ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.2 by dl, Wed Jan 7 16:07:37 2009 UTC vs.
Revision 1.60 by dl, Sat Jul 24 20:28:18 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.ArrayList;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Collections;
15 > import java.util.List;
16 > import java.util.concurrent.locks.LockSupport;
17 > import java.util.concurrent.locks.ReentrantLock;
18 > import java.util.concurrent.atomic.AtomicInteger;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
23 < * ForkJoinPool provides the entry point for submissions from
24 < * non-ForkJoinTasks, as well as management and monitoring operations.
25 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
22 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 > * A {@code ForkJoinPool} provides the entry point for submissions
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
28 < * that they provide <em>work-stealing</em>: all threads in the pool
29 < * attempt to find and execute subtasks created by other active tasks
30 < * (eventually blocking if none exist). This makes them efficient when
31 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
32 < * as the mixed execution of some plain Runnable- or Callable- based
33 < * activities along with ForkJoinTasks. Otherwise, other
34 < * ExecutorService implementations are typically more appropriate
35 < * choices.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>A ForkJoinPool may be constructed with a given parallelism level
38 < * (target pool size), which it attempts to maintain by dynamically
39 < * adding, suspending, or resuming threads, even if some tasks are
40 < * waiting to join others. However, no such adjustments are performed
41 < * in the face of blocked IO or other unmanaged synchronization. The
42 < * nested <code>ManagedBlocker</code> interface enables extension of
43 < * the kinds of synchronization accommodated.  The target parallelism
44 < * level may also be changed dynamically (<code>setParallelism</code>)
45 < * and dynamically thread construction can be limited using methods
43 < * <code>setMaximumPoolSize</code> and/or
44 < * <code>setMaintainsParallelism</code>.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
49 < * <code>getStealCount</code>) that are intended to aid in developing,
49 > * {@link #getStealCount}) that are intended to aid in developing,
50   * tuning, and monitoring fork/join applications. Also, method
51 < * <code>toString</code> returns indications of pool state in a
51 > * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 + * used for all parallel task execution in a program or subsystem.
90 + * Otherwise, use would not usually outweigh the construction and
91 + * bookkeeping overhead of creating a large set of threads. For
92 + * example, a common pool could be used for the {@code SortTasks}
93 + * illustrated in {@link RecursiveAction}. Because {@code
94 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 + * daemon} mode, there is typically no need to explicitly {@link
96 + * #shutdown} such a pool upon program exit.
97 + *
98 + * <pre>
99 + * static final ForkJoinPool mainPool = new ForkJoinPool();
100 + * ...
101 + * public void sort(long[] array) {
102 + *   mainPool.invoke(new SortTask(array, 0, array.length));
103 + * }
104 + * </pre>
105 + *
106   * <p><b>Implementation notes</b>: This implementation restricts the
107   * maximum number of running threads to 32767. Attempts to create
108 < * pools with greater than the maximum result in
109 < * IllegalArgumentExceptions.
108 > * pools with greater than the maximum number result in
109 > * {@code IllegalArgumentException}.
110 > *
111 > * <p>This implementation rejects submitted tasks (that is, by throwing
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhuasted.
114 > *
115 > * @since 1.7
116 > * @author Doug Lea
117   */
118   public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to take actions when
142 >     * one worker is waiting to join a task stolen (or always held by)
143 >     * another.  Becauae we are multiplexing many tasks on to a pool
144 >     * of workers, we can't just let them block (as in Thread.join).
145 >     * We also cannot just reassign the joiner's run-time stack with
146 >     * another and replace it later, which would be a form of
147 >     * "continuation", that even if possible is not necessarily a good
148 >     * idea. Given that the creation costs of most threads on most
149 >     * systems mainly surrounds setting up runtime stacks, thread
150 >     * creation and switching is usually not much more expensive than
151 >     * stack creation and switching, and is more flexible). Instead we
152 >     * combine two tactics:
153 >     *
154 >     *   Helping: Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   Compensating: Unless there are already enough live threads,
160 >     *      creating or or re-activating a spare thread to compensate
161 >     *      for the (blocked) joiner until it unblocks.  Spares then
162 >     *      suspend at their next opportunity or eventually die if
163 >     *      unused for too long.  See below and the internal
164 >     *      documentation for tryAwaitJoin for more details about
165 >     *      compensation rules.
166 >     *
167 >     * Because the determining existence of conservatively safe
168 >     * helping targets, the availability of already-created spares,
169 >     * and the apparent need to create new spares are all racy and
170 >     * require heuristic guidance, joins (in
171 >     * ForkJoinWorkerThread.joinTask) interleave these options until
172 >     * successful.  Creating a new spare always succeeds, but also
173 >     * increases application footprint, so we try to avoid it, within
174 >     * reason.
175 >     *
176 >     * The ManagedBlocker extension API can't use helping so uses a
177 >     * special version of compensation in method awaitBlocker.
178 >     *
179 >     * The main throughput advantages of work-stealing stem from
180 >     * decentralized control -- workers mostly steal tasks from each
181 >     * other. We do not want to negate this by creating bottlenecks
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195 >     *
196 >     * 1. Creating and removing workers. Workers are recorded in the
197 >     * "workers" array. This is an array as opposed to some other data
198 >     * structure to support index-based random steals by workers.
199 >     * Updates to the array recording new workers and unrecording
200 >     * terminated ones are protected from each other by a lock
201 >     * (workerLock) but the array is otherwise concurrently readable,
202 >     * and accessed directly by workers. To simplify index-based
203 >     * operations, the array size is always a power of two, and all
204 >     * readers must tolerate null slots. Currently, all worker thread
205 >     * creation is on-demand, triggered by task submissions,
206 >     * replacement of terminated workers, and/or compensation for
207 >     * blocked workers. However, all other support code is set up to
208 >     * work with other policies.
209 >     *
210 >     * 2. Bookkeeping for dynamically adding and removing workers. We
211 >     * aim to approximately maintain the given level of parallelism.
212 >     * When some workers are known to be blocked (on joins or via
213 >     * ManagedBlocker), we may create or resume others to take their
214 >     * place until they unblock (see below). Implementing this
215 >     * requires counts of the number of "running" threads (i.e., those
216 >     * that are neither blocked nor artifically suspended) as well as
217 >     * the total number.  These two values are packed into one field,
218 >     * "workerCounts" because we need accurate snapshots when deciding
219 >     * to create, resume or suspend.  Note however that the
220 >     * correspondance of these counts to reality is not guaranteed. In
221 >     * particular updates for unblocked threads may lag until they
222 >     * actually wake up.
223 >     *
224 >     * 3. Maintaining global run state. The run state of the pool
225 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
226 >     * those in other Executor implementations, as well as a count of
227 >     * "active" workers -- those that are, or soon will be, or
228 >     * recently were executing tasks. The runLevel and active count
229 >     * are packed together in order to correctly trigger shutdown and
230 >     * termination. Without care, active counts can be subject to very
231 >     * high contention.  We substantially reduce this contention by
232 >     * relaxing update rules.  A worker must claim active status
233 >     * prospectively, by activating if it sees that a submitted or
234 >     * stealable task exists (it may find after activating that the
235 >     * task no longer exists). It stays active while processing this
236 >     * task (if it exists) and any other local subtasks it produces,
237 >     * until it cannot find any other tasks. It then tries
238 >     * inactivating (see method preStep), but upon update contention
239 >     * instead scans for more tasks, later retrying inactivation if it
240 >     * doesn't find any.
241 >     *
242 >     * 4. Managing idle workers waiting for tasks. We cannot let
243 >     * workers spin indefinitely scanning for tasks when none are
244 >     * available. On the other hand, we must quickly prod them into
245 >     * action when new tasks are submitted or generated.  We
246 >     * park/unpark these idle workers using an event-count scheme.
247 >     * Field eventCount is incremented upon events that may enable
248 >     * workers that previously could not find a task to now find one:
249 >     * Submission of a new task to the pool, or another worker pushing
250 >     * a task onto a previously empty queue.  (We also use this
251 >     * mechanism for termination and reconfiguration actions that
252 >     * require wakeups of idle workers).  Each worker maintains its
253 >     * last known event count, and blocks when a scan for work did not
254 >     * find a task AND its lastEventCount matches the current
255 >     * eventCount. Waiting idle workers are recorded in a variant of
256 >     * Treiber stack headed by field eventWaiters which, when nonzero,
257 >     * encodes the thread index and count awaited for by the worker
258 >     * thread most recently calling eventSync. This thread in turn has
259 >     * a record (field nextEventWaiter) for the next waiting worker.
260 >     * In addition to allowing simpler decisions about need for
261 >     * wakeup, the event count bits in eventWaiters serve the role of
262 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
263 >     * in task diffusion, workers not otherwise occupied may invoke
264 >     * method releaseWaiters, that removes and signals (unparks)
265 >     * workers not waiting on current count. To minimize task
266 >     * production stalls associate with signalling, any worker pushing
267 >     * a task on an empty queue invokes the weaker method signalWork,
268 >     * that only releases idle workers until it detects interference
269 >     * by other threads trying to release, and lets them take
270 >     * over. The net effect is a tree-like diffusion of signals, where
271 >     * released threads (and possibly others) help with unparks.  To
272 >     * further reduce contention effects a bit, failed CASes to
273 >     * increment field eventCount are tolerated without retries.
274 >     * Conceptually they are merged into the same event, which is OK
275 >     * when their only purpose is to enable workers to scan for work.
276 >     *
277 >     * 5. Managing suspension of extra workers. When a worker is about
278 >     * to block waiting for a join (or via ManagedBlockers), we may
279 >     * create a new thread to maintain parallelism level, or at least
280 >     * avoid starvation. Usually, extra threads are needed for only
281 >     * very short periods, yet join dependencies are such that we
282 >     * sometimes need them in bursts. Rather than create new threads
283 >     * each time this happens, we suspend no-longer-needed extra ones
284 >     * as "spares". For most purposes, we don't distinguish "extra"
285 >     * spare threads from normal "core" threads: On each call to
286 >     * preStep (the only point at which we can do this) a worker
287 >     * checks to see if there are now too many running workers, and if
288 >     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
289 >     * look for suspended threads to resume before considering
290 >     * creating a new replacement. We don't need a special data
291 >     * structure to maintain spares; simply scanning the workers array
292 >     * looking for worker.isSuspended() is fine because the calling
293 >     * thread is otherwise not doing anything useful anyway; we are at
294 >     * least as happy if after locating a spare, the caller doesn't
295 >     * actually block because the join is ready before we try to
296 >     * adjust and compensate.  Note that this is intrinsically racy.
297 >     * One thread may become a spare at about the same time as another
298 >     * is needlessly being created. We counteract this and related
299 >     * slop in part by requiring resumed spares to immediately recheck
300 >     * (in preStep) to see whether they they should re-suspend. The
301 >     * only effective difference between "extra" and "core" threads is
302 >     * that we allow the "extra" ones to time out and die if they are
303 >     * not resumed within a keep-alive interval of a few seconds. This
304 >     * is implemented mainly within ForkJoinWorkerThread, but requires
305 >     * some coordination (isTrimmed() -- meaning killed while
306 >     * suspended) to correctly maintain pool counts.
307 >     *
308 >     * 6. Deciding when to create new workers. The main dynamic
309 >     * control in this class is deciding when to create extra threads,
310 >     * in methods awaitJoin and awaitBlocker. We always need to create
311 >     * one when the number of running threads would become zero and
312 >     * all workers are busy. However, this is not easy to detect
313 >     * reliably in the presence of transients so we use retries and
314 >     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
315 >     * effectively reduce churn at the price of systematically
316 >     * undershooting target parallelism when many threads are blocked.
317 >     * However, biasing toward undeshooting partially compensates for
318 >     * the above mechanics to suspend extra threads, that normally
319 >     * lead to overshoot because we can only suspend workers
320 >     * in-between top-level actions. It also better copes with the
321 >     * fact that some of the methods in this class tend to never
322 >     * become compiled (but are interpreted), so some components of
323 >     * the entire set of controls might execute many times faster than
324 >     * others. And similarly for cases where the apparent lack of work
325 >     * is just due to GC stalls and other transient system activity.
326 >     *
327 >     * Beware that there is a lot of representation-level coupling
328 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
329 >     * ForkJoinTask.  For example, direct access to "workers" array by
330 >     * workers, and direct access to ForkJoinTask.status by both
331 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
332 >     * trying to reduce this, since any associated future changes in
333 >     * representations will need to be accompanied by algorithmic
334 >     * changes anyway.
335 >     *
336 >     * Style notes: There are lots of inline assignments (of form
337 >     * "while ((local = field) != 0)") which are usually the simplest
338 >     * way to ensure read orderings. Also several occurrences of the
339 >     * unusual "do {} while(!cas...)" which is the simplest way to
340 >     * force an update of a CAS'ed variable. There are also other
341 >     * coding oddities that help some methods perform reasonably even
342 >     * when interpreted (not compiled), at the expense of messiness.
343 >     *
344 >     * The order of declarations in this file is: (1) statics (2)
345 >     * fields (along with constants used when unpacking some of them)
346 >     * (3) internal control methods (4) callbacks and other support
347 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
348 >     * methods (plus a few little helpers).
349       */
350  
65    /** Mask for packing and unpacking shorts */
66    private static final int  shortMask = 0xffff;
67
68    /** Max pool size -- must be a power of two minus 1 */
69    private static final int MAX_THREADS =  0x7FFF;
70
351      /**
352 <     * Factory for creating new ForkJoinWorkerThreads.  A
353 <     * ForkJoinWorkerThreadFactory must be defined and used for
354 <     * ForkJoinWorkerThread subclasses that extend base functionality
355 <     * or initialize threads with different contexts.
352 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
353 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
354 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
355 >     * functionality or initialize threads with different contexts.
356       */
357      public static interface ForkJoinWorkerThreadFactory {
358          /**
359           * Returns a new worker thread operating in the given pool.
360           *
361           * @param pool the pool this thread works in
362 <         * @throws NullPointerException if pool is null;
362 >         * @throws NullPointerException if the pool is null
363           */
364          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
365      }
366  
367      /**
368 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
368 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
369       * new ForkJoinWorkerThread.
370       */
371 <    static class  DefaultForkJoinWorkerThreadFactory
371 >    static class DefaultForkJoinWorkerThreadFactory
372          implements ForkJoinWorkerThreadFactory {
373          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
374 <            try {
95 <                return new ForkJoinWorkerThread(pool);
96 <            } catch (OutOfMemoryError oom)  {
97 <                return null;
98 <            }
374 >            return new ForkJoinWorkerThread(pool);
375          }
376      }
377  
# Line 131 | Line 407 | public class ForkJoinPool extends Abstra
407          new AtomicInteger();
408  
409      /**
410 <     * Array holding all worker threads in the pool. Array size must
410 >     * Absolute bound for parallelism level. Twice this number must
411 >     * fit into a 16bit field to enable word-packing for some counts.
412 >     */
413 >    private static final int MAX_THREADS = 0x7fff;
414 >
415 >    /**
416 >     * Array holding all worker threads in the pool.  Array size must
417       * be a power of two.  Updates and replacements are protected by
418 <     * workerLock, but it is always kept in a consistent enough state
419 <     * to be randomly accessed without locking by workers performing
420 <     * work-stealing.
418 >     * workerLock, but the array is always kept in a consistent enough
419 >     * state to be randomly accessed without locking by workers
420 >     * performing work-stealing, as well as other traversal-based
421 >     * methods in this class. All readers must tolerate that some
422 >     * array slots may be null.
423       */
424      volatile ForkJoinWorkerThread[] workers;
425  
426      /**
427 <     * Lock protecting access to workers.
427 >     * Queue for external submissions.
428       */
429 <    private final ReentrantLock workerLock;
429 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
430  
431      /**
432 <     * Condition for awaitTermination.
432 >     * Lock protecting updates to workers array.
433       */
434 <    private final Condition termination;
434 >    private final ReentrantLock workerLock;
435  
436      /**
437 <     * The uncaught exception handler used when any worker
154 <     * abrupty terminates
437 >     * Latch released upon termination.
438       */
439 <    private Thread.UncaughtExceptionHandler ueh;
439 >    private final Phaser termination;
440  
441      /**
442       * Creation factory for worker threads.
# Line 161 | Line 444 | public class ForkJoinPool extends Abstra
444      private final ForkJoinWorkerThreadFactory factory;
445  
446      /**
447 <     * Head of stack of threads that were created to maintain
448 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
447 >     * Sum of per-thread steal counts, updated only when threads are
448 >     * idle or terminating.
449       */
450 <    private volatile WaitQueueNode spareStack;
450 >    private volatile long stealCount;
451  
452      /**
453 <     * Sum of per-thread steal counts, updated only when threads are
454 <     * idle or terminating.
453 >     * Encoded record of top of treiber stack of threads waiting for
454 >     * events. The top 32 bits contain the count being waited for. The
455 >     * bottom word contains one plus the pool index of waiting worker
456 >     * thread.
457       */
458 <    private final AtomicLong stealCount;
458 >    private volatile long eventWaiters;
459 >
460 >    private static final int  EVENT_COUNT_SHIFT = 32;
461 >    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
462  
463      /**
464 <     * Queue for external submissions.
464 >     * A counter for events that may wake up worker threads:
465 >     *   - Submission of a new task to the pool
466 >     *   - A worker pushing a task on an empty queue
467 >     *   - termination and reconfiguration
468       */
469 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469 >    private volatile int eventCount;
470 >
471 >    /**
472 >     * Lifecycle control. The low word contains the number of workers
473 >     * that are (probably) executing tasks. This value is atomically
474 >     * incremented before a worker gets a task to run, and decremented
475 >     * when worker has no tasks and cannot find any.  Bits 16-18
476 >     * contain runLevel value. When all are zero, the pool is
477 >     * running. Level transitions are monotonic (running -> shutdown
478 >     * -> terminating -> terminated) so each transition adds a bit.
479 >     * These are bundled together to ensure consistent read for
480 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
481 >     * and active threads is zero).
482 >     */
483 >    private volatile int runState;
484 >
485 >    // Note: The order among run level values matters.
486 >    private static final int RUNLEVEL_SHIFT     = 16;
487 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
488 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
489 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
490 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491 >    private static final int ONE_ACTIVE         = 1; // active update delta
492 >
493 >    /**
494 >     * Holds number of total (i.e., created and not yet terminated)
495 >     * and running (i.e., not blocked on joins or other managed sync)
496 >     * threads, packed together to ensure consistent snapshot when
497 >     * making decisions about creating and suspending spare
498 >     * threads. Updated only by CAS. Note that adding a new worker
499 >     * requires incrementing both counts, since workers start off in
500 >     * running state.
501 >     */
502 >    private volatile int workerCounts;
503 >
504 >    private static final int TOTAL_COUNT_SHIFT  = 16;
505 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
506 >    private static final int ONE_RUNNING        = 1;
507 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
508 >
509 >    /**
510 >     * The target parallelism level.
511 >     * Accessed directly by ForkJoinWorkerThreads.
512 >     */
513 >    final int parallelism;
514  
515      /**
516 <     * Head of Treiber stack for barrier sync. See below for explanation
516 >     * True if use local fifo, not default lifo, for local polling
517 >     * Read by, and replicated by ForkJoinWorkerThreads
518       */
519 <    private volatile WaitQueueNode barrierStack;
519 >    final boolean locallyFifo;
520  
521      /**
522 <     * The count for event barrier
522 >     * The uncaught exception handler used when any worker abruptly
523 >     * terminates.
524       */
525 <    private volatile long eventCount;
525 >    private final Thread.UncaughtExceptionHandler ueh;
526  
527      /**
528       * Pool number, just for assigning useful names to worker threads
529       */
530      private final int poolNumber;
531  
532 +    // Utilities for CASing fields. Note that several of these
533 +    // are manually inlined by callers
534 +
535      /**
536 <     * The maximum allowed pool size
536 >     * Increments running count.  Also used by ForkJoinTask.
537       */
538 <    private volatile int maxPoolSize;
538 >    final void incrementRunningCount() {
539 >        int c;
540 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
541 >                                               c = workerCounts,
542 >                                               c + ONE_RUNNING));
543 >    }
544  
545      /**
546 <     * The desired parallelism level, updated only under workerLock.
546 >     * Tries to decrement running count unless already zero
547       */
548 <    private volatile int parallelism;
548 >    final boolean tryDecrementRunningCount() {
549 >        int wc = workerCounts;
550 >        if ((wc & RUNNING_COUNT_MASK) == 0)
551 >            return false;
552 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
553 >                                        wc, wc - ONE_RUNNING);
554 >    }
555  
556      /**
557 <     * Holds number of total (i.e., created and not yet terminated)
208 <     * and running (i.e., not blocked on joins or other managed sync)
209 <     * threads, packed into one int to ensure consistent snapshot when
210 <     * making decisions about creating and suspending spare
211 <     * threads. Updated only by CAS.  Note: CASes in
212 <     * updateRunningCount and preJoin running active count is in low
213 <     * word, so need to be modified if this changes
557 >     * Tries to increment running count
558       */
559 <    private volatile int workerCounts;
559 >    final boolean tryIncrementRunningCount() {
560 >        int wc;
561 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
562 >                                        wc = workerCounts, wc + ONE_RUNNING);
563 >    }
564  
565 <    private static int totalCountOf(int s)           { return s >>> 16;  }
566 <    private static int runningCountOf(int s)         { return s & shortMask; }
567 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
565 >    /**
566 >     * Tries incrementing active count; fails on contention.
567 >     * Called by workers before executing tasks.
568 >     *
569 >     * @return true on success
570 >     */
571 >    final boolean tryIncrementActiveCount() {
572 >        int c;
573 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
574 >                                        c = runState, c + ONE_ACTIVE);
575 >    }
576  
577      /**
578 <     * Add delta (which may be negative) to running count.  This must
579 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
225 <     * @param delta the number to add
578 >     * Tries decrementing active count; fails on contention.
579 >     * Called when workers cannot find tasks to run.
580       */
581 <    final void updateRunningCount(int delta) {
582 <        int s;
583 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
581 >    final boolean tryDecrementActiveCount() {
582 >        int c;
583 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
584 >                                        c = runState, c - ONE_ACTIVE);
585      }
586  
587      /**
588 <     * Add delta (which may be negative) to both total and running
589 <     * count.  This must be called upon creation and termination of
235 <     * worker threads.
236 <     * @param delta the number to add
588 >     * Advances to at least the given level. Returns true if not
589 >     * already in at least the given level.
590       */
591 <    private void updateWorkerCount(int delta) {
592 <        int d = delta + (delta << 16); // add to both lo and hi parts
593 <        int s;
594 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
591 >    private boolean advanceRunLevel(int level) {
592 >        for (;;) {
593 >            int s = runState;
594 >            if ((s & level) != 0)
595 >                return false;
596 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
597 >                return true;
598 >        }
599      }
600  
601 +    // workers array maintenance
602 +
603      /**
604 <     * Lifecycle control. High word contains runState, low word
246 <     * contains the number of workers that are (probably) executing
247 <     * tasks. This value is atomically incremented before a worker
248 <     * gets a task to run, and decremented when worker has no tasks
249 <     * and cannot find any. These two fields are bundled together to
250 <     * support correct termination triggering.  Note: activeCount
251 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
604 >     * Records and returns a workers array index for new worker.
605       */
606 <    private volatile int runControl;
606 >    private int recordWorker(ForkJoinWorkerThread w) {
607 >        // Try using slot totalCount-1. If not available, scan and/or resize
608 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
609 >        final ReentrantLock lock = this.workerLock;
610 >        lock.lock();
611 >        try {
612 >            ForkJoinWorkerThread[] ws = workers;
613 >            int nws = ws.length;
614 >            if (k < 0 || k >= nws || ws[k] != null) {
615 >                for (k = 0; k < nws && ws[k] != null; ++k)
616 >                    ;
617 >                if (k == nws)
618 >                    ws = Arrays.copyOf(ws, nws << 1);
619 >            }
620 >            ws[k] = w;
621 >            workers = ws; // volatile array write ensures slot visibility
622 >        } finally {
623 >            lock.unlock();
624 >        }
625 >        return k;
626 >    }
627  
628 <    // RunState values. Order among values matters
629 <    private static final int RUNNING     = 0;
630 <    private static final int SHUTDOWN    = 1;
631 <    private static final int TERMINATING = 2;
632 <    private static final int TERMINATED  = 3;
628 >    /**
629 >     * Nulls out record of worker in workers array
630 >     */
631 >    private void forgetWorker(ForkJoinWorkerThread w) {
632 >        int idx = w.poolIndex;
633 >        // Locking helps method recordWorker avoid unecessary expansion
634 >        final ReentrantLock lock = this.workerLock;
635 >        lock.lock();
636 >        try {
637 >            ForkJoinWorkerThread[] ws = workers;
638 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
639 >                ws[idx] = null;
640 >        } finally {
641 >            lock.unlock();
642 >        }
643 >    }
644  
645 <    private static int runStateOf(int c)             { return c >>> 16; }
263 <    private static int activeCountOf(int c)          { return c & shortMask; }
264 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
645 >    // adding and removing workers
646  
647      /**
648 <     * Increment active count. Called by workers before/during
649 <     * executing tasks.
648 >     * Tries to create and add new worker. Assumes that worker counts
649 >     * are already updated to accommodate the worker, so adjusts on
650 >     * failure.
651 >     *
652 >     * @return new worker or null if creation failed
653       */
654 <    final void incrementActiveCount() {
655 <        int c;
656 <        do;while (!casRunControl(c = runControl, c+1));
654 >    private ForkJoinWorkerThread addWorker() {
655 >        ForkJoinWorkerThread w = null;
656 >        try {
657 >            w = factory.newThread(this);
658 >        } finally { // Adjust on either null or exceptional factory return
659 >            if (w == null)
660 >                onWorkerCreationFailure();
661 >        }
662 >        if (w != null)
663 >            w.start(recordWorker(w), ueh);
664 >        return w;
665      }
666  
667      /**
668 <     * Decrement active count; possibly trigger termination.
277 <     * Called by workers when they can't find tasks.
668 >     * Adjusts counts upon failure to create worker
669       */
670 <    final void decrementActiveCount() {
671 <        int c, nextc;
672 <        do;while (!casRunControl(c = runControl, nextc = c-1));
673 <        if (canTerminateOnShutdown(nextc))
674 <            terminateOnShutdown();
670 >    private void onWorkerCreationFailure() {
671 >        for (;;) {
672 >            int wc = workerCounts;
673 >            int rc = wc & RUNNING_COUNT_MASK;
674 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
675 >            if (rc == 0 || wc == 0)
676 >                Thread.yield(); // must wait for other counts to settle
677 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
678 >                                              wc - (ONE_RUNNING|ONE_TOTAL)))
679 >                break;
680 >        }
681 >        tryTerminate(false); // in case of failure during shutdown
682      }
683  
684      /**
685 <     * Return true if argument represents zero active count and
686 <     * nonzero runstate, which is the triggering condition for
289 <     * terminating on shutdown.
685 >     * Creates enough total workers to establish target parallelism,
686 >     * giving up if terminating or addWorker fails
687       */
688 <    private static boolean canTerminateOnShutdown(int c) {
689 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
688 >    private void ensureEnoughTotalWorkers() {
689 >        int wc;
690 >        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism &&
691 >               runState < TERMINATING) {
692 >            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
693 >                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
694 >                 addWorker() == null))
695 >                break;
696 >        }
697      }
698  
699      /**
700 <     * Transition run state to at least the given state. Return true
701 <     * if not already at least given state.
700 >     * Final callback from terminating worker.  Removes record of
701 >     * worker from array, and adjusts counts. If pool is shutting
702 >     * down, tries to complete terminatation, else possibly replaces
703 >     * the worker.
704 >     *
705 >     * @param w the worker
706       */
707 <    private boolean transitionRunStateTo(int state) {
707 >    final void workerTerminated(ForkJoinWorkerThread w) {
708 >        if (w.active) { // force inactive
709 >            w.active = false;
710 >            do {} while (!tryDecrementActiveCount());
711 >        }
712 >        forgetWorker(w);
713 >
714 >        // Decrement total count, and if was running, running count
715 >        // Spin (waiting for other updates) if either would be negative
716 >        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
717 >        int unit = ONE_TOTAL + nr;
718          for (;;) {
719 <            int c = runControl;
720 <            if (runStateOf(c) >= state)
721 <                return false;
722 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
723 <                return true;
719 >            int wc = workerCounts;
720 >            int rc = wc & RUNNING_COUNT_MASK;
721 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
722 >            if (rc - nr < 0 || tc == 0)
723 >                Thread.yield(); // back off if waiting for other updates
724 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
725 >                                              wc, wc - unit))
726 >                break;
727          }
728 +
729 +        accumulateStealCount(w); // collect final count
730 +        if (!tryTerminate(false))
731 +            ensureEnoughTotalWorkers();
732      }
733  
734 +    // Waiting for and signalling events
735 +
736      /**
737 <     * Controls whether to add spares to maintain parallelism
737 >     * Releases workers blocked on a count not equal to current count.
738 >     * @return true if any released
739       */
740 <    private volatile boolean maintainsParallelism;
740 >    private void releaseWaiters() {
741 >        long top;
742 >        while ((top = eventWaiters) != 0L) {
743 >            ForkJoinWorkerThread[] ws = workers;
744 >            int n = ws.length;
745 >            for (;;) {
746 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
747 >                int e = (int)(top >>> EVENT_COUNT_SHIFT);
748 >                if (i < 0 || e == eventCount)
749 >                    return;
750 >                ForkJoinWorkerThread w;
751 >                if (i < n && (w = ws[i]) != null &&
752 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
753 >                                              top, w.nextWaiter)) {
754 >                    LockSupport.unpark(w);
755 >                    top = eventWaiters;
756 >                }
757 >                else
758 >                    break;      // possibly stale; reread
759 >            }
760 >        }
761 >    }
762  
763 <    // Constructors
763 >    /**
764 >     * Ensures eventCount on exit is different (mod 2^32) than on
765 >     * entry and wakes up all waiters
766 >     */
767 >    private void signalEvent() {
768 >        int c;
769 >        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
770 >                                               c = eventCount, c+1));
771 >        releaseWaiters();
772 >    }
773  
774      /**
775 <     * Creates a ForkJoinPool with a pool size equal to the number of
776 <     * processors available on the system and using the default
319 <     * ForkJoinWorkerThreadFactory,
320 <     * @throws SecurityException if a security manager exists and
321 <     *         the caller is not permitted to modify threads
322 <     *         because it does not hold {@link
323 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
775 >     * Advances eventCount and releases waiters until interference by
776 >     * other releasing threads is detected.
777       */
778 <    public ForkJoinPool() {
779 <        this(Runtime.getRuntime().availableProcessors(),
780 <             defaultForkJoinWorkerThreadFactory);
778 >    final void signalWork() {
779 >        int c;
780 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
781 >        long top;
782 >        while ((top = eventWaiters) != 0L) {
783 >            int ec = eventCount;
784 >            ForkJoinWorkerThread[] ws = workers;
785 >            int n = ws.length;
786 >            for (;;) {
787 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
788 >                int e = (int)(top >>> EVENT_COUNT_SHIFT);
789 >                if (i < 0 || e == ec)
790 >                    return;
791 >                ForkJoinWorkerThread w;
792 >                if (i < n && (w = ws[i]) != null &&
793 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
794 >                                              top, top = w.nextWaiter)) {
795 >                    LockSupport.unpark(w);
796 >                    if (top != eventWaiters) // let someone else take over
797 >                        return;
798 >                }
799 >                else
800 >                    break;      // possibly stale; reread
801 >            }
802 >        }
803      }
804  
805      /**
806 <     * Creates a ForkJoinPool with the indicated parellelism level
807 <     * threads, and using the default ForkJoinWorkerThreadFactory,
808 <     * @param parallelism the number of worker threads
809 <     * @throws IllegalArgumentException if parallelism less than or
335 <     * equal to zero
336 <     * @throws SecurityException if a security manager exists and
337 <     *         the caller is not permitted to modify threads
338 <     *         because it does not hold {@link
339 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
806 >     * Blockss worker until terminating or event count
807 >     * advances from last value held by worker
808 >     *
809 >     * @param w the calling worker thread
810       */
811 <    public ForkJoinPool(int parallelism) {
812 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
811 >    private void eventSync(ForkJoinWorkerThread w) {
812 >        int wec = w.lastEventCount;
813 >        long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
814 >                        ((long)(w.poolIndex + 1)));
815 >        long top;
816 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
817 >               (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
818 >                (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
819 >               eventCount == wec) {
820 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
821 >                                          w.nextWaiter = top, nextTop)) {
822 >                accumulateStealCount(w); // transfer steals while idle
823 >                Thread.interrupted();    // clear/ignore interrupt
824 >                while (eventCount == wec)
825 >                    w.doPark();
826 >                break;
827 >            }
828 >        }
829 >        w.lastEventCount = eventCount;
830      }
831  
832      /**
833 <     * Creates a ForkJoinPool with parallelism equal to the number of
834 <     * processors available on the system and using the given
835 <     * ForkJoinWorkerThreadFactory,
836 <     * @param factory the factory for creating new threads
837 <     * @throws NullPointerException if factory is null
838 <     * @throws SecurityException if a security manager exists and
839 <     *         the caller is not permitted to modify threads
840 <     *         because it does not hold {@link
841 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
833 >     * Callback from workers invoked upon each top-level action (i.e.,
834 >     * stealing a task or taking a submission and running
835 >     * it). Performs one or both of the following:
836 >     *
837 >     * * If the worker cannot find work, updates its active status to
838 >     * inactive and updates activeCount unless there is contention, in
839 >     * which case it may try again (either in this or a subsequent
840 >     * call).  Additionally, awaits the next task event and/or helps
841 >     * wake up other releasable waiters.
842 >     *
843 >     * * If there are too many running threads, suspends this worker
844 >     * (first forcing inactivation if necessary).  If it is not
845 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
846 >     * -- killed while suspended within suspendAsSpare. Otherwise,
847 >     * upon resume it rechecks to make sure that it is still needed.
848 >     *
849 >     * @param w the worker
850 >     * @param retries the number of scans by caller failing to find work
851 >     * find any (in which case it may block waiting for work).
852       */
853 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
854 <        this(Runtime.getRuntime().availableProcessors(), factory);
853 >    final void preStep(ForkJoinWorkerThread w, int retries) {
854 >        boolean active = w.active;
855 >        boolean inactivate = active && retries > 0;
856 >        for (;;) {
857 >            int rs, wc;
858 >            if (inactivate &&
859 >                UNSAFE.compareAndSwapInt(this, runStateOffset,
860 >                                         rs = runState, rs - ONE_ACTIVE))
861 >                inactivate = active = w.active = false;
862 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
863 >                if (retries > 0) {
864 >                    if (retries > 1 && !active)
865 >                        eventSync(w);
866 >                    releaseWaiters();
867 >                }
868 >                break;
869 >            }
870 >            if (!(inactivate |= active) &&  // must inactivate to suspend
871 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
872 >                                         wc, wc - ONE_RUNNING) &&
873 >                !w.suspendAsSpare())             // false if trimmed
874 >                break;
875 >        }
876      }
877  
878      /**
879 <     * Creates a ForkJoinPool with the given parallelism and factory.
879 >     * Awaits join of the given task if enough threads, or can resume
880 >     * or create a spare. Fails (in which case the given task might
881 >     * not be done) upon contention or lack of decision about
882 >     * blocking.
883       *
884 <     * @param parallelism the targeted number of worker threads
885 <     * @param factory the factory for creating new threads
886 <     * @throws IllegalArgumentException if parallelism less than or
887 <     * equal to zero, or greater than implementation limit.
888 <     * @throws NullPointerException if factory is null
889 <     * @throws SecurityException if a security manager exists and
890 <     *         the caller is not permitted to modify threads
891 <     *         because it does not hold {@link
892 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
884 >     * We allow blocking if:
885 >     *
886 >     * 1. There would still be at least as many running threads as
887 >     *    parallelism level if this thread blocks.
888 >     *
889 >     * 2. A spare is resumed to replace this worker. We tolerate
890 >     *    races in the decision to replace when a spare is found.
891 >     *    This may release too many, but if so, the superfluous ones
892 >     *    will re-suspend via preStep().
893 >     *
894 >     * 3. After #spares repeated retries, there are fewer than #spare
895 >     *    threads not running. We allow this slack to avoid hysteresis
896 >     *    and as a hedge against lag/uncertainty of running count
897 >     *    estimates when signalling or unblocking stalls.
898 >     *
899 >     * 4. All existing workers are busy (as rechecked via #spares
900 >     *    repeated retries by caller) and a new spare is created.
901 >     *
902 >     * If none of the above hold, we escape out by re-incrementing
903 >     * count and returning to caller, which can retry later.
904 >     *
905 >     * @param joinMe the task to join
906 >     * @param retries the number of calls to this method for this join
907       */
908 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
909 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
910 <            throw new IllegalArgumentException();
911 <        if (factory == null)
912 <            throw new NullPointerException();
913 <        checkPermission();
914 <        this.factory = factory;
915 <        this.parallelism = parallelism;
916 <        this.maxPoolSize = MAX_THREADS;
917 <        this.maintainsParallelism = true;
918 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
919 <        this.workerLock = new ReentrantLock();
920 <        this.termination = workerLock.newCondition();
921 <        this.stealCount = new AtomicLong();
922 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
923 <        createAndStartInitialWorkers(parallelism);
908 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
909 >        int pc = parallelism;
910 >        boolean running = true; // false when running count decremented
911 >        outer:while (joinMe.status >= 0) {
912 >            int wc = workerCounts;
913 >            int rc = wc & RUNNING_COUNT_MASK;
914 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
915 >            if (running) { // replace with spare or decrement count
916 >                if (rc <= pc && tc > pc &&
917 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
918 >                    ForkJoinWorkerThread[] ws = workers; // search for spare
919 >                    int nws = ws.length;
920 >                    for (int i = 0; i < nws; ++i) {
921 >                        ForkJoinWorkerThread w = ws[i];
922 >                        if (w != null && w.isSuspended()) {
923 >                            if ((workerCounts & RUNNING_COUNT_MASK) > pc)
924 >                                continue outer;
925 >                            if (joinMe.status < 0)
926 >                                break outer;
927 >                            if (w.tryResumeSpare()) {
928 >                                running = false;
929 >                                break outer;
930 >                            }
931 >                            continue outer; // rescan on failure to resume
932 >                        }
933 >                    }
934 >                }
935 >                if ((rc <= pc && (rc == 0 || --retries < 0)) || // no retry
936 >                    joinMe.status < 0)
937 >                    break;
938 >                if (workerCounts == wc &&
939 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
940 >                                             wc, wc - ONE_RUNNING))
941 >                    running = false;
942 >            }
943 >            else { // allow blocking if enough threads
944 >                int sc = tc - pc + 1;          // = spares, plus the one to add
945 >                if (sc > 0 && rc > 0 && rc >= pc - sc && rc > pc - retries)
946 >                    break;  
947 >                if (--retries > sc && tc < MAX_THREADS &&
948 >                    tc == (runState & ACTIVE_COUNT_MASK) &&
949 >                    workerCounts == wc &&
950 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
951 >                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
952 >                    addWorker();
953 >                    break;
954 >                }
955 >                if (workerCounts == wc &&
956 >                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
957 >                                              wc, wc + ONE_RUNNING)) {
958 >                    running = true;            // back out; allow retry
959 >                    break;
960 >                }
961 >            }
962 >        }
963 >        if (!running) { // can block
964 >            int c;                      // to inline incrementRunningCount
965 >            joinMe.internalAwaitDone();
966 >            do {} while (!UNSAFE.compareAndSwapInt
967 >                         (this, workerCountsOffset,
968 >                          c = workerCounts, c + ONE_RUNNING));
969 >        }
970      }
971  
972      /**
973 <     * Create new worker using factory.
974 <     * @param index the index to assign worker
975 <     * @return new worker, or null of factory failed
976 <     */
977 <    private ForkJoinWorkerThread createWorker(int index) {
978 <        Thread.UncaughtExceptionHandler h = ueh;
979 <        ForkJoinWorkerThread w = factory.newThread(this);
980 <        if (w != null) {
981 <            w.poolIndex = index;
982 <            w.setDaemon(true);
983 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
984 <            if (h != null)
985 <                w.setUncaughtExceptionHandler(h);
973 >     * Same idea as (and shares many code snippets with) tryAwaitJoin,
974 >     * but self-contained because there are no caller retries.
975 >     * TODO: Rework to use simpler API.
976 >     */
977 >    final void awaitBlocker(ManagedBlocker blocker)
978 >        throws InterruptedException {
979 >        int pc = parallelism;
980 >        boolean running = true;
981 >        int retries = 0;
982 >        boolean done;
983 >        outer:while (!(done = blocker.isReleasable())) {
984 >            int wc = workerCounts;
985 >            int rc = wc & RUNNING_COUNT_MASK;
986 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
987 >            if (running) {
988 >                if (rc <= pc && tc > pc &&
989 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
990 >                    ForkJoinWorkerThread[] ws = workers;
991 >                    int nws = ws.length;
992 >                    for (int i = 0; i < nws; ++i) {
993 >                        ForkJoinWorkerThread w = ws[i];
994 >                        if (w != null && w.isSuspended()) {
995 >                            if ((workerCounts & RUNNING_COUNT_MASK) > pc)
996 >                                continue outer;
997 >                            if (done = blocker.isReleasable())
998 >                                break outer;
999 >                            if (w.tryResumeSpare()) {
1000 >                                running = false;
1001 >                                break outer;
1002 >                            }
1003 >                            continue outer;
1004 >                        }
1005 >                    }
1006 >                    if (done = blocker.isReleasable())
1007 >                        break;
1008 >                }
1009 >                if (rc > 0 && workerCounts == wc &&
1010 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1011 >                                             wc, wc - ONE_RUNNING)) {
1012 >                    running = false;
1013 >                    if (rc > pc)
1014 >                        break;
1015 >                }
1016 >            }
1017 >            else if (rc >= pc)
1018 >                break;
1019 >            else if (tc < MAX_THREADS &&
1020 >                     tc == (runState & ACTIVE_COUNT_MASK) &&
1021 >                     workerCounts == wc &&
1022 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1023 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
1024 >                addWorker();
1025 >                break;
1026 >            }
1027 >            else if (workerCounts == wc &&
1028 >                     UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1029 >                                              wc, wc + ONE_RUNNING)) {
1030 >                Thread.yield();
1031 >                ++retries;
1032 >                running = true;            // allow rescan
1033 >            }
1034 >        }
1035 >
1036 >        try {
1037 >            if (!done)
1038 >                do {} while (!blocker.isReleasable() && !blocker.block());
1039 >        } finally {
1040 >            if (!running) {
1041 >                int c;
1042 >                do {} while (!UNSAFE.compareAndSwapInt
1043 >                             (this, workerCountsOffset,
1044 >                              c = workerCounts, c + ONE_RUNNING));
1045 >            }
1046 >        }
1047 >    }
1048 >
1049 >    /**
1050 >     * Possibly initiates and/or completes termination.
1051 >     *
1052 >     * @param now if true, unconditionally terminate, else only
1053 >     * if shutdown and empty queue and no active workers
1054 >     * @return true if now terminating or terminated
1055 >     */
1056 >    private boolean tryTerminate(boolean now) {
1057 >        if (now)
1058 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1059 >        else if (runState < SHUTDOWN ||
1060 >                 !submissionQueue.isEmpty() ||
1061 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1062 >            return false;
1063 >
1064 >        if (advanceRunLevel(TERMINATING))
1065 >            startTerminating();
1066 >
1067 >        // Finish now if all threads terminated; else in some subsequent call
1068 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1069 >            advanceRunLevel(TERMINATED);
1070 >            termination.arrive();
1071 >        }
1072 >        return true;
1073 >    }
1074 >
1075 >    /**
1076 >     * Actions on transition to TERMINATING
1077 >     */
1078 >    private void startTerminating() {
1079 >        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1080 >            cancelSubmissions();
1081 >            shutdownWorkers();
1082 >            cancelWorkerTasks();
1083 >            signalEvent();
1084 >            interruptWorkers();
1085          }
406        return w;
1086      }
1087  
1088      /**
1089 <     * Return a good size for worker array given pool size.
411 <     * Currently requires size to be a power of two.
1089 >     * Clear out and cancel submissions, ignoring exceptions
1090       */
1091 <    private static int arraySizeFor(int ps) {
1092 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
1091 >    private void cancelSubmissions() {
1092 >        ForkJoinTask<?> task;
1093 >        while ((task = submissionQueue.poll()) != null) {
1094 >            try {
1095 >                task.cancel(false);
1096 >            } catch (Throwable ignore) {
1097 >            }
1098 >        }
1099      }
1100  
1101      /**
1102 <     * Create or resize array if necessary to hold newLength
1103 <     * @return the array
1102 >     * Sets all worker run states to at least shutdown,
1103 >     * also resuming suspended workers
1104       */
1105 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1105 >    private void shutdownWorkers() {
1106          ForkJoinWorkerThread[] ws = workers;
1107 <        if (ws == null)
1108 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1109 <        else if (newLength > ws.length)
1110 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1111 <        else
1112 <            return ws;
1107 >        int nws = ws.length;
1108 >        for (int i = 0; i < nws; ++i) {
1109 >            ForkJoinWorkerThread w = ws[i];
1110 >            if (w != null)
1111 >                w.shutdown();
1112 >        }
1113      }
1114  
1115      /**
1116 <     * Try to shrink workers into smaller array after one or more terminate
1116 >     * Clears out and cancels all locally queued tasks
1117       */
1118 <    private void tryShrinkWorkerArray() {
1118 >    private void cancelWorkerTasks() {
1119          ForkJoinWorkerThread[] ws = workers;
1120 <        int len = ws.length;
1121 <        int last = len - 1;
1122 <        while (last >= 0 && ws[last] == null)
1123 <            --last;
1124 <        int newLength = arraySizeFor(last+1);
1125 <        if (newLength < len)
442 <            workers = Arrays.copyOf(ws, newLength);
1120 >        int nws = ws.length;
1121 >        for (int i = 0; i < nws; ++i) {
1122 >            ForkJoinWorkerThread w = ws[i];
1123 >            if (w != null)
1124 >                w.cancelTasks();
1125 >        }
1126      }
1127  
1128      /**
1129 <     * Initial worker array and worker creation and startup. (This
447 <     * must be done under lock to avoid interference by some of the
448 <     * newly started threads while creating others.)
1129 >     * Unsticks all workers blocked on joins etc
1130       */
1131 <    private void createAndStartInitialWorkers(int ps) {
1132 <        final ReentrantLock lock = this.workerLock;
1133 <        lock.lock();
1134 <        try {
1135 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1136 <            for (int i = 0; i < ps; ++i) {
1137 <                ForkJoinWorkerThread w = createWorker(i);
1138 <                if (w != null) {
1139 <                    ws[i] = w;
459 <                    w.start();
460 <                    updateWorkerCount(1);
1131 >    private void interruptWorkers() {
1132 >        ForkJoinWorkerThread[] ws = workers;
1133 >        int nws = ws.length;
1134 >        for (int i = 0; i < nws; ++i) {
1135 >            ForkJoinWorkerThread w = ws[i];
1136 >            if (w != null && !w.isTerminated()) {
1137 >                try {
1138 >                    w.interrupt();
1139 >                } catch (SecurityException ignore) {
1140                  }
1141              }
463        } finally {
464            lock.unlock();
1142          }
1143      }
1144  
1145 +    // misc support for ForkJoinWorkerThread
1146 +
1147      /**
1148 <     * Worker creation and startup for threads added via setParallelism.
1148 >     * Returns pool number
1149       */
1150 <    private void createAndStartAddedWorkers() {
1151 <        resumeAllSpares();  // Allow spares to convert to nonspare
1152 <        int ps = parallelism;
1153 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1154 <        int len = ws.length;
1155 <        // Sweep through slots, to keep lowest indices most populated
1156 <        int k = 0;
1157 <        while (k < len) {
1158 <            if (ws[k] != null) {
1159 <                ++k;
1160 <                continue;
1161 <            }
1162 <            int s = workerCounts;
1163 <            int tc = totalCountOf(s);
1164 <            int rc = runningCountOf(s);
486 <            if (rc >= ps || tc >= ps)
487 <                break;
488 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
489 <                ForkJoinWorkerThread w = createWorker(k);
490 <                if (w != null) {
491 <                    ws[k++] = w;
492 <                    w.start();
493 <                }
494 <                else {
495 <                    updateWorkerCount(-1); // back out on failed creation
496 <                    break;
497 <                }
498 <            }
1150 >    final int getPoolNumber() {
1151 >        return poolNumber;
1152 >    }
1153 >
1154 >    /**
1155 >     * Accumulates steal count from a worker, clearing
1156 >     * the worker's value
1157 >     */
1158 >    final void accumulateStealCount(ForkJoinWorkerThread w) {
1159 >        int sc = w.stealCount;
1160 >        if (sc != 0) {
1161 >            long c;
1162 >            w.stealCount = 0;
1163 >            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1164 >                                                    c = stealCount, c + sc));
1165          }
1166      }
1167  
1168 +    /**
1169 +     * Returns the approximate (non-atomic) number of idle threads per
1170 +     * active thread.
1171 +     */
1172 +    final int idlePerActive() {
1173 +        int pc = parallelism; // use parallelism, not rc
1174 +        int ac = runState;    // no mask -- artifically boosts during shutdown
1175 +        // Use exact results for small values, saturate past 4
1176 +        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1177 +    }
1178 +
1179 +    // Public and protected methods
1180 +
1181 +    // Constructors
1182 +
1183 +    /**
1184 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1185 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1186 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1187 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1188 +     *
1189 +     * @throws SecurityException if a security manager exists and
1190 +     *         the caller is not permitted to modify threads
1191 +     *         because it does not hold {@link
1192 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1193 +     */
1194 +    public ForkJoinPool() {
1195 +        this(Runtime.getRuntime().availableProcessors(),
1196 +             defaultForkJoinWorkerThreadFactory, null, false);
1197 +    }
1198 +
1199 +    /**
1200 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1201 +     * level, the {@linkplain
1202 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1203 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1204 +     *
1205 +     * @param parallelism the parallelism level
1206 +     * @throws IllegalArgumentException if parallelism less than or
1207 +     *         equal to zero, or greater than implementation limit
1208 +     * @throws SecurityException if a security manager exists and
1209 +     *         the caller is not permitted to modify threads
1210 +     *         because it does not hold {@link
1211 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1212 +     */
1213 +    public ForkJoinPool(int parallelism) {
1214 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1215 +    }
1216 +
1217 +    /**
1218 +     * Creates a {@code ForkJoinPool} with the given parameters.
1219 +     *
1220 +     * @param parallelism the parallelism level. For default value,
1221 +     * use {@link java.lang.Runtime#availableProcessors}.
1222 +     * @param factory the factory for creating new threads. For default value,
1223 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1224 +     * @param handler the handler for internal worker threads that
1225 +     * terminate due to unrecoverable errors encountered while executing
1226 +     * tasks. For default value, use <code>null</code>.
1227 +     * @param asyncMode if true,
1228 +     * establishes local first-in-first-out scheduling mode for forked
1229 +     * tasks that are never joined. This mode may be more appropriate
1230 +     * than default locally stack-based mode in applications in which
1231 +     * worker threads only process event-style asynchronous tasks.
1232 +     * For default value, use <code>false</code>.
1233 +     * @throws IllegalArgumentException if parallelism less than or
1234 +     *         equal to zero, or greater than implementation limit
1235 +     * @throws NullPointerException if the factory is null
1236 +     * @throws SecurityException if a security manager exists and
1237 +     *         the caller is not permitted to modify threads
1238 +     *         because it does not hold {@link
1239 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1240 +     */
1241 +    public ForkJoinPool(int parallelism,
1242 +                        ForkJoinWorkerThreadFactory factory,
1243 +                        Thread.UncaughtExceptionHandler handler,
1244 +                        boolean asyncMode) {
1245 +        checkPermission();
1246 +        if (factory == null)
1247 +            throw new NullPointerException();
1248 +        if (parallelism <= 0 || parallelism > MAX_THREADS)
1249 +            throw new IllegalArgumentException();
1250 +        this.parallelism = parallelism;
1251 +        this.factory = factory;
1252 +        this.ueh = handler;
1253 +        this.locallyFifo = asyncMode;
1254 +        int arraySize = initialArraySizeFor(parallelism);
1255 +        this.workers = new ForkJoinWorkerThread[arraySize];
1256 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1257 +        this.workerLock = new ReentrantLock();
1258 +        this.termination = new Phaser(1);
1259 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1260 +    }
1261 +
1262 +    /**
1263 +     * Returns initial power of two size for workers array.
1264 +     * @param pc the initial parallelism level
1265 +     */
1266 +    private static int initialArraySizeFor(int pc) {
1267 +        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1268 +        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1269 +        size |= size >>> 1;
1270 +        size |= size >>> 2;
1271 +        size |= size >>> 4;
1272 +        size |= size >>> 8;
1273 +        return size + 1;
1274 +    }
1275 +
1276      // Execution methods
1277  
1278      /**
1279       * Common code for execute, invoke and submit
1280       */
1281      private <T> void doSubmit(ForkJoinTask<T> task) {
1282 <        if (isShutdown())
1282 >        if (task == null)
1283 >            throw new NullPointerException();
1284 >        if (runState >= SHUTDOWN)
1285              throw new RejectedExecutionException();
1286          submissionQueue.offer(task);
1287 <        signalIdleWorkers(true);
1287 >        signalEvent();
1288 >        ensureEnoughTotalWorkers();
1289      }
1290  
1291      /**
1292 <     * Performs the given task; returning its result upon completion
1292 >     * Performs the given task, returning its result upon completion.
1293 >     * If the caller is already engaged in a fork/join computation in
1294 >     * the current pool, this method is equivalent in effect to
1295 >     * {@link ForkJoinTask#invoke}.
1296 >     *
1297       * @param task the task
1298       * @return the task's result
1299 <     * @throws NullPointerException if task is null
1300 <     * @throws RejectedExecutionException if pool is shut down
1299 >     * @throws NullPointerException if the task is null
1300 >     * @throws RejectedExecutionException if the task cannot be
1301 >     *         scheduled for execution
1302       */
1303      public <T> T invoke(ForkJoinTask<T> task) {
1304          doSubmit(task);
# Line 525 | Line 1307 | public class ForkJoinPool extends Abstra
1307  
1308      /**
1309       * Arranges for (asynchronous) execution of the given task.
1310 +     * If the caller is already engaged in a fork/join computation in
1311 +     * the current pool, this method is equivalent in effect to
1312 +     * {@link ForkJoinTask#fork}.
1313 +     *
1314       * @param task the task
1315 <     * @throws NullPointerException if task is null
1316 <     * @throws RejectedExecutionException if pool is shut down
1315 >     * @throws NullPointerException if the task is null
1316 >     * @throws RejectedExecutionException if the task cannot be
1317 >     *         scheduled for execution
1318       */
1319 <    public <T> void execute(ForkJoinTask<T> task) {
1319 >    public void execute(ForkJoinTask<?> task) {
1320          doSubmit(task);
1321      }
1322  
1323      // AbstractExecutorService methods
1324  
1325 +    /**
1326 +     * @throws NullPointerException if the task is null
1327 +     * @throws RejectedExecutionException if the task cannot be
1328 +     *         scheduled for execution
1329 +     */
1330      public void execute(Runnable task) {
1331 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1331 >        ForkJoinTask<?> job;
1332 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1333 >            job = (ForkJoinTask<?>) task;
1334 >        else
1335 >            job = ForkJoinTask.adapt(task, null);
1336 >        doSubmit(job);
1337 >    }
1338 >
1339 >    /**
1340 >     * Submits a ForkJoinTask for execution.
1341 >     * If the caller is already engaged in a fork/join computation in
1342 >     * the current pool, this method is equivalent in effect to
1343 >     * {@link ForkJoinTask#fork}.
1344 >     *
1345 >     * @param task the task to submit
1346 >     * @return the task
1347 >     * @throws NullPointerException if the task is null
1348 >     * @throws RejectedExecutionException if the task cannot be
1349 >     *         scheduled for execution
1350 >     */
1351 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1352 >        doSubmit(task);
1353 >        return task;
1354      }
1355  
1356 +    /**
1357 +     * @throws NullPointerException if the task is null
1358 +     * @throws RejectedExecutionException if the task cannot be
1359 +     *         scheduled for execution
1360 +     */
1361      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1362 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1362 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1363          doSubmit(job);
1364          return job;
1365      }
1366  
1367 +    /**
1368 +     * @throws NullPointerException if the task is null
1369 +     * @throws RejectedExecutionException if the task cannot be
1370 +     *         scheduled for execution
1371 +     */
1372      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1373 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1373 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1374          doSubmit(job);
1375          return job;
1376      }
1377  
1378 +    /**
1379 +     * @throws NullPointerException if the task is null
1380 +     * @throws RejectedExecutionException if the task cannot be
1381 +     *         scheduled for execution
1382 +     */
1383      public ForkJoinTask<?> submit(Runnable task) {
1384 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1384 >        ForkJoinTask<?> job;
1385 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1386 >            job = (ForkJoinTask<?>) task;
1387 >        else
1388 >            job = ForkJoinTask.adapt(task, null);
1389          doSubmit(job);
1390          return job;
1391      }
1392  
1393      /**
1394 <     * Adaptor for Runnables. This implements RunnableFuture
1395 <     * to be compliant with AbstractExecutorService constraints
1394 >     * @throws NullPointerException       {@inheritDoc}
1395 >     * @throws RejectedExecutionException {@inheritDoc}
1396       */
564    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
565        implements RunnableFuture<T> {
566        final Runnable runnable;
567        final T resultOnCompletion;
568        T result;
569        AdaptedRunnable(Runnable runnable, T result) {
570            if (runnable == null) throw new NullPointerException();
571            this.runnable = runnable;
572            this.resultOnCompletion = result;
573        }
574        public T getRawResult() { return result; }
575        public void setRawResult(T v) { result = v; }
576        public boolean exec() {
577            runnable.run();
578            result = resultOnCompletion;
579            return true;
580        }
581        public void run() { invoke(); }
582    }
583
584    /**
585     * Adaptor for Callables
586     */
587    static final class AdaptedCallable<T> extends ForkJoinTask<T>
588        implements RunnableFuture<T> {
589        final Callable<T> callable;
590        T result;
591        AdaptedCallable(Callable<T> callable) {
592            if (callable == null) throw new NullPointerException();
593            this.callable = callable;
594        }
595        public T getRawResult() { return result; }
596        public void setRawResult(T v) { result = v; }
597        public boolean exec() {
598            try {
599                result = callable.call();
600                return true;
601            } catch (Error err) {
602                throw err;
603            } catch (RuntimeException rex) {
604                throw rex;
605            } catch (Exception ex) {
606                throw new RuntimeException(ex);
607            }
608        }
609        public void run() { invoke(); }
610    }
611
1397      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1398 <        ArrayList<ForkJoinTask<T>> ts =
1398 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1399              new ArrayList<ForkJoinTask<T>>(tasks.size());
1400 <        for (Callable<T> c : tasks)
1401 <            ts.add(new AdaptedCallable<T>(c));
1402 <        invoke(new InvokeAll<T>(ts));
1403 <        return (List<Future<T>>)(List)ts;
1400 >        for (Callable<T> task : tasks)
1401 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1402 >        invoke(new InvokeAll<T>(forkJoinTasks));
1403 >
1404 >        @SuppressWarnings({"unchecked", "rawtypes"})
1405 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1406 >        return futures;
1407      }
1408  
1409      static final class InvokeAll<T> extends RecursiveAction {
1410          final ArrayList<ForkJoinTask<T>> tasks;
1411          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1412          public void compute() {
1413 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1413 >            try { invokeAll(tasks); }
1414 >            catch (Exception ignore) {}
1415          }
1416 +        private static final long serialVersionUID = -7914297376763021607L;
1417      }
1418  
629    // Configuration and status settings and queries
630
1419      /**
1420 <     * Returns the factory used for constructing new workers
1420 >     * Returns the factory used for constructing new workers.
1421       *
1422       * @return the factory used for constructing new workers
1423       */
# Line 640 | Line 1428 | public class ForkJoinPool extends Abstra
1428      /**
1429       * Returns the handler for internal worker threads that terminate
1430       * due to unrecoverable errors encountered while executing tasks.
643     * @return the handler, or null if none
644     */
645    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
646        Thread.UncaughtExceptionHandler h;
647        final ReentrantLock lock = this.workerLock;
648        lock.lock();
649        try {
650            h = ueh;
651        } finally {
652            lock.unlock();
653        }
654        return h;
655    }
656
657    /**
658     * Sets the handler for internal worker threads that terminate due
659     * to unrecoverable errors encountered while executing tasks.
660     * Unless set, the current default or ThreadGroup handler is used
661     * as handler.
1431       *
1432 <     * @param h the new handler
664 <     * @return the old handler, or null if none
665 <     * @throws SecurityException if a security manager exists and
666 <     *         the caller is not permitted to modify threads
667 <     *         because it does not hold {@link
668 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
669 <     */
670 <    public Thread.UncaughtExceptionHandler
671 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
672 <        checkPermission();
673 <        Thread.UncaughtExceptionHandler old = null;
674 <        final ReentrantLock lock = this.workerLock;
675 <        lock.lock();
676 <        try {
677 <            old = ueh;
678 <            ueh = h;
679 <            ForkJoinWorkerThread[] ws = workers;
680 <            for (int i = 0; i < ws.length; ++i) {
681 <                ForkJoinWorkerThread w = ws[i];
682 <                if (w != null)
683 <                    w.setUncaughtExceptionHandler(h);
684 <            }
685 <        } finally {
686 <            lock.unlock();
687 <        }
688 <        return old;
689 <    }
690 <
691 <
692 <    /**
693 <     * Sets the target paralleism level of this pool.
694 <     * @param parallelism the target parallelism
695 <     * @throws IllegalArgumentException if parallelism less than or
696 <     * equal to zero or greater than maximum size bounds.
697 <     * @throws SecurityException if a security manager exists and
698 <     *         the caller is not permitted to modify threads
699 <     *         because it does not hold {@link
700 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1432 >     * @return the handler, or {@code null} if none
1433       */
1434 <    public void setParallelism(int parallelism) {
1435 <        checkPermission();
704 <        if (parallelism <= 0 || parallelism > maxPoolSize)
705 <            throw new IllegalArgumentException();
706 <        final ReentrantLock lock = this.workerLock;
707 <        lock.lock();
708 <        try {
709 <            if (!isTerminating()) {
710 <                int p = this.parallelism;
711 <                this.parallelism = parallelism;
712 <                if (parallelism > p)
713 <                    createAndStartAddedWorkers();
714 <                else
715 <                    trimSpares();
716 <            }
717 <        } finally {
718 <            lock.unlock();
719 <        }
720 <        signalIdleWorkers(false);
1434 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1435 >        return ueh;
1436      }
1437  
1438      /**
1439 <     * Returns the targeted number of worker threads in this pool.
1439 >     * Returns the targeted parallelism level of this pool.
1440       *
1441 <     * @return the targeted number of worker threads in this pool
1441 >     * @return the targeted parallelism level of this pool
1442       */
1443      public int getParallelism() {
1444          return parallelism;
# Line 732 | Line 1447 | public class ForkJoinPool extends Abstra
1447      /**
1448       * Returns the number of worker threads that have started but not
1449       * yet terminated.  This result returned by this method may differ
1450 <     * from <code>getParallelism</code> when threads are created to
1450 >     * from {@link #getParallelism} when threads are created to
1451       * maintain parallelism when others are cooperatively blocked.
1452       *
1453       * @return the number of worker threads
1454       */
1455      public int getPoolSize() {
1456 <        return totalCountOf(workerCounts);
742 <    }
743 <
744 <    /**
745 <     * Returns the maximum number of threads allowed to exist in the
746 <     * pool, even if there are insufficient unblocked running threads.
747 <     * @return the maximum
748 <     */
749 <    public int getMaximumPoolSize() {
750 <        return maxPoolSize;
751 <    }
752 <
753 <    /**
754 <     * Sets the maximum number of threads allowed to exist in the
755 <     * pool, even if there are insufficient unblocked running threads.
756 <     * Setting this value has no effect on current pool size. It
757 <     * controls construction of new threads.
758 <     * @throws IllegalArgumentException if negative or greater then
759 <     * internal implementation limit.
760 <     */
761 <    public void setMaximumPoolSize(int newMax) {
762 <        if (newMax < 0 || newMax > MAX_THREADS)
763 <            throw new IllegalArgumentException();
764 <        maxPoolSize = newMax;
765 <    }
766 <
767 <
768 <    /**
769 <     * Returns true if this pool dynamically maintains its target
770 <     * parallelism level. If false, new threads are added only to
771 <     * avoid possible starvation.
772 <     * This setting is by default true;
773 <     * @return true if maintains parallelism
774 <     */
775 <    public boolean getMaintainsParallelism() {
776 <        return maintainsParallelism;
1456 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1457      }
1458  
1459      /**
1460 <     * Sets whether this pool dynamically maintains its target
1461 <     * parallelism level. If false, new threads are added only to
1462 <     * avoid possible starvation.
1463 <     * @param enable true to maintains parallelism
1460 >     * Returns {@code true} if this pool uses local first-in-first-out
1461 >     * scheduling mode for forked tasks that are never joined.
1462 >     *
1463 >     * @return {@code true} if this pool uses async mode
1464       */
1465 <    public void setMaintainsParallelism(boolean enable) {
1466 <        maintainsParallelism = enable;
1465 >    public boolean getAsyncMode() {
1466 >        return locallyFifo;
1467      }
1468  
1469      /**
1470       * Returns an estimate of the number of worker threads that are
1471       * not blocked waiting to join tasks or for other managed
1472 <     * synchronization.
1472 >     * synchronization. This method may overestimate the
1473 >     * number of running threads.
1474       *
1475       * @return the number of worker threads
1476       */
1477      public int getRunningThreadCount() {
1478 <        return runningCountOf(workerCounts);
1478 >        return workerCounts & RUNNING_COUNT_MASK;
1479      }
1480  
1481      /**
1482       * Returns an estimate of the number of threads that are currently
1483       * stealing or executing tasks. This method may overestimate the
1484       * number of active threads.
1485 <     * @return the number of active threads.
1485 >     *
1486 >     * @return the number of active threads
1487       */
1488      public int getActiveThreadCount() {
1489 <        return activeCountOf(runControl);
808 <    }
809 <
810 <    /**
811 <     * Returns an estimate of the number of threads that are currently
812 <     * idle waiting for tasks. This method may underestimate the
813 <     * number of idle threads.
814 <     * @return the number of idle threads.
815 <     */
816 <    final int getIdleThreadCount() {
817 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
818 <        return (c <= 0)? 0 : c;
1489 >        return runState & ACTIVE_COUNT_MASK;
1490      }
1491  
1492      /**
1493 <     * Returns true if all worker threads are currently idle. An idle
1494 <     * worker is one that cannot obtain a task to execute because none
1495 <     * are available to steal from other threads, and there are no
1496 <     * pending submissions to the pool. This method is conservative:
1497 <     * It might not return true immediately upon idleness of all
1498 <     * threads, but will eventually become true if threads remain
1499 <     * inactive.
1500 <     * @return true if all threads are currently idle
1493 >     * Returns {@code true} if all worker threads are currently idle.
1494 >     * An idle worker is one that cannot obtain a task to execute
1495 >     * because none are available to steal from other threads, and
1496 >     * there are no pending submissions to the pool. This method is
1497 >     * conservative; it might not return {@code true} immediately upon
1498 >     * idleness of all threads, but will eventually become true if
1499 >     * threads remain inactive.
1500 >     *
1501 >     * @return {@code true} if all threads are currently idle
1502       */
1503      public boolean isQuiescent() {
1504 <        return activeCountOf(runControl) == 0;
1504 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1505      }
1506  
1507      /**
# Line 837 | Line 1509 | public class ForkJoinPool extends Abstra
1509       * one thread's work queue by another. The reported value
1510       * underestimates the actual total number of steals when the pool
1511       * is not quiescent. This value may be useful for monitoring and
1512 <     * tuning fork/join programs: In general, steal counts should be
1512 >     * tuning fork/join programs: in general, steal counts should be
1513       * high enough to keep threads busy, but low enough to avoid
1514       * overhead and contention across threads.
1515 <     * @return the number of steals.
1515 >     *
1516 >     * @return the number of steals
1517       */
1518      public long getStealCount() {
1519 <        return stealCount.get();
847 <    }
848 <
849 <    /**
850 <     * Accumulate steal count from a worker. Call only
851 <     * when worker known to be idle.
852 <     */
853 <    private void updateStealCount(ForkJoinWorkerThread w) {
854 <        int sc = w.getAndClearStealCount();
855 <        if (sc != 0)
856 <            stealCount.addAndGet(sc);
1519 >        return stealCount;
1520      }
1521  
1522      /**
# Line 863 | Line 1526 | public class ForkJoinPool extends Abstra
1526       * an approximation, obtained by iterating across all threads in
1527       * the pool. This method may be useful for tuning task
1528       * granularities.
1529 <     * @return the number of queued tasks.
1529 >     *
1530 >     * @return the number of queued tasks
1531       */
1532      public long getQueuedTaskCount() {
1533          long count = 0;
1534          ForkJoinWorkerThread[] ws = workers;
1535 <        for (int i = 0; i < ws.length; ++i) {
1536 <            ForkJoinWorkerThread t = ws[i];
1537 <            if (t != null)
1538 <                count += t.getQueueSize();
1535 >        int nws = ws.length;
1536 >        for (int i = 0; i < nws; ++i) {
1537 >            ForkJoinWorkerThread w = ws[i];
1538 >            if (w != null)
1539 >                count += w.getQueueSize();
1540          }
1541          return count;
1542      }
1543  
1544      /**
1545 <     * Returns an estimate of the number tasks submitted to this pool
1546 <     * that have not yet begun executing. This method takes time
1545 >     * Returns an estimate of the number of tasks submitted to this
1546 >     * pool that have not yet begun executing.  This method takes time
1547       * proportional to the number of submissions.
1548 <     * @return the number of queued submissions.
1548 >     *
1549 >     * @return the number of queued submissions
1550       */
1551      public int getQueuedSubmissionCount() {
1552          return submissionQueue.size();
1553      }
1554  
1555      /**
1556 <     * Returns true if there are any tasks submitted to this pool
1557 <     * that have not yet begun executing.
1558 <     * @return <code>true</code> if there are any queued submissions.
1556 >     * Returns {@code true} if there are any tasks submitted to this
1557 >     * pool that have not yet begun executing.
1558 >     *
1559 >     * @return {@code true} if there are any queued submissions
1560       */
1561      public boolean hasQueuedSubmissions() {
1562          return !submissionQueue.isEmpty();
# Line 899 | Line 1566 | public class ForkJoinPool extends Abstra
1566       * Removes and returns the next unexecuted submission if one is
1567       * available.  This method may be useful in extensions to this
1568       * class that re-assign work in systems with multiple pools.
1569 <     * @return the next submission, or null if none
1569 >     *
1570 >     * @return the next submission, or {@code null} if none
1571       */
1572      protected ForkJoinTask<?> pollSubmission() {
1573          return submissionQueue.poll();
1574      }
1575  
1576      /**
1577 +     * Removes all available unexecuted submitted and forked tasks
1578 +     * from scheduling queues and adds them to the given collection,
1579 +     * without altering their execution status. These may include
1580 +     * artificially generated or wrapped tasks. This method is
1581 +     * designed to be invoked only when the pool is known to be
1582 +     * quiescent. Invocations at other times may not remove all
1583 +     * tasks. A failure encountered while attempting to add elements
1584 +     * to collection {@code c} may result in elements being in
1585 +     * neither, either or both collections when the associated
1586 +     * exception is thrown.  The behavior of this operation is
1587 +     * undefined if the specified collection is modified while the
1588 +     * operation is in progress.
1589 +     *
1590 +     * @param c the collection to transfer elements into
1591 +     * @return the number of elements transferred
1592 +     */
1593 +    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1594 +        int n = submissionQueue.drainTo(c);
1595 +        ForkJoinWorkerThread[] ws = workers;
1596 +        int nws = ws.length;
1597 +        for (int i = 0; i < nws; ++i) {
1598 +            ForkJoinWorkerThread w = ws[i];
1599 +            if (w != null)
1600 +                n += w.drainTasksTo(c);
1601 +        }
1602 +        return n;
1603 +    }
1604 +
1605 +    /**
1606 +     * Returns count of total parks by existing workers.
1607 +     * Used during development only since not meaningful to users.
1608 +     */
1609 +    private int collectParkCount() {
1610 +        int count = 0;
1611 +        ForkJoinWorkerThread[] ws = workers;
1612 +        int nws = ws.length;
1613 +        for (int i = 0; i < nws; ++i) {
1614 +            ForkJoinWorkerThread w = ws[i];
1615 +            if (w != null)
1616 +                count += w.parkCount;
1617 +        }
1618 +        return count;
1619 +    }
1620 +
1621 +    /**
1622       * Returns a string identifying this pool, as well as its state,
1623       * including indications of run state, parallelism level, and
1624       * worker and task counts.
# Line 913 | Line 1626 | public class ForkJoinPool extends Abstra
1626       * @return a string identifying this pool, as well as its state
1627       */
1628      public String toString() {
916        int ps = parallelism;
917        int wc = workerCounts;
918        int rc = runControl;
1629          long st = getStealCount();
1630          long qt = getQueuedTaskCount();
1631          long qs = getQueuedSubmissionCount();
1632 +        int wc = workerCounts;
1633 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1634 +        int rc = wc & RUNNING_COUNT_MASK;
1635 +        int pc = parallelism;
1636 +        int rs = runState;
1637 +        int ac = rs & ACTIVE_COUNT_MASK;
1638 +        //        int pk = collectParkCount();
1639          return super.toString() +
1640 <            "[" + runStateToString(runStateOf(rc)) +
1641 <            ", parallelism = " + ps +
1642 <            ", size = " + totalCountOf(wc) +
1643 <            ", active = " + activeCountOf(rc) +
1644 <            ", running = " + runningCountOf(wc) +
1640 >            "[" + runLevelToString(rs) +
1641 >            ", parallelism = " + pc +
1642 >            ", size = " + tc +
1643 >            ", active = " + ac +
1644 >            ", running = " + rc +
1645              ", steals = " + st +
1646              ", tasks = " + qt +
1647              ", submissions = " + qs +
1648 +            //            ", parks = " + pk +
1649              "]";
1650      }
1651  
1652 <    private static String runStateToString(int rs) {
1653 <        switch(rs) {
1654 <        case RUNNING: return "Running";
1655 <        case SHUTDOWN: return "Shutting down";
1656 <        case TERMINATING: return "Terminating";
939 <        case TERMINATED: return "Terminated";
940 <        default: throw new Error("Unknown run state");
941 <        }
1652 >    private static String runLevelToString(int s) {
1653 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1654 >                ((s & TERMINATING) != 0 ? "Terminating" :
1655 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1656 >                  "Running")));
1657      }
1658  
944    // lifecycle control
945
1659      /**
1660       * Initiates an orderly shutdown in which previously submitted
1661       * tasks are executed, but no new tasks will be accepted.
1662       * Invocation has no additional effect if already shut down.
1663       * Tasks that are in the process of being submitted concurrently
1664       * during the course of this method may or may not be rejected.
1665 +     *
1666       * @throws SecurityException if a security manager exists and
1667       *         the caller is not permitted to modify threads
1668       *         because it does not hold {@link
1669 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1669 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1670       */
1671      public void shutdown() {
1672          checkPermission();
1673 <        transitionRunStateTo(SHUTDOWN);
1674 <        if (canTerminateOnShutdown(runControl))
961 <            terminateOnShutdown();
1673 >        advanceRunLevel(SHUTDOWN);
1674 >        tryTerminate(false);
1675      }
1676  
1677      /**
1678 <     * Attempts to stop all actively executing tasks, and cancels all
1679 <     * waiting tasks.  Tasks that are in the process of being
1680 <     * submitted or executed concurrently during the course of this
1681 <     * method may or may not be rejected. Unlike some other executors,
1682 <     * this method cancels rather than collects non-executed tasks,
1683 <     * so always returns an empty list.
1678 >     * Attempts to cancel and/or stop all tasks, and reject all
1679 >     * subsequently submitted tasks.  Tasks that are in the process of
1680 >     * being submitted or executed concurrently during the course of
1681 >     * this method may or may not be rejected. This method cancels
1682 >     * both existing and unexecuted tasks, in order to permit
1683 >     * termination in the presence of task dependencies. So the method
1684 >     * always returns an empty list (unlike the case for some other
1685 >     * Executors).
1686 >     *
1687       * @return an empty list
1688       * @throws SecurityException if a security manager exists and
1689       *         the caller is not permitted to modify threads
1690       *         because it does not hold {@link
1691 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1691 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1692       */
1693      public List<Runnable> shutdownNow() {
1694          checkPermission();
1695 <        terminate();
1695 >        tryTerminate(true);
1696          return Collections.emptyList();
1697      }
1698  
1699      /**
1700 <     * Returns <code>true</code> if all tasks have completed following shut down.
1700 >     * Returns {@code true} if all tasks have completed following shut down.
1701       *
1702 <     * @return <code>true</code> if all tasks have completed following shut down
1702 >     * @return {@code true} if all tasks have completed following shut down
1703       */
1704      public boolean isTerminated() {
1705 <        return runStateOf(runControl) == TERMINATED;
1705 >        return runState >= TERMINATED;
1706      }
1707  
1708      /**
1709 <     * Returns <code>true</code> if the process of termination has
1710 <     * commenced but possibly not yet completed.
1709 >     * Returns {@code true} if the process of termination has
1710 >     * commenced but not yet completed.  This method may be useful for
1711 >     * debugging. A return of {@code true} reported a sufficient
1712 >     * period after shutdown may indicate that submitted tasks have
1713 >     * ignored or suppressed interruption, causing this executor not
1714 >     * to properly terminate.
1715       *
1716 <     * @return <code>true</code> if terminating
1716 >     * @return {@code true} if terminating but not yet terminated
1717       */
1718      public boolean isTerminating() {
1719 <        return runStateOf(runControl) >= TERMINATING;
1719 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1720      }
1721  
1722      /**
1723 <     * Returns <code>true</code> if this pool has been shut down.
1723 >     * Returns {@code true} if this pool has been shut down.
1724       *
1725 <     * @return <code>true</code> if this pool has been shut down
1725 >     * @return {@code true} if this pool has been shut down
1726       */
1727      public boolean isShutdown() {
1728 <        return runStateOf(runControl) >= SHUTDOWN;
1728 >        return runState >= SHUTDOWN;
1729      }
1730  
1731      /**
# Line 1015 | Line 1735 | public class ForkJoinPool extends Abstra
1735       *
1736       * @param timeout the maximum time to wait
1737       * @param unit the time unit of the timeout argument
1738 <     * @return <code>true</code> if this executor terminated and
1739 <     *         <code>false</code> if the timeout elapsed before termination
1738 >     * @return {@code true} if this executor terminated and
1739 >     *         {@code false} if the timeout elapsed before termination
1740       * @throws InterruptedException if interrupted while waiting
1741       */
1742      public boolean awaitTermination(long timeout, TimeUnit unit)
1743          throws InterruptedException {
1024        long nanos = unit.toNanos(timeout);
1025        final ReentrantLock lock = this.workerLock;
1026        lock.lock();
1027        try {
1028            for (;;) {
1029                if (isTerminated())
1030                    return true;
1031                if (nanos <= 0)
1032                    return false;
1033                nanos = termination.awaitNanos(nanos);
1034            }
1035        } finally {
1036            lock.unlock();
1037        }
1038    }
1039
1040    // Shutdown and termination support
1041
1042    /**
1043     * Callback from terminating worker. Null out the corresponding
1044     * workers slot, and if terminating, try to terminate, else try to
1045     * shrink workers array.
1046     * @param w the worker
1047     */
1048    final void workerTerminated(ForkJoinWorkerThread w) {
1049        updateStealCount(w);
1050        updateWorkerCount(-1);
1051        final ReentrantLock lock = this.workerLock;
1052        lock.lock();
1053        try {
1054            ForkJoinWorkerThread[] ws = workers;
1055            int idx = w.poolIndex;
1056            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1057                ws[idx] = null;
1058            if (totalCountOf(workerCounts) == 0) {
1059                terminate(); // no-op if already terminating
1060                transitionRunStateTo(TERMINATED);
1061                termination.signalAll();
1062            }
1063            else if (!isTerminating()) {
1064                tryShrinkWorkerArray();
1065                tryResumeSpare(true); // allow replacement
1066            }
1067        } finally {
1068            lock.unlock();
1069        }
1070        signalIdleWorkers(false);
1071    }
1072
1073    /**
1074     * Initiate termination.
1075     */
1076    private void terminate() {
1077        if (transitionRunStateTo(TERMINATING)) {
1078            stopAllWorkers();
1079            resumeAllSpares();
1080            signalIdleWorkers(true);
1081            cancelQueuedSubmissions();
1082            cancelQueuedWorkerTasks();
1083            interruptUnterminatedWorkers();
1084            signalIdleWorkers(true); // resignal after interrupt
1085        }
1086    }
1087
1088    /**
1089     * Possibly terminate when on shutdown state
1090     */
1091    private void terminateOnShutdown() {
1092        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1093            terminate();
1094    }
1095
1096    /**
1097     * Clear out and cancel submissions
1098     */
1099    private void cancelQueuedSubmissions() {
1100        ForkJoinTask<?> task;
1101        while ((task = pollSubmission()) != null)
1102            task.cancel(false);
1103    }
1104
1105    /**
1106     * Clean out worker queues.
1107     */
1108    private void cancelQueuedWorkerTasks() {
1109        final ReentrantLock lock = this.workerLock;
1110        lock.lock();
1111        try {
1112            ForkJoinWorkerThread[] ws = workers;
1113            for (int i = 0; i < ws.length; ++i) {
1114                ForkJoinWorkerThread t = ws[i];
1115                if (t != null)
1116                    t.cancelTasks();
1117            }
1118        } finally {
1119            lock.unlock();
1120        }
1121    }
1122
1123    /**
1124     * Set each worker's status to terminating. Requires lock to avoid
1125     * conflicts with add/remove
1126     */
1127    private void stopAllWorkers() {
1128        final ReentrantLock lock = this.workerLock;
1129        lock.lock();
1130        try {
1131            ForkJoinWorkerThread[] ws = workers;
1132            for (int i = 0; i < ws.length; ++i) {
1133                ForkJoinWorkerThread t = ws[i];
1134                if (t != null)
1135                    t.shutdownNow();
1136            }
1137        } finally {
1138            lock.unlock();
1139        }
1140    }
1141
1142    /**
1143     * Interrupt all unterminated workers.  This is not required for
1144     * sake of internal control, but may help unstick user code during
1145     * shutdown.
1146     */
1147    private void interruptUnterminatedWorkers() {
1148        final ReentrantLock lock = this.workerLock;
1149        lock.lock();
1744          try {
1745 <            ForkJoinWorkerThread[] ws = workers;
1746 <            for (int i = 0; i < ws.length; ++i) {
1153 <                ForkJoinWorkerThread t = ws[i];
1154 <                if (t != null && !t.isTerminated()) {
1155 <                    try {
1156 <                        t.interrupt();
1157 <                    } catch (SecurityException ignore) {
1158 <                    }
1159 <                }
1160 <            }
1161 <        } finally {
1162 <            lock.unlock();
1163 <        }
1164 <    }
1165 <
1166 <
1167 <    /*
1168 <     * Nodes for event barrier to manage idle threads.
1169 <     *
1170 <     * The event barrier has an event count and a wait queue (actually
1171 <     * a Treiber stack).  Workers are enabled to look for work when
1172 <     * the eventCount is incremented. If they fail to find some,
1173 <     * they may wait for next count. Synchronization events occur only
1174 <     * in enough contexts to maintain overall liveness:
1175 <     *
1176 <     *   - Submission of a new task to the pool
1177 <     *   - Creation or termination of a worker
1178 <     *   - pool termination
1179 <     *   - A worker pushing a task on an empty queue
1180 <     *
1181 <     * The last case (pushing a task) occurs often enough, and is
1182 <     * heavy enough compared to simple stack pushes to require some
1183 <     * special handling: Method signalNonEmptyWorkerQueue returns
1184 <     * without advancing count if the queue appears to be empty.  This
1185 <     * would ordinarily result in races causing some queued waiters
1186 <     * not to be woken up. To avoid this, a worker in sync
1187 <     * rescans for tasks after being enqueued if it was the first to
1188 <     * enqueue, and aborts the wait if finding one, also helping to
1189 <     * signal others. This works well because the worker has nothing
1190 <     * better to do anyway, and so might as well help alleviate the
1191 <     * overhead and contention on the threads actually doing work.
1192 <     *
1193 <     * Queue nodes are basic Treiber stack nodes, also used for spare
1194 <     * stack.
1195 <     */
1196 <    static final class WaitQueueNode {
1197 <        WaitQueueNode next; // only written before enqueued
1198 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1199 <        final long count; // unused for spare stack
1200 <        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1201 <            count = c;
1202 <            thread = w;
1203 <        }
1204 <        final boolean signal() {
1205 <            ForkJoinWorkerThread t = thread;
1206 <            thread = null;
1207 <            if (t != null) {
1208 <                LockSupport.unpark(t);
1209 <                return true;
1210 <            }
1745 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1746 >        } catch(TimeoutException ex) {
1747              return false;
1748          }
1749      }
1750  
1751      /**
1216     * Release at least one thread waiting for event count to advance,
1217     * if one exists. If initial attempt fails, release all threads.
1218     * @param all if false, at first try to only release one thread
1219     * @return current event
1220     */
1221    private long releaseIdleWorkers(boolean all) {
1222        long c;
1223        for (;;) {
1224            WaitQueueNode q = barrierStack;
1225            c = eventCount;
1226            long qc;
1227            if (q == null || (qc = q.count) >= c)
1228                break;
1229            if (!all) {
1230                if (casBarrierStack(q, q.next) && q.signal())
1231                    break;
1232                all = true;
1233            }
1234            else if (casBarrierStack(q, null)) {
1235                do {
1236                 q.signal();
1237                } while ((q = q.next) != null);
1238                break;
1239            }
1240        }
1241        return c;
1242    }
1243
1244    /**
1245     * Returns current barrier event count
1246     * @return current barrier event count
1247     */
1248    final long getEventCount() {
1249        long ec = eventCount;
1250        releaseIdleWorkers(true); // release to ensure accurate result
1251        return ec;
1252    }
1253
1254    /**
1255     * Increment event count and release at least one waiting thread,
1256     * if one exists (released threads will in turn wake up others).
1257     * @param all if true, try to wake up all
1258     */
1259    final void signalIdleWorkers(boolean all) {
1260        long c;
1261        do;while (!casEventCount(c = eventCount, c+1));
1262        releaseIdleWorkers(all);
1263    }
1264
1265    /**
1266     * Wake up threads waiting to steal a task. Because method
1267     * sync rechecks availability, it is OK to only proceed if
1268     * queue appears to be non-empty.
1269     */
1270    final void signalNonEmptyWorkerQueue() {
1271        // If CAS fails another signaller must have succeeded
1272        long c;
1273        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1274            releaseIdleWorkers(false);
1275    }
1276
1277    /**
1278     * Waits until event count advances from count, or some thread is
1279     * waiting on a previous count, or there is stealable work
1280     * available. Help wake up others on release.
1281     * @param w the calling worker thread
1282     * @param prev previous value returned by sync (or 0)
1283     * @return current event count
1284     */
1285    final long sync(ForkJoinWorkerThread w, long prev) {
1286        updateStealCount(w);
1287
1288        while (!w.isShutdown() && !isTerminating() &&
1289               (parallelism >= runningCountOf(workerCounts) ||
1290                !suspendIfSpare(w))) { // prefer suspend to waiting here
1291            WaitQueueNode node = null;
1292            boolean queued = false;
1293            for (;;) {
1294                if (!queued) {
1295                    if (eventCount != prev)
1296                        break;
1297                    WaitQueueNode h = barrierStack;
1298                    if (h != null && h.count != prev)
1299                        break; // release below and maybe retry
1300                    if (node == null)
1301                        node = new WaitQueueNode(w, prev);
1302                    queued = casBarrierStack(node.next = h, node);
1303                }
1304                else if (Thread.interrupted() ||
1305                         node.thread == null ||
1306                         (node.next == null && w.prescan()) ||
1307                         eventCount != prev) {
1308                    node.thread = null;
1309                    if (eventCount == prev) // help trigger
1310                        casEventCount(prev, prev+1);
1311                    break;
1312                }
1313                else
1314                    LockSupport.park(this);
1315            }
1316            long ec = eventCount;
1317            if (releaseIdleWorkers(false) != prev)
1318                return ec;
1319        }
1320        return prev; // return old count if aborted
1321    }
1322
1323    //  Parallelism maintenance
1324
1325    /**
1326     * Decrement running count; if too low, add spare.
1327     *
1328     * Conceptually, all we need to do here is add or resume a
1329     * spare thread when one is about to block (and remove or
1330     * suspend it later when unblocked -- see suspendIfSpare).
1331     * However, implementing this idea requires coping with
1332     * several problems: We have imperfect information about the
1333     * states of threads. Some count updates can and usually do
1334     * lag run state changes, despite arrangements to keep them
1335     * accurate (for example, when possible, updating counts
1336     * before signalling or resuming), especially when running on
1337     * dynamic JVMs that don't optimize the infrequent paths that
1338     * update counts. Generating too many threads can make these
1339     * problems become worse, because excess threads are more
1340     * likely to be context-switched with others, slowing them all
1341     * down, especially if there is no work available, so all are
1342     * busy scanning or idling.  Also, excess spare threads can
1343     * only be suspended or removed when they are idle, not
1344     * immediately when they aren't needed. So adding threads will
1345     * raise parallelism level for longer than necessary.  Also,
1346     * FJ applications often enounter highly transient peaks when
1347     * many threads are blocked joining, but for less time than it
1348     * takes to create or resume spares.
1349     *
1350     * @param joinMe if non-null, return early if done
1351     * @param maintainParallelism if true, try to stay within
1352     * target counts, else create only to avoid starvation
1353     * @return true if joinMe known to be done
1354     */
1355    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1356        maintainParallelism &= maintainsParallelism; // overrride
1357        boolean dec = false;  // true when running count decremented
1358        while (spareStack == null || !tryResumeSpare(dec)) {
1359            int counts = workerCounts;
1360            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1361                if (!needSpare(counts, maintainParallelism))
1362                    break;
1363                if (joinMe.status < 0)
1364                    return true;
1365                if (tryAddSpare(counts))
1366                    break;
1367            }
1368        }
1369        return false;
1370    }
1371
1372    /**
1373     * Same idea as preJoin
1374     */
1375    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1376        maintainParallelism &= maintainsParallelism;
1377        boolean dec = false;
1378        while (spareStack == null || !tryResumeSpare(dec)) {
1379            int counts = workerCounts;
1380            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1381                if (!needSpare(counts, maintainParallelism))
1382                    break;
1383                if (blocker.isReleasable())
1384                    return true;
1385                if (tryAddSpare(counts))
1386                    break;
1387            }
1388        }
1389        return false;
1390    }
1391
1392    /**
1393     * Returns true if a spare thread appears to be needed.  If
1394     * maintaining parallelism, returns true when the deficit in
1395     * running threads is more than the surplus of total threads, and
1396     * there is apparently some work to do.  This self-limiting rule
1397     * means that the more threads that have already been added, the
1398     * less parallelism we will tolerate before adding another.
1399     * @param counts current worker counts
1400     * @param maintainParallelism try to maintain parallelism
1401     */
1402    private boolean needSpare(int counts, boolean maintainParallelism) {
1403        int ps = parallelism;
1404        int rc = runningCountOf(counts);
1405        int tc = totalCountOf(counts);
1406        int runningDeficit = ps - rc;
1407        int totalSurplus = tc - ps;
1408        return (tc < maxPoolSize &&
1409                (rc == 0 || totalSurplus < 0 ||
1410                 (maintainParallelism &&
1411                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1412    }
1413
1414    /**
1415     * Returns true if at least one worker queue appears to be
1416     * nonempty. This is expensive but not often called. It is not
1417     * critical that this be accurate, but if not, more or fewer
1418     * running threads than desired might be maintained.
1419     */
1420    private boolean mayHaveQueuedWork() {
1421        ForkJoinWorkerThread[] ws = workers;
1422        int len = ws.length;
1423        ForkJoinWorkerThread v;
1424        for (int i = 0; i < len; ++i) {
1425            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1426                releaseIdleWorkers(false); // help wake up stragglers
1427                return true;
1428            }
1429        }
1430        return false;
1431    }
1432
1433    /**
1434     * Add a spare worker if lock available and no more than the
1435     * expected numbers of threads exist
1436     * @return true if successful
1437     */
1438    private boolean tryAddSpare(int expectedCounts) {
1439        final ReentrantLock lock = this.workerLock;
1440        int expectedRunning = runningCountOf(expectedCounts);
1441        int expectedTotal = totalCountOf(expectedCounts);
1442        boolean success = false;
1443        boolean locked = false;
1444        // confirm counts while locking; CAS after obtaining lock
1445        try {
1446            for (;;) {
1447                int s = workerCounts;
1448                int tc = totalCountOf(s);
1449                int rc = runningCountOf(s);
1450                if (rc > expectedRunning || tc > expectedTotal)
1451                    break;
1452                if (!locked && !(locked = lock.tryLock()))
1453                    break;
1454                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1455                    createAndStartSpare(tc);
1456                    success = true;
1457                    break;
1458                }
1459            }
1460        } finally {
1461            if (locked)
1462                lock.unlock();
1463        }
1464        return success;
1465    }
1466
1467    /**
1468     * Add the kth spare worker. On entry, pool coounts are already
1469     * adjusted to reflect addition.
1470     */
1471    private void createAndStartSpare(int k) {
1472        ForkJoinWorkerThread w = null;
1473        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1474        int len = ws.length;
1475        // Probably, we can place at slot k. If not, find empty slot
1476        if (k < len && ws[k] != null) {
1477            for (k = 0; k < len && ws[k] != null; ++k)
1478                ;
1479        }
1480        if (k < len && (w = createWorker(k)) != null) {
1481            ws[k] = w;
1482            w.start();
1483        }
1484        else
1485            updateWorkerCount(-1); // adjust on failure
1486        signalIdleWorkers(false);
1487    }
1488
1489    /**
1490     * Suspend calling thread w if there are excess threads.  Called
1491     * only from sync.  Spares are enqueued in a Treiber stack
1492     * using the same WaitQueueNodes as barriers.  They are resumed
1493     * mainly in preJoin, but are also woken on pool events that
1494     * require all threads to check run state.
1495     * @param w the caller
1496     */
1497    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1498        WaitQueueNode node = null;
1499        int s;
1500        while (parallelism < runningCountOf(s = workerCounts)) {
1501            if (node == null)
1502                node = new WaitQueueNode(w, 0);
1503            if (casWorkerCounts(s, s-1)) { // representation-dependent
1504                // push onto stack
1505                do;while (!casSpareStack(node.next = spareStack, node));
1506
1507                // block until released by resumeSpare
1508                while (node.thread != null) {
1509                    if (!Thread.interrupted())
1510                        LockSupport.park(this);
1511                }
1512                w.activate(); // help warm up
1513                return true;
1514            }
1515        }
1516        return false;
1517    }
1518
1519    /**
1520     * Try to pop and resume a spare thread.
1521     * @param updateCount if true, increment running count on success
1522     * @return true if successful
1523     */
1524    private boolean tryResumeSpare(boolean updateCount) {
1525        WaitQueueNode q;
1526        while ((q = spareStack) != null) {
1527            if (casSpareStack(q, q.next)) {
1528                if (updateCount)
1529                    updateRunningCount(1);
1530                q.signal();
1531                return true;
1532            }
1533        }
1534        return false;
1535    }
1536
1537    /**
1538     * Pop and resume all spare threads. Same idea as
1539     * releaseIdleWorkers.
1540     * @return true if any spares released
1541     */
1542    private boolean resumeAllSpares() {
1543        WaitQueueNode q;
1544        while ( (q = spareStack) != null) {
1545            if (casSpareStack(q, null)) {
1546                do {
1547                    updateRunningCount(1);
1548                    q.signal();
1549                } while ((q = q.next) != null);
1550                return true;
1551            }
1552        }
1553        return false;
1554    }
1555
1556    /**
1557     * Pop and shutdown excessive spare threads. Call only while
1558     * holding lock. This is not guaranteed to eliminate all excess
1559     * threads, only those suspended as spares, which are the ones
1560     * unlikely to be needed in the future.
1561     */
1562    private void trimSpares() {
1563        int surplus = totalCountOf(workerCounts) - parallelism;
1564        WaitQueueNode q;
1565        while (surplus > 0 && (q = spareStack) != null) {
1566            if (casSpareStack(q, null)) {
1567                do {
1568                    updateRunningCount(1);
1569                    ForkJoinWorkerThread w = q.thread;
1570                    if (w != null && surplus > 0 &&
1571                        runningCountOf(workerCounts) > 0 && w.shutdown())
1572                        --surplus;
1573                    q.signal();
1574                } while ((q = q.next) != null);
1575            }
1576        }
1577    }
1578
1579    /**
1580     * Returns approximate number of spares, just for diagnostics.
1581     */
1582    private int countSpares() {
1583        int sum = 0;
1584        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1585            ++sum;
1586        return sum;
1587    }
1588
1589    /**
1752       * Interface for extending managed parallelism for tasks running
1753 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1754 <     * Method <code>isReleasable</code> must return true if blocking is not
1755 <     * necessary. Method <code>block</code> blocks the current thread
1756 <     * if necessary (perhaps internally invoking isReleasable before
1757 <     * actually blocking.).
1753 >     * in {@link ForkJoinPool}s.
1754 >     *
1755 >     * <p>A {@code ManagedBlocker} provides two methods.
1756 >     * Method {@code isReleasable} must return {@code true} if
1757 >     * blocking is not necessary. Method {@code block} blocks the
1758 >     * current thread if necessary (perhaps internally invoking
1759 >     * {@code isReleasable} before actually blocking).
1760 >     *
1761       * <p>For example, here is a ManagedBlocker based on a
1762       * ReentrantLock:
1763 <     * <pre>
1764 <     *   class ManagedLocker implements ManagedBlocker {
1765 <     *     final ReentrantLock lock;
1766 <     *     boolean hasLock = false;
1767 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1768 <     *     public boolean block() {
1769 <     *        if (!hasLock)
1770 <     *           lock.lock();
1771 <     *        return true;
1772 <     *     }
1773 <     *     public boolean isReleasable() {
1774 <     *        return hasLock || (hasLock = lock.tryLock());
1610 <     *     }
1763 >     *  <pre> {@code
1764 >     * class ManagedLocker implements ManagedBlocker {
1765 >     *   final ReentrantLock lock;
1766 >     *   boolean hasLock = false;
1767 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1768 >     *   public boolean block() {
1769 >     *     if (!hasLock)
1770 >     *       lock.lock();
1771 >     *     return true;
1772 >     *   }
1773 >     *   public boolean isReleasable() {
1774 >     *     return hasLock || (hasLock = lock.tryLock());
1775       *   }
1776 <     * </pre>
1776 >     * }}</pre>
1777       */
1778      public static interface ManagedBlocker {
1779          /**
1780           * Possibly blocks the current thread, for example waiting for
1781           * a lock or condition.
1782 <         * @return true if no additional blocking is necessary (i.e.,
1783 <         * if isReleasable would return true).
1782 >         *
1783 >         * @return {@code true} if no additional blocking is necessary
1784 >         * (i.e., if isReleasable would return true)
1785           * @throws InterruptedException if interrupted while waiting
1786 <         * (the method is not required to do so, but is allowe to).
1786 >         * (the method is not required to do so, but is allowed to)
1787           */
1788          boolean block() throws InterruptedException;
1789  
1790          /**
1791 <         * Returns true if blocking is unnecessary.
1791 >         * Returns {@code true} if blocking is unnecessary.
1792           */
1793          boolean isReleasable();
1794      }
1795  
1796      /**
1797       * Blocks in accord with the given blocker.  If the current thread
1798 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1799 <     * spare thread to be activated if necessary to ensure parallelism
1800 <     * while the current thread is blocked.  If
1801 <     * <code>maintainParallelism</code> is true and the pool supports
1802 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1803 <     * maintain the pool's nominal parallelism. Otherwise if activates
1804 <     * a thread only if necessary to avoid complete starvation. This
1805 <     * option may be preferable when blockages use timeouts, or are
1806 <     * almost always brief.
1807 <     *
1808 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1809 <     * equivalent to
1810 <     * <pre>
1811 <     *   while (!blocker.isReleasable())
1647 <     *      if (blocker.block())
1648 <     *         return;
1649 <     * </pre>
1650 <     * If the caller is a ForkJoinTask, then the pool may first
1651 <     * be expanded to ensure parallelism, and later adjusted.
1798 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1799 >     * arranges for a spare thread to be activated if necessary to
1800 >     * ensure sufficient parallelism while the current thread is blocked.
1801 >     *
1802 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1803 >     * behaviorally equivalent to
1804 >     *  <pre> {@code
1805 >     * while (!blocker.isReleasable())
1806 >     *   if (blocker.block())
1807 >     *     return;
1808 >     * }</pre>
1809 >     *
1810 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1811 >     * first be expanded to ensure parallelism, and later adjusted.
1812       *
1813       * @param blocker the blocker
1814 <     * @param maintainParallelism if true and supported by this pool,
1655 <     * attempt to maintain the pool's nominal parallelism; otherwise
1656 <     * activate a thread only if necessary to avoid complete
1657 <     * starvation.
1658 <     * @throws InterruptedException if blocker.block did so.
1814 >     * @throws InterruptedException if blocker.block did so
1815       */
1816 <    public static void managedBlock(ManagedBlocker blocker,
1661 <                                    boolean maintainParallelism)
1816 >    public static void managedBlock(ManagedBlocker blocker)
1817          throws InterruptedException {
1818          Thread t = Thread.currentThread();
1819 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1820 <                             ((ForkJoinWorkerThread)t).pool : null);
1821 <        if (!blocker.isReleasable()) {
1822 <            try {
1668 <                if (pool == null ||
1669 <                    !pool.preBlock(blocker, maintainParallelism))
1670 <                    awaitBlocker(blocker);
1671 <            } finally {
1672 <                if (pool != null)
1673 <                    pool.updateRunningCount(1);
1674 <            }
1819 >        if (t instanceof ForkJoinWorkerThread)
1820 >            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1821 >        else {
1822 >            do {} while (!blocker.isReleasable() && !blocker.block());
1823          }
1824      }
1825  
1826 <    private static void awaitBlocker(ManagedBlocker blocker)
1827 <        throws InterruptedException {
1828 <        do;while (!blocker.isReleasable() && !blocker.block());
1681 <    }
1682 <
1683 <    // AbstractExecutorService overrides
1826 >    // AbstractExecutorService overrides.  These rely on undocumented
1827 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1828 >    // implement RunnableFuture.
1829  
1830      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1831 <        return new AdaptedRunnable(runnable, value);
1831 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1832      }
1833  
1834      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1835 <        return new AdaptedCallable(callable);
1835 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1836      }
1837  
1838 +    // Unsafe mechanics
1839  
1840 <    // Temporary Unsafe mechanics for preliminary release
1840 >    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1841 >    private static final long workerCountsOffset =
1842 >        objectFieldOffset("workerCounts", ForkJoinPool.class);
1843 >    private static final long runStateOffset =
1844 >        objectFieldOffset("runState", ForkJoinPool.class);
1845 >    private static final long eventCountOffset =
1846 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1847 >    private static final long eventWaitersOffset =
1848 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1849 >    private static final long stealCountOffset =
1850 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1851  
1852 <    static final Unsafe _unsafe;
1697 <    static final long eventCountOffset;
1698 <    static final long workerCountsOffset;
1699 <    static final long runControlOffset;
1700 <    static final long barrierStackOffset;
1701 <    static final long spareStackOffset;
1702 <
1703 <    static {
1852 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1853          try {
1854 <            if (ForkJoinPool.class.getClassLoader() != null) {
1855 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
1856 <                f.setAccessible(true);
1857 <                _unsafe = (Unsafe)f.get(null);
1858 <            }
1859 <            else
1711 <                _unsafe = Unsafe.getUnsafe();
1712 <            eventCountOffset = _unsafe.objectFieldOffset
1713 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
1714 <            workerCountsOffset = _unsafe.objectFieldOffset
1715 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
1716 <            runControlOffset = _unsafe.objectFieldOffset
1717 <                (ForkJoinPool.class.getDeclaredField("runControl"));
1718 <            barrierStackOffset = _unsafe.objectFieldOffset
1719 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
1720 <            spareStackOffset = _unsafe.objectFieldOffset
1721 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
1722 <        } catch (Exception e) {
1723 <            throw new RuntimeException("Could not initialize intrinsics", e);
1854 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1855 >        } catch (NoSuchFieldException e) {
1856 >            // Convert Exception to corresponding Error
1857 >            NoSuchFieldError error = new NoSuchFieldError(field);
1858 >            error.initCause(e);
1859 >            throw error;
1860          }
1861      }
1862  
1863 <    private boolean casEventCount(long cmp, long val) {
1864 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1865 <    }
1866 <    private boolean casWorkerCounts(int cmp, int val) {
1867 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1868 <    }
1869 <    private boolean casRunControl(int cmp, int val) {
1870 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1871 <    }
1872 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1873 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1874 <    }
1875 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1876 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
1863 >    /**
1864 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1865 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1866 >     * into a jdk.
1867 >     *
1868 >     * @return a sun.misc.Unsafe
1869 >     */
1870 >    private static sun.misc.Unsafe getUnsafe() {
1871 >        try {
1872 >            return sun.misc.Unsafe.getUnsafe();
1873 >        } catch (SecurityException se) {
1874 >            try {
1875 >                return java.security.AccessController.doPrivileged
1876 >                    (new java.security
1877 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1878 >                        public sun.misc.Unsafe run() throws Exception {
1879 >                            java.lang.reflect.Field f = sun.misc
1880 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1881 >                            f.setAccessible(true);
1882 >                            return (sun.misc.Unsafe) f.get(null);
1883 >                        }});
1884 >            } catch (java.security.PrivilegedActionException e) {
1885 >                throw new RuntimeException("Could not initialize intrinsics",
1886 >                                           e.getCause());
1887 >            }
1888 >        }
1889      }
1890   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines