ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.39 by jsr166, Sun Aug 2 17:55:51 2009 UTC vs.
Revision 1.59 by dl, Fri Jul 23 14:09:17 2010 UTC

# Line 13 | Line 13 | import java.util.Arrays;
13   import java.util.Collection;
14   import java.util.Collections;
15   import java.util.List;
16 import java.util.concurrent.locks.Condition;
16   import java.util.concurrent.locks.LockSupport;
17   import java.util.concurrent.locks.ReentrantLock;
18   import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.atomic.AtomicLong;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24 < * from non-{@code ForkJoinTask}s, as well as management and
25 < * monitoring operations.  Normally a single {@code ForkJoinPool} is
27 < * used for a large number of submitted tasks. Otherwise, use would
28 < * not usually outweigh the construction and bookkeeping overhead of
29 < * creating a large set of threads.
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>{@code ForkJoinPool}s differ from other kinds of {@link
28 < * Executor}s mainly in that they provide <em>work-stealing</em>: all
29 < * threads in the pool attempt to find and execute subtasks created by
30 < * other active tasks (eventually blocking if none exist). This makes
31 < * them efficient when most tasks spawn other subtasks (as do most
32 < * {@code ForkJoinTask}s), as well as the mixed execution of some
33 < * plain {@code Runnable}- or {@code Callable}- based activities along
34 < * with {@code ForkJoinTask}s. When setting {@linkplain #setAsyncMode
35 < * async mode}, a {@code ForkJoinPool} may also be appropriate for use
40 < * with fine-grained tasks that are never joined. Otherwise, other
41 < * {@code ExecutorService} implementations are typically more
42 < * appropriate choices.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>A {@code ForkJoinPool} may be constructed with a given
38 < * parallelism level (target pool size), which it attempts to maintain
39 < * by dynamically adding, suspending, or resuming threads, even if
40 < * some tasks are waiting to join others. However, no such adjustments
41 < * are performed in the face of blocked IO or other unmanaged
42 < * synchronization. The nested {@link ManagedBlocker} interface
43 < * enables extension of the kinds of synchronization accommodated.
44 < * The target parallelism level may also be changed dynamically
45 < * ({@link #setParallelism}) and thread construction can be limited
53 < * using methods {@link #setMaximumPoolSize} and/or {@link
54 < * #setMaintainsParallelism}.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
# Line 60 | Line 51 | import java.util.concurrent.atomic.Atomi
51   * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the follwoing
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 + * used for all parallel task execution in a program or subsystem.
90 + * Otherwise, use would not usually outweigh the construction and
91 + * bookkeeping overhead of creating a large set of threads. For
92 + * example, a common pool could be used for the {@code SortTasks}
93 + * illustrated in {@link RecursiveAction}. Because {@code
94 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 + * daemon} mode, there is typically no need to explicitly {@link
96 + * #shutdown} such a pool upon program exit.
97 + *
98 + * <pre>
99 + * static final ForkJoinPool mainPool = new ForkJoinPool();
100 + * ...
101 + * public void sort(long[] array) {
102 + *   mainPool.invoke(new SortTask(array, 0, array.length));
103 + * }
104 + * </pre>
105 + *
106   * <p><b>Implementation notes</b>: This implementation restricts the
107   * maximum number of running threads to 32767. Attempts to create
108 < * pools with greater than the maximum result in
108 > * pools with greater than the maximum number result in
109   * {@code IllegalArgumentException}.
110   *
111 + * <p>This implementation rejects submitted tasks (that is, by throwing
112 + * {@link RejectedExecutionException}) only when the pool is shut down
113 + * or internal resources have been exhuasted.
114 + *
115   * @since 1.7
116   * @author Doug Lea
117   */
118   public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to arrange tactics for
142 >     * when one worker is waiting to join a task stolen (or always
143 >     * held by) another.  Becauae we are multiplexing many tasks on to
144 >     * a pool of workers, we can't just let them block (as in
145 >     * Thread.join).  We also cannot just reassign the joiner's
146 >     * run-time stack with another and replace it later, which would
147 >     * be a form of "continuation", that even if possible is not
148 >     * necessarily a good idea. Given that the creation costs of most
149 >     * threads on most systems mainly surrounds setting up runtime
150 >     * stacks, thread creation and switching is usually not much more
151 >     * expensive than stack creation and switching, and is more
152 >     * flexible). Instead we combine two tactics:
153 >     *
154 >     *   1. Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   2. Unless there are already enough live threads, creating or
160 >     *      or re-activating a spare thread to compensate for the
161 >     *      (blocked) joiner until it unblocks.  Spares then suspend
162 >     *      at their next opportunity or eventually die if unused for
163 >     *      too long.  See below and the internal documentation
164 >     *      for tryAwaitJoin for more details about compensation
165 >     *      rules.
166 >     *
167 >     * Because the determining existence of conservatively safe
168 >     * helping targets, the availability of already-created spares,
169 >     * and the apparent need to create new spares are all racy and
170 >     * require heuristic guidance, joins (in
171 >     * ForkJoinWorkerThread.joinTask) interleave these options until
172 >     * successful.  Creating a new spare always succeeds, but also
173 >     * increases application footprint, so we try to avoid it, within
174 >     * reason.
175 >     *
176 >     * The ManagedBlocker extension API can't use option (1) so uses a
177 >     * special version of (2) in method awaitBlocker.
178 >     *
179 >     * The main throughput advantages of work-stealing stem from
180 >     * decentralized control -- workers mostly steal tasks from each
181 >     * other. We do not want to negate this by creating bottlenecks
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195 >     *
196 >     * 1. Creating and removing workers. Workers are recorded in the
197 >     * "workers" array. This is an array as opposed to some other data
198 >     * structure to support index-based random steals by workers.
199 >     * Updates to the array recording new workers and unrecording
200 >     * terminated ones are protected from each other by a lock
201 >     * (workerLock) but the array is otherwise concurrently readable,
202 >     * and accessed directly by workers. To simplify index-based
203 >     * operations, the array size is always a power of two, and all
204 >     * readers must tolerate null slots. Currently, all worker thread
205 >     * creation is on-demand, triggered by task submissions,
206 >     * replacement of terminated workers, and/or compensation for
207 >     * blocked workers. However, all other support code is set up to
208 >     * work with other policies.
209 >     *
210 >     * 2. Bookkeeping for dynamically adding and removing workers. We
211 >     * aim to approximately maintain the given level of parallelism.
212 >     * When some workers are known to be blocked (on joins or via
213 >     * ManagedBlocker), we may create or resume others to take their
214 >     * place until they unblock (see below). Implementing this
215 >     * requires counts of the number of "running" threads (i.e., those
216 >     * that are neither blocked nor artifically suspended) as well as
217 >     * the total number.  These two values are packed into one field,
218 >     * "workerCounts" because we need accurate snapshots when deciding
219 >     * to create, resume or suspend.  Note however that the
220 >     * correspondance of these counts to reality is not guaranteed. In
221 >     * particular updates for unblocked threads may lag until they
222 >     * actually wake up.
223 >     *
224 >     * 3. Maintaining global run state. The run state of the pool
225 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
226 >     * those in other Executor implementations, as well as a count of
227 >     * "active" workers -- those that are, or soon will be, or
228 >     * recently were executing tasks. The runLevel and active count
229 >     * are packed together in order to correctly trigger shutdown and
230 >     * termination. Without care, active counts can be subject to very
231 >     * high contention.  We substantially reduce this contention by
232 >     * relaxing update rules.  A worker must claim active status
233 >     * prospectively, by activating if it sees that a submitted or
234 >     * stealable task exists (it may find after activating that the
235 >     * task no longer exists). It stays active while processing this
236 >     * task (if it exists) and any other local subtasks it produces,
237 >     * until it cannot find any other tasks. It then tries
238 >     * inactivating (see method preStep), but upon update contention
239 >     * instead scans for more tasks, later retrying inactivation if it
240 >     * doesn't find any.
241 >     *
242 >     * 4. Managing idle workers waiting for tasks. We cannot let
243 >     * workers spin indefinitely scanning for tasks when none are
244 >     * available. On the other hand, we must quickly prod them into
245 >     * action when new tasks are submitted or generated.  We
246 >     * park/unpark these idle workers using an event-count scheme.
247 >     * Field eventCount is incremented upon events that may enable
248 >     * workers that previously could not find a task to now find one:
249 >     * Submission of a new task to the pool, or another worker pushing
250 >     * a task onto a previously empty queue.  (We also use this
251 >     * mechanism for termination and reconfiguration actions that
252 >     * require wakeups of idle workers).  Each worker maintains its
253 >     * last known event count, and blocks when a scan for work did not
254 >     * find a task AND its lastEventCount matches the current
255 >     * eventCount. Waiting idle workers are recorded in a variant of
256 >     * Treiber stack headed by field eventWaiters which, when nonzero,
257 >     * encodes the thread index and count awaited for by the worker
258 >     * thread most recently calling eventSync. This thread in turn has
259 >     * a record (field nextEventWaiter) for the next waiting worker.
260 >     * In addition to allowing simpler decisions about need for
261 >     * wakeup, the event count bits in eventWaiters serve the role of
262 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
263 >     * in task diffusion, workers not otherwise occupied may invoke
264 >     * method releaseWaiters, that removes and signals (unparks)
265 >     * workers not waiting on current count. To minimize task
266 >     * production stalls associate with signalling, any worker pushing
267 >     * a task on an empty queue invokes the weaker method signalWork,
268 >     * that only releases idle workers until it detects interference
269 >     * by other threads trying to release, and lets them take
270 >     * over. The net effect is a tree-like diffusion of signals, where
271 >     * released threads (and possibly others) help with unparks.  To
272 >     * further reduce contention effects a bit, failed CASes to
273 >     * increment field eventCount are tolerated without retries.
274 >     * Conceptually they are merged into the same event, which is OK
275 >     * when their only purpose is to enable workers to scan for work.
276 >     *
277 >     * 5. Managing suspension of extra workers. When a worker is about
278 >     * to block waiting for a join (or via ManagedBlockers), we may
279 >     * create a new thread to maintain parallelism level, or at least
280 >     * avoid starvation. Usually, extra threads are needed for only
281 >     * very short periods, yet join dependencies are such that we
282 >     * sometimes need them in bursts. Rather than create new threads
283 >     * each time this happens, we suspend no-longer-needed extra ones
284 >     * as "spares". For most purposes, we don't distinguish "extra"
285 >     * spare threads from normal "core" threads: On each call to
286 >     * preStep (the only point at which we can do this) a worker
287 >     * checks to see if there are now too many running workers, and if
288 >     * so, suspends itself.  Methods tryAwaitJoin and awaitBlocker
289 >     * look for suspended threads to resume before considering
290 >     * creating a new replacement. We don't need a special data
291 >     * structure to maintain spares; simply scanning the workers array
292 >     * looking for worker.isSuspended() is fine because the calling
293 >     * thread is otherwise not doing anything useful anyway; we are at
294 >     * least as happy if after locating a spare, the caller doesn't
295 >     * actually block because the join is ready before we try to
296 >     * adjust and compensate.  Note that this is intrinsically racy.
297 >     * One thread may become a spare at about the same time as another
298 >     * is needlessly being created. We counteract this and related
299 >     * slop in part by requiring resumed spares to immediately recheck
300 >     * (in preStep) to see whether they they should re-suspend. The
301 >     * only effective difference between "extra" and "core" threads is
302 >     * that we allow the "extra" ones to time out and die if they are
303 >     * not resumed within a keep-alive interval of a few seconds. This
304 >     * is implemented mainly within ForkJoinWorkerThread, but requires
305 >     * some coordination (isTrimmed() -- meaning killed while
306 >     * suspended) to correctly maintain pool counts.
307 >     *
308 >     * 6. Deciding when to create new workers. The main dynamic
309 >     * control in this class is deciding when to create extra threads,
310 >     * in methods awaitJoin and awaitBlocker. We always need to create
311 >     * one when the number of running threads would become zero and
312 >     * all workers are busy. However, this is not easy to detect
313 >     * reliably in the presence of transients so we use retries and
314 >     * allow slack (in tryAwaitJoin) to reduce false alarms.  These
315 >     * effectively reduce churn at the price of systematically
316 >     * undershooting target parallelism when many threads are blocked.
317 >     * However, biasing toward undeshooting partially compensates for
318 >     * the above mechanics to suspend extra threads, that normally
319 >     * lead to overshoot because we can only suspend workers
320 >     * in-between top-level actions. It also better copes with the
321 >     * fact that some of the methods in this class tend to never
322 >     * become compiled (but are interpreted), so some components of
323 >     * the entire set of controls might execute many times faster than
324 >     * others. And similarly for cases where the apparent lack of work
325 >     * is just due to GC stalls and other transient system activity.
326 >     *
327 >     * Beware that there is a lot of representation-level coupling
328 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
329 >     * ForkJoinTask.  For example, direct access to "workers" array by
330 >     * workers, and direct access to ForkJoinTask.status by both
331 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
332 >     * trying to reduce this, since any associated future changes in
333 >     * representations will need to be accompanied by algorithmic
334 >     * changes anyway.
335 >     *
336 >     * Style notes: There are lots of inline assignments (of form
337 >     * "while ((local = field) != 0)") which are usually the simplest
338 >     * way to ensure read orderings. Also several occurrences of the
339 >     * unusual "do {} while(!cas...)" which is the simplest way to
340 >     * force an update of a CAS'ed variable. There are also other
341 >     * coding oddities that help some methods perform reasonably even
342 >     * when interpreted (not compiled), at the expense of messiness.
343 >     *
344 >     * The order of declarations in this file is: (1) statics (2)
345 >     * fields (along with constants used when unpacking some of them)
346 >     * (3) internal control methods (4) callbacks and other support
347 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
348 >     * methods (plus a few little helpers).
349       */
350  
78    /** Mask for packing and unpacking shorts */
79    private static final int  shortMask = 0xffff;
80
81    /** Max pool size -- must be a power of two minus 1 */
82    private static final int MAX_THREADS =  0x7FFF;
83
351      /**
352       * Factory for creating new {@link ForkJoinWorkerThread}s.
353       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 92 | Line 359 | public class ForkJoinPool extends Abstra
359           * Returns a new worker thread operating in the given pool.
360           *
361           * @param pool the pool this thread works in
362 <         * @throws NullPointerException if pool is null
362 >         * @throws NullPointerException if the pool is null
363           */
364          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
365      }
# Line 101 | Line 368 | public class ForkJoinPool extends Abstra
368       * Default ForkJoinWorkerThreadFactory implementation; creates a
369       * new ForkJoinWorkerThread.
370       */
371 <    static class  DefaultForkJoinWorkerThreadFactory
371 >    static class DefaultForkJoinWorkerThreadFactory
372          implements ForkJoinWorkerThreadFactory {
373          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
374 <            try {
108 <                return new ForkJoinWorkerThread(pool);
109 <            } catch (OutOfMemoryError oom)  {
110 <                return null;
111 <            }
374 >            return new ForkJoinWorkerThread(pool);
375          }
376      }
377  
# Line 144 | Line 407 | public class ForkJoinPool extends Abstra
407          new AtomicInteger();
408  
409      /**
410 <     * Array holding all worker threads in the pool. Initialized upon
411 <     * first use. Array size must be a power of two.  Updates and
149 <     * replacements are protected by workerLock, but it is always kept
150 <     * in a consistent enough state to be randomly accessed without
151 <     * locking by workers performing work-stealing.
410 >     * Absolute bound for parallelism level. Twice this number must
411 >     * fit into a 16bit field to enable word-packing for some counts.
412       */
413 <    volatile ForkJoinWorkerThread[] workers;
413 >    private static final int MAX_THREADS = 0x7fff;
414  
415      /**
416 <     * Lock protecting access to workers.
416 >     * Array holding all worker threads in the pool.  Array size must
417 >     * be a power of two.  Updates and replacements are protected by
418 >     * workerLock, but the array is always kept in a consistent enough
419 >     * state to be randomly accessed without locking by workers
420 >     * performing work-stealing, as well as other traversal-based
421 >     * methods in this class. All readers must tolerate that some
422 >     * array slots may be null.
423       */
424 <    private final ReentrantLock workerLock;
424 >    volatile ForkJoinWorkerThread[] workers;
425  
426      /**
427 <     * Condition for awaitTermination.
427 >     * Queue for external submissions.
428       */
429 <    private final Condition termination;
429 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
430  
431      /**
432 <     * The uncaught exception handler used when any worker
167 <     * abruptly terminates
432 >     * Lock protecting updates to workers array.
433       */
434 <    private Thread.UncaughtExceptionHandler ueh;
434 >    private final ReentrantLock workerLock;
435  
436      /**
437 <     * Creation factory for worker threads.
437 >     * Latch released upon termination.
438       */
439 <    private final ForkJoinWorkerThreadFactory factory;
439 >    private final Phaser termination;
440  
441      /**
442 <     * Head of stack of threads that were created to maintain
178 <     * parallelism when other threads blocked, but have since
179 <     * suspended when the parallelism level rose.
442 >     * Creation factory for worker threads.
443       */
444 <    private volatile WaitQueueNode spareStack;
444 >    private final ForkJoinWorkerThreadFactory factory;
445  
446      /**
447       * Sum of per-thread steal counts, updated only when threads are
448       * idle or terminating.
449       */
450 <    private final AtomicLong stealCount;
450 >    private volatile long stealCount;
451  
452      /**
453 <     * Queue for external submissions.
453 >     * Encoded record of top of treiber stack of threads waiting for
454 >     * events. The top 32 bits contain the count being waited for. The
455 >     * bottom word contains one plus the pool index of waiting worker
456 >     * thread.
457       */
458 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
458 >    private volatile long eventWaiters;
459 >
460 >    private static final int  EVENT_COUNT_SHIFT = 32;
461 >    private static final long WAITER_ID_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
462  
463      /**
464 <     * Head of Treiber stack for barrier sync. See below for explanation.
464 >     * A counter for events that may wake up worker threads:
465 >     *   - Submission of a new task to the pool
466 >     *   - A worker pushing a task on an empty queue
467 >     *   - termination and reconfiguration
468       */
469 <    private volatile WaitQueueNode syncStack;
469 >    private volatile int eventCount;
470  
471      /**
472 <     * The count for event barrier
473 <     */
474 <    private volatile long eventCount;
472 >     * Lifecycle control. The low word contains the number of workers
473 >     * that are (probably) executing tasks. This value is atomically
474 >     * incremented before a worker gets a task to run, and decremented
475 >     * when worker has no tasks and cannot find any.  Bits 16-18
476 >     * contain runLevel value. When all are zero, the pool is
477 >     * running. Level transitions are monotonic (running -> shutdown
478 >     * -> terminating -> terminated) so each transition adds a bit.
479 >     * These are bundled together to ensure consistent read for
480 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
481 >     * and active threads is zero).
482 >     */
483 >    private volatile int runState;
484 >
485 >    // Note: The order among run level values matters.
486 >    private static final int RUNLEVEL_SHIFT     = 16;
487 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
488 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
489 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
490 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
491 >    private static final int ONE_ACTIVE         = 1; // active update delta
492  
493      /**
494 <     * Pool number, just for assigning useful names to worker threads
494 >     * Holds number of total (i.e., created and not yet terminated)
495 >     * and running (i.e., not blocked on joins or other managed sync)
496 >     * threads, packed together to ensure consistent snapshot when
497 >     * making decisions about creating and suspending spare
498 >     * threads. Updated only by CAS. Note that adding a new worker
499 >     * requires incrementing both counts, since workers start off in
500 >     * running state.  This field is also used for memory-fencing
501 >     * configuration parameters.
502       */
503 <    private final int poolNumber;
503 >    private volatile int workerCounts;
504 >
505 >    private static final int TOTAL_COUNT_SHIFT  = 16;
506 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
507 >    private static final int ONE_RUNNING        = 1;
508 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
509  
510      /**
511 <     * The maximum allowed pool size
511 >     * The target parallelism level.
512 >     * Accessed directly by ForkJoinWorkerThreads.
513       */
514 <    private volatile int maxPoolSize;
514 >    final int parallelism;
515  
516      /**
517 <     * The desired parallelism level, updated only under workerLock.
517 >     * True if use local fifo, not default lifo, for local polling
518 >     * Read by, and replicated by ForkJoinWorkerThreads
519       */
520 <    private volatile int parallelism;
520 >    final boolean locallyFifo;
521  
522      /**
523 <     * True if use local fifo, not default lifo, for local polling
523 >     * The uncaught exception handler used when any worker abruptly
524 >     * terminates.
525       */
526 <    private volatile boolean locallyFifo;
526 >    private final Thread.UncaughtExceptionHandler ueh;
527  
528      /**
529 <     * Holds number of total (i.e., created and not yet terminated)
226 <     * and running (i.e., not blocked on joins or other managed sync)
227 <     * threads, packed into one int to ensure consistent snapshot when
228 <     * making decisions about creating and suspending spare
229 <     * threads. Updated only by CAS.  Note: CASes in
230 <     * updateRunningCount and preJoin assume that running active count
231 <     * is in low word, so need to be modified if this changes.
529 >     * Pool number, just for assigning useful names to worker threads
530       */
531 <    private volatile int workerCounts;
531 >    private final int poolNumber;
532  
533 <    private static int totalCountOf(int s)           { return s >>> 16;  }
534 <    private static int runningCountOf(int s)         { return s & shortMask; }
237 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
533 >    // Utilities for CASing fields. Note that several of these
534 >    // are manually inlined by callers
535  
536      /**
537 <     * Adds delta (which may be negative) to running count.  This must
241 <     * be called before (with negative arg) and after (with positive)
242 <     * any managed synchronization (i.e., mainly, joins).
243 <     *
244 <     * @param delta the number to add
537 >     * Increments running count.  Also used by ForkJoinTask.
538       */
539 <    final void updateRunningCount(int delta) {
540 <        int s;
541 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
539 >    final void incrementRunningCount() {
540 >        int c;
541 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
542 >                                               c = workerCounts,
543 >                                               c + ONE_RUNNING));
544      }
545  
546      /**
547 <     * Adds delta (which may be negative) to both total and running
253 <     * count.  This must be called upon creation and termination of
254 <     * worker threads.
255 <     *
256 <     * @param delta the number to add
547 >     * Tries to decrement running count unless already zero
548       */
549 <    private void updateWorkerCount(int delta) {
550 <        int d = delta + (delta << 16); // add to both lo and hi parts
551 <        int s;
552 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
549 >    final boolean tryDecrementRunningCount() {
550 >        int wc = workerCounts;
551 >        if ((wc & RUNNING_COUNT_MASK) == 0)
552 >            return false;
553 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
554 >                                        wc, wc - ONE_RUNNING);
555      }
556  
557      /**
558 <     * Lifecycle control. High word contains runState, low word
266 <     * contains the number of workers that are (probably) executing
267 <     * tasks. This value is atomically incremented before a worker
268 <     * gets a task to run, and decremented when worker has no tasks
269 <     * and cannot find any. These two fields are bundled together to
270 <     * support correct termination triggering.  Note: activeCount
271 <     * CAS'es cheat by assuming active count is in low word, so need
272 <     * to be modified if this changes
558 >     * Tries to increment running count
559       */
560 <    private volatile int runControl;
561 <
562 <    // RunState values. Order among values matters
563 <    private static final int RUNNING     = 0;
564 <    private static final int SHUTDOWN    = 1;
279 <    private static final int TERMINATING = 2;
280 <    private static final int TERMINATED  = 3;
281 <
282 <    private static int runStateOf(int c)             { return c >>> 16; }
283 <    private static int activeCountOf(int c)          { return c & shortMask; }
284 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
560 >    final boolean tryIncrementRunningCount() {
561 >        int wc;
562 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
563 >                                        wc = workerCounts, wc + ONE_RUNNING);
564 >    }
565  
566      /**
567       * Tries incrementing active count; fails on contention.
568 <     * Called by workers before/during executing tasks.
568 >     * Called by workers before executing tasks.
569       *
570       * @return true on success
571       */
572      final boolean tryIncrementActiveCount() {
573 <        int c = runControl;
574 <        return casRunControl(c, c+1);
573 >        int c;
574 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
575 >                                        c = runState, c + ONE_ACTIVE);
576      }
577  
578      /**
579       * Tries decrementing active count; fails on contention.
580 <     * Possibly triggers termination on success.
300 <     * Called by workers when they can't find tasks.
301 <     *
302 <     * @return true on success
580 >     * Called when workers cannot find tasks to run.
581       */
582      final boolean tryDecrementActiveCount() {
583 <        int c = runControl;
584 <        int nextc = c - 1;
585 <        if (!casRunControl(c, nextc))
308 <            return false;
309 <        if (canTerminateOnShutdown(nextc))
310 <            terminateOnShutdown();
311 <        return true;
583 >        int c;
584 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
585 >                                        c = runState, c - ONE_ACTIVE);
586      }
587  
588      /**
589 <     * Returns {@code true} if argument represents zero active count
590 <     * and nonzero runstate, which is the triggering condition for
317 <     * terminating on shutdown.
589 >     * Advances to at least the given level. Returns true if not
590 >     * already in at least the given level.
591       */
592 <    private static boolean canTerminateOnShutdown(int c) {
593 <        // i.e. least bit is nonzero runState bit
594 <        return ((c & -c) >>> 16) != 0;
592 >    private boolean advanceRunLevel(int level) {
593 >        for (;;) {
594 >            int s = runState;
595 >            if ((s & level) != 0)
596 >                return false;
597 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
598 >                return true;
599 >        }
600      }
601  
602 +    // workers array maintenance
603 +
604      /**
605 <     * Transition run state to at least the given state. Return true
326 <     * if not already at least given state.
605 >     * Records and returns a workers array index for new worker.
606       */
607 <    private boolean transitionRunStateTo(int state) {
608 <        for (;;) {
609 <            int c = runControl;
610 <            if (runStateOf(c) >= state)
611 <                return false;
612 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
613 <                return true;
607 >    private int recordWorker(ForkJoinWorkerThread w) {
608 >        // Try using slot totalCount-1. If not available, scan and/or resize
609 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
610 >        final ReentrantLock lock = this.workerLock;
611 >        lock.lock();
612 >        try {
613 >            ForkJoinWorkerThread[] ws = workers;
614 >            int nws = ws.length;
615 >            if (k < 0 || k >= nws || ws[k] != null) {
616 >                for (k = 0; k < nws && ws[k] != null; ++k)
617 >                    ;
618 >                if (k == nws)
619 >                    ws = Arrays.copyOf(ws, nws << 1);
620 >            }
621 >            ws[k] = w;
622 >            workers = ws; // volatile array write ensures slot visibility
623 >        } finally {
624 >            lock.unlock();
625          }
626 +        return k;
627      }
628  
629      /**
630 <     * Controls whether to add spares to maintain parallelism
630 >     * Nulls out record of worker in workers array
631       */
632 <    private volatile boolean maintainsParallelism;
632 >    private void forgetWorker(ForkJoinWorkerThread w) {
633 >        int idx = w.poolIndex;
634 >        // Locking helps method recordWorker avoid unecessary expansion
635 >        final ReentrantLock lock = this.workerLock;
636 >        lock.lock();
637 >        try {
638 >            ForkJoinWorkerThread[] ws = workers;
639 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
640 >                ws[idx] = null;
641 >        } finally {
642 >            lock.unlock();
643 >        }
644 >    }
645  
646 <    // Constructors
646 >    // adding and removing workers
647  
648      /**
649 <     * Creates a ForkJoinPool with a pool size equal to the number of
650 <     * processors available on the system, using the default
651 <     * ForkJoinWorkerThreadFactory.
649 >     * Tries to create and add new worker. Assumes that worker counts
650 >     * are already updated to accommodate the worker, so adjusts on
651 >     * failure.
652       *
653 <     * @throws SecurityException if a security manager exists and
351 <     *         the caller is not permitted to modify threads
352 <     *         because it does not hold {@link
353 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
653 >     * @return new worker or null if creation failed
654       */
655 <    public ForkJoinPool() {
656 <        this(Runtime.getRuntime().availableProcessors(),
657 <             defaultForkJoinWorkerThreadFactory);
655 >    private ForkJoinWorkerThread addWorker() {
656 >        ForkJoinWorkerThread w = null;
657 >        try {
658 >            w = factory.newThread(this);
659 >        } finally { // Adjust on either null or exceptional factory return
660 >            if (w == null) {
661 >                onWorkerCreationFailure();
662 >                return null;
663 >            }
664 >        }
665 >        w.start(recordWorker(w), ueh);
666 >        return w;
667      }
668  
669      /**
670 <     * Creates a ForkJoinPool with the indicated parallelism level
362 <     * threads and using the default ForkJoinWorkerThreadFactory.
363 <     *
364 <     * @param parallelism the number of worker threads
365 <     * @throws IllegalArgumentException if parallelism less than or
366 <     * equal to zero
367 <     * @throws SecurityException if a security manager exists and
368 <     *         the caller is not permitted to modify threads
369 <     *         because it does not hold {@link
370 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
670 >     * Adjusts counts upon failure to create worker
671       */
672 <    public ForkJoinPool(int parallelism) {
673 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
672 >    private void onWorkerCreationFailure() {
673 >        for (;;) {
674 >            int wc = workerCounts;
675 >            if ((wc >>> TOTAL_COUNT_SHIFT) == 0)
676 >                Thread.yield(); // wait for other counts to settle
677 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
678 >                                              wc - (ONE_RUNNING|ONE_TOTAL)))
679 >                break;
680 >        }
681 >        tryTerminate(false); // in case of failure during shutdown
682      }
683  
684      /**
685 <     * Creates a ForkJoinPool with parallelism equal to the number of
686 <     * processors available on the system and using the given
379 <     * ForkJoinWorkerThreadFactory.
685 >     * Creates and/or resumes enough workers to establish target
686 >     * parallelism, giving up if terminating or addWorker fails
687       *
688 <     * @param factory the factory for creating new threads
689 <     * @throws NullPointerException if factory is null
690 <     * @throws SecurityException if a security manager exists and
691 <     *         the caller is not permitted to modify threads
692 <     *         because it does not hold {@link
693 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
694 <     */
695 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
696 <        this(Runtime.getRuntime().availableProcessors(), factory);
688 >     * TODO: recast this to support lazier creation and automated
689 >     * parallelism maintenance
690 >     */
691 >    private void ensureEnoughWorkers() {
692 >        while ((runState & TERMINATING) == 0) {
693 >            int pc = parallelism;
694 >            int wc = workerCounts;
695 >            int rc = wc & RUNNING_COUNT_MASK;
696 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
697 >            if (tc < pc) {
698 >                if (UNSAFE.compareAndSwapInt
699 >                    (this, workerCountsOffset,
700 >                     wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
701 >                    addWorker() == null)
702 >                    break;
703 >            }
704 >            else if (tc > pc && rc < pc &&
705 >                     tc > (runState & ACTIVE_COUNT_MASK)) {
706 >                ForkJoinWorkerThread spare = null;
707 >                ForkJoinWorkerThread[] ws = workers;
708 >                int nws = ws.length;
709 >                for (int i = 0; i < nws; ++i) {
710 >                    ForkJoinWorkerThread w = ws[i];
711 >                    if (w != null && w.isSuspended()) {
712 >                        if ((workerCounts & RUNNING_COUNT_MASK) > pc)
713 >                            return;
714 >                        if (w.tryResumeSpare())
715 >                            incrementRunningCount();
716 >                        break;
717 >                    }
718 >                }
719 >            }
720 >            else
721 >                break;
722 >        }
723      }
724  
725      /**
726 <     * Creates a ForkJoinPool with the given parallelism and factory.
726 >     * Final callback from terminating worker.  Removes record of
727 >     * worker from array, and adjusts counts. If pool is shutting
728 >     * down, tries to complete terminatation, else possibly replaces
729 >     * the worker.
730       *
731 <     * @param parallelism the targeted number of worker threads
396 <     * @param factory the factory for creating new threads
397 <     * @throws IllegalArgumentException if parallelism less than or
398 <     * equal to zero, or greater than implementation limit
399 <     * @throws NullPointerException if factory is null
400 <     * @throws SecurityException if a security manager exists and
401 <     *         the caller is not permitted to modify threads
402 <     *         because it does not hold {@link
403 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
731 >     * @param w the worker
732       */
733 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
734 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
735 <            throw new IllegalArgumentException();
736 <        if (factory == null)
737 <            throw new NullPointerException();
738 <        checkPermission();
739 <        this.factory = factory;
740 <        this.parallelism = parallelism;
741 <        this.maxPoolSize = MAX_THREADS;
742 <        this.maintainsParallelism = true;
743 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
744 <        this.workerLock = new ReentrantLock();
745 <        this.termination = workerLock.newCondition();
746 <        this.stealCount = new AtomicLong();
747 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
748 <        // worker array and workers are lazily constructed
733 >    final void workerTerminated(ForkJoinWorkerThread w) {
734 >        if (w.active) { // force inactive
735 >            w.active = false;
736 >            do {} while (!tryDecrementActiveCount());
737 >        }
738 >        forgetWorker(w);
739 >
740 >        // Decrement total count, and if was running, running count
741 >        // Spin (waiting for other updates) if either would be negative
742 >        int nr = w.isTrimmed() ? 0 : ONE_RUNNING;
743 >        int unit = ONE_TOTAL + nr;
744 >        for (;;) {
745 >            int wc = workerCounts;
746 >            int rc = wc & RUNNING_COUNT_MASK;
747 >            if (rc - nr < 0 || (wc >>> TOTAL_COUNT_SHIFT) == 0)
748 >                Thread.yield(); // back off if waiting for other updates
749 >            else if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
750 >                                              wc, wc - unit))
751 >                break;
752 >        }
753 >
754 >        accumulateStealCount(w); // collect final count
755 >        if (!tryTerminate(false))
756 >            ensureEnoughWorkers();
757      }
758  
759 +    // Waiting for and signalling events
760 +
761      /**
762 <     * Creates a new worker thread using factory.
763 <     *
426 <     * @param index the index to assign worker
427 <     * @return new worker, or null of factory failed
762 >     * Releases workers blocked on a count not equal to current count.
763 >     * @return true if any released
764       */
765 <    private ForkJoinWorkerThread createWorker(int index) {
766 <        Thread.UncaughtExceptionHandler h = ueh;
767 <        ForkJoinWorkerThread w = factory.newThread(this);
768 <        if (w != null) {
769 <            w.poolIndex = index;
770 <            w.setDaemon(true);
771 <            w.setAsyncMode(locallyFifo);
772 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
773 <            if (h != null)
774 <                w.setUncaughtExceptionHandler(h);
765 >    private void releaseWaiters() {
766 >        long top;
767 >        while ((top = eventWaiters) != 0L) {
768 >            ForkJoinWorkerThread[] ws = workers;
769 >            int n = ws.length;
770 >            for (;;) {
771 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
772 >                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == eventCount)
773 >                    return;
774 >                ForkJoinWorkerThread w;
775 >                if (i < n && (w = ws[i]) != null &&
776 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
777 >                                              top, w.nextWaiter)) {
778 >                    LockSupport.unpark(w);
779 >                    top = eventWaiters;
780 >                }
781 >                else
782 >                    break;      // possibly stale; reread
783 >            }
784          }
440        return w;
785      }
786  
787      /**
788 <     * Returns a good size for worker array given pool size.
789 <     * Currently requires size to be a power of two.
788 >     * Ensures eventCount on exit is different (mod 2^32) than on
789 >     * entry and wakes up all waiters
790 >     */
791 >    private void signalEvent() {
792 >        int c;
793 >        do {} while (!UNSAFE.compareAndSwapInt(this, eventCountOffset,
794 >                                               c = eventCount, c+1));
795 >        releaseWaiters();
796 >    }
797 >
798 >    /**
799 >     * Advances eventCount and releases waiters until interference by
800 >     * other releasing threads is detected.
801       */
802 <    private static int arraySizeFor(int poolSize) {
803 <        return (poolSize <= 1) ? 1 :
804 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
802 >    final void signalWork() {
803 >        int c;
804 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c=eventCount, c+1);
805 >        long top;
806 >        while ((top = eventWaiters) != 0L) {
807 >            int ec = eventCount;
808 >            ForkJoinWorkerThread[] ws = workers;
809 >            int n = ws.length;
810 >            for (;;) {
811 >                int i = ((int)(top & WAITER_ID_MASK)) - 1;
812 >                if (i < 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
813 >                    return;
814 >                ForkJoinWorkerThread w;
815 >                if (i < n && (w = ws[i]) != null &&
816 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
817 >                                              top, top = w.nextWaiter)) {
818 >                    LockSupport.unpark(w);
819 >                    if (top != eventWaiters) // let someone else take over
820 >                        return;
821 >                }
822 >                else
823 >                    break;      // possibly stale; reread
824 >            }
825 >        }
826      }
827  
828      /**
829 <     * Creates or resizes array if necessary to hold newLength.
830 <     * Call only under exclusion.
829 >     * If worker is inactive, blocks until terminating or event count
830 >     * advances from last value held by worker; in any case helps
831 >     * release others.
832       *
833 <     * @return the array
833 >     * @param w the calling worker thread
834 >     * @param retries the number of scans by caller failing to find work
835 >     * @return false if now too many threads running
836       */
837 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
838 <        ForkJoinWorkerThread[] ws = workers;
839 <        if (ws == null)
840 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
841 <        else if (newLength > ws.length)
842 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
843 <        else
844 <            return ws;
837 >    private boolean eventSync(ForkJoinWorkerThread w, int retries) {
838 >        int wec = w.lastEventCount;
839 >        if (retries > 1) { // can only block after 2nd miss
840 >            long nextTop = (((long)wec << EVENT_COUNT_SHIFT) |
841 >                            ((long)(w.poolIndex + 1)));
842 >            long top;
843 >            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
844 >                   (((int)(top = eventWaiters) & WAITER_ID_MASK) == 0 ||
845 >                    (int)(top >>> EVENT_COUNT_SHIFT) == wec) &&
846 >                   eventCount == wec) {
847 >                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
848 >                                              w.nextWaiter = top, nextTop)) {
849 >                    accumulateStealCount(w); // transfer steals while idle
850 >                    Thread.interrupted();    // clear/ignore interrupt
851 >                    while (eventCount == wec)
852 >                        w.doPark();
853 >                    break;
854 >                }
855 >            }
856 >            wec = eventCount;
857 >        }
858 >        releaseWaiters();
859 >        int wc = workerCounts;
860 >        if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
861 >            w.lastEventCount = wec;
862 >            return true;
863 >        }
864 >        if (wec != w.lastEventCount) // back up if may re-wait
865 >            w.lastEventCount = wec - (wc >>> TOTAL_COUNT_SHIFT);
866 >        return false;
867      }
868  
869      /**
870 <     * Tries to shrink workers into smaller array after one or more terminate.
870 >     * Callback from workers invoked upon each top-level action (i.e.,
871 >     * stealing a task or taking a submission and running
872 >     * it). Performs one or both of the following:
873 >     *
874 >     * * If the worker cannot find work, updates its active status to
875 >     * inactive and updates activeCount unless there is contention, in
876 >     * which case it may try again (either in this or a subsequent
877 >     * call).  Additionally, awaits the next task event and/or helps
878 >     * wake up other releasable waiters.
879 >     *
880 >     * * If there are too many running threads, suspends this worker
881 >     * (first forcing inactivation if necessary).  If it is not
882 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
883 >     * -- killed while suspended within suspendAsSpare. Otherwise,
884 >     * upon resume it rechecks to make sure that it is still needed.
885 >     *
886 >     * @param w the worker
887 >     * @param retries the number of scans by caller failing to find work
888 >     * find any (in which case it may block waiting for work).
889       */
890 <    private void tryShrinkWorkerArray() {
891 <        ForkJoinWorkerThread[] ws = workers;
892 <        if (ws != null) {
893 <            int len = ws.length;
894 <            int last = len - 1;
895 <            while (last >= 0 && ws[last] == null)
896 <                --last;
897 <            int newLength = arraySizeFor(last+1);
898 <            if (newLength < len)
899 <                workers = Arrays.copyOf(ws, newLength);
890 >    final void preStep(ForkJoinWorkerThread w, int retries) {
891 >        boolean active = w.active;
892 >        boolean inactivate = active && retries != 0;
893 >        for (;;) {
894 >            int rs, wc;
895 >            if (inactivate &&
896 >                UNSAFE.compareAndSwapInt(this, runStateOffset,
897 >                                         rs = runState, rs - ONE_ACTIVE))
898 >                inactivate = active = w.active = false;
899 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= parallelism) {
900 >                if (active || eventSync(w, retries))
901 >                    break;
902 >            }
903 >            else if (!(inactivate |= active) &&  // must inactivate to suspend
904 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
905 >                                         wc, wc - ONE_RUNNING) &&
906 >                !w.suspendAsSpare())             // false if trimmed
907 >                break;
908          }
909      }
910  
911      /**
912 <     * Initializes workers if necessary.
912 >     * Awaits join of the given task if enough threads, or can resume
913 >     * or create a spare. Fails (in which case the given task might
914 >     * not be done) upon contention or lack of decision about
915 >     * blocking. Returns void because caller must check
916 >     * task status on return anyway.
917 >     *
918 >     * We allow blocking if:
919 >     *
920 >     * 1. There would still be at least as many running threads as
921 >     *    parallelism level if this thread blocks.
922 >     *
923 >     * 2. A spare is resumed to replace this worker. We tolerate
924 >     *    slop in the decision to replace if a spare is found without
925 >     *    first decrementing run count.  This may release too many,
926 >     *    but if so, the superfluous ones will re-suspend via
927 >     *    preStep().
928 >     *
929 >     * 3. After #spares repeated checks, there are no fewer than #spare
930 >     *    threads not running. We allow this slack to avoid hysteresis
931 >     *    and as a hedge against lag/uncertainty of running count
932 >     *    estimates when signalling or unblocking stalls.
933 >     *
934 >     * 4. All existing workers are busy (as rechecked via repeated
935 >     *    retries by caller) and a new spare is created.
936 >     *
937 >     * If none of the above hold, we try to escape out by
938 >     * re-incrementing count and returning to caller, which can retry
939 >     * later.
940 >     *
941 >     * @param joinMe the task to join
942 >     * @param retries if negative, then serve only as a precheck
943 >     *   that the thread can be replaced by a spare. Otherwise,
944 >     *   the number of repeated calls to this method returning busy
945 >     * @return true if the call must be retried because there
946 >     *   none of the blocking checks hold
947       */
948 <    final void ensureWorkerInitialization() {
949 <        ForkJoinWorkerThread[] ws = workers;
950 <        if (ws == null) {
951 <            final ReentrantLock lock = this.workerLock;
952 <            lock.lock();
953 <            try {
954 <                ws = workers;
955 <                if (ws == null) {
956 <                    int ps = parallelism;
957 <                    ws = ensureWorkerArrayCapacity(ps);
958 <                    for (int i = 0; i < ps; ++i) {
959 <                        ForkJoinWorkerThread w = createWorker(i);
948 >    final boolean tryAwaitJoin(ForkJoinTask<?> joinMe, int retries) {
949 >        if (joinMe.status < 0) // precheck for cancellation
950 >            return false;
951 >        if ((runState & TERMINATING) != 0) { // shutting down
952 >            joinMe.cancelIgnoringExceptions();
953 >            return false;
954 >        }
955 >
956 >        int pc = parallelism;
957 >        boolean running = true; // false when running count decremented
958 >        outer:for (;;) {
959 >            int wc = workerCounts;
960 >            int rc = wc & RUNNING_COUNT_MASK;
961 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
962 >            if (running) { // replace with spare or decrement count
963 >                if (rc <= pc && tc > pc &&
964 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
965 >                    ForkJoinWorkerThread[] ws = workers;
966 >                    int nws = ws.length;
967 >                    for (int i = 0; i < nws; ++i) { // search for spare
968 >                        ForkJoinWorkerThread w = ws[i];
969                          if (w != null) {
970 <                            ws[i] = w;
971 <                            w.start();
972 <                            updateWorkerCount(1);
970 >                            if (joinMe.status < 0)
971 >                                return false;
972 >                            if (w.isSuspended()) {
973 >                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
974 >                                    w.tryResumeSpare()) {
975 >                                    running = false;
976 >                                    break outer;
977 >                                }
978 >                                continue outer; // rescan
979 >                            }
980                          }
981                      }
982                  }
983 <            } finally {
984 <                lock.unlock();
983 >                if (retries < 0 || // < 0 means replacement check only
984 >                    rc == 0 || joinMe.status < 0 || workerCounts != wc ||
985 >                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
986 >                                              wc, wc - ONE_RUNNING))
987 >                    return false; // done or inconsistent or contended
988 >                running = false;
989 >                if (rc > pc)
990 >                    break;
991 >            }
992 >            else { // allow blocking if enough threads
993 >                if (rc >= pc || joinMe.status < 0)
994 >                    break;
995 >                int sc = tc - pc + 1; // = spare threads, plus the one to add
996 >                if (retries > sc) {
997 >                    if (rc > 0 && rc >= pc - sc) // allow slack
998 >                        break;
999 >                    if (tc < MAX_THREADS &&
1000 >                        tc == (runState & ACTIVE_COUNT_MASK) &&
1001 >                        workerCounts == wc &&
1002 >                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1003 >                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1004 >                        addWorker();
1005 >                        break;
1006 >                    }
1007 >                }
1008 >                if (workerCounts == wc &&        // back out to allow rescan
1009 >                    UNSAFE.compareAndSwapInt (this, workerCountsOffset,
1010 >                                              wc, wc + ONE_RUNNING)) {
1011 >                    releaseWaiters();            // help others progress
1012 >                    return true;                 // let caller retry
1013 >                }
1014              }
1015          }
1016 +        // arrive here if can block
1017 +        joinMe.internalAwaitDone();
1018 +        int c;                      // to inline incrementRunningCount
1019 +        do {} while (!UNSAFE.compareAndSwapInt
1020 +                     (this, workerCountsOffset,
1021 +                      c = workerCounts, c + ONE_RUNNING));
1022 +        return false;
1023      }
1024  
1025      /**
1026 <     * Worker creation and startup for threads added via setParallelism.
1026 >     * Same idea as (and shares many code snippets with) tryAwaitJoin,
1027 >     * but self-contained because there are no caller retries.
1028 >     * TODO: Rework to use simpler API.
1029       */
1030 <    private void createAndStartAddedWorkers() {
1031 <        resumeAllSpares();  // Allow spares to convert to nonspare
1032 <        int ps = parallelism;
1033 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1034 <        int len = ws.length;
1035 <        // Sweep through slots, to keep lowest indices most populated
1036 <        int k = 0;
1037 <        while (k < len) {
1038 <            if (ws[k] != null) {
1039 <                ++k;
1040 <                continue;
1041 <            }
1042 <            int s = workerCounts;
1043 <            int tc = totalCountOf(s);
1044 <            int rc = runningCountOf(s);
1045 <            if (rc >= ps || tc >= ps)
1046 <                break;
1047 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1048 <                ForkJoinWorkerThread w = createWorker(k);
1049 <                if (w != null) {
1050 <                    ws[k++] = w;
1051 <                    w.start();
1030 >    final void awaitBlocker(ManagedBlocker blocker)
1031 >        throws InterruptedException {
1032 >        boolean done;
1033 >        if (done = blocker.isReleasable())
1034 >            return;
1035 >        int pc = parallelism;
1036 >        int retries = 0;
1037 >        boolean running = true; // false when running count decremented
1038 >        outer:for (;;) {
1039 >            int wc = workerCounts;
1040 >            int rc = wc & RUNNING_COUNT_MASK;
1041 >            int tc = wc >>> TOTAL_COUNT_SHIFT;
1042 >            if (running) {
1043 >                if (rc <= pc && tc > pc &&
1044 >                    (retries > 0 || tc > (runState & ACTIVE_COUNT_MASK))) {
1045 >                    ForkJoinWorkerThread[] ws = workers;
1046 >                    int nws = ws.length;
1047 >                    for (int i = 0; i < nws; ++i) {
1048 >                        ForkJoinWorkerThread w = ws[i];
1049 >                        if (w != null) {
1050 >                            if (done = blocker.isReleasable())
1051 >                                return;
1052 >                            if (w.isSuspended()) {
1053 >                                if ((workerCounts & RUNNING_COUNT_MASK)>=pc &&
1054 >                                    w.tryResumeSpare()) {
1055 >                                    running = false;
1056 >                                    break outer;
1057 >                                }
1058 >                                continue outer; // rescan
1059 >                            }
1060 >                        }
1061 >                    }
1062                  }
1063 <                else {
1064 <                    updateWorkerCount(-1); // back out on failed creation
1063 >                if (done = blocker.isReleasable())
1064 >                    return;
1065 >                if (rc == 0 || workerCounts != wc ||
1066 >                    !UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1067 >                                              wc, wc - ONE_RUNNING))
1068 >                    continue;
1069 >                running = false;
1070 >                if (rc > pc)
1071 >                    break;
1072 >            }
1073 >            else {
1074 >                if (rc >= pc || (done = blocker.isReleasable()))
1075                      break;
1076 +                int sc = tc - pc + 1;
1077 +                if (retries++ > sc) {
1078 +                    if (rc > 0 && rc >= pc - sc)
1079 +                        break;
1080 +                    if (tc < MAX_THREADS &&
1081 +                        tc == (runState & ACTIVE_COUNT_MASK) &&
1082 +                        workerCounts == wc &&
1083 +                        UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1084 +                                                 wc+(ONE_RUNNING|ONE_TOTAL))) {
1085 +                        addWorker();
1086 +                        break;
1087 +                    }
1088 +                }
1089 +                Thread.yield();
1090 +            }
1091 +        }
1092 +
1093 +        try {
1094 +            if (!done)
1095 +                do {} while (!blocker.isReleasable() && !blocker.block());
1096 +        } finally {
1097 +            if (!running) {
1098 +                int c;
1099 +                do {} while (!UNSAFE.compareAndSwapInt
1100 +                             (this, workerCountsOffset,
1101 +                              c = workerCounts, c + ONE_RUNNING));
1102 +            }
1103 +        }
1104 +    }
1105 +
1106 +    /**
1107 +     * Possibly initiates and/or completes termination.
1108 +     *
1109 +     * @param now if true, unconditionally terminate, else only
1110 +     * if shutdown and empty queue and no active workers
1111 +     * @return true if now terminating or terminated
1112 +     */
1113 +    private boolean tryTerminate(boolean now) {
1114 +        if (now)
1115 +            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1116 +        else if (runState < SHUTDOWN ||
1117 +                 !submissionQueue.isEmpty() ||
1118 +                 (runState & ACTIVE_COUNT_MASK) != 0)
1119 +            return false;
1120 +
1121 +        if (advanceRunLevel(TERMINATING))
1122 +            startTerminating();
1123 +
1124 +        // Finish now if all threads terminated; else in some subsequent call
1125 +        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1126 +            advanceRunLevel(TERMINATED);
1127 +            termination.arrive();
1128 +        }
1129 +        return true;
1130 +    }
1131 +
1132 +    /**
1133 +     * Actions on transition to TERMINATING
1134 +     */
1135 +    private void startTerminating() {
1136 +        for (int i = 0; i < 2; ++i) { // twice to mop up newly created workers
1137 +            cancelSubmissions();
1138 +            shutdownWorkers();
1139 +            cancelWorkerTasks();
1140 +            signalEvent();
1141 +            interruptWorkers();
1142 +        }
1143 +    }
1144 +
1145 +    /**
1146 +     * Clear out and cancel submissions, ignoring exceptions
1147 +     */
1148 +    private void cancelSubmissions() {
1149 +        ForkJoinTask<?> task;
1150 +        while ((task = submissionQueue.poll()) != null) {
1151 +            try {
1152 +                task.cancel(false);
1153 +            } catch (Throwable ignore) {
1154 +            }
1155 +        }
1156 +    }
1157 +
1158 +    /**
1159 +     * Sets all worker run states to at least shutdown,
1160 +     * also resuming suspended workers
1161 +     */
1162 +    private void shutdownWorkers() {
1163 +        ForkJoinWorkerThread[] ws = workers;
1164 +        int nws = ws.length;
1165 +        for (int i = 0; i < nws; ++i) {
1166 +            ForkJoinWorkerThread w = ws[i];
1167 +            if (w != null)
1168 +                w.shutdown();
1169 +        }
1170 +    }
1171 +
1172 +    /**
1173 +     * Clears out and cancels all locally queued tasks
1174 +     */
1175 +    private void cancelWorkerTasks() {
1176 +        ForkJoinWorkerThread[] ws = workers;
1177 +        int nws = ws.length;
1178 +        for (int i = 0; i < nws; ++i) {
1179 +            ForkJoinWorkerThread w = ws[i];
1180 +            if (w != null)
1181 +                w.cancelTasks();
1182 +        }
1183 +    }
1184 +
1185 +    /**
1186 +     * Unsticks all workers blocked on joins etc
1187 +     */
1188 +    private void interruptWorkers() {
1189 +        ForkJoinWorkerThread[] ws = workers;
1190 +        int nws = ws.length;
1191 +        for (int i = 0; i < nws; ++i) {
1192 +            ForkJoinWorkerThread w = ws[i];
1193 +            if (w != null && !w.isTerminated()) {
1194 +                try {
1195 +                    w.interrupt();
1196 +                } catch (SecurityException ignore) {
1197                  }
1198              }
1199          }
1200      }
1201  
1202 +    // misc support for ForkJoinWorkerThread
1203 +
1204 +    /**
1205 +     * Returns pool number
1206 +     */
1207 +    final int getPoolNumber() {
1208 +        return poolNumber;
1209 +    }
1210 +
1211 +    /**
1212 +     * Accumulates steal count from a worker, clearing
1213 +     * the worker's value
1214 +     */
1215 +    final void accumulateStealCount(ForkJoinWorkerThread w) {
1216 +        int sc = w.stealCount;
1217 +        if (sc != 0) {
1218 +            long c;
1219 +            w.stealCount = 0;
1220 +            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1221 +                                                    c = stealCount, c + sc));
1222 +        }
1223 +    }
1224 +
1225 +    /**
1226 +     * Returns the approximate (non-atomic) number of idle threads per
1227 +     * active thread.
1228 +     */
1229 +    final int idlePerActive() {
1230 +        int pc = parallelism; // use parallelism, not rc
1231 +        int ac = runState;    // no mask -- artifically boosts during shutdown
1232 +        // Use exact results for small values, saturate past 4
1233 +        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1234 +    }
1235 +
1236 +    // Public and protected methods
1237 +
1238 +    // Constructors
1239 +
1240 +    /**
1241 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1242 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1243 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1244 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1245 +     *
1246 +     * @throws SecurityException if a security manager exists and
1247 +     *         the caller is not permitted to modify threads
1248 +     *         because it does not hold {@link
1249 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1250 +     */
1251 +    public ForkJoinPool() {
1252 +        this(Runtime.getRuntime().availableProcessors(),
1253 +             defaultForkJoinWorkerThreadFactory, null, false);
1254 +    }
1255 +
1256 +    /**
1257 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1258 +     * level, the {@linkplain
1259 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1260 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1261 +     *
1262 +     * @param parallelism the parallelism level
1263 +     * @throws IllegalArgumentException if parallelism less than or
1264 +     *         equal to zero, or greater than implementation limit
1265 +     * @throws SecurityException if a security manager exists and
1266 +     *         the caller is not permitted to modify threads
1267 +     *         because it does not hold {@link
1268 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1269 +     */
1270 +    public ForkJoinPool(int parallelism) {
1271 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1272 +    }
1273 +
1274 +    /**
1275 +     * Creates a {@code ForkJoinPool} with the given parameters.
1276 +     *
1277 +     * @param parallelism the parallelism level. For default value,
1278 +     * use {@link java.lang.Runtime#availableProcessors}.
1279 +     * @param factory the factory for creating new threads. For default value,
1280 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1281 +     * @param handler the handler for internal worker threads that
1282 +     * terminate due to unrecoverable errors encountered while executing
1283 +     * tasks. For default value, use <code>null</code>.
1284 +     * @param asyncMode if true,
1285 +     * establishes local first-in-first-out scheduling mode for forked
1286 +     * tasks that are never joined. This mode may be more appropriate
1287 +     * than default locally stack-based mode in applications in which
1288 +     * worker threads only process event-style asynchronous tasks.
1289 +     * For default value, use <code>false</code>.
1290 +     * @throws IllegalArgumentException if parallelism less than or
1291 +     *         equal to zero, or greater than implementation limit
1292 +     * @throws NullPointerException if the factory is null
1293 +     * @throws SecurityException if a security manager exists and
1294 +     *         the caller is not permitted to modify threads
1295 +     *         because it does not hold {@link
1296 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1297 +     */
1298 +    public ForkJoinPool(int parallelism,
1299 +                        ForkJoinWorkerThreadFactory factory,
1300 +                        Thread.UncaughtExceptionHandler handler,
1301 +                        boolean asyncMode) {
1302 +        checkPermission();
1303 +        if (factory == null)
1304 +            throw new NullPointerException();
1305 +        if (parallelism <= 0 || parallelism > MAX_THREADS)
1306 +            throw new IllegalArgumentException();
1307 +        this.parallelism = parallelism;
1308 +        this.factory = factory;
1309 +        this.ueh = handler;
1310 +        this.locallyFifo = asyncMode;
1311 +        int arraySize = initialArraySizeFor(parallelism);
1312 +        this.workers = new ForkJoinWorkerThread[arraySize];
1313 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1314 +        this.workerLock = new ReentrantLock();
1315 +        this.termination = new Phaser(1);
1316 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1317 +    }
1318 +
1319 +    /**
1320 +     * Returns initial power of two size for workers array.
1321 +     * @param pc the initial parallelism level
1322 +     */
1323 +    private static int initialArraySizeFor(int pc) {
1324 +        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1325 +        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1326 +        size |= size >>> 1;
1327 +        size |= size >>> 2;
1328 +        size |= size >>> 4;
1329 +        size |= size >>> 8;
1330 +        return size + 1;
1331 +    }
1332 +
1333      // Execution methods
1334  
1335      /**
# Line 551 | Line 1338 | public class ForkJoinPool extends Abstra
1338      private <T> void doSubmit(ForkJoinTask<T> task) {
1339          if (task == null)
1340              throw new NullPointerException();
1341 <        if (isShutdown())
1341 >        if (runState >= SHUTDOWN)
1342              throw new RejectedExecutionException();
556        if (workers == null)
557            ensureWorkerInitialization();
1343          submissionQueue.offer(task);
1344 <        signalIdleWorkers();
1344 >        signalEvent();
1345 >        ensureEnoughWorkers();
1346      }
1347  
1348      /**
1349       * Performs the given task, returning its result upon completion.
1350 +     * If the caller is already engaged in a fork/join computation in
1351 +     * the current pool, this method is equivalent in effect to
1352 +     * {@link ForkJoinTask#invoke}.
1353       *
1354       * @param task the task
1355       * @return the task's result
1356 <     * @throws NullPointerException if task is null
1357 <     * @throws RejectedExecutionException if pool is shut down
1356 >     * @throws NullPointerException if the task is null
1357 >     * @throws RejectedExecutionException if the task cannot be
1358 >     *         scheduled for execution
1359       */
1360      public <T> T invoke(ForkJoinTask<T> task) {
1361          doSubmit(task);
# Line 574 | Line 1364 | public class ForkJoinPool extends Abstra
1364  
1365      /**
1366       * Arranges for (asynchronous) execution of the given task.
1367 +     * If the caller is already engaged in a fork/join computation in
1368 +     * the current pool, this method is equivalent in effect to
1369 +     * {@link ForkJoinTask#fork}.
1370       *
1371       * @param task the task
1372 <     * @throws NullPointerException if task is null
1373 <     * @throws RejectedExecutionException if pool is shut down
1372 >     * @throws NullPointerException if the task is null
1373 >     * @throws RejectedExecutionException if the task cannot be
1374 >     *         scheduled for execution
1375       */
1376      public void execute(ForkJoinTask<?> task) {
1377          doSubmit(task);
# Line 585 | Line 1379 | public class ForkJoinPool extends Abstra
1379  
1380      // AbstractExecutorService methods
1381  
1382 +    /**
1383 +     * @throws NullPointerException if the task is null
1384 +     * @throws RejectedExecutionException if the task cannot be
1385 +     *         scheduled for execution
1386 +     */
1387      public void execute(Runnable task) {
1388          ForkJoinTask<?> job;
1389          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 594 | Line 1393 | public class ForkJoinPool extends Abstra
1393          doSubmit(job);
1394      }
1395  
1396 +    /**
1397 +     * Submits a ForkJoinTask for execution.
1398 +     * If the caller is already engaged in a fork/join computation in
1399 +     * the current pool, this method is equivalent in effect to
1400 +     * {@link ForkJoinTask#fork}.
1401 +     *
1402 +     * @param task the task to submit
1403 +     * @return the task
1404 +     * @throws NullPointerException if the task is null
1405 +     * @throws RejectedExecutionException if the task cannot be
1406 +     *         scheduled for execution
1407 +     */
1408 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1409 +        doSubmit(task);
1410 +        return task;
1411 +    }
1412 +
1413 +    /**
1414 +     * @throws NullPointerException if the task is null
1415 +     * @throws RejectedExecutionException if the task cannot be
1416 +     *         scheduled for execution
1417 +     */
1418      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1419          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1420          doSubmit(job);
1421          return job;
1422      }
1423  
1424 +    /**
1425 +     * @throws NullPointerException if the task is null
1426 +     * @throws RejectedExecutionException if the task cannot be
1427 +     *         scheduled for execution
1428 +     */
1429      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1430          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1431          doSubmit(job);
1432          return job;
1433      }
1434  
1435 +    /**
1436 +     * @throws NullPointerException if the task is null
1437 +     * @throws RejectedExecutionException if the task cannot be
1438 +     *         scheduled for execution
1439 +     */
1440      public ForkJoinTask<?> submit(Runnable task) {
1441          ForkJoinTask<?> job;
1442          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 617 | Line 1448 | public class ForkJoinPool extends Abstra
1448      }
1449  
1450      /**
1451 <     * Submits a ForkJoinTask for execution.
1452 <     *
622 <     * @param task the task to submit
623 <     * @return the task
624 <     * @throws RejectedExecutionException if the task cannot be
625 <     *         scheduled for execution
626 <     * @throws NullPointerException if the task is null
1451 >     * @throws NullPointerException       {@inheritDoc}
1452 >     * @throws RejectedExecutionException {@inheritDoc}
1453       */
628    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
629        doSubmit(task);
630        return task;
631    }
632
633
1454      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1455          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1456              new ArrayList<ForkJoinTask<T>>(tasks.size());
# Line 639 | Line 1459 | public class ForkJoinPool extends Abstra
1459          invoke(new InvokeAll<T>(forkJoinTasks));
1460  
1461          @SuppressWarnings({"unchecked", "rawtypes"})
1462 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1462 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1463          return futures;
1464      }
1465  
# Line 653 | Line 1473 | public class ForkJoinPool extends Abstra
1473          private static final long serialVersionUID = -7914297376763021607L;
1474      }
1475  
656    // Configuration and status settings and queries
657
1476      /**
1477       * Returns the factory used for constructing new workers.
1478       *
# Line 671 | Line 1489 | public class ForkJoinPool extends Abstra
1489       * @return the handler, or {@code null} if none
1490       */
1491      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1492 <        Thread.UncaughtExceptionHandler h;
675 <        final ReentrantLock lock = this.workerLock;
676 <        lock.lock();
677 <        try {
678 <            h = ueh;
679 <        } finally {
680 <            lock.unlock();
681 <        }
682 <        return h;
683 <    }
684 <
685 <    /**
686 <     * Sets the handler for internal worker threads that terminate due
687 <     * to unrecoverable errors encountered while executing tasks.
688 <     * Unless set, the current default or ThreadGroup handler is used
689 <     * as handler.
690 <     *
691 <     * @param h the new handler
692 <     * @return the old handler, or {@code null} if none
693 <     * @throws SecurityException if a security manager exists and
694 <     *         the caller is not permitted to modify threads
695 <     *         because it does not hold {@link
696 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
697 <     */
698 <    public Thread.UncaughtExceptionHandler
699 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
700 <        checkPermission();
701 <        Thread.UncaughtExceptionHandler old = null;
702 <        final ReentrantLock lock = this.workerLock;
703 <        lock.lock();
704 <        try {
705 <            old = ueh;
706 <            ueh = h;
707 <            ForkJoinWorkerThread[] ws = workers;
708 <            if (ws != null) {
709 <                for (int i = 0; i < ws.length; ++i) {
710 <                    ForkJoinWorkerThread w = ws[i];
711 <                    if (w != null)
712 <                        w.setUncaughtExceptionHandler(h);
713 <                }
714 <            }
715 <        } finally {
716 <            lock.unlock();
717 <        }
718 <        return old;
719 <    }
720 <
721 <
722 <    /**
723 <     * Sets the target parallelism level of this pool.
724 <     *
725 <     * @param parallelism the target parallelism
726 <     * @throws IllegalArgumentException if parallelism less than or
727 <     * equal to zero or greater than maximum size bounds
728 <     * @throws SecurityException if a security manager exists and
729 <     *         the caller is not permitted to modify threads
730 <     *         because it does not hold {@link
731 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
732 <     */
733 <    public void setParallelism(int parallelism) {
734 <        checkPermission();
735 <        if (parallelism <= 0 || parallelism > maxPoolSize)
736 <            throw new IllegalArgumentException();
737 <        final ReentrantLock lock = this.workerLock;
738 <        lock.lock();
739 <        try {
740 <            if (!isTerminating()) {
741 <                int p = this.parallelism;
742 <                this.parallelism = parallelism;
743 <                if (parallelism > p)
744 <                    createAndStartAddedWorkers();
745 <                else
746 <                    trimSpares();
747 <            }
748 <        } finally {
749 <            lock.unlock();
750 <        }
751 <        signalIdleWorkers();
1492 >        return ueh;
1493      }
1494  
1495      /**
1496 <     * Returns the targeted number of worker threads in this pool.
1496 >     * Returns the targeted parallelism level of this pool.
1497       *
1498 <     * @return the targeted number of worker threads in this pool
1498 >     * @return the targeted parallelism level of this pool
1499       */
1500      public int getParallelism() {
1501          return parallelism;
# Line 769 | Line 1510 | public class ForkJoinPool extends Abstra
1510       * @return the number of worker threads
1511       */
1512      public int getPoolSize() {
1513 <        return totalCountOf(workerCounts);
773 <    }
774 <
775 <    /**
776 <     * Returns the maximum number of threads allowed to exist in the
777 <     * pool, even if there are insufficient unblocked running threads.
778 <     *
779 <     * @return the maximum
780 <     */
781 <    public int getMaximumPoolSize() {
782 <        return maxPoolSize;
783 <    }
784 <
785 <    /**
786 <     * Sets the maximum number of threads allowed to exist in the
787 <     * pool, even if there are insufficient unblocked running threads.
788 <     * Setting this value has no effect on current pool size. It
789 <     * controls construction of new threads.
790 <     *
791 <     * @throws IllegalArgumentException if negative or greater than
792 <     * internal implementation limit
793 <     */
794 <    public void setMaximumPoolSize(int newMax) {
795 <        if (newMax < 0 || newMax > MAX_THREADS)
796 <            throw new IllegalArgumentException();
797 <        maxPoolSize = newMax;
798 <    }
799 <
800 <
801 <    /**
802 <     * Returns {@code true} if this pool dynamically maintains its
803 <     * target parallelism level. If false, new threads are added only
804 <     * to avoid possible starvation.  This setting is by default true.
805 <     *
806 <     * @return {@code true} if maintains parallelism
807 <     */
808 <    public boolean getMaintainsParallelism() {
809 <        return maintainsParallelism;
810 <    }
811 <
812 <    /**
813 <     * Sets whether this pool dynamically maintains its target
814 <     * parallelism level. If false, new threads are added only to
815 <     * avoid possible starvation.
816 <     *
817 <     * @param enable {@code true} to maintain parallelism
818 <     */
819 <    public void setMaintainsParallelism(boolean enable) {
820 <        maintainsParallelism = enable;
821 <    }
822 <
823 <    /**
824 <     * Establishes local first-in-first-out scheduling mode for forked
825 <     * tasks that are never joined. This mode may be more appropriate
826 <     * than default locally stack-based mode in applications in which
827 <     * worker threads only process asynchronous tasks.  This method is
828 <     * designed to be invoked only when the pool is quiescent, and
829 <     * typically only before any tasks are submitted. The effects of
830 <     * invocations at other times may be unpredictable.
831 <     *
832 <     * @param async if {@code true}, use locally FIFO scheduling
833 <     * @return the previous mode
834 <     * @see #getAsyncMode
835 <     */
836 <    public boolean setAsyncMode(boolean async) {
837 <        boolean oldMode = locallyFifo;
838 <        locallyFifo = async;
839 <        ForkJoinWorkerThread[] ws = workers;
840 <        if (ws != null) {
841 <            for (int i = 0; i < ws.length; ++i) {
842 <                ForkJoinWorkerThread t = ws[i];
843 <                if (t != null)
844 <                    t.setAsyncMode(async);
845 <            }
846 <        }
847 <        return oldMode;
1513 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1514      }
1515  
1516      /**
# Line 852 | Line 1518 | public class ForkJoinPool extends Abstra
1518       * scheduling mode for forked tasks that are never joined.
1519       *
1520       * @return {@code true} if this pool uses async mode
855     * @see #setAsyncMode
1521       */
1522      public boolean getAsyncMode() {
1523          return locallyFifo;
# Line 861 | Line 1526 | public class ForkJoinPool extends Abstra
1526      /**
1527       * Returns an estimate of the number of worker threads that are
1528       * not blocked waiting to join tasks or for other managed
1529 <     * synchronization.
1529 >     * synchronization. This method may overestimate the
1530 >     * number of running threads.
1531       *
1532       * @return the number of worker threads
1533       */
1534      public int getRunningThreadCount() {
1535 <        return runningCountOf(workerCounts);
1535 >        return workerCounts & RUNNING_COUNT_MASK;
1536      }
1537  
1538      /**
# Line 877 | Line 1543 | public class ForkJoinPool extends Abstra
1543       * @return the number of active threads
1544       */
1545      public int getActiveThreadCount() {
1546 <        return activeCountOf(runControl);
881 <    }
882 <
883 <    /**
884 <     * Returns an estimate of the number of threads that are currently
885 <     * idle waiting for tasks. This method may underestimate the
886 <     * number of idle threads.
887 <     *
888 <     * @return the number of idle threads
889 <     */
890 <    final int getIdleThreadCount() {
891 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
892 <        return (c <= 0) ? 0 : c;
1546 >        return runState & ACTIVE_COUNT_MASK;
1547      }
1548  
1549      /**
# Line 904 | Line 1558 | public class ForkJoinPool extends Abstra
1558       * @return {@code true} if all threads are currently idle
1559       */
1560      public boolean isQuiescent() {
1561 <        return activeCountOf(runControl) == 0;
1561 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1562      }
1563  
1564      /**
# Line 919 | Line 1573 | public class ForkJoinPool extends Abstra
1573       * @return the number of steals
1574       */
1575      public long getStealCount() {
1576 <        return stealCount.get();
923 <    }
924 <
925 <    /**
926 <     * Accumulates steal count from a worker.
927 <     * Call only when worker known to be idle.
928 <     */
929 <    private void updateStealCount(ForkJoinWorkerThread w) {
930 <        int sc = w.getAndClearStealCount();
931 <        if (sc != 0)
932 <            stealCount.addAndGet(sc);
1576 >        return stealCount;
1577      }
1578  
1579      /**
# Line 945 | Line 1589 | public class ForkJoinPool extends Abstra
1589      public long getQueuedTaskCount() {
1590          long count = 0;
1591          ForkJoinWorkerThread[] ws = workers;
1592 <        if (ws != null) {
1593 <            for (int i = 0; i < ws.length; ++i) {
1594 <                ForkJoinWorkerThread t = ws[i];
1595 <                if (t != null)
1596 <                    count += t.getQueueSize();
953 <            }
1592 >        int nws = ws.length;
1593 >        for (int i = 0; i < nws; ++i) {
1594 >            ForkJoinWorkerThread w = ws[i];
1595 >            if (w != null)
1596 >                count += w.getQueueSize();
1597          }
1598          return count;
1599      }
1600  
1601      /**
1602 <     * Returns an estimate of the number tasks submitted to this pool
1603 <     * that have not yet begun executing. This method takes time
1602 >     * Returns an estimate of the number of tasks submitted to this
1603 >     * pool that have not yet begun executing.  This method takes time
1604       * proportional to the number of submissions.
1605       *
1606       * @return the number of queued submissions
# Line 991 | Line 1634 | public class ForkJoinPool extends Abstra
1634       * Removes all available unexecuted submitted and forked tasks
1635       * from scheduling queues and adds them to the given collection,
1636       * without altering their execution status. These may include
1637 <     * artificially generated or wrapped tasks. This method is designed
1638 <     * to be invoked only when the pool is known to be
1637 >     * artificially generated or wrapped tasks. This method is
1638 >     * designed to be invoked only when the pool is known to be
1639       * quiescent. Invocations at other times may not remove all
1640       * tasks. A failure encountered while attempting to add elements
1641       * to collection {@code c} may result in elements being in
# Line 1007 | Line 1650 | public class ForkJoinPool extends Abstra
1650      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1651          int n = submissionQueue.drainTo(c);
1652          ForkJoinWorkerThread[] ws = workers;
1653 <        if (ws != null) {
1654 <            for (int i = 0; i < ws.length; ++i) {
1655 <                ForkJoinWorkerThread w = ws[i];
1656 <                if (w != null)
1657 <                    n += w.drainTasksTo(c);
1015 <            }
1653 >        int nws = ws.length;
1654 >        for (int i = 0; i < nws; ++i) {
1655 >            ForkJoinWorkerThread w = ws[i];
1656 >            if (w != null)
1657 >                n += w.drainTasksTo(c);
1658          }
1659          return n;
1660      }
1661  
1662      /**
1663 +     * Returns count of total parks by existing workers.
1664 +     * Used during development only since not meaningful to users.
1665 +     */
1666 +    private int collectParkCount() {
1667 +        int count = 0;
1668 +        ForkJoinWorkerThread[] ws = workers;
1669 +        int nws = ws.length;
1670 +        for (int i = 0; i < nws; ++i) {
1671 +            ForkJoinWorkerThread w = ws[i];
1672 +            if (w != null)
1673 +                count += w.parkCount;
1674 +        }
1675 +        return count;
1676 +    }
1677 +
1678 +    /**
1679       * Returns a string identifying this pool, as well as its state,
1680       * including indications of run state, parallelism level, and
1681       * worker and task counts.
# Line 1025 | Line 1683 | public class ForkJoinPool extends Abstra
1683       * @return a string identifying this pool, as well as its state
1684       */
1685      public String toString() {
1028        int ps = parallelism;
1029        int wc = workerCounts;
1030        int rc = runControl;
1686          long st = getStealCount();
1687          long qt = getQueuedTaskCount();
1688          long qs = getQueuedSubmissionCount();
1689 +        int wc = workerCounts;
1690 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1691 +        int rc = wc & RUNNING_COUNT_MASK;
1692 +        int pc = parallelism;
1693 +        int rs = runState;
1694 +        int ac = rs & ACTIVE_COUNT_MASK;
1695 +        //        int pk = collectParkCount();
1696          return super.toString() +
1697 <            "[" + runStateToString(runStateOf(rc)) +
1698 <            ", parallelism = " + ps +
1699 <            ", size = " + totalCountOf(wc) +
1700 <            ", active = " + activeCountOf(rc) +
1701 <            ", running = " + runningCountOf(wc) +
1697 >            "[" + runLevelToString(rs) +
1698 >            ", parallelism = " + pc +
1699 >            ", size = " + tc +
1700 >            ", active = " + ac +
1701 >            ", running = " + rc +
1702              ", steals = " + st +
1703              ", tasks = " + qt +
1704              ", submissions = " + qs +
1705 +            //            ", parks = " + pk +
1706              "]";
1707      }
1708  
1709 <    private static String runStateToString(int rs) {
1710 <        switch(rs) {
1711 <        case RUNNING: return "Running";
1712 <        case SHUTDOWN: return "Shutting down";
1713 <        case TERMINATING: return "Terminating";
1051 <        case TERMINATED: return "Terminated";
1052 <        default: throw new Error("Unknown run state");
1053 <        }
1709 >    private static String runLevelToString(int s) {
1710 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1711 >                ((s & TERMINATING) != 0 ? "Terminating" :
1712 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1713 >                  "Running")));
1714      }
1715  
1056    // lifecycle control
1057
1716      /**
1717       * Initiates an orderly shutdown in which previously submitted
1718       * tasks are executed, but no new tasks will be accepted.
# Line 1069 | Line 1727 | public class ForkJoinPool extends Abstra
1727       */
1728      public void shutdown() {
1729          checkPermission();
1730 <        transitionRunStateTo(SHUTDOWN);
1731 <        if (canTerminateOnShutdown(runControl)) {
1074 <            if (workers == null) { // shutting down before workers created
1075 <                final ReentrantLock lock = this.workerLock;
1076 <                lock.lock();
1077 <                try {
1078 <                    if (workers == null) {
1079 <                        terminate();
1080 <                        transitionRunStateTo(TERMINATED);
1081 <                        termination.signalAll();
1082 <                    }
1083 <                } finally {
1084 <                    lock.unlock();
1085 <                }
1086 <            }
1087 <            terminateOnShutdown();
1088 <        }
1730 >        advanceRunLevel(SHUTDOWN);
1731 >        tryTerminate(false);
1732      }
1733  
1734      /**
1735 <     * Attempts to stop all actively executing tasks, and cancels all
1736 <     * waiting tasks.  Tasks that are in the process of being
1737 <     * submitted or executed concurrently during the course of this
1738 <     * method may or may not be rejected. Unlike some other executors,
1739 <     * this method cancels rather than collects non-executed tasks
1740 <     * upon termination, so always returns an empty list. However, you
1741 <     * can use method {@link #drainTasksTo} before invoking this
1742 <     * method to transfer unexecuted tasks to another collection.
1735 >     * Attempts to cancel and/or stop all tasks, and reject all
1736 >     * subsequently submitted tasks.  Tasks that are in the process of
1737 >     * being submitted or executed concurrently during the course of
1738 >     * this method may or may not be rejected. This method cancels
1739 >     * both existing and unexecuted tasks, in order to permit
1740 >     * termination in the presence of task dependencies. So the method
1741 >     * always returns an empty list (unlike the case for some other
1742 >     * Executors).
1743       *
1744       * @return an empty list
1745       * @throws SecurityException if a security manager exists and
# Line 1106 | Line 1749 | public class ForkJoinPool extends Abstra
1749       */
1750      public List<Runnable> shutdownNow() {
1751          checkPermission();
1752 <        terminate();
1752 >        tryTerminate(true);
1753          return Collections.emptyList();
1754      }
1755  
# Line 1116 | Line 1759 | public class ForkJoinPool extends Abstra
1759       * @return {@code true} if all tasks have completed following shut down
1760       */
1761      public boolean isTerminated() {
1762 <        return runStateOf(runControl) == TERMINATED;
1762 >        return runState >= TERMINATED;
1763      }
1764  
1765      /**
1766       * Returns {@code true} if the process of termination has
1767 <     * commenced but possibly not yet completed.
1767 >     * commenced but not yet completed.  This method may be useful for
1768 >     * debugging. A return of {@code true} reported a sufficient
1769 >     * period after shutdown may indicate that submitted tasks have
1770 >     * ignored or suppressed interruption, causing this executor not
1771 >     * to properly terminate.
1772       *
1773 <     * @return {@code true} if terminating
1773 >     * @return {@code true} if terminating but not yet terminated
1774       */
1775      public boolean isTerminating() {
1776 <        return runStateOf(runControl) >= TERMINATING;
1776 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1777      }
1778  
1779      /**
# Line 1135 | Line 1782 | public class ForkJoinPool extends Abstra
1782       * @return {@code true} if this pool has been shut down
1783       */
1784      public boolean isShutdown() {
1785 <        return runStateOf(runControl) >= SHUTDOWN;
1785 >        return runState >= SHUTDOWN;
1786      }
1787  
1788      /**
# Line 1151 | Line 1798 | public class ForkJoinPool extends Abstra
1798       */
1799      public boolean awaitTermination(long timeout, TimeUnit unit)
1800          throws InterruptedException {
1154        long nanos = unit.toNanos(timeout);
1155        final ReentrantLock lock = this.workerLock;
1156        lock.lock();
1157        try {
1158            for (;;) {
1159                if (isTerminated())
1160                    return true;
1161                if (nanos <= 0)
1162                    return false;
1163                nanos = termination.awaitNanos(nanos);
1164            }
1165        } finally {
1166            lock.unlock();
1167        }
1168    }
1169
1170    // Shutdown and termination support
1171
1172    /**
1173     * Callback from terminating worker. Nulls out the corresponding
1174     * workers slot, and if terminating, tries to terminate; else
1175     * tries to shrink workers array.
1176     *
1177     * @param w the worker
1178     */
1179    final void workerTerminated(ForkJoinWorkerThread w) {
1180        updateStealCount(w);
1181        updateWorkerCount(-1);
1182        final ReentrantLock lock = this.workerLock;
1183        lock.lock();
1184        try {
1185            ForkJoinWorkerThread[] ws = workers;
1186            if (ws != null) {
1187                int idx = w.poolIndex;
1188                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1189                    ws[idx] = null;
1190                if (totalCountOf(workerCounts) == 0) {
1191                    terminate(); // no-op if already terminating
1192                    transitionRunStateTo(TERMINATED);
1193                    termination.signalAll();
1194                }
1195                else if (!isTerminating()) {
1196                    tryShrinkWorkerArray();
1197                    tryResumeSpare(true); // allow replacement
1198                }
1199            }
1200        } finally {
1201            lock.unlock();
1202        }
1203        signalIdleWorkers();
1204    }
1205
1206    /**
1207     * Initiates termination.
1208     */
1209    private void terminate() {
1210        if (transitionRunStateTo(TERMINATING)) {
1211            stopAllWorkers();
1212            resumeAllSpares();
1213            signalIdleWorkers();
1214            cancelQueuedSubmissions();
1215            cancelQueuedWorkerTasks();
1216            interruptUnterminatedWorkers();
1217            signalIdleWorkers(); // resignal after interrupt
1218        }
1219    }
1220
1221    /**
1222     * Possibly terminates when on shutdown state.
1223     */
1224    private void terminateOnShutdown() {
1225        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1226            terminate();
1227    }
1228
1229    /**
1230     * Clears out and cancels submissions.
1231     */
1232    private void cancelQueuedSubmissions() {
1233        ForkJoinTask<?> task;
1234        while ((task = pollSubmission()) != null)
1235            task.cancel(false);
1236    }
1237
1238    /**
1239     * Cleans out worker queues.
1240     */
1241    private void cancelQueuedWorkerTasks() {
1242        final ReentrantLock lock = this.workerLock;
1243        lock.lock();
1244        try {
1245            ForkJoinWorkerThread[] ws = workers;
1246            if (ws != null) {
1247                for (int i = 0; i < ws.length; ++i) {
1248                    ForkJoinWorkerThread t = ws[i];
1249                    if (t != null)
1250                        t.cancelTasks();
1251                }
1252            }
1253        } finally {
1254            lock.unlock();
1255        }
1256    }
1257
1258    /**
1259     * Sets each worker's status to terminating. Requires lock to avoid
1260     * conflicts with add/remove.
1261     */
1262    private void stopAllWorkers() {
1263        final ReentrantLock lock = this.workerLock;
1264        lock.lock();
1801          try {
1802 <            ForkJoinWorkerThread[] ws = workers;
1803 <            if (ws != null) {
1268 <                for (int i = 0; i < ws.length; ++i) {
1269 <                    ForkJoinWorkerThread t = ws[i];
1270 <                    if (t != null)
1271 <                        t.shutdownNow();
1272 <                }
1273 <            }
1274 <        } finally {
1275 <            lock.unlock();
1276 <        }
1277 <    }
1278 <
1279 <    /**
1280 <     * Interrupts all unterminated workers.  This is not required for
1281 <     * sake of internal control, but may help unstick user code during
1282 <     * shutdown.
1283 <     */
1284 <    private void interruptUnterminatedWorkers() {
1285 <        final ReentrantLock lock = this.workerLock;
1286 <        lock.lock();
1287 <        try {
1288 <            ForkJoinWorkerThread[] ws = workers;
1289 <            if (ws != null) {
1290 <                for (int i = 0; i < ws.length; ++i) {
1291 <                    ForkJoinWorkerThread t = ws[i];
1292 <                    if (t != null && !t.isTerminated()) {
1293 <                        try {
1294 <                            t.interrupt();
1295 <                        } catch (SecurityException ignore) {
1296 <                        }
1297 <                    }
1298 <                }
1299 <            }
1300 <        } finally {
1301 <            lock.unlock();
1302 <        }
1303 <    }
1304 <
1305 <
1306 <    /*
1307 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1308 <     * are basic Treiber stack nodes, also used for spare stack.
1309 <     *
1310 <     * The event barrier has an event count and a wait queue (actually
1311 <     * a Treiber stack).  Workers are enabled to look for work when
1312 <     * the eventCount is incremented. If they fail to find work, they
1313 <     * may wait for next count. Upon release, threads help others wake
1314 <     * up.
1315 <     *
1316 <     * Synchronization events occur only in enough contexts to
1317 <     * maintain overall liveness:
1318 <     *
1319 <     *   - Submission of a new task to the pool
1320 <     *   - Resizes or other changes to the workers array
1321 <     *   - pool termination
1322 <     *   - A worker pushing a task on an empty queue
1323 <     *
1324 <     * The case of pushing a task occurs often enough, and is heavy
1325 <     * enough compared to simple stack pushes, to require special
1326 <     * handling: Method signalWork returns without advancing count if
1327 <     * the queue appears to be empty.  This would ordinarily result in
1328 <     * races causing some queued waiters not to be woken up. To avoid
1329 <     * this, the first worker enqueued in method sync (see
1330 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1331 <     * helps signal if any are found. This works well because the
1332 <     * worker has nothing better to do, and so might as well help
1333 <     * alleviate the overhead and contention on the threads actually
1334 <     * doing work.  Also, since event counts increments on task
1335 <     * availability exist to maintain liveness (rather than to force
1336 <     * refreshes etc), it is OK for callers to exit early if
1337 <     * contending with another signaller.
1338 <     */
1339 <    static final class WaitQueueNode {
1340 <        WaitQueueNode next; // only written before enqueued
1341 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1342 <        final long count; // unused for spare stack
1343 <
1344 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1345 <            count = c;
1346 <            thread = w;
1347 <        }
1348 <
1349 <        /**
1350 <         * Wakes up waiter, returning false if known to already
1351 <         */
1352 <        boolean signal() {
1353 <            ForkJoinWorkerThread t = thread;
1354 <            if (t == null)
1355 <                return false;
1356 <            thread = null;
1357 <            LockSupport.unpark(t);
1358 <            return true;
1359 <        }
1360 <
1361 <        /**
1362 <         * Awaits release on sync.
1363 <         */
1364 <        void awaitSyncRelease(ForkJoinPool p) {
1365 <            while (thread != null && !p.syncIsReleasable(this))
1366 <                LockSupport.park(this);
1367 <        }
1368 <
1369 <        /**
1370 <         * Awaits resumption as spare.
1371 <         */
1372 <        void awaitSpareRelease() {
1373 <            while (thread != null) {
1374 <                if (!Thread.interrupted())
1375 <                    LockSupport.park(this);
1376 <            }
1377 <        }
1378 <    }
1379 <
1380 <    /**
1381 <     * Ensures that no thread is waiting for count to advance from the
1382 <     * current value of eventCount read on entry to this method, by
1383 <     * releasing waiting threads if necessary.
1384 <     *
1385 <     * @return the count
1386 <     */
1387 <    final long ensureSync() {
1388 <        long c = eventCount;
1389 <        WaitQueueNode q;
1390 <        while ((q = syncStack) != null && q.count < c) {
1391 <            if (casBarrierStack(q, null)) {
1392 <                do {
1393 <                    q.signal();
1394 <                } while ((q = q.next) != null);
1395 <                break;
1396 <            }
1397 <        }
1398 <        return c;
1399 <    }
1400 <
1401 <    /**
1402 <     * Increments event count and releases waiting threads.
1403 <     */
1404 <    private void signalIdleWorkers() {
1405 <        long c;
1406 <        do {} while (!casEventCount(c = eventCount, c+1));
1407 <        ensureSync();
1408 <    }
1409 <
1410 <    /**
1411 <     * Signals threads waiting to poll a task. Because method sync
1412 <     * rechecks availability, it is OK to only proceed if queue
1413 <     * appears to be non-empty, and OK to skip under contention to
1414 <     * increment count (since some other thread succeeded).
1415 <     */
1416 <    final void signalWork() {
1417 <        long c;
1418 <        WaitQueueNode q;
1419 <        if (syncStack != null &&
1420 <            casEventCount(c = eventCount, c+1) &&
1421 <            (((q = syncStack) != null && q.count <= c) &&
1422 <             (!casBarrierStack(q, q.next) || !q.signal())))
1423 <            ensureSync();
1424 <    }
1425 <
1426 <    /**
1427 <     * Waits until event count advances from last value held by
1428 <     * caller, or if excess threads, caller is resumed as spare, or
1429 <     * caller or pool is terminating. Updates caller's event on exit.
1430 <     *
1431 <     * @param w the calling worker thread
1432 <     */
1433 <    final void sync(ForkJoinWorkerThread w) {
1434 <        updateStealCount(w); // Transfer w's count while it is idle
1435 <
1436 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1437 <            long prev = w.lastEventCount;
1438 <            WaitQueueNode node = null;
1439 <            WaitQueueNode h;
1440 <            while (eventCount == prev &&
1441 <                   ((h = syncStack) == null || h.count == prev)) {
1442 <                if (node == null)
1443 <                    node = new WaitQueueNode(prev, w);
1444 <                if (casBarrierStack(node.next = h, node)) {
1445 <                    node.awaitSyncRelease(this);
1446 <                    break;
1447 <                }
1448 <            }
1449 <            long ec = ensureSync();
1450 <            if (ec != prev) {
1451 <                w.lastEventCount = ec;
1452 <                break;
1453 <            }
1454 <        }
1455 <    }
1456 <
1457 <    /**
1458 <     * Returns {@code true} if worker waiting on sync can proceed:
1459 <     *  - on signal (thread == null)
1460 <     *  - on event count advance (winning race to notify vs signaller)
1461 <     *  - on interrupt
1462 <     *  - if the first queued node, we find work available
1463 <     * If node was not signalled and event count not advanced on exit,
1464 <     * then we also help advance event count.
1465 <     *
1466 <     * @return {@code true} if node can be released
1467 <     */
1468 <    final boolean syncIsReleasable(WaitQueueNode node) {
1469 <        long prev = node.count;
1470 <        if (!Thread.interrupted() && node.thread != null &&
1471 <            (node.next != null ||
1472 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1473 <            eventCount == prev)
1802 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1803 >        } catch(TimeoutException ex) {
1804              return false;
1475        if (node.thread != null) {
1476            node.thread = null;
1477            long ec = eventCount;
1478            if (prev <= ec) // help signal
1479                casEventCount(ec, ec+1);
1480        }
1481        return true;
1482    }
1483
1484    /**
1485     * Returns {@code true} if a new sync event occurred since last
1486     * call to sync or this method, if so, updating caller's count.
1487     */
1488    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1489        long lc = w.lastEventCount;
1490        long ec = ensureSync();
1491        if (ec == lc)
1492            return false;
1493        w.lastEventCount = ec;
1494        return true;
1495    }
1496
1497    //  Parallelism maintenance
1498
1499    /**
1500     * Decrements running count; if too low, adds spare.
1501     *
1502     * Conceptually, all we need to do here is add or resume a
1503     * spare thread when one is about to block (and remove or
1504     * suspend it later when unblocked -- see suspendIfSpare).
1505     * However, implementing this idea requires coping with
1506     * several problems: we have imperfect information about the
1507     * states of threads. Some count updates can and usually do
1508     * lag run state changes, despite arrangements to keep them
1509     * accurate (for example, when possible, updating counts
1510     * before signalling or resuming), especially when running on
1511     * dynamic JVMs that don't optimize the infrequent paths that
1512     * update counts. Generating too many threads can make these
1513     * problems become worse, because excess threads are more
1514     * likely to be context-switched with others, slowing them all
1515     * down, especially if there is no work available, so all are
1516     * busy scanning or idling.  Also, excess spare threads can
1517     * only be suspended or removed when they are idle, not
1518     * immediately when they aren't needed. So adding threads will
1519     * raise parallelism level for longer than necessary.  Also,
1520     * FJ applications often encounter highly transient peaks when
1521     * many threads are blocked joining, but for less time than it
1522     * takes to create or resume spares.
1523     *
1524     * @param joinMe if non-null, return early if done
1525     * @param maintainParallelism if true, try to stay within
1526     * target counts, else create only to avoid starvation
1527     * @return true if joinMe known to be done
1528     */
1529    final boolean preJoin(ForkJoinTask<?> joinMe,
1530                          boolean maintainParallelism) {
1531        maintainParallelism &= maintainsParallelism; // overrride
1532        boolean dec = false;  // true when running count decremented
1533        while (spareStack == null || !tryResumeSpare(dec)) {
1534            int counts = workerCounts;
1535            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1536                // CAS cheat
1537                if (!needSpare(counts, maintainParallelism))
1538                    break;
1539                if (joinMe.status < 0)
1540                    return true;
1541                if (tryAddSpare(counts))
1542                    break;
1543            }
1544        }
1545        return false;
1546    }
1547
1548    /**
1549     * Same idea as preJoin
1550     */
1551    final boolean preBlock(ManagedBlocker blocker,
1552                           boolean maintainParallelism) {
1553        maintainParallelism &= maintainsParallelism;
1554        boolean dec = false;
1555        while (spareStack == null || !tryResumeSpare(dec)) {
1556            int counts = workerCounts;
1557            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1558                if (!needSpare(counts, maintainParallelism))
1559                    break;
1560                if (blocker.isReleasable())
1561                    return true;
1562                if (tryAddSpare(counts))
1563                    break;
1564            }
1565        }
1566        return false;
1567    }
1568
1569    /**
1570     * Returns {@code true} if a spare thread appears to be needed.
1571     * If maintaining parallelism, returns true when the deficit in
1572     * running threads is more than the surplus of total threads, and
1573     * there is apparently some work to do.  This self-limiting rule
1574     * means that the more threads that have already been added, the
1575     * less parallelism we will tolerate before adding another.
1576     *
1577     * @param counts current worker counts
1578     * @param maintainParallelism try to maintain parallelism
1579     */
1580    private boolean needSpare(int counts, boolean maintainParallelism) {
1581        int ps = parallelism;
1582        int rc = runningCountOf(counts);
1583        int tc = totalCountOf(counts);
1584        int runningDeficit = ps - rc;
1585        int totalSurplus = tc - ps;
1586        return (tc < maxPoolSize &&
1587                (rc == 0 || totalSurplus < 0 ||
1588                 (maintainParallelism &&
1589                  runningDeficit > totalSurplus &&
1590                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1591    }
1592
1593    /**
1594     * Adds a spare worker if lock available and no more than the
1595     * expected numbers of threads exist.
1596     *
1597     * @return true if successful
1598     */
1599    private boolean tryAddSpare(int expectedCounts) {
1600        final ReentrantLock lock = this.workerLock;
1601        int expectedRunning = runningCountOf(expectedCounts);
1602        int expectedTotal = totalCountOf(expectedCounts);
1603        boolean success = false;
1604        boolean locked = false;
1605        // confirm counts while locking; CAS after obtaining lock
1606        try {
1607            for (;;) {
1608                int s = workerCounts;
1609                int tc = totalCountOf(s);
1610                int rc = runningCountOf(s);
1611                if (rc > expectedRunning || tc > expectedTotal)
1612                    break;
1613                if (!locked && !(locked = lock.tryLock()))
1614                    break;
1615                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1616                    createAndStartSpare(tc);
1617                    success = true;
1618                    break;
1619                }
1620            }
1621        } finally {
1622            if (locked)
1623                lock.unlock();
1624        }
1625        return success;
1626    }
1627
1628    /**
1629     * Adds the kth spare worker. On entry, pool counts are already
1630     * adjusted to reflect addition.
1631     */
1632    private void createAndStartSpare(int k) {
1633        ForkJoinWorkerThread w = null;
1634        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1635        int len = ws.length;
1636        // Probably, we can place at slot k. If not, find empty slot
1637        if (k < len && ws[k] != null) {
1638            for (k = 0; k < len && ws[k] != null; ++k)
1639                ;
1640        }
1641        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1642            ws[k] = w;
1643            w.start();
1644        }
1645        else
1646            updateWorkerCount(-1); // adjust on failure
1647        signalIdleWorkers();
1648    }
1649
1650    /**
1651     * Suspends calling thread w if there are excess threads.  Called
1652     * only from sync.  Spares are enqueued in a Treiber stack using
1653     * the same WaitQueueNodes as barriers.  They are resumed mainly
1654     * in preJoin, but are also woken on pool events that require all
1655     * threads to check run state.
1656     *
1657     * @param w the caller
1658     */
1659    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1660        WaitQueueNode node = null;
1661        int s;
1662        while (parallelism < runningCountOf(s = workerCounts)) {
1663            if (node == null)
1664                node = new WaitQueueNode(0, w);
1665            if (casWorkerCounts(s, s-1)) { // representation-dependent
1666                // push onto stack
1667                do {} while (!casSpareStack(node.next = spareStack, node));
1668                // block until released by resumeSpare
1669                node.awaitSpareRelease();
1670                return true;
1671            }
1672        }
1673        return false;
1674    }
1675
1676    /**
1677     * Tries to pop and resume a spare thread.
1678     *
1679     * @param updateCount if true, increment running count on success
1680     * @return true if successful
1681     */
1682    private boolean tryResumeSpare(boolean updateCount) {
1683        WaitQueueNode q;
1684        while ((q = spareStack) != null) {
1685            if (casSpareStack(q, q.next)) {
1686                if (updateCount)
1687                    updateRunningCount(1);
1688                q.signal();
1689                return true;
1690            }
1691        }
1692        return false;
1693    }
1694
1695    /**
1696     * Pops and resumes all spare threads. Same idea as ensureSync.
1697     *
1698     * @return true if any spares released
1699     */
1700    private boolean resumeAllSpares() {
1701        WaitQueueNode q;
1702        while ( (q = spareStack) != null) {
1703            if (casSpareStack(q, null)) {
1704                do {
1705                    updateRunningCount(1);
1706                    q.signal();
1707                } while ((q = q.next) != null);
1708                return true;
1709            }
1710        }
1711        return false;
1712    }
1713
1714    /**
1715     * Pops and shuts down excessive spare threads. Call only while
1716     * holding lock. This is not guaranteed to eliminate all excess
1717     * threads, only those suspended as spares, which are the ones
1718     * unlikely to be needed in the future.
1719     */
1720    private void trimSpares() {
1721        int surplus = totalCountOf(workerCounts) - parallelism;
1722        WaitQueueNode q;
1723        while (surplus > 0 && (q = spareStack) != null) {
1724            if (casSpareStack(q, null)) {
1725                do {
1726                    updateRunningCount(1);
1727                    ForkJoinWorkerThread w = q.thread;
1728                    if (w != null && surplus > 0 &&
1729                        runningCountOf(workerCounts) > 0 && w.shutdown())
1730                        --surplus;
1731                    q.signal();
1732                } while ((q = q.next) != null);
1733            }
1805          }
1806      }
1807  
# Line 1742 | Line 1813 | public class ForkJoinPool extends Abstra
1813       * Method {@code isReleasable} must return {@code true} if
1814       * blocking is not necessary. Method {@code block} blocks the
1815       * current thread if necessary (perhaps internally invoking
1816 <     * {@code isReleasable} before actually blocking.).
1816 >     * {@code isReleasable} before actually blocking).
1817       *
1818       * <p>For example, here is a ManagedBlocker based on a
1819       * ReentrantLock:
# Line 1783 | Line 1854 | public class ForkJoinPool extends Abstra
1854       * Blocks in accord with the given blocker.  If the current thread
1855       * is a {@link ForkJoinWorkerThread}, this method possibly
1856       * arranges for a spare thread to be activated if necessary to
1857 <     * ensure parallelism while the current thread is blocked.
1787 <     *
1788 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1789 <     * supports it ({@link #getMaintainsParallelism}), this method
1790 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1791 <     * it activates a thread only if necessary to avoid complete
1792 <     * starvation. This option may be preferable when blockages use
1793 <     * timeouts, or are almost always brief.
1857 >     * ensure sufficient parallelism while the current thread is blocked.
1858       *
1859       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1860       * behaviorally equivalent to
# Line 1804 | Line 1868 | public class ForkJoinPool extends Abstra
1868       * first be expanded to ensure parallelism, and later adjusted.
1869       *
1870       * @param blocker the blocker
1807     * @param maintainParallelism if {@code true} and supported by
1808     * this pool, attempt to maintain the pool's nominal parallelism;
1809     * otherwise activate a thread only if necessary to avoid
1810     * complete starvation.
1871       * @throws InterruptedException if blocker.block did so
1872       */
1873 <    public static void managedBlock(ManagedBlocker blocker,
1814 <                                    boolean maintainParallelism)
1873 >    public static void managedBlock(ManagedBlocker blocker)
1874          throws InterruptedException {
1875          Thread t = Thread.currentThread();
1876 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1877 <                             ((ForkJoinWorkerThread) t).pool : null);
1878 <        if (!blocker.isReleasable()) {
1879 <            try {
1821 <                if (pool == null ||
1822 <                    !pool.preBlock(blocker, maintainParallelism))
1823 <                    awaitBlocker(blocker);
1824 <            } finally {
1825 <                if (pool != null)
1826 <                    pool.updateRunningCount(1);
1827 <            }
1876 >        if (t instanceof ForkJoinWorkerThread)
1877 >            ((ForkJoinWorkerThread) t).pool.awaitBlocker(blocker);
1878 >        else {
1879 >            do {} while (!blocker.isReleasable() && !blocker.block());
1880          }
1881      }
1882  
1831    private static void awaitBlocker(ManagedBlocker blocker)
1832        throws InterruptedException {
1833        do {} while (!blocker.isReleasable() && !blocker.block());
1834    }
1835
1883      // AbstractExecutorService overrides.  These rely on undocumented
1884      // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1885      // implement RunnableFuture.
# Line 1848 | Line 1895 | public class ForkJoinPool extends Abstra
1895      // Unsafe mechanics
1896  
1897      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1851    private static final long eventCountOffset =
1852        objectFieldOffset("eventCount", ForkJoinPool.class);
1898      private static final long workerCountsOffset =
1899          objectFieldOffset("workerCounts", ForkJoinPool.class);
1900 <    private static final long runControlOffset =
1901 <        objectFieldOffset("runControl", ForkJoinPool.class);
1902 <    private static final long syncStackOffset =
1903 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1904 <    private static final long spareStackOffset =
1905 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1906 <
1907 <    private boolean casEventCount(long cmp, long val) {
1863 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1864 <    }
1865 <    private boolean casWorkerCounts(int cmp, int val) {
1866 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1867 <    }
1868 <    private boolean casRunControl(int cmp, int val) {
1869 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1870 <    }
1871 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1872 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1873 <    }
1874 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1875 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1876 <    }
1900 >    private static final long runStateOffset =
1901 >        objectFieldOffset("runState", ForkJoinPool.class);
1902 >    private static final long eventCountOffset =
1903 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1904 >    private static final long eventWaitersOffset =
1905 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1906 >    private static final long stealCountOffset =
1907 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1908  
1909      private static long objectFieldOffset(String field, Class<?> klazz) {
1910          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines