task.status >= 0) {
2034 <                                try {                // see ForkJoinTask
2035 <                                    task.wait();     //  for explanation
2036 <                                } catch (InterruptedException ie) {
2017 >        int s = 0;
2018 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2019 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2020 >            joiner.currentJoin = task;
2021 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2022 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2023 >            if (s >= 0 && (s = task.status) >= 0) {
2024 >                helpSignal(task, joiner.poolIndex);
2025 >                if ((s = task.status) >= 0 &&
2026 >                    (task instanceof CountedCompleter))
2027 >                    s = helpComplete(task, LIFO_QUEUE);
2028 >            }
2029 >            while (s >= 0 && (s = task.status) >= 0) {
2030 >                if ((!joiner.isEmpty() ||           // try helping
2031 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2032 >                    (s = task.status) >= 0) {
2033 >                    helpSignal(task, joiner.poolIndex);
2034 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2035 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2036 >                            synchronized (task) {
2037 >                                if (task.status >= 0) {
2038 >                                    try {                // see ForkJoinTask
2039 >                                        task.wait();     //  for explanation
2040 >                                    } catch (InterruptedException ie) {
2041 >                                    }
2042                                  }
2043 +                                else
2044 +                                    task.notifyAll();
2045                              }
1853                            else
1854                                task.notifyAll();
2046                          }
2047 +                        long c;                          // re-activate
2048 +                        do {} while (!U.compareAndSwapLong
2049 +                                     (this, CTL, c = ctl, c + AC_UNIT));
2050                      }
1857                    long c;                          // re-activate
1858                    do {} while (!U.compareAndSwapLong
1859                                 (this, CTL, c = ctl, c + AC_UNIT));
2051                  }
2052              }
2053 <            if ((s = task.status) < 0) {
1863 <                joiner.currentJoin = prevJoin;
1864 <                return s;
1865 <            }
1866 <            else if ((k & (MAX_HELP - 1)) == MAX_HELP >>> 1)
1867 <                Thread.yield();                     // for politeness
2053 >            joiner.currentJoin = prevJoin;
2054          }
2055 +        return s;
2056      }
2057  
2058      /**
# Line 1875 | Line 2062 | public class ForkJoinPool extends Abstra
2062       *
2063       * @param joiner the joining worker
2064       * @param task the task
1878     * @return task status on exit
2065       */
2066 <    final int helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2066 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2067          int s;
2068 <        while ((s = task.status) >= 0 &&
2069 <               (joiner.isEmpty() ?
2070 <                tryHelpStealer(joiner, task) :
2071 <                joiner.tryRemoveAndExec(task)))
2072 <            ;
2073 <        return s;
2068 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2069 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2070 >            joiner.currentJoin = task;
2071 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2072 >                         joiner.tryRemoveAndExec(task));
2073 >            if (s >= 0 && (s = task.status) >= 0) {
2074 >                helpSignal(task, joiner.poolIndex);
2075 >                if ((s = task.status) >= 0 &&
2076 >                    (task instanceof CountedCompleter))
2077 >                    s = helpComplete(task, LIFO_QUEUE);
2078 >            }
2079 >            if (s >= 0 && joiner.isEmpty()) {
2080 >                do {} while (task.status >= 0 &&
2081 >                             tryHelpStealer(joiner, task) > 0);
2082 >            }
2083 >            joiner.currentJoin = prevJoin;
2084 >        }
2085      }
2086  
2087      /**
2088       * Returns a (probably) non-empty steal queue, if one is found
2089 <     * during a random, then cyclic scan, else null.  This method must
2090 <     * be retried by caller if, by the time it tries to use the queue,
2091 <     * it is empty.
2092 <     */
2093 <    private WorkQueue findNonEmptyStealQueue(WorkQueue w) {
2094 <        // Similar to loop in scan(), but ignoring submissions
2095 <        int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
2096 <        int step = (r >>> 16) | 1;
2097 <        for (WorkQueue[] ws;;) {
2098 <            int rs = runState, m;
2099 <            if ((ws = workQueues) == null || (m = ws.length - 1) < 1)
2100 <                return null;
1904 <            for (int j = (m + 1) << 2; ; r += step) {
1905 <                WorkQueue q = ws[((r << 1) | 1) & m];
1906 <                if (q != null && !q.isEmpty())
1907 <                    return q;
1908 <                else if (--j < 0) {
1909 <                    if (runState == rs)
1910 <                        return null;
1911 <                    break;
2089 >     * during a scan, else null.  This method must be retried by
2090 >     * caller if, by the time it tries to use the queue, it is empty.
2091 >     * @param r a (random) seed for scanning
2092 >     */
2093 >    private WorkQueue findNonEmptyStealQueue(int r) {
2094 >        for (;;) {
2095 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2096 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2097 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2098 >                    if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2099 >                        q.base - q.top < 0)
2100 >                        return q;
2101                  }
2102              }
2103 +            if (plock == ps)
2104 +                return null;
2105          }
2106      }
2107  
# Line 1922 | Line 2113 | public class ForkJoinPool extends Abstra
2113       */
2114      final void helpQuiescePool(WorkQueue w) {
2115          for (boolean active = true;;) {
2116 <            if (w.base - w.top < 0)
2117 <                w.runLocalTasks();  // exhaust local queue
2118 <            WorkQueue q = findNonEmptyStealQueue(w);
2119 <            if (q != null) {
2120 <                ForkJoinTask<?> t; int b;
2116 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2117 >            while ((t = w.nextLocalTask()) != null) {
2118 >                if (w.base - w.top < 0)
2119 >                    signalWork(w);
2120 >                t.doExec();
2121 >            }
2122 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2123                  if (!active) {      // re-establish active count
1931                    long c;
2124                      active = true;
2125                      do {} while (!U.compareAndSwapLong
2126                                   (this, CTL, c = ctl, c + AC_UNIT));
2127                  }
2128 <                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2128 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2129 >                    if (q.base - q.top < 0)
2130 >                        signalWork(q);
2131                      w.runSubtask(t);
2132 +                }
2133              }
2134 <            else {
2135 <                long c;
2136 <                if (active) {       // decrement active count without queuing
2134 >            else if (active) {      // decrement active count without queuing
2135 >                long nc = (c = ctl) - AC_UNIT;
2136 >                if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2137 >                    return;         // bypass decrement-then-increment
2138 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2139                      active = false;
1943                    do {} while (!U.compareAndSwapLong
1944                                 (this, CTL, c = ctl, c -= AC_UNIT));
1945                }
1946                else
1947                    c = ctl;        // re-increment on exit
1948                if ((int)(c >> AC_SHIFT) + parallelism == 0) {
1949                    do {} while (!U.compareAndSwapLong
1950                                 (this, CTL, c = ctl, c + AC_UNIT));
1951                    break;
1952                }
2140              }
2141 +            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2142 +                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2143 +                return;
2144          }
2145      }
2146  
# Line 1964 | Line 2154 | public class ForkJoinPool extends Abstra
2154              WorkQueue q; int b;
2155              if ((t = w.nextLocalTask()) != null)
2156                  return t;
2157 <            if ((q = findNonEmptyStealQueue(w)) == null)
2157 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2158                  return null;
2159 <            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2159 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2160 >                if (q.base - q.top < 0)
2161 >                    signalWork(q);
2162                  return t;
2163 +            }
2164          }
2165      }
2166  
2167      /**
2168 <     * Returns the approximate (non-atomic) number of idle threads per
2169 <     * active thread to offset steal queue size for method
2170 <     * ForkJoinTask.getSurplusQueuedTaskCount().
2171 <     */
2172 <    final int idlePerActive() {
2173 <        // Approximate at powers of two for small values, saturate past 4
2174 <        int p = parallelism;
2175 <        int a = p + (int)(ctl >> AC_SHIFT);
2176 <        return (a > (p >>>= 1) ? 0 :
2177 <                a > (p >>>= 1) ? 1 :
2178 <                a > (p >>>= 1) ? 2 :
2179 <                a > (p >>>= 1) ? 4 :
2180 <                8);
2168 >     * Returns a cheap heuristic guide for task partitioning when
2169 >     * programmers, frameworks, tools, or languages have little or no
2170 >     * idea about task granularity.  In essence by offering this
2171 >     * method, we ask users only about tradeoffs in overhead vs
2172 >     * expected throughput and its variance, rather than how finely to
2173 >     * partition tasks.
2174 >     *
2175 >     * In a steady state strict (tree-structured) computation, each
2176 >     * thread makes available for stealing enough tasks for other
2177 >     * threads to remain active. Inductively, if all threads play by
2178 >     * the same rules, each thread should make available only a
2179 >     * constant number of tasks.
2180 >     *
2181 >     * The minimum useful constant is just 1. But using a value of 1
2182 >     * would require immediate replenishment upon each steal to
2183 >     * maintain enough tasks, which is infeasible.  Further,
2184 >     * partitionings/granularities of offered tasks should minimize
2185 >     * steal rates, which in general means that threads nearer the top
2186 >     * of computation tree should generate more than those nearer the
2187 >     * bottom. In perfect steady state, each thread is at
2188 >     * approximately the same level of computation tree. However,
2189 >     * producing extra tasks amortizes the uncertainty of progress and
2190 >     * diffusion assumptions.
2191 >     *
2192 >     * So, users will want to use values larger (but not much larger)
2193 >     * than 1 to both smooth over transient shortages and hedge
2194 >     * against uneven progress; as traded off against the cost of
2195 >     * extra task overhead. We leave the user to pick a threshold
2196 >     * value to compare with the results of this call to guide
2197 >     * decisions, but recommend values such as 3.
2198 >     *
2199 >     * When all threads are active, it is on average OK to estimate
2200 >     * surplus strictly locally. In steady-state, if one thread is
2201 >     * maintaining say 2 surplus tasks, then so are others. So we can
2202 >     * just use estimated queue length.  However, this strategy alone
2203 >     * leads to serious mis-estimates in some non-steady-state
2204 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2205 >     * many of these by further considering the number of "idle"
2206 >     * threads, that are known to have zero queued tasks, so
2207 >     * compensate by a factor of (#idle/#active) threads.
2208 >     *
2209 >     * Note: The approximation of #busy workers as #active workers is
2210 >     * not very good under current signalling scheme, and should be
2211 >     * improved.
2212 >     */
2213 >    static int getSurplusQueuedTaskCount() {
2214 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2215 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2216 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2217 >            int n = (q = wt.workQueue).top - q.base;
2218 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2219 >            return n - (a > (p >>>= 1) ? 0 :
2220 >                        a > (p >>>= 1) ? 1 :
2221 >                        a > (p >>>= 1) ? 2 :
2222 >                        a > (p >>>= 1) ? 4 :
2223 >                        8);
2224 >        }
2225 >        return 0;
2226      }
2227  
2228      //  Termination
# Line 2004 | Line 2242 | public class ForkJoinPool extends Abstra
2242       * @return true if now terminating or terminated
2243       */
2244      private boolean tryTerminate(boolean now, boolean enable) {
2245 <        Mutex lock = this.lock;
2245 >        int ps;
2246 >        if (this == common)                    // cannot shut down
2247 >            return false;
2248 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2249 >            if (!enable)
2250 >                return false;
2251 >            if ((ps & PL_LOCK) != 0 ||
2252 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2253 >                ps = acquirePlock();
2254 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2255 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2256 >                releasePlock(nps);
2257 >        }
2258          for (long c;;) {
2259 <            if (((c = ctl) & STOP_BIT) != 0) {      // already terminating
2260 <                if ((short)(c >>> TC_SHIFT) == -parallelism) {
2261 <                    lock.lock();                    // don't need try/finally
2262 <                    termination.signalAll();        // signal when 0 workers
2263 <                    lock.unlock();
2259 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2260 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2261 >                    synchronized (this) {
2262 >                        notifyAll();               // signal when 0 workers
2263 >                    }
2264                  }
2265                  return true;
2266              }
2267 <            if (runState >= 0) {                    // not yet enabled
2268 <                if (!enable)
2269 <                    return false;
2020 <                lock.lock();
2021 <                runState |= SHUTDOWN;
2022 <                lock.unlock();
2023 <            }
2024 <            if (!now) {                             // check if idle & no tasks
2025 <                if ((int)(c >> AC_SHIFT) != -parallelism ||
2026 <                    hasQueuedSubmissions())
2267 >            if (!now) {                            // check if idle & no tasks
2268 >                WorkQueue[] ws; WorkQueue w;
2269 >                if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2270                      return false;
2271 <                // Check for unqueued inactive workers. One pass suffices.
2272 <                WorkQueue[] ws = workQueues; WorkQueue w;
2273 <                if (ws != null) {
2274 <                    for (int i = 1; i < ws.length; i += 2) {
2275 <                        if ((w = ws[i]) != null && w.eventCount >= 0)
2276 <                            return false;
2271 >                if ((ws = workQueues) != null) {
2272 >                    for (int i = 0; i < ws.length; ++i) {
2273 >                        if ((w = ws[i]) != null) {
2274 >                            if (!w.isEmpty()) {    // signal unprocessed tasks
2275 >                                signalWork(w);
2276 >                                return false;
2277 >                            }
2278 >                            if ((i & 1) != 0 && w.eventCount >= 0)
2279 >                                return false;      // unqueued inactive worker
2280 >                        }
2281                      }
2282                  }
2283              }
2284              if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2285                  for (int pass = 0; pass < 3; ++pass) {
2286 <                    WorkQueue[] ws = workQueues;
2287 <                    if (ws != null) {
2041 <                        WorkQueue w;
2286 >                    WorkQueue[] ws; WorkQueue w; Thread wt;
2287 >                    if ((ws = workQueues) != null) {
2288                          int n = ws.length;
2289                          for (int i = 0; i < n; ++i) {
2290                              if ((w = ws[i]) != null) {
2291 <                                w.runState = -1;
2291 >                                w.qlock = -1;
2292                                  if (pass > 0) {
2293                                      w.cancelAll();
2294 <                                    if (pass > 1)
2295 <                                        w.interruptOwner();
2294 >                                    if (pass > 1 && (wt = w.owner) != null) {
2295 >                                        if (!wt.isInterrupted()) {
2296 >                                            try {
2297 >                                                wt.interrupt();
2298 >                                            } catch (Throwable ignore) {
2299 >                                            }
2300 >                                        }
2301 >                                        U.unpark(wt);
2302 >                                    }
2303                                  }
2304                              }
2305                          }
2306                          // Wake up workers parked on event queue
2307                          int i, e; long cc; Thread p;
2308                          while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2309 <                               (i = e & SMASK) < n &&
2309 >                               (i = e & SMASK) < n && i >= 0 &&
2310                                 (w = ws[i]) != null) {
2311                              long nc = ((long)(w.nextWait & E_MASK) |
2312                                         ((cc + AC_UNIT) & AC_MASK) |
# Line 2061 | Line 2314 | public class ForkJoinPool extends Abstra
2314                              if (w.eventCount == (e | INT_SIGN) &&
2315                                  U.compareAndSwapLong(this, CTL, cc, nc)) {
2316                                  w.eventCount = (e + E_SEQ) & E_MASK;
2317 <                                w.runState = -1;
2317 >                                w.qlock = -1;
2318                                  if ((p = w.parker) != null)
2319                                      U.unpark(p);
2320                              }
# Line 2072 | Line 2325 | public class ForkJoinPool extends Abstra
2325          }
2326      }
2327  
2328 +    // external operations on common pool
2329 +
2330 +    /**
2331 +     * Returns common pool queue for a thread that has submitted at
2332 +     * least one task.
2333 +     */
2334 +    static WorkQueue commonSubmitterQueue() {
2335 +        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2336 +        return ((z = submitters.get()) != null &&
2337 +                (p = common) != null &&
2338 +                (ws = p.workQueues) != null &&
2339 +                (m = ws.length - 1) >= 0) ?
2340 +            ws[m & z.seed & SQMASK] : null;
2341 +    }
2342 +
2343 +    /**
2344 +     * Tries to pop the given task from submitter's queue in common pool.
2345 +     */
2346 +    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2347 +        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2348 +        ForkJoinTask<?>[] a;  int m, s;
2349 +        if (t != null &&
2350 +            (z = submitters.get()) != null &&
2351 +            (p = common) != null &&
2352 +            (ws = p.workQueues) != null &&
2353 +            (m = ws.length - 1) >= 0 &&
2354 +            (q = ws[m & z.seed & SQMASK]) != null &&
2355 +            (s = q.top) != q.base &&
2356 +            (a = q.array) != null) {
2357 +            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2358 +            if (U.getObject(a, j) == t &&
2359 +                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2360 +                if (q.array == a && q.top == s && // recheck
2361 +                    U.compareAndSwapObject(a, j, t, null)) {
2362 +                    q.top = s - 1;
2363 +                    q.qlock = 0;
2364 +                    return true;
2365 +                }
2366 +                q.qlock = 0;
2367 +            }
2368 +        }
2369 +        return false;
2370 +    }
2371 +
2372 +    /**
2373 +     * Tries to pop and run local tasks within the same computation
2374 +     * as the given root. On failure, tries to help complete from
2375 +     * other queues via helpComplete.
2376 +     */
2377 +    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2378 +        ForkJoinTask<?>[] a; int m;
2379 +        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2380 +            root != null && root.status >= 0) {
2381 +            for (;;) {
2382 +                int s, u; Object o; CountedCompleter<?> task = null;
2383 +                if ((s = q.top) - q.base > 0) {
2384 +                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2385 +                    if ((o = U.getObject(a, j)) != null &&
2386 +                        (o instanceof CountedCompleter)) {
2387 +                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2388 +                        do {
2389 +                            if (r == root) {
2390 +                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2391 +                                    if (q.array == a && q.top == s &&
2392 +                                        U.compareAndSwapObject(a, j, t, null)) {
2393 +                                        q.top = s - 1;
2394 +                                        task = t;
2395 +                                    }
2396 +                                    q.qlock = 0;
2397 +                                }
2398 +                                break;
2399 +                            }
2400 +                        } while ((r = r.completer) != null);
2401 +                    }
2402 +                }
2403 +                if (task != null)
2404 +                    task.doExec();
2405 +                if (root.status < 0 ||
2406 +                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2407 +                    break;
2408 +                if (task == null) {
2409 +                    helpSignal(root, q.poolIndex);
2410 +                    if (root.status >= 0)
2411 +                        helpComplete(root, SHARED_QUEUE);
2412 +                    break;
2413 +                }
2414 +            }
2415 +        }
2416 +    }
2417 +
2418 +    /**
2419 +     * Tries to help execute or signal availability of the given task
2420 +     * from submitter's queue in common pool.
2421 +     */
2422 +    static void externalHelpJoin(ForkJoinTask<?> t) {
2423 +        // Some hard-to-avoid overlap with tryExternalUnpush
2424 +        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2425 +        ForkJoinTask<?>[] a;  int m, s, n;
2426 +        if (t != null &&
2427 +            (z = submitters.get()) != null &&
2428 +            (p = common) != null &&
2429 +            (ws = p.workQueues) != null &&
2430 +            (m = ws.length - 1) >= 0 &&
2431 +            (q = ws[m & z.seed & SQMASK]) != null &&
2432 +            (a = q.array) != null) {
2433 +            int am = a.length - 1;
2434 +            if ((s = q.top) != q.base) {
2435 +                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2436 +                if (U.getObject(a, j) == t &&
2437 +                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2438 +                    if (q.array == a && q.top == s &&
2439 +                        U.compareAndSwapObject(a, j, t, null)) {
2440 +                        q.top = s - 1;
2441 +                        q.qlock = 0;
2442 +                        t.doExec();
2443 +                    }
2444 +                    else
2445 +                        q.qlock = 0;
2446 +                }
2447 +            }
2448 +            if (t.status >= 0) {
2449 +                if (t instanceof CountedCompleter)
2450 +                    p.externalHelpComplete(q, t);
2451 +                else
2452 +                    p.helpSignal(t, q.poolIndex);
2453 +            }
2454 +        }
2455 +    }
2456 +
2457      // Exported methods
2458  
2459      // Constructors
# Line 2088 | Line 2470 | public class ForkJoinPool extends Abstra
2470       *         java.lang.RuntimePermission}{@code ("modifyThread")}
2471       */
2472      public ForkJoinPool() {
2473 <        this(Runtime.getRuntime().availableProcessors(),
2473 >        this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2474               defaultForkJoinWorkerThreadFactory, null, false);
2475      }
2476  
# Line 2143 | Line 2525 | public class ForkJoinPool extends Abstra
2525              throw new NullPointerException();
2526          if (parallelism <= 0 || parallelism > MAX_CAP)
2527              throw new IllegalArgumentException();
2146        this.parallelism = parallelism;
2528          this.factory = factory;
2529          this.ueh = handler;
2530 <        this.localMode = asyncMode ? FIFO_QUEUE : LIFO_QUEUE;
2530 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2531          long np = (long)(-parallelism); // offset ctl counts
2532          this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2533 <        // Use nearest power 2 for workQueues size. See Hackers Delight sec 3.2.
2153 <        int n = parallelism - 1;
2154 <        n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8; n |= n >>> 16;
2155 <        int size = (n + 1) << 1;        // #slots = 2*#workers
2156 <        this.submitMask = size - 1;     // room for max # of submit queues
2157 <        this.workQueues = new WorkQueue[size];
2158 <        this.termination = (this.lock = new Mutex()).newCondition();
2159 <        this.stealCount = new AtomicLong();
2160 <        this.nextWorkerNumber = new AtomicInteger();
2161 <        int pn = poolNumberGenerator.incrementAndGet();
2533 >        int pn = nextPoolId();
2534          StringBuilder sb = new StringBuilder("ForkJoinPool-");
2535          sb.append(Integer.toString(pn));
2536          sb.append("-worker-");
2537          this.workerNamePrefix = sb.toString();
2538 <        lock.lock();
2539 <        this.runState = 1;              // set init flag
2540 <        lock.unlock();
2538 >    }
2539 >
2540 >    /**
2541 >     * Constructor for common pool, suitable only for static initialization.
2542 >     * Basically the same as above, but uses smallest possible initial footprint.
2543 >     */
2544 >    ForkJoinPool(int parallelism, long ctl,
2545 >                 ForkJoinWorkerThreadFactory factory,
2546 >                 Thread.UncaughtExceptionHandler handler) {
2547 >        this.config = parallelism;
2548 >        this.ctl = ctl;
2549 >        this.factory = factory;
2550 >        this.ueh = handler;
2551 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2552 >    }
2553 >
2554 >    /**
2555 >     * Returns the common pool instance. This pool is statically
2556 >     * constructed; its run state is unaffected by attempts to {@link
2557 >     * #shutdown} or {@link #shutdownNow}. However this pool and any
2558 >     * ongoing processing are automatically terminated upon program
2559 >     * {@link System#exit}.  Any program that relies on asynchronous
2560 >     * task processing to complete before program termination should
2561 >     * invoke {@code commonPool().}{@link #awaitQuiescence}, before
2562 >     * exit.
2563 >     *
2564 >     * @return the common pool instance
2565 >     * @since 1.8
2566 >     */
2567 >    public static ForkJoinPool commonPool() {
2568 >        // assert common != null : "static init error";
2569 >        return common;
2570      }
2571  
2572      // Execution methods
# Line 2189 | Line 2590 | public class ForkJoinPool extends Abstra
2590      public <T> T invoke(ForkJoinTask<T> task) {
2591          if (task == null)
2592              throw new NullPointerException();
2593 <        doSubmit(task);
2593 >        externalPush(task);
2594          return task.join();
2595      }
2596  
# Line 2204 | Line 2605 | public class ForkJoinPool extends Abstra
2605      public void execute(ForkJoinTask<?> task) {
2606          if (task == null)
2607              throw new NullPointerException();
2608 <        doSubmit(task);
2608 >        externalPush(task);
2609      }
2610  
2611      // AbstractExecutorService methods
# Line 2222 | Line 2623 | public class ForkJoinPool extends Abstra
2623              job = (ForkJoinTask<?>) task;
2624          else
2625              job = new ForkJoinTask.AdaptedRunnableAction(task);
2626 <        doSubmit(job);
2626 >        externalPush(job);
2627      }
2628  
2629      /**
# Line 2237 | Line 2638 | public class ForkJoinPool extends Abstra
2638      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2639          if (task == null)
2640              throw new NullPointerException();
2641 <        doSubmit(task);
2641 >        externalPush(task);
2642          return task;
2643      }
2644  
# Line 2248 | Line 2649 | public class ForkJoinPool extends Abstra
2649       */
2650      public <T> ForkJoinTask<T> submit(Callable<T> task) {
2651          ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2652 <        doSubmit(job);
2652 >        externalPush(job);
2653          return job;
2654      }
2655  
# Line 2259 | Line 2660 | public class ForkJoinPool extends Abstra
2660       */
2661      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2662          ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2663 <        doSubmit(job);
2663 >        externalPush(job);
2664          return job;
2665      }
2666  
# Line 2276 | Line 2677 | public class ForkJoinPool extends Abstra
2677              job = (ForkJoinTask<?>) task;
2678          else
2679              job = new ForkJoinTask.AdaptedRunnableAction(task);
2680 <        doSubmit(job);
2680 >        externalPush(job);
2681          return job;
2682      }
2683  
# Line 2288 | Line 2689 | public class ForkJoinPool extends Abstra
2689          // In previous versions of this class, this method constructed
2690          // a task to run ForkJoinTask.invokeAll, but now external
2691          // invocation of multiple tasks is at least as efficient.
2692 <        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2292 <        // Workaround needed because method wasn't declared with
2293 <        // wildcards in return type but should have been.
2294 <        @SuppressWarnings({"unchecked", "rawtypes"})
2295 <            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2692 >        ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2693  
2694          boolean done = false;
2695          try {
2696              for (Callable<T> t : tasks) {
2697                  ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2698 <                doSubmit(f);
2699 <                fs.add(f);
2698 >                futures.add(f);
2699 >                externalPush(f);
2700              }
2701 <            for (ForkJoinTask<T> f : fs)
2702 <                f.quietlyJoin();
2701 >            for (int i = 0, size = futures.size(); i < size; i++)
2702 >                ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2703              done = true;
2704              return futures;
2705          } finally {
2706              if (!done)
2707 <                for (ForkJoinTask<T> f : fs)
2708 <                    f.cancel(false);
2707 >                for (int i = 0, size = futures.size(); i < size; i++)
2708 >                    futures.get(i).cancel(false);
2709          }
2710      }
2711  
# Line 2337 | Line 2734 | public class ForkJoinPool extends Abstra
2734       * @return the targeted parallelism level of this pool
2735       */
2736      public int getParallelism() {
2737 <        return parallelism;
2737 >        return config & SMASK;
2738 >    }
2739 >
2740 >    /**
2741 >     * Returns the targeted parallelism level of the common pool.
2742 >     *
2743 >     * @return the targeted parallelism level of the common pool
2744 >     * @since 1.8
2745 >     */
2746 >    public static int getCommonPoolParallelism() {
2747 >        return commonParallelism;
2748      }
2749  
2750      /**
# Line 2349 | Line 2756 | public class ForkJoinPool extends Abstra
2756       * @return the number of worker threads
2757       */
2758      public int getPoolSize() {
2759 <        return parallelism + (short)(ctl >>> TC_SHIFT);
2759 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2760      }
2761  
2762      /**
# Line 2359 | Line 2766 | public class ForkJoinPool extends Abstra
2766       * @return {@code true} if this pool uses async mode
2767       */
2768      public boolean getAsyncMode() {
2769 <        return localMode != 0;
2769 >        return (config >>> 16) == FIFO_QUEUE;
2770      }
2771  
2772      /**
# Line 2390 | Line 2797 | public class ForkJoinPool extends Abstra
2797       * @return the number of active threads
2798       */
2799      public int getActiveThreadCount() {
2800 <        int r = parallelism + (int)(ctl >> AC_SHIFT);
2800 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2801          return (r <= 0) ? 0 : r; // suppress momentarily negative values
2802      }
2803  
# Line 2406 | Line 2813 | public class ForkJoinPool extends Abstra
2813       * @return {@code true} if all threads are currently idle
2814       */
2815      public boolean isQuiescent() {
2816 <        return (int)(ctl >> AC_SHIFT) + parallelism == 0;
2816 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2817      }
2818  
2819      /**
# Line 2421 | Line 2828 | public class ForkJoinPool extends Abstra
2828       * @return the number of steals
2829       */
2830      public long getStealCount() {
2831 <        long count = stealCount.get();
2831 >        long count = stealCount;
2832          WorkQueue[] ws; WorkQueue w;
2833          if ((ws = workQueues) != null) {
2834              for (int i = 1; i < ws.length; i += 2) {
2835                  if ((w = ws[i]) != null)
2836 <                    count += w.totalSteals;
2836 >                    count += w.nsteals;
2837              }
2838          }
2839          return count;
# Line 2551 | Line 2958 | public class ForkJoinPool extends Abstra
2958      public String toString() {
2959          // Use a single pass through workQueues to collect counts
2960          long qt = 0L, qs = 0L; int rc = 0;
2961 <        long st = stealCount.get();
2961 >        long st = stealCount;
2962          long c = ctl;
2963          WorkQueue[] ws; WorkQueue w;
2964          if ((ws = workQueues) != null) {
# Line 2562 | Line 2969 | public class ForkJoinPool extends Abstra
2969                          qs += size;
2970                      else {
2971                          qt += size;
2972 <                        st += w.totalSteals;
2972 >                        st += w.nsteals;
2973                          if (w.isApparentlyUnblocked())
2974                              ++rc;
2975                      }
2976                  }
2977              }
2978          }
2979 <        int pc = parallelism;
2979 >        int pc = (config & SMASK);
2980          int tc = pc + (short)(c >>> TC_SHIFT);
2981          int ac = pc + (int)(c >> AC_SHIFT);
2982          if (ac < 0) // ignore transient negative
# Line 2578 | Line 2985 | public class ForkJoinPool extends Abstra
2985          if ((c & STOP_BIT) != 0)
2986              level = (tc == 0) ? "Terminated" : "Terminating";
2987          else
2988 <            level = runState < 0 ? "Shutting down" : "Running";
2988 >            level = plock < 0 ? "Shutting down" : "Running";
2989          return super.toString() +
2990              "[" + level +
2991              ", parallelism = " + pc +
# Line 2592 | Line 2999 | public class ForkJoinPool extends Abstra
2999      }
3000  
3001      /**
3002 <     * Initiates an orderly shutdown in which previously submitted
3003 <     * tasks are executed, but no new tasks will be accepted.
3004 <     * Invocation has no additional effect if already shut down.
3005 <     * Tasks that are in the process of being submitted concurrently
3006 <     * during the course of this method may or may not be rejected.
3002 >     * Possibly initiates an orderly shutdown in which previously
3003 >     * submitted tasks are executed, but no new tasks will be
3004 >     * accepted. Invocation has no effect on execution state if this
3005 >     * is the {@link #commonPool()}, and no additional effect if
3006 >     * already shut down.  Tasks that are in the process of being
3007 >     * submitted concurrently during the course of this method may or
3008 >     * may not be rejected.
3009       *
3010       * @throws SecurityException if a security manager exists and
3011       *         the caller is not permitted to modify threads
# Line 2609 | Line 3018 | public class ForkJoinPool extends Abstra
3018      }
3019  
3020      /**
3021 <     * Attempts to cancel and/or stop all tasks, and reject all
3022 <     * subsequently submitted tasks.  Tasks that are in the process of
3023 <     * being submitted or executed concurrently during the course of
3024 <     * this method may or may not be rejected. This method cancels
3025 <     * both existing and unexecuted tasks, in order to permit
3026 <     * termination in the presence of task dependencies. So the method
3027 <     * always returns an empty list (unlike the case for some other
3028 <     * Executors).
3021 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3022 >     * all subsequently submitted tasks.  Invocation has no effect on
3023 >     * execution state if this is the {@link #commonPool()}, and no
3024 >     * additional effect if already shut down. Otherwise, tasks that
3025 >     * are in the process of being submitted or executed concurrently
3026 >     * during the course of this method may or may not be
3027 >     * rejected. This method cancels both existing and unexecuted
3028 >     * tasks, in order to permit termination in the presence of task
3029 >     * dependencies. So the method always returns an empty list
3030 >     * (unlike the case for some other Executors).
3031       *
3032       * @return an empty list
3033       * @throws SecurityException if a security manager exists and
# Line 2638 | Line 3049 | public class ForkJoinPool extends Abstra
3049      public boolean isTerminated() {
3050          long c = ctl;
3051          return ((c & STOP_BIT) != 0L &&
3052 <                (short)(c >>> TC_SHIFT) == -parallelism);
3052 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3053      }
3054  
3055      /**
# Line 2646 | Line 3057 | public class ForkJoinPool extends Abstra
3057       * commenced but not yet completed.  This method may be useful for
3058       * debugging. A return of {@code true} reported a sufficient
3059       * period after shutdown may indicate that submitted tasks have
3060 <     * ignored or suppressed interruption, or are waiting for IO,
3060 >     * ignored or suppressed interruption, or are waiting for I/O,
3061       * causing this executor not to properly terminate. (See the
3062       * advisory notes for class {@link ForkJoinTask} stating that
3063       * tasks should not normally entail blocking operations.  But if
# Line 2657 | Line 3068 | public class ForkJoinPool extends Abstra
3068      public boolean isTerminating() {
3069          long c = ctl;
3070          return ((c & STOP_BIT) != 0L &&
3071 <                (short)(c >>> TC_SHIFT) != -parallelism);
3071 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3072      }
3073  
3074      /**
# Line 2666 | Line 3077 | public class ForkJoinPool extends Abstra
3077       * @return {@code true} if this pool has been shut down
3078       */
3079      public boolean isShutdown() {
3080 <        return runState < 0;
3080 >        return plock < 0;
3081      }
3082  
3083      /**
3084 <     * Blocks until all tasks have completed execution after a shutdown
3085 <     * request, or the timeout occurs, or the current thread is
3086 <     * interrupted, whichever happens first.
3084 >     * Blocks until all tasks have completed execution after a
3085 >     * shutdown request, or the timeout occurs, or the current thread
3086 >     * is interrupted, whichever happens first. Because the {@link
3087 >     * #commonPool()} never terminates until program shutdown, when
3088 >     * applied to the common pool, this method is equivalent to {@link
3089 >     * #awaitQuiescence} but always returns {@code false}.
3090       *
3091       * @param timeout the maximum time to wait
3092       * @param unit the time unit of the timeout argument
# Line 2682 | Line 3096 | public class ForkJoinPool extends Abstra
3096       */
3097      public boolean awaitTermination(long timeout, TimeUnit unit)
3098          throws InterruptedException {
3099 +        if (Thread.interrupted())
3100 +            throw new InterruptedException();
3101 +        if (this == common) {
3102 +            awaitQuiescence(timeout, unit);
3103 +            return false;
3104 +        }
3105          long nanos = unit.toNanos(timeout);
3106 <        final Mutex lock = this.lock;
3107 <        lock.lock();
3108 <        try {
3109 <            for (;;) {
3110 <                if (isTerminated())
3111 <                    return true;
3112 <                if (nanos <= 0)
3106 >        if (isTerminated())
3107 >            return true;
3108 >        long startTime = System.nanoTime();
3109 >        boolean terminated = false;
3110 >        synchronized (this) {
3111 >            for (long waitTime = nanos, millis = 0L;;) {
3112 >                if (terminated = isTerminated() ||
3113 >                    waitTime <= 0L ||
3114 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3115 >                    break;
3116 >                wait(millis);
3117 >                waitTime = nanos - (System.nanoTime() - startTime);
3118 >            }
3119 >        }
3120 >        return terminated;
3121 >    }
3122 >
3123 >    /**
3124 >     * If called by a ForkJoinTask operating in this pool, equivalent
3125 >     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3126 >     * waits and/or attempts to assist performing tasks until this
3127 >     * pool {@link #isQuiescent} or the indicated timeout elapses.
3128 >     *
3129 >     * @param timeout the maximum time to wait
3130 >     * @param unit the time unit of the timeout argument
3131 >     * @return {@code true} if quiescent; {@code false} if the
3132 >     * timeout elapsed.
3133 >     */
3134 >    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3135 >        long nanos = unit.toNanos(timeout);
3136 >        ForkJoinWorkerThread wt;
3137 >        Thread thread = Thread.currentThread();
3138 >        if ((thread instanceof ForkJoinWorkerThread) &&
3139 >            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3140 >            helpQuiescePool(wt.workQueue);
3141 >            return true;
3142 >        }
3143 >        long startTime = System.nanoTime();
3144 >        WorkQueue[] ws;
3145 >        int r = 0, m;
3146 >        boolean found = true;
3147 >        while (!isQuiescent() && (ws = workQueues) != null &&
3148 >               (m = ws.length - 1) >= 0) {
3149 >            if (!found) {
3150 >                if ((System.nanoTime() - startTime) > nanos)
3151                      return false;
3152 <                nanos = termination.awaitNanos(nanos);
3152 >                Thread.yield(); // cannot block
3153 >            }
3154 >            found = false;
3155 >            for (int j = (m + 1) << 2; j >= 0; --j) {
3156 >                ForkJoinTask<?> t; WorkQueue q; int b;
3157 >                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3158 >                    found = true;
3159 >                    if ((t = q.pollAt(b)) != null) {
3160 >                        if (q.base - q.top < 0)
3161 >                            signalWork(q);
3162 >                        t.doExec();
3163 >                    }
3164 >                    break;
3165 >                }
3166              }
2696        } finally {
2697            lock.unlock();
3167          }
3168 +        return true;
3169 +    }
3170 +
3171 +    /**
3172 +     * Waits and/or attempts to assist performing tasks indefinitely
3173 +     * until the {@link #commonPool()} {@link #isQuiescent}.
3174 +     */
3175 +    static void quiesceCommonPool() {
3176 +        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3177      }
3178  
3179      /**
# Line 2794 | Line 3272 | public class ForkJoinPool extends Abstra
3272      public static void managedBlock(ManagedBlocker blocker)
3273          throws InterruptedException {
3274          Thread t = Thread.currentThread();
3275 <        ForkJoinPool p = ((t instanceof ForkJoinWorkerThread) ?
3276 <                          ((ForkJoinWorkerThread)t).pool : null);
3277 <        while (!blocker.isReleasable()) {
3278 <            if (p == null || p.tryCompensate(null, blocker)) {
3279 <                try {
3280 <                    do {} while (!blocker.isReleasable() && !blocker.block());
3281 <                } finally {
3282 <                    if (p != null)
3275 >        if (t instanceof ForkJoinWorkerThread) {
3276 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3277 >            while (!blocker.isReleasable()) { // variant of helpSignal
3278 >                WorkQueue[] ws; WorkQueue q; int m, u;
3279 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3280 >                    for (int i = 0; i <= m; ++i) {
3281 >                        if (blocker.isReleasable())
3282 >                            return;
3283 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3284 >                            p.signalWork(q);
3285 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3286 >                                (u >> UAC_SHIFT) >= 0)
3287 >                                break;
3288 >                        }
3289 >                    }
3290 >                }
3291 >                if (p.tryCompensate()) {
3292 >                    try {
3293 >                        do {} while (!blocker.isReleasable() &&
3294 >                                     !blocker.block());
3295 >                    } finally {
3296                          p.incrementActiveCount();
3297 +                    }
3298 +                    break;
3299                  }
2807                break;
3300              }
3301          }
3302 +        else {
3303 +            do {} while (!blocker.isReleasable() &&
3304 +                         !blocker.block());
3305 +        }
3306      }
3307  
3308      // AbstractExecutorService overrides.  These rely on undocumented
# Line 2827 | Line 3323 | public class ForkJoinPool extends Abstra
3323      private static final long PARKBLOCKER;
3324      private static final int ABASE;
3325      private static final int ASHIFT;
3326 +    private static final long STEALCOUNT;
3327 +    private static final long PLOCK;
3328 +    private static final long INDEXSEED;
3329 +    private static final long QLOCK;
3330  
3331      static {
3332 <        poolNumberGenerator = new AtomicInteger();
2833 <        nextSubmitterSeed = new AtomicInteger(0x55555555);
2834 <        modifyThreadPermission = new RuntimePermission("modifyThread");
2835 <        defaultForkJoinWorkerThreadFactory =
2836 <            new DefaultForkJoinWorkerThreadFactory();
2837 <        submitters = new ThreadSubmitter();
2838 <        int s;
3332 >        // initialize field offsets for CAS etc
3333          try {
3334              U = getUnsafe();
3335              Class<?> k = ForkJoinPool.class;
2842            Class<?> ak = ForkJoinTask[].class;
3336              CTL = U.objectFieldOffset
3337                  (k.getDeclaredField("ctl"));
3338 +            STEALCOUNT = U.objectFieldOffset
3339 +                (k.getDeclaredField("stealCount"));
3340 +            PLOCK = U.objectFieldOffset
3341 +                (k.getDeclaredField("plock"));
3342 +            INDEXSEED = U.objectFieldOffset
3343 +                (k.getDeclaredField("indexSeed"));
3344              Class<?> tk = Thread.class;
3345              PARKBLOCKER = U.objectFieldOffset
3346                  (tk.getDeclaredField("parkBlocker"));
3347 +            Class<?> wk = WorkQueue.class;
3348 +            QLOCK = U.objectFieldOffset
3349 +                (wk.getDeclaredField("qlock"));
3350 +            Class<?> ak = ForkJoinTask[].class;
3351              ABASE = U.arrayBaseOffset(ak);
3352 <            s = U.arrayIndexScale(ak);
3352 >            int scale = U.arrayIndexScale(ak);
3353 >            if ((scale & (scale - 1)) != 0)
3354 >                throw new Error("data type scale not a power of two");
3355 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3356          } catch (Exception e) {
3357              throw new Error(e);
3358          }
3359 <        if ((s & (s-1)) != 0)
3360 <            throw new Error("data type scale not a power of two");
3361 <        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3359 >
3360 >        submitters = new ThreadLocal<Submitter>();
3361 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3362 >            new DefaultForkJoinWorkerThreadFactory();
3363 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3364 >
3365 >        /*
3366 >         * Establish common pool parameters.  For extra caution,
3367 >         * computations to set up common pool state are here; the
3368 >         * constructor just assigns these values to fields.
3369 >         */
3370 >
3371 >        int par = 0;
3372 >        Thread.UncaughtExceptionHandler handler = null;
3373 >        try {  // TBD: limit or report ignored exceptions?
3374 >            String pp = System.getProperty
3375 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3376 >            String hp = System.getProperty
3377 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3378 >            String fp = System.getProperty
3379 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3380 >            if (fp != null)
3381 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3382 >                       getSystemClassLoader().loadClass(fp).newInstance());
3383 >            if (hp != null)
3384 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3385 >                           getSystemClassLoader().loadClass(hp).newInstance());
3386 >            if (pp != null)
3387 >                par = Integer.parseInt(pp);
3388 >        } catch (Exception ignore) {
3389 >        }
3390 >
3391 >        if (par <= 0)
3392 >            par = Runtime.getRuntime().availableProcessors();
3393 >        if (par > MAX_CAP)
3394 >            par = MAX_CAP;
3395 >        commonParallelism = par;
3396 >        long np = (long)(-par); // precompute initial ctl value
3397 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3398 >
3399 >        common = new ForkJoinPool(par, ct, fac, handler);
3400      }
3401  
3402      /**
# Line 2865 | Line 3409 | public class ForkJoinPool extends Abstra
3409      private static sun.misc.Unsafe getUnsafe() {
3410          try {
3411              return sun.misc.Unsafe.getUnsafe();
3412 <        } catch (SecurityException se) {
3413 <            try {
3414 <                return java.security.AccessController.doPrivileged
3415 <                    (new java.security
3416 <                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3417 <                        public sun.misc.Unsafe run() throws Exception {
3418 <                            java.lang.reflect.Field f = sun.misc
3419 <                                .Unsafe.class.getDeclaredField("theUnsafe");
3420 <                            f.setAccessible(true);
3421 <                            return (sun.misc.Unsafe) f.get(null);
3422 <                        }});
3423 <            } catch (java.security.PrivilegedActionException e) {
3424 <                throw new RuntimeException("Could not initialize intrinsics",
3425 <                                           e.getCause());
3426 <            }
3412 >        } catch (SecurityException tryReflectionInstead) {}
3413 >        try {
3414 >            return java.security.AccessController.doPrivileged
3415 >            (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
3416 >                public sun.misc.Unsafe run() throws Exception {
3417 >                    Class<sun.misc.Unsafe> k = sun.misc.Unsafe.class;
3418 >                    for (java.lang.reflect.Field f : k.getDeclaredFields()) {
3419 >                        f.setAccessible(true);
3420 >                        Object x = f.get(null);
3421 >                        if (k.isInstance(x))
3422 >                            return k.cast(x);
3423 >                    }
3424 >                    throw new NoSuchFieldError("the Unsafe");
3425 >                }});
3426 >        } catch (java.security.PrivilegedActionException e) {
3427 >            throw new RuntimeException("Could not initialize intrinsics",
3428 >                                       e.getCause());
3429          }
3430      }
2885
3431   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines