ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.23 by dl, Sat Jul 25 15:50:57 2009 UTC vs.
Revision 1.77 by dl, Tue Sep 7 14:43:31 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
16 import java.util.concurrent.locks.Condition;
14   import java.util.concurrent.locks.LockSupport;
15   import java.util.concurrent.locks.ReentrantLock;
16   import java.util.concurrent.atomic.AtomicInteger;
17 < import java.util.concurrent.atomic.AtomicLong;
17 > import java.util.concurrent.CountDownLatch;
18  
19   /**
20 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
21 < * ForkJoinPool provides the entry point for submissions from
22 < * non-ForkJoinTasks, as well as management and monitoring operations.
23 < * Normally a single ForkJoinPool is used for a large number of
27 < * submitted tasks. Otherwise, use would not usually outweigh the
28 < * construction and bookkeeping overhead of creating a large set of
29 < * threads.
20 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
21 > * A {@code ForkJoinPool} provides the entry point for submissions
22 > * from non-{@code ForkJoinTask} clients, as well as management and
23 > * monitoring operations.
24   *
25 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
26 < * that they provide <em>work-stealing</em>: all threads in the pool
27 < * attempt to find and execute subtasks created by other active tasks
28 < * (eventually blocking if none exist). This makes them efficient when
29 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
30 < * as the mixed execution of some plain Runnable- or Callable- based
31 < * activities along with ForkJoinTasks. When setting
32 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
33 < * use with fine-grained tasks that are never joined. Otherwise, other
40 < * ExecutorService implementations are typically more appropriate
41 < * choices.
25 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
26 > * ExecutorService} mainly by virtue of employing
27 > * <em>work-stealing</em>: all threads in the pool attempt to find and
28 > * execute subtasks created by other active tasks (eventually blocking
29 > * waiting for work if none exist). This enables efficient processing
30 > * when most tasks spawn other subtasks (as do most {@code
31 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
32 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
33 > * with event-style tasks that are never joined.
34   *
35 < * <p>A ForkJoinPool may be constructed with a given parallelism level
36 < * (target pool size), which it attempts to maintain by dynamically
37 < * adding, suspending, or resuming threads, even if some tasks are
38 < * waiting to join others. However, no such adjustments are performed
39 < * in the face of blocked IO or other unmanaged synchronization. The
40 < * nested {@code ManagedBlocker} interface enables extension of
41 < * the kinds of synchronization accommodated.  The target parallelism
42 < * level may also be changed dynamically ({@code setParallelism})
43 < * and thread construction can be limited using methods
52 < * {@code setMaximumPoolSize} and/or
53 < * {@code setMaintainsParallelism}.
35 > * <p>A {@code ForkJoinPool} is constructed with a given target
36 > * parallelism level; by default, equal to the number of available
37 > * processors. The pool attempts to maintain enough active (or
38 > * available) threads by dynamically adding, suspending, or resuming
39 > * internal worker threads, even if some tasks are stalled waiting to
40 > * join others. However, no such adjustments are guaranteed in the
41 > * face of blocked IO or other unmanaged synchronization. The nested
42 > * {@link ManagedBlocker} interface enables extension of the kinds of
43 > * synchronization accommodated.
44   *
45   * <p>In addition to execution and lifecycle control methods, this
46   * class provides status check methods (for example
47 < * {@code getStealCount}) that are intended to aid in developing,
47 > * {@link #getStealCount}) that are intended to aid in developing,
48   * tuning, and monitoring fork/join applications. Also, method
49 < * {@code toString} returns indications of pool state in a
49 > * {@link #toString} returns indications of pool state in a
50   * convenient form for informal monitoring.
51   *
52 + * <p> As is the case with other ExecutorServices, there are three
53 + * main task execution methods summarized in the following
54 + * table. These are designed to be used by clients not already engaged
55 + * in fork/join computations in the current pool.  The main forms of
56 + * these methods accept instances of {@code ForkJoinTask}, but
57 + * overloaded forms also allow mixed execution of plain {@code
58 + * Runnable}- or {@code Callable}- based activities as well.  However,
59 + * tasks that are already executing in a pool should normally
60 + * <em>NOT</em> use these pool execution methods, but instead use the
61 + * within-computation forms listed in the table.
62 + *
63 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
64 + *  <tr>
65 + *    <td></td>
66 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
67 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
68 + *  </tr>
69 + *  <tr>
70 + *    <td> <b>Arrange async execution</td>
71 + *    <td> {@link #execute(ForkJoinTask)}</td>
72 + *    <td> {@link ForkJoinTask#fork}</td>
73 + *  </tr>
74 + *  <tr>
75 + *    <td> <b>Await and obtain result</td>
76 + *    <td> {@link #invoke(ForkJoinTask)}</td>
77 + *    <td> {@link ForkJoinTask#invoke}</td>
78 + *  </tr>
79 + *  <tr>
80 + *    <td> <b>Arrange exec and obtain Future</td>
81 + *    <td> {@link #submit(ForkJoinTask)}</td>
82 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
83 + *  </tr>
84 + * </table>
85 + *
86 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
87 + * used for all parallel task execution in a program or subsystem.
88 + * Otherwise, use would not usually outweigh the construction and
89 + * bookkeeping overhead of creating a large set of threads. For
90 + * example, a common pool could be used for the {@code SortTasks}
91 + * illustrated in {@link RecursiveAction}. Because {@code
92 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
93 + * daemon} mode, there is typically no need to explicitly {@link
94 + * #shutdown} such a pool upon program exit.
95 + *
96 + * <pre>
97 + * static final ForkJoinPool mainPool = new ForkJoinPool();
98 + * ...
99 + * public void sort(long[] array) {
100 + *   mainPool.invoke(new SortTask(array, 0, array.length));
101 + * }
102 + * </pre>
103 + *
104   * <p><b>Implementation notes</b>: This implementation restricts the
105   * maximum number of running threads to 32767. Attempts to create
106 < * pools with greater than the maximum result in
107 < * IllegalArgumentExceptions.
106 > * pools with greater than the maximum number result in
107 > * {@code IllegalArgumentException}.
108 > *
109 > * <p>This implementation rejects submitted tasks (that is, by throwing
110 > * {@link RejectedExecutionException}) only when the pool is shut down
111 > * or internal resources have been exhausted.
112   *
113   * @since 1.7
114   * @author Doug Lea
# Line 70 | Line 116 | import java.util.concurrent.atomic.Atomi
116   public class ForkJoinPool extends AbstractExecutorService {
117  
118      /*
119 <     * See the extended comments interspersed below for design,
120 <     * rationale, and walkthroughs.
121 <     */
122 <
123 <    /** Mask for packing and unpacking shorts */
124 <    private static final int  shortMask = 0xffff;
125 <
126 <    /** Max pool size -- must be a power of two minus 1 */
127 <    private static final int MAX_THREADS =  0x7FFF;
128 <
129 <    /**
130 <     * Factory for creating new ForkJoinWorkerThreads.  A
131 <     * ForkJoinWorkerThreadFactory must be defined and used for
132 <     * ForkJoinWorkerThread subclasses that extend base functionality
133 <     * or initialize threads with different contexts.
119 >     * Implementation Overview
120 >     *
121 >     * This class provides the central bookkeeping and control for a
122 >     * set of worker threads: Submissions from non-FJ threads enter
123 >     * into a submission queue. Workers take these tasks and typically
124 >     * split them into subtasks that may be stolen by other workers.
125 >     * The main work-stealing mechanics implemented in class
126 >     * ForkJoinWorkerThread give first priority to processing tasks
127 >     * from their own queues (LIFO or FIFO, depending on mode), then
128 >     * to randomized FIFO steals of tasks in other worker queues, and
129 >     * lastly to new submissions. These mechanics do not consider
130 >     * affinities, loads, cache localities, etc, so rarely provide the
131 >     * best possible performance on a given machine, but portably
132 >     * provide good throughput by averaging over these factors.
133 >     * (Further, even if we did try to use such information, we do not
134 >     * usually have a basis for exploiting it. For example, some sets
135 >     * of tasks profit from cache affinities, but others are harmed by
136 >     * cache pollution effects.)
137 >     *
138 >     * Beyond work-stealing support and essential bookkeeping, the
139 >     * main responsibility of this framework is to take actions when
140 >     * one worker is waiting to join a task stolen (or always held by)
141 >     * another.  Because we are multiplexing many tasks on to a pool
142 >     * of workers, we can't just let them block (as in Thread.join).
143 >     * We also cannot just reassign the joiner's run-time stack with
144 >     * another and replace it later, which would be a form of
145 >     * "continuation", that even if possible is not necessarily a good
146 >     * idea. Given that the creation costs of most threads on most
147 >     * systems mainly surrounds setting up runtime stacks, thread
148 >     * creation and switching is usually not much more expensive than
149 >     * stack creation and switching, and is more flexible). Instead we
150 >     * combine two tactics:
151 >     *
152 >     *   Helping: Arranging for the joiner to execute some task that it
153 >     *      would be running if the steal had not occurred.  Method
154 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
155 >     *      links to try to find such a task.
156 >     *
157 >     *   Compensating: Unless there are already enough live threads,
158 >     *      method helpMaintainParallelism() may create or
159 >     *      re-activate a spare thread to compensate for blocked
160 >     *      joiners until they unblock.
161 >     *
162 >     * It is impossible to keep exactly the target (parallelism)
163 >     * number of threads running at any given time.  Determining
164 >     * existence of conservatively safe helping targets, the
165 >     * availability of already-created spares, and the apparent need
166 >     * to create new spares are all racy and require heuristic
167 >     * guidance, so we rely on multiple retries of each.  Compensation
168 >     * occurs in slow-motion. It is triggered only upon timeouts of
169 >     * Object.wait used for joins. This reduces poor decisions that
170 >     * would otherwise be made when threads are waiting for others
171 >     * that are stalled because of unrelated activities such as
172 >     * garbage collection.
173 >     *
174 >     * The ManagedBlocker extension API can't use helping so relies
175 >     * only on compensation in method awaitBlocker.
176 >     *
177 >     * The main throughput advantages of work-stealing stem from
178 >     * decentralized control -- workers mostly steal tasks from each
179 >     * other. We do not want to negate this by creating bottlenecks
180 >     * implementing other management responsibilities. So we use a
181 >     * collection of techniques that avoid, reduce, or cope well with
182 >     * contention. These entail several instances of bit-packing into
183 >     * CASable fields to maintain only the minimally required
184 >     * atomicity. To enable such packing, we restrict maximum
185 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
186 >     * unbalanced increments and decrements) to fit into a 16 bit
187 >     * field, which is far in excess of normal operating range.  Even
188 >     * though updates to some of these bookkeeping fields do sometimes
189 >     * contend with each other, they don't normally cache-contend with
190 >     * updates to others enough to warrant memory padding or
191 >     * isolation. So they are all held as fields of ForkJoinPool
192 >     * objects.  The main capabilities are as follows:
193 >     *
194 >     * 1. Creating and removing workers. Workers are recorded in the
195 >     * "workers" array. This is an array as opposed to some other data
196 >     * structure to support index-based random steals by workers.
197 >     * Updates to the array recording new workers and unrecording
198 >     * terminated ones are protected from each other by a lock
199 >     * (workerLock) but the array is otherwise concurrently readable,
200 >     * and accessed directly by workers. To simplify index-based
201 >     * operations, the array size is always a power of two, and all
202 >     * readers must tolerate null slots. Currently, all worker thread
203 >     * creation is on-demand, triggered by task submissions,
204 >     * replacement of terminated workers, and/or compensation for
205 >     * blocked workers. However, all other support code is set up to
206 >     * work with other policies.
207 >     *
208 >     * To ensure that we do not hold on to worker references that
209 >     * would prevent GC, ALL accesses to workers are via indices into
210 >     * the workers array (which is one source of some of the unusual
211 >     * code constructions here). In essence, the workers array serves
212 >     * as a WeakReference mechanism. Thus for example the event queue
213 >     * stores worker indices, not worker references. Access to the
214 >     * workers in associated methods (for example releaseEventWaiters)
215 >     * must both index-check and null-check the IDs. All such accesses
216 >     * ignore bad IDs by returning out early from what they are doing,
217 >     * since this can only be associated with shutdown, in which case
218 >     * it is OK to give up. On termination, we just clobber these
219 >     * data structures without trying to use them.
220 >     *
221 >     * 2. Bookkeeping for dynamically adding and removing workers. We
222 >     * aim to approximately maintain the given level of parallelism.
223 >     * When some workers are known to be blocked (on joins or via
224 >     * ManagedBlocker), we may create or resume others to take their
225 >     * place until they unblock (see below). Implementing this
226 >     * requires counts of the number of "running" threads (i.e., those
227 >     * that are neither blocked nor artificially suspended) as well as
228 >     * the total number.  These two values are packed into one field,
229 >     * "workerCounts" because we need accurate snapshots when deciding
230 >     * to create, resume or suspend.  Note however that the
231 >     * correspondence of these counts to reality is not guaranteed. In
232 >     * particular updates for unblocked threads may lag until they
233 >     * actually wake up.
234 >     *
235 >     * 3. Maintaining global run state. The run state of the pool
236 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
237 >     * those in other Executor implementations, as well as a count of
238 >     * "active" workers -- those that are, or soon will be, or
239 >     * recently were executing tasks. The runLevel and active count
240 >     * are packed together in order to correctly trigger shutdown and
241 >     * termination. Without care, active counts can be subject to very
242 >     * high contention.  We substantially reduce this contention by
243 >     * relaxing update rules.  A worker must claim active status
244 >     * prospectively, by activating if it sees that a submitted or
245 >     * stealable task exists (it may find after activating that the
246 >     * task no longer exists). It stays active while processing this
247 >     * task (if it exists) and any other local subtasks it produces,
248 >     * until it cannot find any other tasks. It then tries
249 >     * inactivating (see method preStep), but upon update contention
250 >     * instead scans for more tasks, later retrying inactivation if it
251 >     * doesn't find any.
252 >     *
253 >     * 4. Managing idle workers waiting for tasks. We cannot let
254 >     * workers spin indefinitely scanning for tasks when none are
255 >     * available. On the other hand, we must quickly prod them into
256 >     * action when new tasks are submitted or generated.  We
257 >     * park/unpark these idle workers using an event-count scheme.
258 >     * Field eventCount is incremented upon events that may enable
259 >     * workers that previously could not find a task to now find one:
260 >     * Submission of a new task to the pool, or another worker pushing
261 >     * a task onto a previously empty queue.  (We also use this
262 >     * mechanism for configuration and termination actions that
263 >     * require wakeups of idle workers).  Each worker maintains its
264 >     * last known event count, and blocks when a scan for work did not
265 >     * find a task AND its lastEventCount matches the current
266 >     * eventCount. Waiting idle workers are recorded in a variant of
267 >     * Treiber stack headed by field eventWaiters which, when nonzero,
268 >     * encodes the thread index and count awaited for by the worker
269 >     * thread most recently calling eventSync. This thread in turn has
270 >     * a record (field nextEventWaiter) for the next waiting worker.
271 >     * In addition to allowing simpler decisions about need for
272 >     * wakeup, the event count bits in eventWaiters serve the role of
273 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
274 >     * released threads also try to release at most two others.  The
275 >     * net effect is a tree-like diffusion of signals, where released
276 >     * threads (and possibly others) help with unparks.  To further
277 >     * reduce contention effects a bit, failed CASes to increment
278 >     * field eventCount are tolerated without retries in signalWork.
279 >     * Conceptually they are merged into the same event, which is OK
280 >     * when their only purpose is to enable workers to scan for work.
281 >     *
282 >     * 5. Managing suspension of extra workers. When a worker notices
283 >     * (usually upon timeout of a wait()) that there are too few
284 >     * running threads, we may create a new thread to maintain
285 >     * parallelism level, or at least avoid starvation. Usually, extra
286 >     * threads are needed for only very short periods, yet join
287 >     * dependencies are such that we sometimes need them in
288 >     * bursts. Rather than create new threads each time this happens,
289 >     * we suspend no-longer-needed extra ones as "spares". For most
290 >     * purposes, we don't distinguish "extra" spare threads from
291 >     * normal "core" threads: On each call to preStep (the only point
292 >     * at which we can do this) a worker checks to see if there are
293 >     * now too many running workers, and if so, suspends itself.
294 >     * Method helpMaintainParallelism looks for suspended threads to
295 >     * resume before considering creating a new replacement. The
296 >     * spares themselves are encoded on another variant of a Treiber
297 >     * Stack, headed at field "spareWaiters".  Note that the use of
298 >     * spares is intrinsically racy.  One thread may become a spare at
299 >     * about the same time as another is needlessly being created. We
300 >     * counteract this and related slop in part by requiring resumed
301 >     * spares to immediately recheck (in preStep) to see whether they
302 >     * should re-suspend.
303 >     *
304 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
305 >     * shed unused workers: The oldest (first) event queue waiter uses
306 >     * a timed rather than hard wait. When this wait times out without
307 >     * a normal wakeup, it tries to shutdown any one (for convenience
308 >     * the newest) other spare or event waiter via
309 >     * tryShutdownUnusedWorker. This eventually reduces the number of
310 >     * worker threads to a minimum of one after a long enough period
311 >     * without use.
312 >     *
313 >     * 7. Deciding when to create new workers. The main dynamic
314 >     * control in this class is deciding when to create extra threads
315 >     * in method helpMaintainParallelism. We would like to keep
316 >     * exactly #parallelism threads running, which is an impossible
317 >     * task. We always need to create one when the number of running
318 >     * threads would become zero and all workers are busy. Beyond
319 >     * this, we must rely on heuristics that work well in the
320 >     * presence of transient phenomena such as GC stalls, dynamic
321 >     * compilation, and wake-up lags. These transients are extremely
322 >     * common -- we are normally trying to fully saturate the CPUs on
323 >     * a machine, so almost any activity other than running tasks
324 >     * impedes accuracy. Our main defense is to allow parallelism to
325 >     * lapse for a while during joins, and use a timeout to see if,
326 >     * after the resulting settling, there is still a need for
327 >     * additional workers.  This also better copes with the fact that
328 >     * some of the methods in this class tend to never become compiled
329 >     * (but are interpreted), so some components of the entire set of
330 >     * controls might execute 100 times faster than others. And
331 >     * similarly for cases where the apparent lack of work is just due
332 >     * to GC stalls and other transient system activity.
333 >     *
334 >     * Beware that there is a lot of representation-level coupling
335 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
336 >     * ForkJoinTask.  For example, direct access to "workers" array by
337 >     * workers, and direct access to ForkJoinTask.status by both
338 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
339 >     * trying to reduce this, since any associated future changes in
340 >     * representations will need to be accompanied by algorithmic
341 >     * changes anyway.
342 >     *
343 >     * Style notes: There are lots of inline assignments (of form
344 >     * "while ((local = field) != 0)") which are usually the simplest
345 >     * way to ensure the required read orderings (which are sometimes
346 >     * critical). Also several occurrences of the unusual "do {}
347 >     * while (!cas...)" which is the simplest way to force an update of
348 >     * a CAS'ed variable. There are also other coding oddities that
349 >     * help some methods perform reasonably even when interpreted (not
350 >     * compiled), at the expense of some messy constructions that
351 >     * reduce byte code counts.
352 >     *
353 >     * The order of declarations in this file is: (1) statics (2)
354 >     * fields (along with constants used when unpacking some of them)
355 >     * (3) internal control methods (4) callbacks and other support
356 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
357 >     * methods (plus a few little helpers).
358 >     */
359 >
360 >    /**
361 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
362 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
363 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
364 >     * functionality or initialize threads with different contexts.
365       */
366      public static interface ForkJoinWorkerThreadFactory {
367          /**
368           * Returns a new worker thread operating in the given pool.
369           *
370           * @param pool the pool this thread works in
371 <         * @throws NullPointerException if pool is null
371 >         * @throws NullPointerException if the pool is null
372           */
373          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
374      }
# Line 100 | Line 377 | public class ForkJoinPool extends Abstra
377       * Default ForkJoinWorkerThreadFactory implementation; creates a
378       * new ForkJoinWorkerThread.
379       */
380 <    static class  DefaultForkJoinWorkerThreadFactory
380 >    static class DefaultForkJoinWorkerThreadFactory
381          implements ForkJoinWorkerThreadFactory {
382          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
383 <            try {
107 <                return new ForkJoinWorkerThread(pool);
108 <            } catch (OutOfMemoryError oom)  {
109 <                return null;
110 <            }
383 >            return new ForkJoinWorkerThread(pool);
384          }
385      }
386  
# Line 143 | Line 416 | public class ForkJoinPool extends Abstra
416          new AtomicInteger();
417  
418      /**
419 <     * Array holding all worker threads in the pool. Initialized upon
420 <     * first use. Array size must be a power of two.  Updates and
421 <     * replacements are protected by workerLock, but it is always kept
422 <     * in a consistent enough state to be randomly accessed without
423 <     * locking by workers performing work-stealing.
419 >     * The time to block in a join (see awaitJoin) before checking if
420 >     * a new worker should be (re)started to maintain parallelism
421 >     * level. The value should be short enough to maintain global
422 >     * responsiveness and progress but long enough to avoid
423 >     * counterproductive firings during GC stalls or unrelated system
424 >     * activity, and to not bog down systems with continual re-firings
425 >     * on GCs or legitimately long waits.
426 >     */
427 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
428 >
429 >    /**
430 >     * The wakeup interval (in nanoseconds) for the oldest worker
431 >     * waiting for an event to invoke tryShutdownUnusedWorker to
432 >     * shrink the number of workers.  The exact value does not matter
433 >     * too much. It must be short enough to release resources during
434 >     * sustained periods of idleness, but not so short that threads
435 >     * are continually re-created.
436 >     */
437 >    private static final long SHRINK_RATE_NANOS =
438 >        30L * 1000L * 1000L * 1000L; // 2 per minute
439 >
440 >    /**
441 >     * Absolute bound for parallelism level. Twice this number plus
442 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
443 >     * word-packing for some counts and indices.
444 >     */
445 >    private static final int MAX_WORKERS   = 0x7fff;
446 >
447 >    /**
448 >     * Array holding all worker threads in the pool.  Array size must
449 >     * be a power of two.  Updates and replacements are protected by
450 >     * workerLock, but the array is always kept in a consistent enough
451 >     * state to be randomly accessed without locking by workers
452 >     * performing work-stealing, as well as other traversal-based
453 >     * methods in this class. All readers must tolerate that some
454 >     * array slots may be null.
455       */
456      volatile ForkJoinWorkerThread[] workers;
457  
458      /**
459 <     * Lock protecting access to workers.
459 >     * Queue for external submissions.
460       */
461 <    private final ReentrantLock workerLock;
461 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
462  
463      /**
464 <     * Condition for awaitTermination.
464 >     * Lock protecting updates to workers array.
465       */
466 <    private final Condition termination;
466 >    private final ReentrantLock workerLock;
467  
468      /**
469 <     * The uncaught exception handler used when any worker
166 <     * abruptly terminates
469 >     * Latch released upon termination.
470       */
471 <    private Thread.UncaughtExceptionHandler ueh;
471 >    private final Phaser termination;
472  
473      /**
474       * Creation factory for worker threads.
# Line 173 | Line 476 | public class ForkJoinPool extends Abstra
476      private final ForkJoinWorkerThreadFactory factory;
477  
478      /**
176     * Head of stack of threads that were created to maintain
177     * parallelism when other threads blocked, but have since
178     * suspended when the parallelism level rose.
179     */
180    private volatile WaitQueueNode spareStack;
181
182    /**
479       * Sum of per-thread steal counts, updated only when threads are
480       * idle or terminating.
481       */
482 <    private final AtomicLong stealCount;
482 >    private volatile long stealCount;
483  
484      /**
485 <     * Queue for external submissions.
485 >     * Encoded record of top of Treiber stack of threads waiting for
486 >     * events. The top 32 bits contain the count being waited for. The
487 >     * bottom 16 bits contains one plus the pool index of waiting
488 >     * worker thread. (Bits 16-31 are unused.)
489       */
490 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
490 >    private volatile long eventWaiters;
491  
492 <    /**
493 <     * Head of Treiber stack for barrier sync. See below for explanation.
195 <     */
196 <    private volatile WaitQueueNode syncStack;
492 >    private static final int  EVENT_COUNT_SHIFT = 32;
493 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
494  
495      /**
496 <     * The count for event barrier
496 >     * A counter for events that may wake up worker threads:
497 >     *   - Submission of a new task to the pool
498 >     *   - A worker pushing a task on an empty queue
499 >     *   - termination
500       */
501 <    private volatile long eventCount;
501 >    private volatile int eventCount;
502  
503      /**
504 <     * Pool number, just for assigning useful names to worker threads
504 >     * Encoded record of top of Treiber stack of spare threads waiting
505 >     * for resumption. The top 16 bits contain an arbitrary count to
506 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
507 >     * index of waiting worker thread.
508       */
509 <    private final int poolNumber;
509 >    private volatile int spareWaiters;
510  
511 <    /**
512 <     * The maximum allowed pool size
210 <     */
211 <    private volatile int maxPoolSize;
511 >    private static final int SPARE_COUNT_SHIFT = 16;
512 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
513  
514      /**
515 <     * The desired parallelism level, updated only under workerLock.
515 >     * Lifecycle control. The low word contains the number of workers
516 >     * that are (probably) executing tasks. This value is atomically
517 >     * incremented before a worker gets a task to run, and decremented
518 >     * when worker has no tasks and cannot find any.  Bits 16-18
519 >     * contain runLevel value. When all are zero, the pool is
520 >     * running. Level transitions are monotonic (running -> shutdown
521 >     * -> terminating -> terminated) so each transition adds a bit.
522 >     * These are bundled together to ensure consistent read for
523 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
524 >     * and active threads is zero).
525 >     *
526 >     * Notes: Most direct CASes are dependent on these bitfield
527 >     * positions.  Also, this field is non-private to enable direct
528 >     * performance-sensitive CASes in ForkJoinWorkerThread.
529       */
530 <    private volatile int parallelism;
530 >    volatile int runState;
531  
532 <    /**
533 <     * True if use local fifo, not default lifo, for local polling
534 <     */
535 <    private volatile boolean locallyFifo;
532 >    // Note: The order among run level values matters.
533 >    private static final int RUNLEVEL_SHIFT     = 16;
534 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
535 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
536 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
537 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
538  
539      /**
540       * Holds number of total (i.e., created and not yet terminated)
541       * and running (i.e., not blocked on joins or other managed sync)
542 <     * threads, packed into one int to ensure consistent snapshot when
542 >     * threads, packed together to ensure consistent snapshot when
543       * making decisions about creating and suspending spare
544 <     * threads. Updated only by CAS.  Note: CASes in
545 <     * updateRunningCount and preJoin assume that running active count
546 <     * is in low word, so need to be modified if this changes.
544 >     * threads. Updated only by CAS. Note that adding a new worker
545 >     * requires incrementing both counts, since workers start off in
546 >     * running state.
547       */
548      private volatile int workerCounts;
549  
550 <    private static int totalCountOf(int s)           { return s >>> 16;  }
551 <    private static int runningCountOf(int s)         { return s & shortMask; }
552 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
550 >    private static final int TOTAL_COUNT_SHIFT  = 16;
551 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
552 >    private static final int ONE_RUNNING        = 1;
553 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
554  
555      /**
556 <     * Adds delta (which may be negative) to running count.  This must
557 <     * be called before (with negative arg) and after (with positive)
241 <     * any managed synchronization (i.e., mainly, joins).
242 <     *
243 <     * @param delta the number to add
556 >     * The target parallelism level.
557 >     * Accessed directly by ForkJoinWorkerThreads.
558       */
559 <    final void updateRunningCount(int delta) {
246 <        int s;
247 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
248 <    }
559 >    final int parallelism;
560  
561      /**
562 <     * Adds delta (which may be negative) to both total and running
563 <     * count.  This must be called upon creation and termination of
253 <     * worker threads.
254 <     *
255 <     * @param delta the number to add
562 >     * True if use local fifo, not default lifo, for local polling
563 >     * Read by, and replicated by ForkJoinWorkerThreads
564       */
565 <    private void updateWorkerCount(int delta) {
258 <        int d = delta + (delta << 16); // add to both lo and hi parts
259 <        int s;
260 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
261 <    }
565 >    final boolean locallyFifo;
566  
567      /**
568 <     * Lifecycle control. High word contains runState, low word
569 <     * contains the number of workers that are (probably) executing
266 <     * tasks. This value is atomically incremented before a worker
267 <     * gets a task to run, and decremented when worker has no tasks
268 <     * and cannot find any. These two fields are bundled together to
269 <     * support correct termination triggering.  Note: activeCount
270 <     * CAS'es cheat by assuming active count is in low word, so need
271 <     * to be modified if this changes
568 >     * The uncaught exception handler used when any worker abruptly
569 >     * terminates.
570       */
571 <    private volatile int runControl;
571 >    private final Thread.UncaughtExceptionHandler ueh;
572  
573 <    // RunState values. Order among values matters
574 <    private static final int RUNNING     = 0;
575 <    private static final int SHUTDOWN    = 1;
576 <    private static final int TERMINATING = 2;
279 <    private static final int TERMINATED  = 3;
573 >    /**
574 >     * Pool number, just for assigning useful names to worker threads
575 >     */
576 >    private final int poolNumber;
577  
578 <    private static int runStateOf(int c)             { return c >>> 16; }
579 <    private static int activeCountOf(int c)          { return c & shortMask; }
283 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
578 >    // Utilities for CASing fields. Note that most of these
579 >    // are usually manually inlined by callers
580  
581      /**
582 <     * Tries incrementing active count; fails on contention.
287 <     * Called by workers before/during executing tasks.
288 <     *
289 <     * @return true on success
582 >     * Increments running count part of workerCounts
583       */
584 <    final boolean tryIncrementActiveCount() {
585 <        int c = runControl;
586 <        return casRunControl(c, c+1);
584 >    final void incrementRunningCount() {
585 >        int c;
586 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
587 >                                               c = workerCounts,
588 >                                               c + ONE_RUNNING));
589      }
590  
591      /**
592 <     * Tries decrementing active count; fails on contention.
298 <     * Possibly triggers termination on success.
299 <     * Called by workers when they can't find tasks.
300 <     *
301 <     * @return true on success
592 >     * Tries to decrement running count unless already zero
593       */
594 <    final boolean tryDecrementActiveCount() {
595 <        int c = runControl;
596 <        int nextc = c - 1;
306 <        if (!casRunControl(c, nextc))
594 >    final boolean tryDecrementRunningCount() {
595 >        int wc = workerCounts;
596 >        if ((wc & RUNNING_COUNT_MASK) == 0)
597              return false;
598 <        if (canTerminateOnShutdown(nextc))
599 <            terminateOnShutdown();
310 <        return true;
598 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
599 >                                        wc, wc - ONE_RUNNING);
600      }
601  
602      /**
603 <     * Returns true if argument represents zero active count and
604 <     * nonzero runstate, which is the triggering condition for
605 <     * terminating on shutdown.
603 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
604 >     * (rarely) necessary when other count updates lag.
605 >     *
606 >     * @param dr -- either zero or ONE_RUNNING
607 >     * @param dt -- either zero or ONE_TOTAL
608       */
609 <    private static boolean canTerminateOnShutdown(int c) {
610 <        // i.e. least bit is nonzero runState bit
611 <        return ((c & -c) >>> 16) != 0;
609 >    private void decrementWorkerCounts(int dr, int dt) {
610 >        for (;;) {
611 >            int wc = workerCounts;
612 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
613 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
614 >                if ((runState & TERMINATED) != 0)
615 >                    return; // lagging termination on a backout
616 >                Thread.yield();
617 >            }
618 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
619 >                                         wc, wc - (dr + dt)))
620 >                return;
621 >        }
622      }
623  
624      /**
625 <     * Transition run state to at least the given state. Return true
626 <     * if not already at least given state.
625 >     * Tries decrementing active count; fails on contention.
626 >     * Called when workers cannot find tasks to run.
627       */
628 <    private boolean transitionRunStateTo(int state) {
628 >    final boolean tryDecrementActiveCount() {
629 >        int c;
630 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 >                                        c = runState, c - 1);
632 >    }
633 >
634 >    /**
635 >     * Advances to at least the given level. Returns true if not
636 >     * already in at least the given level.
637 >     */
638 >    private boolean advanceRunLevel(int level) {
639          for (;;) {
640 <            int c = runControl;
641 <            if (runStateOf(c) >= state)
640 >            int s = runState;
641 >            if ((s & level) != 0)
642                  return false;
643 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
643 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
644                  return true;
645          }
646      }
647  
648 +    // workers array maintenance
649 +
650      /**
651 <     * Controls whether to add spares to maintain parallelism
651 >     * Records and returns a workers array index for new worker.
652       */
653 <    private volatile boolean maintainsParallelism;
653 >    private int recordWorker(ForkJoinWorkerThread w) {
654 >        // Try using slot totalCount-1. If not available, scan and/or resize
655 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
656 >        final ReentrantLock lock = this.workerLock;
657 >        lock.lock();
658 >        try {
659 >            ForkJoinWorkerThread[] ws = workers;
660 >            int n = ws.length;
661 >            if (k < 0 || k >= n || ws[k] != null) {
662 >                for (k = 0; k < n && ws[k] != null; ++k)
663 >                    ;
664 >                if (k == n)
665 >                    ws = Arrays.copyOf(ws, n << 1);
666 >            }
667 >            ws[k] = w;
668 >            workers = ws; // volatile array write ensures slot visibility
669 >        } finally {
670 >            lock.unlock();
671 >        }
672 >        return k;
673 >    }
674  
675 <    // Constructors
675 >    /**
676 >     * Nulls out record of worker in workers array.
677 >     */
678 >    private void forgetWorker(ForkJoinWorkerThread w) {
679 >        int idx = w.poolIndex;
680 >        // Locking helps method recordWorker avoid unnecessary expansion
681 >        final ReentrantLock lock = this.workerLock;
682 >        lock.lock();
683 >        try {
684 >            ForkJoinWorkerThread[] ws = workers;
685 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
686 >                ws[idx] = null;
687 >        } finally {
688 >            lock.unlock();
689 >        }
690 >    }
691  
692      /**
693 <     * Creates a ForkJoinPool with a pool size equal to the number of
694 <     * processors available on the system, using the default
695 <     * ForkJoinWorkerThreadFactory.
693 >     * Final callback from terminating worker.  Removes record of
694 >     * worker from array, and adjusts counts. If pool is shutting
695 >     * down, tries to complete termination.
696       *
697 <     * @throws SecurityException if a security manager exists and
350 <     *         the caller is not permitted to modify threads
351 <     *         because it does not hold {@link
352 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
697 >     * @param w the worker
698       */
699 <    public ForkJoinPool() {
700 <        this(Runtime.getRuntime().availableProcessors(),
701 <             defaultForkJoinWorkerThreadFactory);
699 >    final void workerTerminated(ForkJoinWorkerThread w) {
700 >        forgetWorker(w);
701 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
702 >        while (w.stealCount != 0) // collect final count
703 >            tryAccumulateStealCount(w);
704 >        tryTerminate(false);
705      }
706  
707 +    // Waiting for and signalling events
708 +
709      /**
710 <     * Creates a ForkJoinPool with the indicated parallelism level
711 <     * threads and using the default ForkJoinWorkerThreadFactory.
712 <     *
713 <     * @param parallelism the number of worker threads
364 <     * @throws IllegalArgumentException if parallelism less than or
365 <     * equal to zero
366 <     * @throws SecurityException if a security manager exists and
367 <     *         the caller is not permitted to modify threads
368 <     *         because it does not hold {@link
369 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
710 >     * Releases workers blocked on a count not equal to current count.
711 >     * Normally called after precheck that eventWaiters isn't zero to
712 >     * avoid wasted array checks. Gives up upon a change in count or
713 >     * upon releasing two workers, letting others take over.
714       */
715 <    public ForkJoinPool(int parallelism) {
716 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
715 >    private void releaseEventWaiters() {
716 >        ForkJoinWorkerThread[] ws = workers;
717 >        int n = ws.length;
718 >        long h = eventWaiters;
719 >        int ec = eventCount;
720 >        boolean releasedOne = false;
721 >        ForkJoinWorkerThread w; int id;
722 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
723 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
724 >               id < n && (w = ws[id]) != null) {
725 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
726 >                                          h,  w.nextWaiter)) {
727 >                LockSupport.unpark(w);
728 >                if (releasedOne) // exit on second release
729 >                    break;
730 >                releasedOne = true;
731 >            }
732 >            if (eventCount != ec)
733 >                break;
734 >            h = eventWaiters;
735 >        }
736      }
737  
738      /**
739 <     * Creates a ForkJoinPool with parallelism equal to the number of
740 <     * processors available on the system and using the given
378 <     * ForkJoinWorkerThreadFactory.
379 <     *
380 <     * @param factory the factory for creating new threads
381 <     * @throws NullPointerException if factory is null
382 <     * @throws SecurityException if a security manager exists and
383 <     *         the caller is not permitted to modify threads
384 <     *         because it does not hold {@link
385 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
739 >     * Tries to advance eventCount and releases waiters. Called only
740 >     * from workers.
741       */
742 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
743 <        this(Runtime.getRuntime().availableProcessors(), factory);
742 >    final void signalWork() {
743 >        int c; // try to increment event count -- CAS failure OK
744 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
745 >        if (eventWaiters != 0L)
746 >            releaseEventWaiters();
747      }
748  
749      /**
750 <     * Creates a ForkJoinPool with the given parallelism and factory.
750 >     * Adds the given worker to event queue and blocks until
751 >     * terminating or event count advances from the given value
752       *
753 <     * @param parallelism the targeted number of worker threads
754 <     * @param factory the factory for creating new threads
396 <     * @throws IllegalArgumentException if parallelism less than or
397 <     * equal to zero, or greater than implementation limit
398 <     * @throws NullPointerException if factory is null
399 <     * @throws SecurityException if a security manager exists and
400 <     *         the caller is not permitted to modify threads
401 <     *         because it does not hold {@link
402 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
753 >     * @param w the calling worker thread
754 >     * @param ec the count
755       */
756 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
757 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
758 <            throw new IllegalArgumentException();
759 <        if (factory == null)
760 <            throw new NullPointerException();
761 <        checkPermission();
762 <        this.factory = factory;
763 <        this.parallelism = parallelism;
764 <        this.maxPoolSize = MAX_THREADS;
765 <        this.maintainsParallelism = true;
766 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
767 <        this.workerLock = new ReentrantLock();
768 <        this.termination = workerLock.newCondition();
417 <        this.stealCount = new AtomicLong();
418 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 <        // worker array and workers are lazily constructed
756 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
757 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
758 >        long h;
759 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
760 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
761 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
762 >               eventCount == ec) {
763 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
764 >                                          w.nextWaiter = h, nh)) {
765 >                awaitEvent(w, ec);
766 >                break;
767 >            }
768 >        }
769      }
770  
771      /**
772 <     * Creates a new worker thread using factory.
772 >     * Blocks the given worker (that has already been entered as an
773 >     * event waiter) until terminating or event count advances from
774 >     * the given value. The oldest (first) waiter uses a timed wait to
775 >     * occasionally one-by-one shrink the number of workers (to a
776 >     * minimum of one) if the pool has not been used for extended
777 >     * periods.
778       *
779 <     * @param index the index to assign worker
780 <     * @return new worker, or null of factory failed
779 >     * @param w the calling worker thread
780 >     * @param ec the count
781       */
782 <    private ForkJoinWorkerThread createWorker(int index) {
783 <        Thread.UncaughtExceptionHandler h = ueh;
784 <        ForkJoinWorkerThread w = factory.newThread(this);
785 <        if (w != null) {
786 <            w.poolIndex = index;
787 <            w.setDaemon(true);
788 <            w.setAsyncMode(locallyFifo);
789 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
790 <            if (h != null)
791 <                w.setUncaughtExceptionHandler(h);
782 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
783 >        while (eventCount == ec) {
784 >            if (tryAccumulateStealCount(w)) { // transfer while idle
785 >                boolean untimed = (w.nextWaiter != 0L ||
786 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
787 >                long startTime = untimed? 0 : System.nanoTime();
788 >                Thread.interrupted();         // clear/ignore interrupt
789 >                if (eventCount != ec || w.runState != 0 ||
790 >                    runState >= TERMINATING)  // recheck after clear
791 >                    break;
792 >                if (untimed)
793 >                    LockSupport.park(w);
794 >                else {
795 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
796 >                    if (eventCount != ec || w.runState != 0 ||
797 >                        runState >= TERMINATING)
798 >                        break;
799 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
800 >                        tryShutdownUnusedWorker(ec);
801 >                }
802 >            }
803          }
439        return w;
804      }
805  
806 +    // Maintaining parallelism
807 +
808      /**
809 <     * Returns a good size for worker array given pool size.
444 <     * Currently requires size to be a power of two.
809 >     * Pushes worker onto the spare stack.
810       */
811 <    private static int arraySizeFor(int poolSize) {
812 <        return (poolSize <= 1) ? 1 :
813 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
811 >    final void pushSpare(ForkJoinWorkerThread w) {
812 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
813 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814 >                                               w.nextSpare = spareWaiters,ns));
815      }
816  
817      /**
818 <     * Creates or resizes array if necessary to hold newLength.
819 <     * Call only under exclusion.
454 <     *
455 <     * @return the array
818 >     * Tries (once) to resume a spare if the number of running
819 >     * threads is less than target.
820       */
821 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
821 >    private void tryResumeSpare() {
822 >        int sw, id;
823          ForkJoinWorkerThread[] ws = workers;
824 <        if (ws == null)
825 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
826 <        else if (newLength > ws.length)
827 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
828 <        else
829 <            return ws;
824 >        int n = ws.length;
825 >        ForkJoinWorkerThread w;
826 >        if ((sw = spareWaiters) != 0 &&
827 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
828 >            id < n && (w = ws[id]) != null &&
829 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
830 >            spareWaiters == sw &&
831 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
832 >                                     sw, w.nextSpare)) {
833 >            int c; // increment running count before resume
834 >            do {} while (!UNSAFE.compareAndSwapInt
835 >                         (this, workerCountsOffset,
836 >                          c = workerCounts, c + ONE_RUNNING));
837 >            if (w.tryUnsuspend())
838 >                LockSupport.unpark(w);
839 >            else   // back out if w was shutdown
840 >                decrementWorkerCounts(ONE_RUNNING, 0);
841 >        }
842      }
843  
844      /**
845 <     * Tries to shrink workers into smaller array after one or more terminate.
846 <     */
847 <    private void tryShrinkWorkerArray() {
848 <        ForkJoinWorkerThread[] ws = workers;
849 <        if (ws != null) {
850 <            int len = ws.length;
851 <            int last = len - 1;
852 <            while (last >= 0 && ws[last] == null)
853 <                --last;
854 <            int newLength = arraySizeFor(last+1);
855 <            if (newLength < len)
856 <                workers = Arrays.copyOf(ws, newLength);
845 >     * Tries to increase the number of running workers if below target
846 >     * parallelism: If a spare exists tries to resume it via
847 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
848 >     * existing workers are busy, adds a new worker. In all cases also
849 >     * helps wake up releasable workers waiting for work.
850 >     */
851 >    private void helpMaintainParallelism() {
852 >        int pc = parallelism;
853 >        int wc, rs, tc;
854 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
855 >               (rs = runState) < TERMINATING) {
856 >            if (spareWaiters != 0)
857 >                tryResumeSpare();
858 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
859 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
860 >                break;   // enough total
861 >            else if (runState == rs && workerCounts == wc &&
862 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
863 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
864 >                ForkJoinWorkerThread w = null;
865 >                try {
866 >                    w = factory.newThread(this);
867 >                } finally { // adjust on null or exceptional factory return
868 >                    if (w == null) {
869 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
870 >                        tryTerminate(false); // handle failure during shutdown
871 >                    }
872 >                }
873 >                if (w == null)
874 >                    break;
875 >                w.start(recordWorker(w), ueh);
876 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
877 >                    int c; // advance event count
878 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
879 >                                             c = eventCount, c+1);
880 >                    break; // add at most one unless total below target
881 >                }
882 >            }
883          }
884 +        if (eventWaiters != 0L)
885 +            releaseEventWaiters();
886      }
887  
888      /**
889 <     * Initializes workers if necessary.
889 >     * Callback from the oldest waiter in awaitEvent waking up after a
890 >     * period of non-use. If all workers are idle, tries (once) to
891 >     * shutdown an event waiter or a spare, if one exists. Note that
892 >     * we don't need CAS or locks here because the method is called
893 >     * only from one thread occasionally waking (and even misfires are
894 >     * OK). Note that until the shutdown worker fully terminates,
895 >     * workerCounts will overestimate total count, which is tolerable.
896 >     *
897 >     * @param ec the event count waited on by caller (to abort
898 >     * attempt if count has since changed).
899       */
900 <    final void ensureWorkerInitialization() {
901 <        ForkJoinWorkerThread[] ws = workers;
902 <        if (ws == null) {
903 <            final ReentrantLock lock = this.workerLock;
904 <            lock.lock();
905 <            try {
906 <                ws = workers;
907 <                if (ws == null) {
908 <                    int ps = parallelism;
909 <                    ws = ensureWorkerArrayCapacity(ps);
910 <                    for (int i = 0; i < ps; ++i) {
911 <                        ForkJoinWorkerThread w = createWorker(i);
912 <                        if (w != null) {
913 <                            ws[i] = w;
914 <                            w.start();
915 <                            updateWorkerCount(1);
916 <                        }
917 <                    }
900 >    private void tryShutdownUnusedWorker(int ec) {
901 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
902 >            ForkJoinWorkerThread[] ws = workers;
903 >            int n = ws.length;
904 >            ForkJoinWorkerThread w = null;
905 >            boolean shutdown = false;
906 >            int sw;
907 >            long h;
908 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
909 >                int id = (sw & SPARE_ID_MASK) - 1;
910 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
911 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
912 >                                             sw, w.nextSpare))
913 >                    shutdown = true;
914 >            }
915 >            else if ((h = eventWaiters) != 0L) {
916 >                long nh;
917 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
918 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
919 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
920 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
921 >                    shutdown = true;
922 >            }
923 >            if (w != null && shutdown) {
924 >                w.shutdown();
925 >                LockSupport.unpark(w);
926 >            }
927 >        }
928 >        releaseEventWaiters(); // in case of interference
929 >    }
930 >
931 >    /**
932 >     * Callback from workers invoked upon each top-level action (i.e.,
933 >     * stealing a task or taking a submission and running it).
934 >     * Performs one or more of the following:
935 >     *
936 >     * 1. If the worker is active and either did not run a task
937 >     *    or there are too many workers, try to set its active status
938 >     *    to inactive and update activeCount. On contention, we may
939 >     *    try again in this or a subsequent call.
940 >     *
941 >     * 2. If not enough total workers, help create some.
942 >     *
943 >     * 3. If there are too many running workers, suspend this worker
944 >     *    (first forcing inactive if necessary).  If it is not needed,
945 >     *    it may be shutdown while suspended (via
946 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
947 >     *    rechecks running thread count and need for event sync.
948 >     *
949 >     * 4. If worker did not run a task, await the next task event via
950 >     *    eventSync if necessary (first forcing inactivation), upon
951 >     *    which the worker may be shutdown via
952 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
953 >     *    existing event waiters that are now releasable,
954 >     *
955 >     * @param w the worker
956 >     * @param ran true if worker ran a task since last call to this method
957 >     */
958 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
959 >        int wec = w.lastEventCount;
960 >        boolean active = w.active;
961 >        boolean inactivate = false;
962 >        int pc = parallelism;
963 >        int rs;
964 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
965 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
966 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
967 >                inactivate = active = w.active = false;
968 >            int wc = workerCounts;
969 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
970 >                if (!(inactivate |= active) && // must inactivate to suspend
971 >                    workerCounts == wc &&      // try to suspend as spare
972 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
973 >                                             wc, wc - ONE_RUNNING))
974 >                    w.suspendAsSpare();
975 >            }
976 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
977 >                helpMaintainParallelism();     // not enough workers
978 >            else if (!ran) {
979 >                long h = eventWaiters;
980 >                int ec = eventCount;
981 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
982 >                    releaseEventWaiters();     // release others before waiting
983 >                else if (ec != wec) {
984 >                    w.lastEventCount = ec;     // no need to wait
985 >                    break;
986                  }
987 <            } finally {
988 <                lock.unlock();
987 >                else if (!(inactivate |= active))
988 >                    eventSync(w, wec);         // must inactivate before sync
989              }
990 +            else
991 +                break;
992          }
993      }
994  
995      /**
996 <     * Worker creation and startup for threads added via setParallelism.
996 >     * Helps and/or blocks awaiting join of the given task.
997 >     * See above for explanation.
998 >     *
999 >     * @param joinMe the task to join
1000 >     * @param worker the current worker thread
1001       */
1002 <    private void createAndStartAddedWorkers() {
1003 <        resumeAllSpares();  // Allow spares to convert to nonspare
1004 <        int ps = parallelism;
1005 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1006 <        int len = ws.length;
1007 <        // Sweep through slots, to keep lowest indices most populated
1008 <        int k = 0;
1009 <        while (k < len) {
1010 <            if (ws[k] != null) {
1011 <                ++k;
1012 <                continue;
1002 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1003 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1004 >        while (joinMe.status >= 0) {
1005 >            int wc;
1006 >            worker.helpJoinTask(joinMe);
1007 >            if (joinMe.status < 0)
1008 >                break;
1009 >            else if (retries > 0)
1010 >                --retries;
1011 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1012 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1013 >                                              wc, wc - ONE_RUNNING)) {
1014 >                int stat, c; long h;
1015 >                while ((stat = joinMe.status) >= 0 &&
1016 >                       (h = eventWaiters) != 0L && // help release others
1017 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1018 >                    releaseEventWaiters();
1019 >                if (stat >= 0 &&
1020 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1021 >                     (stat =
1022 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1023 >                    helpMaintainParallelism(); // timeout or no running workers
1024 >                do {} while (!UNSAFE.compareAndSwapInt
1025 >                             (this, workerCountsOffset,
1026 >                              c = workerCounts, c + ONE_RUNNING));
1027 >                if (stat < 0)
1028 >                    break;   // else restart
1029              }
1030 <            int s = workerCounts;
1031 <            int tc = totalCountOf(s);
1032 <            int rc = runningCountOf(s);
1033 <            if (rc >= ps || tc >= ps)
1030 >        }
1031 >    }
1032 >
1033 >    /**
1034 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1035 >     */
1036 >    final void awaitBlocker(ManagedBlocker blocker)
1037 >        throws InterruptedException {
1038 >        while (!blocker.isReleasable()) {
1039 >            int wc = workerCounts;
1040 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1041 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1042 >                                         wc, wc - ONE_RUNNING)) {
1043 >                try {
1044 >                    while (!blocker.isReleasable()) {
1045 >                        long h = eventWaiters;
1046 >                        if (h != 0L &&
1047 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1048 >                            releaseEventWaiters();
1049 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1050 >                                 runState < TERMINATING)
1051 >                            helpMaintainParallelism();
1052 >                        else if (blocker.block())
1053 >                            break;
1054 >                    }
1055 >                } finally {
1056 >                    int c;
1057 >                    do {} while (!UNSAFE.compareAndSwapInt
1058 >                                 (this, workerCountsOffset,
1059 >                                  c = workerCounts, c + ONE_RUNNING));
1060 >                }
1061                  break;
1062 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1063 <                ForkJoinWorkerThread w = createWorker(k);
1062 >            }
1063 >        }
1064 >    }
1065 >
1066 >    /**
1067 >     * Possibly initiates and/or completes termination.
1068 >     *
1069 >     * @param now if true, unconditionally terminate, else only
1070 >     * if shutdown and empty queue and no active workers
1071 >     * @return true if now terminating or terminated
1072 >     */
1073 >    private boolean tryTerminate(boolean now) {
1074 >        if (now)
1075 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1076 >        else if (runState < SHUTDOWN ||
1077 >                 !submissionQueue.isEmpty() ||
1078 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1079 >            return false;
1080 >
1081 >        if (advanceRunLevel(TERMINATING))
1082 >            startTerminating();
1083 >
1084 >        // Finish now if all threads terminated; else in some subsequent call
1085 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1086 >            advanceRunLevel(TERMINATED);
1087 >            termination.arrive();
1088 >        }
1089 >        return true;
1090 >    }
1091 >
1092 >    /**
1093 >     * Actions on transition to TERMINATING
1094 >     *
1095 >     * Runs up to four passes through workers: (0) shutting down each
1096 >     * (without waking up if parked) to quickly spread notifications
1097 >     * without unnecessary bouncing around event queues etc (1) wake
1098 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1099 >     * interrupted workers
1100 >     */
1101 >    private void startTerminating() {
1102 >        cancelSubmissions();
1103 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1104 >            int c; // advance event count
1105 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1106 >                                     c = eventCount, c+1);
1107 >            eventWaiters = 0L; // clobber lists
1108 >            spareWaiters = 0;
1109 >            for (ForkJoinWorkerThread w : workers) {
1110                  if (w != null) {
1111 <                    ws[k++] = w;
1112 <                    w.start();
1113 <                }
1114 <                else {
1115 <                    updateWorkerCount(-1); // back out on failed creation
1116 <                    break;
1111 >                    w.shutdown();
1112 >                    if (passes > 0 && !w.isTerminated()) {
1113 >                        w.cancelTasks();
1114 >                        LockSupport.unpark(w);
1115 >                        if (passes > 1) {
1116 >                            try {
1117 >                                w.interrupt();
1118 >                            } catch (SecurityException ignore) {
1119 >                            }
1120 >                        }
1121 >                    }
1122                  }
1123              }
1124          }
1125      }
1126  
1127 +    /**
1128 +     * Clears out and cancels submissions, ignoring exceptions.
1129 +     */
1130 +    private void cancelSubmissions() {
1131 +        ForkJoinTask<?> task;
1132 +        while ((task = submissionQueue.poll()) != null) {
1133 +            try {
1134 +                task.cancel(false);
1135 +            } catch (Throwable ignore) {
1136 +            }
1137 +        }
1138 +    }
1139 +
1140 +    // misc support for ForkJoinWorkerThread
1141 +
1142 +    /**
1143 +     * Returns pool number.
1144 +     */
1145 +    final int getPoolNumber() {
1146 +        return poolNumber;
1147 +    }
1148 +
1149 +    /**
1150 +     * Tries to accumulate steal count from a worker, clearing
1151 +     * the worker's value if successful.
1152 +     *
1153 +     * @return true if worker steal count now zero
1154 +     */
1155 +    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1156 +        int sc = w.stealCount;
1157 +        long c = stealCount;
1158 +        // CAS even if zero, for fence effects
1159 +        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1160 +            if (sc != 0)
1161 +                w.stealCount = 0;
1162 +            return true;
1163 +        }
1164 +        return sc == 0;
1165 +    }
1166 +
1167 +    /**
1168 +     * Returns the approximate (non-atomic) number of idle threads per
1169 +     * active thread.
1170 +     */
1171 +    final int idlePerActive() {
1172 +        int pc = parallelism; // use parallelism, not rc
1173 +        int ac = runState;    // no mask -- artificially boosts during shutdown
1174 +        // Use exact results for small values, saturate past 4
1175 +        return ((pc <= ac) ? 0 :
1176 +                (pc >>> 1 <= ac) ? 1 :
1177 +                (pc >>> 2 <= ac) ? 3 :
1178 +                pc >>> 3);
1179 +    }
1180 +
1181 +    // Public and protected methods
1182 +
1183 +    // Constructors
1184 +
1185 +    /**
1186 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1187 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1188 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1189 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1190 +     *
1191 +     * @throws SecurityException if a security manager exists and
1192 +     *         the caller is not permitted to modify threads
1193 +     *         because it does not hold {@link
1194 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1195 +     */
1196 +    public ForkJoinPool() {
1197 +        this(Runtime.getRuntime().availableProcessors(),
1198 +             defaultForkJoinWorkerThreadFactory, null, false);
1199 +    }
1200 +
1201 +    /**
1202 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1203 +     * level, the {@linkplain
1204 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1205 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1206 +     *
1207 +     * @param parallelism the parallelism level
1208 +     * @throws IllegalArgumentException if parallelism less than or
1209 +     *         equal to zero, or greater than implementation limit
1210 +     * @throws SecurityException if a security manager exists and
1211 +     *         the caller is not permitted to modify threads
1212 +     *         because it does not hold {@link
1213 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1214 +     */
1215 +    public ForkJoinPool(int parallelism) {
1216 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1217 +    }
1218 +
1219 +    /**
1220 +     * Creates a {@code ForkJoinPool} with the given parameters.
1221 +     *
1222 +     * @param parallelism the parallelism level. For default value,
1223 +     * use {@link java.lang.Runtime#availableProcessors}.
1224 +     * @param factory the factory for creating new threads. For default value,
1225 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1226 +     * @param handler the handler for internal worker threads that
1227 +     * terminate due to unrecoverable errors encountered while executing
1228 +     * tasks. For default value, use {@code null}.
1229 +     * @param asyncMode if true,
1230 +     * establishes local first-in-first-out scheduling mode for forked
1231 +     * tasks that are never joined. This mode may be more appropriate
1232 +     * than default locally stack-based mode in applications in which
1233 +     * worker threads only process event-style asynchronous tasks.
1234 +     * For default value, use {@code false}.
1235 +     * @throws IllegalArgumentException if parallelism less than or
1236 +     *         equal to zero, or greater than implementation limit
1237 +     * @throws NullPointerException if the factory is null
1238 +     * @throws SecurityException if a security manager exists and
1239 +     *         the caller is not permitted to modify threads
1240 +     *         because it does not hold {@link
1241 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1242 +     */
1243 +    public ForkJoinPool(int parallelism,
1244 +                        ForkJoinWorkerThreadFactory factory,
1245 +                        Thread.UncaughtExceptionHandler handler,
1246 +                        boolean asyncMode) {
1247 +        checkPermission();
1248 +        if (factory == null)
1249 +            throw new NullPointerException();
1250 +        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1251 +            throw new IllegalArgumentException();
1252 +        this.parallelism = parallelism;
1253 +        this.factory = factory;
1254 +        this.ueh = handler;
1255 +        this.locallyFifo = asyncMode;
1256 +        int arraySize = initialArraySizeFor(parallelism);
1257 +        this.workers = new ForkJoinWorkerThread[arraySize];
1258 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1259 +        this.workerLock = new ReentrantLock();
1260 +        this.termination = new Phaser(1);
1261 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1262 +    }
1263 +
1264 +    /**
1265 +     * Returns initial power of two size for workers array.
1266 +     * @param pc the initial parallelism level
1267 +     */
1268 +    private static int initialArraySizeFor(int pc) {
1269 +        // If possible, initially allocate enough space for one spare
1270 +        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1271 +        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1272 +        size |= size >>> 1;
1273 +        size |= size >>> 2;
1274 +        size |= size >>> 4;
1275 +        size |= size >>> 8;
1276 +        return size + 1;
1277 +    }
1278 +
1279      // Execution methods
1280  
1281      /**
# Line 550 | Line 1284 | public class ForkJoinPool extends Abstra
1284      private <T> void doSubmit(ForkJoinTask<T> task) {
1285          if (task == null)
1286              throw new NullPointerException();
1287 <        if (isShutdown())
1287 >        if (runState >= SHUTDOWN)
1288              throw new RejectedExecutionException();
555        if (workers == null)
556            ensureWorkerInitialization();
1289          submissionQueue.offer(task);
1290 <        signalIdleWorkers();
1290 >        int c; // try to increment event count -- CAS failure OK
1291 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1292 >        helpMaintainParallelism(); // create, start, or resume some workers
1293      }
1294  
1295      /**
# Line 563 | Line 1297 | public class ForkJoinPool extends Abstra
1297       *
1298       * @param task the task
1299       * @return the task's result
1300 <     * @throws NullPointerException if task is null
1301 <     * @throws RejectedExecutionException if pool is shut down
1300 >     * @throws NullPointerException if the task is null
1301 >     * @throws RejectedExecutionException if the task cannot be
1302 >     *         scheduled for execution
1303       */
1304      public <T> T invoke(ForkJoinTask<T> task) {
1305          doSubmit(task);
# Line 575 | Line 1310 | public class ForkJoinPool extends Abstra
1310       * Arranges for (asynchronous) execution of the given task.
1311       *
1312       * @param task the task
1313 <     * @throws NullPointerException if task is null
1314 <     * @throws RejectedExecutionException if pool is shut down
1313 >     * @throws NullPointerException if the task is null
1314 >     * @throws RejectedExecutionException if the task cannot be
1315 >     *         scheduled for execution
1316       */
1317 <    public <T> void execute(ForkJoinTask<T> task) {
1317 >    public void execute(ForkJoinTask<?> task) {
1318          doSubmit(task);
1319      }
1320  
1321      // AbstractExecutorService methods
1322  
1323 +    /**
1324 +     * @throws NullPointerException if the task is null
1325 +     * @throws RejectedExecutionException if the task cannot be
1326 +     *         scheduled for execution
1327 +     */
1328      public void execute(Runnable task) {
1329          ForkJoinTask<?> job;
1330 <        if (task instanceof AdaptedCallable) // avoid re-wrap
1331 <            job = (AdaptedCallable<?>)task;
591 <        else if (task instanceof AdaptedRunnable)
592 <            job = (AdaptedRunnable<?>)task;
593 <        else
594 <            job = new AdaptedRunnable<Void>(task, null);
595 <        doSubmit(job);
596 <    }
597 <
598 <    public <T> ForkJoinTask<T> submit(Callable<T> task) {
599 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
600 <        doSubmit(job);
601 <        return job;
602 <    }
603 <
604 <    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
605 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
606 <        doSubmit(job);
607 <        return job;
608 <    }
609 <
610 <    public ForkJoinTask<?> submit(Runnable task) {
611 <        ForkJoinTask<?> job;
612 <        if (task instanceof AdaptedCallable) // avoid re-wrap
613 <            job = (AdaptedCallable<?>)task;
614 <        else if (task instanceof AdaptedRunnable)
615 <            job = (AdaptedRunnable<?>)task;
1330 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1331 >            job = (ForkJoinTask<?>) task;
1332          else
1333 <            job = new AdaptedRunnable<Void>(task, null);
1333 >            job = ForkJoinTask.adapt(task, null);
1334          doSubmit(job);
619        return job;
1335      }
1336  
1337      /**
# Line 624 | Line 1339 | public class ForkJoinPool extends Abstra
1339       *
1340       * @param task the task to submit
1341       * @return the task
1342 +     * @throws NullPointerException if the task is null
1343       * @throws RejectedExecutionException if the task cannot be
1344       *         scheduled for execution
629     * @throws NullPointerException if the task is null
1345       */
1346      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1347          doSubmit(task);
# Line 634 | Line 1349 | public class ForkJoinPool extends Abstra
1349      }
1350  
1351      /**
1352 <     * Adaptor for Runnables. This implements RunnableFuture
1353 <     * to be compliant with AbstractExecutorService constraints.
1352 >     * @throws NullPointerException if the task is null
1353 >     * @throws RejectedExecutionException if the task cannot be
1354 >     *         scheduled for execution
1355       */
1356 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
1357 <        implements RunnableFuture<T> {
1358 <        final Runnable runnable;
1359 <        final T resultOnCompletion;
644 <        T result;
645 <        AdaptedRunnable(Runnable runnable, T result) {
646 <            if (runnable == null) throw new NullPointerException();
647 <            this.runnable = runnable;
648 <            this.resultOnCompletion = result;
649 <        }
650 <        public T getRawResult() { return result; }
651 <        public void setRawResult(T v) { result = v; }
652 <        public boolean exec() {
653 <            runnable.run();
654 <            result = resultOnCompletion;
655 <            return true;
656 <        }
657 <        public void run() { invoke(); }
658 <        private static final long serialVersionUID = 5232453952276885070L;
1356 >    public <T> ForkJoinTask<T> submit(Callable<T> task) {
1357 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1358 >        doSubmit(job);
1359 >        return job;
1360      }
1361  
1362      /**
1363 <     * Adaptor for Callables
1363 >     * @throws NullPointerException if the task is null
1364 >     * @throws RejectedExecutionException if the task cannot be
1365 >     *         scheduled for execution
1366       */
1367 <    static final class AdaptedCallable<T> extends ForkJoinTask<T>
1368 <        implements RunnableFuture<T> {
1369 <        final Callable<T> callable;
1370 <        T result;
1371 <        AdaptedCallable(Callable<T> callable) {
1372 <            if (callable == null) throw new NullPointerException();
1373 <            this.callable = callable;
1374 <        }
1375 <        public T getRawResult() { return result; }
1376 <        public void setRawResult(T v) { result = v; }
1377 <        public boolean exec() {
1378 <            try {
1379 <                result = callable.call();
1380 <                return true;
1381 <            } catch (Error err) {
1382 <                throw err;
1383 <            } catch (RuntimeException rex) {
1384 <                throw rex;
1385 <            } catch (Exception ex) {
683 <                throw new RuntimeException(ex);
684 <            }
685 <        }
686 <        public void run() { invoke(); }
687 <        private static final long serialVersionUID = 2838392045355241008L;
1367 >    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1368 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1369 >        doSubmit(job);
1370 >        return job;
1371 >    }
1372 >
1373 >    /**
1374 >     * @throws NullPointerException if the task is null
1375 >     * @throws RejectedExecutionException if the task cannot be
1376 >     *         scheduled for execution
1377 >     */
1378 >    public ForkJoinTask<?> submit(Runnable task) {
1379 >        ForkJoinTask<?> job;
1380 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1381 >            job = (ForkJoinTask<?>) task;
1382 >        else
1383 >            job = ForkJoinTask.adapt(task, null);
1384 >        doSubmit(job);
1385 >        return job;
1386      }
1387  
1388 +    /**
1389 +     * @throws NullPointerException       {@inheritDoc}
1390 +     * @throws RejectedExecutionException {@inheritDoc}
1391 +     */
1392      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1393          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1394              new ArrayList<ForkJoinTask<T>>(tasks.size());
1395          for (Callable<T> task : tasks)
1396 <            forkJoinTasks.add(new AdaptedCallable<T>(task));
1396 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1397          invoke(new InvokeAll<T>(forkJoinTasks));
1398  
1399          @SuppressWarnings({"unchecked", "rawtypes"})
1400 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1400 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1401          return futures;
1402      }
1403  
# Line 709 | Line 1411 | public class ForkJoinPool extends Abstra
1411          private static final long serialVersionUID = -7914297376763021607L;
1412      }
1413  
712    // Configuration and status settings and queries
713
1414      /**
1415       * Returns the factory used for constructing new workers.
1416       *
# Line 724 | Line 1424 | public class ForkJoinPool extends Abstra
1424       * Returns the handler for internal worker threads that terminate
1425       * due to unrecoverable errors encountered while executing tasks.
1426       *
1427 <     * @return the handler, or null if none
1427 >     * @return the handler, or {@code null} if none
1428       */
1429      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1430 <        Thread.UncaughtExceptionHandler h;
731 <        final ReentrantLock lock = this.workerLock;
732 <        lock.lock();
733 <        try {
734 <            h = ueh;
735 <        } finally {
736 <            lock.unlock();
737 <        }
738 <        return h;
1430 >        return ueh;
1431      }
1432  
1433      /**
1434 <     * Sets the handler for internal worker threads that terminate due
743 <     * to unrecoverable errors encountered while executing tasks.
744 <     * Unless set, the current default or ThreadGroup handler is used
745 <     * as handler.
1434 >     * Returns the targeted parallelism level of this pool.
1435       *
1436 <     * @param h the new handler
748 <     * @return the old handler, or null if none
749 <     * @throws SecurityException if a security manager exists and
750 <     *         the caller is not permitted to modify threads
751 <     *         because it does not hold {@link
752 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
753 <     */
754 <    public Thread.UncaughtExceptionHandler
755 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
756 <        checkPermission();
757 <        Thread.UncaughtExceptionHandler old = null;
758 <        final ReentrantLock lock = this.workerLock;
759 <        lock.lock();
760 <        try {
761 <            old = ueh;
762 <            ueh = h;
763 <            ForkJoinWorkerThread[] ws = workers;
764 <            if (ws != null) {
765 <                for (int i = 0; i < ws.length; ++i) {
766 <                    ForkJoinWorkerThread w = ws[i];
767 <                    if (w != null)
768 <                        w.setUncaughtExceptionHandler(h);
769 <                }
770 <            }
771 <        } finally {
772 <            lock.unlock();
773 <        }
774 <        return old;
775 <    }
776 <
777 <
778 <    /**
779 <     * Sets the target parallelism level of this pool.
780 <     *
781 <     * @param parallelism the target parallelism
782 <     * @throws IllegalArgumentException if parallelism less than or
783 <     * equal to zero or greater than maximum size bounds
784 <     * @throws SecurityException if a security manager exists and
785 <     *         the caller is not permitted to modify threads
786 <     *         because it does not hold {@link
787 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
788 <     */
789 <    public void setParallelism(int parallelism) {
790 <        checkPermission();
791 <        if (parallelism <= 0 || parallelism > maxPoolSize)
792 <            throw new IllegalArgumentException();
793 <        final ReentrantLock lock = this.workerLock;
794 <        lock.lock();
795 <        try {
796 <            if (!isTerminating()) {
797 <                int p = this.parallelism;
798 <                this.parallelism = parallelism;
799 <                if (parallelism > p)
800 <                    createAndStartAddedWorkers();
801 <                else
802 <                    trimSpares();
803 <            }
804 <        } finally {
805 <            lock.unlock();
806 <        }
807 <        signalIdleWorkers();
808 <    }
809 <
810 <    /**
811 <     * Returns the targeted number of worker threads in this pool.
812 <     *
813 <     * @return the targeted number of worker threads in this pool
1436 >     * @return the targeted parallelism level of this pool
1437       */
1438      public int getParallelism() {
1439          return parallelism;
# Line 818 | Line 1441 | public class ForkJoinPool extends Abstra
1441  
1442      /**
1443       * Returns the number of worker threads that have started but not
1444 <     * yet terminated.  This result returned by this method may differ
1445 <     * from {@code getParallelism} when threads are created to
1444 >     * yet terminated.  The result returned by this method may differ
1445 >     * from {@link #getParallelism} when threads are created to
1446       * maintain parallelism when others are cooperatively blocked.
1447       *
1448       * @return the number of worker threads
1449       */
1450      public int getPoolSize() {
1451 <        return totalCountOf(workerCounts);
1451 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1452      }
1453  
1454      /**
1455 <     * Returns the maximum number of threads allowed to exist in the
833 <     * pool, even if there are insufficient unblocked running threads.
834 <     *
835 <     * @return the maximum
836 <     */
837 <    public int getMaximumPoolSize() {
838 <        return maxPoolSize;
839 <    }
840 <
841 <    /**
842 <     * Sets the maximum number of threads allowed to exist in the
843 <     * pool, even if there are insufficient unblocked running threads.
844 <     * Setting this value has no effect on current pool size. It
845 <     * controls construction of new threads.
846 <     *
847 <     * @throws IllegalArgumentException if negative or greater then
848 <     * internal implementation limit
849 <     */
850 <    public void setMaximumPoolSize(int newMax) {
851 <        if (newMax < 0 || newMax > MAX_THREADS)
852 <            throw new IllegalArgumentException();
853 <        maxPoolSize = newMax;
854 <    }
855 <
856 <
857 <    /**
858 <     * Returns true if this pool dynamically maintains its target
859 <     * parallelism level. If false, new threads are added only to
860 <     * avoid possible starvation.
861 <     * This setting is by default true.
862 <     *
863 <     * @return true if maintains parallelism
864 <     */
865 <    public boolean getMaintainsParallelism() {
866 <        return maintainsParallelism;
867 <    }
868 <
869 <    /**
870 <     * Sets whether this pool dynamically maintains its target
871 <     * parallelism level. If false, new threads are added only to
872 <     * avoid possible starvation.
873 <     *
874 <     * @param enable true to maintains parallelism
875 <     */
876 <    public void setMaintainsParallelism(boolean enable) {
877 <        maintainsParallelism = enable;
878 <    }
879 <
880 <    /**
881 <     * Establishes local first-in-first-out scheduling mode for forked
882 <     * tasks that are never joined. This mode may be more appropriate
883 <     * than default locally stack-based mode in applications in which
884 <     * worker threads only process asynchronous tasks.  This method is
885 <     * designed to be invoked only when pool is quiescent, and
886 <     * typically only before any tasks are submitted. The effects of
887 <     * invocations at other times may be unpredictable.
888 <     *
889 <     * @param async if true, use locally FIFO scheduling
890 <     * @return the previous mode
891 <     */
892 <    public boolean setAsyncMode(boolean async) {
893 <        boolean oldMode = locallyFifo;
894 <        locallyFifo = async;
895 <        ForkJoinWorkerThread[] ws = workers;
896 <        if (ws != null) {
897 <            for (int i = 0; i < ws.length; ++i) {
898 <                ForkJoinWorkerThread t = ws[i];
899 <                if (t != null)
900 <                    t.setAsyncMode(async);
901 <            }
902 <        }
903 <        return oldMode;
904 <    }
905 <
906 <    /**
907 <     * Returns true if this pool uses local first-in-first-out
1455 >     * Returns {@code true} if this pool uses local first-in-first-out
1456       * scheduling mode for forked tasks that are never joined.
1457       *
1458 <     * @return true if this pool uses async mode
1458 >     * @return {@code true} if this pool uses async mode
1459       */
1460      public boolean getAsyncMode() {
1461          return locallyFifo;
# Line 916 | Line 1464 | public class ForkJoinPool extends Abstra
1464      /**
1465       * Returns an estimate of the number of worker threads that are
1466       * not blocked waiting to join tasks or for other managed
1467 <     * synchronization.
1467 >     * synchronization. This method may overestimate the
1468 >     * number of running threads.
1469       *
1470       * @return the number of worker threads
1471       */
1472      public int getRunningThreadCount() {
1473 <        return runningCountOf(workerCounts);
1473 >        return workerCounts & RUNNING_COUNT_MASK;
1474      }
1475  
1476      /**
# Line 932 | Line 1481 | public class ForkJoinPool extends Abstra
1481       * @return the number of active threads
1482       */
1483      public int getActiveThreadCount() {
1484 <        return activeCountOf(runControl);
936 <    }
937 <
938 <    /**
939 <     * Returns an estimate of the number of threads that are currently
940 <     * idle waiting for tasks. This method may underestimate the
941 <     * number of idle threads.
942 <     *
943 <     * @return the number of idle threads
944 <     */
945 <    final int getIdleThreadCount() {
946 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
947 <        return (c <= 0) ? 0 : c;
1484 >        return runState & ACTIVE_COUNT_MASK;
1485      }
1486  
1487      /**
1488 <     * Returns true if all worker threads are currently idle. An idle
1489 <     * worker is one that cannot obtain a task to execute because none
1490 <     * are available to steal from other threads, and there are no
1491 <     * pending submissions to the pool. This method is conservative;
1492 <     * it might not return true immediately upon idleness of all
1493 <     * threads, but will eventually become true if threads remain
1494 <     * inactive.
1488 >     * Returns {@code true} if all worker threads are currently idle.
1489 >     * An idle worker is one that cannot obtain a task to execute
1490 >     * because none are available to steal from other threads, and
1491 >     * there are no pending submissions to the pool. This method is
1492 >     * conservative; it might not return {@code true} immediately upon
1493 >     * idleness of all threads, but will eventually become true if
1494 >     * threads remain inactive.
1495       *
1496 <     * @return true if all threads are currently idle
1496 >     * @return {@code true} if all threads are currently idle
1497       */
1498      public boolean isQuiescent() {
1499 <        return activeCountOf(runControl) == 0;
1499 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1500      }
1501  
1502      /**
# Line 974 | Line 1511 | public class ForkJoinPool extends Abstra
1511       * @return the number of steals
1512       */
1513      public long getStealCount() {
1514 <        return stealCount.get();
978 <    }
979 <
980 <    /**
981 <     * Accumulates steal count from a worker.
982 <     * Call only when worker known to be idle.
983 <     */
984 <    private void updateStealCount(ForkJoinWorkerThread w) {
985 <        int sc = w.getAndClearStealCount();
986 <        if (sc != 0)
987 <            stealCount.addAndGet(sc);
1514 >        return stealCount;
1515      }
1516  
1517      /**
# Line 999 | Line 1526 | public class ForkJoinPool extends Abstra
1526       */
1527      public long getQueuedTaskCount() {
1528          long count = 0;
1529 <        ForkJoinWorkerThread[] ws = workers;
1530 <        if (ws != null) {
1531 <            for (int i = 0; i < ws.length; ++i) {
1005 <                ForkJoinWorkerThread t = ws[i];
1006 <                if (t != null)
1007 <                    count += t.getQueueSize();
1008 <            }
1009 <        }
1529 >        for (ForkJoinWorkerThread w : workers)
1530 >            if (w != null)
1531 >                count += w.getQueueSize();
1532          return count;
1533      }
1534  
1535      /**
1536 <     * Returns an estimate of the number tasks submitted to this pool
1537 <     * that have not yet begun executing. This method takes time
1536 >     * Returns an estimate of the number of tasks submitted to this
1537 >     * pool that have not yet begun executing.  This method takes time
1538       * proportional to the number of submissions.
1539       *
1540       * @return the number of queued submissions
# Line 1022 | Line 1544 | public class ForkJoinPool extends Abstra
1544      }
1545  
1546      /**
1547 <     * Returns true if there are any tasks submitted to this pool
1548 <     * that have not yet begun executing.
1547 >     * Returns {@code true} if there are any tasks submitted to this
1548 >     * pool that have not yet begun executing.
1549       *
1550       * @return {@code true} if there are any queued submissions
1551       */
# Line 1036 | Line 1558 | public class ForkJoinPool extends Abstra
1558       * available.  This method may be useful in extensions to this
1559       * class that re-assign work in systems with multiple pools.
1560       *
1561 <     * @return the next submission, or null if none
1561 >     * @return the next submission, or {@code null} if none
1562       */
1563      protected ForkJoinTask<?> pollSubmission() {
1564          return submissionQueue.poll();
# Line 1046 | Line 1568 | public class ForkJoinPool extends Abstra
1568       * Removes all available unexecuted submitted and forked tasks
1569       * from scheduling queues and adds them to the given collection,
1570       * without altering their execution status. These may include
1571 <     * artificially generated or wrapped tasks. This method is designed
1572 <     * to be invoked only when the pool is known to be
1571 >     * artificially generated or wrapped tasks. This method is
1572 >     * designed to be invoked only when the pool is known to be
1573       * quiescent. Invocations at other times may not remove all
1574       * tasks. A failure encountered while attempting to add elements
1575       * to collection {@code c} may result in elements being in
# Line 1059 | Line 1581 | public class ForkJoinPool extends Abstra
1581       * @param c the collection to transfer elements into
1582       * @return the number of elements transferred
1583       */
1584 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1585 <        int n = submissionQueue.drainTo(c);
1586 <        ForkJoinWorkerThread[] ws = workers;
1587 <        if (ws != null) {
1588 <            for (int i = 0; i < ws.length; ++i) {
1589 <                ForkJoinWorkerThread w = ws[i];
1068 <                if (w != null)
1069 <                    n += w.drainTasksTo(c);
1070 <            }
1071 <        }
1072 <        return n;
1584 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1585 >        int count = submissionQueue.drainTo(c);
1586 >        for (ForkJoinWorkerThread w : workers)
1587 >            if (w != null)
1588 >                count += w.drainTasksTo(c);
1589 >        return count;
1590      }
1591  
1592      /**
# Line 1080 | Line 1597 | public class ForkJoinPool extends Abstra
1597       * @return a string identifying this pool, as well as its state
1598       */
1599      public String toString() {
1083        int ps = parallelism;
1084        int wc = workerCounts;
1085        int rc = runControl;
1600          long st = getStealCount();
1601          long qt = getQueuedTaskCount();
1602          long qs = getQueuedSubmissionCount();
1603 +        int wc = workerCounts;
1604 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1605 +        int rc = wc & RUNNING_COUNT_MASK;
1606 +        int pc = parallelism;
1607 +        int rs = runState;
1608 +        int ac = rs & ACTIVE_COUNT_MASK;
1609          return super.toString() +
1610 <            "[" + runStateToString(runStateOf(rc)) +
1611 <            ", parallelism = " + ps +
1612 <            ", size = " + totalCountOf(wc) +
1613 <            ", active = " + activeCountOf(rc) +
1614 <            ", running = " + runningCountOf(wc) +
1610 >            "[" + runLevelToString(rs) +
1611 >            ", parallelism = " + pc +
1612 >            ", size = " + tc +
1613 >            ", active = " + ac +
1614 >            ", running = " + rc +
1615              ", steals = " + st +
1616              ", tasks = " + qt +
1617              ", submissions = " + qs +
1618              "]";
1619      }
1620  
1621 <    private static String runStateToString(int rs) {
1622 <        switch(rs) {
1623 <        case RUNNING: return "Running";
1624 <        case SHUTDOWN: return "Shutting down";
1625 <        case TERMINATING: return "Terminating";
1106 <        case TERMINATED: return "Terminated";
1107 <        default: throw new Error("Unknown run state");
1108 <        }
1621 >    private static String runLevelToString(int s) {
1622 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1623 >                ((s & TERMINATING) != 0 ? "Terminating" :
1624 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1625 >                  "Running")));
1626      }
1627  
1111    // lifecycle control
1112
1628      /**
1629       * Initiates an orderly shutdown in which previously submitted
1630       * tasks are executed, but no new tasks will be accepted.
# Line 1124 | Line 1639 | public class ForkJoinPool extends Abstra
1639       */
1640      public void shutdown() {
1641          checkPermission();
1642 <        transitionRunStateTo(SHUTDOWN);
1643 <        if (canTerminateOnShutdown(runControl))
1129 <            terminateOnShutdown();
1642 >        advanceRunLevel(SHUTDOWN);
1643 >        tryTerminate(false);
1644      }
1645  
1646      /**
1647 <     * Attempts to stop all actively executing tasks, and cancels all
1648 <     * waiting tasks.  Tasks that are in the process of being
1649 <     * submitted or executed concurrently during the course of this
1650 <     * method may or may not be rejected. Unlike some other executors,
1651 <     * this method cancels rather than collects non-executed tasks
1652 <     * upon termination, so always returns an empty list. However, you
1653 <     * can use method {@code drainTasksTo} before invoking this
1654 <     * method to transfer unexecuted tasks to another collection.
1647 >     * Attempts to cancel and/or stop all tasks, and reject all
1648 >     * subsequently submitted tasks.  Tasks that are in the process of
1649 >     * being submitted or executed concurrently during the course of
1650 >     * this method may or may not be rejected. This method cancels
1651 >     * both existing and unexecuted tasks, in order to permit
1652 >     * termination in the presence of task dependencies. So the method
1653 >     * always returns an empty list (unlike the case for some other
1654 >     * Executors).
1655       *
1656       * @return an empty list
1657       * @throws SecurityException if a security manager exists and
# Line 1147 | Line 1661 | public class ForkJoinPool extends Abstra
1661       */
1662      public List<Runnable> shutdownNow() {
1663          checkPermission();
1664 <        terminate();
1664 >        tryTerminate(true);
1665          return Collections.emptyList();
1666      }
1667  
# Line 1157 | Line 1671 | public class ForkJoinPool extends Abstra
1671       * @return {@code true} if all tasks have completed following shut down
1672       */
1673      public boolean isTerminated() {
1674 <        return runStateOf(runControl) == TERMINATED;
1674 >        return runState >= TERMINATED;
1675      }
1676  
1677      /**
1678       * Returns {@code true} if the process of termination has
1679 <     * commenced but possibly not yet completed.
1679 >     * commenced but not yet completed.  This method may be useful for
1680 >     * debugging. A return of {@code true} reported a sufficient
1681 >     * period after shutdown may indicate that submitted tasks have
1682 >     * ignored or suppressed interruption, causing this executor not
1683 >     * to properly terminate.
1684       *
1685 <     * @return {@code true} if terminating
1685 >     * @return {@code true} if terminating but not yet terminated
1686       */
1687      public boolean isTerminating() {
1688 <        return runStateOf(runControl) >= TERMINATING;
1688 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1689      }
1690  
1691      /**
# Line 1176 | Line 1694 | public class ForkJoinPool extends Abstra
1694       * @return {@code true} if this pool has been shut down
1695       */
1696      public boolean isShutdown() {
1697 <        return runStateOf(runControl) >= SHUTDOWN;
1697 >        return runState >= SHUTDOWN;
1698      }
1699  
1700      /**
# Line 1192 | Line 1710 | public class ForkJoinPool extends Abstra
1710       */
1711      public boolean awaitTermination(long timeout, TimeUnit unit)
1712          throws InterruptedException {
1195        long nanos = unit.toNanos(timeout);
1196        final ReentrantLock lock = this.workerLock;
1197        lock.lock();
1713          try {
1714 <            for (;;) {
1715 <                if (isTerminated())
1201 <                    return true;
1202 <                if (nanos <= 0)
1203 <                    return false;
1204 <                nanos = termination.awaitNanos(nanos);
1205 <            }
1206 <        } finally {
1207 <            lock.unlock();
1208 <        }
1209 <    }
1210 <
1211 <    // Shutdown and termination support
1212 <
1213 <    /**
1214 <     * Callback from terminating worker. Nulls out the corresponding
1215 <     * workers slot, and if terminating, tries to terminate; else
1216 <     * tries to shrink workers array.
1217 <     *
1218 <     * @param w the worker
1219 <     */
1220 <    final void workerTerminated(ForkJoinWorkerThread w) {
1221 <        updateStealCount(w);
1222 <        updateWorkerCount(-1);
1223 <        final ReentrantLock lock = this.workerLock;
1224 <        lock.lock();
1225 <        try {
1226 <            ForkJoinWorkerThread[] ws = workers;
1227 <            if (ws != null) {
1228 <                int idx = w.poolIndex;
1229 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1230 <                    ws[idx] = null;
1231 <                if (totalCountOf(workerCounts) == 0) {
1232 <                    terminate(); // no-op if already terminating
1233 <                    transitionRunStateTo(TERMINATED);
1234 <                    termination.signalAll();
1235 <                }
1236 <                else if (!isTerminating()) {
1237 <                    tryShrinkWorkerArray();
1238 <                    tryResumeSpare(true); // allow replacement
1239 <                }
1240 <            }
1241 <        } finally {
1242 <            lock.unlock();
1243 <        }
1244 <        signalIdleWorkers();
1245 <    }
1246 <
1247 <    /**
1248 <     * Initiates termination.
1249 <     */
1250 <    private void terminate() {
1251 <        if (transitionRunStateTo(TERMINATING)) {
1252 <            stopAllWorkers();
1253 <            resumeAllSpares();
1254 <            signalIdleWorkers();
1255 <            cancelQueuedSubmissions();
1256 <            cancelQueuedWorkerTasks();
1257 <            interruptUnterminatedWorkers();
1258 <            signalIdleWorkers(); // resignal after interrupt
1259 <        }
1260 <    }
1261 <
1262 <    /**
1263 <     * Possibly terminates when on shutdown state.
1264 <     */
1265 <    private void terminateOnShutdown() {
1266 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1267 <            terminate();
1268 <    }
1269 <
1270 <    /**
1271 <     * Clears out and cancels submissions.
1272 <     */
1273 <    private void cancelQueuedSubmissions() {
1274 <        ForkJoinTask<?> task;
1275 <        while ((task = pollSubmission()) != null)
1276 <            task.cancel(false);
1277 <    }
1278 <
1279 <    /**
1280 <     * Cleans out worker queues.
1281 <     */
1282 <    private void cancelQueuedWorkerTasks() {
1283 <        final ReentrantLock lock = this.workerLock;
1284 <        lock.lock();
1285 <        try {
1286 <            ForkJoinWorkerThread[] ws = workers;
1287 <            if (ws != null) {
1288 <                for (int i = 0; i < ws.length; ++i) {
1289 <                    ForkJoinWorkerThread t = ws[i];
1290 <                    if (t != null)
1291 <                        t.cancelTasks();
1292 <                }
1293 <            }
1294 <        } finally {
1295 <            lock.unlock();
1296 <        }
1297 <    }
1298 <
1299 <    /**
1300 <     * Sets each worker's status to terminating. Requires lock to avoid
1301 <     * conflicts with add/remove.
1302 <     */
1303 <    private void stopAllWorkers() {
1304 <        final ReentrantLock lock = this.workerLock;
1305 <        lock.lock();
1306 <        try {
1307 <            ForkJoinWorkerThread[] ws = workers;
1308 <            if (ws != null) {
1309 <                for (int i = 0; i < ws.length; ++i) {
1310 <                    ForkJoinWorkerThread t = ws[i];
1311 <                    if (t != null)
1312 <                        t.shutdownNow();
1313 <                }
1314 <            }
1315 <        } finally {
1316 <            lock.unlock();
1317 <        }
1318 <    }
1319 <
1320 <    /**
1321 <     * Interrupts all unterminated workers.  This is not required for
1322 <     * sake of internal control, but may help unstick user code during
1323 <     * shutdown.
1324 <     */
1325 <    private void interruptUnterminatedWorkers() {
1326 <        final ReentrantLock lock = this.workerLock;
1327 <        lock.lock();
1328 <        try {
1329 <            ForkJoinWorkerThread[] ws = workers;
1330 <            if (ws != null) {
1331 <                for (int i = 0; i < ws.length; ++i) {
1332 <                    ForkJoinWorkerThread t = ws[i];
1333 <                    if (t != null && !t.isTerminated()) {
1334 <                        try {
1335 <                            t.interrupt();
1336 <                        } catch (SecurityException ignore) {
1337 <                        }
1338 <                    }
1339 <                }
1340 <            }
1341 <        } finally {
1342 <            lock.unlock();
1343 <        }
1344 <    }
1345 <
1346 <
1347 <    /*
1348 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1349 <     * are basic Treiber stack nodes, also used for spare stack.
1350 <     *
1351 <     * The event barrier has an event count and a wait queue (actually
1352 <     * a Treiber stack).  Workers are enabled to look for work when
1353 <     * the eventCount is incremented. If they fail to find work, they
1354 <     * may wait for next count. Upon release, threads help others wake
1355 <     * up.
1356 <     *
1357 <     * Synchronization events occur only in enough contexts to
1358 <     * maintain overall liveness:
1359 <     *
1360 <     *   - Submission of a new task to the pool
1361 <     *   - Resizes or other changes to the workers array
1362 <     *   - pool termination
1363 <     *   - A worker pushing a task on an empty queue
1364 <     *
1365 <     * The case of pushing a task occurs often enough, and is heavy
1366 <     * enough compared to simple stack pushes, to require special
1367 <     * handling: Method signalWork returns without advancing count if
1368 <     * the queue appears to be empty.  This would ordinarily result in
1369 <     * races causing some queued waiters not to be woken up. To avoid
1370 <     * this, the first worker enqueued in method sync (see
1371 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1372 <     * helps signal if any are found. This works well because the
1373 <     * worker has nothing better to do, and so might as well help
1374 <     * alleviate the overhead and contention on the threads actually
1375 <     * doing work.  Also, since event counts increments on task
1376 <     * availability exist to maintain liveness (rather than to force
1377 <     * refreshes etc), it is OK for callers to exit early if
1378 <     * contending with another signaller.
1379 <     */
1380 <    static final class WaitQueueNode {
1381 <        WaitQueueNode next; // only written before enqueued
1382 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1383 <        final long count; // unused for spare stack
1384 <
1385 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1386 <            count = c;
1387 <            thread = w;
1388 <        }
1389 <
1390 <        /**
1391 <         * Wakes up waiter, returning false if known to already
1392 <         */
1393 <        boolean signal() {
1394 <            ForkJoinWorkerThread t = thread;
1395 <            if (t == null)
1396 <                return false;
1397 <            thread = null;
1398 <            LockSupport.unpark(t);
1399 <            return true;
1400 <        }
1401 <
1402 <        /**
1403 <         * Awaits release on sync.
1404 <         */
1405 <        void awaitSyncRelease(ForkJoinPool p) {
1406 <            while (thread != null && !p.syncIsReleasable(this))
1407 <                LockSupport.park(this);
1408 <        }
1409 <
1410 <        /**
1411 <         * Awaits resumption as spare.
1412 <         */
1413 <        void awaitSpareRelease() {
1414 <            while (thread != null) {
1415 <                if (!Thread.interrupted())
1416 <                    LockSupport.park(this);
1417 <            }
1418 <        }
1419 <    }
1420 <
1421 <    /**
1422 <     * Ensures that no thread is waiting for count to advance from the
1423 <     * current value of eventCount read on entry to this method, by
1424 <     * releasing waiting threads if necessary.
1425 <     *
1426 <     * @return the count
1427 <     */
1428 <    final long ensureSync() {
1429 <        long c = eventCount;
1430 <        WaitQueueNode q;
1431 <        while ((q = syncStack) != null && q.count < c) {
1432 <            if (casBarrierStack(q, null)) {
1433 <                do {
1434 <                    q.signal();
1435 <                } while ((q = q.next) != null);
1436 <                break;
1437 <            }
1438 <        }
1439 <        return c;
1440 <    }
1441 <
1442 <    /**
1443 <     * Increments event count and releases waiting threads.
1444 <     */
1445 <    private void signalIdleWorkers() {
1446 <        long c;
1447 <        do {} while (!casEventCount(c = eventCount, c+1));
1448 <        ensureSync();
1449 <    }
1450 <
1451 <    /**
1452 <     * Signals threads waiting to poll a task. Because method sync
1453 <     * rechecks availability, it is OK to only proceed if queue
1454 <     * appears to be non-empty, and OK to skip under contention to
1455 <     * increment count (since some other thread succeeded).
1456 <     */
1457 <    final void signalWork() {
1458 <        long c;
1459 <        WaitQueueNode q;
1460 <        if (syncStack != null &&
1461 <            casEventCount(c = eventCount, c+1) &&
1462 <            (((q = syncStack) != null && q.count <= c) &&
1463 <             (!casBarrierStack(q, q.next) || !q.signal())))
1464 <            ensureSync();
1465 <    }
1466 <
1467 <    /**
1468 <     * Waits until event count advances from last value held by
1469 <     * caller, or if excess threads, caller is resumed as spare, or
1470 <     * caller or pool is terminating. Updates caller's event on exit.
1471 <     *
1472 <     * @param w the calling worker thread
1473 <     */
1474 <    final void sync(ForkJoinWorkerThread w) {
1475 <        updateStealCount(w); // Transfer w's count while it is idle
1476 <
1477 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1478 <            long prev = w.lastEventCount;
1479 <            WaitQueueNode node = null;
1480 <            WaitQueueNode h;
1481 <            while (eventCount == prev &&
1482 <                   ((h = syncStack) == null || h.count == prev)) {
1483 <                if (node == null)
1484 <                    node = new WaitQueueNode(prev, w);
1485 <                if (casBarrierStack(node.next = h, node)) {
1486 <                    node.awaitSyncRelease(this);
1487 <                    break;
1488 <                }
1489 <            }
1490 <            long ec = ensureSync();
1491 <            if (ec != prev) {
1492 <                w.lastEventCount = ec;
1493 <                break;
1494 <            }
1495 <        }
1496 <    }
1497 <
1498 <    /**
1499 <     * Returns true if worker waiting on sync can proceed:
1500 <     *  - on signal (thread == null)
1501 <     *  - on event count advance (winning race to notify vs signaller)
1502 <     *  - on interrupt
1503 <     *  - if the first queued node, we find work available
1504 <     * If node was not signalled and event count not advanced on exit,
1505 <     * then we also help advance event count.
1506 <     *
1507 <     * @return true if node can be released
1508 <     */
1509 <    final boolean syncIsReleasable(WaitQueueNode node) {
1510 <        long prev = node.count;
1511 <        if (!Thread.interrupted() && node.thread != null &&
1512 <            (node.next != null ||
1513 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1514 <            eventCount == prev)
1714 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1715 >        } catch (TimeoutException ex) {
1716              return false;
1516        if (node.thread != null) {
1517            node.thread = null;
1518            long ec = eventCount;
1519            if (prev <= ec) // help signal
1520                casEventCount(ec, ec+1);
1521        }
1522        return true;
1523    }
1524
1525    /**
1526     * Returns true if a new sync event occurred since last call to
1527     * sync or this method, if so, updating caller's count.
1528     */
1529    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1530        long lc = w.lastEventCount;
1531        long ec = ensureSync();
1532        if (ec == lc)
1533            return false;
1534        w.lastEventCount = ec;
1535        return true;
1536    }
1537
1538    //  Parallelism maintenance
1539
1540    /**
1541     * Decrements running count; if too low, adds spare.
1542     *
1543     * Conceptually, all we need to do here is add or resume a
1544     * spare thread when one is about to block (and remove or
1545     * suspend it later when unblocked -- see suspendIfSpare).
1546     * However, implementing this idea requires coping with
1547     * several problems: we have imperfect information about the
1548     * states of threads. Some count updates can and usually do
1549     * lag run state changes, despite arrangements to keep them
1550     * accurate (for example, when possible, updating counts
1551     * before signalling or resuming), especially when running on
1552     * dynamic JVMs that don't optimize the infrequent paths that
1553     * update counts. Generating too many threads can make these
1554     * problems become worse, because excess threads are more
1555     * likely to be context-switched with others, slowing them all
1556     * down, especially if there is no work available, so all are
1557     * busy scanning or idling.  Also, excess spare threads can
1558     * only be suspended or removed when they are idle, not
1559     * immediately when they aren't needed. So adding threads will
1560     * raise parallelism level for longer than necessary.  Also,
1561     * FJ applications often encounter highly transient peaks when
1562     * many threads are blocked joining, but for less time than it
1563     * takes to create or resume spares.
1564     *
1565     * @param joinMe if non-null, return early if done
1566     * @param maintainParallelism if true, try to stay within
1567     * target counts, else create only to avoid starvation
1568     * @return true if joinMe known to be done
1569     */
1570    final boolean preJoin(ForkJoinTask<?> joinMe,
1571                          boolean maintainParallelism) {
1572        maintainParallelism &= maintainsParallelism; // overrride
1573        boolean dec = false;  // true when running count decremented
1574        while (spareStack == null || !tryResumeSpare(dec)) {
1575            int counts = workerCounts;
1576            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1577                // CAS cheat
1578                if (!needSpare(counts, maintainParallelism))
1579                    break;
1580                if (joinMe.status < 0)
1581                    return true;
1582                if (tryAddSpare(counts))
1583                    break;
1584            }
1585        }
1586        return false;
1587    }
1588
1589    /**
1590     * Same idea as preJoin
1591     */
1592    final boolean preBlock(ManagedBlocker blocker,
1593                           boolean maintainParallelism) {
1594        maintainParallelism &= maintainsParallelism;
1595        boolean dec = false;
1596        while (spareStack == null || !tryResumeSpare(dec)) {
1597            int counts = workerCounts;
1598            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1599                if (!needSpare(counts, maintainParallelism))
1600                    break;
1601                if (blocker.isReleasable())
1602                    return true;
1603                if (tryAddSpare(counts))
1604                    break;
1605            }
1606        }
1607        return false;
1608    }
1609
1610    /**
1611     * Returns true if a spare thread appears to be needed.  If
1612     * maintaining parallelism, returns true when the deficit in
1613     * running threads is more than the surplus of total threads, and
1614     * there is apparently some work to do.  This self-limiting rule
1615     * means that the more threads that have already been added, the
1616     * less parallelism we will tolerate before adding another.
1617     *
1618     * @param counts current worker counts
1619     * @param maintainParallelism try to maintain parallelism
1620     */
1621    private boolean needSpare(int counts, boolean maintainParallelism) {
1622        int ps = parallelism;
1623        int rc = runningCountOf(counts);
1624        int tc = totalCountOf(counts);
1625        int runningDeficit = ps - rc;
1626        int totalSurplus = tc - ps;
1627        return (tc < maxPoolSize &&
1628                (rc == 0 || totalSurplus < 0 ||
1629                 (maintainParallelism &&
1630                  runningDeficit > totalSurplus &&
1631                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1632    }
1633
1634    /**
1635     * Adds a spare worker if lock available and no more than the
1636     * expected numbers of threads exist.
1637     *
1638     * @return true if successful
1639     */
1640    private boolean tryAddSpare(int expectedCounts) {
1641        final ReentrantLock lock = this.workerLock;
1642        int expectedRunning = runningCountOf(expectedCounts);
1643        int expectedTotal = totalCountOf(expectedCounts);
1644        boolean success = false;
1645        boolean locked = false;
1646        // confirm counts while locking; CAS after obtaining lock
1647        try {
1648            for (;;) {
1649                int s = workerCounts;
1650                int tc = totalCountOf(s);
1651                int rc = runningCountOf(s);
1652                if (rc > expectedRunning || tc > expectedTotal)
1653                    break;
1654                if (!locked && !(locked = lock.tryLock()))
1655                    break;
1656                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1657                    createAndStartSpare(tc);
1658                    success = true;
1659                    break;
1660                }
1661            }
1662        } finally {
1663            if (locked)
1664                lock.unlock();
1665        }
1666        return success;
1667    }
1668
1669    /**
1670     * Adds the kth spare worker. On entry, pool counts are already
1671     * adjusted to reflect addition.
1672     */
1673    private void createAndStartSpare(int k) {
1674        ForkJoinWorkerThread w = null;
1675        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1676        int len = ws.length;
1677        // Probably, we can place at slot k. If not, find empty slot
1678        if (k < len && ws[k] != null) {
1679            for (k = 0; k < len && ws[k] != null; ++k)
1680                ;
1681        }
1682        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1683            ws[k] = w;
1684            w.start();
1685        }
1686        else
1687            updateWorkerCount(-1); // adjust on failure
1688        signalIdleWorkers();
1689    }
1690
1691    /**
1692     * Suspends calling thread w if there are excess threads.  Called
1693     * only from sync.  Spares are enqueued in a Treiber stack using
1694     * the same WaitQueueNodes as barriers.  They are resumed mainly
1695     * in preJoin, but are also woken on pool events that require all
1696     * threads to check run state.
1697     *
1698     * @param w the caller
1699     */
1700    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1701        WaitQueueNode node = null;
1702        int s;
1703        while (parallelism < runningCountOf(s = workerCounts)) {
1704            if (node == null)
1705                node = new WaitQueueNode(0, w);
1706            if (casWorkerCounts(s, s-1)) { // representation-dependent
1707                // push onto stack
1708                do {} while (!casSpareStack(node.next = spareStack, node));
1709                // block until released by resumeSpare
1710                node.awaitSpareRelease();
1711                return true;
1712            }
1713        }
1714        return false;
1715    }
1716
1717    /**
1718     * Tries to pop and resume a spare thread.
1719     *
1720     * @param updateCount if true, increment running count on success
1721     * @return true if successful
1722     */
1723    private boolean tryResumeSpare(boolean updateCount) {
1724        WaitQueueNode q;
1725        while ((q = spareStack) != null) {
1726            if (casSpareStack(q, q.next)) {
1727                if (updateCount)
1728                    updateRunningCount(1);
1729                q.signal();
1730                return true;
1731            }
1732        }
1733        return false;
1734    }
1735
1736    /**
1737     * Pops and resumes all spare threads. Same idea as ensureSync.
1738     *
1739     * @return true if any spares released
1740     */
1741    private boolean resumeAllSpares() {
1742        WaitQueueNode q;
1743        while ( (q = spareStack) != null) {
1744            if (casSpareStack(q, null)) {
1745                do {
1746                    updateRunningCount(1);
1747                    q.signal();
1748                } while ((q = q.next) != null);
1749                return true;
1750            }
1751        }
1752        return false;
1753    }
1754
1755    /**
1756     * Pops and shuts down excessive spare threads. Call only while
1757     * holding lock. This is not guaranteed to eliminate all excess
1758     * threads, only those suspended as spares, which are the ones
1759     * unlikely to be needed in the future.
1760     */
1761    private void trimSpares() {
1762        int surplus = totalCountOf(workerCounts) - parallelism;
1763        WaitQueueNode q;
1764        while (surplus > 0 && (q = spareStack) != null) {
1765            if (casSpareStack(q, null)) {
1766                do {
1767                    updateRunningCount(1);
1768                    ForkJoinWorkerThread w = q.thread;
1769                    if (w != null && surplus > 0 &&
1770                        runningCountOf(workerCounts) > 0 && w.shutdown())
1771                        --surplus;
1772                    q.signal();
1773                } while ((q = q.next) != null);
1774            }
1717          }
1718      }
1719  
1720      /**
1721       * Interface for extending managed parallelism for tasks running
1722 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1723 <     * Method {@code isReleasable} must return true if blocking is not
1724 <     * necessary. Method {@code block} blocks the current thread if
1725 <     * necessary (perhaps internally invoking {@code isReleasable}
1726 <     * before actually blocking.).
1722 >     * in {@link ForkJoinPool}s.
1723 >     *
1724 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1725 >     * {@code isReleasable} must return {@code true} if blocking is
1726 >     * not necessary. Method {@code block} blocks the current thread
1727 >     * if necessary (perhaps internally invoking {@code isReleasable}
1728 >     * before actually blocking). The unusual methods in this API
1729 >     * accommodate synchronizers that may, but don't usually, block
1730 >     * for long periods. Similarly, they allow more efficient internal
1731 >     * handling of cases in which additional workers may be, but
1732 >     * usually are not, needed to ensure sufficient parallelism.
1733 >     * Toward this end, implementations of method {@code isReleasable}
1734 >     * must be amenable to repeated invocation.
1735       *
1736       * <p>For example, here is a ManagedBlocker based on a
1737       * ReentrantLock:
# Line 1799 | Line 1749 | public class ForkJoinPool extends Abstra
1749       *     return hasLock || (hasLock = lock.tryLock());
1750       *   }
1751       * }}</pre>
1752 +     *
1753 +     * <p>Here is a class that possibly blocks waiting for an
1754 +     * item on a given queue:
1755 +     *  <pre> {@code
1756 +     * class QueueTaker<E> implements ManagedBlocker {
1757 +     *   final BlockingQueue<E> queue;
1758 +     *   volatile E item = null;
1759 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1760 +     *   public boolean block() throws InterruptedException {
1761 +     *     if (item == null)
1762 +     *       item = queue.take();
1763 +     *     return true;
1764 +     *   }
1765 +     *   public boolean isReleasable() {
1766 +     *     return item != null || (item = queue.poll()) != null;
1767 +     *   }
1768 +     *   public E getItem() { // call after pool.managedBlock completes
1769 +     *     return item;
1770 +     *   }
1771 +     * }}</pre>
1772       */
1773      public static interface ManagedBlocker {
1774          /**
1775           * Possibly blocks the current thread, for example waiting for
1776           * a lock or condition.
1777           *
1778 <         * @return true if no additional blocking is necessary (i.e.,
1779 <         * if isReleasable would return true)
1778 >         * @return {@code true} if no additional blocking is necessary
1779 >         * (i.e., if isReleasable would return true)
1780           * @throws InterruptedException if interrupted while waiting
1781           * (the method is not required to do so, but is allowed to)
1782           */
1783          boolean block() throws InterruptedException;
1784  
1785          /**
1786 <         * Returns true if blocking is unnecessary.
1786 >         * Returns {@code true} if blocking is unnecessary.
1787           */
1788          boolean isReleasable();
1789      }
1790  
1791      /**
1792       * Blocks in accord with the given blocker.  If the current thread
1793 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1794 <     * spare thread to be activated if necessary to ensure parallelism
1795 <     * while the current thread is blocked.  If
1826 <     * {@code maintainParallelism} is true and the pool supports
1827 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1828 <     * maintain the pool's nominal parallelism. Otherwise it activates
1829 <     * a thread only if necessary to avoid complete starvation. This
1830 <     * option may be preferable when blockages use timeouts, or are
1831 <     * almost always brief.
1793 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1794 >     * arranges for a spare thread to be activated if necessary to
1795 >     * ensure sufficient parallelism while the current thread is blocked.
1796       *
1797 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1798 <     * equivalent to
1797 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1798 >     * behaviorally equivalent to
1799       *  <pre> {@code
1800       * while (!blocker.isReleasable())
1801       *   if (blocker.block())
1802       *     return;
1803       * }</pre>
1804 <     * If the caller is a ForkJoinTask, then the pool may first
1805 <     * be expanded to ensure parallelism, and later adjusted.
1804 >     *
1805 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1806 >     * first be expanded to ensure parallelism, and later adjusted.
1807       *
1808       * @param blocker the blocker
1844     * @param maintainParallelism if true and supported by this pool,
1845     * attempt to maintain the pool's nominal parallelism; otherwise
1846     * activate a thread only if necessary to avoid complete
1847     * starvation.
1809       * @throws InterruptedException if blocker.block did so
1810       */
1811 <    public static void managedBlock(ManagedBlocker blocker,
1851 <                                    boolean maintainParallelism)
1811 >    public static void managedBlock(ManagedBlocker blocker)
1812          throws InterruptedException {
1813          Thread t = Thread.currentThread();
1814 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1815 <                             ((ForkJoinWorkerThread) t).pool : null);
1816 <        if (!blocker.isReleasable()) {
1817 <            try {
1818 <                if (pool == null ||
1819 <                    !pool.preBlock(blocker, maintainParallelism))
1860 <                    awaitBlocker(blocker);
1861 <            } finally {
1862 <                if (pool != null)
1863 <                    pool.updateRunningCount(1);
1864 <            }
1814 >        if (t instanceof ForkJoinWorkerThread) {
1815 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1816 >            w.pool.awaitBlocker(blocker);
1817 >        }
1818 >        else {
1819 >            do {} while (!blocker.isReleasable() && !blocker.block());
1820          }
1821      }
1822  
1823 <    private static void awaitBlocker(ManagedBlocker blocker)
1824 <        throws InterruptedException {
1825 <        do {} while (!blocker.isReleasable() && !blocker.block());
1871 <    }
1872 <
1873 <    // AbstractExecutorService overrides
1823 >    // AbstractExecutorService overrides.  These rely on undocumented
1824 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1825 >    // implement RunnableFuture.
1826  
1827      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1828 <        return new AdaptedRunnable<T>(runnable, value);
1828 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1829      }
1830  
1831      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1832 <        return new AdaptedCallable<T>(callable);
1832 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1833      }
1834  
1835 +    // Unsafe mechanics
1836 +
1837 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1838 +    private static final long workerCountsOffset =
1839 +        objectFieldOffset("workerCounts", ForkJoinPool.class);
1840 +    private static final long runStateOffset =
1841 +        objectFieldOffset("runState", ForkJoinPool.class);
1842 +    private static final long eventCountOffset =
1843 +        objectFieldOffset("eventCount", ForkJoinPool.class);
1844 +    private static final long eventWaitersOffset =
1845 +        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1846 +    private static final long stealCountOffset =
1847 +        objectFieldOffset("stealCount", ForkJoinPool.class);
1848 +    private static final long spareWaitersOffset =
1849 +        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1850 +
1851 +    private static long objectFieldOffset(String field, Class<?> klazz) {
1852 +        try {
1853 +            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1854 +        } catch (NoSuchFieldException e) {
1855 +            // Convert Exception to corresponding Error
1856 +            NoSuchFieldError error = new NoSuchFieldError(field);
1857 +            error.initCause(e);
1858 +            throw error;
1859 +        }
1860 +    }
1861  
1862 <    // Unsafe mechanics for jsr166y 3rd party package.
1862 >    /**
1863 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1864 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1865 >     * into a jdk.
1866 >     *
1867 >     * @return a sun.misc.Unsafe
1868 >     */
1869      private static sun.misc.Unsafe getUnsafe() {
1870          try {
1871              return sun.misc.Unsafe.getUnsafe();
1872          } catch (SecurityException se) {
1873              try {
1874                  return java.security.AccessController.doPrivileged
1875 <                    (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
1875 >                    (new java.security
1876 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1877                          public sun.misc.Unsafe run() throws Exception {
1878 <                            return getUnsafeByReflection();
1878 >                            java.lang.reflect.Field f = sun.misc
1879 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1880 >                            f.setAccessible(true);
1881 >                            return (sun.misc.Unsafe) f.get(null);
1882                          }});
1883              } catch (java.security.PrivilegedActionException e) {
1884                  throw new RuntimeException("Could not initialize intrinsics",
# Line 1898 | Line 1886 | public class ForkJoinPool extends Abstra
1886              }
1887          }
1888      }
1901
1902    private static sun.misc.Unsafe getUnsafeByReflection()
1903            throws NoSuchFieldException, IllegalAccessException {
1904        java.lang.reflect.Field f =
1905            sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
1906        f.setAccessible(true);
1907        return (sun.misc.Unsafe) f.get(null);
1908    }
1909
1910    private static long fieldOffset(String fieldName, Class<?> klazz) {
1911        try {
1912            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(fieldName));
1913        } catch (NoSuchFieldException e) {
1914            // Convert Exception to Error
1915            NoSuchFieldError error = new NoSuchFieldError(fieldName);
1916            error.initCause(e);
1917            throw error;
1918        }
1919    }
1920
1921    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1922    static final long eventCountOffset =
1923        fieldOffset("eventCount", ForkJoinPool.class);
1924    static final long workerCountsOffset =
1925        fieldOffset("workerCounts", ForkJoinPool.class);
1926    static final long runControlOffset =
1927        fieldOffset("runControl", ForkJoinPool.class);
1928    static final long syncStackOffset =
1929        fieldOffset("syncStack",ForkJoinPool.class);
1930    static final long spareStackOffset =
1931        fieldOffset("spareStack", ForkJoinPool.class);
1932
1933    private boolean casEventCount(long cmp, long val) {
1934        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1935    }
1936    private boolean casWorkerCounts(int cmp, int val) {
1937        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1938    }
1939    private boolean casRunControl(int cmp, int val) {
1940        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1941    }
1942    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1943        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1944    }
1945    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1946        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1947    }
1889   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines