ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.3 by dl, Wed Jan 7 19:12:36 2009 UTC vs.
Revision 1.169 by jsr166, Wed Jan 2 07:43:50 2013 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8 < import java.util.*;
9 < import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
8 >
9 > import java.util.ArrayList;
10 > import java.util.Arrays;
11 > import java.util.Collection;
12 > import java.util.Collections;
13 > import java.util.List;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21  
22   /**
23 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
24 < * ForkJoinPool provides the entry point for submissions from
25 < * non-ForkJoinTasks, as well as management and monitoring operations.
26 < * Normally a single ForkJoinPool is used for a large number of
27 < * submitted tasks. Otherwise, use would not usually outweigh the
28 < * construction and bookkeeping overhead of creating a large set of
29 < * threads.
23 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
24 > * A {@code ForkJoinPool} provides the entry point for submissions
25 > * from non-{@code ForkJoinTask} clients, as well as management and
26 > * monitoring operations.
27 > *
28 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
29 > * ExecutorService} mainly by virtue of employing
30 > * <em>work-stealing</em>: all threads in the pool attempt to find and
31 > * execute tasks submitted to the pool and/or created by other active
32 > * tasks (eventually blocking waiting for work if none exist). This
33 > * enables efficient processing when most tasks spawn other subtasks
34 > * (as do most {@code ForkJoinTask}s), as well as when many small
35 > * tasks are submitted to the pool from external clients.  Especially
36 > * when setting <em>asyncMode</em> to true in constructors, {@code
37 > * ForkJoinPool}s may also be appropriate for use with event-style
38 > * tasks that are never joined.
39   *
40 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
41 < * that they provide <em>work-stealing</em>: all threads in the pool
42 < * attempt to find and execute subtasks created by other active tasks
43 < * (eventually blocking if none exist). This makes them efficient when
44 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
45 < * as the mixed execution of some plain Runnable- or Callable- based
30 < * activities along with ForkJoinTasks. Otherwise, other
31 < * ExecutorService implementations are typically more appropriate
32 < * choices.
40 > * <p>A static {@link #commonPool()} is available and appropriate for
41 > * most applications. The common pool is used by any ForkJoinTask that
42 > * is not explicitly submitted to a specified pool. Using the common
43 > * pool normally reduces resource usage (its threads are slowly
44 > * reclaimed during periods of non-use, and reinstated upon subsequent
45 > * use).
46   *
47 < * <p>A ForkJoinPool may be constructed with a given parallelism level
48 < * (target pool size), which it attempts to maintain by dynamically
49 < * adding, suspending, or resuming threads, even if some tasks are
50 < * waiting to join others. However, no such adjustments are performed
51 < * in the face of blocked IO or other unmanaged synchronization. The
52 < * nested <code>ManagedBlocker</code> interface enables extension of
53 < * the kinds of synchronization accommodated.  The target parallelism
54 < * level may also be changed dynamically (<code>setParallelism</code>)
55 < * and dynamically thread construction can be limited using methods
56 < * <code>setMaximumPoolSize</code> and/or
44 < * <code>setMaintainsParallelism</code>.
47 > * <p>For applications that require separate or custom pools, a {@code
48 > * ForkJoinPool} may be constructed with a given target parallelism
49 > * level; by default, equal to the number of available processors. The
50 > * pool attempts to maintain enough active (or available) threads by
51 > * dynamically adding, suspending, or resuming internal worker
52 > * threads, even if some tasks are stalled waiting to join
53 > * others. However, no such adjustments are guaranteed in the face of
54 > * blocked I/O or other unmanaged synchronization. The nested {@link
55 > * ManagedBlocker} interface enables extension of the kinds of
56 > * synchronization accommodated.
57   *
58   * <p>In addition to execution and lifecycle control methods, this
59   * class provides status check methods (for example
60 < * <code>getStealCount</code>) that are intended to aid in developing,
60 > * {@link #getStealCount}) that are intended to aid in developing,
61   * tuning, and monitoring fork/join applications. Also, method
62 < * <code>toString</code> returns indications of pool state in a
62 > * {@link #toString} returns indications of pool state in a
63   * convenient form for informal monitoring.
64   *
65 + * <p>As is the case with other ExecutorServices, there are three
66 + * main task execution methods summarized in the following table.
67 + * These are designed to be used primarily by clients not already
68 + * engaged in fork/join computations in the current pool.  The main
69 + * forms of these methods accept instances of {@code ForkJoinTask},
70 + * but overloaded forms also allow mixed execution of plain {@code
71 + * Runnable}- or {@code Callable}- based activities as well.  However,
72 + * tasks that are already executing in a pool should normally instead
73 + * use the within-computation forms listed in the table unless using
74 + * async event-style tasks that are not usually joined, in which case
75 + * there is little difference among choice of methods.
76 + *
77 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
78 + *  <tr>
79 + *    <td></td>
80 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
81 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Arrange async execution</td>
85 + *    <td> {@link #execute(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#fork}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Await and obtain result</td>
90 + *    <td> {@link #invoke(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#invoke}</td>
92 + *  </tr>
93 + *  <tr>
94 + *    <td> <b>Arrange exec and obtain Future</td>
95 + *    <td> {@link #submit(ForkJoinTask)}</td>
96 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
97 + *  </tr>
98 + * </table>
99 + *
100 + * <p>The common pool is by default constructed with default
101 + * parameters, but these may be controlled by setting three {@link
102 + * System#getProperty system properties} with prefix {@code
103 + * java.util.concurrent.ForkJoinPool.common}: {@code parallelism} --
104 + * an integer greater than zero, {@code threadFactory} -- the class
105 + * name of a {@link ForkJoinWorkerThreadFactory}, and {@code
106 + * exceptionHandler} -- the class name of a {@link
107 + * java.lang.Thread.UncaughtExceptionHandler
108 + * Thread.UncaughtExceptionHandler}. Upon any error in establishing
109 + * these settings, default parameters are used.
110 + *
111   * <p><b>Implementation notes</b>: This implementation restricts the
112   * maximum number of running threads to 32767. Attempts to create
113 < * pools with greater than the maximum result in
114 < * IllegalArgumentExceptions.
113 > * pools with greater than the maximum number result in
114 > * {@code IllegalArgumentException}.
115 > *
116 > * <p>This implementation rejects submitted tasks (that is, by throwing
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119 > *
120 > * @since 1.7
121 > * @author Doug Lea
122   */
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
126 >     * Implementation Overview
127 >     *
128 >     * This class and its nested classes provide the main
129 >     * functionality and control for a set of worker threads:
130 >     * Submissions from non-FJ threads enter into submission queues.
131 >     * Workers take these tasks and typically split them into subtasks
132 >     * that may be stolen by other workers.  Preference rules give
133 >     * first priority to processing tasks from their own queues (LIFO
134 >     * or FIFO, depending on mode), then to randomized FIFO steals of
135 >     * tasks in other queues.
136 >     *
137 >     * WorkQueues
138 >     * ==========
139 >     *
140 >     * Most operations occur within work-stealing queues (in nested
141 >     * class WorkQueue).  These are special forms of Deques that
142 >     * support only three of the four possible end-operations -- push,
143 >     * pop, and poll (aka steal), under the further constraints that
144 >     * push and pop are called only from the owning thread (or, as
145 >     * extended here, under a lock), while poll may be called from
146 >     * other threads.  (If you are unfamiliar with them, you probably
147 >     * want to read Herlihy and Shavit's book "The Art of
148 >     * Multiprocessor programming", chapter 16 describing these in
149 >     * more detail before proceeding.)  The main work-stealing queue
150 >     * design is roughly similar to those in the papers "Dynamic
151 >     * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
152 >     * (http://research.sun.com/scalable/pubs/index.html) and
153 >     * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
154 >     * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
155 >     * The main differences ultimately stem from GC requirements that
156 >     * we null out taken slots as soon as we can, to maintain as small
157 >     * a footprint as possible even in programs generating huge
158 >     * numbers of tasks. To accomplish this, we shift the CAS
159 >     * arbitrating pop vs poll (steal) from being on the indices
160 >     * ("base" and "top") to the slots themselves.  So, both a
161 >     * successful pop and poll mainly entail a CAS of a slot from
162 >     * non-null to null.  Because we rely on CASes of references, we
163 >     * do not need tag bits on base or top.  They are simple ints as
164 >     * used in any circular array-based queue (see for example
165 >     * ArrayDeque).  Updates to the indices must still be ordered in a
166 >     * way that guarantees that top == base means the queue is empty,
167 >     * but otherwise may err on the side of possibly making the queue
168 >     * appear nonempty when a push, pop, or poll have not fully
169 >     * committed. Note that this means that the poll operation,
170 >     * considered individually, is not wait-free. One thief cannot
171 >     * successfully continue until another in-progress one (or, if
172 >     * previously empty, a push) completes.  However, in the
173 >     * aggregate, we ensure at least probabilistic non-blockingness.
174 >     * If an attempted steal fails, a thief always chooses a different
175 >     * random victim target to try next. So, in order for one thief to
176 >     * progress, it suffices for any in-progress poll or new push on
177 >     * any empty queue to complete. (This is why we normally use
178 >     * method pollAt and its variants that try once at the apparent
179 >     * base index, else consider alternative actions, rather than
180 >     * method poll.)
181 >     *
182 >     * This approach also enables support of a user mode in which local
183 >     * task processing is in FIFO, not LIFO order, simply by using
184 >     * poll rather than pop.  This can be useful in message-passing
185 >     * frameworks in which tasks are never joined.  However neither
186 >     * mode considers affinities, loads, cache localities, etc, so
187 >     * rarely provide the best possible performance on a given
188 >     * machine, but portably provide good throughput by averaging over
189 >     * these factors.  (Further, even if we did try to use such
190 >     * information, we do not usually have a basis for exploiting it.
191 >     * For example, some sets of tasks profit from cache affinities,
192 >     * but others are harmed by cache pollution effects.)
193 >     *
194 >     * WorkQueues are also used in a similar way for tasks submitted
195 >     * to the pool. We cannot mix these tasks in the same queues used
196 >     * for work-stealing (this would contaminate lifo/fifo
197 >     * processing). Instead, we randomly associate submission queues
198 >     * with submitting threads, using a form of hashing.  The
199 >     * ThreadLocal Submitter class contains a value initially used as
200 >     * a hash code for choosing existing queues, but may be randomly
201 >     * repositioned upon contention with other submitters.  In
202 >     * essence, submitters act like workers except that they are
203 >     * restricted to executing local tasks that they submitted (or in
204 >     * the case of CountedCompleters, others with the same root task).
205 >     * However, because most shared/external queue operations are more
206 >     * expensive than internal, and because, at steady state, external
207 >     * submitters will compete for CPU with workers, ForkJoinTask.join
208 >     * and related methods disable them from repeatedly helping to
209 >     * process tasks if all workers are active.  Insertion of tasks in
210 >     * shared mode requires a lock (mainly to protect in the case of
211 >     * resizing) but we use only a simple spinlock (using bits in
212 >     * field qlock), because submitters encountering a busy queue move
213 >     * on to try or create other queues -- they block only when
214 >     * creating and registering new queues.
215 >     *
216 >     * Management
217 >     * ==========
218 >     *
219 >     * The main throughput advantages of work-stealing stem from
220 >     * decentralized control -- workers mostly take tasks from
221 >     * themselves or each other. We cannot negate this in the
222 >     * implementation of other management responsibilities. The main
223 >     * tactic for avoiding bottlenecks is packing nearly all
224 >     * essentially atomic control state into two volatile variables
225 >     * that are by far most often read (not written) as status and
226 >     * consistency checks.
227 >     *
228 >     * Field "ctl" contains 64 bits holding all the information needed
229 >     * to atomically decide to add, inactivate, enqueue (on an event
230 >     * queue), dequeue, and/or re-activate workers.  To enable this
231 >     * packing, we restrict maximum parallelism to (1<<15)-1 (which is
232 >     * far in excess of normal operating range) to allow ids, counts,
233 >     * and their negations (used for thresholding) to fit into 16bit
234 >     * fields.
235 >     *
236 >     * Field "plock" is a form of sequence lock with a saturating
237 >     * shutdown bit (similarly for per-queue "qlocks"), mainly
238 >     * protecting updates to the workQueues array, as well as to
239 >     * enable shutdown.  When used as a lock, it is normally only very
240 >     * briefly held, so is nearly always available after at most a
241 >     * brief spin, but we use a monitor-based backup strategy to
242 >     * block when needed.
243 >     *
244 >     * Recording WorkQueues.  WorkQueues are recorded in the
245 >     * "workQueues" array that is created upon first use and expanded
246 >     * if necessary.  Updates to the array while recording new workers
247 >     * and unrecording terminated ones are protected from each other
248 >     * by a lock but the array is otherwise concurrently readable, and
249 >     * accessed directly.  To simplify index-based operations, the
250 >     * array size is always a power of two, and all readers must
251 >     * tolerate null slots. Worker queues are at odd indices. Shared
252 >     * (submission) queues are at even indices, up to a maximum of 64
253 >     * slots, to limit growth even if array needs to expand to add
254 >     * more workers. Grouping them together in this way simplifies and
255 >     * speeds up task scanning.
256 >     *
257 >     * All worker thread creation is on-demand, triggered by task
258 >     * submissions, replacement of terminated workers, and/or
259 >     * compensation for blocked workers. However, all other support
260 >     * code is set up to work with other policies.  To ensure that we
261 >     * do not hold on to worker references that would prevent GC, ALL
262 >     * accesses to workQueues are via indices into the workQueues
263 >     * array (which is one source of some of the messy code
264 >     * constructions here). In essence, the workQueues array serves as
265 >     * a weak reference mechanism. Thus for example the wait queue
266 >     * field of ctl stores indices, not references.  Access to the
267 >     * workQueues in associated methods (for example signalWork) must
268 >     * both index-check and null-check the IDs. All such accesses
269 >     * ignore bad IDs by returning out early from what they are doing,
270 >     * since this can only be associated with termination, in which
271 >     * case it is OK to give up.  All uses of the workQueues array
272 >     * also check that it is non-null (even if previously
273 >     * non-null). This allows nulling during termination, which is
274 >     * currently not necessary, but remains an option for
275 >     * resource-revocation-based shutdown schemes. It also helps
276 >     * reduce JIT issuance of uncommon-trap code, which tends to
277 >     * unnecessarily complicate control flow in some methods.
278 >     *
279 >     * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
280 >     * let workers spin indefinitely scanning for tasks when none can
281 >     * be found immediately, and we cannot start/resume workers unless
282 >     * there appear to be tasks available.  On the other hand, we must
283 >     * quickly prod them into action when new tasks are submitted or
284 >     * generated. In many usages, ramp-up time to activate workers is
285 >     * the main limiting factor in overall performance (this is
286 >     * compounded at program start-up by JIT compilation and
287 >     * allocation). So we try to streamline this as much as possible.
288 >     * We park/unpark workers after placing in an event wait queue
289 >     * when they cannot find work. This "queue" is actually a simple
290 >     * Treiber stack, headed by the "id" field of ctl, plus a 15bit
291 >     * counter value (that reflects the number of times a worker has
292 >     * been inactivated) to avoid ABA effects (we need only as many
293 >     * version numbers as worker threads). Successors are held in
294 >     * field WorkQueue.nextWait.  Queuing deals with several intrinsic
295 >     * races, mainly that a task-producing thread can miss seeing (and
296 >     * signalling) another thread that gave up looking for work but
297 >     * has not yet entered the wait queue. We solve this by requiring
298 >     * a full sweep of all workers (via repeated calls to method
299 >     * scan()) both before and after a newly waiting worker is added
300 >     * to the wait queue. During a rescan, the worker might release
301 >     * some other queued worker rather than itself, which has the same
302 >     * net effect. Because enqueued workers may actually be rescanning
303 >     * rather than waiting, we set and clear the "parker" field of
304 >     * WorkQueues to reduce unnecessary calls to unpark.  (This
305 >     * requires a secondary recheck to avoid missed signals.)  Note
306 >     * the unusual conventions about Thread.interrupts surrounding
307 >     * parking and other blocking: Because interrupts are used solely
308 >     * to alert threads to check termination, which is checked anyway
309 >     * upon blocking, we clear status (using Thread.interrupted)
310 >     * before any call to park, so that park does not immediately
311 >     * return due to status being set via some other unrelated call to
312 >     * interrupt in user code.
313 >     *
314 >     * Signalling.  We create or wake up workers only when there
315 >     * appears to be at least one task they might be able to find and
316 >     * execute. However, many other threads may notice the same task
317 >     * and each signal to wake up a thread that might take it. So in
318 >     * general, pools will be over-signalled.  When a submission is
319 >     * added or another worker adds a task to a queue that has fewer
320 >     * than two tasks, they signal waiting workers (or trigger
321 >     * creation of new ones if fewer than the given parallelism level
322 >     * -- signalWork), and may leave a hint to the unparked worker to
323 >     * help signal others upon wakeup).  These primary signals are
324 >     * buttressed by others (see method helpSignal) whenever other
325 >     * threads scan for work or do not have a task to process.  On
326 >     * most platforms, signalling (unpark) overhead time is noticeably
327 >     * long, and the time between signalling a thread and it actually
328 >     * making progress can be very noticeably long, so it is worth
329 >     * offloading these delays from critical paths as much as
330 >     * possible.
331 >     *
332 >     * Trimming workers. To release resources after periods of lack of
333 >     * use, a worker starting to wait when the pool is quiescent will
334 >     * time out and terminate if the pool has remained quiescent for a
335 >     * given period -- a short period if there are more threads than
336 >     * parallelism, longer as the number of threads decreases. This
337 >     * will slowly propagate, eventually terminating all workers after
338 >     * periods of non-use.
339 >     *
340 >     * Shutdown and Termination. A call to shutdownNow atomically sets
341 >     * a plock bit and then (non-atomically) sets each worker's
342 >     * qlock status, cancels all unprocessed tasks, and wakes up
343 >     * all waiting workers.  Detecting whether termination should
344 >     * commence after a non-abrupt shutdown() call requires more work
345 >     * and bookkeeping. We need consensus about quiescence (i.e., that
346 >     * there is no more work). The active count provides a primary
347 >     * indication but non-abrupt shutdown still requires a rechecking
348 >     * scan for any workers that are inactive but not queued.
349 >     *
350 >     * Joining Tasks
351 >     * =============
352 >     *
353 >     * Any of several actions may be taken when one worker is waiting
354 >     * to join a task stolen (or always held) by another.  Because we
355 >     * are multiplexing many tasks on to a pool of workers, we can't
356 >     * just let them block (as in Thread.join).  We also cannot just
357 >     * reassign the joiner's run-time stack with another and replace
358 >     * it later, which would be a form of "continuation", that even if
359 >     * possible is not necessarily a good idea since we sometimes need
360 >     * both an unblocked task and its continuation to progress.
361 >     * Instead we combine two tactics:
362 >     *
363 >     *   Helping: Arranging for the joiner to execute some task that it
364 >     *      would be running if the steal had not occurred.
365 >     *
366 >     *   Compensating: Unless there are already enough live threads,
367 >     *      method tryCompensate() may create or re-activate a spare
368 >     *      thread to compensate for blocked joiners until they unblock.
369 >     *
370 >     * A third form (implemented in tryRemoveAndExec) amounts to
371 >     * helping a hypothetical compensator: If we can readily tell that
372 >     * a possible action of a compensator is to steal and execute the
373 >     * task being joined, the joining thread can do so directly,
374 >     * without the need for a compensation thread (although at the
375 >     * expense of larger run-time stacks, but the tradeoff is
376 >     * typically worthwhile).
377 >     *
378 >     * The ManagedBlocker extension API can't use helping so relies
379 >     * only on compensation in method awaitBlocker.
380 >     *
381 >     * The algorithm in tryHelpStealer entails a form of "linear"
382 >     * helping: Each worker records (in field currentSteal) the most
383 >     * recent task it stole from some other worker. Plus, it records
384 >     * (in field currentJoin) the task it is currently actively
385 >     * joining. Method tryHelpStealer uses these markers to try to
386 >     * find a worker to help (i.e., steal back a task from and execute
387 >     * it) that could hasten completion of the actively joined task.
388 >     * In essence, the joiner executes a task that would be on its own
389 >     * local deque had the to-be-joined task not been stolen. This may
390 >     * be seen as a conservative variant of the approach in Wagner &
391 >     * Calder "Leapfrogging: a portable technique for implementing
392 >     * efficient futures" SIGPLAN Notices, 1993
393 >     * (http://portal.acm.org/citation.cfm?id=155354). It differs in
394 >     * that: (1) We only maintain dependency links across workers upon
395 >     * steals, rather than use per-task bookkeeping.  This sometimes
396 >     * requires a linear scan of workQueues array to locate stealers,
397 >     * but often doesn't because stealers leave hints (that may become
398 >     * stale/wrong) of where to locate them.  It is only a hint
399 >     * because a worker might have had multiple steals and the hint
400 >     * records only one of them (usually the most current).  Hinting
401 >     * isolates cost to when it is needed, rather than adding to
402 >     * per-task overhead.  (2) It is "shallow", ignoring nesting and
403 >     * potentially cyclic mutual steals.  (3) It is intentionally
404 >     * racy: field currentJoin is updated only while actively joining,
405 >     * which means that we miss links in the chain during long-lived
406 >     * tasks, GC stalls etc (which is OK since blocking in such cases
407 >     * is usually a good idea).  (4) We bound the number of attempts
408 >     * to find work (see MAX_HELP) and fall back to suspending the
409 >     * worker and if necessary replacing it with another.
410 >     *
411 >     * Helping actions for CountedCompleters are much simpler: Method
412 >     * helpComplete can take and execute any task with the same root
413 >     * as the task being waited on. However, this still entails some
414 >     * traversal of completer chains, so is less efficient than using
415 >     * CountedCompleters without explicit joins.
416 >     *
417 >     * It is impossible to keep exactly the target parallelism number
418 >     * of threads running at any given time.  Determining the
419 >     * existence of conservatively safe helping targets, the
420 >     * availability of already-created spares, and the apparent need
421 >     * to create new spares are all racy, so we rely on multiple
422 >     * retries of each.  Compensation in the apparent absence of
423 >     * helping opportunities is challenging to control on JVMs, where
424 >     * GC and other activities can stall progress of tasks that in
425 >     * turn stall out many other dependent tasks, without us being
426 >     * able to determine whether they will ever require compensation.
427 >     * Even though work-stealing otherwise encounters little
428 >     * degradation in the presence of more threads than cores,
429 >     * aggressively adding new threads in such cases entails risk of
430 >     * unwanted positive feedback control loops in which more threads
431 >     * cause more dependent stalls (as well as delayed progress of
432 >     * unblocked threads to the point that we know they are available)
433 >     * leading to more situations requiring more threads, and so
434 >     * on. This aspect of control can be seen as an (analytically
435 >     * intractable) game with an opponent that may choose the worst
436 >     * (for us) active thread to stall at any time.  We take several
437 >     * precautions to bound losses (and thus bound gains), mainly in
438 >     * methods tryCompensate and awaitJoin.
439 >     *
440 >     * Common Pool
441 >     * ===========
442 >     *
443 >     * The static common Pool always exists after static
444 >     * initialization.  Since it (or any other created pool) need
445 >     * never be used, we minimize initial construction overhead and
446 >     * footprint to the setup of about a dozen fields, with no nested
447 >     * allocation. Most bootstrapping occurs within method
448 >     * fullExternalPush during the first submission to the pool.
449 >     *
450 >     * When external threads submit to the common pool, they can
451 >     * perform some subtask processing (see externalHelpJoin and
452 >     * related methods).  We do not need to record whether these
453 >     * submissions are to the common pool -- if not, externalHelpJoin
454 >     * returns quickly (at the most helping to signal some common pool
455 >     * workers). These submitters would otherwise be blocked waiting
456 >     * for completion, so the extra effort (with liberally sprinkled
457 >     * task status checks) in inapplicable cases amounts to an odd
458 >     * form of limited spin-wait before blocking in ForkJoinTask.join.
459 >     *
460 >     * Style notes
461 >     * ===========
462 >     *
463 >     * There is a lot of representation-level coupling among classes
464 >     * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
465 >     * fields of WorkQueue maintain data structures managed by
466 >     * ForkJoinPool, so are directly accessed.  There is little point
467 >     * trying to reduce this, since any associated future changes in
468 >     * representations will need to be accompanied by algorithmic
469 >     * changes anyway. Several methods intrinsically sprawl because
470 >     * they must accumulate sets of consistent reads of volatiles held
471 >     * in local variables.  Methods signalWork() and scan() are the
472 >     * main bottlenecks, so are especially heavily
473 >     * micro-optimized/mangled.  There are lots of inline assignments
474 >     * (of form "while ((local = field) != 0)") which are usually the
475 >     * simplest way to ensure the required read orderings (which are
476 >     * sometimes critical). This leads to a "C"-like style of listing
477 >     * declarations of these locals at the heads of methods or blocks.
478 >     * There are several occurrences of the unusual "do {} while
479 >     * (!cas...)"  which is the simplest way to force an update of a
480 >     * CAS'ed variable. There are also other coding oddities (including
481 >     * several unnecessary-looking hoisted null checks) that help
482 >     * some methods perform reasonably even when interpreted (not
483 >     * compiled).
484 >     *
485 >     * The order of declarations in this file is:
486 >     * (1) Static utility functions
487 >     * (2) Nested (static) classes
488 >     * (3) Static fields
489 >     * (4) Fields, along with constants used when unpacking some of them
490 >     * (5) Internal control methods
491 >     * (6) Callbacks and other support for ForkJoinTask methods
492 >     * (7) Exported methods
493 >     * (8) Static block initializing statics in minimally dependent order
494       */
495  
496 <    /** Mask for packing and unpacking shorts */
497 <    private static final int  shortMask = 0xffff;
496 >    // Static utilities
497 >
498 >    /**
499 >     * If there is a security manager, makes sure caller has
500 >     * permission to modify threads.
501 >     */
502 >    private static void checkPermission() {
503 >        SecurityManager security = System.getSecurityManager();
504 >        if (security != null)
505 >            security.checkPermission(modifyThreadPermission);
506 >    }
507  
508 <    /** Max pool size -- must be a power of two minus 1 */
69 <    private static final int MAX_THREADS =  0x7FFF;
508 >    // Nested classes
509  
510      /**
511 <     * Factory for creating new ForkJoinWorkerThreads.  A
512 <     * ForkJoinWorkerThreadFactory must be defined and used for
513 <     * ForkJoinWorkerThread subclasses that extend base functionality
514 <     * or initialize threads with different contexts.
511 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
512 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
513 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
514 >     * functionality or initialize threads with different contexts.
515       */
516      public static interface ForkJoinWorkerThreadFactory {
517          /**
518           * Returns a new worker thread operating in the given pool.
519           *
520           * @param pool the pool this thread works in
521 <         * @throws NullPointerException if pool is null;
521 >         * @throws NullPointerException if the pool is null
522           */
523          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
524      }
525  
526      /**
527 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
527 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
528       * new ForkJoinWorkerThread.
529       */
530 <    static class  DefaultForkJoinWorkerThreadFactory
530 >    static final class DefaultForkJoinWorkerThreadFactory
531          implements ForkJoinWorkerThreadFactory {
532 <        public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 <            try {
534 <                return new ForkJoinWorkerThread(pool);
535 <            } catch (OutOfMemoryError oom)  {
532 >        public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
533 >            return new ForkJoinWorkerThread(pool);
534 >        }
535 >    }
536 >
537 >    /**
538 >     * Per-thread records for threads that submit to pools. Currently
539 >     * holds only pseudo-random seed / index that is used to choose
540 >     * submission queues in method externalPush. In the future, this may
541 >     * also incorporate a means to implement different task rejection
542 >     * and resubmission policies.
543 >     *
544 >     * Seeds for submitters and workers/workQueues work in basically
545 >     * the same way but are initialized and updated using slightly
546 >     * different mechanics. Both are initialized using the same
547 >     * approach as in class ThreadLocal, where successive values are
548 >     * unlikely to collide with previous values. Seeds are then
549 >     * randomly modified upon collisions using xorshifts, which
550 >     * requires a non-zero seed.
551 >     */
552 >    static final class Submitter {
553 >        int seed;
554 >        Submitter(int s) { seed = s; }
555 >    }
556 >
557 >    /**
558 >     * Class for artificial tasks that are used to replace the target
559 >     * of local joins if they are removed from an interior queue slot
560 >     * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
561 >     * actually do anything beyond having a unique identity.
562 >     */
563 >    static final class EmptyTask extends ForkJoinTask<Void> {
564 >        private static final long serialVersionUID = -7721805057305804111L;
565 >        EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
566 >        public final Void getRawResult() { return null; }
567 >        public final void setRawResult(Void x) {}
568 >        public final boolean exec() { return true; }
569 >    }
570 >
571 >    /**
572 >     * Queues supporting work-stealing as well as external task
573 >     * submission. See above for main rationale and algorithms.
574 >     * Implementation relies heavily on "Unsafe" intrinsics
575 >     * and selective use of "volatile":
576 >     *
577 >     * Field "base" is the index (mod array.length) of the least valid
578 >     * queue slot, which is always the next position to steal (poll)
579 >     * from if nonempty. Reads and writes require volatile orderings
580 >     * but not CAS, because updates are only performed after slot
581 >     * CASes.
582 >     *
583 >     * Field "top" is the index (mod array.length) of the next queue
584 >     * slot to push to or pop from. It is written only by owner thread
585 >     * for push, or under lock for external/shared push, and accessed
586 >     * by other threads only after reading (volatile) base.  Both top
587 >     * and base are allowed to wrap around on overflow, but (top -
588 >     * base) (or more commonly -(base - top) to force volatile read of
589 >     * base before top) still estimates size. The lock ("qlock") is
590 >     * forced to -1 on termination, causing all further lock attempts
591 >     * to fail. (Note: we don't need CAS for termination state because
592 >     * upon pool shutdown, all shared-queues will stop being used
593 >     * anyway.)  Nearly all lock bodies are set up so that exceptions
594 >     * within lock bodies are "impossible" (modulo JVM errors that
595 >     * would cause failure anyway.)
596 >     *
597 >     * The array slots are read and written using the emulation of
598 >     * volatiles/atomics provided by Unsafe. Insertions must in
599 >     * general use putOrderedObject as a form of releasing store to
600 >     * ensure that all writes to the task object are ordered before
601 >     * its publication in the queue.  All removals entail a CAS to
602 >     * null.  The array is always a power of two. To ensure safety of
603 >     * Unsafe array operations, all accesses perform explicit null
604 >     * checks and implicit bounds checks via power-of-two masking.
605 >     *
606 >     * In addition to basic queuing support, this class contains
607 >     * fields described elsewhere to control execution. It turns out
608 >     * to work better memory-layout-wise to include them in this class
609 >     * rather than a separate class.
610 >     *
611 >     * Performance on most platforms is very sensitive to placement of
612 >     * instances of both WorkQueues and their arrays -- we absolutely
613 >     * do not want multiple WorkQueue instances or multiple queue
614 >     * arrays sharing cache lines. (It would be best for queue objects
615 >     * and their arrays to share, but there is nothing available to
616 >     * help arrange that).  Unfortunately, because they are recorded
617 >     * in a common array, WorkQueue instances are often moved to be
618 >     * adjacent by garbage collectors. To reduce impact, we use field
619 >     * padding that works OK on common platforms; this effectively
620 >     * trades off slightly slower average field access for the sake of
621 >     * avoiding really bad worst-case access. (Until better JVM
622 >     * support is in place, this padding is dependent on transient
623 >     * properties of JVM field layout rules.) We also take care in
624 >     * allocating, sizing and resizing the array. Non-shared queue
625 >     * arrays are initialized by workers before use. Others are
626 >     * allocated on first use.
627 >     */
628 >    static final class WorkQueue {
629 >        /**
630 >         * Capacity of work-stealing queue array upon initialization.
631 >         * Must be a power of two; at least 4, but should be larger to
632 >         * reduce or eliminate cacheline sharing among queues.
633 >         * Currently, it is much larger, as a partial workaround for
634 >         * the fact that JVMs often place arrays in locations that
635 >         * share GC bookkeeping (especially cardmarks) such that
636 >         * per-write accesses encounter serious memory contention.
637 >         */
638 >        static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
639 >
640 >        /**
641 >         * Maximum size for queue arrays. Must be a power of two less
642 >         * than or equal to 1 << (31 - width of array entry) to ensure
643 >         * lack of wraparound of index calculations, but defined to a
644 >         * value a bit less than this to help users trap runaway
645 >         * programs before saturating systems.
646 >         */
647 >        static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
648 >
649 >        // Heuristic padding to ameliorate unfortunate memory placements
650 >        volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
651 >
652 >        int seed;                  // for random scanning; initialize nonzero
653 >        volatile int eventCount;   // encoded inactivation count; < 0 if inactive
654 >        int nextWait;              // encoded record of next event waiter
655 >        int hint;                  // steal or signal hint (index)
656 >        int poolIndex;             // index of this queue in pool (or 0)
657 >        final int mode;            // 0: lifo, > 0: fifo, < 0: shared
658 >        int nsteals;               // number of steals
659 >        volatile int qlock;        // 1: locked, -1: terminate; else 0
660 >        volatile int base;         // index of next slot for poll
661 >        int top;                   // index of next slot for push
662 >        ForkJoinTask<?>[] array;   // the elements (initially unallocated)
663 >        final ForkJoinPool pool;   // the containing pool (may be null)
664 >        final ForkJoinWorkerThread owner; // owning thread or null if shared
665 >        volatile Thread parker;    // == owner during call to park; else null
666 >        volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
667 >        ForkJoinTask<?> currentSteal; // current non-local task being executed
668 >
669 >        volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
670 >        volatile Object pad18, pad19, pad1a, pad1b, pad1c, pad1d;
671 >
672 >        WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
673 >                  int seed) {
674 >            this.pool = pool;
675 >            this.owner = owner;
676 >            this.mode = mode;
677 >            this.seed = seed;
678 >            // Place indices in the center of array (that is not yet allocated)
679 >            base = top = INITIAL_QUEUE_CAPACITY >>> 1;
680 >        }
681 >
682 >        /**
683 >         * Returns the approximate number of tasks in the queue.
684 >         */
685 >        final int queueSize() {
686 >            int n = base - top;       // non-owner callers must read base first
687 >            return (n >= 0) ? 0 : -n; // ignore transient negative
688 >        }
689 >
690 >       /**
691 >         * Provides a more accurate estimate of whether this queue has
692 >         * any tasks than does queueSize, by checking whether a
693 >         * near-empty queue has at least one unclaimed task.
694 >         */
695 >        final boolean isEmpty() {
696 >            ForkJoinTask<?>[] a; int m, s;
697 >            int n = base - (s = top);
698 >            return (n >= 0 ||
699 >                    (n == -1 &&
700 >                     ((a = array) == null ||
701 >                      (m = a.length - 1) < 0 ||
702 >                      U.getObject
703 >                      (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
704 >        }
705 >
706 >        /**
707 >         * Pushes a task. Call only by owner in unshared queues.  (The
708 >         * shared-queue version is embedded in method externalPush.)
709 >         *
710 >         * @param task the task. Caller must ensure non-null.
711 >         * @throw RejectedExecutionException if array cannot be resized
712 >         */
713 >        final void push(ForkJoinTask<?> task) {
714 >            ForkJoinTask<?>[] a; ForkJoinPool p;
715 >            int s = top, m, n;
716 >            if ((a = array) != null) {    // ignore if queue removed
717 >                int j = (((m = a.length - 1) & s) << ASHIFT) + ABASE;
718 >                U.putOrderedObject(a, j, task);
719 >                if ((n = (top = s + 1) - base) <= 2) {
720 >                    if ((p = pool) != null)
721 >                        p.signalWork(this);
722 >                }
723 >                else if (n >= m)
724 >                    growArray();
725 >            }
726 >        }
727 >
728 >       /**
729 >         * Initializes or doubles the capacity of array. Call either
730 >         * by owner or with lock held -- it is OK for base, but not
731 >         * top, to move while resizings are in progress.
732 >         */
733 >        final ForkJoinTask<?>[] growArray() {
734 >            ForkJoinTask<?>[] oldA = array;
735 >            int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
736 >            if (size > MAXIMUM_QUEUE_CAPACITY)
737 >                throw new RejectedExecutionException("Queue capacity exceeded");
738 >            int oldMask, t, b;
739 >            ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
740 >            if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
741 >                (t = top) - (b = base) > 0) {
742 >                int mask = size - 1;
743 >                do {
744 >                    ForkJoinTask<?> x;
745 >                    int oldj = ((b & oldMask) << ASHIFT) + ABASE;
746 >                    int j    = ((b &    mask) << ASHIFT) + ABASE;
747 >                    x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
748 >                    if (x != null &&
749 >                        U.compareAndSwapObject(oldA, oldj, x, null))
750 >                        U.putObjectVolatile(a, j, x);
751 >                } while (++b != t);
752 >            }
753 >            return a;
754 >        }
755 >
756 >        /**
757 >         * Takes next task, if one exists, in LIFO order.  Call only
758 >         * by owner in unshared queues.
759 >         */
760 >        final ForkJoinTask<?> pop() {
761 >            ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
762 >            if ((a = array) != null && (m = a.length - 1) >= 0) {
763 >                for (int s; (s = top - 1) - base >= 0;) {
764 >                    long j = ((m & s) << ASHIFT) + ABASE;
765 >                    if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
766 >                        break;
767 >                    if (U.compareAndSwapObject(a, j, t, null)) {
768 >                        top = s;
769 >                        return t;
770 >                    }
771 >                }
772 >            }
773 >            return null;
774 >        }
775 >
776 >        /**
777 >         * Takes a task in FIFO order if b is base of queue and a task
778 >         * can be claimed without contention. Specialized versions
779 >         * appear in ForkJoinPool methods scan and tryHelpStealer.
780 >         */
781 >        final ForkJoinTask<?> pollAt(int b) {
782 >            ForkJoinTask<?> t; ForkJoinTask<?>[] a;
783 >            if ((a = array) != null) {
784 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
785 >                if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
786 >                    base == b &&
787 >                    U.compareAndSwapObject(a, j, t, null)) {
788 >                    base = b + 1;
789 >                    return t;
790 >                }
791 >            }
792 >            return null;
793 >        }
794 >
795 >        /**
796 >         * Takes next task, if one exists, in FIFO order.
797 >         */
798 >        final ForkJoinTask<?> poll() {
799 >            ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
800 >            while ((b = base) - top < 0 && (a = array) != null) {
801 >                int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
802 >                t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
803 >                if (t != null) {
804 >                    if (base == b &&
805 >                        U.compareAndSwapObject(a, j, t, null)) {
806 >                        base = b + 1;
807 >                        return t;
808 >                    }
809 >                }
810 >                else if (base == b) {
811 >                    if (b + 1 == top)
812 >                        break;
813 >                    Thread.yield(); // wait for lagging update (very rare)
814 >                }
815 >            }
816 >            return null;
817 >        }
818 >
819 >        /**
820 >         * Takes next task, if one exists, in order specified by mode.
821 >         */
822 >        final ForkJoinTask<?> nextLocalTask() {
823 >            return mode == 0 ? pop() : poll();
824 >        }
825 >
826 >        /**
827 >         * Returns next task, if one exists, in order specified by mode.
828 >         */
829 >        final ForkJoinTask<?> peek() {
830 >            ForkJoinTask<?>[] a = array; int m;
831 >            if (a == null || (m = a.length - 1) < 0)
832                  return null;
833 +            int i = mode == 0 ? top - 1 : base;
834 +            int j = ((i & m) << ASHIFT) + ABASE;
835 +            return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
836 +        }
837 +
838 +        /**
839 +         * Pops the given task only if it is at the current top.
840 +         * (A shared version is available only via FJP.tryExternalUnpush)
841 +         */
842 +        final boolean tryUnpush(ForkJoinTask<?> t) {
843 +            ForkJoinTask<?>[] a; int s;
844 +            if ((a = array) != null && (s = top) != base &&
845 +                U.compareAndSwapObject
846 +                (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
847 +                top = s;
848 +                return true;
849              }
850 +            return false;
851 +        }
852 +
853 +        /**
854 +         * Removes and cancels all known tasks, ignoring any exceptions.
855 +         */
856 +        final void cancelAll() {
857 +            ForkJoinTask.cancelIgnoringExceptions(currentJoin);
858 +            ForkJoinTask.cancelIgnoringExceptions(currentSteal);
859 +            for (ForkJoinTask<?> t; (t = poll()) != null; )
860 +                ForkJoinTask.cancelIgnoringExceptions(t);
861 +        }
862 +
863 +        /**
864 +         * Computes next value for random probes.  Scans don't require
865 +         * a very high quality generator, but also not a crummy one.
866 +         * Marsaglia xor-shift is cheap and works well enough.  Note:
867 +         * This is manually inlined in its usages in ForkJoinPool to
868 +         * avoid writes inside busy scan loops.
869 +         */
870 +        final int nextSeed() {
871 +            int r = seed;
872 +            r ^= r << 13;
873 +            r ^= r >>> 17;
874 +            return seed = r ^= r << 5;
875 +        }
876 +
877 +        // Specialized execution methods
878 +
879 +        /**
880 +         * Pops and runs tasks until empty.
881 +         */
882 +        private void popAndExecAll() {
883 +            // A bit faster than repeated pop calls
884 +            ForkJoinTask<?>[] a; int m, s; long j; ForkJoinTask<?> t;
885 +            while ((a = array) != null && (m = a.length - 1) >= 0 &&
886 +                   (s = top - 1) - base >= 0 &&
887 +                   (t = ((ForkJoinTask<?>)
888 +                         U.getObject(a, j = ((m & s) << ASHIFT) + ABASE)))
889 +                   != null) {
890 +                if (U.compareAndSwapObject(a, j, t, null)) {
891 +                    top = s;
892 +                    t.doExec();
893 +                }
894 +            }
895 +        }
896 +
897 +        /**
898 +         * Polls and runs tasks until empty.
899 +         */
900 +        private void pollAndExecAll() {
901 +            for (ForkJoinTask<?> t; (t = poll()) != null;)
902 +                t.doExec();
903 +        }
904 +
905 +        /**
906 +         * If present, removes from queue and executes the given task,
907 +         * or any other cancelled task. Returns (true) on any CAS
908 +         * or consistency check failure so caller can retry.
909 +         *
910 +         * @return false if no progress can be made, else true;
911 +         */
912 +        final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
913 +            boolean stat = true, removed = false, empty = true;
914 +            ForkJoinTask<?>[] a; int m, s, b, n;
915 +            if ((a = array) != null && (m = a.length - 1) >= 0 &&
916 +                (n = (s = top) - (b = base)) > 0) {
917 +                for (ForkJoinTask<?> t;;) {           // traverse from s to b
918 +                    int j = ((--s & m) << ASHIFT) + ABASE;
919 +                    t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
920 +                    if (t == null)                    // inconsistent length
921 +                        break;
922 +                    else if (t == task) {
923 +                        if (s + 1 == top) {           // pop
924 +                            if (!U.compareAndSwapObject(a, j, task, null))
925 +                                break;
926 +                            top = s;
927 +                            removed = true;
928 +                        }
929 +                        else if (base == b)           // replace with proxy
930 +                            removed = U.compareAndSwapObject(a, j, task,
931 +                                                             new EmptyTask());
932 +                        break;
933 +                    }
934 +                    else if (t.status >= 0)
935 +                        empty = false;
936 +                    else if (s + 1 == top) {          // pop and throw away
937 +                        if (U.compareAndSwapObject(a, j, t, null))
938 +                            top = s;
939 +                        break;
940 +                    }
941 +                    if (--n == 0) {
942 +                        if (!empty && base == b)
943 +                            stat = false;
944 +                        break;
945 +                    }
946 +                }
947 +            }
948 +            if (removed)
949 +                task.doExec();
950 +            return stat;
951 +        }
952 +
953 +        /**
954 +         * Polls for and executes the given task or any other task in
955 +         * its CountedCompleter computation
956 +         */
957 +        final boolean pollAndExecCC(ForkJoinTask<?> root) {
958 +            ForkJoinTask<?>[] a; int b; Object o;
959 +            outer: while ((b = base) - top < 0 && (a = array) != null) {
960 +                long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
961 +                if ((o = U.getObject(a, j)) == null ||
962 +                    !(o instanceof CountedCompleter))
963 +                    break;
964 +                for (CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;;) {
965 +                    if (r == root) {
966 +                        if (base == b &&
967 +                            U.compareAndSwapObject(a, j, t, null)) {
968 +                            base = b + 1;
969 +                            t.doExec();
970 +                            return true;
971 +                        }
972 +                        else
973 +                            break; // restart
974 +                    }
975 +                    if ((r = r.completer) == null)
976 +                        break outer; // not part of root computation
977 +                }
978 +            }
979 +            return false;
980 +        }
981 +
982 +        /**
983 +         * Executes a top-level task and any local tasks remaining
984 +         * after execution.
985 +         */
986 +        final void runTask(ForkJoinTask<?> t) {
987 +            if (t != null) {
988 +                (currentSteal = t).doExec();
989 +                currentSteal = null;
990 +                ++nsteals;
991 +                if (base - top < 0) {       // process remaining local tasks
992 +                    if (mode == 0)
993 +                        popAndExecAll();
994 +                    else
995 +                        pollAndExecAll();
996 +                }
997 +            }
998 +        }
999 +
1000 +        /**
1001 +         * Executes a non-top-level (stolen) task.
1002 +         */
1003 +        final void runSubtask(ForkJoinTask<?> t) {
1004 +            if (t != null) {
1005 +                ForkJoinTask<?> ps = currentSteal;
1006 +                (currentSteal = t).doExec();
1007 +                currentSteal = ps;
1008 +            }
1009 +        }
1010 +
1011 +        /**
1012 +         * Returns true if owned and not known to be blocked.
1013 +         */
1014 +        final boolean isApparentlyUnblocked() {
1015 +            Thread wt; Thread.State s;
1016 +            return (eventCount >= 0 &&
1017 +                    (wt = owner) != null &&
1018 +                    (s = wt.getState()) != Thread.State.BLOCKED &&
1019 +                    s != Thread.State.WAITING &&
1020 +                    s != Thread.State.TIMED_WAITING);
1021 +        }
1022 +
1023 +        // Unsafe mechanics
1024 +        private static final sun.misc.Unsafe U;
1025 +        private static final long QLOCK;
1026 +        private static final int ABASE;
1027 +        private static final int ASHIFT;
1028 +        static {
1029 +            int s;
1030 +            try {
1031 +                U = getUnsafe();
1032 +                Class<?> k = WorkQueue.class;
1033 +                Class<?> ak = ForkJoinTask[].class;
1034 +                QLOCK = U.objectFieldOffset
1035 +                    (k.getDeclaredField("qlock"));
1036 +                ABASE = U.arrayBaseOffset(ak);
1037 +                s = U.arrayIndexScale(ak);
1038 +            } catch (Exception e) {
1039 +                throw new Error(e);
1040 +            }
1041 +            if ((s & (s-1)) != 0)
1042 +                throw new Error("data type scale not a power of two");
1043 +            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
1044          }
1045      }
1046  
1047 +    // static fields (initialized in static initializer below)
1048 +
1049      /**
1050       * Creates a new ForkJoinWorkerThread. This factory is used unless
1051       * overridden in ForkJoinPool constructors.
1052       */
1053      public static final ForkJoinWorkerThreadFactory
1054 <        defaultForkJoinWorkerThreadFactory =
1055 <        new DefaultForkJoinWorkerThreadFactory();
1054 >        defaultForkJoinWorkerThreadFactory;
1055 >
1056 >    /**
1057 >     * Per-thread submission bookkeeping. Shared across all pools
1058 >     * to reduce ThreadLocal pollution and because random motion
1059 >     * to avoid contention in one pool is likely to hold for others.
1060 >     * Lazily initialized on first submission (but null-checked
1061 >     * in other contexts to avoid unnecessary initialization).
1062 >     */
1063 >    static final ThreadLocal<Submitter> submitters;
1064  
1065      /**
1066       * Permission required for callers of methods that may start or
1067       * kill threads.
1068       */
1069 <    private static final RuntimePermission modifyThreadPermission =
115 <        new RuntimePermission("modifyThread");
1069 >    private static final RuntimePermission modifyThreadPermission;
1070  
1071      /**
1072 <     * If there is a security manager, makes sure caller has
1073 <     * permission to modify threads.
1072 >     * Common (static) pool. Non-null for public use unless a static
1073 >     * construction exception, but internal usages null-check on use
1074 >     * to paranoically avoid potential initialization circularities
1075 >     * as well as to simplify generated code.
1076       */
1077 <    private static void checkPermission() {
122 <        SecurityManager security = System.getSecurityManager();
123 <        if (security != null)
124 <            security.checkPermission(modifyThreadPermission);
125 <    }
1077 >    static final ForkJoinPool common;
1078  
1079      /**
1080 <     * Generator for assigning sequence numbers as pool names.
1080 >     * Common pool parallelism. Must equal common.parallelism.
1081       */
1082 <    private static final AtomicInteger poolNumberGenerator =
131 <        new AtomicInteger();
1082 >    static final int commonParallelism;
1083  
1084      /**
1085 <     * Array holding all worker threads in the pool. Array size must
135 <     * be a power of two.  Updates and replacements are protected by
136 <     * workerLock, but it is always kept in a consistent enough state
137 <     * to be randomly accessed without locking by workers performing
138 <     * work-stealing.
1085 >     * Sequence number for creating workerNamePrefix.
1086       */
1087 <    volatile ForkJoinWorkerThread[] workers;
1087 >    private static int poolNumberSequence;
1088  
1089      /**
1090 <     * Lock protecting access to workers.
1090 >     * Returns the next sequence number. We don't expect this to
1091 >     * ever contend, so use simple builtin sync.
1092       */
1093 <    private final ReentrantLock workerLock;
1093 >    private static final synchronized int nextPoolId() {
1094 >        return ++poolNumberSequence;
1095 >    }
1096 >
1097 >    // static constants
1098  
1099      /**
1100 <     * Condition for awaitTermination.
1100 >     * Initial timeout value (in nanoseconds) for the thread
1101 >     * triggering quiescence to park waiting for new work. On timeout,
1102 >     * the thread will instead try to shrink the number of
1103 >     * workers. The value should be large enough to avoid overly
1104 >     * aggressive shrinkage during most transient stalls (long GCs
1105 >     * etc).
1106       */
1107 <    private final Condition termination;
1107 >    private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1108  
1109      /**
1110 <     * The uncaught exception handler used when any worker
154 <     * abrupty terminates
1110 >     * Timeout value when there are more threads than parallelism level
1111       */
1112 <    private Thread.UncaughtExceptionHandler ueh;
1112 >    private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1113  
1114      /**
1115 <     * Creation factory for worker threads.
1115 >     * Tolerance for idle timeouts, to cope with timer undershoots
1116       */
1117 <    private final ForkJoinWorkerThreadFactory factory;
1117 >    private static final long TIMEOUT_SLOP = 2000000L;
1118  
1119      /**
1120 <     * Head of stack of threads that were created to maintain
1121 <     * parallelism when other threads blocked, but have since
1122 <     * suspended when the parallelism level rose.
1120 >     * The maximum stolen->joining link depth allowed in method
1121 >     * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1122 >     * chains are unbounded, but we use a fixed constant to avoid
1123 >     * (otherwise unchecked) cycles and to bound staleness of
1124 >     * traversal parameters at the expense of sometimes blocking when
1125 >     * we could be helping.
1126       */
1127 <    private volatile WaitQueueNode spareStack;
1127 >    private static final int MAX_HELP = 64;
1128  
1129      /**
1130 <     * Sum of per-thread steal counts, updated only when threads are
1131 <     * idle or terminating.
1130 >     * Increment for seed generators. See class ThreadLocal for
1131 >     * explanation.
1132       */
1133 <    private final AtomicLong stealCount;
1133 >    private static final int SEED_INCREMENT = 0x61c88647;
1134  
1135      /**
1136 <     * Queue for external submissions.
1136 >     * Bits and masks for control variables
1137 >     *
1138 >     * Field ctl is a long packed with:
1139 >     * AC: Number of active running workers minus target parallelism (16 bits)
1140 >     * TC: Number of total workers minus target parallelism (16 bits)
1141 >     * ST: true if pool is terminating (1 bit)
1142 >     * EC: the wait count of top waiting thread (15 bits)
1143 >     * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1144 >     *
1145 >     * When convenient, we can extract the upper 32 bits of counts and
1146 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1147 >     * (int)ctl.  The ec field is never accessed alone, but always
1148 >     * together with id and st. The offsets of counts by the target
1149 >     * parallelism and the positionings of fields makes it possible to
1150 >     * perform the most common checks via sign tests of fields: When
1151 >     * ac is negative, there are not enough active workers, when tc is
1152 >     * negative, there are not enough total workers, and when e is
1153 >     * negative, the pool is terminating.  To deal with these possibly
1154 >     * negative fields, we use casts in and out of "short" and/or
1155 >     * signed shifts to maintain signedness.
1156 >     *
1157 >     * When a thread is queued (inactivated), its eventCount field is
1158 >     * set negative, which is the only way to tell if a worker is
1159 >     * prevented from executing tasks, even though it must continue to
1160 >     * scan for them to avoid queuing races. Note however that
1161 >     * eventCount updates lag releases so usage requires care.
1162 >     *
1163 >     * Field plock is an int packed with:
1164 >     * SHUTDOWN: true if shutdown is enabled (1 bit)
1165 >     * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1166 >     * SIGNAL: set when threads may be waiting on the lock (1 bit)
1167 >     *
1168 >     * The sequence number enables simple consistency checks:
1169 >     * Staleness of read-only operations on the workQueues array can
1170 >     * be checked by comparing plock before vs after the reads.
1171 >     */
1172 >
1173 >    // bit positions/shifts for fields
1174 >    private static final int  AC_SHIFT   = 48;
1175 >    private static final int  TC_SHIFT   = 32;
1176 >    private static final int  ST_SHIFT   = 31;
1177 >    private static final int  EC_SHIFT   = 16;
1178 >
1179 >    // bounds
1180 >    private static final int  SMASK      = 0xffff;  // short bits
1181 >    private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1182 >    private static final int  EVENMASK   = 0xfffe;  // even short bits
1183 >    private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1184 >    private static final int  SHORT_SIGN = 1 << 15;
1185 >    private static final int  INT_SIGN   = 1 << 31;
1186 >
1187 >    // masks
1188 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1189 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1190 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1191 >
1192 >    // units for incrementing and decrementing
1193 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
1194 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
1195 >
1196 >    // masks and units for dealing with u = (int)(ctl >>> 32)
1197 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1198 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1199 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1200 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1201 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1202 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1203 >
1204 >    // masks and units for dealing with e = (int)ctl
1205 >    private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1206 >    private static final int E_SEQ       = 1 << EC_SHIFT;
1207 >
1208 >    // plock bits
1209 >    private static final int SHUTDOWN    = 1 << 31;
1210 >    private static final int PL_LOCK     = 2;
1211 >    private static final int PL_SIGNAL   = 1;
1212 >    private static final int PL_SPINS    = 1 << 8;
1213 >
1214 >    // access mode for WorkQueue
1215 >    static final int LIFO_QUEUE          =  0;
1216 >    static final int FIFO_QUEUE          =  1;
1217 >    static final int SHARED_QUEUE        = -1;
1218 >
1219 >    // bounds for #steps in scan loop -- must be power 2 minus 1
1220 >    private static final int MIN_SCAN    = 0x1ff;   // cover estimation slop
1221 >    private static final int MAX_SCAN    = 0x1ffff; // 4 * max workers
1222 >
1223 >    // Instance fields
1224 >
1225 >    /*
1226 >     * Field layout of this class tends to matter more than one would
1227 >     * like. Runtime layout order is only loosely related to
1228 >     * declaration order and may differ across JVMs, but the following
1229 >     * empirically works OK on current JVMs.
1230 >     */
1231 >
1232 >    // Heuristic padding to ameliorate unfortunate memory placements
1233 >    volatile long pad00, pad01, pad02, pad03, pad04, pad05, pad06;
1234 >
1235 >    volatile long stealCount;                  // collects worker counts
1236 >    volatile long ctl;                         // main pool control
1237 >    volatile int plock;                        // shutdown status and seqLock
1238 >    volatile int indexSeed;                    // worker/submitter index seed
1239 >    final int config;                          // mode and parallelism level
1240 >    WorkQueue[] workQueues;                    // main registry
1241 >    final ForkJoinWorkerThreadFactory factory;
1242 >    final Thread.UncaughtExceptionHandler ueh; // per-worker UEH
1243 >    final String workerNamePrefix;             // to create worker name string
1244 >
1245 >    volatile Object pad10, pad11, pad12, pad13, pad14, pad15, pad16, pad17;
1246 >    volatile Object pad18, pad19, pad1a, pad1b;
1247 >
1248 >    /*
1249 >     * Acquires the plock lock to protect worker array and related
1250 >     * updates. This method is called only if an initial CAS on plock
1251 >     * fails. This acts as a spinLock for normal cases, but falls back
1252 >     * to builtin monitor to block when (rarely) needed. This would be
1253 >     * a terrible idea for a highly contended lock, but works fine as
1254 >     * a more conservative alternative to a pure spinlock.
1255       */
1256 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
1256 >    private int acquirePlock() {
1257 >        int spins = PL_SPINS, r = 0, ps, nps;
1258 >        for (;;) {
1259 >            if (((ps = plock) & PL_LOCK) == 0 &&
1260 >                U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1261 >                return nps;
1262 >            else if (r == 0) { // randomize spins if possible
1263 >                Thread t = Thread.currentThread(); WorkQueue w; Submitter z;
1264 >                if ((t instanceof ForkJoinWorkerThread) &&
1265 >                    (w = ((ForkJoinWorkerThread)t).workQueue) != null)
1266 >                    r = w.seed;
1267 >                else if ((z = submitters.get()) != null)
1268 >                    r = z.seed;
1269 >                else
1270 >                    r = 1;
1271 >            }
1272 >            else if (spins >= 0) {
1273 >                r ^= r << 1; r ^= r >>> 3; r ^= r << 10; // xorshift
1274 >                if (r >= 0)
1275 >                    --spins;
1276 >            }
1277 >            else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1278 >                synchronized (this) {
1279 >                    if ((plock & PL_SIGNAL) != 0) {
1280 >                        try {
1281 >                            wait();
1282 >                        } catch (InterruptedException ie) {
1283 >                            try {
1284 >                                Thread.currentThread().interrupt();
1285 >                            } catch (SecurityException ignore) {
1286 >                            }
1287 >                        }
1288 >                    }
1289 >                    else
1290 >                        notifyAll();
1291 >                }
1292 >            }
1293 >        }
1294 >    }
1295  
1296      /**
1297 <     * Head of Treiber stack for barrier sync. See below for explanation
1297 >     * Unlocks and signals any thread waiting for plock. Called only
1298 >     * when CAS of seq value for unlock fails.
1299       */
1300 <    private volatile WaitQueueNode barrierStack;
1300 >    private void releasePlock(int ps) {
1301 >        plock = ps;
1302 >        synchronized (this) { notifyAll(); }
1303 >    }
1304  
1305      /**
1306 <     * The count for event barrier
1306 >     * Tries to create and start one worker if fewer than target
1307 >     * parallelism level exist. Adjusts counts etc on failure.
1308 >     */
1309 >    private void tryAddWorker() {
1310 >        long c; int u;
1311 >        while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1312 >               (u & SHORT_SIGN) != 0 && (int)c == 0) {
1313 >            long nc = (long)(((u + UTC_UNIT) & UTC_MASK) |
1314 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32;
1315 >            if (U.compareAndSwapLong(this, CTL, c, nc)) {
1316 >                ForkJoinWorkerThreadFactory fac;
1317 >                Throwable ex = null;
1318 >                ForkJoinWorkerThread wt = null;
1319 >                try {
1320 >                    if ((fac = factory) != null &&
1321 >                        (wt = fac.newThread(this)) != null) {
1322 >                        wt.start();
1323 >                        break;
1324 >                    }
1325 >                } catch (Throwable e) {
1326 >                    ex = e;
1327 >                }
1328 >                deregisterWorker(wt, ex);
1329 >                break;
1330 >            }
1331 >        }
1332 >    }
1333 >
1334 >    //  Registering and deregistering workers
1335 >
1336 >    /**
1337 >     * Callback from ForkJoinWorkerThread to establish and record its
1338 >     * WorkQueue. To avoid scanning bias due to packing entries in
1339 >     * front of the workQueues array, we treat the array as a simple
1340 >     * power-of-two hash table using per-thread seed as hash,
1341 >     * expanding as needed.
1342 >     *
1343 >     * @param wt the worker thread
1344 >     * @return the worker's queue
1345       */
1346 <    private volatile long eventCount;
1346 >    final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1347 >        Thread.UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1348 >        wt.setDaemon(true);
1349 >        if ((handler = ueh) != null)
1350 >            wt.setUncaughtExceptionHandler(handler);
1351 >        do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1352 >                                          s += SEED_INCREMENT) ||
1353 >                     s == 0); // skip 0
1354 >        WorkQueue w = new WorkQueue(this, wt, config >>> 16, s);
1355 >        if (((ps = plock) & PL_LOCK) != 0 ||
1356 >            !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1357 >            ps = acquirePlock();
1358 >        int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1359 >        try {
1360 >            if ((ws = workQueues) != null) {    // skip if shutting down
1361 >                int n = ws.length, m = n - 1;
1362 >                int r = (s << 1) | 1;           // use odd-numbered indices
1363 >                if (ws[r &= m] != null) {       // collision
1364 >                    int probes = 0;             // step by approx half size
1365 >                    int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1366 >                    while (ws[r = (r + step) & m] != null) {
1367 >                        if (++probes >= n) {
1368 >                            workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1369 >                            m = n - 1;
1370 >                            probes = 0;
1371 >                        }
1372 >                    }
1373 >                }
1374 >                w.eventCount = w.poolIndex = r; // volatile write orders
1375 >                ws[r] = w;
1376 >            }
1377 >        } finally {
1378 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1379 >                releasePlock(nps);
1380 >        }
1381 >        wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex)));
1382 >        return w;
1383 >    }
1384  
1385      /**
1386 <     * Pool number, just for assigning useful names to worker threads
1386 >     * Final callback from terminating worker, as well as upon failure
1387 >     * to construct or start a worker.  Removes record of worker from
1388 >     * array, and adjusts counts. If pool is shutting down, tries to
1389 >     * complete termination.
1390 >     *
1391 >     * @param wt the worker thread or null if construction failed
1392 >     * @param ex the exception causing failure, or null if none
1393       */
1394 <    private final int poolNumber;
1394 >    final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1395 >        WorkQueue w = null;
1396 >        if (wt != null && (w = wt.workQueue) != null) {
1397 >            int ps;
1398 >            w.qlock = -1;                // ensure set
1399 >            long ns = w.nsteals, sc;     // collect steal count
1400 >            do {} while (!U.compareAndSwapLong(this, STEALCOUNT,
1401 >                                               sc = stealCount, sc + ns));
1402 >            if (((ps = plock) & PL_LOCK) != 0 ||
1403 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1404 >                ps = acquirePlock();
1405 >            int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1406 >            try {
1407 >                int idx = w.poolIndex;
1408 >                WorkQueue[] ws = workQueues;
1409 >                if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1410 >                    ws[idx] = null;
1411 >            } finally {
1412 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1413 >                    releasePlock(nps);
1414 >            }
1415 >        }
1416 >
1417 >        long c;                          // adjust ctl counts
1418 >        do {} while (!U.compareAndSwapLong
1419 >                     (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1420 >                                           ((c - TC_UNIT) & TC_MASK) |
1421 >                                           (c & ~(AC_MASK|TC_MASK)))));
1422 >
1423 >        if (!tryTerminate(false, false) && w != null && w.array != null) {
1424 >            w.cancelAll();               // cancel remaining tasks
1425 >            WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1426 >            while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1427 >                if (e > 0) {             // activate or create replacement
1428 >                    if ((ws = workQueues) == null ||
1429 >                        (i = e & SMASK) >= ws.length ||
1430 >                        (v = ws[i]) == null)
1431 >                        break;
1432 >                    long nc = (((long)(v.nextWait & E_MASK)) |
1433 >                               ((long)(u + UAC_UNIT) << 32));
1434 >                    if (v.eventCount != (e | INT_SIGN))
1435 >                        break;
1436 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1437 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1438 >                        if ((p = v.parker) != null)
1439 >                            U.unpark(p);
1440 >                        break;
1441 >                    }
1442 >                }
1443 >                else {
1444 >                    if ((short)u < 0)
1445 >                        tryAddWorker();
1446 >                    break;
1447 >                }
1448 >            }
1449 >        }
1450 >        if (ex == null)                     // help clean refs on way out
1451 >            ForkJoinTask.helpExpungeStaleExceptions();
1452 >        else                                // rethrow
1453 >            ForkJoinTask.rethrow(ex);
1454 >    }
1455 >
1456 >    // Submissions
1457  
1458      /**
1459 <     * The maximum allowed pool size
1459 >     * Unless shutting down, adds the given task to a submission queue
1460 >     * at submitter's current queue index (modulo submission
1461 >     * range). Only the most common path is directly handled in this
1462 >     * method. All others are relayed to fullExternalPush.
1463 >     *
1464 >     * @param task the task. Caller must ensure non-null.
1465       */
1466 <    private volatile int maxPoolSize;
1466 >    final void externalPush(ForkJoinTask<?> task) {
1467 >        WorkQueue[] ws; WorkQueue q; Submitter z; int m; ForkJoinTask<?>[] a;
1468 >        if ((z = submitters.get()) != null && plock > 0 &&
1469 >            (ws = workQueues) != null && (m = (ws.length - 1)) >= 0 &&
1470 >            (q = ws[m & z.seed & SQMASK]) != null &&
1471 >            U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1472 >            int b = q.base, s = q.top, n, an;
1473 >            if ((a = q.array) != null && (an = a.length) > (n = s + 1 - b)) {
1474 >                int j = (((an - 1) & s) << ASHIFT) + ABASE;
1475 >                U.putOrderedObject(a, j, task);
1476 >                q.top = s + 1;                     // push on to deque
1477 >                q.qlock = 0;
1478 >                if (n <= 2)
1479 >                    signalWork(q);
1480 >                return;
1481 >            }
1482 >            q.qlock = 0;
1483 >        }
1484 >        fullExternalPush(task);
1485 >    }
1486  
1487      /**
1488 <     * The desired parallelism level, updated only under workerLock.
1488 >     * Full version of externalPush. This method is called, among
1489 >     * other times, upon the first submission of the first task to the
1490 >     * pool, so must perform secondary initialization.  It also
1491 >     * detects first submission by an external thread by looking up
1492 >     * its ThreadLocal, and creates a new shared queue if the one at
1493 >     * index if empty or contended. The plock lock body must be
1494 >     * exception-free (so no try/finally) so we optimistically
1495 >     * allocate new queues outside the lock and throw them away if
1496 >     * (very rarely) not needed.
1497 >     *
1498 >     * Secondary initialization occurs when plock is zero, to create
1499 >     * workQueue array and set plock to a valid value.  This lock body
1500 >     * must also be exception-free. Because the plock seq value can
1501 >     * eventually wrap around zero, this method harmlessly fails to
1502 >     * reinitialize if workQueues exists, while still advancing plock.
1503 >     */
1504 >    private void fullExternalPush(ForkJoinTask<?> task) {
1505 >        int r = 0; // random index seed
1506 >        for (Submitter z = submitters.get();;) {
1507 >            WorkQueue[] ws; WorkQueue q; int ps, m, k;
1508 >            if (z == null) {
1509 >                if (U.compareAndSwapInt(this, INDEXSEED, r = indexSeed,
1510 >                                        r += SEED_INCREMENT) && r != 0)
1511 >                    submitters.set(z = new Submitter(r));
1512 >            }
1513 >            else if (r == 0) {                  // move to a different index
1514 >                r = z.seed;
1515 >                r ^= r << 13;                   // same xorshift as WorkQueues
1516 >                r ^= r >>> 17;
1517 >                z.seed = r ^ (r << 5);
1518 >            }
1519 >            else if ((ps = plock) < 0)
1520 >                throw new RejectedExecutionException();
1521 >            else if (ps == 0 || (ws = workQueues) == null ||
1522 >                     (m = ws.length - 1) < 0) { // initialize workQueues
1523 >                int p = config & SMASK;         // find power of two table size
1524 >                int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1525 >                n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1526 >                n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1527 >                WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1528 >                                   new WorkQueue[n] : null);
1529 >                if (((ps = plock) & PL_LOCK) != 0 ||
1530 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1531 >                    ps = acquirePlock();
1532 >                if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1533 >                    workQueues = nws;
1534 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1535 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1536 >                    releasePlock(nps);
1537 >            }
1538 >            else if ((q = ws[k = r & m & SQMASK]) != null) {
1539 >                if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1540 >                    ForkJoinTask<?>[] a = q.array;
1541 >                    int s = q.top;
1542 >                    boolean submitted = false;
1543 >                    try {                      // locked version of push
1544 >                        if ((a != null && a.length > s + 1 - q.base) ||
1545 >                            (a = q.growArray()) != null) {   // must presize
1546 >                            int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1547 >                            U.putOrderedObject(a, j, task);
1548 >                            q.top = s + 1;
1549 >                            submitted = true;
1550 >                        }
1551 >                    } finally {
1552 >                        q.qlock = 0;  // unlock
1553 >                    }
1554 >                    if (submitted) {
1555 >                        signalWork(q);
1556 >                        return;
1557 >                    }
1558 >                }
1559 >                r = 0; // move on failure
1560 >            }
1561 >            else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1562 >                q = new WorkQueue(this, null, SHARED_QUEUE, r);
1563 >                if (((ps = plock) & PL_LOCK) != 0 ||
1564 >                    !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1565 >                    ps = acquirePlock();
1566 >                if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1567 >                    ws[k] = q;
1568 >                int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1569 >                if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1570 >                    releasePlock(nps);
1571 >            }
1572 >            else
1573 >                r = 0; // try elsewhere while lock held
1574 >        }
1575 >    }
1576 >
1577 >    // Maintaining ctl counts
1578 >
1579 >    /**
1580 >     * Increments active count; mainly called upon return from blocking.
1581       */
1582 <    private volatile int parallelism;
1582 >    final void incrementActiveCount() {
1583 >        long c;
1584 >        do {} while (!U.compareAndSwapLong(this, CTL, c = ctl, c + AC_UNIT));
1585 >    }
1586  
1587      /**
1588 <     * Holds number of total (i.e., created and not yet terminated)
1589 <     * and running (i.e., not blocked on joins or other managed sync)
1590 <     * threads, packed into one int to ensure consistent snapshot when
210 <     * making decisions about creating and suspending spare
211 <     * threads. Updated only by CAS.  Note: CASes in
212 <     * updateRunningCount and preJoin running active count is in low
213 <     * word, so need to be modified if this changes
1588 >     * Tries to create or activate a worker if too few are active.
1589 >     *
1590 >     * @param q the (non-null) queue holding tasks to be signalled
1591       */
1592 <    private volatile int workerCounts;
1592 >    final void signalWork(WorkQueue q) {
1593 >        int hint = q.poolIndex;
1594 >        long c; int e, u, i, n; WorkQueue[] ws; WorkQueue w; Thread p;
1595 >        while ((u = (int)((c = ctl) >>> 32)) < 0) {
1596 >            if ((e = (int)c) > 0) {
1597 >                if ((ws = workQueues) != null && ws.length > (i = e & SMASK) &&
1598 >                    (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1599 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1600 >                               ((long)(u + UAC_UNIT) << 32));
1601 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1602 >                        w.hint = hint;
1603 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1604 >                        if ((p = w.parker) != null)
1605 >                            U.unpark(p);
1606 >                        break;
1607 >                    }
1608 >                    if (q.top - q.base <= 0)
1609 >                        break;
1610 >                }
1611 >                else
1612 >                    break;
1613 >            }
1614 >            else {
1615 >                if ((short)u < 0)
1616 >                    tryAddWorker();
1617 >                break;
1618 >            }
1619 >        }
1620 >    }
1621  
1622 <    private static int totalCountOf(int s)           { return s >>> 16;  }
218 <    private static int runningCountOf(int s)         { return s & shortMask; }
219 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
1622 >    // Scanning for tasks
1623  
1624      /**
1625 <     * Add delta (which may be negative) to running count.  This must
223 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
225 <     * @param delta the number to add
1625 >     * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1626       */
1627 <    final void updateRunningCount(int delta) {
1628 <        int s;
1629 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
1627 >    final void runWorker(WorkQueue w) {
1628 >        w.growArray(); // allocate queue
1629 >        do { w.runTask(scan(w)); } while (w.qlock >= 0);
1630      }
1631  
1632      /**
1633 <     * Add delta (which may be negative) to both total and running
1634 <     * count.  This must be called upon creation and termination of
1635 <     * worker threads.
1636 <     * @param delta the number to add
1633 >     * Scans for and, if found, returns one task, else possibly
1634 >     * inactivates the worker. This method operates on single reads of
1635 >     * volatile state and is designed to be re-invoked continuously,
1636 >     * in part because it returns upon detecting inconsistencies,
1637 >     * contention, or state changes that indicate possible success on
1638 >     * re-invocation.
1639 >     *
1640 >     * The scan searches for tasks across queues (starting at a random
1641 >     * index, and relying on registerWorker to irregularly scatter
1642 >     * them within array to avoid bias), checking each at least twice.
1643 >     * The scan terminates upon either finding a non-empty queue, or
1644 >     * completing the sweep. If the worker is not inactivated, it
1645 >     * takes and returns a task from this queue. Otherwise, if not
1646 >     * activated, it signals workers (that may include itself) and
1647 >     * returns so caller can retry. Also returns for true if the
1648 >     * worker array may have changed during an empty scan.  On failure
1649 >     * to find a task, we take one of the following actions, after
1650 >     * which the caller will retry calling this method unless
1651 >     * terminated.
1652 >     *
1653 >     * * If pool is terminating, terminate the worker.
1654 >     *
1655 >     * * If not already enqueued, try to inactivate and enqueue the
1656 >     * worker on wait queue. Or, if inactivating has caused the pool
1657 >     * to be quiescent, relay to idleAwaitWork to possibly shrink
1658 >     * pool.
1659 >     *
1660 >     * * If already enqueued and none of the above apply, possibly
1661 >     * park awaiting signal, else lingering to help scan and signal.
1662 >     *
1663 >     * * If a non-empty queue discovered or left as a hint,
1664 >     * help wake up other workers before return.
1665 >     *
1666 >     * @param w the worker (via its WorkQueue)
1667 >     * @return a task or null if none found
1668       */
1669 <    private void updateWorkerCount(int delta) {
1670 <        int d = delta + (delta << 16); // add to both lo and hi parts
1671 <        int s;
1672 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
1669 >    private final ForkJoinTask<?> scan(WorkQueue w) {
1670 >        WorkQueue[] ws; int m;
1671 >        int ps = plock;                          // read plock before ws
1672 >        if (w != null && (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1673 >            int ec = w.eventCount;               // ec is negative if inactive
1674 >            int r = w.seed; r ^= r << 13; r ^= r >>> 17; w.seed = r ^= r << 5;
1675 >            w.hint = -1;                         // update seed and clear hint
1676 >            int j = ((m + m + 1) | MIN_SCAN) & MAX_SCAN;
1677 >            do {
1678 >                WorkQueue q; ForkJoinTask<?>[] a; int b;
1679 >                if ((q = ws[(r + j) & m]) != null && (b = q.base) - q.top < 0 &&
1680 >                    (a = q.array) != null) {     // probably nonempty
1681 >                    int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1682 >                    ForkJoinTask<?> t = (ForkJoinTask<?>)
1683 >                        U.getObjectVolatile(a, i);
1684 >                    if (q.base == b && ec >= 0 && t != null &&
1685 >                        U.compareAndSwapObject(a, i, t, null)) {
1686 >                        if ((q.base = b + 1) - q.top < 0)
1687 >                            signalWork(q);
1688 >                        return t;                // taken
1689 >                    }
1690 >                    else if ((ec < 0 || j < m) && (int)(ctl >> AC_SHIFT) <= 0) {
1691 >                        w.hint = (r + j) & m;    // help signal below
1692 >                        break;                   // cannot take
1693 >                    }
1694 >                }
1695 >            } while (--j >= 0);
1696 >
1697 >            int h, e, ns; long c, sc; WorkQueue q;
1698 >            if ((ns = w.nsteals) != 0) {
1699 >                if (U.compareAndSwapLong(this, STEALCOUNT,
1700 >                                         sc = stealCount, sc + ns))
1701 >                    w.nsteals = 0;               // collect steals and rescan
1702 >            }
1703 >            else if (plock != ps)                // consistency check
1704 >                ;                                // skip
1705 >            else if ((e = (int)(c = ctl)) < 0)
1706 >                w.qlock = -1;                    // pool is terminating
1707 >            else {
1708 >                if ((h = w.hint) < 0) {
1709 >                    if (ec >= 0) {               // try to enqueue/inactivate
1710 >                        long nc = (((long)ec |
1711 >                                    ((c - AC_UNIT) & (AC_MASK|TC_MASK))));
1712 >                        w.nextWait = e;          // link and mark inactive
1713 >                        w.eventCount = ec | INT_SIGN;
1714 >                        if (ctl != c || !U.compareAndSwapLong(this, CTL, c, nc))
1715 >                            w.eventCount = ec;   // unmark on CAS failure
1716 >                        else if ((int)(c >> AC_SHIFT) == 1 - (config & SMASK))
1717 >                            idleAwaitWork(w, nc, c);
1718 >                    }
1719 >                    else if (w.eventCount < 0 && ctl == c) {
1720 >                        Thread wt = Thread.currentThread();
1721 >                        Thread.interrupted();    // clear status
1722 >                        U.putObject(wt, PARKBLOCKER, this);
1723 >                        w.parker = wt;           // emulate LockSupport.park
1724 >                        if (w.eventCount < 0)    // recheck
1725 >                            U.park(false, 0L);   // block
1726 >                        w.parker = null;
1727 >                        U.putObject(wt, PARKBLOCKER, null);
1728 >                    }
1729 >                }
1730 >                if ((h >= 0 || (h = w.hint) >= 0) &&
1731 >                    (ws = workQueues) != null && h < ws.length &&
1732 >                    (q = ws[h]) != null) {      // signal others before retry
1733 >                    WorkQueue v; Thread p; int u, i, s;
1734 >                    for (int n = (config & SMASK) - 1;;) {
1735 >                        int idleCount = (w.eventCount < 0) ? 0 : -1;
1736 >                        if (((s = idleCount - q.base + q.top) <= n &&
1737 >                             (n = s) <= 0) ||
1738 >                            (u = (int)((c = ctl) >>> 32)) >= 0 ||
1739 >                            (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1740 >                            (v = ws[i]) == null)
1741 >                            break;
1742 >                        long nc = (((long)(v.nextWait & E_MASK)) |
1743 >                                   ((long)(u + UAC_UNIT) << 32));
1744 >                        if (v.eventCount != (e | INT_SIGN) ||
1745 >                            !U.compareAndSwapLong(this, CTL, c, nc))
1746 >                            break;
1747 >                        v.hint = h;
1748 >                        v.eventCount = (e + E_SEQ) & E_MASK;
1749 >                        if ((p = v.parker) != null)
1750 >                            U.unpark(p);
1751 >                        if (--n <= 0)
1752 >                            break;
1753 >                    }
1754 >                }
1755 >            }
1756 >        }
1757 >        return null;
1758 >    }
1759 >
1760 >    /**
1761 >     * If inactivating worker w has caused the pool to become
1762 >     * quiescent, checks for pool termination, and, so long as this is
1763 >     * not the only worker, waits for event for up to a given
1764 >     * duration.  On timeout, if ctl has not changed, terminates the
1765 >     * worker, which will in turn wake up another worker to possibly
1766 >     * repeat this process.
1767 >     *
1768 >     * @param w the calling worker
1769 >     * @param currentCtl the ctl value triggering possible quiescence
1770 >     * @param prevCtl the ctl value to restore if thread is terminated
1771 >     */
1772 >    private void idleAwaitWork(WorkQueue w, long currentCtl, long prevCtl) {
1773 >        if (w != null && w.eventCount < 0 &&
1774 >            !tryTerminate(false, false) && (int)prevCtl != 0 &&
1775 >            ctl == currentCtl) {
1776 >            int dc = -(short)(currentCtl >>> TC_SHIFT);
1777 >            long parkTime = dc < 0 ? FAST_IDLE_TIMEOUT: (dc + 1) * IDLE_TIMEOUT;
1778 >            long deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1779 >            Thread wt = Thread.currentThread();
1780 >            while (ctl == currentCtl) {
1781 >                Thread.interrupted();  // timed variant of version in scan()
1782 >                U.putObject(wt, PARKBLOCKER, this);
1783 >                w.parker = wt;
1784 >                if (ctl == currentCtl)
1785 >                    U.park(false, parkTime);
1786 >                w.parker = null;
1787 >                U.putObject(wt, PARKBLOCKER, null);
1788 >                if (ctl != currentCtl)
1789 >                    break;
1790 >                if (deadline - System.nanoTime() <= 0L &&
1791 >                    U.compareAndSwapLong(this, CTL, currentCtl, prevCtl)) {
1792 >                    w.eventCount = (w.eventCount + E_SEQ) | E_MASK;
1793 >                    w.hint = -1;
1794 >                    w.qlock = -1;   // shrink
1795 >                    break;
1796 >                }
1797 >            }
1798 >        }
1799      }
1800  
1801      /**
1802 <     * Lifecycle control. High word contains runState, low word
1803 <     * contains the number of workers that are (probably) executing
1804 <     * tasks. This value is atomically incremented before a worker
1805 <     * gets a task to run, and decremented when worker has no tasks
1806 <     * and cannot find any. These two fields are bundled together to
1807 <     * support correct termination triggering.  Note: activeCount
251 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
1802 >     * Scans through queues looking for work while joining a task; if
1803 >     * any present, signals. May return early if more signalling is
1804 >     * detectably unneeded.
1805 >     *
1806 >     * @param task return early if done
1807 >     * @param origin an index to start scan
1808       */
1809 <    private volatile int runControl;
1809 >    private void helpSignal(ForkJoinTask<?> task, int origin) {
1810 >        WorkQueue[] ws; WorkQueue w; Thread p; long c; int m, u, e, i, s;
1811 >        if (task != null && task.status >= 0 &&
1812 >            (u = (int)(ctl >>> 32)) < 0 && (u >> UAC_SHIFT) < 0 &&
1813 >            (ws = workQueues) != null && (m = ws.length - 1) >= 0) {
1814 >            outer: for (int k = origin, j = m; j >= 0; --j) {
1815 >                WorkQueue q = ws[k++ & m];
1816 >                for (int n = m;;) { // limit to at most m signals
1817 >                    if (task.status < 0)
1818 >                        break outer;
1819 >                    if (q == null ||
1820 >                        ((s = -q.base + q.top) <= n && (n = s) <= 0))
1821 >                        break;
1822 >                    if ((u = (int)((c = ctl) >>> 32)) >= 0 ||
1823 >                        (e = (int)c) <= 0 || m < (i = e & SMASK) ||
1824 >                        (w = ws[i]) == null)
1825 >                        break outer;
1826 >                    long nc = (((long)(w.nextWait & E_MASK)) |
1827 >                               ((long)(u + UAC_UNIT) << 32));
1828 >                    if (w.eventCount != (e | INT_SIGN))
1829 >                        break outer;
1830 >                    if (U.compareAndSwapLong(this, CTL, c, nc)) {
1831 >                        w.eventCount = (e + E_SEQ) & E_MASK;
1832 >                        if ((p = w.parker) != null)
1833 >                            U.unpark(p);
1834 >                        if (--n <= 0)
1835 >                            break;
1836 >                    }
1837 >                }
1838 >            }
1839 >        }
1840 >    }
1841  
1842 <    // RunState values. Order among values matters
1843 <    private static final int RUNNING     = 0;
1844 <    private static final int SHUTDOWN    = 1;
1845 <    private static final int TERMINATING = 2;
1846 <    private static final int TERMINATED  = 3;
1842 >    /**
1843 >     * Tries to locate and execute tasks for a stealer of the given
1844 >     * task, or in turn one of its stealers, Traces currentSteal ->
1845 >     * currentJoin links looking for a thread working on a descendant
1846 >     * of the given task and with a non-empty queue to steal back and
1847 >     * execute tasks from. The first call to this method upon a
1848 >     * waiting join will often entail scanning/search, (which is OK
1849 >     * because the joiner has nothing better to do), but this method
1850 >     * leaves hints in workers to speed up subsequent calls. The
1851 >     * implementation is very branchy to cope with potential
1852 >     * inconsistencies or loops encountering chains that are stale,
1853 >     * unknown, or so long that they are likely cyclic.
1854 >     *
1855 >     * @param joiner the joining worker
1856 >     * @param task the task to join
1857 >     * @return 0 if no progress can be made, negative if task
1858 >     * known complete, else positive
1859 >     */
1860 >    private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1861 >        int stat = 0, steps = 0;                    // bound to avoid cycles
1862 >        if (joiner != null && task != null) {       // hoist null checks
1863 >            restart: for (;;) {
1864 >                ForkJoinTask<?> subtask = task;     // current target
1865 >                for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1866 >                    WorkQueue[] ws; int m, s, h;
1867 >                    if ((s = task.status) < 0) {
1868 >                        stat = s;
1869 >                        break restart;
1870 >                    }
1871 >                    if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1872 >                        break restart;              // shutting down
1873 >                    if ((v = ws[h = (j.hint | 1) & m]) == null ||
1874 >                        v.currentSteal != subtask) {
1875 >                        for (int origin = h;;) {    // find stealer
1876 >                            if (((h = (h + 2) & m) & 15) == 1 &&
1877 >                                (subtask.status < 0 || j.currentJoin != subtask))
1878 >                                continue restart;   // occasional staleness check
1879 >                            if ((v = ws[h]) != null &&
1880 >                                v.currentSteal == subtask) {
1881 >                                j.hint = h;        // save hint
1882 >                                break;
1883 >                            }
1884 >                            if (h == origin)
1885 >                                break restart;      // cannot find stealer
1886 >                        }
1887 >                    }
1888 >                    for (;;) { // help stealer or descend to its stealer
1889 >                        ForkJoinTask[] a;  int b;
1890 >                        if (subtask.status < 0)     // surround probes with
1891 >                            continue restart;       //   consistency checks
1892 >                        if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1893 >                            int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1894 >                            ForkJoinTask<?> t =
1895 >                                (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1896 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1897 >                                v.currentSteal != subtask)
1898 >                                continue restart;   // stale
1899 >                            stat = 1;               // apparent progress
1900 >                            if (t != null && v.base == b &&
1901 >                                U.compareAndSwapObject(a, i, t, null)) {
1902 >                                v.base = b + 1;     // help stealer
1903 >                                joiner.runSubtask(t);
1904 >                            }
1905 >                            else if (v.base == b && ++steps == MAX_HELP)
1906 >                                break restart;      // v apparently stalled
1907 >                        }
1908 >                        else {                      // empty -- try to descend
1909 >                            ForkJoinTask<?> next = v.currentJoin;
1910 >                            if (subtask.status < 0 || j.currentJoin != subtask ||
1911 >                                v.currentSteal != subtask)
1912 >                                continue restart;   // stale
1913 >                            else if (next == null || ++steps == MAX_HELP)
1914 >                                break restart;      // dead-end or maybe cyclic
1915 >                            else {
1916 >                                subtask = next;
1917 >                                j = v;
1918 >                                break;
1919 >                            }
1920 >                        }
1921 >                    }
1922 >                }
1923 >            }
1924 >        }
1925 >        return stat;
1926 >    }
1927  
1928 <    private static int runStateOf(int c)             { return c >>> 16; }
1929 <    private static int activeCountOf(int c)          { return c & shortMask; }
1930 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
1928 >    /**
1929 >     * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1930 >     * and run tasks within the target's computation.
1931 >     *
1932 >     * @param task the task to join
1933 >     * @param mode if shared, exit upon completing any task
1934 >     * if all workers are active
1935 >     */
1936 >    private int helpComplete(ForkJoinTask<?> task, int mode) {
1937 >        WorkQueue[] ws; WorkQueue q; int m, n, s, u;
1938 >        if (task != null && (ws = workQueues) != null &&
1939 >            (m = ws.length - 1) >= 0) {
1940 >            for (int j = 1, origin = j;;) {
1941 >                if ((s = task.status) < 0)
1942 >                    return s;
1943 >                if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1944 >                    origin = j;
1945 >                    if (mode == SHARED_QUEUE &&
1946 >                        ((u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0))
1947 >                        break;
1948 >                }
1949 >                else if ((j = (j + 2) & m) == origin)
1950 >                    break;
1951 >            }
1952 >        }
1953 >        return 0;
1954 >    }
1955  
1956      /**
1957 <     * Increment active count. Called by workers before/during
1958 <     * executing tasks.
1959 <     */
1960 <    final void incrementActiveCount() {
1961 <        int c;
1962 <        do;while (!casRunControl(c = runControl, c+1));
1957 >     * Tries to decrement active count (sometimes implicitly) and
1958 >     * possibly release or create a compensating worker in preparation
1959 >     * for blocking. Fails on contention or termination. Otherwise,
1960 >     * adds a new thread if no idle workers are available and pool
1961 >     * may become starved.
1962 >     */
1963 >    final boolean tryCompensate() {
1964 >        int pc = config & SMASK, e, i, tc; long c;
1965 >        WorkQueue[] ws; WorkQueue w; Thread p;
1966 >        if ((ws = workQueues) != null && (e = (int)(c = ctl)) >= 0) {
1967 >            if (e != 0 && (i = e & SMASK) < ws.length &&
1968 >                (w = ws[i]) != null && w.eventCount == (e | INT_SIGN)) {
1969 >                long nc = ((long)(w.nextWait & E_MASK) |
1970 >                           (c & (AC_MASK|TC_MASK)));
1971 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1972 >                    w.eventCount = (e + E_SEQ) & E_MASK;
1973 >                    if ((p = w.parker) != null)
1974 >                        U.unpark(p);
1975 >                    return true;   // replace with idle worker
1976 >                }
1977 >            }
1978 >            else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1979 >                     (int)(c >> AC_SHIFT) + pc > 1) {
1980 >                long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1981 >                if (U.compareAndSwapLong(this, CTL, c, nc))
1982 >                    return true;   // no compensation
1983 >            }
1984 >            else if (tc + pc < MAX_CAP) {
1985 >                long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1986 >                if (U.compareAndSwapLong(this, CTL, c, nc)) {
1987 >                    ForkJoinWorkerThreadFactory fac;
1988 >                    Throwable ex = null;
1989 >                    ForkJoinWorkerThread wt = null;
1990 >                    try {
1991 >                        if ((fac = factory) != null &&
1992 >                            (wt = fac.newThread(this)) != null) {
1993 >                            wt.start();
1994 >                            return true;
1995 >                        }
1996 >                    } catch (Throwable rex) {
1997 >                        ex = rex;
1998 >                    }
1999 >                    deregisterWorker(wt, ex); // clean up and return false
2000 >                }
2001 >            }
2002 >        }
2003 >        return false;
2004      }
2005  
2006      /**
2007 <     * Decrement active count; possibly trigger termination.
2008 <     * Called by workers when they can't find tasks.
2007 >     * Helps and/or blocks until the given task is done.
2008 >     *
2009 >     * @param joiner the joining worker
2010 >     * @param task the task
2011 >     * @return task status on exit
2012       */
2013 <    final void decrementActiveCount() {
2014 <        int c, nextc;
2015 <        do;while (!casRunControl(c = runControl, nextc = c-1));
2016 <        if (canTerminateOnShutdown(nextc))
2017 <            terminateOnShutdown();
2013 >    final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
2014 >        int s = 0;
2015 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2016 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2017 >            joiner.currentJoin = task;
2018 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2019 >                         joiner.tryRemoveAndExec(task)); // process local tasks
2020 >            if (s >= 0 && (s = task.status) >= 0) {
2021 >                helpSignal(task, joiner.poolIndex);
2022 >                if ((s = task.status) >= 0 &&
2023 >                    (task instanceof CountedCompleter))
2024 >                    s = helpComplete(task, LIFO_QUEUE);
2025 >            }
2026 >            while (s >= 0 && (s = task.status) >= 0) {
2027 >                if ((!joiner.isEmpty() ||           // try helping
2028 >                     (s = tryHelpStealer(joiner, task)) == 0) &&
2029 >                    (s = task.status) >= 0) {
2030 >                    helpSignal(task, joiner.poolIndex);
2031 >                    if ((s = task.status) >= 0 && tryCompensate()) {
2032 >                        if (task.trySetSignal() && (s = task.status) >= 0) {
2033 >                            synchronized (task) {
2034 >                                if (task.status >= 0) {
2035 >                                    try {                // see ForkJoinTask
2036 >                                        task.wait();     //  for explanation
2037 >                                    } catch (InterruptedException ie) {
2038 >                                    }
2039 >                                }
2040 >                                else
2041 >                                    task.notifyAll();
2042 >                            }
2043 >                        }
2044 >                        long c;                          // re-activate
2045 >                        do {} while (!U.compareAndSwapLong
2046 >                                     (this, CTL, c = ctl, c + AC_UNIT));
2047 >                    }
2048 >                }
2049 >            }
2050 >            joiner.currentJoin = prevJoin;
2051 >        }
2052 >        return s;
2053      }
2054  
2055      /**
2056 <     * Return true if argument represents zero active count and
2057 <     * nonzero runstate, which is the triggering condition for
2058 <     * terminating on shutdown.
2056 >     * Stripped-down variant of awaitJoin used by timed joins. Tries
2057 >     * to help join only while there is continuous progress. (Caller
2058 >     * will then enter a timed wait.)
2059 >     *
2060 >     * @param joiner the joining worker
2061 >     * @param task the task
2062       */
2063 <    private static boolean canTerminateOnShutdown(int c) {
2064 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
2063 >    final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2064 >        int s;
2065 >        if (joiner != null && task != null && (s = task.status) >= 0) {
2066 >            ForkJoinTask<?> prevJoin = joiner.currentJoin;
2067 >            joiner.currentJoin = task;
2068 >            do {} while ((s = task.status) >= 0 && !joiner.isEmpty() &&
2069 >                         joiner.tryRemoveAndExec(task));
2070 >            if (s >= 0 && (s = task.status) >= 0) {
2071 >                helpSignal(task, joiner.poolIndex);
2072 >                if ((s = task.status) >= 0 &&
2073 >                    (task instanceof CountedCompleter))
2074 >                    s = helpComplete(task, LIFO_QUEUE);
2075 >            }
2076 >            if (s >= 0 && joiner.isEmpty()) {
2077 >                do {} while (task.status >= 0 &&
2078 >                             tryHelpStealer(joiner, task) > 0);
2079 >            }
2080 >            joiner.currentJoin = prevJoin;
2081 >        }
2082      }
2083  
2084      /**
2085 <     * Transition run state to at least the given state. Return true
2086 <     * if not already at least given state.
2085 >     * Returns a (probably) non-empty steal queue, if one is found
2086 >     * during a scan, else null.  This method must be retried by
2087 >     * caller if, by the time it tries to use the queue, it is empty.
2088 >     * @param r a (random) seed for scanning
2089       */
2090 <    private boolean transitionRunStateTo(int state) {
2090 >    private WorkQueue findNonEmptyStealQueue(int r) {
2091          for (;;) {
2092 <            int c = runControl;
2093 <            if (runStateOf(c) >= state)
2092 >            int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2093 >            if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2094 >                for (int j = (m + 1) << 2; j >= 0; --j) {
2095 >                    if ((q = ws[(((r + j) << 1) | 1) & m]) != null &&
2096 >                        q.base - q.top < 0)
2097 >                        return q;
2098 >                }
2099 >            }
2100 >            if (plock == ps)
2101 >                return null;
2102 >        }
2103 >    }
2104 >
2105 >    /**
2106 >     * Runs tasks until {@code isQuiescent()}. We piggyback on
2107 >     * active count ctl maintenance, but rather than blocking
2108 >     * when tasks cannot be found, we rescan until all others cannot
2109 >     * find tasks either.
2110 >     */
2111 >    final void helpQuiescePool(WorkQueue w) {
2112 >        for (boolean active = true;;) {
2113 >            long c; WorkQueue q; ForkJoinTask<?> t; int b;
2114 >            while ((t = w.nextLocalTask()) != null) {
2115 >                if (w.base - w.top < 0)
2116 >                    signalWork(w);
2117 >                t.doExec();
2118 >            }
2119 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) != null) {
2120 >                if (!active) {      // re-establish active count
2121 >                    active = true;
2122 >                    do {} while (!U.compareAndSwapLong
2123 >                                 (this, CTL, c = ctl, c + AC_UNIT));
2124 >                }
2125 >                if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2126 >                    if (q.base - q.top < 0)
2127 >                        signalWork(q);
2128 >                    w.runSubtask(t);
2129 >                }
2130 >            }
2131 >            else if (active) {       // decrement active count without queuing
2132 >                long nc = (c = ctl) - AC_UNIT;
2133 >                if ((int)(nc >> AC_SHIFT) + (config & SMASK) == 0)
2134 >                    return;          // bypass decrement-then-increment
2135 >                if (U.compareAndSwapLong(this, CTL, c, nc))
2136 >                    active = false;
2137 >            }
2138 >            else if ((int)((c = ctl) >> AC_SHIFT) + (config & SMASK) == 0 &&
2139 >                     U.compareAndSwapLong(this, CTL, c, c + AC_UNIT))
2140 >                return;
2141 >        }
2142 >    }
2143 >
2144 >    /**
2145 >     * Gets and removes a local or stolen task for the given worker.
2146 >     *
2147 >     * @return a task, if available
2148 >     */
2149 >    final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2150 >        for (ForkJoinTask<?> t;;) {
2151 >            WorkQueue q; int b;
2152 >            if ((t = w.nextLocalTask()) != null)
2153 >                return t;
2154 >            if ((q = findNonEmptyStealQueue(w.nextSeed())) == null)
2155 >                return null;
2156 >            if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2157 >                if (q.base - q.top < 0)
2158 >                    signalWork(q);
2159 >                return t;
2160 >            }
2161 >        }
2162 >    }
2163 >
2164 >    /**
2165 >     * Returns a cheap heuristic guide for task partitioning when
2166 >     * programmers, frameworks, tools, or languages have little or no
2167 >     * idea about task granularity.  In essence by offering this
2168 >     * method, we ask users only about tradeoffs in overhead vs
2169 >     * expected throughput and its variance, rather than how finely to
2170 >     * partition tasks.
2171 >     *
2172 >     * In a steady state strict (tree-structured) computation, each
2173 >     * thread makes available for stealing enough tasks for other
2174 >     * threads to remain active. Inductively, if all threads play by
2175 >     * the same rules, each thread should make available only a
2176 >     * constant number of tasks.
2177 >     *
2178 >     * The minimum useful constant is just 1. But using a value of 1
2179 >     * would require immediate replenishment upon each steal to
2180 >     * maintain enough tasks, which is infeasible.  Further,
2181 >     * partitionings/granularities of offered tasks should minimize
2182 >     * steal rates, which in general means that threads nearer the top
2183 >     * of computation tree should generate more than those nearer the
2184 >     * bottom. In perfect steady state, each thread is at
2185 >     * approximately the same level of computation tree. However,
2186 >     * producing extra tasks amortizes the uncertainty of progress and
2187 >     * diffusion assumptions.
2188 >     *
2189 >     * So, users will want to use values larger, but not much larger
2190 >     * than 1 to both smooth over transient shortages and hedge
2191 >     * against uneven progress; as traded off against the cost of
2192 >     * extra task overhead. We leave the user to pick a threshold
2193 >     * value to compare with the results of this call to guide
2194 >     * decisions, but recommend values such as 3.
2195 >     *
2196 >     * When all threads are active, it is on average OK to estimate
2197 >     * surplus strictly locally. In steady-state, if one thread is
2198 >     * maintaining say 2 surplus tasks, then so are others. So we can
2199 >     * just use estimated queue length.  However, this strategy alone
2200 >     * leads to serious mis-estimates in some non-steady-state
2201 >     * conditions (ramp-up, ramp-down, other stalls). We can detect
2202 >     * many of these by further considering the number of "idle"
2203 >     * threads, that are known to have zero queued tasks, so
2204 >     * compensate by a factor of (#idle/#active) threads.
2205 >     *
2206 >     * Note: The approximation of #busy workers as #active workers is
2207 >     * not very good under current signalling scheme, and should be
2208 >     * improved.
2209 >     */
2210 >    static int getSurplusQueuedTaskCount() {
2211 >        Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2212 >        if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2213 >            int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).config & SMASK;
2214 >            int n = (q = wt.workQueue).top - q.base;
2215 >            int a = (int)(pool.ctl >> AC_SHIFT) + p;
2216 >            return n - (a > (p >>>= 1) ? 0 :
2217 >                        a > (p >>>= 1) ? 1 :
2218 >                        a > (p >>>= 1) ? 2 :
2219 >                        a > (p >>>= 1) ? 4 :
2220 >                        8);
2221 >        }
2222 >        return 0;
2223 >    }
2224 >
2225 >    //  Termination
2226 >
2227 >    /**
2228 >     * Possibly initiates and/or completes termination.  The caller
2229 >     * triggering termination runs three passes through workQueues:
2230 >     * (0) Setting termination status, followed by wakeups of queued
2231 >     * workers; (1) cancelling all tasks; (2) interrupting lagging
2232 >     * threads (likely in external tasks, but possibly also blocked in
2233 >     * joins).  Each pass repeats previous steps because of potential
2234 >     * lagging thread creation.
2235 >     *
2236 >     * @param now if true, unconditionally terminate, else only
2237 >     * if no work and no active workers
2238 >     * @param enable if true, enable shutdown when next possible
2239 >     * @return true if now terminating or terminated
2240 >     */
2241 >    private boolean tryTerminate(boolean now, boolean enable) {
2242 >        int ps;
2243 >        if (this == common)                    // cannot shut down
2244 >            return false;
2245 >        if ((ps = plock) >= 0) {                   // enable by setting plock
2246 >            if (!enable)
2247                  return false;
2248 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
2248 >            if ((ps & PL_LOCK) != 0 ||
2249 >                !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2250 >                ps = acquirePlock();
2251 >            int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2252 >            if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2253 >                releasePlock(nps);
2254 >        }
2255 >        for (long c;;) {
2256 >            if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2257 >                if ((short)(c >>> TC_SHIFT) == -(config & SMASK)) {
2258 >                    synchronized (this) {
2259 >                        notifyAll();               // signal when 0 workers
2260 >                    }
2261 >                }
2262                  return true;
2263 +            }
2264 +            if (!now) {                            // check if idle & no tasks
2265 +                WorkQueue[] ws; WorkQueue w;
2266 +                if ((int)(c >> AC_SHIFT) != -(config & SMASK))
2267 +                    return false;
2268 +                if ((ws = workQueues) != null) {
2269 +                    for (int i = 0; i < ws.length; ++i) {
2270 +                        if ((w = ws[i]) != null) {
2271 +                            if (!w.isEmpty()) {    // signal unprocessed tasks
2272 +                                signalWork(w);
2273 +                                return false;
2274 +                            }
2275 +                            if ((i & 1) != 0 && w.eventCount >= 0)
2276 +                                return false;      // unqueued inactive worker
2277 +                        }
2278 +                    }
2279 +                }
2280 +            }
2281 +            if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2282 +                for (int pass = 0; pass < 3; ++pass) {
2283 +                    WorkQueue[] ws; WorkQueue w; Thread wt;
2284 +                    if ((ws = workQueues) != null) {
2285 +                        int n = ws.length;
2286 +                        for (int i = 0; i < n; ++i) {
2287 +                            if ((w = ws[i]) != null) {
2288 +                                w.qlock = -1;
2289 +                                if (pass > 0) {
2290 +                                    w.cancelAll();
2291 +                                    if (pass > 1 && (wt = w.owner) != null) {
2292 +                                        if (!wt.isInterrupted()) {
2293 +                                            try {
2294 +                                                wt.interrupt();
2295 +                                            } catch (Throwable ignore) {
2296 +                                            }
2297 +                                        }
2298 +                                        U.unpark(wt);
2299 +                                    }
2300 +                                }
2301 +                            }
2302 +                        }
2303 +                        // Wake up workers parked on event queue
2304 +                        int i, e; long cc; Thread p;
2305 +                        while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2306 +                               (i = e & SMASK) < n && i >= 0 &&
2307 +                               (w = ws[i]) != null) {
2308 +                            long nc = ((long)(w.nextWait & E_MASK) |
2309 +                                       ((cc + AC_UNIT) & AC_MASK) |
2310 +                                       (cc & (TC_MASK|STOP_BIT)));
2311 +                            if (w.eventCount == (e | INT_SIGN) &&
2312 +                                U.compareAndSwapLong(this, CTL, cc, nc)) {
2313 +                                w.eventCount = (e + E_SEQ) & E_MASK;
2314 +                                w.qlock = -1;
2315 +                                if ((p = w.parker) != null)
2316 +                                    U.unpark(p);
2317 +                            }
2318 +                        }
2319 +                    }
2320 +                }
2321 +            }
2322          }
2323      }
2324  
2325 +    // external operations on common pool
2326 +
2327      /**
2328 <     * Controls whether to add spares to maintain parallelism
2328 >     * Returns common pool queue for a thread that has submitted at
2329 >     * least one task.
2330       */
2331 <    private volatile boolean maintainsParallelism;
2331 >    static WorkQueue commonSubmitterQueue() {
2332 >        ForkJoinPool p; WorkQueue[] ws; int m; Submitter z;
2333 >        return ((z = submitters.get()) != null &&
2334 >                (p = common) != null &&
2335 >                (ws = p.workQueues) != null &&
2336 >                (m = ws.length - 1) >= 0) ?
2337 >            ws[m & z.seed & SQMASK] : null;
2338 >    }
2339 >
2340 >    /**
2341 >     * Tries to pop the given task from submitter's queue in common pool.
2342 >     */
2343 >    static boolean tryExternalUnpush(ForkJoinTask<?> t) {
2344 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q; Submitter z;
2345 >        ForkJoinTask<?>[] a;  int m, s;
2346 >        if (t != null &&
2347 >            (z = submitters.get()) != null &&
2348 >            (p = common) != null &&
2349 >            (ws = p.workQueues) != null &&
2350 >            (m = ws.length - 1) >= 0 &&
2351 >            (q = ws[m & z.seed & SQMASK]) != null &&
2352 >            (s = q.top) != q.base &&
2353 >            (a = q.array) != null) {
2354 >            long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2355 >            if (U.getObject(a, j) == t &&
2356 >                U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2357 >                if (q.array == a && q.top == s && // recheck
2358 >                    U.compareAndSwapObject(a, j, t, null)) {
2359 >                    q.top = s - 1;
2360 >                    q.qlock = 0;
2361 >                    return true;
2362 >                }
2363 >                q.qlock = 0;
2364 >            }
2365 >        }
2366 >        return false;
2367 >    }
2368 >
2369 >    /**
2370 >     * Tries to pop and run local tasks within the same computation
2371 >     * as the given root. On failure, tries to help complete from
2372 >     * other queues via helpComplete.
2373 >     */
2374 >    private void externalHelpComplete(WorkQueue q, ForkJoinTask<?> root) {
2375 >        ForkJoinTask<?>[] a; int m;
2376 >        if (q != null && (a = q.array) != null && (m = (a.length - 1)) >= 0 &&
2377 >            root != null && root.status >= 0) {
2378 >            for (;;) {
2379 >                int s, u; Object o; CountedCompleter<?> task = null;
2380 >                if ((s = q.top) - q.base > 0) {
2381 >                    long j = ((m & (s - 1)) << ASHIFT) + ABASE;
2382 >                    if ((o = U.getObject(a, j)) != null &&
2383 >                        (o instanceof CountedCompleter)) {
2384 >                        CountedCompleter<?> t = (CountedCompleter<?>)o, r = t;
2385 >                        do {
2386 >                            if (r == root) {
2387 >                                if (U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2388 >                                    if (q.array == a && q.top == s &&
2389 >                                        U.compareAndSwapObject(a, j, t, null)) {
2390 >                                        q.top = s - 1;
2391 >                                        task = t;
2392 >                                    }
2393 >                                    q.qlock = 0;
2394 >                                }
2395 >                                break;
2396 >                            }
2397 >                        } while ((r = r.completer) != null);
2398 >                    }
2399 >                }
2400 >                if (task != null)
2401 >                    task.doExec();
2402 >                if (root.status < 0 ||
2403 >                    (u = (int)(ctl >>> 32)) >= 0 || (u >> UAC_SHIFT) >= 0)
2404 >                    break;
2405 >                if (task == null) {
2406 >                    helpSignal(root, q.poolIndex);
2407 >                    if (root.status >= 0)
2408 >                        helpComplete(root, SHARED_QUEUE);
2409 >                    break;
2410 >                }
2411 >            }
2412 >        }
2413 >    }
2414 >
2415 >    /**
2416 >     * Tries to help execute or signal availability of the given task
2417 >     * from submitter's queue in common pool.
2418 >     */
2419 >    static void externalHelpJoin(ForkJoinTask<?> t) {
2420 >        // Some hard-to-avoid overlap with tryExternalUnpush
2421 >        ForkJoinPool p; WorkQueue[] ws; WorkQueue q, w; Submitter z;
2422 >        ForkJoinTask<?>[] a;  int m, s, n;
2423 >        if (t != null &&
2424 >            (z = submitters.get()) != null &&
2425 >            (p = common) != null &&
2426 >            (ws = p.workQueues) != null &&
2427 >            (m = ws.length - 1) >= 0 &&
2428 >            (q = ws[m & z.seed & SQMASK]) != null &&
2429 >            (a = q.array) != null) {
2430 >            int am = a.length - 1;
2431 >            if ((s = q.top) != q.base) {
2432 >                long j = ((am & (s - 1)) << ASHIFT) + ABASE;
2433 >                if (U.getObject(a, j) == t &&
2434 >                    U.compareAndSwapInt(q, QLOCK, 0, 1)) {
2435 >                    if (q.array == a && q.top == s &&
2436 >                        U.compareAndSwapObject(a, j, t, null)) {
2437 >                        q.top = s - 1;
2438 >                        q.qlock = 0;
2439 >                        t.doExec();
2440 >                    }
2441 >                    else
2442 >                        q.qlock = 0;
2443 >                }
2444 >            }
2445 >            if (t.status >= 0) {
2446 >                if (t instanceof CountedCompleter)
2447 >                    p.externalHelpComplete(q, t);
2448 >                else
2449 >                    p.helpSignal(t, q.poolIndex);
2450 >            }
2451 >        }
2452 >    }
2453 >
2454 >    // Exported methods
2455  
2456      // Constructors
2457  
2458      /**
2459 <     * Creates a ForkJoinPool with a pool size equal to the number of
2460 <     * processors available on the system and using the default
2461 <     * ForkJoinWorkerThreadFactory,
2459 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2460 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
2461 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2462 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2463 >     *
2464       * @throws SecurityException if a security manager exists and
2465       *         the caller is not permitted to modify threads
2466       *         because it does not hold {@link
2467 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2467 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2468       */
2469      public ForkJoinPool() {
2470          this(Runtime.getRuntime().availableProcessors(),
2471 <             defaultForkJoinWorkerThreadFactory);
2471 >             defaultForkJoinWorkerThreadFactory, null, false);
2472      }
2473  
2474      /**
2475 <     * Creates a ForkJoinPool with the indicated parellelism level
2476 <     * threads, and using the default ForkJoinWorkerThreadFactory,
2477 <     * @param parallelism the number of worker threads
2475 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
2476 >     * level, the {@linkplain
2477 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
2478 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2479 >     *
2480 >     * @param parallelism the parallelism level
2481       * @throws IllegalArgumentException if parallelism less than or
2482 <     * equal to zero
2482 >     *         equal to zero, or greater than implementation limit
2483       * @throws SecurityException if a security manager exists and
2484       *         the caller is not permitted to modify threads
2485       *         because it does not hold {@link
2486 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2486 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2487       */
2488      public ForkJoinPool(int parallelism) {
2489 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
2489 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2490      }
2491  
2492      /**
2493 <     * Creates a ForkJoinPool with parallelism equal to the number of
347 <     * processors available on the system and using the given
348 <     * ForkJoinWorkerThreadFactory,
349 <     * @param factory the factory for creating new threads
350 <     * @throws NullPointerException if factory is null
351 <     * @throws SecurityException if a security manager exists and
352 <     *         the caller is not permitted to modify threads
353 <     *         because it does not hold {@link
354 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
355 <     */
356 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
357 <        this(Runtime.getRuntime().availableProcessors(), factory);
358 <    }
359 <
360 <    /**
361 <     * Creates a ForkJoinPool with the given parallelism and factory.
2493 >     * Creates a {@code ForkJoinPool} with the given parameters.
2494       *
2495 <     * @param parallelism the targeted number of worker threads
2496 <     * @param factory the factory for creating new threads
2495 >     * @param parallelism the parallelism level. For default value,
2496 >     * use {@link java.lang.Runtime#availableProcessors}.
2497 >     * @param factory the factory for creating new threads. For default value,
2498 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
2499 >     * @param handler the handler for internal worker threads that
2500 >     * terminate due to unrecoverable errors encountered while executing
2501 >     * tasks. For default value, use {@code null}.
2502 >     * @param asyncMode if true,
2503 >     * establishes local first-in-first-out scheduling mode for forked
2504 >     * tasks that are never joined. This mode may be more appropriate
2505 >     * than default locally stack-based mode in applications in which
2506 >     * worker threads only process event-style asynchronous tasks.
2507 >     * For default value, use {@code false}.
2508       * @throws IllegalArgumentException if parallelism less than or
2509 <     * equal to zero, or greater than implementation limit.
2510 <     * @throws NullPointerException if factory is null
2509 >     *         equal to zero, or greater than implementation limit
2510 >     * @throws NullPointerException if the factory is null
2511       * @throws SecurityException if a security manager exists and
2512       *         the caller is not permitted to modify threads
2513       *         because it does not hold {@link
2514 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2514 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
2515       */
2516 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
2517 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
2518 <            throw new IllegalArgumentException();
2516 >    public ForkJoinPool(int parallelism,
2517 >                        ForkJoinWorkerThreadFactory factory,
2518 >                        Thread.UncaughtExceptionHandler handler,
2519 >                        boolean asyncMode) {
2520 >        checkPermission();
2521          if (factory == null)
2522              throw new NullPointerException();
2523 <        checkPermission();
2523 >        if (parallelism <= 0 || parallelism > MAX_CAP)
2524 >            throw new IllegalArgumentException();
2525          this.factory = factory;
2526 <        this.parallelism = parallelism;
2527 <        this.maxPoolSize = MAX_THREADS;
2528 <        this.maintainsParallelism = true;
2529 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
2530 <        this.workerLock = new ReentrantLock();
2531 <        this.termination = workerLock.newCondition();
2532 <        this.stealCount = new AtomicLong();
2533 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
2534 <        createAndStartInitialWorkers(parallelism);
2526 >        this.ueh = handler;
2527 >        this.config = parallelism | (asyncMode ? (FIFO_QUEUE << 16) : 0);
2528 >        long np = (long)(-parallelism); // offset ctl counts
2529 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2530 >        int pn = nextPoolId();
2531 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
2532 >        sb.append(Integer.toString(pn));
2533 >        sb.append("-worker-");
2534 >        this.workerNamePrefix = sb.toString();
2535      }
2536  
2537      /**
2538 <     * Create new worker using factory.
2539 <     * @param index the index to assign worker
2540 <     * @return new worker, or null of factory failed
2541 <     */
2542 <    private ForkJoinWorkerThread createWorker(int index) {
2543 <        Thread.UncaughtExceptionHandler h = ueh;
2544 <        ForkJoinWorkerThread w = factory.newThread(this);
2545 <        if (w != null) {
2546 <            w.poolIndex = index;
2547 <            w.setDaemon(true);
2548 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
403 <            if (h != null)
404 <                w.setUncaughtExceptionHandler(h);
405 <        }
406 <        return w;
407 <    }
408 <
409 <    /**
410 <     * Return a good size for worker array given pool size.
411 <     * Currently requires size to be a power of two.
412 <     */
413 <    private static int arraySizeFor(int ps) {
414 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
415 <    }
416 <
417 <    /**
418 <     * Create or resize array if necessary to hold newLength
419 <     * @return the array
420 <     */
421 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
422 <        ForkJoinWorkerThread[] ws = workers;
423 <        if (ws == null)
424 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
425 <        else if (newLength > ws.length)
426 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
427 <        else
428 <            return ws;
429 <    }
430 <
431 <    /**
432 <     * Try to shrink workers into smaller array after one or more terminate
433 <     */
434 <    private void tryShrinkWorkerArray() {
435 <        ForkJoinWorkerThread[] ws = workers;
436 <        int len = ws.length;
437 <        int last = len - 1;
438 <        while (last >= 0 && ws[last] == null)
439 <            --last;
440 <        int newLength = arraySizeFor(last+1);
441 <        if (newLength < len)
442 <            workers = Arrays.copyOf(ws, newLength);
2538 >     * Constructor for common pool, suitable only for static initialization.
2539 >     * Basically the same as above, but uses smallest possible initial footprint.
2540 >     */
2541 >    ForkJoinPool(int parallelism, long ctl,
2542 >                 ForkJoinWorkerThreadFactory factory,
2543 >                 Thread.UncaughtExceptionHandler handler) {
2544 >        this.config = parallelism;
2545 >        this.ctl = ctl;
2546 >        this.factory = factory;
2547 >        this.ueh = handler;
2548 >        this.workerNamePrefix = "ForkJoinPool.commonPool-worker-";
2549      }
2550  
2551      /**
2552 <     * Initial worker array and worker creation and startup. (This
2553 <     * must be done under lock to avoid interference by some of the
2554 <     * newly started threads while creating others.)
2552 >     * Returns the common pool instance. This pool is statically
2553 >     * constructed; its run state is unaffected by attempts to {@link
2554 >     * #shutdown} or {@link #shutdownNow}. However this pool and any
2555 >     * ongoing processing are automatically terminated upon program
2556 >     * {@link System#exit}.  Any program that relies on asynchronous
2557 >     * task processing to complete before program termination should
2558 >     * invoke {@link #quiesceCommonPool}, or the timeout-based {@code
2559 >     * commonPool().}{@link #awaitQuiescence}, before exit.
2560 >     *
2561 >     * @return the common pool instance
2562       */
2563 <    private void createAndStartInitialWorkers(int ps) {
2564 <        final ReentrantLock lock = this.workerLock;
2565 <        lock.lock();
453 <        try {
454 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
455 <            for (int i = 0; i < ps; ++i) {
456 <                ForkJoinWorkerThread w = createWorker(i);
457 <                if (w != null) {
458 <                    ws[i] = w;
459 <                    w.start();
460 <                    updateWorkerCount(1);
461 <                }
462 <            }
463 <        } finally {
464 <            lock.unlock();
465 <        }
466 <    }
467 <
468 <    /**
469 <     * Worker creation and startup for threads added via setParallelism.
470 <     */
471 <    private void createAndStartAddedWorkers() {
472 <        resumeAllSpares();  // Allow spares to convert to nonspare
473 <        int ps = parallelism;
474 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
475 <        int len = ws.length;
476 <        // Sweep through slots, to keep lowest indices most populated
477 <        int k = 0;
478 <        while (k < len) {
479 <            if (ws[k] != null) {
480 <                ++k;
481 <                continue;
482 <            }
483 <            int s = workerCounts;
484 <            int tc = totalCountOf(s);
485 <            int rc = runningCountOf(s);
486 <            if (rc >= ps || tc >= ps)
487 <                break;
488 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
489 <                ForkJoinWorkerThread w = createWorker(k);
490 <                if (w != null) {
491 <                    ws[k++] = w;
492 <                    w.start();
493 <                }
494 <                else {
495 <                    updateWorkerCount(-1); // back out on failed creation
496 <                    break;
497 <                }
498 <            }
499 <        }
2563 >    public static ForkJoinPool commonPool() {
2564 >        // assert common != null : "static init error";
2565 >        return common;
2566      }
2567  
2568      // Execution methods
2569  
2570      /**
2571 <     * Common code for execute, invoke and submit
2572 <     */
2573 <    private <T> void doSubmit(ForkJoinTask<T> task) {
2574 <        if (isShutdown())
2575 <            throw new RejectedExecutionException();
2576 <        submissionQueue.offer(task);
2577 <        signalIdleWorkers(true);
2578 <    }
2579 <
514 <    /**
515 <     * Performs the given task; returning its result upon completion
2571 >     * Performs the given task, returning its result upon completion.
2572 >     * If the computation encounters an unchecked Exception or Error,
2573 >     * it is rethrown as the outcome of this invocation.  Rethrown
2574 >     * exceptions behave in the same way as regular exceptions, but,
2575 >     * when possible, contain stack traces (as displayed for example
2576 >     * using {@code ex.printStackTrace()}) of both the current thread
2577 >     * as well as the thread actually encountering the exception;
2578 >     * minimally only the latter.
2579 >     *
2580       * @param task the task
2581       * @return the task's result
2582 <     * @throws NullPointerException if task is null
2583 <     * @throws RejectedExecutionException if pool is shut down
2582 >     * @throws NullPointerException if the task is null
2583 >     * @throws RejectedExecutionException if the task cannot be
2584 >     *         scheduled for execution
2585       */
2586      public <T> T invoke(ForkJoinTask<T> task) {
2587 <        doSubmit(task);
2587 >        if (task == null)
2588 >            throw new NullPointerException();
2589 >        externalPush(task);
2590          return task.join();
2591      }
2592  
2593      /**
2594       * Arranges for (asynchronous) execution of the given task.
2595 +     *
2596       * @param task the task
2597 <     * @throws NullPointerException if task is null
2598 <     * @throws RejectedExecutionException if pool is shut down
2597 >     * @throws NullPointerException if the task is null
2598 >     * @throws RejectedExecutionException if the task cannot be
2599 >     *         scheduled for execution
2600       */
2601 <    public <T> void execute(ForkJoinTask<T> task) {
2602 <        doSubmit(task);
2601 >    public void execute(ForkJoinTask<?> task) {
2602 >        if (task == null)
2603 >            throw new NullPointerException();
2604 >        externalPush(task);
2605      }
2606  
2607      // AbstractExecutorService methods
2608  
2609 +    /**
2610 +     * @throws NullPointerException if the task is null
2611 +     * @throws RejectedExecutionException if the task cannot be
2612 +     *         scheduled for execution
2613 +     */
2614      public void execute(Runnable task) {
2615 <        doSubmit(new AdaptedRunnable<Void>(task, null));
2615 >        if (task == null)
2616 >            throw new NullPointerException();
2617 >        ForkJoinTask<?> job;
2618 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2619 >            job = (ForkJoinTask<?>) task;
2620 >        else
2621 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2622 >        externalPush(job);
2623      }
2624  
2625 <    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2626 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
2627 <        doSubmit(job);
2628 <        return job;
2625 >    /**
2626 >     * Submits a ForkJoinTask for execution.
2627 >     *
2628 >     * @param task the task to submit
2629 >     * @return the task
2630 >     * @throws NullPointerException if the task is null
2631 >     * @throws RejectedExecutionException if the task cannot be
2632 >     *         scheduled for execution
2633 >     */
2634 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2635 >        if (task == null)
2636 >            throw new NullPointerException();
2637 >        externalPush(task);
2638 >        return task;
2639      }
2640  
2641 <    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2642 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
2643 <        doSubmit(job);
2641 >    /**
2642 >     * @throws NullPointerException if the task is null
2643 >     * @throws RejectedExecutionException if the task cannot be
2644 >     *         scheduled for execution
2645 >     */
2646 >    public <T> ForkJoinTask<T> submit(Callable<T> task) {
2647 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2648 >        externalPush(job);
2649          return job;
2650      }
2651  
2652 <    public ForkJoinTask<?> submit(Runnable task) {
2653 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
2654 <        doSubmit(job);
2652 >    /**
2653 >     * @throws NullPointerException if the task is null
2654 >     * @throws RejectedExecutionException if the task cannot be
2655 >     *         scheduled for execution
2656 >     */
2657 >    public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2658 >        ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2659 >        externalPush(job);
2660          return job;
2661      }
2662  
2663      /**
2664 <     * Adaptor for Runnables. This implements RunnableFuture
2665 <     * to be compliant with AbstractExecutorService constraints
2664 >     * @throws NullPointerException if the task is null
2665 >     * @throws RejectedExecutionException if the task cannot be
2666 >     *         scheduled for execution
2667       */
2668 <    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
2669 <        implements RunnableFuture<T> {
2670 <        final Runnable runnable;
2671 <        final T resultOnCompletion;
2672 <        T result;
2673 <        AdaptedRunnable(Runnable runnable, T result) {
2674 <            if (runnable == null) throw new NullPointerException();
2675 <            this.runnable = runnable;
2676 <            this.resultOnCompletion = result;
2677 <        }
574 <        public T getRawResult() { return result; }
575 <        public void setRawResult(T v) { result = v; }
576 <        public boolean exec() {
577 <            runnable.run();
578 <            result = resultOnCompletion;
579 <            return true;
580 <        }
581 <        public void run() { invoke(); }
2668 >    public ForkJoinTask<?> submit(Runnable task) {
2669 >        if (task == null)
2670 >            throw new NullPointerException();
2671 >        ForkJoinTask<?> job;
2672 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2673 >            job = (ForkJoinTask<?>) task;
2674 >        else
2675 >            job = new ForkJoinTask.AdaptedRunnableAction(task);
2676 >        externalPush(job);
2677 >        return job;
2678      }
2679  
2680      /**
2681 <     * Adaptor for Callables
2681 >     * @throws NullPointerException       {@inheritDoc}
2682 >     * @throws RejectedExecutionException {@inheritDoc}
2683       */
587    static final class AdaptedCallable<T> extends ForkJoinTask<T>
588        implements RunnableFuture<T> {
589        final Callable<T> callable;
590        T result;
591        AdaptedCallable(Callable<T> callable) {
592            if (callable == null) throw new NullPointerException();
593            this.callable = callable;
594        }
595        public T getRawResult() { return result; }
596        public void setRawResult(T v) { result = v; }
597        public boolean exec() {
598            try {
599                result = callable.call();
600                return true;
601            } catch (Error err) {
602                throw err;
603            } catch (RuntimeException rex) {
604                throw rex;
605            } catch (Exception ex) {
606                throw new RuntimeException(ex);
607            }
608        }
609        public void run() { invoke(); }
610    }
611
2684      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2685 <        ArrayList<ForkJoinTask<T>> ts =
2686 <            new ArrayList<ForkJoinTask<T>>(tasks.size());
2687 <        for (Callable<T> c : tasks)
2688 <            ts.add(new AdaptedCallable<T>(c));
2689 <        invoke(new InvokeAll<T>(ts));
2690 <        return (List<Future<T>>)(List)ts;
2691 <    }
2685 >        // In previous versions of this class, this method constructed
2686 >        // a task to run ForkJoinTask.invokeAll, but now external
2687 >        // invocation of multiple tasks is at least as efficient.
2688 >        List<ForkJoinTask<T>> fs = new ArrayList<ForkJoinTask<T>>(tasks.size());
2689 >        // Workaround needed because method wasn't declared with
2690 >        // wildcards in return type but should have been.
2691 >        @SuppressWarnings({"unchecked", "rawtypes"})
2692 >            List<Future<T>> futures = (List<Future<T>>) (List) fs;
2693  
2694 <    static final class InvokeAll<T> extends RecursiveAction {
2695 <        final ArrayList<ForkJoinTask<T>> tasks;
2696 <        InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
2697 <        public void compute() {
2698 <            try { invokeAll(tasks); } catch(Exception ignore) {}
2694 >        boolean done = false;
2695 >        try {
2696 >            for (Callable<T> t : tasks) {
2697 >                ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2698 >                externalPush(f);
2699 >                fs.add(f);
2700 >            }
2701 >            for (ForkJoinTask<T> f : fs)
2702 >                f.quietlyJoin();
2703 >            done = true;
2704 >            return futures;
2705 >        } finally {
2706 >            if (!done)
2707 >                for (ForkJoinTask<T> f : fs)
2708 >                    f.cancel(false);
2709          }
2710      }
2711  
629    // Configuration and status settings and queries
630
2712      /**
2713 <     * Returns the factory used for constructing new workers
2713 >     * Returns the factory used for constructing new workers.
2714       *
2715       * @return the factory used for constructing new workers
2716       */
# Line 640 | Line 2721 | public class ForkJoinPool extends Abstra
2721      /**
2722       * Returns the handler for internal worker threads that terminate
2723       * due to unrecoverable errors encountered while executing tasks.
2724 <     * @return the handler, or null if none
2724 >     *
2725 >     * @return the handler, or {@code null} if none
2726       */
2727      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
2728 <        Thread.UncaughtExceptionHandler h;
647 <        final ReentrantLock lock = this.workerLock;
648 <        lock.lock();
649 <        try {
650 <            h = ueh;
651 <        } finally {
652 <            lock.unlock();
653 <        }
654 <        return h;
2728 >        return ueh;
2729      }
2730  
2731      /**
2732 <     * Sets the handler for internal worker threads that terminate due
659 <     * to unrecoverable errors encountered while executing tasks.
660 <     * Unless set, the current default or ThreadGroup handler is used
661 <     * as handler.
2732 >     * Returns the targeted parallelism level of this pool.
2733       *
2734 <     * @param h the new handler
664 <     * @return the old handler, or null if none
665 <     * @throws SecurityException if a security manager exists and
666 <     *         the caller is not permitted to modify threads
667 <     *         because it does not hold {@link
668 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
669 <     */
670 <    public Thread.UncaughtExceptionHandler
671 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
672 <        checkPermission();
673 <        Thread.UncaughtExceptionHandler old = null;
674 <        final ReentrantLock lock = this.workerLock;
675 <        lock.lock();
676 <        try {
677 <            old = ueh;
678 <            ueh = h;
679 <            ForkJoinWorkerThread[] ws = workers;
680 <            for (int i = 0; i < ws.length; ++i) {
681 <                ForkJoinWorkerThread w = ws[i];
682 <                if (w != null)
683 <                    w.setUncaughtExceptionHandler(h);
684 <            }
685 <        } finally {
686 <            lock.unlock();
687 <        }
688 <        return old;
689 <    }
690 <
691 <
692 <    /**
693 <     * Sets the target paralleism level of this pool.
694 <     * @param parallelism the target parallelism
695 <     * @throws IllegalArgumentException if parallelism less than or
696 <     * equal to zero or greater than maximum size bounds.
697 <     * @throws SecurityException if a security manager exists and
698 <     *         the caller is not permitted to modify threads
699 <     *         because it does not hold {@link
700 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
2734 >     * @return the targeted parallelism level of this pool
2735       */
2736 <    public void setParallelism(int parallelism) {
2737 <        checkPermission();
704 <        if (parallelism <= 0 || parallelism > maxPoolSize)
705 <            throw new IllegalArgumentException();
706 <        final ReentrantLock lock = this.workerLock;
707 <        lock.lock();
708 <        try {
709 <            if (!isTerminating()) {
710 <                int p = this.parallelism;
711 <                this.parallelism = parallelism;
712 <                if (parallelism > p)
713 <                    createAndStartAddedWorkers();
714 <                else
715 <                    trimSpares();
716 <            }
717 <        } finally {
718 <            lock.unlock();
719 <        }
720 <        signalIdleWorkers(false);
2736 >    public int getParallelism() {
2737 >        return config & SMASK;
2738      }
2739  
2740      /**
2741 <     * Returns the targeted number of worker threads in this pool.
2741 >     * Returns the targeted parallelism level of the common pool.
2742       *
2743 <     * @return the targeted number of worker threads in this pool
2743 >     * @return the targeted parallelism level of the common pool
2744       */
2745 <    public int getParallelism() {
2746 <        return parallelism;
2745 >    public static int getCommonPoolParallelism() {
2746 >        return commonParallelism;
2747      }
2748  
2749      /**
2750       * Returns the number of worker threads that have started but not
2751 <     * yet terminated.  This result returned by this method may differ
2752 <     * from <code>getParallelism</code> when threads are created to
2751 >     * yet terminated.  The result returned by this method may differ
2752 >     * from {@link #getParallelism} when threads are created to
2753       * maintain parallelism when others are cooperatively blocked.
2754       *
2755       * @return the number of worker threads
2756       */
2757      public int getPoolSize() {
2758 <        return totalCountOf(workerCounts);
742 <    }
743 <
744 <    /**
745 <     * Returns the maximum number of threads allowed to exist in the
746 <     * pool, even if there are insufficient unblocked running threads.
747 <     * @return the maximum
748 <     */
749 <    public int getMaximumPoolSize() {
750 <        return maxPoolSize;
751 <    }
752 <
753 <    /**
754 <     * Sets the maximum number of threads allowed to exist in the
755 <     * pool, even if there are insufficient unblocked running threads.
756 <     * Setting this value has no effect on current pool size. It
757 <     * controls construction of new threads.
758 <     * @throws IllegalArgumentException if negative or greater then
759 <     * internal implementation limit.
760 <     */
761 <    public void setMaximumPoolSize(int newMax) {
762 <        if (newMax < 0 || newMax > MAX_THREADS)
763 <            throw new IllegalArgumentException();
764 <        maxPoolSize = newMax;
2758 >        return (config & SMASK) + (short)(ctl >>> TC_SHIFT);
2759      }
2760  
767
2761      /**
2762 <     * Returns true if this pool dynamically maintains its target
2763 <     * parallelism level. If false, new threads are added only to
2764 <     * avoid possible starvation.
2765 <     * This setting is by default true;
773 <     * @return true if maintains parallelism
774 <     */
775 <    public boolean getMaintainsParallelism() {
776 <        return maintainsParallelism;
777 <    }
778 <
779 <    /**
780 <     * Sets whether this pool dynamically maintains its target
781 <     * parallelism level. If false, new threads are added only to
782 <     * avoid possible starvation.
783 <     * @param enable true to maintains parallelism
2762 >     * Returns {@code true} if this pool uses local first-in-first-out
2763 >     * scheduling mode for forked tasks that are never joined.
2764 >     *
2765 >     * @return {@code true} if this pool uses async mode
2766       */
2767 <    public void setMaintainsParallelism(boolean enable) {
2768 <        maintainsParallelism = enable;
2767 >    public boolean getAsyncMode() {
2768 >        return (config >>> 16) == FIFO_QUEUE;
2769      }
2770  
2771      /**
2772       * Returns an estimate of the number of worker threads that are
2773       * not blocked waiting to join tasks or for other managed
2774 <     * synchronization.
2774 >     * synchronization. This method may overestimate the
2775 >     * number of running threads.
2776       *
2777       * @return the number of worker threads
2778       */
2779      public int getRunningThreadCount() {
2780 <        return runningCountOf(workerCounts);
2780 >        int rc = 0;
2781 >        WorkQueue[] ws; WorkQueue w;
2782 >        if ((ws = workQueues) != null) {
2783 >            for (int i = 1; i < ws.length; i += 2) {
2784 >                if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2785 >                    ++rc;
2786 >            }
2787 >        }
2788 >        return rc;
2789      }
2790  
2791      /**
2792       * Returns an estimate of the number of threads that are currently
2793       * stealing or executing tasks. This method may overestimate the
2794       * number of active threads.
2795 <     * @return the number of active threads.
2795 >     *
2796 >     * @return the number of active threads
2797       */
2798      public int getActiveThreadCount() {
2799 <        return activeCountOf(runControl);
2800 <    }
809 <
810 <    /**
811 <     * Returns an estimate of the number of threads that are currently
812 <     * idle waiting for tasks. This method may underestimate the
813 <     * number of idle threads.
814 <     * @return the number of idle threads.
815 <     */
816 <    final int getIdleThreadCount() {
817 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
818 <        return (c <= 0)? 0 : c;
2799 >        int r = (config & SMASK) + (int)(ctl >> AC_SHIFT);
2800 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
2801      }
2802  
2803      /**
2804 <     * Returns true if all worker threads are currently idle. An idle
2805 <     * worker is one that cannot obtain a task to execute because none
2806 <     * are available to steal from other threads, and there are no
2807 <     * pending submissions to the pool. This method is conservative:
2808 <     * It might not return true immediately upon idleness of all
2809 <     * threads, but will eventually become true if threads remain
2810 <     * inactive.
2811 <     * @return true if all threads are currently idle
2804 >     * Returns {@code true} if all worker threads are currently idle.
2805 >     * An idle worker is one that cannot obtain a task to execute
2806 >     * because none are available to steal from other threads, and
2807 >     * there are no pending submissions to the pool. This method is
2808 >     * conservative; it might not return {@code true} immediately upon
2809 >     * idleness of all threads, but will eventually become true if
2810 >     * threads remain inactive.
2811 >     *
2812 >     * @return {@code true} if all threads are currently idle
2813       */
2814      public boolean isQuiescent() {
2815 <        return activeCountOf(runControl) == 0;
2815 >        return (int)(ctl >> AC_SHIFT) + (config & SMASK) == 0;
2816      }
2817  
2818      /**
# Line 837 | Line 2820 | public class ForkJoinPool extends Abstra
2820       * one thread's work queue by another. The reported value
2821       * underestimates the actual total number of steals when the pool
2822       * is not quiescent. This value may be useful for monitoring and
2823 <     * tuning fork/join programs: In general, steal counts should be
2823 >     * tuning fork/join programs: in general, steal counts should be
2824       * high enough to keep threads busy, but low enough to avoid
2825       * overhead and contention across threads.
2826 <     * @return the number of steals.
2826 >     *
2827 >     * @return the number of steals
2828       */
2829      public long getStealCount() {
2830 <        return stealCount.get();
2831 <    }
2832 <
2833 <    /**
2834 <     * Accumulate steal count from a worker. Call only
2835 <     * when worker known to be idle.
2836 <     */
2837 <    private void updateStealCount(ForkJoinWorkerThread w) {
2838 <        int sc = w.getAndClearStealCount();
855 <        if (sc != 0)
856 <            stealCount.addAndGet(sc);
2830 >        long count = stealCount;
2831 >        WorkQueue[] ws; WorkQueue w;
2832 >        if ((ws = workQueues) != null) {
2833 >            for (int i = 1; i < ws.length; i += 2) {
2834 >                if ((w = ws[i]) != null)
2835 >                    count += w.nsteals;
2836 >            }
2837 >        }
2838 >        return count;
2839      }
2840  
2841      /**
# Line 863 | Line 2845 | public class ForkJoinPool extends Abstra
2845       * an approximation, obtained by iterating across all threads in
2846       * the pool. This method may be useful for tuning task
2847       * granularities.
2848 <     * @return the number of queued tasks.
2848 >     *
2849 >     * @return the number of queued tasks
2850       */
2851      public long getQueuedTaskCount() {
2852          long count = 0;
2853 <        ForkJoinWorkerThread[] ws = workers;
2854 <        for (int i = 0; i < ws.length; ++i) {
2855 <            ForkJoinWorkerThread t = ws[i];
2856 <            if (t != null)
2857 <                count += t.getQueueSize();
2853 >        WorkQueue[] ws; WorkQueue w;
2854 >        if ((ws = workQueues) != null) {
2855 >            for (int i = 1; i < ws.length; i += 2) {
2856 >                if ((w = ws[i]) != null)
2857 >                    count += w.queueSize();
2858 >            }
2859          }
2860          return count;
2861      }
2862  
2863      /**
2864 <     * Returns an estimate of the number tasks submitted to this pool
2865 <     * that have not yet begun executing. This method takes time
2866 <     * proportional to the number of submissions.
2867 <     * @return the number of queued submissions.
2864 >     * Returns an estimate of the number of tasks submitted to this
2865 >     * pool that have not yet begun executing.  This method may take
2866 >     * time proportional to the number of submissions.
2867 >     *
2868 >     * @return the number of queued submissions
2869       */
2870      public int getQueuedSubmissionCount() {
2871 <        return submissionQueue.size();
2871 >        int count = 0;
2872 >        WorkQueue[] ws; WorkQueue w;
2873 >        if ((ws = workQueues) != null) {
2874 >            for (int i = 0; i < ws.length; i += 2) {
2875 >                if ((w = ws[i]) != null)
2876 >                    count += w.queueSize();
2877 >            }
2878 >        }
2879 >        return count;
2880      }
2881  
2882      /**
2883 <     * Returns true if there are any tasks submitted to this pool
2884 <     * that have not yet begun executing.
2885 <     * @return <code>true</code> if there are any queued submissions.
2883 >     * Returns {@code true} if there are any tasks submitted to this
2884 >     * pool that have not yet begun executing.
2885 >     *
2886 >     * @return {@code true} if there are any queued submissions
2887       */
2888      public boolean hasQueuedSubmissions() {
2889 <        return !submissionQueue.isEmpty();
2889 >        WorkQueue[] ws; WorkQueue w;
2890 >        if ((ws = workQueues) != null) {
2891 >            for (int i = 0; i < ws.length; i += 2) {
2892 >                if ((w = ws[i]) != null && !w.isEmpty())
2893 >                    return true;
2894 >            }
2895 >        }
2896 >        return false;
2897      }
2898  
2899      /**
2900       * Removes and returns the next unexecuted submission if one is
2901       * available.  This method may be useful in extensions to this
2902       * class that re-assign work in systems with multiple pools.
2903 <     * @return the next submission, or null if none
2903 >     *
2904 >     * @return the next submission, or {@code null} if none
2905       */
2906      protected ForkJoinTask<?> pollSubmission() {
2907 <        return submissionQueue.poll();
2907 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2908 >        if ((ws = workQueues) != null) {
2909 >            for (int i = 0; i < ws.length; i += 2) {
2910 >                if ((w = ws[i]) != null && (t = w.poll()) != null)
2911 >                    return t;
2912 >            }
2913 >        }
2914 >        return null;
2915 >    }
2916 >
2917 >    /**
2918 >     * Removes all available unexecuted submitted and forked tasks
2919 >     * from scheduling queues and adds them to the given collection,
2920 >     * without altering their execution status. These may include
2921 >     * artificially generated or wrapped tasks. This method is
2922 >     * designed to be invoked only when the pool is known to be
2923 >     * quiescent. Invocations at other times may not remove all
2924 >     * tasks. A failure encountered while attempting to add elements
2925 >     * to collection {@code c} may result in elements being in
2926 >     * neither, either or both collections when the associated
2927 >     * exception is thrown.  The behavior of this operation is
2928 >     * undefined if the specified collection is modified while the
2929 >     * operation is in progress.
2930 >     *
2931 >     * @param c the collection to transfer elements into
2932 >     * @return the number of elements transferred
2933 >     */
2934 >    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2935 >        int count = 0;
2936 >        WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2937 >        if ((ws = workQueues) != null) {
2938 >            for (int i = 0; i < ws.length; ++i) {
2939 >                if ((w = ws[i]) != null) {
2940 >                    while ((t = w.poll()) != null) {
2941 >                        c.add(t);
2942 >                        ++count;
2943 >                    }
2944 >                }
2945 >            }
2946 >        }
2947 >        return count;
2948      }
2949  
2950      /**
# Line 913 | Line 2955 | public class ForkJoinPool extends Abstra
2955       * @return a string identifying this pool, as well as its state
2956       */
2957      public String toString() {
2958 <        int ps = parallelism;
2959 <        int wc = workerCounts;
2960 <        int rc = runControl;
2961 <        long st = getStealCount();
2962 <        long qt = getQueuedTaskCount();
2963 <        long qs = getQueuedSubmissionCount();
2958 >        // Use a single pass through workQueues to collect counts
2959 >        long qt = 0L, qs = 0L; int rc = 0;
2960 >        long st = stealCount;
2961 >        long c = ctl;
2962 >        WorkQueue[] ws; WorkQueue w;
2963 >        if ((ws = workQueues) != null) {
2964 >            for (int i = 0; i < ws.length; ++i) {
2965 >                if ((w = ws[i]) != null) {
2966 >                    int size = w.queueSize();
2967 >                    if ((i & 1) == 0)
2968 >                        qs += size;
2969 >                    else {
2970 >                        qt += size;
2971 >                        st += w.nsteals;
2972 >                        if (w.isApparentlyUnblocked())
2973 >                            ++rc;
2974 >                    }
2975 >                }
2976 >            }
2977 >        }
2978 >        int pc = (config & SMASK);
2979 >        int tc = pc + (short)(c >>> TC_SHIFT);
2980 >        int ac = pc + (int)(c >> AC_SHIFT);
2981 >        if (ac < 0) // ignore transient negative
2982 >            ac = 0;
2983 >        String level;
2984 >        if ((c & STOP_BIT) != 0)
2985 >            level = (tc == 0) ? "Terminated" : "Terminating";
2986 >        else
2987 >            level = plock < 0 ? "Shutting down" : "Running";
2988          return super.toString() +
2989 <            "[" + runStateToString(runStateOf(rc)) +
2990 <            ", parallelism = " + ps +
2991 <            ", size = " + totalCountOf(wc) +
2992 <            ", active = " + activeCountOf(rc) +
2993 <            ", running = " + runningCountOf(wc) +
2989 >            "[" + level +
2990 >            ", parallelism = " + pc +
2991 >            ", size = " + tc +
2992 >            ", active = " + ac +
2993 >            ", running = " + rc +
2994              ", steals = " + st +
2995              ", tasks = " + qt +
2996              ", submissions = " + qs +
2997              "]";
2998      }
2999  
934    private static String runStateToString(int rs) {
935        switch(rs) {
936        case RUNNING: return "Running";
937        case SHUTDOWN: return "Shutting down";
938        case TERMINATING: return "Terminating";
939        case TERMINATED: return "Terminated";
940        default: throw new Error("Unknown run state");
941        }
942    }
943
944    // lifecycle control
945
3000      /**
3001 <     * Initiates an orderly shutdown in which previously submitted
3002 <     * tasks are executed, but no new tasks will be accepted.
3003 <     * Invocation has no additional effect if already shut down.
3004 <     * Tasks that are in the process of being submitted concurrently
3005 <     * during the course of this method may or may not be rejected.
3001 >     * Possibly initiates an orderly shutdown in which previously
3002 >     * submitted tasks are executed, but no new tasks will be
3003 >     * accepted. Invocation has no effect on execution state if this
3004 >     * is the {@link #commonPool}, and no additional effect if
3005 >     * already shut down.  Tasks that are in the process of being
3006 >     * submitted concurrently during the course of this method may or
3007 >     * may not be rejected.
3008 >     *
3009       * @throws SecurityException if a security manager exists and
3010       *         the caller is not permitted to modify threads
3011       *         because it does not hold {@link
3012 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
3012 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
3013       */
3014      public void shutdown() {
3015          checkPermission();
3016 <        transitionRunStateTo(SHUTDOWN);
960 <        if (canTerminateOnShutdown(runControl))
961 <            terminateOnShutdown();
3016 >        tryTerminate(false, true);
3017      }
3018  
3019      /**
3020 <     * Attempts to stop all actively executing tasks, and cancels all
3021 <     * waiting tasks.  Tasks that are in the process of being
3022 <     * submitted or executed concurrently during the course of this
3023 <     * method may or may not be rejected. Unlike some other executors,
3024 <     * this method cancels rather than collects non-executed tasks,
3025 <     * so always returns an empty list.
3020 >     * Possibly attempts to cancel and/or stop all tasks, and reject
3021 >     * all subsequently submitted tasks.  Invocation has no effect on
3022 >     * execution state if this is the {@link #commonPool}, and no
3023 >     * additional effect if already shut down. Otherwise, tasks that
3024 >     * are in the process of being submitted or executed concurrently
3025 >     * during the course of this method may or may not be
3026 >     * rejected. This method cancels both existing and unexecuted
3027 >     * tasks, in order to permit termination in the presence of task
3028 >     * dependencies. So the method always returns an empty list
3029 >     * (unlike the case for some other Executors).
3030 >     *
3031       * @return an empty list
3032       * @throws SecurityException if a security manager exists and
3033       *         the caller is not permitted to modify threads
3034       *         because it does not hold {@link
3035 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
3035 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
3036       */
3037      public List<Runnable> shutdownNow() {
3038          checkPermission();
3039 <        terminate();
3039 >        tryTerminate(true, true);
3040          return Collections.emptyList();
3041      }
3042  
3043      /**
3044 <     * Returns <code>true</code> if all tasks have completed following shut down.
3044 >     * Returns {@code true} if all tasks have completed following shut down.
3045       *
3046 <     * @return <code>true</code> if all tasks have completed following shut down
3046 >     * @return {@code true} if all tasks have completed following shut down
3047       */
3048      public boolean isTerminated() {
3049 <        return runStateOf(runControl) == TERMINATED;
3049 >        long c = ctl;
3050 >        return ((c & STOP_BIT) != 0L &&
3051 >                (short)(c >>> TC_SHIFT) == -(config & SMASK));
3052      }
3053  
3054      /**
3055 <     * Returns <code>true</code> if the process of termination has
3056 <     * commenced but possibly not yet completed.
3055 >     * Returns {@code true} if the process of termination has
3056 >     * commenced but not yet completed.  This method may be useful for
3057 >     * debugging. A return of {@code true} reported a sufficient
3058 >     * period after shutdown may indicate that submitted tasks have
3059 >     * ignored or suppressed interruption, or are waiting for I/O,
3060 >     * causing this executor not to properly terminate. (See the
3061 >     * advisory notes for class {@link ForkJoinTask} stating that
3062 >     * tasks should not normally entail blocking operations.  But if
3063 >     * they do, they must abort them on interrupt.)
3064       *
3065 <     * @return <code>true</code> if terminating
3065 >     * @return {@code true} if terminating but not yet terminated
3066       */
3067      public boolean isTerminating() {
3068 <        return runStateOf(runControl) >= TERMINATING;
3068 >        long c = ctl;
3069 >        return ((c & STOP_BIT) != 0L &&
3070 >                (short)(c >>> TC_SHIFT) != -(config & SMASK));
3071      }
3072  
3073      /**
3074 <     * Returns <code>true</code> if this pool has been shut down.
3074 >     * Returns {@code true} if this pool has been shut down.
3075       *
3076 <     * @return <code>true</code> if this pool has been shut down
3076 >     * @return {@code true} if this pool has been shut down
3077       */
3078      public boolean isShutdown() {
3079 <        return runStateOf(runControl) >= SHUTDOWN;
3079 >        return plock < 0;
3080      }
3081  
3082      /**
3083 <     * Blocks until all tasks have completed execution after a shutdown
3084 <     * request, or the timeout occurs, or the current thread is
3085 <     * interrupted, whichever happens first.
3083 >     * Blocks until all tasks have completed execution after a
3084 >     * shutdown request, or the timeout occurs, or the current thread
3085 >     * is interrupted, whichever happens first. Because the {@link
3086 >     * #commonPool()} never terminates until program shutdown, when
3087 >     * applied to the common pool, this method is equivalent to {@link
3088 >     * #awaitQuiescence} but always returns {@code false}.
3089       *
3090       * @param timeout the maximum time to wait
3091       * @param unit the time unit of the timeout argument
3092 <     * @return <code>true</code> if this executor terminated and
3093 <     *         <code>false</code> if the timeout elapsed before termination
3092 >     * @return {@code true} if this executor terminated and
3093 >     *         {@code false} if the timeout elapsed before termination
3094       * @throws InterruptedException if interrupted while waiting
3095       */
3096      public boolean awaitTermination(long timeout, TimeUnit unit)
3097          throws InterruptedException {
3098 <        long nanos = unit.toNanos(timeout);
3099 <        final ReentrantLock lock = this.workerLock;
3100 <        lock.lock();
3101 <        try {
1028 <            for (;;) {
1029 <                if (isTerminated())
1030 <                    return true;
1031 <                if (nanos <= 0)
1032 <                    return false;
1033 <                nanos = termination.awaitNanos(nanos);
1034 <            }
1035 <        } finally {
1036 <            lock.unlock();
1037 <        }
1038 <    }
1039 <
1040 <    // Shutdown and termination support
1041 <
1042 <    /**
1043 <     * Callback from terminating worker. Null out the corresponding
1044 <     * workers slot, and if terminating, try to terminate, else try to
1045 <     * shrink workers array.
1046 <     * @param w the worker
1047 <     */
1048 <    final void workerTerminated(ForkJoinWorkerThread w) {
1049 <        updateStealCount(w);
1050 <        updateWorkerCount(-1);
1051 <        final ReentrantLock lock = this.workerLock;
1052 <        lock.lock();
1053 <        try {
1054 <            ForkJoinWorkerThread[] ws = workers;
1055 <            int idx = w.poolIndex;
1056 <            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1057 <                ws[idx] = null;
1058 <            if (totalCountOf(workerCounts) == 0) {
1059 <                terminate(); // no-op if already terminating
1060 <                transitionRunStateTo(TERMINATED);
1061 <                termination.signalAll();
1062 <            }
1063 <            else if (!isTerminating()) {
1064 <                tryShrinkWorkerArray();
1065 <                tryResumeSpare(true); // allow replacement
1066 <            }
1067 <        } finally {
1068 <            lock.unlock();
1069 <        }
1070 <        signalIdleWorkers(false);
1071 <    }
1072 <
1073 <    /**
1074 <     * Initiate termination.
1075 <     */
1076 <    private void terminate() {
1077 <        if (transitionRunStateTo(TERMINATING)) {
1078 <            stopAllWorkers();
1079 <            resumeAllSpares();
1080 <            signalIdleWorkers(true);
1081 <            cancelQueuedSubmissions();
1082 <            cancelQueuedWorkerTasks();
1083 <            interruptUnterminatedWorkers();
1084 <            signalIdleWorkers(true); // resignal after interrupt
1085 <        }
1086 <    }
1087 <
1088 <    /**
1089 <     * Possibly terminate when on shutdown state
1090 <     */
1091 <    private void terminateOnShutdown() {
1092 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1093 <            terminate();
1094 <    }
1095 <
1096 <    /**
1097 <     * Clear out and cancel submissions
1098 <     */
1099 <    private void cancelQueuedSubmissions() {
1100 <        ForkJoinTask<?> task;
1101 <        while ((task = pollSubmission()) != null)
1102 <            task.cancel(false);
1103 <    }
1104 <
1105 <    /**
1106 <     * Clean out worker queues.
1107 <     */
1108 <    private void cancelQueuedWorkerTasks() {
1109 <        final ReentrantLock lock = this.workerLock;
1110 <        lock.lock();
1111 <        try {
1112 <            ForkJoinWorkerThread[] ws = workers;
1113 <            for (int i = 0; i < ws.length; ++i) {
1114 <                ForkJoinWorkerThread t = ws[i];
1115 <                if (t != null)
1116 <                    t.cancelTasks();
1117 <            }
1118 <        } finally {
1119 <            lock.unlock();
1120 <        }
1121 <    }
1122 <
1123 <    /**
1124 <     * Set each worker's status to terminating. Requires lock to avoid
1125 <     * conflicts with add/remove
1126 <     */
1127 <    private void stopAllWorkers() {
1128 <        final ReentrantLock lock = this.workerLock;
1129 <        lock.lock();
1130 <        try {
1131 <            ForkJoinWorkerThread[] ws = workers;
1132 <            for (int i = 0; i < ws.length; ++i) {
1133 <                ForkJoinWorkerThread t = ws[i];
1134 <                if (t != null)
1135 <                    t.shutdownNow();
1136 <            }
1137 <        } finally {
1138 <            lock.unlock();
1139 <        }
1140 <    }
1141 <
1142 <    /**
1143 <     * Interrupt all unterminated workers.  This is not required for
1144 <     * sake of internal control, but may help unstick user code during
1145 <     * shutdown.
1146 <     */
1147 <    private void interruptUnterminatedWorkers() {
1148 <        final ReentrantLock lock = this.workerLock;
1149 <        lock.lock();
1150 <        try {
1151 <            ForkJoinWorkerThread[] ws = workers;
1152 <            for (int i = 0; i < ws.length; ++i) {
1153 <                ForkJoinWorkerThread t = ws[i];
1154 <                if (t != null && !t.isTerminated()) {
1155 <                    try {
1156 <                        t.interrupt();
1157 <                    } catch (SecurityException ignore) {
1158 <                    }
1159 <                }
1160 <            }
1161 <        } finally {
1162 <            lock.unlock();
1163 <        }
1164 <    }
1165 <
1166 <
1167 <    /*
1168 <     * Nodes for event barrier to manage idle threads.
1169 <     *
1170 <     * The event barrier has an event count and a wait queue (actually
1171 <     * a Treiber stack).  Workers are enabled to look for work when
1172 <     * the eventCount is incremented. If they fail to find some,
1173 <     * they may wait for next count. Synchronization events occur only
1174 <     * in enough contexts to maintain overall liveness:
1175 <     *
1176 <     *   - Submission of a new task to the pool
1177 <     *   - Creation or termination of a worker
1178 <     *   - pool termination
1179 <     *   - A worker pushing a task on an empty queue
1180 <     *
1181 <     * The last case (pushing a task) occurs often enough, and is
1182 <     * heavy enough compared to simple stack pushes to require some
1183 <     * special handling: Method signalNonEmptyWorkerQueue returns
1184 <     * without advancing count if the queue appears to be empty.  This
1185 <     * would ordinarily result in races causing some queued waiters
1186 <     * not to be woken up. To avoid this, a worker in sync
1187 <     * rescans for tasks after being enqueued if it was the first to
1188 <     * enqueue, and aborts the wait if finding one, also helping to
1189 <     * signal others. This works well because the worker has nothing
1190 <     * better to do anyway, and so might as well help alleviate the
1191 <     * overhead and contention on the threads actually doing work.
1192 <     *
1193 <     * Queue nodes are basic Treiber stack nodes, also used for spare
1194 <     * stack.
1195 <     */
1196 <    static final class WaitQueueNode {
1197 <        WaitQueueNode next; // only written before enqueued
1198 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1199 <        final long count; // unused for spare stack
1200 <        WaitQueueNode(ForkJoinWorkerThread w, long c) {
1201 <            count = c;
1202 <            thread = w;
1203 <        }
1204 <        final boolean signal() {
1205 <            ForkJoinWorkerThread t = thread;
1206 <            thread = null;
1207 <            if (t != null) {
1208 <                LockSupport.unpark(t);
1209 <                return true;
1210 <            }
3098 >        if (Thread.interrupted())
3099 >            throw new InterruptedException();
3100 >        if (this == common) {
3101 >            awaitQuiescence(timeout, unit);
3102              return false;
3103          }
3104 <    }
3105 <
3106 <    /**
3107 <     * Release at least one thread waiting for event count to advance,
3108 <     * if one exists. If initial attempt fails, release all threads.
3109 <     * @param all if false, at first try to only release one thread
3110 <     * @return current event
3111 <     */
3112 <    private long releaseIdleWorkers(boolean all) {
3113 <        long c;
1223 <        for (;;) {
1224 <            WaitQueueNode q = barrierStack;
1225 <            c = eventCount;
1226 <            long qc;
1227 <            if (q == null || (qc = q.count) >= c)
1228 <                break;
1229 <            if (!all) {
1230 <                if (casBarrierStack(q, q.next) && q.signal())
1231 <                    break;
1232 <                all = true;
1233 <            }
1234 <            else if (casBarrierStack(q, null)) {
1235 <                do {
1236 <                 q.signal();
1237 <                } while ((q = q.next) != null);
1238 <                break;
1239 <            }
1240 <        }
1241 <        return c;
1242 <    }
1243 <
1244 <    /**
1245 <     * Returns current barrier event count
1246 <     * @return current barrier event count
1247 <     */
1248 <    final long getEventCount() {
1249 <        long ec = eventCount;
1250 <        releaseIdleWorkers(true); // release to ensure accurate result
1251 <        return ec;
1252 <    }
1253 <
1254 <    /**
1255 <     * Increment event count and release at least one waiting thread,
1256 <     * if one exists (released threads will in turn wake up others).
1257 <     * @param all if true, try to wake up all
1258 <     */
1259 <    final void signalIdleWorkers(boolean all) {
1260 <        long c;
1261 <        do;while (!casEventCount(c = eventCount, c+1));
1262 <        releaseIdleWorkers(all);
1263 <    }
1264 <
1265 <    /**
1266 <     * Wake up threads waiting to steal a task. Because method
1267 <     * sync rechecks availability, it is OK to only proceed if
1268 <     * queue appears to be non-empty.
1269 <     */
1270 <    final void signalNonEmptyWorkerQueue() {
1271 <        // If CAS fails another signaller must have succeeded
1272 <        long c;
1273 <        if (barrierStack != null && casEventCount(c = eventCount, c+1))
1274 <            releaseIdleWorkers(false);
1275 <    }
1276 <
1277 <    /**
1278 <     * Waits until event count advances from count, or some thread is
1279 <     * waiting on a previous count, or there is stealable work
1280 <     * available. Help wake up others on release.
1281 <     * @param w the calling worker thread
1282 <     * @param prev previous value returned by sync (or 0)
1283 <     * @return current event count
1284 <     */
1285 <    final long sync(ForkJoinWorkerThread w, long prev) {
1286 <        updateStealCount(w);
1287 <
1288 <        while (!w.isShutdown() && !isTerminating() &&
1289 <               (parallelism >= runningCountOf(workerCounts) ||
1290 <                !suspendIfSpare(w))) { // prefer suspend to waiting here
1291 <            WaitQueueNode node = null;
1292 <            boolean queued = false;
1293 <            for (;;) {
1294 <                if (!queued) {
1295 <                    if (eventCount != prev)
1296 <                        break;
1297 <                    WaitQueueNode h = barrierStack;
1298 <                    if (h != null && h.count != prev)
1299 <                        break; // release below and maybe retry
1300 <                    if (node == null)
1301 <                        node = new WaitQueueNode(w, prev);
1302 <                    queued = casBarrierStack(node.next = h, node);
1303 <                }
1304 <                else if (Thread.interrupted() ||
1305 <                         node.thread == null ||
1306 <                         (node.next == null && w.prescan()) ||
1307 <                         eventCount != prev) {
1308 <                    node.thread = null;
1309 <                    if (eventCount == prev) // help trigger
1310 <                        casEventCount(prev, prev+1);
1311 <                    break;
1312 <                }
1313 <                else
1314 <                    LockSupport.park(this);
1315 <            }
1316 <            long ec = eventCount;
1317 <            if (releaseIdleWorkers(false) != prev)
1318 <                return ec;
1319 <        }
1320 <        return prev; // return old count if aborted
1321 <    }
1322 <
1323 <    //  Parallelism maintenance
1324 <
1325 <    /**
1326 <     * Decrement running count; if too low, add spare.
1327 <     *
1328 <     * Conceptually, all we need to do here is add or resume a
1329 <     * spare thread when one is about to block (and remove or
1330 <     * suspend it later when unblocked -- see suspendIfSpare).
1331 <     * However, implementing this idea requires coping with
1332 <     * several problems: We have imperfect information about the
1333 <     * states of threads. Some count updates can and usually do
1334 <     * lag run state changes, despite arrangements to keep them
1335 <     * accurate (for example, when possible, updating counts
1336 <     * before signalling or resuming), especially when running on
1337 <     * dynamic JVMs that don't optimize the infrequent paths that
1338 <     * update counts. Generating too many threads can make these
1339 <     * problems become worse, because excess threads are more
1340 <     * likely to be context-switched with others, slowing them all
1341 <     * down, especially if there is no work available, so all are
1342 <     * busy scanning or idling.  Also, excess spare threads can
1343 <     * only be suspended or removed when they are idle, not
1344 <     * immediately when they aren't needed. So adding threads will
1345 <     * raise parallelism level for longer than necessary.  Also,
1346 <     * FJ applications often enounter highly transient peaks when
1347 <     * many threads are blocked joining, but for less time than it
1348 <     * takes to create or resume spares.
1349 <     *
1350 <     * @param joinMe if non-null, return early if done
1351 <     * @param maintainParallelism if true, try to stay within
1352 <     * target counts, else create only to avoid starvation
1353 <     * @return true if joinMe known to be done
1354 <     */
1355 <    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1356 <        maintainParallelism &= maintainsParallelism; // overrride
1357 <        boolean dec = false;  // true when running count decremented
1358 <        while (spareStack == null || !tryResumeSpare(dec)) {
1359 <            int counts = workerCounts;
1360 <            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1361 <                if (!needSpare(counts, maintainParallelism))
1362 <                    break;
1363 <                if (joinMe.status < 0)
1364 <                    return true;
1365 <                if (tryAddSpare(counts))
3104 >        long nanos = unit.toNanos(timeout);
3105 >        if (isTerminated())
3106 >            return true;
3107 >        long startTime = System.nanoTime();
3108 >        boolean terminated = false;
3109 >        synchronized (this) {
3110 >            for (long waitTime = nanos, millis = 0L;;) {
3111 >                if (terminated = isTerminated() ||
3112 >                    waitTime <= 0L ||
3113 >                    (millis = unit.toMillis(waitTime)) <= 0L)
3114                      break;
3115 +                wait(millis);
3116 +                waitTime = nanos - (System.nanoTime() - startTime);
3117              }
3118          }
3119 <        return false;
3119 >        return terminated;
3120      }
3121  
3122      /**
3123 <     * Same idea as preJoin
3123 >     * If called by a ForkJoinTask operating in this pool, equivalent
3124 >     * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3125 >     * waits and/or attempts to assist performing tasks until this
3126 >     * pool {@link #isQuiescent} or the indicated timeout elapses.
3127 >     *
3128 >     * @param timeout the maximum time to wait
3129 >     * @param unit the time unit of the timeout argument
3130 >     * @return {@code true} if quiescent; {@code false} if the
3131 >     * timeout elapsed.
3132       */
3133 <    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
3134 <        maintainParallelism &= maintainsParallelism;
3135 <        boolean dec = false;
3136 <        while (spareStack == null || !tryResumeSpare(dec)) {
3137 <            int counts = workerCounts;
3138 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
3139 <                if (!needSpare(counts, maintainParallelism))
3140 <                    break;
1383 <                if (blocker.isReleasable())
1384 <                    return true;
1385 <                if (tryAddSpare(counts))
1386 <                    break;
1387 <            }
3133 >    public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3134 >        long nanos = unit.toNanos(timeout);
3135 >        ForkJoinWorkerThread wt;
3136 >        Thread thread = Thread.currentThread();
3137 >        if ((thread instanceof ForkJoinWorkerThread) &&
3138 >            (wt = (ForkJoinWorkerThread)thread).pool == this) {
3139 >            helpQuiescePool(wt.workQueue);
3140 >            return true;
3141          }
3142 <        return false;
3143 <    }
3144 <
3145 <    /**
3146 <     * Returns true if a spare thread appears to be needed.  If
3147 <     * maintaining parallelism, returns true when the deficit in
3148 <     * running threads is more than the surplus of total threads, and
3149 <     * there is apparently some work to do.  This self-limiting rule
3150 <     * means that the more threads that have already been added, the
3151 <     * less parallelism we will tolerate before adding another.
1399 <     * @param counts current worker counts
1400 <     * @param maintainParallelism try to maintain parallelism
1401 <     */
1402 <    private boolean needSpare(int counts, boolean maintainParallelism) {
1403 <        int ps = parallelism;
1404 <        int rc = runningCountOf(counts);
1405 <        int tc = totalCountOf(counts);
1406 <        int runningDeficit = ps - rc;
1407 <        int totalSurplus = tc - ps;
1408 <        return (tc < maxPoolSize &&
1409 <                (rc == 0 || totalSurplus < 0 ||
1410 <                 (maintainParallelism &&
1411 <                  runningDeficit > totalSurplus && mayHaveQueuedWork())));
1412 <    }
1413 <
1414 <    /**
1415 <     * Returns true if at least one worker queue appears to be
1416 <     * nonempty. This is expensive but not often called. It is not
1417 <     * critical that this be accurate, but if not, more or fewer
1418 <     * running threads than desired might be maintained.
1419 <     */
1420 <    private boolean mayHaveQueuedWork() {
1421 <        ForkJoinWorkerThread[] ws = workers;
1422 <        int len = ws.length;
1423 <        ForkJoinWorkerThread v;
1424 <        for (int i = 0; i < len; ++i) {
1425 <            if ((v = ws[i]) != null && v.getRawQueueSize() > 0) {
1426 <                releaseIdleWorkers(false); // help wake up stragglers
1427 <                return true;
3142 >        long startTime = System.nanoTime();
3143 >        WorkQueue[] ws;
3144 >        int r = 0, m;
3145 >        boolean found = true;
3146 >        while (!isQuiescent() && (ws = workQueues) != null &&
3147 >               (m = ws.length - 1) >= 0) {
3148 >            if (!found) {
3149 >                if ((System.nanoTime() - startTime) > nanos)
3150 >                    return false;
3151 >                Thread.yield(); // cannot block
3152              }
3153 <        }
3154 <        return false;
3155 <    }
3156 <
3157 <    /**
3158 <     * Add a spare worker if lock available and no more than the
3159 <     * expected numbers of threads exist
3160 <     * @return true if successful
3161 <     */
3162 <    private boolean tryAddSpare(int expectedCounts) {
1439 <        final ReentrantLock lock = this.workerLock;
1440 <        int expectedRunning = runningCountOf(expectedCounts);
1441 <        int expectedTotal = totalCountOf(expectedCounts);
1442 <        boolean success = false;
1443 <        boolean locked = false;
1444 <        // confirm counts while locking; CAS after obtaining lock
1445 <        try {
1446 <            for (;;) {
1447 <                int s = workerCounts;
1448 <                int tc = totalCountOf(s);
1449 <                int rc = runningCountOf(s);
1450 <                if (rc > expectedRunning || tc > expectedTotal)
1451 <                    break;
1452 <                if (!locked && !(locked = lock.tryLock()))
1453 <                    break;
1454 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1455 <                    createAndStartSpare(tc);
1456 <                    success = true;
3153 >            found = false;
3154 >            for (int j = (m + 1) << 2; j >= 0; --j) {
3155 >                ForkJoinTask<?> t; WorkQueue q; int b;
3156 >                if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3157 >                    found = true;
3158 >                    if ((t = q.pollAt(b)) != null) {
3159 >                        if (q.base - q.top < 0)
3160 >                            signalWork(q);
3161 >                        t.doExec();
3162 >                    }
3163                      break;
3164                  }
3165              }
1460        } finally {
1461            if (locked)
1462                lock.unlock();
1463        }
1464        return success;
1465    }
1466
1467    /**
1468     * Add the kth spare worker. On entry, pool coounts are already
1469     * adjusted to reflect addition.
1470     */
1471    private void createAndStartSpare(int k) {
1472        ForkJoinWorkerThread w = null;
1473        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1474        int len = ws.length;
1475        // Probably, we can place at slot k. If not, find empty slot
1476        if (k < len && ws[k] != null) {
1477            for (k = 0; k < len && ws[k] != null; ++k)
1478                ;
1479        }
1480        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1481            ws[k] = w;
1482            w.start();
1483        }
1484        else
1485            updateWorkerCount(-1); // adjust on failure
1486        signalIdleWorkers(false);
1487    }
1488
1489    /**
1490     * Suspend calling thread w if there are excess threads.  Called
1491     * only from sync.  Spares are enqueued in a Treiber stack
1492     * using the same WaitQueueNodes as barriers.  They are resumed
1493     * mainly in preJoin, but are also woken on pool events that
1494     * require all threads to check run state.
1495     * @param w the caller
1496     */
1497    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1498        WaitQueueNode node = null;
1499        int s;
1500        while (parallelism < runningCountOf(s = workerCounts)) {
1501            if (node == null)
1502                node = new WaitQueueNode(w, 0);
1503            if (casWorkerCounts(s, s-1)) { // representation-dependent
1504                // push onto stack
1505                do;while (!casSpareStack(node.next = spareStack, node));
1506
1507                // block until released by resumeSpare
1508                while (node.thread != null) {
1509                    if (!Thread.interrupted())
1510                        LockSupport.park(this);
1511                }
1512                w.activate(); // help warm up
1513                return true;
1514            }
1515        }
1516        return false;
1517    }
1518
1519    /**
1520     * Try to pop and resume a spare thread.
1521     * @param updateCount if true, increment running count on success
1522     * @return true if successful
1523     */
1524    private boolean tryResumeSpare(boolean updateCount) {
1525        WaitQueueNode q;
1526        while ((q = spareStack) != null) {
1527            if (casSpareStack(q, q.next)) {
1528                if (updateCount)
1529                    updateRunningCount(1);
1530                q.signal();
1531                return true;
1532            }
1533        }
1534        return false;
1535    }
1536
1537    /**
1538     * Pop and resume all spare threads. Same idea as
1539     * releaseIdleWorkers.
1540     * @return true if any spares released
1541     */
1542    private boolean resumeAllSpares() {
1543        WaitQueueNode q;
1544        while ( (q = spareStack) != null) {
1545            if (casSpareStack(q, null)) {
1546                do {
1547                    updateRunningCount(1);
1548                    q.signal();
1549                } while ((q = q.next) != null);
1550                return true;
1551            }
3166          }
3167 <        return false;
3167 >        return true;
3168      }
3169  
3170      /**
3171 <     * Pop and shutdown excessive spare threads. Call only while
3172 <     * holding lock. This is not guaranteed to eliminate all excess
1559 <     * threads, only those suspended as spares, which are the ones
1560 <     * unlikely to be needed in the future.
1561 <     */
1562 <    private void trimSpares() {
1563 <        int surplus = totalCountOf(workerCounts) - parallelism;
1564 <        WaitQueueNode q;
1565 <        while (surplus > 0 && (q = spareStack) != null) {
1566 <            if (casSpareStack(q, null)) {
1567 <                do {
1568 <                    updateRunningCount(1);
1569 <                    ForkJoinWorkerThread w = q.thread;
1570 <                    if (w != null && surplus > 0 &&
1571 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1572 <                        --surplus;
1573 <                    q.signal();
1574 <                } while ((q = q.next) != null);
1575 <            }
1576 <        }
1577 <    }
1578 <
1579 <    /**
1580 <     * Returns approximate number of spares, just for diagnostics.
3171 >     * Waits and/or attempts to assist performing tasks indefinitely
3172 >     * until the {@link #commonPool()} {@link #isQuiescent}
3173       */
3174 <    private int countSpares() {
3175 <        int sum = 0;
1584 <        for (WaitQueueNode q = spareStack; q != null; q = q.next)
1585 <            ++sum;
1586 <        return sum;
3174 >    public static void quiesceCommonPool() {
3175 >        common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3176      }
3177  
3178      /**
3179       * Interface for extending managed parallelism for tasks running
3180 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
3181 <     * Method <code>isReleasable</code> must return true if blocking is not
3182 <     * necessary. Method <code>block</code> blocks the current thread
3183 <     * if necessary (perhaps internally invoking isReleasable before
3184 <     * actually blocking.).
3180 >     * in {@link ForkJoinPool}s.
3181 >     *
3182 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
3183 >     * {@code isReleasable} must return {@code true} if blocking is
3184 >     * not necessary. Method {@code block} blocks the current thread
3185 >     * if necessary (perhaps internally invoking {@code isReleasable}
3186 >     * before actually blocking). These actions are performed by any
3187 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
3188 >     * unusual methods in this API accommodate synchronizers that may,
3189 >     * but don't usually, block for long periods. Similarly, they
3190 >     * allow more efficient internal handling of cases in which
3191 >     * additional workers may be, but usually are not, needed to
3192 >     * ensure sufficient parallelism.  Toward this end,
3193 >     * implementations of method {@code isReleasable} must be amenable
3194 >     * to repeated invocation.
3195 >     *
3196       * <p>For example, here is a ManagedBlocker based on a
3197       * ReentrantLock:
3198 <     * <pre>
3199 <     *   class ManagedLocker implements ManagedBlocker {
3200 <     *     final ReentrantLock lock;
3201 <     *     boolean hasLock = false;
3202 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3203 <     *     public boolean block() {
3204 <     *        if (!hasLock)
3205 <     *           lock.lock();
3206 <     *        return true;
1607 <     *     }
1608 <     *     public boolean isReleasable() {
1609 <     *        return hasLock || (hasLock = lock.tryLock());
1610 <     *     }
3198 >     *  <pre> {@code
3199 >     * class ManagedLocker implements ManagedBlocker {
3200 >     *   final ReentrantLock lock;
3201 >     *   boolean hasLock = false;
3202 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3203 >     *   public boolean block() {
3204 >     *     if (!hasLock)
3205 >     *       lock.lock();
3206 >     *     return true;
3207       *   }
3208 <     * </pre>
3208 >     *   public boolean isReleasable() {
3209 >     *     return hasLock || (hasLock = lock.tryLock());
3210 >     *   }
3211 >     * }}</pre>
3212 >     *
3213 >     * <p>Here is a class that possibly blocks waiting for an
3214 >     * item on a given queue:
3215 >     *  <pre> {@code
3216 >     * class QueueTaker<E> implements ManagedBlocker {
3217 >     *   final BlockingQueue<E> queue;
3218 >     *   volatile E item = null;
3219 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3220 >     *   public boolean block() throws InterruptedException {
3221 >     *     if (item == null)
3222 >     *       item = queue.take();
3223 >     *     return true;
3224 >     *   }
3225 >     *   public boolean isReleasable() {
3226 >     *     return item != null || (item = queue.poll()) != null;
3227 >     *   }
3228 >     *   public E getItem() { // call after pool.managedBlock completes
3229 >     *     return item;
3230 >     *   }
3231 >     * }}</pre>
3232       */
3233      public static interface ManagedBlocker {
3234          /**
3235           * Possibly blocks the current thread, for example waiting for
3236           * a lock or condition.
3237 <         * @return true if no additional blocking is necessary (i.e.,
3238 <         * if isReleasable would return true).
3237 >         *
3238 >         * @return {@code true} if no additional blocking is necessary
3239 >         * (i.e., if isReleasable would return true)
3240           * @throws InterruptedException if interrupted while waiting
3241 <         * (the method is not required to do so, but is allowe to).
3241 >         * (the method is not required to do so, but is allowed to)
3242           */
3243          boolean block() throws InterruptedException;
3244  
3245          /**
3246 <         * Returns true if blocking is unnecessary.
3246 >         * Returns {@code true} if blocking is unnecessary.
3247           */
3248          boolean isReleasable();
3249      }
3250  
3251      /**
3252       * Blocks in accord with the given blocker.  If the current thread
3253 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
3254 <     * spare thread to be activated if necessary to ensure parallelism
3255 <     * while the current thread is blocked.  If
3256 <     * <code>maintainParallelism</code> is true and the pool supports
3257 <     * it ({@link #getMaintainsParallelism}), this method attempts to
3258 <     * maintain the pool's nominal parallelism. Otherwise if activates
3259 <     * a thread only if necessary to avoid complete starvation. This
3260 <     * option may be preferable when blockages use timeouts, or are
3261 <     * almost always brief.
3262 <     *
3263 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
3264 <     * equivalent to
3265 <     * <pre>
3266 <     *   while (!blocker.isReleasable())
1647 <     *      if (blocker.block())
1648 <     *         return;
1649 <     * </pre>
1650 <     * If the caller is a ForkJoinTask, then the pool may first
1651 <     * be expanded to ensure parallelism, and later adjusted.
3253 >     * is a {@link ForkJoinWorkerThread}, this method possibly
3254 >     * arranges for a spare thread to be activated if necessary to
3255 >     * ensure sufficient parallelism while the current thread is blocked.
3256 >     *
3257 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
3258 >     * behaviorally equivalent to
3259 >     *  <pre> {@code
3260 >     * while (!blocker.isReleasable())
3261 >     *   if (blocker.block())
3262 >     *     return;
3263 >     * }</pre>
3264 >     *
3265 >     * If the caller is a {@code ForkJoinTask}, then the pool may
3266 >     * first be expanded to ensure parallelism, and later adjusted.
3267       *
3268       * @param blocker the blocker
3269 <     * @param maintainParallelism if true and supported by this pool,
1655 <     * attempt to maintain the pool's nominal parallelism; otherwise
1656 <     * activate a thread only if necessary to avoid complete
1657 <     * starvation.
1658 <     * @throws InterruptedException if blocker.block did so.
3269 >     * @throws InterruptedException if blocker.block did so
3270       */
3271 <    public static void managedBlock(ManagedBlocker blocker,
1661 <                                    boolean maintainParallelism)
3271 >    public static void managedBlock(ManagedBlocker blocker)
3272          throws InterruptedException {
3273          Thread t = Thread.currentThread();
3274 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
3275 <                             ((ForkJoinWorkerThread)t).pool : null);
3276 <        if (!blocker.isReleasable()) {
3277 <            try {
3278 <                if (pool == null ||
3279 <                    !pool.preBlock(blocker, maintainParallelism))
3280 <                    awaitBlocker(blocker);
3281 <            } finally {
3282 <                if (pool != null)
3283 <                    pool.updateRunningCount(1);
3274 >        if (t instanceof ForkJoinWorkerThread) {
3275 >            ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3276 >            while (!blocker.isReleasable()) { // variant of helpSignal
3277 >                WorkQueue[] ws; WorkQueue q; int m, u;
3278 >                if ((ws = p.workQueues) != null && (m = ws.length - 1) >= 0) {
3279 >                    for (int i = 0; i <= m; ++i) {
3280 >                        if (blocker.isReleasable())
3281 >                            return;
3282 >                        if ((q = ws[i]) != null && q.base - q.top < 0) {
3283 >                            p.signalWork(q);
3284 >                            if ((u = (int)(p.ctl >>> 32)) >= 0 ||
3285 >                                (u >> UAC_SHIFT) >= 0)
3286 >                                break;
3287 >                        }
3288 >                    }
3289 >                }
3290 >                if (p.tryCompensate()) {
3291 >                    try {
3292 >                        do {} while (!blocker.isReleasable() &&
3293 >                                     !blocker.block());
3294 >                    } finally {
3295 >                        p.incrementActiveCount();
3296 >                    }
3297 >                    break;
3298 >                }
3299              }
3300          }
3301 +        else {
3302 +            do {} while (!blocker.isReleasable() &&
3303 +                         !blocker.block());
3304 +        }
3305      }
3306  
3307 <    private static void awaitBlocker(ManagedBlocker blocker)
3308 <        throws InterruptedException {
3309 <        do;while (!blocker.isReleasable() && !blocker.block());
1681 <    }
1682 <
1683 <    // AbstractExecutorService overrides
3307 >    // AbstractExecutorService overrides.  These rely on undocumented
3308 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3309 >    // implement RunnableFuture.
3310  
3311      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3312 <        return new AdaptedRunnable(runnable, value);
3312 >        return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3313      }
3314  
3315      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3316 <        return new AdaptedCallable(callable);
3316 >        return new ForkJoinTask.AdaptedCallable<T>(callable);
3317      }
3318  
3319 <
3320 <    // Temporary Unsafe mechanics for preliminary release
3321 <
3322 <    static final Unsafe _unsafe;
3323 <    static final long eventCountOffset;
3324 <    static final long workerCountsOffset;
3325 <    static final long runControlOffset;
3326 <    static final long barrierStackOffset;
3327 <    static final long spareStackOffset;
3319 >    // Unsafe mechanics
3320 >    private static final sun.misc.Unsafe U;
3321 >    private static final long CTL;
3322 >    private static final long PARKBLOCKER;
3323 >    private static final int ABASE;
3324 >    private static final int ASHIFT;
3325 >    private static final long STEALCOUNT;
3326 >    private static final long PLOCK;
3327 >    private static final long INDEXSEED;
3328 >    private static final long QLOCK;
3329  
3330      static {
3331 +        int s; // initialize field offsets for CAS etc
3332          try {
3333 <            if (ForkJoinPool.class.getClassLoader() != null) {
3334 <                Field f = Unsafe.class.getDeclaredField("theUnsafe");
3335 <                f.setAccessible(true);
3336 <                _unsafe = (Unsafe)f.get(null);
3337 <            }
3338 <            else
3339 <                _unsafe = Unsafe.getUnsafe();
3340 <            eventCountOffset = _unsafe.objectFieldOffset
3341 <                (ForkJoinPool.class.getDeclaredField("eventCount"));
3342 <            workerCountsOffset = _unsafe.objectFieldOffset
3343 <                (ForkJoinPool.class.getDeclaredField("workerCounts"));
3344 <            runControlOffset = _unsafe.objectFieldOffset
3345 <                (ForkJoinPool.class.getDeclaredField("runControl"));
3346 <            barrierStackOffset = _unsafe.objectFieldOffset
3347 <                (ForkJoinPool.class.getDeclaredField("barrierStack"));
3348 <            spareStackOffset = _unsafe.objectFieldOffset
3349 <                (ForkJoinPool.class.getDeclaredField("spareStack"));
3333 >            U = getUnsafe();
3334 >            Class<?> k = ForkJoinPool.class;
3335 >            CTL = U.objectFieldOffset
3336 >                (k.getDeclaredField("ctl"));
3337 >            STEALCOUNT = U.objectFieldOffset
3338 >                (k.getDeclaredField("stealCount"));
3339 >            PLOCK = U.objectFieldOffset
3340 >                (k.getDeclaredField("plock"));
3341 >            INDEXSEED = U.objectFieldOffset
3342 >                (k.getDeclaredField("indexSeed"));
3343 >            Class<?> tk = Thread.class;
3344 >            PARKBLOCKER = U.objectFieldOffset
3345 >                (tk.getDeclaredField("parkBlocker"));
3346 >            Class<?> wk = WorkQueue.class;
3347 >            QLOCK = U.objectFieldOffset
3348 >                (wk.getDeclaredField("qlock"));
3349 >            Class<?> ak = ForkJoinTask[].class;
3350 >            ABASE = U.arrayBaseOffset(ak);
3351 >            s = U.arrayIndexScale(ak);
3352 >            ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
3353          } catch (Exception e) {
3354 <            throw new RuntimeException("Could not initialize intrinsics", e);
3354 >            throw new Error(e);
3355          }
3356 <    }
3356 >        if ((s & (s-1)) != 0)
3357 >            throw new Error("data type scale not a power of two");
3358  
3359 <    private boolean casEventCount(long cmp, long val) {
3360 <        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
3361 <    }
3362 <    private boolean casWorkerCounts(int cmp, int val) {
3363 <        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
3364 <    }
3365 <    private boolean casRunControl(int cmp, int val) {
3366 <        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
3367 <    }
3368 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
3369 <        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
3359 >        submitters = new ThreadLocal<Submitter>();
3360 >        ForkJoinWorkerThreadFactory fac = defaultForkJoinWorkerThreadFactory =
3361 >            new DefaultForkJoinWorkerThreadFactory();
3362 >        modifyThreadPermission = new RuntimePermission("modifyThread");
3363 >
3364 >        /*
3365 >         * Establish common pool parameters.  For extra caution,
3366 >         * computations to set up common pool state are here; the
3367 >         * constructor just assigns these values to fields.
3368 >         */
3369 >
3370 >        int par = 0;
3371 >        Thread.UncaughtExceptionHandler handler = null;
3372 >        try {  // TBD: limit or report ignored exceptions?
3373 >            String pp = System.getProperty
3374 >                ("java.util.concurrent.ForkJoinPool.common.parallelism");
3375 >            String hp = System.getProperty
3376 >                ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3377 >            String fp = System.getProperty
3378 >                ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3379 >            if (fp != null)
3380 >                fac = ((ForkJoinWorkerThreadFactory)ClassLoader.
3381 >                       getSystemClassLoader().loadClass(fp).newInstance());
3382 >            if (hp != null)
3383 >                handler = ((Thread.UncaughtExceptionHandler)ClassLoader.
3384 >                           getSystemClassLoader().loadClass(hp).newInstance());
3385 >            if (pp != null)
3386 >                par = Integer.parseInt(pp);
3387 >        } catch (Exception ignore) {
3388 >        }
3389 >
3390 >        if (par <= 0)
3391 >            par = Runtime.getRuntime().availableProcessors();
3392 >        if (par > MAX_CAP)
3393 >            par = MAX_CAP;
3394 >        commonParallelism = par;
3395 >        long np = (long)(-par); // precompute initial ctl value
3396 >        long ct = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
3397 >
3398 >        common = new ForkJoinPool(par, ct, fac, handler);
3399      }
3400 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
3401 <        return _unsafe.compareAndSwapObject(this, barrierStackOffset, cmp, val);
3400 >
3401 >    /**
3402 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
3403 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
3404 >     * into a jdk.
3405 >     *
3406 >     * @return a sun.misc.Unsafe
3407 >     */
3408 >    private static sun.misc.Unsafe getUnsafe() {
3409 >        try {
3410 >            return sun.misc.Unsafe.getUnsafe();
3411 >        } catch (SecurityException se) {
3412 >            try {
3413 >                return java.security.AccessController.doPrivileged
3414 >                    (new java.security
3415 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
3416 >                        public sun.misc.Unsafe run() throws Exception {
3417 >                            java.lang.reflect.Field f = sun.misc
3418 >                                .Unsafe.class.getDeclaredField("theUnsafe");
3419 >                            f.setAccessible(true);
3420 >                            return (sun.misc.Unsafe) f.get(null);
3421 >                        }});
3422 >            } catch (java.security.PrivilegedActionException e) {
3423 >                throw new RuntimeException("Could not initialize intrinsics",
3424 >                                           e.getCause());
3425 >            }
3426 >        }
3427      }
3428 +
3429   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines