ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.26 by jsr166, Sun Jul 26 13:34:25 2009 UTC vs.
Revision 1.91 by dl, Tue Feb 22 00:39:31 2011 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
20 < import java.util.concurrent.atomic.AtomicLong;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
30 < * ForkJoinPool provides the entry point for submissions from
31 < * non-ForkJoinTasks, as well as management and monitoring operations.
32 < * Normally a single ForkJoinPool is used for a large number of
27 < * submitted tasks. Otherwise, use would not usually outweigh the
28 < * construction and bookkeeping overhead of creating a large set of
29 < * threads.
29 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30 > * A {@code ForkJoinPool} provides the entry point for submissions
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32 > * monitoring operations.
33   *
34 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
35 < * that they provide <em>work-stealing</em>: all threads in the pool
36 < * attempt to find and execute subtasks created by other active tasks
37 < * (eventually blocking if none exist). This makes them efficient when
38 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
39 < * as the mixed execution of some plain Runnable- or Callable- based
40 < * activities along with ForkJoinTasks. When setting
41 < * {@code setAsyncMode}, a ForkJoinPools may also be appropriate for
42 < * use with fine-grained tasks that are never joined. Otherwise, other
40 < * ExecutorService implementations are typically more appropriate
41 < * choices.
34 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35 > * ExecutorService} mainly by virtue of employing
36 > * <em>work-stealing</em>: all threads in the pool attempt to find and
37 > * execute subtasks created by other active tasks (eventually blocking
38 > * waiting for work if none exist). This enables efficient processing
39 > * when most tasks spawn other subtasks (as do most {@code
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44 < * <p>A ForkJoinPool may be constructed with a given parallelism level
45 < * (target pool size), which it attempts to maintain by dynamically
46 < * adding, suspending, or resuming threads, even if some tasks are
47 < * waiting to join others. However, no such adjustments are performed
48 < * in the face of blocked IO or other unmanaged synchronization. The
49 < * nested {@code ManagedBlocker} interface enables extension of
50 < * the kinds of synchronization accommodated.  The target parallelism
51 < * level may also be changed dynamically ({@code setParallelism})
52 < * and thread construction can be limited using methods
52 < * {@code setMaximumPoolSize} and/or
53 < * {@code setMaintainsParallelism}.
44 > * <p>A {@code ForkJoinPool} is constructed with a given target
45 > * parallelism level; by default, equal to the number of available
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
56 < * {@code getStealCount}) that are intended to aid in developing,
56 > * {@link #getStealCount}) that are intended to aid in developing,
57   * tuning, and monitoring fork/join applications. Also, method
58 < * {@code toString} returns indications of pool state in a
58 > * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96 + * used for all parallel task execution in a program or subsystem.
97 + * Otherwise, use would not usually outweigh the construction and
98 + * bookkeeping overhead of creating a large set of threads. For
99 + * example, a common pool could be used for the {@code SortTasks}
100 + * illustrated in {@link RecursiveAction}. Because {@code
101 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 + * daemon} mode, there is typically no need to explicitly {@link
103 + * #shutdown} such a pool upon program exit.
104 + *
105 + * <pre>
106 + * static final ForkJoinPool mainPool = new ForkJoinPool();
107 + * ...
108 + * public void sort(long[] array) {
109 + *   mainPool.invoke(new SortTask(array, 0, array.length));
110 + * }
111 + * </pre>
112 + *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
116 < * IllegalArgumentExceptions.
115 > * pools with greater than the maximum number result in
116 > * {@code IllegalArgumentException}.
117 > *
118 > * <p>This implementation rejects submitted tasks (that is, by throwing
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121   *
122   * @since 1.7
123   * @author Doug Lea
# Line 70 | Line 125 | import java.util.concurrent.atomic.Atomi
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
130 <     */
131 <
132 <    /** Mask for packing and unpacking shorts */
133 <    private static final int  shortMask = 0xffff;
134 <
135 <    /** Max pool size -- must be a power of two minus 1 */
136 <    private static final int MAX_THREADS =  0x7FFF;
137 <
138 <    /**
139 <     * Factory for creating new ForkJoinWorkerThreads.  A
140 <     * ForkJoinWorkerThreadFactory must be defined and used for
141 <     * ForkJoinWorkerThread subclasses that extend base functionality
142 <     * or initialize threads with different contexts.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tesks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none are
199 >     * can be immediately found, and we cannot start/resume workers
200 >     * unless there appear to be tasks available.  On the other hand,
201 >     * we must quickly prod them into action when new tasks are
202 >     * submitted or generated.  We park/unpark workers after placing
203 >     * in an event wait queue when they cannot find work. This "queue"
204 >     * is actually a simple Treiber stack, headed by the "id" field of
205 >     * ctl, plus a 15bit counter value to both wake up waiters (by
206 >     * advancing their count) and avoid ABA effects. Successors are
207 >     * held in worker field "nextWait".  Queuing deals with several
208 >     * intrinsic races, mainly that a task-producing thread can miss
209 >     * seeing (and signalling) another thread that gave up looking for
210 >     * work but has not yet entered the wait queue. We solve this by
211 >     * requiring a full sweep of all workers both before (in scan())
212 >     * and after (in awaitWork()) a newly waiting worker is added to
213 >     * the wait queue. During a rescan, the worker might release some
214 >     * other queued worker rather than itself, which has the same net
215 >     * effect.
216 >     *
217 >     * Signalling.  We create or wake up workers only when there
218 >     * appears to be at least one task they might be able to find and
219 >     * execute.  When a submission is added or another worker adds a
220 >     * task to a queue that previously had two or fewer tasks, they
221 >     * signal waiting workers (or trigger creation of new ones if
222 >     * fewer than the given parallelism level -- see signalWork).
223 >     * These primary signals are buttressed by signals during rescans
224 >     * as well as those performed when a worker steals a task and
225 >     * notices that there are more tasks too; together these cover the
226 >     * signals needed in cases when more than two tasks are pushed
227 >     * but untaken.
228 >     *
229 >     * Trimming workers. To release resources after periods of lack of
230 >     * use, a worker starting to wait when the pool is quiescent will
231 >     * time out and terminate if the pool has remained quiescent for
232 >     * SHRINK_RATE nanosecs.
233 >     *
234 >     * Submissions. External submissions are maintained in an
235 >     * array-based queue that is structured identically to
236 >     * ForkJoinWorkerThread queues (which see) except for the use of
237 >     * submissionLock in method addSubmission. Unlike worker queues,
238 >     * multiple external threads can add new submissions.
239 >     *
240 >     * Compensation. Beyond work-stealing support and lifecycle
241 >     * control, the main responsibility of this framework is to take
242 >     * actions when one worker is waiting to join a task stolen (or
243 >     * always held by) another.  Because we are multiplexing many
244 >     * tasks on to a pool of workers, we can't just let them block (as
245 >     * in Thread.join).  We also cannot just reassign the joiner's
246 >     * run-time stack with another and replace it later, which would
247 >     * be a form of "continuation", that even if possible is not
248 >     * necessarily a good idea since we sometimes need both an
249 >     * unblocked task and its continuation to progress. Instead we
250 >     * combine two tactics:
251 >     *
252 >     *   Helping: Arranging for the joiner to execute some task that it
253 >     *      would be running if the steal had not occurred.  Method
254 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255 >     *      links to try to find such a task.
256 >     *
257 >     *   Compensating: Unless there are already enough live threads,
258 >     *      method tryPreBlock() may create or re-activate a spare
259 >     *      thread to compensate for blocked joiners until they
260 >     *      unblock.
261 >     *
262 >     * The ManagedBlocker extension API can't use helping so relies
263 >     * only on compensation in method awaitBlocker.
264 >     *
265 >     * It is impossible to keep exactly the target parallelism number
266 >     * of threads running at any given time.  Determining the
267 >     * existence of conservatively safe helping targets, the
268 >     * availability of already-created spares, and the apparent need
269 >     * to create new spares are all racy and require heuristic
270 >     * guidance, so we rely on multiple retries of each.  Currently,
271 >     * in keeping with on-demand signalling policy, we compensate only
272 >     * if blocking would leave less than one active (non-waiting,
273 >     * non-blocked) worker. Additionally, to avoid some false alarms
274 >     * due to GC, lagging counters, system activity, etc, compensated
275 >     * blocking for joins is only attempted after a number of rechecks
276 >     * proportional to the current apparent deficit (where retries are
277 >     * interspersed with Thread.yield, for good citizenship).  The
278 >     * variable blockedCount, incremented before blocking and
279 >     * decremented after, is sometimes needed to distinguish cases of
280 >     * waiting for work vs blocking on joins or other managed sync,
281 >     * but both the cases are equivalent for most pool control, so we
282 >     * can update non-atomically. (Additionally, contention on
283 >     * blockedCount alleviates some contention on ctl).
284 >     *
285 >     * Shutdown and Termination. A call to shutdownNow atomically sets
286 >     * the ctl stop bit and then (non-atomically) sets each workers
287 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
288 >     * all waiting workers.  Detecting whether termination should
289 >     * commence after a non-abrupt shutdown() call requires more work
290 >     * and bookkeeping. We need consensus about quiesence (i.e., that
291 >     * there is no more work) which is reflected in active counts so
292 >     * long as there are no current blockers, as well as possible
293 >     * re-evaluations during independent changes in blocking or
294 >     * quiescing workers.
295 >     *
296 >     * Style notes: There is a lot of representation-level coupling
297 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
299 >     * data structures managed by ForkJoinPool, so are directly
300 >     * accessed.  Conversely we allow access to "workers" array by
301 >     * workers, and direct access to ForkJoinTask.status by both
302 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
303 >     * trying to reduce this, since any associated future changes in
304 >     * representations will need to be accompanied by algorithmic
305 >     * changes anyway. All together, these low-level implementation
306 >     * choices produce as much as a factor of 4 performance
307 >     * improvement compared to naive implementations, and enable the
308 >     * processing of billions of tasks per second, at the expense of
309 >     * some ugliness.
310 >     *
311 >     * Methods signalWork() and scan() are the main bottlenecks so are
312 >     * especially heavily micro-optimized/mangled.  There are lots of
313 >     * inline assignments (of form "while ((local = field) != 0)")
314 >     * which are usually the simplest way to ensure the required read
315 >     * orderings (which are sometimes critical). This leads to a
316 >     * "C"-like style of listing declarations of these locals at the
317 >     * heads of methods or blocks.  There are several occurrences of
318 >     * the unusual "do {} while (!cas...)"  which is the simplest way
319 >     * to force an update of a CAS'ed variable. There are also other
320 >     * coding oddities that help some methods perform reasonably even
321 >     * when interpreted (not compiled).
322 >     *
323 >     * The order of declarations in this file is: (1) declarations of
324 >     * statics (2) fields (along with constants used when unpacking
325 >     * some of them), listed in an order that tends to reduce
326 >     * contention among them a bit under most JVMs.  (3) internal
327 >     * control methods (4) callbacks and other support for
328 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 >     * methods (plus a few little helpers). (6) static block
330 >     * initializing all statics in a minimally dependent order.
331 >     */
332 >
333 >    /**
334 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
335 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
336 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
337 >     * functionality or initialize threads with different contexts.
338       */
339      public static interface ForkJoinWorkerThreadFactory {
340          /**
341           * Returns a new worker thread operating in the given pool.
342           *
343           * @param pool the pool this thread works in
344 <         * @throws NullPointerException if pool is null
344 >         * @throws NullPointerException if the pool is null
345           */
346          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
347      }
# Line 100 | Line 350 | public class ForkJoinPool extends Abstra
350       * Default ForkJoinWorkerThreadFactory implementation; creates a
351       * new ForkJoinWorkerThread.
352       */
353 <    static class  DefaultForkJoinWorkerThreadFactory
353 >    static class DefaultForkJoinWorkerThreadFactory
354          implements ForkJoinWorkerThreadFactory {
355          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
356 <            try {
107 <                return new ForkJoinWorkerThread(pool);
108 <            } catch (OutOfMemoryError oom)  {
109 <                return null;
110 <            }
356 >            return new ForkJoinWorkerThread(pool);
357          }
358      }
359  
# Line 116 | Line 362 | public class ForkJoinPool extends Abstra
362       * overridden in ForkJoinPool constructors.
363       */
364      public static final ForkJoinWorkerThreadFactory
365 <        defaultForkJoinWorkerThreadFactory =
120 <        new DefaultForkJoinWorkerThreadFactory();
365 >        defaultForkJoinWorkerThreadFactory;
366  
367      /**
368       * Permission required for callers of methods that may start or
369       * kill threads.
370       */
371 <    private static final RuntimePermission modifyThreadPermission =
127 <        new RuntimePermission("modifyThread");
371 >    private static final RuntimePermission modifyThreadPermission;
372  
373      /**
374       * If there is a security manager, makes sure caller has
# Line 139 | Line 383 | public class ForkJoinPool extends Abstra
383      /**
384       * Generator for assigning sequence numbers as pool names.
385       */
386 <    private static final AtomicInteger poolNumberGenerator =
143 <        new AtomicInteger();
386 >    private static final AtomicInteger poolNumberGenerator;
387  
388      /**
389 <     * Array holding all worker threads in the pool. Initialized upon
390 <     * first use. Array size must be a power of two.  Updates and
391 <     * replacements are protected by workerLock, but it is always kept
392 <     * in a consistent enough state to be randomly accessed without
393 <     * locking by workers performing work-stealing.
389 >     * Generator for initial random seeds for worker victim
390 >     * selection. This is used only to create initial seeds. Random
391 >     * steals use a cheaper xorshift generator per steal attempt. We
392 >     * don't expect much contention on seedGenerator, so just use a
393 >     * plain Random.
394       */
395 <    volatile ForkJoinWorkerThread[] workers;
395 >    static final Random workerSeedGenerator;
396  
397      /**
398 <     * Lock protecting access to workers.
398 >     * Array holding all worker threads in the pool.  Initialized upon
399 >     * construction. Array size must be a power of two.  Updates and
400 >     * replacements are protected by scanGuard, but the array is
401 >     * always kept in a consistent enough state to be randomly
402 >     * accessed without locking by workers performing work-stealing,
403 >     * as well as other traversal-based methods in this class, so long
404 >     * as reads memory-acquire by first reading ctl. All readers must
405 >     * tolerate that some array slots may be null.
406       */
407 <    private final ReentrantLock workerLock;
407 >    ForkJoinWorkerThread[] workers;
408  
409      /**
410 <     * Condition for awaitTermination.
410 >     * Initial size for submission queue array. Must be a power of
411 >     * two.  In many applications, these always stay small so we use a
412 >     * small initial cap.
413       */
414 <    private final Condition termination;
414 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
415 >
416 >    /**
417 >     * Maximum size for submission queue array. Must be a power of two
418 >     * less than or equal to 1 << (31 - width of array entry) to
419 >     * ensure lack of index wraparound, but is capped at a lower
420 >     * value to help users trap runaway computations.
421 >     */
422 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423  
424      /**
425 <     * The uncaught exception handler used when any worker
166 <     * abruptly terminates
425 >     * Array serving as submission queue. Initialized upon construction.
426       */
427 <    private Thread.UncaughtExceptionHandler ueh;
427 >    private ForkJoinTask<?>[] submissionQueue;
428 >
429 >    /**
430 >     * Lock protecting submissions array for addSubmission
431 >     */
432 >    private final ReentrantLock submissionLock;
433 >
434 >    /**
435 >     * Condition for awaitTermination, using submissionLock for
436 >     * convenience.
437 >     */
438 >    private final Condition termination;
439  
440      /**
441       * Creation factory for worker threads.
# Line 173 | Line 443 | public class ForkJoinPool extends Abstra
443      private final ForkJoinWorkerThreadFactory factory;
444  
445      /**
446 <     * Head of stack of threads that were created to maintain
447 <     * parallelism when other threads blocked, but have since
178 <     * suspended when the parallelism level rose.
446 >     * The uncaught exception handler used when any worker abruptly
447 >     * terminates.
448       */
449 <    private volatile WaitQueueNode spareStack;
449 >    final Thread.UncaughtExceptionHandler ueh;
450  
451      /**
452 <     * Sum of per-thread steal counts, updated only when threads are
184 <     * idle or terminating.
452 >     * Prefix for assigning names to worker threads
453       */
454 <    private final AtomicLong stealCount;
454 >    private final String workerNamePrefix;
455  
456      /**
457 <     * Queue for external submissions.
457 >     * Sum of per-thread steal counts, updated only when threads are
458 >     * idle or terminating.
459       */
460 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
460 >    private volatile long stealCount;
461  
462      /**
463 <     * Head of Treiber stack for barrier sync. See below for explanation.
463 >     * Main pool control -- a long packed with:
464 >     * AC: Number of active running workers minus target parallelism (16 bits)
465 >     * TC: Number of total workers minus target parallelism (16bits)
466 >     * ST: true if pool is terminating (1 bit)
467 >     * EC: the wait count of top waiting thread (15 bits)
468 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469 >     *
470 >     * When convenient, we can extract the upper 32 bits of counts and
471 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472 >     * (int)ctl.  The ec field is never accessed alone, but always
473 >     * together with id and st. The offsets of counts by the target
474 >     * parallelism and the positionings of fields makes it possible to
475 >     * perform the most common checks via sign tests of fields: When
476 >     * ac is negative, there are not enough active workers, when tc is
477 >     * negative, there are not enough total workers, when id is
478 >     * negative, there is at least one waiting worker, and when e is
479 >     * negative, the pool is terminating.  To deal with these possibly
480 >     * negative fields, we use casts in and out of "short" and/or
481 >     * signed shifts to maintain signedness.  Note: AC_SHIFT is
482 >     * redundantly declared in ForkJoinWorkerThread in order to
483 >     * integrate a surplus-threads check.
484       */
485 <    private volatile WaitQueueNode syncStack;
485 >    volatile long ctl;
486 >
487 >    // bit positions/shifts for fields
488 >    private static final int  AC_SHIFT   = 48;
489 >    private static final int  TC_SHIFT   = 32;
490 >    private static final int  ST_SHIFT   = 31;
491 >    private static final int  EC_SHIFT   = 16;
492 >
493 >    // bounds
494 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
495 >    private static final int  SMASK      = 0xffff;  // mask short bits
496 >    private static final int  SHORT_SIGN = 1 << 15;
497 >    private static final int  INT_SIGN   = 1 << 31;
498 >
499 >    // masks
500 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
501 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
502 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
503 >
504 >    // units for incrementing and decrementing
505 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
506 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
507 >
508 >    // masks and units for dealing with u = (int)(ctl >>> 32)
509 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
510 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
511 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
512 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
513 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
514 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
515 >
516 >    // masks and units for dealing with e = (int)ctl
517 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
518 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
519  
520      /**
521 <     * The count for event barrier
521 >     * The target parallelism level.
522       */
523 <    private volatile long eventCount;
523 >    final int parallelism;
524  
525      /**
526 <     * Pool number, just for assigning useful names to worker threads
526 >     * Index (mod submission queue length) of next element to take
527 >     * from submission queue.
528       */
529 <    private final int poolNumber;
529 >    volatile int queueBase;
530  
531      /**
532 <     * The maximum allowed pool size
532 >     * Index (mod submission queue length) of next element to add
533 >     * in submission queue.
534       */
535 <    private volatile int maxPoolSize;
535 >    int queueTop;
536  
537      /**
538 <     * The desired parallelism level, updated only under workerLock.
538 >     * True when shutdown() has been called.
539       */
540 <    private volatile int parallelism;
540 >    volatile boolean shutdown;
541  
542      /**
543       * True if use local fifo, not default lifo, for local polling
544 +     * Read by, and replicated by ForkJoinWorkerThreads
545       */
546 <    private volatile boolean locallyFifo;
546 >    final boolean locallyFifo;
547  
548      /**
549 <     * Holds number of total (i.e., created and not yet terminated)
550 <     * and running (i.e., not blocked on joins or other managed sync)
551 <     * threads, packed into one int to ensure consistent snapshot when
227 <     * making decisions about creating and suspending spare
228 <     * threads. Updated only by CAS.  Note: CASes in
229 <     * updateRunningCount and preJoin assume that running active count
230 <     * is in low word, so need to be modified if this changes.
549 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
550 >     * When non-zero, suppresses automatic shutdown when active
551 >     * counts become zero.
552       */
553 <    private volatile int workerCounts;
553 >    volatile int quiescerCount;
554  
555 <    private static int totalCountOf(int s)           { return s >>> 16;  }
556 <    private static int runningCountOf(int s)         { return s & shortMask; }
557 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
555 >    /**
556 >     * The number of threads blocked in join.
557 >     */
558 >    volatile int blockedCount;
559  
560      /**
561 <     * Adds delta (which may be negative) to running count.  This must
240 <     * be called before (with negative arg) and after (with positive)
241 <     * any managed synchronization (i.e., mainly, joins).
242 <     *
243 <     * @param delta the number to add
561 >     * Counter for worker Thread names (unrelated to their poolIndex)
562       */
563 <    final void updateRunningCount(int delta) {
246 <        int s;
247 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
248 <    }
563 >    private volatile int nextWorkerNumber;
564  
565      /**
566 <     * Adds delta (which may be negative) to both total and running
252 <     * count.  This must be called upon creation and termination of
253 <     * worker threads.
254 <     *
255 <     * @param delta the number to add
566 >     * The index for the next created worker. Accessed under scanGuard.
567       */
568 <    private void updateWorkerCount(int delta) {
258 <        int d = delta + (delta << 16); // add to both lo and hi parts
259 <        int s;
260 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
261 <    }
568 >    private int nextWorkerIndex;
569  
570      /**
571 <     * Lifecycle control. High word contains runState, low word
572 <     * contains the number of workers that are (probably) executing
573 <     * tasks. This value is atomically incremented before a worker
574 <     * gets a task to run, and decremented when worker has no tasks
575 <     * and cannot find any. These two fields are bundled together to
576 <     * support correct termination triggering.  Note: activeCount
577 <     * CAS'es cheat by assuming active count is in low word, so need
578 <     * to be modified if this changes
571 >     * SeqLock and index masking for for updates to workers array.
572 >     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573 >     * SG_UNIT. Staleness of read-only operations can be checked by
574 >     * comparing scanGuard to value before the reads. The low 16 bits
575 >     * (i.e, anding with SMASK) hold (the smallest power of two
576 >     * covering all worker indices, minus one, and is used to avoid
577 >     * dealing with large numbers of null slots when the workers array
578 >     * is overallocated.
579       */
580 <    private volatile int runControl;
580 >    volatile int scanGuard;
581  
582 <    // RunState values. Order among values matters
276 <    private static final int RUNNING     = 0;
277 <    private static final int SHUTDOWN    = 1;
278 <    private static final int TERMINATING = 2;
279 <    private static final int TERMINATED  = 3;
582 >    private static final int SG_UNIT = 1 << 16;
583  
584 <    private static int runStateOf(int c)             { return c >>> 16; }
585 <    private static int activeCountOf(int c)          { return c & shortMask; }
586 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
584 >    /**
585 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
586 >     * task when the pool is quiescent to instead try to shrink the
587 >     * number of workers.  The exact value does not matter too
588 >     * much. It must be short enough to release resources during
589 >     * sustained periods of idleness, but not so short that threads
590 >     * are continually re-created.
591 >     */
592 >    private static final long SHRINK_RATE =
593 >        4L * 1000L * 1000L * 1000L; // 4 seconds
594  
595      /**
596 <     * Tries incrementing active count; fails on contention.
597 <     * Called by workers before/during executing tasks.
596 >     * Top-level loop for worker threads: On each step: if the
597 >     * previous step swept through all queues and found no tasks, or
598 >     * there are excess threads, then possibly blocks. Otherwise,
599 >     * scans for and, if found, executes a task. Returns when pool
600 >     * and/or worker terminate.
601       *
602 <     * @return true on success
602 >     * @param w the worker
603 >     */
604 >    final void work(ForkJoinWorkerThread w) {
605 >        boolean swept = false;                // true on empty scans
606 >        long c;
607 >        while (!w.terminate && (int)(c = ctl) >= 0) {
608 >            int a;                            // active count
609 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 >                swept = scan(w, a);
611 >            else if (tryAwaitWork(w, c))
612 >                swept = false;
613 >        }
614 >    }
615 >
616 >    // Signalling
617 >
618 >    /**
619 >     * Wakes up or creates a worker.
620       */
621 <    final boolean tryIncrementActiveCount() {
622 <        int c = runControl;
623 <        return casRunControl(c, c+1);
621 >    final void signalWork() {
622 >        /*
623 >         * The while condition is true if: (there is are too few total
624 >         * workers OR there is at least one waiter) AND (there are too
625 >         * few active workers OR the pool is terminating).  The value
626 >         * of e distinguishes the remaining cases: zero (no waiters)
627 >         * for create, negative if terminating (in which case do
628 >         * nothing), else release a waiter. The secondary checks for
629 >         * release (non-null array etc) can fail if the pool begins
630 >         * terminating after the test, and don't impose any added cost
631 >         * because JVMs must perform null and bounds checks anyway.
632 >         */
633 >        long c; int e, u;
634 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
635 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
636 >            if (e > 0) {                         // release a waiting worker
637 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638 >                if ((ws = workers) == null ||
639 >                    (i = ~e & SMASK) >= ws.length ||
640 >                    (w = ws[i]) == null)
641 >                    break;
642 >                long nc = (((long)(w.nextWait & E_MASK)) |
643 >                           ((long)(u + UAC_UNIT) << 32));
644 >                if (w.eventCount == e &&
645 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
646 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
647 >                    if (w.parked)
648 >                        UNSAFE.unpark(w);
649 >                    break;
650 >                }
651 >            }
652 >            else if (UNSAFE.compareAndSwapLong
653 >                     (this, ctlOffset, c,
654 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
655 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656 >                addWorker();
657 >                break;
658 >            }
659 >        }
660      }
661  
662      /**
663 <     * Tries decrementing active count; fails on contention.
664 <     * Possibly triggers termination on success.
299 <     * Called by workers when they can't find tasks.
663 >     * Variant of signalWork to help release waiters on rescans.
664 >     * Tries once to release a waiter if active count < 0.
665       *
666 <     * @return true on success
666 >     * @return false if failed due to contention, else true
667       */
668 <    final boolean tryDecrementActiveCount() {
669 <        int c = runControl;
670 <        int nextc = c - 1;
671 <        if (!casRunControl(c, nextc))
672 <            return false;
673 <        if (canTerminateOnShutdown(nextc))
674 <            terminateOnShutdown();
668 >    private boolean tryReleaseWaiter() {
669 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670 >        if ((e = (int)(c = ctl)) > 0 &&
671 >            (int)(c >> AC_SHIFT) < 0 &&
672 >            (ws = workers) != null &&
673 >            (i = ~e & SMASK) < ws.length &&
674 >            (w = ws[i]) != null) {
675 >            long nc = ((long)(w.nextWait & E_MASK) |
676 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677 >            if (w.eventCount != e ||
678 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679 >                return false;
680 >            w.eventCount = (e + EC_UNIT) & E_MASK;
681 >            if (w.parked)
682 >                UNSAFE.unpark(w);
683 >        }
684          return true;
685      }
686  
687 +    // Scanning for tasks
688 +
689      /**
690 <     * Returns true if argument represents zero active count and
691 <     * nonzero runstate, which is the triggering condition for
692 <     * terminating on shutdown.
690 >     * Scans for and, if found, executes one task. Scans start at a
691 >     * random index of workers array, and randomly select the first
692 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
693 >     * circular sweeps, which is necessary to check quiescence. and
694 >     * taking a submission only if no stealable tasks were found.  The
695 >     * steal code inside the loop is a specialized form of
696 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
697 >     * helpJoinTask and signal propagation. The code for submission
698 >     * queues is almost identical. On each steal, the worker completes
699 >     * not only the task, but also all local tasks that this task may
700 >     * have generated. On detecting staleness or contention when
701 >     * trying to take a task, this method returns without finishing
702 >     * sweep, which allows global state rechecks before retry.
703 >     *
704 >     * @param w the worker
705 >     * @param a the number of active workers
706 >     * @return true if swept all queues without finding a task
707       */
708 <    private static boolean canTerminateOnShutdown(int c) {
709 <        // i.e. least bit is nonzero runState bit
710 <        return ((c & -c) >>> 16) != 0;
708 >    private boolean scan(ForkJoinWorkerThread w, int a) {
709 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
710 >        int m = parallelism == 1 - a? 0 : g & SMASK;
711 >        ForkJoinWorkerThread[] ws = workers;
712 >        if (ws == null || ws.length <= m)         // staleness check
713 >            return false;
714 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
715 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
716 >            ForkJoinWorkerThread v = ws[k & m];
717 >            if (v != null && (b = v.queueBase) != v.queueTop &&
718 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
719 >                long u = (i << ASHIFT) + ABASE;
720 >                if ((t = q[i]) != null && v.queueBase == b &&
721 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
722 >                    int d = (v.queueBase = b + 1) - v.queueTop;
723 >                    v.stealHint = w.poolIndex;
724 >                    if (d != 0)
725 >                        signalWork();             // propagate if nonempty
726 >                    w.execTask(t);
727 >                }
728 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
729 >                return false;                     // store next seed
730 >            }
731 >            else if (j < 0) {                     // xorshift
732 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
733 >            }
734 >            else
735 >                ++k;
736 >        }
737 >        if (scanGuard != g)                       // staleness check
738 >            return false;
739 >        else {                                    // try to take submission
740 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
741 >            if ((b = queueBase) != queueTop &&
742 >                (q = submissionQueue) != null &&
743 >                (i = (q.length - 1) & b) >= 0) {
744 >                long u = (i << ASHIFT) + ABASE;
745 >                if ((t = q[i]) != null && queueBase == b &&
746 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
747 >                    queueBase = b + 1;
748 >                    w.execTask(t);
749 >                }
750 >                return false;
751 >            }
752 >            return true;                         // all queues empty
753 >        }
754      }
755  
756      /**
757 <     * Transition run state to at least the given state. Return true
758 <     * if not already at least given state.
757 >     * Tries to enqueue worker in wait queue and await change in
758 >     * worker's eventCount.  Before blocking, rescans queues to avoid
759 >     * missed signals.  If the pool is quiescent, possibly terminates
760 >     * worker upon exit.
761 >     *
762 >     * @param w the calling worker
763 >     * @param c the ctl value on entry
764 >     * @return true if waited or another thread was released upon enq
765       */
766 <    private boolean transitionRunStateTo(int state) {
767 <        for (;;) {
768 <            int c = runControl;
769 <            if (runStateOf(c) >= state)
770 <                return false;
771 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
766 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
767 >        int v = w.eventCount;
768 >        w.nextWait = (int)c;                       // w's successor record
769 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
770 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
771 >            long d = ctl; // return true if lost to a deq, to force rescan
772 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
773 >        }
774 >        boolean rescanned = false;
775 >        for (int sc;;) {
776 >            if (w.eventCount != v)
777                  return true;
778 +            if ((sc = w.stealCount) != 0) {
779 +                long s = stealCount;               // accumulate stealCount
780 +                if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s+sc))
781 +                    w.stealCount = 0;
782 +            }
783 +            else if (!rescanned) {
784 +                int g = scanGuard, m = g & SMASK;
785 +                ForkJoinWorkerThread[] ws = workers;
786 +                if (ws != null && m < ws.length) {
787 +                    rescanned = true;
788 +                    for (int i = 0; i <= m; ++i) {
789 +                        ForkJoinWorkerThread u = ws[i];
790 +                        if (u != null) {
791 +                            if (u.queueBase != u.queueTop &&
792 +                                !tryReleaseWaiter())
793 +                                rescanned = false; // contended
794 +                            if (w.eventCount != v)
795 +                                return true;
796 +                        }
797 +                    }
798 +                }
799 +                if (scanGuard != g ||              // stale
800 +                    (queueBase != queueTop && !tryReleaseWaiter()))
801 +                    rescanned = false;
802 +                if (!rescanned)
803 +                    Thread.yield();                // reduce contention
804 +                else
805 +                    Thread.interrupted();          // clear before park
806 +            }
807 +            else if (parallelism + (int)(ctl >> AC_SHIFT) == 0 &&
808 +                     blockedCount == 0 && quiescerCount == 0)
809 +                idleAwaitWork(w, v);               // quiescent -- maybe shrink
810 +            else {
811 +                w.parked = true;                   // must recheck
812 +                if (w.eventCount != v) {
813 +                    w.parked = false;
814 +                    return true;
815 +                }
816 +                LockSupport.park(this);
817 +                rescanned = w.parked = false;
818 +            }
819          }
820      }
821  
822      /**
823 <     * Controls whether to add spares to maintain parallelism
824 <     */
825 <    private volatile boolean maintainsParallelism;
823 >     * If pool is quiescent, checks for termination, and waits for
824 >     * event signal for up to SHRINK_RATE nanosecs. On timeout, if ctl
825 >     * has not changed, terminates the worker. Upon its termination
826 >     * (see deregisterWorker), it may wake up another worker to
827 >     * possibly repeat this process.
828 >     *
829 >     * @param w the calling worker
830 >     * @param v the eventCount w must wait until changed
831 >     */
832 >    private void idleAwaitWork(ForkJoinWorkerThread w, int v) {
833 >        ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
834 >        if (shutdown)
835 >            tryTerminate(false);
836 >        long c = ctl;
837 >        long nc = (((c & (AC_MASK|TC_MASK)) + AC_UNIT) |
838 >                   (long)(w.nextWait & E_MASK)); // ctl value to release w
839 >        if (w.eventCount == v &&
840 >            parallelism + (int)(c >> AC_SHIFT) == 0 &&
841 >            blockedCount == 0 && quiescerCount == 0) {
842 >            long startTime = System.nanoTime();
843 >            Thread.interrupted();
844 >            if (w.eventCount == v) {
845 >                w.parked = true;
846 >                if (w.eventCount == v)
847 >                    LockSupport.parkNanos(this, SHRINK_RATE);
848 >                w.parked = false;
849 >                if (w.eventCount == v && ctl == c &&
850 >                    System.nanoTime() - startTime >= SHRINK_RATE &&
851 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
852 >                    w.terminate = true;
853 >                    w.eventCount = ((int)c + EC_UNIT) & E_MASK;
854 >                }
855 >            }
856 >        }
857 >    }
858  
859 <    // Constructors
859 >    // Submissions
860  
861      /**
862 <     * Creates a ForkJoinPool with a pool size equal to the number of
863 <     * processors available on the system, using the default
347 <     * ForkJoinWorkerThreadFactory.
862 >     * Enqueues the given task in the submissionQueue.  Same idea as
863 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
864       *
865 <     * @throws SecurityException if a security manager exists and
350 <     *         the caller is not permitted to modify threads
351 <     *         because it does not hold {@link
352 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
865 >     * @param t the task
866       */
867 <    public ForkJoinPool() {
868 <        this(Runtime.getRuntime().availableProcessors(),
869 <             defaultForkJoinWorkerThreadFactory);
867 >    private void addSubmission(ForkJoinTask<?> t) {
868 >        final ReentrantLock lock = this.submissionLock;
869 >        lock.lock();
870 >        try {
871 >            ForkJoinTask<?>[] q; int s, m;
872 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
873 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
874 >                UNSAFE.putOrderedObject(q, u, t);
875 >                queueTop = s + 1;
876 >                if (s - queueBase == m)
877 >                    growSubmissionQueue();
878 >            }
879 >        } finally {
880 >            lock.unlock();
881 >        }
882 >        signalWork();
883      }
884  
885 +    //  (pollSubmission is defined below with exported methods)
886 +
887      /**
888 <     * Creates a ForkJoinPool with the indicated parallelism level
889 <     * threads and using the default ForkJoinWorkerThreadFactory.
362 <     *
363 <     * @param parallelism the number of worker threads
364 <     * @throws IllegalArgumentException if parallelism less than or
365 <     * equal to zero
366 <     * @throws SecurityException if a security manager exists and
367 <     *         the caller is not permitted to modify threads
368 <     *         because it does not hold {@link
369 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
888 >     * Creates or doubles submissionQueue array.
889 >     * Basically identical to ForkJoinWorkerThread version
890       */
891 <    public ForkJoinPool(int parallelism) {
892 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
891 >    private void growSubmissionQueue() {
892 >        ForkJoinTask<?>[] oldQ = submissionQueue;
893 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
894 >        if (size > MAXIMUM_QUEUE_CAPACITY)
895 >            throw new RejectedExecutionException("Queue capacity exceeded");
896 >        if (size < INITIAL_QUEUE_CAPACITY)
897 >            size = INITIAL_QUEUE_CAPACITY;
898 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
899 >        int mask = size - 1;
900 >        int top = queueTop;
901 >        int oldMask;
902 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
903 >            for (int b = queueBase; b != top; ++b) {
904 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
905 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
906 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
907 >                    UNSAFE.putObjectVolatile
908 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
909 >            }
910 >        }
911 >    }
912 >
913 >    // Blocking support
914 >
915 >    /**
916 >     * Tries to increment blockedCount, decrement active count
917 >     * (sometimes implicitly) and possibly release or create a
918 >     * compensating worker in preparation for blocking. Fails
919 >     * on contention or termination.
920 >     *
921 >     * @return true if the caller can block, else should recheck and retry
922 >     */
923 >    private boolean tryPreBlock() {
924 >        int b = blockedCount;
925 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
926 >            int pc = parallelism;
927 >            do {
928 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
929 >                int e, ac, tc, rc, i;
930 >                long c = ctl;
931 >                int u = (int)(c >>> 32);
932 >                if ((e = (int)c) < 0) {
933 >                                                 // skip -- terminating
934 >                }
935 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
936 >                         (ws = workers) != null &&
937 >                         (i = ~e & SMASK) < ws.length &&
938 >                         (w = ws[i]) != null) {
939 >                    long nc = ((long)(w.nextWait & E_MASK) |
940 >                               (c & (AC_MASK|TC_MASK)));
941 >                    if (w.eventCount == e &&
942 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
943 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
944 >                        if (w.parked)
945 >                            UNSAFE.unpark(w);
946 >                        return true;             // release an idle worker
947 >                    }
948 >                }
949 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
950 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
951 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
952 >                        return true;             // no compensation needed
953 >                }
954 >                else if (tc + pc < MAX_ID) {
955 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
956 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
957 >                        addWorker();
958 >                        return true;            // create a replacement
959 >                    }
960 >                }
961 >                // try to back out on any failure and let caller retry
962 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
963 >                                               b = blockedCount, b - 1));
964 >        }
965 >        return false;
966      }
967  
968      /**
969 <     * Creates a ForkJoinPool with parallelism equal to the number of
377 <     * processors available on the system and using the given
378 <     * ForkJoinWorkerThreadFactory.
379 <     *
380 <     * @param factory the factory for creating new threads
381 <     * @throws NullPointerException if factory is null
382 <     * @throws SecurityException if a security manager exists and
383 <     *         the caller is not permitted to modify threads
384 <     *         because it does not hold {@link
385 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
969 >     * Decrements blockedCount and increments active count
970       */
971 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
972 <        this(Runtime.getRuntime().availableProcessors(), factory);
971 >    private void postBlock() {
972 >        long c;
973 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
974 >                                                c = ctl, c + AC_UNIT));
975 >        int b;
976 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
977 >                                              b = blockedCount, b - 1));
978      }
979  
980      /**
981 <     * Creates a ForkJoinPool with the given parallelism and factory.
981 >     * Possibly blocks waiting for the given task to complete, or
982 >     * cancels the task if terminating.  Fails to wait if contended.
983       *
984 <     * @param parallelism the targeted number of worker threads
395 <     * @param factory the factory for creating new threads
396 <     * @throws IllegalArgumentException if parallelism less than or
397 <     * equal to zero, or greater than implementation limit
398 <     * @throws NullPointerException if factory is null
399 <     * @throws SecurityException if a security manager exists and
400 <     *         the caller is not permitted to modify threads
401 <     *         because it does not hold {@link
402 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
984 >     * @param joinMe the task
985       */
986 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
987 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
988 <            throw new IllegalArgumentException();
989 <        if (factory == null)
990 <            throw new NullPointerException();
991 <        checkPermission();
992 <        this.factory = factory;
993 <        this.parallelism = parallelism;
994 <        this.maxPoolSize = MAX_THREADS;
995 <        this.maintainsParallelism = true;
996 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
415 <        this.workerLock = new ReentrantLock();
416 <        this.termination = workerLock.newCondition();
417 <        this.stealCount = new AtomicLong();
418 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
419 <        // worker array and workers are lazily constructed
986 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
987 >        int s;
988 >        Thread.interrupted(); // clear interrupts before checking termination
989 >        if (joinMe.status >= 0) {
990 >            if (tryPreBlock()) {
991 >                joinMe.tryAwaitDone(0L);
992 >                postBlock();
993 >            }
994 >            if ((ctl & STOP_BIT) != 0L)
995 >                joinMe.cancelIgnoringExceptions();
996 >        }
997      }
998  
999      /**
1000 <     * Creates a new worker thread using factory.
1000 >     * Possibly blocks the given worker waiting for joinMe to
1001 >     * complete or timeout
1002       *
1003 <     * @param index the index to assign worker
1004 <     * @return new worker, or null of factory failed
1003 >     * @param joinMe the task
1004 >     * @param millis the wait time for underlying Object.wait
1005       */
1006 <    private ForkJoinWorkerThread createWorker(int index) {
1007 <        Thread.UncaughtExceptionHandler h = ueh;
1008 <        ForkJoinWorkerThread w = factory.newThread(this);
1009 <        if (w != null) {
1010 <            w.poolIndex = index;
1011 <            w.setDaemon(true);
1012 <            w.setAsyncMode(locallyFifo);
1013 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1014 <            if (h != null)
1015 <                w.setUncaughtExceptionHandler(h);
1006 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1007 >        while (joinMe.status >= 0) {
1008 >            Thread.interrupted();
1009 >            if ((ctl & STOP_BIT) != 0L) {
1010 >                joinMe.cancelIgnoringExceptions();
1011 >                break;
1012 >            }
1013 >            if (tryPreBlock()) {
1014 >                long last = System.nanoTime();
1015 >                while (joinMe.status >= 0) {
1016 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1017 >                    if (millis <= 0)
1018 >                        break;
1019 >                    joinMe.tryAwaitDone(millis);
1020 >                    if (joinMe.status < 0)
1021 >                        break;
1022 >                    if ((ctl & STOP_BIT) != 0L) {
1023 >                        joinMe.cancelIgnoringExceptions();
1024 >                        break;
1025 >                    }
1026 >                    long now = System.nanoTime();
1027 >                    nanos -= now - last;
1028 >                    last = now;
1029 >                }
1030 >                postBlock();
1031 >                break;
1032 >            }
1033          }
439        return w;
1034      }
1035  
1036      /**
1037 <     * Returns a good size for worker array given pool size.
444 <     * Currently requires size to be a power of two.
1037 >     * If necessary, compensates for blocker, and blocks
1038       */
1039 <    private static int arraySizeFor(int poolSize) {
1040 <        return (poolSize <= 1) ? 1 :
1041 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
1039 >    private void awaitBlocker(ManagedBlocker blocker)
1040 >        throws InterruptedException {
1041 >        while (!blocker.isReleasable()) {
1042 >            if (tryPreBlock()) {
1043 >                try {
1044 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1045 >                } finally {
1046 >                    postBlock();
1047 >                }
1048 >                break;
1049 >            }
1050 >        }
1051      }
1052  
1053 +    // Creating, registering and deregistring workers
1054 +
1055      /**
1056 <     * Creates or resizes array if necessary to hold newLength.
1057 <     * Call only under exclusion.
454 <     *
455 <     * @return the array
1056 >     * Tries to create and start a worker; minimally rolls back counts
1057 >     * on failure.
1058       */
1059 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1060 <        ForkJoinWorkerThread[] ws = workers;
1061 <        if (ws == null)
1062 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1063 <        else if (newLength > ws.length)
1064 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1059 >    private void addWorker() {
1060 >        Throwable ex = null;
1061 >        ForkJoinWorkerThread t = null;
1062 >        try {
1063 >            t = factory.newThread(this);
1064 >        } catch (Throwable e) {
1065 >            ex = e;
1066 >        }
1067 >        if (t == null) {  // null or exceptional factory return
1068 >            long c;       // adjust counts
1069 >            do {} while (!UNSAFE.compareAndSwapLong
1070 >                         (this, ctlOffset, c = ctl,
1071 >                          (((c - AC_UNIT) & AC_MASK) |
1072 >                           ((c - TC_UNIT) & TC_MASK) |
1073 >                           (c & ~(AC_MASK|TC_MASK)))));
1074 >            // Propagate exception if originating from an external caller
1075 >            if (!tryTerminate(false) && ex != null &&
1076 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1077 >                UNSAFE.throwException(ex);
1078 >        }
1079          else
1080 <            return ws;
1080 >            t.start();
1081      }
1082  
1083      /**
1084 <     * Tries to shrink workers into smaller array after one or more terminate.
1084 >     * Callback from ForkJoinWorkerThread constructor to assign a
1085 >     * public name
1086       */
1087 <    private void tryShrinkWorkerArray() {
1088 <        ForkJoinWorkerThread[] ws = workers;
1089 <        if (ws != null) {
1090 <            int len = ws.length;
1091 <            int last = len - 1;
475 <            while (last >= 0 && ws[last] == null)
476 <                --last;
477 <            int newLength = arraySizeFor(last+1);
478 <            if (newLength < len)
479 <                workers = Arrays.copyOf(ws, newLength);
1087 >    final String nextWorkerName() {
1088 >        for (int n;;) {
1089 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1090 >                                         n = nextWorkerNumber, ++n))
1091 >                return workerNamePrefix + n;
1092          }
1093      }
1094  
1095      /**
1096 <     * Initializes workers if necessary.
1096 >     * Callback from ForkJoinWorkerThread constructor to
1097 >     * determine its poolIndex and record in workers array.
1098 >     *
1099 >     * @param w the worker
1100 >     * @return the worker's pool index
1101       */
1102 <    final void ensureWorkerInitialization() {
1103 <        ForkJoinWorkerThread[] ws = workers;
1104 <        if (ws == null) {
1105 <            final ReentrantLock lock = this.workerLock;
1106 <            lock.lock();
1107 <            try {
1108 <                ws = workers;
1109 <                if (ws == null) {
1110 <                    int ps = parallelism;
1111 <                    ws = ensureWorkerArrayCapacity(ps);
1112 <                    for (int i = 0; i < ps; ++i) {
1113 <                        ForkJoinWorkerThread w = createWorker(i);
1114 <                        if (w != null) {
1115 <                            ws[i] = w;
1116 <                            w.start();
1117 <                            updateWorkerCount(1);
1102 >    final int registerWorker(ForkJoinWorkerThread w) {
1103 >        /*
1104 >         * In the typical case, a new worker acquires the lock, uses
1105 >         * next available index and returns quickly.  Since we should
1106 >         * not block callers (ultimately from signalWork or
1107 >         * tryPreBlock) waiting for the lock needed to do this, we
1108 >         * instead help release other workers while waiting for the
1109 >         * lock.
1110 >         */
1111 >        for (int g;;) {
1112 >            ForkJoinWorkerThread[] ws;
1113 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1114 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1115 >                                         g, g | SG_UNIT)) {
1116 >                int k = nextWorkerIndex;
1117 >                try {
1118 >                    if ((ws = workers) != null) { // ignore on shutdown
1119 >                        int n = ws.length;
1120 >                        if (k < 0 || k >= n || ws[k] != null) {
1121 >                            for (k = 0; k < n && ws[k] != null; ++k)
1122 >                                ;
1123 >                            if (k == n)
1124 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1125                          }
1126 +                        ws[k] = w;
1127 +                        nextWorkerIndex = k + 1;
1128 +                        int m = g & SMASK;
1129 +                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1130 +                    }
1131 +                } finally {
1132 +                    scanGuard = g;
1133 +                }
1134 +                return k;
1135 +            }
1136 +            else if ((ws = workers) != null) { // help release others
1137 +                for (ForkJoinWorkerThread u : ws) {
1138 +                    if (u != null && u.queueBase != u.queueTop) {
1139 +                        if (tryReleaseWaiter())
1140 +                            break;
1141                      }
1142                  }
505            } finally {
506                lock.unlock();
1143              }
1144          }
1145      }
1146  
1147      /**
1148 <     * Worker creation and startup for threads added via setParallelism.
1148 >     * Final callback from terminating worker.  Removes record of
1149 >     * worker from array, and adjusts counts. If pool is shutting
1150 >     * down, tries to complete termination.
1151 >     *
1152 >     * @param w the worker
1153       */
1154 <    private void createAndStartAddedWorkers() {
1155 <        resumeAllSpares();  // Allow spares to convert to nonspare
1156 <        int ps = parallelism;
1157 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1158 <        int len = ws.length;
1159 <        // Sweep through slots, to keep lowest indices most populated
1160 <        int k = 0;
1161 <        while (k < len) {
1162 <            if (ws[k] != null) {
1163 <                ++k;
1164 <                continue;
1154 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1155 >        int idx = w.poolIndex;
1156 >        int sc = w.stealCount;
1157 >        int steps = 0;
1158 >        // Remove from array, adjust worker counts and collect steal count.
1159 >        // We can intermix failed removes or adjusts with steal updates
1160 >        do {
1161 >            long s, c;
1162 >            int g;
1163 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1164 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1165 >                                         g, g |= SG_UNIT)) {
1166 >                ForkJoinWorkerThread[] ws = workers;
1167 >                if (ws != null && idx >= 0 &&
1168 >                    idx < ws.length && ws[idx] == w)
1169 >                    ws[idx] = null;    // verify
1170 >                nextWorkerIndex = idx;
1171 >                scanGuard = g + SG_UNIT;
1172 >                steps = 1;
1173 >            }
1174 >            if (steps == 1 &&
1175 >                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1176 >                                          (((c - AC_UNIT) & AC_MASK) |
1177 >                                           ((c - TC_UNIT) & TC_MASK) |
1178 >                                           (c & ~(AC_MASK|TC_MASK)))))
1179 >                steps = 2;
1180 >            if (sc != 0 &&
1181 >                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1182 >                                          s = stealCount, s + sc))
1183 >                sc = 0;
1184 >        } while (steps != 2 || sc != 0);
1185 >        if (!tryTerminate(false)) {
1186 >            if (ex != null)   // possibly replace if died abnormally
1187 >                signalWork();
1188 >            else
1189 >                tryReleaseWaiter();
1190 >        }
1191 >    }
1192 >
1193 >    // Shutdown and termination
1194 >
1195 >    /**
1196 >     * Possibly initiates and/or completes termination.
1197 >     *
1198 >     * @param now if true, unconditionally terminate, else only
1199 >     * if shutdown and empty queue and no active workers
1200 >     * @return true if now terminating or terminated
1201 >     */
1202 >    private boolean tryTerminate(boolean now) {
1203 >        long c;
1204 >        while (((c = ctl) & STOP_BIT) == 0) {
1205 >            if (!now) {
1206 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1207 >                    return false;
1208 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1209 >                    queueTop - queueBase > 0) {
1210 >                    if (ctl == c) // staleness check
1211 >                        return false;
1212 >                    continue;
1213 >                }
1214              }
1215 <            int s = workerCounts;
1216 <            int tc = totalCountOf(s);
1217 <            int rc = runningCountOf(s);
1218 <            if (rc >= ps || tc >= ps)
1219 <                break;
1220 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1221 <                ForkJoinWorkerThread w = createWorker(k);
1222 <                if (w != null) {
1223 <                    ws[k++] = w;
1224 <                    w.start();
1215 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1216 >                startTerminating();
1217 >        }
1218 >        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1219 >            submissionLock.lock();
1220 >            termination.signalAll();
1221 >            submissionLock.unlock();
1222 >        }
1223 >        return true;
1224 >    }
1225 >
1226 >    /**
1227 >     * Runs up to three passes through workers: (0) Setting
1228 >     * termination status for each worker, followed by wakeups up
1229 >     * queued workers (1) helping cancel tasks (2) interrupting
1230 >     * lagging threads (likely in external tasks, but possibly also
1231 >     * blocked in joins).  Each pass repeats previous steps because of
1232 >     * potential lagging thread creation.
1233 >     */
1234 >    private void startTerminating() {
1235 >        cancelSubmissions();
1236 >        for (int pass = 0; pass < 3; ++pass) {
1237 >            ForkJoinWorkerThread[] ws = workers;
1238 >            if (ws != null) {
1239 >                for (ForkJoinWorkerThread w : ws) {
1240 >                    if (w != null) {
1241 >                        w.terminate = true;
1242 >                        if (pass > 0) {
1243 >                            w.cancelTasks();
1244 >                            if (pass > 1 && !w.isInterrupted()) {
1245 >                                try {
1246 >                                    w.interrupt();
1247 >                                } catch (SecurityException ignore) {
1248 >                                }
1249 >                            }
1250 >                        }
1251 >                    }
1252                  }
1253 <                else {
1254 <                    updateWorkerCount(-1); // back out on failed creation
1255 <                    break;
1253 >                terminateWaiters();
1254 >            }
1255 >        }
1256 >    }
1257 >
1258 >    /**
1259 >     * Polls and cancels all submissions. Called only during termination.
1260 >     */
1261 >    private void cancelSubmissions() {
1262 >        while (queueBase != queueTop) {
1263 >            ForkJoinTask<?> task = pollSubmission();
1264 >            if (task != null) {
1265 >                try {
1266 >                    task.cancel(false);
1267 >                } catch (Throwable ignore) {
1268                  }
1269              }
1270          }
1271      }
1272  
1273 <    // Execution methods
1273 >    /**
1274 >     * Tries to set the termination status of waiting workers, and
1275 >     * then wake them up (after which they will terminate).
1276 >     */
1277 >    private void terminateWaiters() {
1278 >        ForkJoinWorkerThread[] ws = workers;
1279 >        if (ws != null) {
1280 >            ForkJoinWorkerThread w; long c; int i, e;
1281 >            int n = ws.length;
1282 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1283 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1284 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1285 >                                              (long)(w.nextWait & E_MASK) |
1286 >                                              ((c + AC_UNIT) & AC_MASK) |
1287 >                                              (c & (TC_MASK|STOP_BIT)))) {
1288 >                    w.terminate = true;
1289 >                    w.eventCount = e + EC_UNIT;
1290 >                    if (w.parked)
1291 >                        UNSAFE.unpark(w);
1292 >                }
1293 >            }
1294 >        }
1295 >    }
1296 >
1297 >    // misc ForkJoinWorkerThread support
1298  
1299      /**
1300 <     * Common code for execute, invoke and submit
1300 >     * Increment or decrement quiescerCount. Needed only to prevent
1301 >     * triggering shutdown if a worker is transiently inactive while
1302 >     * checking quiescence.
1303 >     *
1304 >     * @param delta 1 for increment, -1 for decrement
1305       */
1306 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1307 <        if (task == null)
1306 >    final void addQuiescerCount(int delta) {
1307 >        int c;
1308 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1309 >                                              c = quiescerCount, c + delta));
1310 >    }
1311 >
1312 >    /**
1313 >     * Directly increment or decrement active count without
1314 >     * queuing. This method is used to transiently assert inactivation
1315 >     * while checking quiescence.
1316 >     *
1317 >     * @param delta 1 for increment, -1 for decrement
1318 >     */
1319 >    final void addActiveCount(int delta) {
1320 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1321 >        long c;
1322 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1323 >                                                ((c + d) & AC_MASK) |
1324 >                                                (c & ~AC_MASK)));
1325 >    }
1326 >
1327 >    /**
1328 >     * Returns the approximate (non-atomic) number of idle threads per
1329 >     * active thread.
1330 >     */
1331 >    final int idlePerActive() {
1332 >        // Approximate at powers of two for small values, saturate past 4
1333 >        int p = parallelism;
1334 >        int a = p + (int)(ctl >> AC_SHIFT);
1335 >        return (a > (p >>>= 1) ? 0 :
1336 >                a > (p >>>= 1) ? 1 :
1337 >                a > (p >>>= 1) ? 2 :
1338 >                a > (p >>>= 1) ? 4 :
1339 >                8);
1340 >    }
1341 >
1342 >    // Exported methods
1343 >
1344 >    // Constructors
1345 >
1346 >    /**
1347 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1348 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1349 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1350 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1351 >     *
1352 >     * @throws SecurityException if a security manager exists and
1353 >     *         the caller is not permitted to modify threads
1354 >     *         because it does not hold {@link
1355 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1356 >     */
1357 >    public ForkJoinPool() {
1358 >        this(Runtime.getRuntime().availableProcessors(),
1359 >             defaultForkJoinWorkerThreadFactory, null, false);
1360 >    }
1361 >
1362 >    /**
1363 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1364 >     * level, the {@linkplain
1365 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1366 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1367 >     *
1368 >     * @param parallelism the parallelism level
1369 >     * @throws IllegalArgumentException if parallelism less than or
1370 >     *         equal to zero, or greater than implementation limit
1371 >     * @throws SecurityException if a security manager exists and
1372 >     *         the caller is not permitted to modify threads
1373 >     *         because it does not hold {@link
1374 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1375 >     */
1376 >    public ForkJoinPool(int parallelism) {
1377 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1378 >    }
1379 >
1380 >    /**
1381 >     * Creates a {@code ForkJoinPool} with the given parameters.
1382 >     *
1383 >     * @param parallelism the parallelism level. For default value,
1384 >     * use {@link java.lang.Runtime#availableProcessors}.
1385 >     * @param factory the factory for creating new threads. For default value,
1386 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1387 >     * @param handler the handler for internal worker threads that
1388 >     * terminate due to unrecoverable errors encountered while executing
1389 >     * tasks. For default value, use {@code null}.
1390 >     * @param asyncMode if true,
1391 >     * establishes local first-in-first-out scheduling mode for forked
1392 >     * tasks that are never joined. This mode may be more appropriate
1393 >     * than default locally stack-based mode in applications in which
1394 >     * worker threads only process event-style asynchronous tasks.
1395 >     * For default value, use {@code false}.
1396 >     * @throws IllegalArgumentException if parallelism less than or
1397 >     *         equal to zero, or greater than implementation limit
1398 >     * @throws NullPointerException if the factory is null
1399 >     * @throws SecurityException if a security manager exists and
1400 >     *         the caller is not permitted to modify threads
1401 >     *         because it does not hold {@link
1402 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1403 >     */
1404 >    public ForkJoinPool(int parallelism,
1405 >                        ForkJoinWorkerThreadFactory factory,
1406 >                        Thread.UncaughtExceptionHandler handler,
1407 >                        boolean asyncMode) {
1408 >        checkPermission();
1409 >        if (factory == null)
1410              throw new NullPointerException();
1411 <        if (isShutdown())
1412 <            throw new RejectedExecutionException();
1413 <        if (workers == null)
1414 <            ensureWorkerInitialization();
1415 <        submissionQueue.offer(task);
1416 <        signalIdleWorkers();
1411 >        if (parallelism <= 0 || parallelism > MAX_ID)
1412 >            throw new IllegalArgumentException();
1413 >        this.parallelism = parallelism;
1414 >        this.factory = factory;
1415 >        this.ueh = handler;
1416 >        this.locallyFifo = asyncMode;
1417 >        long np = (long)(-parallelism); // offset ctl counts
1418 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1419 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1420 >        // initialize workers array with room for 2*parallelism if possible
1421 >        int n = parallelism << 1;
1422 >        if (n >= MAX_ID)
1423 >            n = MAX_ID;
1424 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1425 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1426 >        }
1427 >        workers = new ForkJoinWorkerThread[n + 1];
1428 >        this.submissionLock = new ReentrantLock();
1429 >        this.termination = submissionLock.newCondition();
1430 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1431 >        sb.append(poolNumberGenerator.incrementAndGet());
1432 >        sb.append("-worker-");
1433 >        this.workerNamePrefix = sb.toString();
1434      }
1435  
1436 +    // Execution methods
1437 +
1438      /**
1439       * Performs the given task, returning its result upon completion.
1440 +     * If the computation encounters an unchecked Exception or Error,
1441 +     * it is rethrown as the outcome of this invocation.  Rethrown
1442 +     * exceptions behave in the same way as regular exceptions, but,
1443 +     * when possible, contain stack traces (as displayed for example
1444 +     * using {@code ex.printStackTrace()}) of both the current thread
1445 +     * as well as the thread actually encountering the exception;
1446 +     * minimally only the latter.
1447       *
1448       * @param task the task
1449       * @return the task's result
1450 <     * @throws NullPointerException if task is null
1451 <     * @throws RejectedExecutionException if pool is shut down
1450 >     * @throws NullPointerException if the task is null
1451 >     * @throws RejectedExecutionException if the task cannot be
1452 >     *         scheduled for execution
1453       */
1454      public <T> T invoke(ForkJoinTask<T> task) {
1455 <        doSubmit(task);
1456 <        return task.join();
1455 >        Thread t = Thread.currentThread();
1456 >        if (task == null)
1457 >            throw new NullPointerException();
1458 >        if (shutdown)
1459 >            throw new RejectedExecutionException();
1460 >        if ((t instanceof ForkJoinWorkerThread) &&
1461 >            ((ForkJoinWorkerThread)t).pool == this)
1462 >            return task.invoke();  // bypass submit if in same pool
1463 >        else {
1464 >            addSubmission(task);
1465 >            return task.join();
1466 >        }
1467 >    }
1468 >
1469 >    /**
1470 >     * Unless terminating, forks task if within an ongoing FJ
1471 >     * computation in the current pool, else submits as external task.
1472 >     */
1473 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1474 >        ForkJoinWorkerThread w;
1475 >        Thread t = Thread.currentThread();
1476 >        if (shutdown)
1477 >            throw new RejectedExecutionException();
1478 >        if ((t instanceof ForkJoinWorkerThread) &&
1479 >            (w = (ForkJoinWorkerThread)t).pool == this)
1480 >            w.pushTask(task);
1481 >        else
1482 >            addSubmission(task);
1483      }
1484  
1485      /**
1486       * Arranges for (asynchronous) execution of the given task.
1487       *
1488       * @param task the task
1489 <     * @throws NullPointerException if task is null
1490 <     * @throws RejectedExecutionException if pool is shut down
1489 >     * @throws NullPointerException if the task is null
1490 >     * @throws RejectedExecutionException if the task cannot be
1491 >     *         scheduled for execution
1492       */
1493 <    public <T> void execute(ForkJoinTask<T> task) {
1494 <        doSubmit(task);
1493 >    public void execute(ForkJoinTask<?> task) {
1494 >        if (task == null)
1495 >            throw new NullPointerException();
1496 >        forkOrSubmit(task);
1497      }
1498  
1499      // AbstractExecutorService methods
1500  
1501 +    /**
1502 +     * @throws NullPointerException if the task is null
1503 +     * @throws RejectedExecutionException if the task cannot be
1504 +     *         scheduled for execution
1505 +     */
1506      public void execute(Runnable task) {
1507 +        if (task == null)
1508 +            throw new NullPointerException();
1509          ForkJoinTask<?> job;
1510          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1511              job = (ForkJoinTask<?>) task;
1512          else
1513 <            job = new AdaptedRunnable<Void>(task, null);
1514 <        doSubmit(job);
594 <    }
595 <
596 <    public <T> ForkJoinTask<T> submit(Callable<T> task) {
597 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
598 <        doSubmit(job);
599 <        return job;
600 <    }
601 <
602 <    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
603 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
604 <        doSubmit(job);
605 <        return job;
606 <    }
607 <
608 <    public ForkJoinTask<?> submit(Runnable task) {
609 <        ForkJoinTask<?> job;
610 <        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
611 <            job = (ForkJoinTask<?>) task;
612 <        else
613 <            job = new AdaptedRunnable<Void>(task, null);
614 <        doSubmit(job);
615 <        return job;
1513 >            job = ForkJoinTask.adapt(task, null);
1514 >        forkOrSubmit(job);
1515      }
1516  
1517      /**
# Line 620 | Line 1519 | public class ForkJoinPool extends Abstra
1519       *
1520       * @param task the task to submit
1521       * @return the task
1522 +     * @throws NullPointerException if the task is null
1523       * @throws RejectedExecutionException if the task cannot be
1524       *         scheduled for execution
625     * @throws NullPointerException if the task is null
1525       */
1526      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1527 <        doSubmit(task);
1527 >        if (task == null)
1528 >            throw new NullPointerException();
1529 >        forkOrSubmit(task);
1530          return task;
1531      }
1532  
1533      /**
1534 <     * Adaptor for Runnables. This implements RunnableFuture
1535 <     * to be compliant with AbstractExecutorService constraints.
1534 >     * @throws NullPointerException if the task is null
1535 >     * @throws RejectedExecutionException if the task cannot be
1536 >     *         scheduled for execution
1537       */
1538 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
1539 <        implements RunnableFuture<T> {
1540 <        final Runnable runnable;
1541 <        final T resultOnCompletion;
1542 <        T result;
1543 <        AdaptedRunnable(Runnable runnable, T result) {
642 <            if (runnable == null) throw new NullPointerException();
643 <            this.runnable = runnable;
644 <            this.resultOnCompletion = result;
645 <        }
646 <        public T getRawResult() { return result; }
647 <        public void setRawResult(T v) { result = v; }
648 <        public boolean exec() {
649 <            runnable.run();
650 <            result = resultOnCompletion;
651 <            return true;
652 <        }
653 <        public void run() { invoke(); }
654 <        private static final long serialVersionUID = 5232453952276885070L;
1538 >    public <T> ForkJoinTask<T> submit(Callable<T> task) {
1539 >        if (task == null)
1540 >            throw new NullPointerException();
1541 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1542 >        forkOrSubmit(job);
1543 >        return job;
1544      }
1545  
1546      /**
1547 <     * Adaptor for Callables
1548 <     */
1549 <    static final class AdaptedCallable<T> extends ForkJoinTask<T>
1550 <        implements RunnableFuture<T> {
1551 <        final Callable<T> callable;
1552 <        T result;
1553 <        AdaptedCallable(Callable<T> callable) {
1554 <            if (callable == null) throw new NullPointerException();
1555 <            this.callable = callable;
1556 <        }
668 <        public T getRawResult() { return result; }
669 <        public void setRawResult(T v) { result = v; }
670 <        public boolean exec() {
671 <            try {
672 <                result = callable.call();
673 <                return true;
674 <            } catch (Error err) {
675 <                throw err;
676 <            } catch (RuntimeException rex) {
677 <                throw rex;
678 <            } catch (Exception ex) {
679 <                throw new RuntimeException(ex);
680 <            }
681 <        }
682 <        public void run() { invoke(); }
683 <        private static final long serialVersionUID = 2838392045355241008L;
1547 >     * @throws NullPointerException if the task is null
1548 >     * @throws RejectedExecutionException if the task cannot be
1549 >     *         scheduled for execution
1550 >     */
1551 >    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1552 >        if (task == null)
1553 >            throw new NullPointerException();
1554 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1555 >        forkOrSubmit(job);
1556 >        return job;
1557      }
1558  
1559 +    /**
1560 +     * @throws NullPointerException if the task is null
1561 +     * @throws RejectedExecutionException if the task cannot be
1562 +     *         scheduled for execution
1563 +     */
1564 +    public ForkJoinTask<?> submit(Runnable task) {
1565 +        if (task == null)
1566 +            throw new NullPointerException();
1567 +        ForkJoinTask<?> job;
1568 +        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1569 +            job = (ForkJoinTask<?>) task;
1570 +        else
1571 +            job = ForkJoinTask.adapt(task, null);
1572 +        forkOrSubmit(job);
1573 +        return job;
1574 +    }
1575 +
1576 +    /**
1577 +     * @throws NullPointerException       {@inheritDoc}
1578 +     * @throws RejectedExecutionException {@inheritDoc}
1579 +     */
1580      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1581          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1582              new ArrayList<ForkJoinTask<T>>(tasks.size());
1583          for (Callable<T> task : tasks)
1584 <            forkJoinTasks.add(new AdaptedCallable<T>(task));
1584 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1585          invoke(new InvokeAll<T>(forkJoinTasks));
1586  
1587          @SuppressWarnings({"unchecked", "rawtypes"})
1588 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1588 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1589          return futures;
1590      }
1591  
# Line 705 | Line 1599 | public class ForkJoinPool extends Abstra
1599          private static final long serialVersionUID = -7914297376763021607L;
1600      }
1601  
708    // Configuration and status settings and queries
709
1602      /**
1603       * Returns the factory used for constructing new workers.
1604       *
# Line 720 | Line 1612 | public class ForkJoinPool extends Abstra
1612       * Returns the handler for internal worker threads that terminate
1613       * due to unrecoverable errors encountered while executing tasks.
1614       *
1615 <     * @return the handler, or null if none
1615 >     * @return the handler, or {@code null} if none
1616       */
1617      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1618 <        Thread.UncaughtExceptionHandler h;
727 <        final ReentrantLock lock = this.workerLock;
728 <        lock.lock();
729 <        try {
730 <            h = ueh;
731 <        } finally {
732 <            lock.unlock();
733 <        }
734 <        return h;
1618 >        return ueh;
1619      }
1620  
1621      /**
1622 <     * Sets the handler for internal worker threads that terminate due
739 <     * to unrecoverable errors encountered while executing tasks.
740 <     * Unless set, the current default or ThreadGroup handler is used
741 <     * as handler.
1622 >     * Returns the targeted parallelism level of this pool.
1623       *
1624 <     * @param h the new handler
744 <     * @return the old handler, or null if none
745 <     * @throws SecurityException if a security manager exists and
746 <     *         the caller is not permitted to modify threads
747 <     *         because it does not hold {@link
748 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
749 <     */
750 <    public Thread.UncaughtExceptionHandler
751 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
752 <        checkPermission();
753 <        Thread.UncaughtExceptionHandler old = null;
754 <        final ReentrantLock lock = this.workerLock;
755 <        lock.lock();
756 <        try {
757 <            old = ueh;
758 <            ueh = h;
759 <            ForkJoinWorkerThread[] ws = workers;
760 <            if (ws != null) {
761 <                for (int i = 0; i < ws.length; ++i) {
762 <                    ForkJoinWorkerThread w = ws[i];
763 <                    if (w != null)
764 <                        w.setUncaughtExceptionHandler(h);
765 <                }
766 <            }
767 <        } finally {
768 <            lock.unlock();
769 <        }
770 <        return old;
771 <    }
772 <
773 <
774 <    /**
775 <     * Sets the target parallelism level of this pool.
776 <     *
777 <     * @param parallelism the target parallelism
778 <     * @throws IllegalArgumentException if parallelism less than or
779 <     * equal to zero or greater than maximum size bounds
780 <     * @throws SecurityException if a security manager exists and
781 <     *         the caller is not permitted to modify threads
782 <     *         because it does not hold {@link
783 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
784 <     */
785 <    public void setParallelism(int parallelism) {
786 <        checkPermission();
787 <        if (parallelism <= 0 || parallelism > maxPoolSize)
788 <            throw new IllegalArgumentException();
789 <        final ReentrantLock lock = this.workerLock;
790 <        lock.lock();
791 <        try {
792 <            if (!isTerminating()) {
793 <                int p = this.parallelism;
794 <                this.parallelism = parallelism;
795 <                if (parallelism > p)
796 <                    createAndStartAddedWorkers();
797 <                else
798 <                    trimSpares();
799 <            }
800 <        } finally {
801 <            lock.unlock();
802 <        }
803 <        signalIdleWorkers();
804 <    }
805 <
806 <    /**
807 <     * Returns the targeted number of worker threads in this pool.
808 <     *
809 <     * @return the targeted number of worker threads in this pool
1624 >     * @return the targeted parallelism level of this pool
1625       */
1626      public int getParallelism() {
1627          return parallelism;
# Line 814 | Line 1629 | public class ForkJoinPool extends Abstra
1629  
1630      /**
1631       * Returns the number of worker threads that have started but not
1632 <     * yet terminated.  This result returned by this method may differ
1633 <     * from {@code getParallelism} when threads are created to
1632 >     * yet terminated.  The result returned by this method may differ
1633 >     * from {@link #getParallelism} when threads are created to
1634       * maintain parallelism when others are cooperatively blocked.
1635       *
1636       * @return the number of worker threads
1637       */
1638      public int getPoolSize() {
1639 <        return totalCountOf(workerCounts);
825 <    }
826 <
827 <    /**
828 <     * Returns the maximum number of threads allowed to exist in the
829 <     * pool, even if there are insufficient unblocked running threads.
830 <     *
831 <     * @return the maximum
832 <     */
833 <    public int getMaximumPoolSize() {
834 <        return maxPoolSize;
835 <    }
836 <
837 <    /**
838 <     * Sets the maximum number of threads allowed to exist in the
839 <     * pool, even if there are insufficient unblocked running threads.
840 <     * Setting this value has no effect on current pool size. It
841 <     * controls construction of new threads.
842 <     *
843 <     * @throws IllegalArgumentException if negative or greater then
844 <     * internal implementation limit
845 <     */
846 <    public void setMaximumPoolSize(int newMax) {
847 <        if (newMax < 0 || newMax > MAX_THREADS)
848 <            throw new IllegalArgumentException();
849 <        maxPoolSize = newMax;
850 <    }
851 <
852 <
853 <    /**
854 <     * Returns true if this pool dynamically maintains its target
855 <     * parallelism level. If false, new threads are added only to
856 <     * avoid possible starvation.
857 <     * This setting is by default true.
858 <     *
859 <     * @return true if maintains parallelism
860 <     */
861 <    public boolean getMaintainsParallelism() {
862 <        return maintainsParallelism;
1639 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1640      }
1641  
1642      /**
1643 <     * Sets whether this pool dynamically maintains its target
867 <     * parallelism level. If false, new threads are added only to
868 <     * avoid possible starvation.
869 <     *
870 <     * @param enable true to maintains parallelism
871 <     */
872 <    public void setMaintainsParallelism(boolean enable) {
873 <        maintainsParallelism = enable;
874 <    }
875 <
876 <    /**
877 <     * Establishes local first-in-first-out scheduling mode for forked
878 <     * tasks that are never joined. This mode may be more appropriate
879 <     * than default locally stack-based mode in applications in which
880 <     * worker threads only process asynchronous tasks.  This method is
881 <     * designed to be invoked only when pool is quiescent, and
882 <     * typically only before any tasks are submitted. The effects of
883 <     * invocations at other times may be unpredictable.
884 <     *
885 <     * @param async if true, use locally FIFO scheduling
886 <     * @return the previous mode
887 <     */
888 <    public boolean setAsyncMode(boolean async) {
889 <        boolean oldMode = locallyFifo;
890 <        locallyFifo = async;
891 <        ForkJoinWorkerThread[] ws = workers;
892 <        if (ws != null) {
893 <            for (int i = 0; i < ws.length; ++i) {
894 <                ForkJoinWorkerThread t = ws[i];
895 <                if (t != null)
896 <                    t.setAsyncMode(async);
897 <            }
898 <        }
899 <        return oldMode;
900 <    }
901 <
902 <    /**
903 <     * Returns true if this pool uses local first-in-first-out
1643 >     * Returns {@code true} if this pool uses local first-in-first-out
1644       * scheduling mode for forked tasks that are never joined.
1645       *
1646 <     * @return true if this pool uses async mode
1646 >     * @return {@code true} if this pool uses async mode
1647       */
1648      public boolean getAsyncMode() {
1649          return locallyFifo;
# Line 912 | Line 1652 | public class ForkJoinPool extends Abstra
1652      /**
1653       * Returns an estimate of the number of worker threads that are
1654       * not blocked waiting to join tasks or for other managed
1655 <     * synchronization.
1655 >     * synchronization. This method may overestimate the
1656 >     * number of running threads.
1657       *
1658       * @return the number of worker threads
1659       */
1660      public int getRunningThreadCount() {
1661 <        return runningCountOf(workerCounts);
1661 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1662 >        return r <= 0? 0 : r; // suppress momentarily negative values
1663      }
1664  
1665      /**
# Line 928 | Line 1670 | public class ForkJoinPool extends Abstra
1670       * @return the number of active threads
1671       */
1672      public int getActiveThreadCount() {
1673 <        return activeCountOf(runControl);
1673 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1674 >        return r <= 0? 0 : r; // suppress momentarily negative values
1675      }
1676  
1677      /**
1678 <     * Returns an estimate of the number of threads that are currently
1679 <     * idle waiting for tasks. This method may underestimate the
1680 <     * number of idle threads.
1678 >     * Returns {@code true} if all worker threads are currently idle.
1679 >     * An idle worker is one that cannot obtain a task to execute
1680 >     * because none are available to steal from other threads, and
1681 >     * there are no pending submissions to the pool. This method is
1682 >     * conservative; it might not return {@code true} immediately upon
1683 >     * idleness of all threads, but will eventually become true if
1684 >     * threads remain inactive.
1685       *
1686 <     * @return the number of idle threads
940 <     */
941 <    final int getIdleThreadCount() {
942 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
943 <        return (c <= 0) ? 0 : c;
944 <    }
945 <
946 <    /**
947 <     * Returns true if all worker threads are currently idle. An idle
948 <     * worker is one that cannot obtain a task to execute because none
949 <     * are available to steal from other threads, and there are no
950 <     * pending submissions to the pool. This method is conservative;
951 <     * it might not return true immediately upon idleness of all
952 <     * threads, but will eventually become true if threads remain
953 <     * inactive.
954 <     *
955 <     * @return true if all threads are currently idle
1686 >     * @return {@code true} if all threads are currently idle
1687       */
1688      public boolean isQuiescent() {
1689 <        return activeCountOf(runControl) == 0;
1689 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1690      }
1691  
1692      /**
# Line 970 | Line 1701 | public class ForkJoinPool extends Abstra
1701       * @return the number of steals
1702       */
1703      public long getStealCount() {
1704 <        return stealCount.get();
974 <    }
975 <
976 <    /**
977 <     * Accumulates steal count from a worker.
978 <     * Call only when worker known to be idle.
979 <     */
980 <    private void updateStealCount(ForkJoinWorkerThread w) {
981 <        int sc = w.getAndClearStealCount();
982 <        if (sc != 0)
983 <            stealCount.addAndGet(sc);
1704 >        return stealCount;
1705      }
1706  
1707      /**
# Line 995 | Line 1716 | public class ForkJoinPool extends Abstra
1716       */
1717      public long getQueuedTaskCount() {
1718          long count = 0;
1719 <        ForkJoinWorkerThread[] ws = workers;
1720 <        if (ws != null) {
1721 <            for (int i = 0; i < ws.length; ++i) {
1722 <                ForkJoinWorkerThread t = ws[i];
1723 <                if (t != null)
1724 <                    count += t.getQueueSize();
1004 <            }
1719 >        ForkJoinWorkerThread[] ws;
1720 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1721 >            (ws = workers) != null) {
1722 >            for (ForkJoinWorkerThread w : ws)
1723 >                if (w != null)
1724 >                    count -= w.queueBase - w.queueTop; // must read base first
1725          }
1726          return count;
1727      }
1728  
1729      /**
1730 <     * Returns an estimate of the number tasks submitted to this pool
1731 <     * that have not yet begun executing. This method takes time
1732 <     * proportional to the number of submissions.
1730 >     * Returns an estimate of the number of tasks submitted to this
1731 >     * pool that have not yet begun executing.  This meThod may take
1732 >     * time proportional to the number of submissions.
1733       *
1734       * @return the number of queued submissions
1735       */
1736      public int getQueuedSubmissionCount() {
1737 <        return submissionQueue.size();
1737 >        return -queueBase + queueTop;
1738      }
1739  
1740      /**
1741 <     * Returns true if there are any tasks submitted to this pool
1742 <     * that have not yet begun executing.
1741 >     * Returns {@code true} if there are any tasks submitted to this
1742 >     * pool that have not yet begun executing.
1743       *
1744       * @return {@code true} if there are any queued submissions
1745       */
1746      public boolean hasQueuedSubmissions() {
1747 <        return !submissionQueue.isEmpty();
1747 >        return queueBase != queueTop;
1748      }
1749  
1750      /**
# Line 1032 | Line 1752 | public class ForkJoinPool extends Abstra
1752       * available.  This method may be useful in extensions to this
1753       * class that re-assign work in systems with multiple pools.
1754       *
1755 <     * @return the next submission, or null if none
1755 >     * @return the next submission, or {@code null} if none
1756       */
1757      protected ForkJoinTask<?> pollSubmission() {
1758 <        return submissionQueue.poll();
1758 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1759 >        while ((b = queueBase) != queueTop &&
1760 >               (q = submissionQueue) != null &&
1761 >               (i = (q.length - 1) & b) >= 0) {
1762 >            long u = (i << ASHIFT) + ABASE;
1763 >            if ((t = q[i]) != null &&
1764 >                queueBase == b &&
1765 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1766 >                queueBase = b + 1;
1767 >                return t;
1768 >            }
1769 >        }
1770 >        return null;
1771      }
1772  
1773      /**
1774       * Removes all available unexecuted submitted and forked tasks
1775       * from scheduling queues and adds them to the given collection,
1776       * without altering their execution status. These may include
1777 <     * artificially generated or wrapped tasks. This method is designed
1778 <     * to be invoked only when the pool is known to be
1777 >     * artificially generated or wrapped tasks. This method is
1778 >     * designed to be invoked only when the pool is known to be
1779       * quiescent. Invocations at other times may not remove all
1780       * tasks. A failure encountered while attempting to add elements
1781       * to collection {@code c} may result in elements being in
# Line 1055 | Line 1787 | public class ForkJoinPool extends Abstra
1787       * @param c the collection to transfer elements into
1788       * @return the number of elements transferred
1789       */
1790 <    protected int drainTasksTo(Collection<ForkJoinTask<?>> c) {
1791 <        int n = submissionQueue.drainTo(c);
1792 <        ForkJoinWorkerThread[] ws = workers;
1793 <        if (ws != null) {
1794 <            for (int i = 0; i < ws.length; ++i) {
1795 <                ForkJoinWorkerThread w = ws[i];
1796 <                if (w != null)
1065 <                    n += w.drainTasksTo(c);
1790 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1791 >        int count = 0;
1792 >        while (queueBase != queueTop) {
1793 >            ForkJoinTask<?> t = pollSubmission();
1794 >            if (t != null) {
1795 >                c.add(t);
1796 >                ++count;
1797              }
1798          }
1799 <        return n;
1799 >        ForkJoinWorkerThread[] ws;
1800 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1801 >            (ws = workers) != null) {
1802 >            for (ForkJoinWorkerThread w : ws)
1803 >                if (w != null)
1804 >                    count += w.drainTasksTo(c);
1805 >        }
1806 >        return count;
1807      }
1808  
1809      /**
# Line 1076 | Line 1814 | public class ForkJoinPool extends Abstra
1814       * @return a string identifying this pool, as well as its state
1815       */
1816      public String toString() {
1079        int ps = parallelism;
1080        int wc = workerCounts;
1081        int rc = runControl;
1817          long st = getStealCount();
1818          long qt = getQueuedTaskCount();
1819          long qs = getQueuedSubmissionCount();
1820 +        int pc = parallelism;
1821 +        long c = ctl;
1822 +        int tc = pc + (short)(c >>> TC_SHIFT);
1823 +        int rc = pc + (int)(c >> AC_SHIFT);
1824 +        if (rc < 0) // ignore transient negative
1825 +            rc = 0;
1826 +        int ac = rc + blockedCount;
1827 +        String level;
1828 +        if ((c & STOP_BIT) != 0)
1829 +            level = (tc == 0)? "Terminated" : "Terminating";
1830 +        else
1831 +            level = shutdown? "Shutting down" : "Running";
1832          return super.toString() +
1833 <            "[" + runStateToString(runStateOf(rc)) +
1834 <            ", parallelism = " + ps +
1835 <            ", size = " + totalCountOf(wc) +
1836 <            ", active = " + activeCountOf(rc) +
1837 <            ", running = " + runningCountOf(wc) +
1833 >            "[" + level +
1834 >            ", parallelism = " + pc +
1835 >            ", size = " + tc +
1836 >            ", active = " + ac +
1837 >            ", running = " + rc +
1838              ", steals = " + st +
1839              ", tasks = " + qt +
1840              ", submissions = " + qs +
1841              "]";
1842      }
1843  
1097    private static String runStateToString(int rs) {
1098        switch(rs) {
1099        case RUNNING: return "Running";
1100        case SHUTDOWN: return "Shutting down";
1101        case TERMINATING: return "Terminating";
1102        case TERMINATED: return "Terminated";
1103        default: throw new Error("Unknown run state");
1104        }
1105    }
1106
1107    // lifecycle control
1108
1844      /**
1845       * Initiates an orderly shutdown in which previously submitted
1846       * tasks are executed, but no new tasks will be accepted.
# Line 1120 | Line 1855 | public class ForkJoinPool extends Abstra
1855       */
1856      public void shutdown() {
1857          checkPermission();
1858 <        transitionRunStateTo(SHUTDOWN);
1859 <        if (canTerminateOnShutdown(runControl))
1125 <            terminateOnShutdown();
1858 >        shutdown = true;
1859 >        tryTerminate(false);
1860      }
1861  
1862      /**
1863 <     * Attempts to stop all actively executing tasks, and cancels all
1864 <     * waiting tasks.  Tasks that are in the process of being
1865 <     * submitted or executed concurrently during the course of this
1866 <     * method may or may not be rejected. Unlike some other executors,
1867 <     * this method cancels rather than collects non-executed tasks
1868 <     * upon termination, so always returns an empty list. However, you
1869 <     * can use method {@code drainTasksTo} before invoking this
1870 <     * method to transfer unexecuted tasks to another collection.
1863 >     * Attempts to cancel and/or stop all tasks, and reject all
1864 >     * subsequently submitted tasks.  Tasks that are in the process of
1865 >     * being submitted or executed concurrently during the course of
1866 >     * this method may or may not be rejected. This method cancels
1867 >     * both existing and unexecuted tasks, in order to permit
1868 >     * termination in the presence of task dependencies. So the method
1869 >     * always returns an empty list (unlike the case for some other
1870 >     * Executors).
1871       *
1872       * @return an empty list
1873       * @throws SecurityException if a security manager exists and
# Line 1143 | Line 1877 | public class ForkJoinPool extends Abstra
1877       */
1878      public List<Runnable> shutdownNow() {
1879          checkPermission();
1880 <        terminate();
1880 >        shutdown = true;
1881 >        tryTerminate(true);
1882          return Collections.emptyList();
1883      }
1884  
# Line 1153 | Line 1888 | public class ForkJoinPool extends Abstra
1888       * @return {@code true} if all tasks have completed following shut down
1889       */
1890      public boolean isTerminated() {
1891 <        return runStateOf(runControl) == TERMINATED;
1891 >        long c = ctl;
1892 >        return ((c & STOP_BIT) != 0L &&
1893 >                (short)(c >>> TC_SHIFT) == -parallelism);
1894      }
1895  
1896      /**
1897       * Returns {@code true} if the process of termination has
1898 <     * commenced but possibly not yet completed.
1898 >     * commenced but not yet completed.  This method may be useful for
1899 >     * debugging. A return of {@code true} reported a sufficient
1900 >     * period after shutdown may indicate that submitted tasks have
1901 >     * ignored or suppressed interruption, or are waiting for IO,
1902 >     * causing this executor not to properly terminate. (See the
1903 >     * advisory notes for class {@link ForkJoinTask} stating that
1904 >     * tasks should not normally entail blocking operations.  But if
1905 >     * they do, they must abort them on interrupt.)
1906       *
1907 <     * @return {@code true} if terminating
1907 >     * @return {@code true} if terminating but not yet terminated
1908       */
1909      public boolean isTerminating() {
1910 <        return runStateOf(runControl) >= TERMINATING;
1910 >        long c = ctl;
1911 >        return ((c & STOP_BIT) != 0L &&
1912 >                (short)(c >>> TC_SHIFT) != -parallelism);
1913 >    }
1914 >
1915 >    /**
1916 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1917 >     */
1918 >    final boolean isAtLeastTerminating() {
1919 >        return (ctl & STOP_BIT) != 0L;
1920      }
1921  
1922      /**
# Line 1172 | Line 1925 | public class ForkJoinPool extends Abstra
1925       * @return {@code true} if this pool has been shut down
1926       */
1927      public boolean isShutdown() {
1928 <        return runStateOf(runControl) >= SHUTDOWN;
1928 >        return shutdown;
1929      }
1930  
1931      /**
# Line 1189 | Line 1942 | public class ForkJoinPool extends Abstra
1942      public boolean awaitTermination(long timeout, TimeUnit unit)
1943          throws InterruptedException {
1944          long nanos = unit.toNanos(timeout);
1945 <        final ReentrantLock lock = this.workerLock;
1945 >        final ReentrantLock lock = this.submissionLock;
1946          lock.lock();
1947          try {
1948              for (;;) {
# Line 1204 | Line 1957 | public class ForkJoinPool extends Abstra
1957          }
1958      }
1959  
1207    // Shutdown and termination support
1208
1209    /**
1210     * Callback from terminating worker. Nulls out the corresponding
1211     * workers slot, and if terminating, tries to terminate; else
1212     * tries to shrink workers array.
1213     *
1214     * @param w the worker
1215     */
1216    final void workerTerminated(ForkJoinWorkerThread w) {
1217        updateStealCount(w);
1218        updateWorkerCount(-1);
1219        final ReentrantLock lock = this.workerLock;
1220        lock.lock();
1221        try {
1222            ForkJoinWorkerThread[] ws = workers;
1223            if (ws != null) {
1224                int idx = w.poolIndex;
1225                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1226                    ws[idx] = null;
1227                if (totalCountOf(workerCounts) == 0) {
1228                    terminate(); // no-op if already terminating
1229                    transitionRunStateTo(TERMINATED);
1230                    termination.signalAll();
1231                }
1232                else if (!isTerminating()) {
1233                    tryShrinkWorkerArray();
1234                    tryResumeSpare(true); // allow replacement
1235                }
1236            }
1237        } finally {
1238            lock.unlock();
1239        }
1240        signalIdleWorkers();
1241    }
1242
1243    /**
1244     * Initiates termination.
1245     */
1246    private void terminate() {
1247        if (transitionRunStateTo(TERMINATING)) {
1248            stopAllWorkers();
1249            resumeAllSpares();
1250            signalIdleWorkers();
1251            cancelQueuedSubmissions();
1252            cancelQueuedWorkerTasks();
1253            interruptUnterminatedWorkers();
1254            signalIdleWorkers(); // resignal after interrupt
1255        }
1256    }
1257
1258    /**
1259     * Possibly terminates when on shutdown state.
1260     */
1261    private void terminateOnShutdown() {
1262        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1263            terminate();
1264    }
1265
1266    /**
1267     * Clears out and cancels submissions.
1268     */
1269    private void cancelQueuedSubmissions() {
1270        ForkJoinTask<?> task;
1271        while ((task = pollSubmission()) != null)
1272            task.cancel(false);
1273    }
1274
1275    /**
1276     * Cleans out worker queues.
1277     */
1278    private void cancelQueuedWorkerTasks() {
1279        final ReentrantLock lock = this.workerLock;
1280        lock.lock();
1281        try {
1282            ForkJoinWorkerThread[] ws = workers;
1283            if (ws != null) {
1284                for (int i = 0; i < ws.length; ++i) {
1285                    ForkJoinWorkerThread t = ws[i];
1286                    if (t != null)
1287                        t.cancelTasks();
1288                }
1289            }
1290        } finally {
1291            lock.unlock();
1292        }
1293    }
1294
1295    /**
1296     * Sets each worker's status to terminating. Requires lock to avoid
1297     * conflicts with add/remove.
1298     */
1299    private void stopAllWorkers() {
1300        final ReentrantLock lock = this.workerLock;
1301        lock.lock();
1302        try {
1303            ForkJoinWorkerThread[] ws = workers;
1304            if (ws != null) {
1305                for (int i = 0; i < ws.length; ++i) {
1306                    ForkJoinWorkerThread t = ws[i];
1307                    if (t != null)
1308                        t.shutdownNow();
1309                }
1310            }
1311        } finally {
1312            lock.unlock();
1313        }
1314    }
1315
1316    /**
1317     * Interrupts all unterminated workers.  This is not required for
1318     * sake of internal control, but may help unstick user code during
1319     * shutdown.
1320     */
1321    private void interruptUnterminatedWorkers() {
1322        final ReentrantLock lock = this.workerLock;
1323        lock.lock();
1324        try {
1325            ForkJoinWorkerThread[] ws = workers;
1326            if (ws != null) {
1327                for (int i = 0; i < ws.length; ++i) {
1328                    ForkJoinWorkerThread t = ws[i];
1329                    if (t != null && !t.isTerminated()) {
1330                        try {
1331                            t.interrupt();
1332                        } catch (SecurityException ignore) {
1333                        }
1334                    }
1335                }
1336            }
1337        } finally {
1338            lock.unlock();
1339        }
1340    }
1341
1342
1343    /*
1344     * Nodes for event barrier to manage idle threads.  Queue nodes
1345     * are basic Treiber stack nodes, also used for spare stack.
1346     *
1347     * The event barrier has an event count and a wait queue (actually
1348     * a Treiber stack).  Workers are enabled to look for work when
1349     * the eventCount is incremented. If they fail to find work, they
1350     * may wait for next count. Upon release, threads help others wake
1351     * up.
1352     *
1353     * Synchronization events occur only in enough contexts to
1354     * maintain overall liveness:
1355     *
1356     *   - Submission of a new task to the pool
1357     *   - Resizes or other changes to the workers array
1358     *   - pool termination
1359     *   - A worker pushing a task on an empty queue
1360     *
1361     * The case of pushing a task occurs often enough, and is heavy
1362     * enough compared to simple stack pushes, to require special
1363     * handling: Method signalWork returns without advancing count if
1364     * the queue appears to be empty.  This would ordinarily result in
1365     * races causing some queued waiters not to be woken up. To avoid
1366     * this, the first worker enqueued in method sync (see
1367     * syncIsReleasable) rescans for tasks after being enqueued, and
1368     * helps signal if any are found. This works well because the
1369     * worker has nothing better to do, and so might as well help
1370     * alleviate the overhead and contention on the threads actually
1371     * doing work.  Also, since event counts increments on task
1372     * availability exist to maintain liveness (rather than to force
1373     * refreshes etc), it is OK for callers to exit early if
1374     * contending with another signaller.
1375     */
1376    static final class WaitQueueNode {
1377        WaitQueueNode next; // only written before enqueued
1378        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1379        final long count; // unused for spare stack
1380
1381        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1382            count = c;
1383            thread = w;
1384        }
1385
1386        /**
1387         * Wakes up waiter, returning false if known to already
1388         */
1389        boolean signal() {
1390            ForkJoinWorkerThread t = thread;
1391            if (t == null)
1392                return false;
1393            thread = null;
1394            LockSupport.unpark(t);
1395            return true;
1396        }
1397
1398        /**
1399         * Awaits release on sync.
1400         */
1401        void awaitSyncRelease(ForkJoinPool p) {
1402            while (thread != null && !p.syncIsReleasable(this))
1403                LockSupport.park(this);
1404        }
1405
1406        /**
1407         * Awaits resumption as spare.
1408         */
1409        void awaitSpareRelease() {
1410            while (thread != null) {
1411                if (!Thread.interrupted())
1412                    LockSupport.park(this);
1413            }
1414        }
1415    }
1416
1417    /**
1418     * Ensures that no thread is waiting for count to advance from the
1419     * current value of eventCount read on entry to this method, by
1420     * releasing waiting threads if necessary.
1421     *
1422     * @return the count
1423     */
1424    final long ensureSync() {
1425        long c = eventCount;
1426        WaitQueueNode q;
1427        while ((q = syncStack) != null && q.count < c) {
1428            if (casBarrierStack(q, null)) {
1429                do {
1430                    q.signal();
1431                } while ((q = q.next) != null);
1432                break;
1433            }
1434        }
1435        return c;
1436    }
1437
1438    /**
1439     * Increments event count and releases waiting threads.
1440     */
1441    private void signalIdleWorkers() {
1442        long c;
1443        do {} while (!casEventCount(c = eventCount, c+1));
1444        ensureSync();
1445    }
1446
1447    /**
1448     * Signals threads waiting to poll a task. Because method sync
1449     * rechecks availability, it is OK to only proceed if queue
1450     * appears to be non-empty, and OK to skip under contention to
1451     * increment count (since some other thread succeeded).
1452     */
1453    final void signalWork() {
1454        long c;
1455        WaitQueueNode q;
1456        if (syncStack != null &&
1457            casEventCount(c = eventCount, c+1) &&
1458            (((q = syncStack) != null && q.count <= c) &&
1459             (!casBarrierStack(q, q.next) || !q.signal())))
1460            ensureSync();
1461    }
1462
1463    /**
1464     * Waits until event count advances from last value held by
1465     * caller, or if excess threads, caller is resumed as spare, or
1466     * caller or pool is terminating. Updates caller's event on exit.
1467     *
1468     * @param w the calling worker thread
1469     */
1470    final void sync(ForkJoinWorkerThread w) {
1471        updateStealCount(w); // Transfer w's count while it is idle
1472
1473        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1474            long prev = w.lastEventCount;
1475            WaitQueueNode node = null;
1476            WaitQueueNode h;
1477            while (eventCount == prev &&
1478                   ((h = syncStack) == null || h.count == prev)) {
1479                if (node == null)
1480                    node = new WaitQueueNode(prev, w);
1481                if (casBarrierStack(node.next = h, node)) {
1482                    node.awaitSyncRelease(this);
1483                    break;
1484                }
1485            }
1486            long ec = ensureSync();
1487            if (ec != prev) {
1488                w.lastEventCount = ec;
1489                break;
1490            }
1491        }
1492    }
1493
1494    /**
1495     * Returns true if worker waiting on sync can proceed:
1496     *  - on signal (thread == null)
1497     *  - on event count advance (winning race to notify vs signaller)
1498     *  - on interrupt
1499     *  - if the first queued node, we find work available
1500     * If node was not signalled and event count not advanced on exit,
1501     * then we also help advance event count.
1502     *
1503     * @return true if node can be released
1504     */
1505    final boolean syncIsReleasable(WaitQueueNode node) {
1506        long prev = node.count;
1507        if (!Thread.interrupted() && node.thread != null &&
1508            (node.next != null ||
1509             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1510            eventCount == prev)
1511            return false;
1512        if (node.thread != null) {
1513            node.thread = null;
1514            long ec = eventCount;
1515            if (prev <= ec) // help signal
1516                casEventCount(ec, ec+1);
1517        }
1518        return true;
1519    }
1520
1521    /**
1522     * Returns true if a new sync event occurred since last call to
1523     * sync or this method, if so, updating caller's count.
1524     */
1525    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1526        long lc = w.lastEventCount;
1527        long ec = ensureSync();
1528        if (ec == lc)
1529            return false;
1530        w.lastEventCount = ec;
1531        return true;
1532    }
1533
1534    //  Parallelism maintenance
1535
1536    /**
1537     * Decrements running count; if too low, adds spare.
1538     *
1539     * Conceptually, all we need to do here is add or resume a
1540     * spare thread when one is about to block (and remove or
1541     * suspend it later when unblocked -- see suspendIfSpare).
1542     * However, implementing this idea requires coping with
1543     * several problems: we have imperfect information about the
1544     * states of threads. Some count updates can and usually do
1545     * lag run state changes, despite arrangements to keep them
1546     * accurate (for example, when possible, updating counts
1547     * before signalling or resuming), especially when running on
1548     * dynamic JVMs that don't optimize the infrequent paths that
1549     * update counts. Generating too many threads can make these
1550     * problems become worse, because excess threads are more
1551     * likely to be context-switched with others, slowing them all
1552     * down, especially if there is no work available, so all are
1553     * busy scanning or idling.  Also, excess spare threads can
1554     * only be suspended or removed when they are idle, not
1555     * immediately when they aren't needed. So adding threads will
1556     * raise parallelism level for longer than necessary.  Also,
1557     * FJ applications often encounter highly transient peaks when
1558     * many threads are blocked joining, but for less time than it
1559     * takes to create or resume spares.
1560     *
1561     * @param joinMe if non-null, return early if done
1562     * @param maintainParallelism if true, try to stay within
1563     * target counts, else create only to avoid starvation
1564     * @return true if joinMe known to be done
1565     */
1566    final boolean preJoin(ForkJoinTask<?> joinMe,
1567                          boolean maintainParallelism) {
1568        maintainParallelism &= maintainsParallelism; // overrride
1569        boolean dec = false;  // true when running count decremented
1570        while (spareStack == null || !tryResumeSpare(dec)) {
1571            int counts = workerCounts;
1572            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1573                // CAS cheat
1574                if (!needSpare(counts, maintainParallelism))
1575                    break;
1576                if (joinMe.status < 0)
1577                    return true;
1578                if (tryAddSpare(counts))
1579                    break;
1580            }
1581        }
1582        return false;
1583    }
1584
1585    /**
1586     * Same idea as preJoin
1587     */
1588    final boolean preBlock(ManagedBlocker blocker,
1589                           boolean maintainParallelism) {
1590        maintainParallelism &= maintainsParallelism;
1591        boolean dec = false;
1592        while (spareStack == null || !tryResumeSpare(dec)) {
1593            int counts = workerCounts;
1594            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1595                if (!needSpare(counts, maintainParallelism))
1596                    break;
1597                if (blocker.isReleasable())
1598                    return true;
1599                if (tryAddSpare(counts))
1600                    break;
1601            }
1602        }
1603        return false;
1604    }
1605
1606    /**
1607     * Returns true if a spare thread appears to be needed.  If
1608     * maintaining parallelism, returns true when the deficit in
1609     * running threads is more than the surplus of total threads, and
1610     * there is apparently some work to do.  This self-limiting rule
1611     * means that the more threads that have already been added, the
1612     * less parallelism we will tolerate before adding another.
1613     *
1614     * @param counts current worker counts
1615     * @param maintainParallelism try to maintain parallelism
1616     */
1617    private boolean needSpare(int counts, boolean maintainParallelism) {
1618        int ps = parallelism;
1619        int rc = runningCountOf(counts);
1620        int tc = totalCountOf(counts);
1621        int runningDeficit = ps - rc;
1622        int totalSurplus = tc - ps;
1623        return (tc < maxPoolSize &&
1624                (rc == 0 || totalSurplus < 0 ||
1625                 (maintainParallelism &&
1626                  runningDeficit > totalSurplus &&
1627                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1628    }
1629
1630    /**
1631     * Adds a spare worker if lock available and no more than the
1632     * expected numbers of threads exist.
1633     *
1634     * @return true if successful
1635     */
1636    private boolean tryAddSpare(int expectedCounts) {
1637        final ReentrantLock lock = this.workerLock;
1638        int expectedRunning = runningCountOf(expectedCounts);
1639        int expectedTotal = totalCountOf(expectedCounts);
1640        boolean success = false;
1641        boolean locked = false;
1642        // confirm counts while locking; CAS after obtaining lock
1643        try {
1644            for (;;) {
1645                int s = workerCounts;
1646                int tc = totalCountOf(s);
1647                int rc = runningCountOf(s);
1648                if (rc > expectedRunning || tc > expectedTotal)
1649                    break;
1650                if (!locked && !(locked = lock.tryLock()))
1651                    break;
1652                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1653                    createAndStartSpare(tc);
1654                    success = true;
1655                    break;
1656                }
1657            }
1658        } finally {
1659            if (locked)
1660                lock.unlock();
1661        }
1662        return success;
1663    }
1664
1665    /**
1666     * Adds the kth spare worker. On entry, pool counts are already
1667     * adjusted to reflect addition.
1668     */
1669    private void createAndStartSpare(int k) {
1670        ForkJoinWorkerThread w = null;
1671        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1672        int len = ws.length;
1673        // Probably, we can place at slot k. If not, find empty slot
1674        if (k < len && ws[k] != null) {
1675            for (k = 0; k < len && ws[k] != null; ++k)
1676                ;
1677        }
1678        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1679            ws[k] = w;
1680            w.start();
1681        }
1682        else
1683            updateWorkerCount(-1); // adjust on failure
1684        signalIdleWorkers();
1685    }
1686
1687    /**
1688     * Suspends calling thread w if there are excess threads.  Called
1689     * only from sync.  Spares are enqueued in a Treiber stack using
1690     * the same WaitQueueNodes as barriers.  They are resumed mainly
1691     * in preJoin, but are also woken on pool events that require all
1692     * threads to check run state.
1693     *
1694     * @param w the caller
1695     */
1696    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1697        WaitQueueNode node = null;
1698        int s;
1699        while (parallelism < runningCountOf(s = workerCounts)) {
1700            if (node == null)
1701                node = new WaitQueueNode(0, w);
1702            if (casWorkerCounts(s, s-1)) { // representation-dependent
1703                // push onto stack
1704                do {} while (!casSpareStack(node.next = spareStack, node));
1705                // block until released by resumeSpare
1706                node.awaitSpareRelease();
1707                return true;
1708            }
1709        }
1710        return false;
1711    }
1712
1713    /**
1714     * Tries to pop and resume a spare thread.
1715     *
1716     * @param updateCount if true, increment running count on success
1717     * @return true if successful
1718     */
1719    private boolean tryResumeSpare(boolean updateCount) {
1720        WaitQueueNode q;
1721        while ((q = spareStack) != null) {
1722            if (casSpareStack(q, q.next)) {
1723                if (updateCount)
1724                    updateRunningCount(1);
1725                q.signal();
1726                return true;
1727            }
1728        }
1729        return false;
1730    }
1731
1732    /**
1733     * Pops and resumes all spare threads. Same idea as ensureSync.
1734     *
1735     * @return true if any spares released
1736     */
1737    private boolean resumeAllSpares() {
1738        WaitQueueNode q;
1739        while ( (q = spareStack) != null) {
1740            if (casSpareStack(q, null)) {
1741                do {
1742                    updateRunningCount(1);
1743                    q.signal();
1744                } while ((q = q.next) != null);
1745                return true;
1746            }
1747        }
1748        return false;
1749    }
1750
1751    /**
1752     * Pops and shuts down excessive spare threads. Call only while
1753     * holding lock. This is not guaranteed to eliminate all excess
1754     * threads, only those suspended as spares, which are the ones
1755     * unlikely to be needed in the future.
1756     */
1757    private void trimSpares() {
1758        int surplus = totalCountOf(workerCounts) - parallelism;
1759        WaitQueueNode q;
1760        while (surplus > 0 && (q = spareStack) != null) {
1761            if (casSpareStack(q, null)) {
1762                do {
1763                    updateRunningCount(1);
1764                    ForkJoinWorkerThread w = q.thread;
1765                    if (w != null && surplus > 0 &&
1766                        runningCountOf(workerCounts) > 0 && w.shutdown())
1767                        --surplus;
1768                    q.signal();
1769                } while ((q = q.next) != null);
1770            }
1771        }
1772    }
1773
1960      /**
1961       * Interface for extending managed parallelism for tasks running
1962 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1963 <     * Method {@code isReleasable} must return true if blocking is not
1964 <     * necessary. Method {@code block} blocks the current thread if
1965 <     * necessary (perhaps internally invoking {@code isReleasable}
1966 <     * before actually blocking.).
1962 >     * in {@link ForkJoinPool}s.
1963 >     *
1964 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1965 >     * {@code isReleasable} must return {@code true} if blocking is
1966 >     * not necessary. Method {@code block} blocks the current thread
1967 >     * if necessary (perhaps internally invoking {@code isReleasable}
1968 >     * before actually blocking). The unusual methods in this API
1969 >     * accommodate synchronizers that may, but don't usually, block
1970 >     * for long periods. Similarly, they allow more efficient internal
1971 >     * handling of cases in which additional workers may be, but
1972 >     * usually are not, needed to ensure sufficient parallelism.
1973 >     * Toward this end, implementations of method {@code isReleasable}
1974 >     * must be amenable to repeated invocation.
1975       *
1976       * <p>For example, here is a ManagedBlocker based on a
1977       * ReentrantLock:
# Line 1795 | Line 1989 | public class ForkJoinPool extends Abstra
1989       *     return hasLock || (hasLock = lock.tryLock());
1990       *   }
1991       * }}</pre>
1992 +     *
1993 +     * <p>Here is a class that possibly blocks waiting for an
1994 +     * item on a given queue:
1995 +     *  <pre> {@code
1996 +     * class QueueTaker<E> implements ManagedBlocker {
1997 +     *   final BlockingQueue<E> queue;
1998 +     *   volatile E item = null;
1999 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2000 +     *   public boolean block() throws InterruptedException {
2001 +     *     if (item == null)
2002 +     *       item = queue.take();
2003 +     *     return true;
2004 +     *   }
2005 +     *   public boolean isReleasable() {
2006 +     *     return item != null || (item = queue.poll()) != null;
2007 +     *   }
2008 +     *   public E getItem() { // call after pool.managedBlock completes
2009 +     *     return item;
2010 +     *   }
2011 +     * }}</pre>
2012       */
2013      public static interface ManagedBlocker {
2014          /**
2015           * Possibly blocks the current thread, for example waiting for
2016           * a lock or condition.
2017           *
2018 <         * @return true if no additional blocking is necessary (i.e.,
2019 <         * if isReleasable would return true)
2018 >         * @return {@code true} if no additional blocking is necessary
2019 >         * (i.e., if isReleasable would return true)
2020           * @throws InterruptedException if interrupted while waiting
2021           * (the method is not required to do so, but is allowed to)
2022           */
2023          boolean block() throws InterruptedException;
2024  
2025          /**
2026 <         * Returns true if blocking is unnecessary.
2026 >         * Returns {@code true} if blocking is unnecessary.
2027           */
2028          boolean isReleasable();
2029      }
2030  
2031      /**
2032       * Blocks in accord with the given blocker.  If the current thread
2033 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
2034 <     * spare thread to be activated if necessary to ensure parallelism
2035 <     * while the current thread is blocked.  If
1822 <     * {@code maintainParallelism} is true and the pool supports
1823 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1824 <     * maintain the pool's nominal parallelism. Otherwise it activates
1825 <     * a thread only if necessary to avoid complete starvation. This
1826 <     * option may be preferable when blockages use timeouts, or are
1827 <     * almost always brief.
2033 >     * is a {@link ForkJoinWorkerThread}, this method possibly
2034 >     * arranges for a spare thread to be activated if necessary to
2035 >     * ensure sufficient parallelism while the current thread is blocked.
2036       *
2037 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
2038 <     * equivalent to
2037 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
2038 >     * behaviorally equivalent to
2039       *  <pre> {@code
2040       * while (!blocker.isReleasable())
2041       *   if (blocker.block())
2042       *     return;
2043       * }</pre>
2044 <     * If the caller is a ForkJoinTask, then the pool may first
2045 <     * be expanded to ensure parallelism, and later adjusted.
2044 >     *
2045 >     * If the caller is a {@code ForkJoinTask}, then the pool may
2046 >     * first be expanded to ensure parallelism, and later adjusted.
2047       *
2048       * @param blocker the blocker
1840     * @param maintainParallelism if true and supported by this pool,
1841     * attempt to maintain the pool's nominal parallelism; otherwise
1842     * activate a thread only if necessary to avoid complete
1843     * starvation.
2049       * @throws InterruptedException if blocker.block did so
2050       */
2051 <    public static void managedBlock(ManagedBlocker blocker,
1847 <                                    boolean maintainParallelism)
2051 >    public static void managedBlock(ManagedBlocker blocker)
2052          throws InterruptedException {
2053          Thread t = Thread.currentThread();
2054 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
2055 <                             ((ForkJoinWorkerThread) t).pool : null);
2056 <        if (!blocker.isReleasable()) {
2057 <            try {
2058 <                if (pool == null ||
2059 <                    !pool.preBlock(blocker, maintainParallelism))
1856 <                    awaitBlocker(blocker);
1857 <            } finally {
1858 <                if (pool != null)
1859 <                    pool.updateRunningCount(1);
1860 <            }
2054 >        if (t instanceof ForkJoinWorkerThread) {
2055 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2056 >            w.pool.awaitBlocker(blocker);
2057 >        }
2058 >        else {
2059 >            do {} while (!blocker.isReleasable() && !blocker.block());
2060          }
2061      }
2062  
2063 <    private static void awaitBlocker(ManagedBlocker blocker)
2064 <        throws InterruptedException {
2065 <        do {} while (!blocker.isReleasable() && !blocker.block());
1867 <    }
1868 <
1869 <    // AbstractExecutorService overrides
2063 >    // AbstractExecutorService overrides.  These rely on undocumented
2064 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
2065 >    // implement RunnableFuture.
2066  
2067      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
2068 <        return new AdaptedRunnable<T>(runnable, value);
2068 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
2069      }
2070  
2071      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
2072 <        return new AdaptedCallable<T>(callable);
2072 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
2073      }
2074  
2075 +    // Unsafe mechanics
2076 +    private static final sun.misc.Unsafe UNSAFE;
2077 +    private static final long ctlOffset;
2078 +    private static final long stealCountOffset;
2079 +    private static final long blockedCountOffset;
2080 +    private static final long quiescerCountOffset;
2081 +    private static final long scanGuardOffset;
2082 +    private static final long nextWorkerNumberOffset;
2083 +    private static final long ABASE;
2084 +    private static final int ASHIFT;
2085 +
2086 +    static {
2087 +        poolNumberGenerator = new AtomicInteger();
2088 +        workerSeedGenerator = new Random();
2089 +        modifyThreadPermission = new RuntimePermission("modifyThread");
2090 +        defaultForkJoinWorkerThreadFactory =
2091 +            new DefaultForkJoinWorkerThreadFactory();
2092 +        int s;
2093 +        try {
2094 +            UNSAFE = getUnsafe();
2095 +            Class k = ForkJoinPool.class;
2096 +            ctlOffset = UNSAFE.objectFieldOffset
2097 +                (k.getDeclaredField("ctl"));
2098 +            stealCountOffset = UNSAFE.objectFieldOffset
2099 +                (k.getDeclaredField("stealCount"));
2100 +            blockedCountOffset = UNSAFE.objectFieldOffset
2101 +                (k.getDeclaredField("blockedCount"));
2102 +            quiescerCountOffset = UNSAFE.objectFieldOffset
2103 +                (k.getDeclaredField("quiescerCount"));
2104 +            scanGuardOffset = UNSAFE.objectFieldOffset
2105 +                (k.getDeclaredField("scanGuard"));
2106 +            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2107 +                (k.getDeclaredField("nextWorkerNumber"));
2108 +            Class a = ForkJoinTask[].class;
2109 +            ABASE = UNSAFE.arrayBaseOffset(a);
2110 +            s = UNSAFE.arrayIndexScale(a);
2111 +        } catch (Exception e) {
2112 +            throw new Error(e);
2113 +        }
2114 +        if ((s & (s-1)) != 0)
2115 +            throw new Error("data type scale not a power of two");
2116 +        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2117 +    }
2118  
2119 <    // Unsafe mechanics for jsr166y 3rd party package.
2119 >    /**
2120 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
2121 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
2122 >     * into a jdk.
2123 >     *
2124 >     * @return a sun.misc.Unsafe
2125 >     */
2126      private static sun.misc.Unsafe getUnsafe() {
2127          try {
2128              return sun.misc.Unsafe.getUnsafe();
2129          } catch (SecurityException se) {
2130              try {
2131                  return java.security.AccessController.doPrivileged
2132 <                    (new java.security.PrivilegedExceptionAction<sun.misc.Unsafe>() {
2132 >                    (new java.security
2133 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
2134                          public sun.misc.Unsafe run() throws Exception {
2135 <                            return getUnsafeByReflection();
2135 >                            java.lang.reflect.Field f = sun.misc
2136 >                                .Unsafe.class.getDeclaredField("theUnsafe");
2137 >                            f.setAccessible(true);
2138 >                            return (sun.misc.Unsafe) f.get(null);
2139                          }});
2140              } catch (java.security.PrivilegedActionException e) {
2141                  throw new RuntimeException("Could not initialize intrinsics",
# Line 1894 | Line 2143 | public class ForkJoinPool extends Abstra
2143              }
2144          }
2145      }
1897
1898    private static sun.misc.Unsafe getUnsafeByReflection()
1899            throws NoSuchFieldException, IllegalAccessException {
1900        java.lang.reflect.Field f =
1901            sun.misc.Unsafe.class.getDeclaredField("theUnsafe");
1902        f.setAccessible(true);
1903        return (sun.misc.Unsafe) f.get(null);
1904    }
1905
1906    private static long fieldOffset(String fieldName, Class<?> klazz) {
1907        try {
1908            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(fieldName));
1909        } catch (NoSuchFieldException e) {
1910            // Convert Exception to Error
1911            NoSuchFieldError error = new NoSuchFieldError(fieldName);
1912            error.initCause(e);
1913            throw error;
1914        }
1915    }
1916
1917    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1918    private static final long eventCountOffset =
1919        fieldOffset("eventCount", ForkJoinPool.class);
1920    private static final long workerCountsOffset =
1921        fieldOffset("workerCounts", ForkJoinPool.class);
1922    private static final long runControlOffset =
1923        fieldOffset("runControl", ForkJoinPool.class);
1924    private static final long syncStackOffset =
1925        fieldOffset("syncStack",ForkJoinPool.class);
1926    private static final long spareStackOffset =
1927        fieldOffset("spareStack", ForkJoinPool.class);
1928
1929    private boolean casEventCount(long cmp, long val) {
1930        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1931    }
1932    private boolean casWorkerCounts(int cmp, int val) {
1933        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1934    }
1935    private boolean casRunControl(int cmp, int val) {
1936        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1937    }
1938    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1939        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1940    }
1941    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1942        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1943    }
2146   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines