ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.39 by jsr166, Sun Aug 2 17:55:51 2009 UTC vs.
Revision 1.62 by dl, Wed Aug 11 20:28:22 2010 UTC

# Line 13 | Line 13 | import java.util.Arrays;
13   import java.util.Collection;
14   import java.util.Collections;
15   import java.util.List;
16 import java.util.concurrent.locks.Condition;
16   import java.util.concurrent.locks.LockSupport;
17   import java.util.concurrent.locks.ReentrantLock;
18   import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.atomic.AtomicLong;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24 < * from non-{@code ForkJoinTask}s, as well as management and
25 < * monitoring operations.  Normally a single {@code ForkJoinPool} is
27 < * used for a large number of submitted tasks. Otherwise, use would
28 < * not usually outweigh the construction and bookkeeping overhead of
29 < * creating a large set of threads.
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>{@code ForkJoinPool}s differ from other kinds of {@link
28 < * Executor}s mainly in that they provide <em>work-stealing</em>: all
29 < * threads in the pool attempt to find and execute subtasks created by
30 < * other active tasks (eventually blocking if none exist). This makes
31 < * them efficient when most tasks spawn other subtasks (as do most
32 < * {@code ForkJoinTask}s), as well as the mixed execution of some
33 < * plain {@code Runnable}- or {@code Callable}- based activities along
34 < * with {@code ForkJoinTask}s. When setting {@linkplain #setAsyncMode
35 < * async mode}, a {@code ForkJoinPool} may also be appropriate for use
40 < * with fine-grained tasks that are never joined. Otherwise, other
41 < * {@code ExecutorService} implementations are typically more
42 < * appropriate choices.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>A {@code ForkJoinPool} may be constructed with a given
38 < * parallelism level (target pool size), which it attempts to maintain
39 < * by dynamically adding, suspending, or resuming threads, even if
40 < * some tasks are waiting to join others. However, no such adjustments
41 < * are performed in the face of blocked IO or other unmanaged
42 < * synchronization. The nested {@link ManagedBlocker} interface
43 < * enables extension of the kinds of synchronization accommodated.
44 < * The target parallelism level may also be changed dynamically
45 < * ({@link #setParallelism}) and thread construction can be limited
53 < * using methods {@link #setMaximumPoolSize} and/or {@link
54 < * #setMaintainsParallelism}.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
# Line 60 | Line 51 | import java.util.concurrent.atomic.Atomi
51   * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 + * used for all parallel task execution in a program or subsystem.
90 + * Otherwise, use would not usually outweigh the construction and
91 + * bookkeeping overhead of creating a large set of threads. For
92 + * example, a common pool could be used for the {@code SortTasks}
93 + * illustrated in {@link RecursiveAction}. Because {@code
94 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 + * daemon} mode, there is typically no need to explicitly {@link
96 + * #shutdown} such a pool upon program exit.
97 + *
98 + * <pre>
99 + * static final ForkJoinPool mainPool = new ForkJoinPool();
100 + * ...
101 + * public void sort(long[] array) {
102 + *   mainPool.invoke(new SortTask(array, 0, array.length));
103 + * }
104 + * </pre>
105 + *
106   * <p><b>Implementation notes</b>: This implementation restricts the
107   * maximum number of running threads to 32767. Attempts to create
108 < * pools with greater than the maximum result in
108 > * pools with greater than the maximum number result in
109   * {@code IllegalArgumentException}.
110   *
111 + * <p>This implementation rejects submitted tasks (that is, by throwing
112 + * {@link RejectedExecutionException}) only when the pool is shut down
113 + * or internal resources have been exhausted.
114 + *
115   * @since 1.7
116   * @author Doug Lea
117   */
118   public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to take actions when
142 >     * one worker is waiting to join a task stolen (or always held by)
143 >     * another.  Becauae we are multiplexing many tasks on to a pool
144 >     * of workers, we can't just let them block (as in Thread.join).
145 >     * We also cannot just reassign the joiner's run-time stack with
146 >     * another and replace it later, which would be a form of
147 >     * "continuation", that even if possible is not necessarily a good
148 >     * idea. Given that the creation costs of most threads on most
149 >     * systems mainly surrounds setting up runtime stacks, thread
150 >     * creation and switching is usually not much more expensive than
151 >     * stack creation and switching, and is more flexible). Instead we
152 >     * combine two tactics:
153 >     *
154 >     *   Helping: Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   Compensating: Unless there are already enough live threads,
160 >     *      method helpMaintainParallelism() may create or or
161 >     *      re-activate a spare thread to compensate for blocked
162 >     *      joiners until they unblock.
163 >     *
164 >     * Because the determining existence of conservatively safe
165 >     * helping targets, the availability of already-created spares,
166 >     * and the apparent need to create new spares are all racy and
167 >     * require heuristic guidance, we rely on multiple retries of
168 >     * each. Further, because it is impossible to keep exactly the
169 >     * target (parallelism) number of threads running at any given
170 >     * time, we allow compensation during joins to fail, and enlist
171 >     * all other threads to help out whenever they are not otherwise
172 >     * occupied (i.e., mainly in method preStep).
173 >     *
174 >     * The ManagedBlocker extension API can't use helping so relies
175 >     * only on compensation in method awaitBlocker.
176 >     *
177 >     * The main throughput advantages of work-stealing stem from
178 >     * decentralized control -- workers mostly steal tasks from each
179 >     * other. We do not want to negate this by creating bottlenecks
180 >     * implementing other management responsibilities. So we use a
181 >     * collection of techniques that avoid, reduce, or cope well with
182 >     * contention. These entail several instances of bit-packing into
183 >     * CASable fields to maintain only the minimally required
184 >     * atomicity. To enable such packing, we restrict maximum
185 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
186 >     * unbalanced increments and decrements) to fit into a 16 bit
187 >     * field, which is far in excess of normal operating range.  Even
188 >     * though updates to some of these bookkeeping fields do sometimes
189 >     * contend with each other, they don't normally cache-contend with
190 >     * updates to others enough to warrant memory padding or
191 >     * isolation. So they are all held as fields of ForkJoinPool
192 >     * objects.  The main capabilities are as follows:
193 >     *
194 >     * 1. Creating and removing workers. Workers are recorded in the
195 >     * "workers" array. This is an array as opposed to some other data
196 >     * structure to support index-based random steals by workers.
197 >     * Updates to the array recording new workers and unrecording
198 >     * terminated ones are protected from each other by a lock
199 >     * (workerLock) but the array is otherwise concurrently readable,
200 >     * and accessed directly by workers. To simplify index-based
201 >     * operations, the array size is always a power of two, and all
202 >     * readers must tolerate null slots. Currently, all worker thread
203 >     * creation is on-demand, triggered by task submissions,
204 >     * replacement of terminated workers, and/or compensation for
205 >     * blocked workers. However, all other support code is set up to
206 >     * work with other policies.
207 >     *
208 >     * To ensure that we do not hold on to worker references that
209 >     * would prevent GC, ALL accesses to workers are via indices into
210 >     * the workers array (which is one source of some of the unusual
211 >     * code constructions here). In essence, the workers array serves
212 >     * as a WeakReference mechanism. Thus for example the event queue
213 >     * stores worker indices, not worker references. Access to the
214 >     * workers in associated methods (for example releaseEventWaiters)
215 >     * must both index-check and null-check the IDs. All such accesses
216 >     * ignore bad IDs by returning out early from what they are doing,
217 >     * since this can only be associated with shutdown, in which case
218 >     * it is OK to give up. On termination, we just clobber these
219 >     * data structures without trying to use them.
220 >     *
221 >     * 2. Bookkeeping for dynamically adding and removing workers. We
222 >     * aim to approximately maintain the given level of parallelism.
223 >     * When some workers are known to be blocked (on joins or via
224 >     * ManagedBlocker), we may create or resume others to take their
225 >     * place until they unblock (see below). Implementing this
226 >     * requires counts of the number of "running" threads (i.e., those
227 >     * that are neither blocked nor artifically suspended) as well as
228 >     * the total number.  These two values are packed into one field,
229 >     * "workerCounts" because we need accurate snapshots when deciding
230 >     * to create, resume or suspend.  Note however that the
231 >     * correspondance of these counts to reality is not guaranteed. In
232 >     * particular updates for unblocked threads may lag until they
233 >     * actually wake up.
234 >     *
235 >     * 3. Maintaining global run state. The run state of the pool
236 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
237 >     * those in other Executor implementations, as well as a count of
238 >     * "active" workers -- those that are, or soon will be, or
239 >     * recently were executing tasks. The runLevel and active count
240 >     * are packed together in order to correctly trigger shutdown and
241 >     * termination. Without care, active counts can be subject to very
242 >     * high contention.  We substantially reduce this contention by
243 >     * relaxing update rules.  A worker must claim active status
244 >     * prospectively, by activating if it sees that a submitted or
245 >     * stealable task exists (it may find after activating that the
246 >     * task no longer exists). It stays active while processing this
247 >     * task (if it exists) and any other local subtasks it produces,
248 >     * until it cannot find any other tasks. It then tries
249 >     * inactivating (see method preStep), but upon update contention
250 >     * instead scans for more tasks, later retrying inactivation if it
251 >     * doesn't find any.
252 >     *
253 >     * 4. Managing idle workers waiting for tasks. We cannot let
254 >     * workers spin indefinitely scanning for tasks when none are
255 >     * available. On the other hand, we must quickly prod them into
256 >     * action when new tasks are submitted or generated.  We
257 >     * park/unpark these idle workers using an event-count scheme.
258 >     * Field eventCount is incremented upon events that may enable
259 >     * workers that previously could not find a task to now find one:
260 >     * Submission of a new task to the pool, or another worker pushing
261 >     * a task onto a previously empty queue.  (We also use this
262 >     * mechanism for termination actions that require wakeups of idle
263 >     * workers).  Each worker maintains its last known event count,
264 >     * and blocks when a scan for work did not find a task AND its
265 >     * lastEventCount matches the current eventCount. Waiting idle
266 >     * workers are recorded in a variant of Treiber stack headed by
267 >     * field eventWaiters which, when nonzero, encodes the thread
268 >     * index and count awaited for by the worker thread most recently
269 >     * calling eventSync. This thread in turn has a record (field
270 >     * nextEventWaiter) for the next waiting worker.  In addition to
271 >     * allowing simpler decisions about need for wakeup, the event
272 >     * count bits in eventWaiters serve the role of tags to avoid ABA
273 >     * errors in Treiber stacks.  To reduce delays in task diffusion,
274 >     * workers not otherwise occupied may invoke method
275 >     * releaseEventWaiters, that removes and signals (unparks) workers
276 >     * not waiting on current count. To reduce stalls, To minimize
277 >     * task production stalls associate with signalling, any worker
278 >     * pushing a task on an empty queue invokes the weaker method
279 >     * signalWork, that only releases idle workers until it detects
280 >     * interference by other threads trying to release, and lets them
281 >     * take over.  The net effect is a tree-like diffusion of signals,
282 >     * where released threads (and possibly others) help with unparks.
283 >     * To further reduce contention effects a bit, failed CASes to
284 >     * increment field eventCount are tolerated without retries.
285 >     * Conceptually they are merged into the same event, which is OK
286 >     * when their only purpose is to enable workers to scan for work.
287 >     *
288 >     * 5. Managing suspension of extra workers. When a worker is about
289 >     * to block waiting for a join (or via ManagedBlockers), we may
290 >     * create a new thread to maintain parallelism level, or at least
291 >     * avoid starvation. Usually, extra threads are needed for only
292 >     * very short periods, yet join dependencies are such that we
293 >     * sometimes need them in bursts. Rather than create new threads
294 >     * each time this happens, we suspend no-longer-needed extra ones
295 >     * as "spares". For most purposes, we don't distinguish "extra"
296 >     * spare threads from normal "core" threads: On each call to
297 >     * preStep (the only point at which we can do this) a worker
298 >     * checks to see if there are now too many running workers, and if
299 >     * so, suspends itself.  Method helpMaintainParallelism looks for
300 >     * suspended threads to resume before considering creating a new
301 >     * replacement. The spares themselves are encoded on another
302 >     * variant of a Treiber Stack, headed at field "spareWaiters".
303 >     * Note that the use of spares is intrinsically racy.  One thread
304 >     * may become a spare at about the same time as another is
305 >     * needlessly being created. We counteract this and related slop
306 >     * in part by requiring resumed spares to immediately recheck (in
307 >     * preStep) to see whether they they should re-suspend.  To avoid
308 >     * long-term build-up of spares, the oldest spare (see
309 >     * ForkJoinWorkerThread.suspendAsSpare) occasionally wakes up if
310 >     * not signalled and calls tryTrimSpare, which uses two different
311 >     * thresholds: Always killing if the number of spares is greater
312 >     * that 25% of total, and killing others only at a slower rate
313 >     * (UNUSED_SPARE_TRIM_RATE_NANOS).
314 >     *
315 >     * 6. Deciding when to create new workers. The main dynamic
316 >     * control in this class is deciding when to create extra threads
317 >     * in method helpMaintainParallelism. We would like to keep
318 >     * exactly #parallelism threads running, which is an impossble
319 >     * task. We always need to create one when the number of running
320 >     * threads would become zero and all workers are busy. Beyond
321 >     * this, we must rely on heuristics that work well in the the
322 >     * presence of transients phenomena such as GC stalls, dynamic
323 >     * compilation, and wake-up lags. These transients are extremely
324 >     * common -- we are normally trying to fully saturate the CPUs on
325 >     * a machine, so almost any activity other than running tasks
326 >     * impedes accuracy. Our main defense is to allow some slack in
327 >     * creation thresholds, using rules that reflect the fact that the
328 >     * more threads we have running, the more likely that we are
329 >     * underestimating the number running threads. The rules also
330 >     * better cope with the fact that some of the methods in this
331 >     * class tend to never become compiled (but are interpreted), so
332 >     * some components of the entire set of controls might execute 100
333 >     * times faster than others. And similarly for cases where the
334 >     * apparent lack of work is just due to GC stalls and other
335 >     * transient system activity.
336 >     *
337 >     * Beware that there is a lot of representation-level coupling
338 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
339 >     * ForkJoinTask.  For example, direct access to "workers" array by
340 >     * workers, and direct access to ForkJoinTask.status by both
341 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
342 >     * trying to reduce this, since any associated future changes in
343 >     * representations will need to be accompanied by algorithmic
344 >     * changes anyway.
345 >     *
346 >     * Style notes: There are lots of inline assignments (of form
347 >     * "while ((local = field) != 0)") which are usually the simplest
348 >     * way to ensure the required read orderings (which are sometimes
349 >     * critical). Also several occurrences of the unusual "do {}
350 >     * while(!cas...)" which is the simplest way to force an update of
351 >     * a CAS'ed variable. There are also other coding oddities that
352 >     * help some methods perform reasonably even when interpreted (not
353 >     * compiled), at the expense of some messy constructions that
354 >     * reduce byte code counts.
355 >     *
356 >     * The order of declarations in this file is: (1) statics (2)
357 >     * fields (along with constants used when unpacking some of them)
358 >     * (3) internal control methods (4) callbacks and other support
359 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
360 >     * methods (plus a few little helpers).
361       */
362  
78    /** Mask for packing and unpacking shorts */
79    private static final int  shortMask = 0xffff;
80
81    /** Max pool size -- must be a power of two minus 1 */
82    private static final int MAX_THREADS =  0x7FFF;
83
363      /**
364       * Factory for creating new {@link ForkJoinWorkerThread}s.
365       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 92 | Line 371 | public class ForkJoinPool extends Abstra
371           * Returns a new worker thread operating in the given pool.
372           *
373           * @param pool the pool this thread works in
374 <         * @throws NullPointerException if pool is null
374 >         * @throws NullPointerException if the pool is null
375           */
376          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
377      }
# Line 101 | Line 380 | public class ForkJoinPool extends Abstra
380       * Default ForkJoinWorkerThreadFactory implementation; creates a
381       * new ForkJoinWorkerThread.
382       */
383 <    static class  DefaultForkJoinWorkerThreadFactory
383 >    static class DefaultForkJoinWorkerThreadFactory
384          implements ForkJoinWorkerThreadFactory {
385          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
386 <            try {
108 <                return new ForkJoinWorkerThread(pool);
109 <            } catch (OutOfMemoryError oom)  {
110 <                return null;
111 <            }
386 >            return new ForkJoinWorkerThread(pool);
387          }
388      }
389  
# Line 144 | Line 419 | public class ForkJoinPool extends Abstra
419          new AtomicInteger();
420  
421      /**
422 <     * Array holding all worker threads in the pool. Initialized upon
423 <     * first use. Array size must be a power of two.  Updates and
424 <     * replacements are protected by workerLock, but it is always kept
425 <     * in a consistent enough state to be randomly accessed without
426 <     * locking by workers performing work-stealing.
422 >     * Absolute bound for parallelism level. Twice this number plus
423 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
424 >     * word-packing for some counts and indices.
425 >     */
426 >    private static final int MAX_WORKERS   = 0x7fff;
427 >
428 >    /**
429 >     * Array holding all worker threads in the pool.  Array size must
430 >     * be a power of two.  Updates and replacements are protected by
431 >     * workerLock, but the array is always kept in a consistent enough
432 >     * state to be randomly accessed without locking by workers
433 >     * performing work-stealing, as well as other traversal-based
434 >     * methods in this class. All readers must tolerate that some
435 >     * array slots may be null.
436       */
437      volatile ForkJoinWorkerThread[] workers;
438  
439      /**
440 <     * Lock protecting access to workers.
440 >     * Queue for external submissions.
441       */
442 <    private final ReentrantLock workerLock;
442 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
443  
444      /**
445 <     * Condition for awaitTermination.
445 >     * Lock protecting updates to workers array.
446       */
447 <    private final Condition termination;
447 >    private final ReentrantLock workerLock;
448  
449      /**
450 <     * The uncaught exception handler used when any worker
167 <     * abruptly terminates
450 >     * Latch released upon termination.
451       */
452 <    private Thread.UncaughtExceptionHandler ueh;
452 >    private final Phaser termination;
453  
454      /**
455       * Creation factory for worker threads.
# Line 174 | Line 457 | public class ForkJoinPool extends Abstra
457      private final ForkJoinWorkerThreadFactory factory;
458  
459      /**
177     * Head of stack of threads that were created to maintain
178     * parallelism when other threads blocked, but have since
179     * suspended when the parallelism level rose.
180     */
181    private volatile WaitQueueNode spareStack;
182
183    /**
460       * Sum of per-thread steal counts, updated only when threads are
461       * idle or terminating.
462       */
463 <    private final AtomicLong stealCount;
463 >    private volatile long stealCount;
464  
465      /**
466 <     * Queue for external submissions.
466 >     * The last nanoTime that a spare thread was trimmed
467       */
468 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
468 >    private volatile long trimTime;
469  
470      /**
471 <     * Head of Treiber stack for barrier sync. See below for explanation.
471 >     * The rate at which to trim unused spares
472       */
473 <    private volatile WaitQueueNode syncStack;
473 >    static final long UNUSED_SPARE_TRIM_RATE_NANOS =
474 >        1000L * 1000L * 1000L; // 1 sec
475  
476      /**
477 <     * The count for event barrier
477 >     * Encoded record of top of treiber stack of threads waiting for
478 >     * events. The top 32 bits contain the count being waited for. The
479 >     * bottom 16 bits contains one plus the pool index of waiting
480 >     * worker thread. (Bits 16-31 are unused.)
481       */
482 <    private volatile long eventCount;
482 >    private volatile long eventWaiters;
483 >
484 >    private static final int  EVENT_COUNT_SHIFT = 32;
485 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
486  
487      /**
488 <     * Pool number, just for assigning useful names to worker threads
488 >     * A counter for events that may wake up worker threads:
489 >     *   - Submission of a new task to the pool
490 >     *   - A worker pushing a task on an empty queue
491 >     *   - termination
492       */
493 <    private final int poolNumber;
493 >    private volatile int eventCount;
494  
495      /**
496 <     * The maximum allowed pool size
496 >     * Encoded record of top of treiber stack of spare threads waiting
497 >     * for resumption. The top 16 bits contain an arbitrary count to
498 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
499 >     * index of waiting worker thread.
500 >     */
501 >    private volatile int spareWaiters;
502 >
503 >    private static final int SPARE_COUNT_SHIFT = 16;
504 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
505 >
506 >    /**
507 >     * Lifecycle control. The low word contains the number of workers
508 >     * that are (probably) executing tasks. This value is atomically
509 >     * incremented before a worker gets a task to run, and decremented
510 >     * when worker has no tasks and cannot find any.  Bits 16-18
511 >     * contain runLevel value. When all are zero, the pool is
512 >     * running. Level transitions are monotonic (running -> shutdown
513 >     * -> terminating -> terminated) so each transition adds a bit.
514 >     * These are bundled together to ensure consistent read for
515 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
516 >     * and active threads is zero).
517 >     */
518 >    private volatile int runState;
519 >
520 >    // Note: The order among run level values matters.
521 >    private static final int RUNLEVEL_SHIFT     = 16;
522 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
523 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
524 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
525 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
526 >    private static final int ONE_ACTIVE         = 1; // active update delta
527 >
528 >    /**
529 >     * Holds number of total (i.e., created and not yet terminated)
530 >     * and running (i.e., not blocked on joins or other managed sync)
531 >     * threads, packed together to ensure consistent snapshot when
532 >     * making decisions about creating and suspending spare
533 >     * threads. Updated only by CAS. Note that adding a new worker
534 >     * requires incrementing both counts, since workers start off in
535 >     * running state.
536       */
537 <    private volatile int maxPoolSize;
537 >    private volatile int workerCounts;
538 >
539 >    private static final int TOTAL_COUNT_SHIFT  = 16;
540 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
541 >    private static final int ONE_RUNNING        = 1;
542 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
543  
544      /**
545 <     * The desired parallelism level, updated only under workerLock.
545 >     * The target parallelism level.
546 >     * Accessed directly by ForkJoinWorkerThreads.
547       */
548 <    private volatile int parallelism;
548 >    final int parallelism;
549  
550      /**
551       * True if use local fifo, not default lifo, for local polling
552 +     * Read by, and replicated by ForkJoinWorkerThreads
553       */
554 <    private volatile boolean locallyFifo;
554 >    final boolean locallyFifo;
555  
556      /**
557 <     * Holds number of total (i.e., created and not yet terminated)
558 <     * and running (i.e., not blocked on joins or other managed sync)
227 <     * threads, packed into one int to ensure consistent snapshot when
228 <     * making decisions about creating and suspending spare
229 <     * threads. Updated only by CAS.  Note: CASes in
230 <     * updateRunningCount and preJoin assume that running active count
231 <     * is in low word, so need to be modified if this changes.
557 >     * The uncaught exception handler used when any worker abruptly
558 >     * terminates.
559       */
560 <    private volatile int workerCounts;
560 >    private final Thread.UncaughtExceptionHandler ueh;
561 >
562 >    /**
563 >     * Pool number, just for assigning useful names to worker threads
564 >     */
565 >    private final int poolNumber;
566 >
567  
568 <    private static int totalCountOf(int s)           { return s >>> 16;  }
569 <    private static int runningCountOf(int s)         { return s & shortMask; }
237 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
568 >    // Utilities for CASing fields. Note that several of these
569 >    // are manually inlined by callers
570  
571      /**
572 <     * Adds delta (which may be negative) to running count.  This must
241 <     * be called before (with negative arg) and after (with positive)
242 <     * any managed synchronization (i.e., mainly, joins).
243 <     *
244 <     * @param delta the number to add
572 >     * Increments running count part of workerCounts
573       */
574 <    final void updateRunningCount(int delta) {
575 <        int s;
576 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
574 >    final void incrementRunningCount() {
575 >        int c;
576 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
577 >                                               c = workerCounts,
578 >                                               c + ONE_RUNNING));
579      }
580  
581      /**
582 <     * Adds delta (which may be negative) to both total and running
253 <     * count.  This must be called upon creation and termination of
254 <     * worker threads.
255 <     *
256 <     * @param delta the number to add
582 >     * Tries to decrement running count unless already zero
583       */
584 <    private void updateWorkerCount(int delta) {
585 <        int d = delta + (delta << 16); // add to both lo and hi parts
586 <        int s;
587 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
584 >    final boolean tryDecrementRunningCount() {
585 >        int wc = workerCounts;
586 >        if ((wc & RUNNING_COUNT_MASK) == 0)
587 >            return false;
588 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
589 >                                        wc, wc - ONE_RUNNING);
590      }
591  
592      /**
593 <     * Lifecycle control. High word contains runState, low word
594 <     * contains the number of workers that are (probably) executing
595 <     * tasks. This value is atomically incremented before a worker
596 <     * gets a task to run, and decremented when worker has no tasks
597 <     * and cannot find any. These two fields are bundled together to
270 <     * support correct termination triggering.  Note: activeCount
271 <     * CAS'es cheat by assuming active count is in low word, so need
272 <     * to be modified if this changes
593 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
594 >     * (rarely) necessary when other count updates lag.
595 >     *
596 >     * @param dr -- either zero or ONE_RUNNING
597 >     * @param dt == either zero or ONE_TOTAL
598       */
599 <    private volatile int runControl;
600 <
601 <    // RunState values. Order among values matters
602 <    private static final int RUNNING     = 0;
603 <    private static final int SHUTDOWN    = 1;
604 <    private static final int TERMINATING = 2;
605 <    private static final int TERMINATED  = 3;
599 >    private void decrementWorkerCounts(int dr, int dt) {
600 >        for (;;) {
601 >            int wc = workerCounts;
602 >            if (wc == 0 && (runState & TERMINATED) != 0)
603 >                return; // lagging termination on a backout
604 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
605 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0)
606 >                Thread.yield();
607 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
608 >                                         wc, wc - (dr + dt)))
609 >                return;
610 >        }
611 >    }
612  
613 <    private static int runStateOf(int c)             { return c >>> 16; }
614 <    private static int activeCountOf(int c)          { return c & shortMask; }
615 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
613 >    /**
614 >     * Increments event count
615 >     */
616 >    private void advanceEventCount() {
617 >        int c;
618 >        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
619 >                                              c = eventCount, c+1));
620 >    }
621  
622      /**
623       * Tries incrementing active count; fails on contention.
624 <     * Called by workers before/during executing tasks.
624 >     * Called by workers before executing tasks.
625       *
626       * @return true on success
627       */
628      final boolean tryIncrementActiveCount() {
629 <        int c = runControl;
630 <        return casRunControl(c, c+1);
629 >        int c;
630 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
631 >                                        c = runState, c + ONE_ACTIVE);
632      }
633  
634      /**
635       * Tries decrementing active count; fails on contention.
636 <     * Possibly triggers termination on success.
300 <     * Called by workers when they can't find tasks.
301 <     *
302 <     * @return true on success
636 >     * Called when workers cannot find tasks to run.
637       */
638      final boolean tryDecrementActiveCount() {
639 <        int c = runControl;
640 <        int nextc = c - 1;
641 <        if (!casRunControl(c, nextc))
308 <            return false;
309 <        if (canTerminateOnShutdown(nextc))
310 <            terminateOnShutdown();
311 <        return true;
639 >        int c;
640 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
641 >                                        c = runState, c - ONE_ACTIVE);
642      }
643  
644      /**
645 <     * Returns {@code true} if argument represents zero active count
646 <     * and nonzero runstate, which is the triggering condition for
317 <     * terminating on shutdown.
645 >     * Advances to at least the given level. Returns true if not
646 >     * already in at least the given level.
647       */
648 <    private static boolean canTerminateOnShutdown(int c) {
649 <        // i.e. least bit is nonzero runState bit
650 <        return ((c & -c) >>> 16) != 0;
648 >    private boolean advanceRunLevel(int level) {
649 >        for (;;) {
650 >            int s = runState;
651 >            if ((s & level) != 0)
652 >                return false;
653 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
654 >                return true;
655 >        }
656      }
657  
658 +    // workers array maintenance
659 +
660      /**
661 <     * Transition run state to at least the given state. Return true
326 <     * if not already at least given state.
661 >     * Records and returns a workers array index for new worker.
662       */
663 <    private boolean transitionRunStateTo(int state) {
664 <        for (;;) {
665 <            int c = runControl;
666 <            if (runStateOf(c) >= state)
667 <                return false;
668 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
669 <                return true;
663 >    private int recordWorker(ForkJoinWorkerThread w) {
664 >        // Try using slot totalCount-1. If not available, scan and/or resize
665 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
666 >        final ReentrantLock lock = this.workerLock;
667 >        lock.lock();
668 >        try {
669 >            ForkJoinWorkerThread[] ws = workers;
670 >            int n = ws.length;
671 >            if (k < 0 || k >= n || ws[k] != null) {
672 >                for (k = 0; k < n && ws[k] != null; ++k)
673 >                    ;
674 >                if (k == n)
675 >                    ws = Arrays.copyOf(ws, n << 1);
676 >            }
677 >            ws[k] = w;
678 >            workers = ws; // volatile array write ensures slot visibility
679 >        } finally {
680 >            lock.unlock();
681          }
682 +        return k;
683      }
684  
685      /**
686 <     * Controls whether to add spares to maintain parallelism
686 >     * Nulls out record of worker in workers array
687       */
688 <    private volatile boolean maintainsParallelism;
688 >    private void forgetWorker(ForkJoinWorkerThread w) {
689 >        int idx = w.poolIndex;
690 >        // Locking helps method recordWorker avoid unecessary expansion
691 >        final ReentrantLock lock = this.workerLock;
692 >        lock.lock();
693 >        try {
694 >            ForkJoinWorkerThread[] ws = workers;
695 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
696 >                ws[idx] = null;
697 >        } finally {
698 >            lock.unlock();
699 >        }
700 >    }
701  
702 <    // Constructors
702 >    // adding and removing workers
703  
704      /**
705 <     * Creates a ForkJoinPool with a pool size equal to the number of
706 <     * processors available on the system, using the default
707 <     * ForkJoinWorkerThreadFactory.
349 <     *
350 <     * @throws SecurityException if a security manager exists and
351 <     *         the caller is not permitted to modify threads
352 <     *         because it does not hold {@link
353 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
705 >     * Tries to create and add new worker. Assumes that worker counts
706 >     * are already updated to accommodate the worker, so adjusts on
707 >     * failure.
708       */
709 <    public ForkJoinPool() {
710 <        this(Runtime.getRuntime().availableProcessors(),
711 <             defaultForkJoinWorkerThreadFactory);
709 >    private void addWorker() {
710 >        ForkJoinWorkerThread w = null;
711 >        try {
712 >            w = factory.newThread(this);
713 >        } finally { // Adjust on either null or exceptional factory return
714 >            if (w == null) {
715 >                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
716 >                tryTerminate(false); // in case of failure during shutdown
717 >            }
718 >        }
719 >        if (w != null)
720 >            w.start(recordWorker(w), ueh);
721      }
722  
723      /**
724 <     * Creates a ForkJoinPool with the indicated parallelism level
725 <     * threads and using the default ForkJoinWorkerThreadFactory.
724 >     * Final callback from terminating worker.  Removes record of
725 >     * worker from array, and adjusts counts. If pool is shutting
726 >     * down, tries to complete terminatation.
727       *
728 <     * @param parallelism the number of worker threads
365 <     * @throws IllegalArgumentException if parallelism less than or
366 <     * equal to zero
367 <     * @throws SecurityException if a security manager exists and
368 <     *         the caller is not permitted to modify threads
369 <     *         because it does not hold {@link
370 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
728 >     * @param w the worker
729       */
730 <    public ForkJoinPool(int parallelism) {
731 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
730 >    final void workerTerminated(ForkJoinWorkerThread w) {
731 >        forgetWorker(w);
732 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
733 >        while (w.stealCount != 0) // collect final count
734 >            tryAccumulateStealCount(w);
735 >        tryTerminate(false);
736      }
737  
738 +    // Waiting for and signalling events
739 +
740      /**
741 <     * Creates a ForkJoinPool with parallelism equal to the number of
742 <     * processors available on the system and using the given
743 <     * ForkJoinWorkerThreadFactory.
741 >     * Releases workers blocked on a count not equal to current count.
742 >     * Normally called after precheck that eventWaiters isn't zero to
743 >     * avoid wasted array checks.
744       *
745 <     * @param factory the factory for creating new threads
746 <     * @throws NullPointerException if factory is null
747 <     * @throws SecurityException if a security manager exists and
384 <     *         the caller is not permitted to modify threads
385 <     *         because it does not hold {@link
386 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
745 >     * @param signalling true if caller is a signalling worker so can
746 >     * exit upon (conservatively) detected contention by other threads
747 >     * who will continue to release
748       */
749 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
750 <        this(Runtime.getRuntime().availableProcessors(), factory);
749 >    private void releaseEventWaiters(boolean signalling) {
750 >        ForkJoinWorkerThread[] ws = workers;
751 >        int n = ws.length;
752 >        long h; // head of stack
753 >        ForkJoinWorkerThread w; int id, ec;
754 >        while ((id = ((int)((h = eventWaiters) & WAITER_ID_MASK)) - 1) >= 0 &&
755 >               (int)(h >>> EVENT_COUNT_SHIFT) != (ec = eventCount) &&
756 >               id < n && (w = ws[id]) != null) {
757 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
758 >                                          h, h = w.nextWaiter))
759 >                LockSupport.unpark(w);
760 >            if (signalling && (eventCount != ec || eventWaiters != h))
761 >                break;
762 >        }
763      }
764  
765      /**
766 <     * Creates a ForkJoinPool with the given parallelism and factory.
767 <     *
395 <     * @param parallelism the targeted number of worker threads
396 <     * @param factory the factory for creating new threads
397 <     * @throws IllegalArgumentException if parallelism less than or
398 <     * equal to zero, or greater than implementation limit
399 <     * @throws NullPointerException if factory is null
400 <     * @throws SecurityException if a security manager exists and
401 <     *         the caller is not permitted to modify threads
402 <     *         because it does not hold {@link
403 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
766 >     * Tries to advance eventCount and releases waiters. Called only
767 >     * from workers.
768       */
769 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
770 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
771 <            throw new IllegalArgumentException();
772 <        if (factory == null)
773 <            throw new NullPointerException();
410 <        checkPermission();
411 <        this.factory = factory;
412 <        this.parallelism = parallelism;
413 <        this.maxPoolSize = MAX_THREADS;
414 <        this.maintainsParallelism = true;
415 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
416 <        this.workerLock = new ReentrantLock();
417 <        this.termination = workerLock.newCondition();
418 <        this.stealCount = new AtomicLong();
419 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
420 <        // worker array and workers are lazily constructed
769 >    final void signalWork() {
770 >        int c; // try to increment event count -- CAS failure OK
771 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
772 >        if (eventWaiters != 0L)
773 >            releaseEventWaiters(true);
774      }
775  
776      /**
777 <     * Creates a new worker thread using factory.
777 >     * Blocks worker until terminating or event count
778 >     * advances from last value held by worker
779       *
780 <     * @param index the index to assign worker
427 <     * @return new worker, or null of factory failed
780 >     * @param w the calling worker thread
781       */
782 <    private ForkJoinWorkerThread createWorker(int index) {
783 <        Thread.UncaughtExceptionHandler h = ueh;
784 <        ForkJoinWorkerThread w = factory.newThread(this);
785 <        if (w != null) {
786 <            w.poolIndex = index;
787 <            w.setDaemon(true);
788 <            w.setAsyncMode(locallyFifo);
789 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
790 <            if (h != null)
791 <                w.setUncaughtExceptionHandler(h);
782 >    private void eventSync(ForkJoinWorkerThread w) {
783 >        int wec = w.lastEventCount;
784 >        long nh = (((long)wec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
785 >        long h;
786 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
787 >               ((h = eventWaiters) == 0L ||
788 >                (int)(h >>> EVENT_COUNT_SHIFT) == wec) &&
789 >               eventCount == wec) {
790 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
791 >                                          w.nextWaiter = h, nh)) {
792 >                while (runState < TERMINATING && eventCount == wec) {
793 >                    if (!tryAccumulateStealCount(w))  // transfer while idle
794 >                        continue;
795 >                    Thread.interrupted();             // clear/ignore interrupt
796 >                    if (eventCount != wec)
797 >                        break;
798 >                    LockSupport.park(w);
799 >                }
800 >                break;
801 >            }
802          }
803 <        return w;
803 >        w.lastEventCount = eventCount;
804      }
805  
806 +    // Maintaining spares
807 +
808      /**
809 <     * Returns a good size for worker array given pool size.
445 <     * Currently requires size to be a power of two.
809 >     * Pushes worker onto the spare stack
810       */
811 <    private static int arraySizeFor(int poolSize) {
812 <        return (poolSize <= 1) ? 1 :
813 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
811 >    final void pushSpare(ForkJoinWorkerThread w) {
812 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex+1);
813 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
814 >                                               w.nextSpare = spareWaiters,ns));
815      }
816  
817      /**
818 <     * Creates or resizes array if necessary to hold newLength.
819 <     * Call only under exclusion.
455 <     *
456 <     * @return the array
818 >     * Tries (once) to resume a spare if running count is less than
819 >     * target parallelism. Fails on contention or stale workers.
820       */
821 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
822 <        ForkJoinWorkerThread[] ws = workers;
823 <        if (ws == null)
824 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
825 <        else if (newLength > ws.length)
826 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
827 <        else
828 <            return ws;
821 >    private void tryResumeSpare() {
822 >        int sw, id;
823 >        ForkJoinWorkerThread w;
824 >        ForkJoinWorkerThread[] ws;
825 >        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
826 >            id < (ws = workers).length && (w = ws[id]) != null &&
827 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
828 >            eventWaiters == 0L &&
829 >            spareWaiters == sw &&
830 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
831 >                                     sw, w.nextSpare) &&
832 >            w.tryUnsuspend()) {
833 >            int c; // try increment; if contended, finish after unpark
834 >            boolean inc = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
835 >                                                   c = workerCounts,
836 >                                                   c + ONE_RUNNING);
837 >            LockSupport.unpark(w);
838 >            if (!inc) {
839 >                do {} while(!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
840 >                                                      c = workerCounts,
841 >                                                      c + ONE_RUNNING));
842 >            }
843 >        }
844      }
845  
846      /**
847 <     * Tries to shrink workers into smaller array after one or more terminate.
847 >     * Callback from oldest spare occasionally waking up.  Tries
848 >     * (once) to shutdown a spare if more than 25% spare overage, or
849 >     * if UNUSED_SPARE_TRIM_RATE_NANOS have elapsed and there are at
850 >     * least #parallelism running threads. Note that we don't need CAS
851 >     * or locks here because the method is called only from the oldest
852 >     * suspended spare occasionally waking (and even misfires are OK).
853 >     *
854 >     * @param now the wake up nanoTime of caller
855       */
856 <    private void tryShrinkWorkerArray() {
857 <        ForkJoinWorkerThread[] ws = workers;
858 <        if (ws != null) {
859 <            int len = ws.length;
860 <            int last = len - 1;
861 <            while (last >= 0 && ws[last] == null)
862 <                --last;
863 <            int newLength = arraySizeFor(last+1);
864 <            if (newLength < len)
865 <                workers = Arrays.copyOf(ws, newLength);
856 >    final void tryTrimSpare(long now) {
857 >        long lastTrim = trimTime;
858 >        trimTime = now;
859 >        helpMaintainParallelism(); // first, help wake up any needed spares
860 >        int sw, id;
861 >        ForkJoinWorkerThread w;
862 >        ForkJoinWorkerThread[] ws;
863 >        int pc = parallelism;
864 >        int wc = workerCounts;
865 >        if ((wc & RUNNING_COUNT_MASK) >= pc &&
866 >            (((wc >>> TOTAL_COUNT_SHIFT) - pc) > (pc >>> 2) + 1 ||// approx 25%
867 >             now - lastTrim >= UNUSED_SPARE_TRIM_RATE_NANOS) &&
868 >            (id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
869 >            id < (ws = workers).length && (w = ws[id]) != null &&
870 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
871 >                                     sw, w.nextSpare))
872 >            w.shutdown(false);
873 >    }
874 >
875 >    /**
876 >     * Does at most one of:
877 >     *
878 >     * 1. Help wake up existing workers waiting for work via
879 >     *    releaseEventWaiters. (If any exist, then it probably doesn't
880 >     *    matter right now if under target parallelism level.)
881 >     *
882 >     * 2. If below parallelism level and a spare exists, try (once)
883 >     *    to resume it via tryResumeSpare.
884 >     *
885 >     * 3. If neither of the above, tries (once) to add a new
886 >     *    worker if either there are not enough total, or if all
887 >     *    existing workers are busy, there are either no running
888 >     *    workers or the deficit is at least twice the surplus.
889 >     */
890 >    private void helpMaintainParallelism() {
891 >        // uglified to work better when not compiled
892 >        int pc, wc, rc, tc, rs; long h;
893 >        if ((h = eventWaiters) != 0L) {
894 >            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
895 >                releaseEventWaiters(false); // avoid useless call
896 >        }
897 >        else if ((pc = parallelism) >
898 >                 (rc = ((wc = workerCounts) & RUNNING_COUNT_MASK))) {
899 >            if (spareWaiters != 0)
900 >                tryResumeSpare();
901 >            else if ((rs = runState) < TERMINATING &&
902 >                     ((tc = wc >>> TOTAL_COUNT_SHIFT) < pc ||
903 >                      (tc == (rs & ACTIVE_COUNT_MASK) && // all busy
904 >                       (rc == 0 ||                       // must add
905 >                        rc < pc - ((tc - pc) << 1)) &&   // within slack
906 >                       tc < MAX_WORKERS && runState == rs)) && // recheck busy
907 >                     workerCounts == wc &&
908 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
909 >                                              wc + (ONE_RUNNING|ONE_TOTAL)))
910 >                addWorker();
911 >        }
912 >    }
913 >
914 >    /**
915 >     * Callback from workers invoked upon each top-level action (i.e.,
916 >     * stealing a task or taking a submission and running
917 >     * it). Performs one or more of the following:
918 >     *
919 >     * 1. If the worker cannot find work (misses > 0), updates its
920 >     *    active status to inactive and updates activeCount unless
921 >     *    this is the first miss and there is contention, in which
922 >     *    case it may try again (either in this or a subsequent
923 >     *    call).
924 >     *
925 >     * 2. If there are at least 2 misses, awaits the next task event
926 >     *    via eventSync
927 >     *
928 >     * 3. If there are too many running threads, suspends this worker
929 >     *    (first forcing inactivation if necessary).  If it is not
930 >     *    needed, it may be killed while suspended via
931 >     *    tryTrimSpare. Otherwise, upon resume it rechecks to make
932 >     *    sure that it is still needed.
933 >     *
934 >     * 4. Helps release and/or reactivate other workers via
935 >     *    helpMaintainParallelism
936 >     *
937 >     * @param w the worker
938 >     * @param misses the number of scans by caller failing to find work
939 >     * (saturating at 2 just to avoid wraparound)
940 >     */
941 >    final void preStep(ForkJoinWorkerThread w, int misses) {
942 >        boolean active = w.active;
943 >        int pc = parallelism;
944 >        for (;;) {
945 >            int wc = workerCounts;
946 >            int rc = wc & RUNNING_COUNT_MASK;
947 >            if (active && (misses > 0 || rc > pc)) {
948 >                int rs;                      // try inactivate
949 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
950 >                                             rs = runState, rs - ONE_ACTIVE))
951 >                    active = w.active = false;
952 >                else if (misses > 1 || rc > pc ||
953 >                         (rs & ACTIVE_COUNT_MASK) >= pc)
954 >                    continue;                // force inactivate
955 >            }
956 >            if (misses > 1) {
957 >                misses = 0;                  // don't re-sync
958 >                eventSync(w);                // continue loop to recheck rc
959 >            }
960 >            else if (rc > pc) {
961 >                if (workerCounts == wc &&   // try to suspend as spare
962 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
963 >                                             wc, wc - ONE_RUNNING) &&
964 >                    !w.suspendAsSpare())    // false if killed
965 >                    break;
966 >            }
967 >            else {
968 >                if (rc < pc || eventWaiters != 0L)
969 >                    helpMaintainParallelism();
970 >                break;
971 >            }
972          }
973      }
974  
975      /**
976 <     * Initializes workers if necessary.
977 <     */
978 <    final void ensureWorkerInitialization() {
979 <        ForkJoinWorkerThread[] ws = workers;
980 <        if (ws == null) {
981 <            final ReentrantLock lock = this.workerLock;
982 <            lock.lock();
983 <            try {
984 <                ws = workers;
985 <                if (ws == null) {
986 <                    int ps = parallelism;
987 <                    ws = ensureWorkerArrayCapacity(ps);
988 <                    for (int i = 0; i < ps; ++i) {
989 <                        ForkJoinWorkerThread w = createWorker(i);
990 <                        if (w != null) {
991 <                            ws[i] = w;
992 <                            w.start();
993 <                            updateWorkerCount(1);
994 <                        }
995 <                    }
996 <                }
997 <            } finally {
998 <                lock.unlock();
976 >     * Helps and/or blocks awaiting join of the given task.
977 >     * Alternates between helpJoinTask() and helpMaintainParallelism()
978 >     * as many times as there is a deficit in running count (or longer
979 >     * if running count would become zero), then blocks if task still
980 >     * not done.
981 >     *
982 >     * @param joinMe the task to join
983 >     */
984 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
985 >        int threshold = parallelism;         // descend blocking thresholds
986 >        while (joinMe.status >= 0) {
987 >            boolean block; int wc;
988 >            worker.helpJoinTask(joinMe);
989 >            if (joinMe.status < 0)
990 >                break;
991 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
992 >                if (threshold > 0)
993 >                    --threshold;
994 >                else
995 >                    advanceEventCount(); // force release
996 >                block = false;
997 >            }
998 >            else
999 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1000 >                                                 wc, wc - ONE_RUNNING);
1001 >            helpMaintainParallelism();
1002 >            if (block) {
1003 >                int c;
1004 >                joinMe.internalAwaitDone();
1005 >                do {} while (!UNSAFE.compareAndSwapInt
1006 >                             (this, workerCountsOffset,
1007 >                              c = workerCounts, c + ONE_RUNNING));
1008 >                break;
1009              }
1010          }
1011      }
1012  
1013      /**
1014 <     * Worker creation and startup for threads added via setParallelism.
1014 >     * Same idea as awaitJoin, but no helping
1015       */
1016 <    private void createAndStartAddedWorkers() {
1017 <        resumeAllSpares();  // Allow spares to convert to nonspare
1018 <        int ps = parallelism;
1019 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1020 <        int len = ws.length;
1021 <        // Sweep through slots, to keep lowest indices most populated
1022 <        int k = 0;
1023 <        while (k < len) {
1024 <            if (ws[k] != null) {
1025 <                ++k;
1026 <                continue;
1016 >    final void awaitBlocker(ManagedBlocker blocker)
1017 >        throws InterruptedException {
1018 >        int threshold = parallelism;
1019 >        while (!blocker.isReleasable()) {
1020 >            boolean block; int wc;
1021 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1022 >                if (threshold > 0)
1023 >                    --threshold;
1024 >                else
1025 >                    advanceEventCount();
1026 >                block = false;
1027              }
1028 <            int s = workerCounts;
1029 <            int tc = totalCountOf(s);
1030 <            int rc = runningCountOf(s);
1031 <            if (rc >= ps || tc >= ps)
1028 >            else
1029 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1030 >                                                 wc, wc - ONE_RUNNING);
1031 >            helpMaintainParallelism();
1032 >            if (block) {
1033 >                try {
1034 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1035 >                } finally {
1036 >                    int c;
1037 >                    do {} while (!UNSAFE.compareAndSwapInt
1038 >                                 (this, workerCountsOffset,
1039 >                                  c = workerCounts, c + ONE_RUNNING));
1040 >                }
1041                  break;
1042 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1043 <                ForkJoinWorkerThread w = createWorker(k);
1042 >            }
1043 >        }
1044 >    }
1045 >
1046 >    /**
1047 >     * Possibly initiates and/or completes termination.
1048 >     *
1049 >     * @param now if true, unconditionally terminate, else only
1050 >     * if shutdown and empty queue and no active workers
1051 >     * @return true if now terminating or terminated
1052 >     */
1053 >    private boolean tryTerminate(boolean now) {
1054 >        if (now)
1055 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1056 >        else if (runState < SHUTDOWN ||
1057 >                 !submissionQueue.isEmpty() ||
1058 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1059 >            return false;
1060 >
1061 >        if (advanceRunLevel(TERMINATING))
1062 >            startTerminating();
1063 >
1064 >        // Finish now if all threads terminated; else in some subsequent call
1065 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1066 >            advanceRunLevel(TERMINATED);
1067 >            termination.arrive();
1068 >        }
1069 >        return true;
1070 >    }
1071 >
1072 >    /**
1073 >     * Actions on transition to TERMINATING
1074 >     *
1075 >     * Runs up to four passes through workers: (0) shutting down each
1076 >     * quietly (without waking up if parked) to quickly spread
1077 >     * notifications without unnecessary bouncing around event queues
1078 >     * etc (1) wake up and help cancel tasks (2) interrupt (3) mop up
1079 >     * races with interrupted workers
1080 >     */
1081 >    private void startTerminating() {
1082 >        cancelSubmissions();
1083 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1084 >            advanceEventCount();
1085 >            eventWaiters = 0L; // clobber lists
1086 >            spareWaiters = 0;
1087 >            ForkJoinWorkerThread[] ws = workers;
1088 >            int n = ws.length;
1089 >            for (int i = 0; i < n; ++i) {
1090 >                ForkJoinWorkerThread w = ws[i];
1091                  if (w != null) {
1092 <                    ws[k++] = w;
1093 <                    w.start();
1094 <                }
1095 <                else {
1096 <                    updateWorkerCount(-1); // back out on failed creation
1097 <                    break;
1092 >                    w.shutdown(true);
1093 >                    if (passes > 0 && !w.isTerminated()) {
1094 >                        w.cancelTasks();
1095 >                        LockSupport.unpark(w);
1096 >                        if (passes > 1) {
1097 >                            try {
1098 >                                w.interrupt();
1099 >                            } catch (SecurityException ignore) {
1100 >                            }
1101 >                        }
1102 >                    }
1103                  }
1104              }
1105          }
1106      }
1107  
1108 +    /**
1109 +     * Clear out and cancel submissions, ignoring exceptions
1110 +     */
1111 +    private void cancelSubmissions() {
1112 +        ForkJoinTask<?> task;
1113 +        while ((task = submissionQueue.poll()) != null) {
1114 +            try {
1115 +                task.cancel(false);
1116 +            } catch (Throwable ignore) {
1117 +            }
1118 +        }
1119 +    }
1120 +
1121 +    // misc support for ForkJoinWorkerThread
1122 +
1123 +    /**
1124 +     * Returns pool number
1125 +     */
1126 +    final int getPoolNumber() {
1127 +        return poolNumber;
1128 +    }
1129 +
1130 +    /**
1131 +     * Tries to accumulates steal count from a worker, clearing
1132 +     * the worker's value.
1133 +     *
1134 +     * @return true if worker steal count now zero
1135 +     */
1136 +    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1137 +        int sc = w.stealCount;
1138 +        long c = stealCount;
1139 +        // CAS even if zero, for fence effects
1140 +        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1141 +            if (sc != 0)
1142 +                w.stealCount = 0;
1143 +            return true;
1144 +        }
1145 +        return sc == 0;
1146 +    }
1147 +
1148 +    /**
1149 +     * Returns the approximate (non-atomic) number of idle threads per
1150 +     * active thread.
1151 +     */
1152 +    final int idlePerActive() {
1153 +        int pc = parallelism; // use parallelism, not rc
1154 +        int ac = runState;    // no mask -- artifically boosts during shutdown
1155 +        // Use exact results for small values, saturate past 4
1156 +        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1157 +    }
1158 +
1159 +    // Public and protected methods
1160 +
1161 +    // Constructors
1162 +
1163 +    /**
1164 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1165 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1166 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1167 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1168 +     *
1169 +     * @throws SecurityException if a security manager exists and
1170 +     *         the caller is not permitted to modify threads
1171 +     *         because it does not hold {@link
1172 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1173 +     */
1174 +    public ForkJoinPool() {
1175 +        this(Runtime.getRuntime().availableProcessors(),
1176 +             defaultForkJoinWorkerThreadFactory, null, false);
1177 +    }
1178 +
1179 +    /**
1180 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1181 +     * level, the {@linkplain
1182 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1183 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1184 +     *
1185 +     * @param parallelism the parallelism level
1186 +     * @throws IllegalArgumentException if parallelism less than or
1187 +     *         equal to zero, or greater than implementation limit
1188 +     * @throws SecurityException if a security manager exists and
1189 +     *         the caller is not permitted to modify threads
1190 +     *         because it does not hold {@link
1191 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1192 +     */
1193 +    public ForkJoinPool(int parallelism) {
1194 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1195 +    }
1196 +
1197 +    /**
1198 +     * Creates a {@code ForkJoinPool} with the given parameters.
1199 +     *
1200 +     * @param parallelism the parallelism level. For default value,
1201 +     * use {@link java.lang.Runtime#availableProcessors}.
1202 +     * @param factory the factory for creating new threads. For default value,
1203 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1204 +     * @param handler the handler for internal worker threads that
1205 +     * terminate due to unrecoverable errors encountered while executing
1206 +     * tasks. For default value, use <code>null</code>.
1207 +     * @param asyncMode if true,
1208 +     * establishes local first-in-first-out scheduling mode for forked
1209 +     * tasks that are never joined. This mode may be more appropriate
1210 +     * than default locally stack-based mode in applications in which
1211 +     * worker threads only process event-style asynchronous tasks.
1212 +     * For default value, use <code>false</code>.
1213 +     * @throws IllegalArgumentException if parallelism less than or
1214 +     *         equal to zero, or greater than implementation limit
1215 +     * @throws NullPointerException if the factory is null
1216 +     * @throws SecurityException if a security manager exists and
1217 +     *         the caller is not permitted to modify threads
1218 +     *         because it does not hold {@link
1219 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1220 +     */
1221 +    public ForkJoinPool(int parallelism,
1222 +                        ForkJoinWorkerThreadFactory factory,
1223 +                        Thread.UncaughtExceptionHandler handler,
1224 +                        boolean asyncMode) {
1225 +        checkPermission();
1226 +        if (factory == null)
1227 +            throw new NullPointerException();
1228 +        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1229 +            throw new IllegalArgumentException();
1230 +        this.parallelism = parallelism;
1231 +        this.factory = factory;
1232 +        this.ueh = handler;
1233 +        this.locallyFifo = asyncMode;
1234 +        int arraySize = initialArraySizeFor(parallelism);
1235 +        this.workers = new ForkJoinWorkerThread[arraySize];
1236 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1237 +        this.workerLock = new ReentrantLock();
1238 +        this.termination = new Phaser(1);
1239 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1240 +        this.trimTime = System.nanoTime();
1241 +    }
1242 +
1243 +    /**
1244 +     * Returns initial power of two size for workers array.
1245 +     * @param pc the initial parallelism level
1246 +     */
1247 +    private static int initialArraySizeFor(int pc) {
1248 +        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1249 +        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1250 +        size |= size >>> 1;
1251 +        size |= size >>> 2;
1252 +        size |= size >>> 4;
1253 +        size |= size >>> 8;
1254 +        return size + 1;
1255 +    }
1256 +
1257      // Execution methods
1258  
1259      /**
# Line 551 | Line 1262 | public class ForkJoinPool extends Abstra
1262      private <T> void doSubmit(ForkJoinTask<T> task) {
1263          if (task == null)
1264              throw new NullPointerException();
1265 <        if (isShutdown())
1265 >        if (runState >= SHUTDOWN)
1266              throw new RejectedExecutionException();
556        if (workers == null)
557            ensureWorkerInitialization();
1267          submissionQueue.offer(task);
1268 <        signalIdleWorkers();
1268 >        advanceEventCount();
1269 >        helpMaintainParallelism();         // start or wake up workers
1270      }
1271  
1272      /**
1273       * Performs the given task, returning its result upon completion.
1274 +     * If the caller is already engaged in a fork/join computation in
1275 +     * the current pool, this method is equivalent in effect to
1276 +     * {@link ForkJoinTask#invoke}.
1277       *
1278       * @param task the task
1279       * @return the task's result
1280 <     * @throws NullPointerException if task is null
1281 <     * @throws RejectedExecutionException if pool is shut down
1280 >     * @throws NullPointerException if the task is null
1281 >     * @throws RejectedExecutionException if the task cannot be
1282 >     *         scheduled for execution
1283       */
1284      public <T> T invoke(ForkJoinTask<T> task) {
1285          doSubmit(task);
# Line 574 | Line 1288 | public class ForkJoinPool extends Abstra
1288  
1289      /**
1290       * Arranges for (asynchronous) execution of the given task.
1291 +     * If the caller is already engaged in a fork/join computation in
1292 +     * the current pool, this method is equivalent in effect to
1293 +     * {@link ForkJoinTask#fork}.
1294       *
1295       * @param task the task
1296 <     * @throws NullPointerException if task is null
1297 <     * @throws RejectedExecutionException if pool is shut down
1296 >     * @throws NullPointerException if the task is null
1297 >     * @throws RejectedExecutionException if the task cannot be
1298 >     *         scheduled for execution
1299       */
1300      public void execute(ForkJoinTask<?> task) {
1301          doSubmit(task);
# Line 585 | Line 1303 | public class ForkJoinPool extends Abstra
1303  
1304      // AbstractExecutorService methods
1305  
1306 +    /**
1307 +     * @throws NullPointerException if the task is null
1308 +     * @throws RejectedExecutionException if the task cannot be
1309 +     *         scheduled for execution
1310 +     */
1311      public void execute(Runnable task) {
1312          ForkJoinTask<?> job;
1313          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 594 | Line 1317 | public class ForkJoinPool extends Abstra
1317          doSubmit(job);
1318      }
1319  
1320 +    /**
1321 +     * Submits a ForkJoinTask for execution.
1322 +     * If the caller is already engaged in a fork/join computation in
1323 +     * the current pool, this method is equivalent in effect to
1324 +     * {@link ForkJoinTask#fork}.
1325 +     *
1326 +     * @param task the task to submit
1327 +     * @return the task
1328 +     * @throws NullPointerException if the task is null
1329 +     * @throws RejectedExecutionException if the task cannot be
1330 +     *         scheduled for execution
1331 +     */
1332 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1333 +        doSubmit(task);
1334 +        return task;
1335 +    }
1336 +
1337 +    /**
1338 +     * @throws NullPointerException if the task is null
1339 +     * @throws RejectedExecutionException if the task cannot be
1340 +     *         scheduled for execution
1341 +     */
1342      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1343          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1344          doSubmit(job);
1345          return job;
1346      }
1347  
1348 +    /**
1349 +     * @throws NullPointerException if the task is null
1350 +     * @throws RejectedExecutionException if the task cannot be
1351 +     *         scheduled for execution
1352 +     */
1353      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1354          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1355          doSubmit(job);
1356          return job;
1357      }
1358  
1359 +    /**
1360 +     * @throws NullPointerException if the task is null
1361 +     * @throws RejectedExecutionException if the task cannot be
1362 +     *         scheduled for execution
1363 +     */
1364      public ForkJoinTask<?> submit(Runnable task) {
1365          ForkJoinTask<?> job;
1366          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 617 | Line 1372 | public class ForkJoinPool extends Abstra
1372      }
1373  
1374      /**
1375 <     * Submits a ForkJoinTask for execution.
1376 <     *
622 <     * @param task the task to submit
623 <     * @return the task
624 <     * @throws RejectedExecutionException if the task cannot be
625 <     *         scheduled for execution
626 <     * @throws NullPointerException if the task is null
1375 >     * @throws NullPointerException       {@inheritDoc}
1376 >     * @throws RejectedExecutionException {@inheritDoc}
1377       */
628    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
629        doSubmit(task);
630        return task;
631    }
632
633
1378      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1379          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1380              new ArrayList<ForkJoinTask<T>>(tasks.size());
# Line 639 | Line 1383 | public class ForkJoinPool extends Abstra
1383          invoke(new InvokeAll<T>(forkJoinTasks));
1384  
1385          @SuppressWarnings({"unchecked", "rawtypes"})
1386 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1386 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1387          return futures;
1388      }
1389  
# Line 653 | Line 1397 | public class ForkJoinPool extends Abstra
1397          private static final long serialVersionUID = -7914297376763021607L;
1398      }
1399  
656    // Configuration and status settings and queries
657
1400      /**
1401       * Returns the factory used for constructing new workers.
1402       *
# Line 671 | Line 1413 | public class ForkJoinPool extends Abstra
1413       * @return the handler, or {@code null} if none
1414       */
1415      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1416 <        Thread.UncaughtExceptionHandler h;
675 <        final ReentrantLock lock = this.workerLock;
676 <        lock.lock();
677 <        try {
678 <            h = ueh;
679 <        } finally {
680 <            lock.unlock();
681 <        }
682 <        return h;
1416 >        return ueh;
1417      }
1418  
1419      /**
1420 <     * Sets the handler for internal worker threads that terminate due
687 <     * to unrecoverable errors encountered while executing tasks.
688 <     * Unless set, the current default or ThreadGroup handler is used
689 <     * as handler.
1420 >     * Returns the targeted parallelism level of this pool.
1421       *
1422 <     * @param h the new handler
692 <     * @return the old handler, or {@code null} if none
693 <     * @throws SecurityException if a security manager exists and
694 <     *         the caller is not permitted to modify threads
695 <     *         because it does not hold {@link
696 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
697 <     */
698 <    public Thread.UncaughtExceptionHandler
699 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
700 <        checkPermission();
701 <        Thread.UncaughtExceptionHandler old = null;
702 <        final ReentrantLock lock = this.workerLock;
703 <        lock.lock();
704 <        try {
705 <            old = ueh;
706 <            ueh = h;
707 <            ForkJoinWorkerThread[] ws = workers;
708 <            if (ws != null) {
709 <                for (int i = 0; i < ws.length; ++i) {
710 <                    ForkJoinWorkerThread w = ws[i];
711 <                    if (w != null)
712 <                        w.setUncaughtExceptionHandler(h);
713 <                }
714 <            }
715 <        } finally {
716 <            lock.unlock();
717 <        }
718 <        return old;
719 <    }
720 <
721 <
722 <    /**
723 <     * Sets the target parallelism level of this pool.
724 <     *
725 <     * @param parallelism the target parallelism
726 <     * @throws IllegalArgumentException if parallelism less than or
727 <     * equal to zero or greater than maximum size bounds
728 <     * @throws SecurityException if a security manager exists and
729 <     *         the caller is not permitted to modify threads
730 <     *         because it does not hold {@link
731 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
732 <     */
733 <    public void setParallelism(int parallelism) {
734 <        checkPermission();
735 <        if (parallelism <= 0 || parallelism > maxPoolSize)
736 <            throw new IllegalArgumentException();
737 <        final ReentrantLock lock = this.workerLock;
738 <        lock.lock();
739 <        try {
740 <            if (!isTerminating()) {
741 <                int p = this.parallelism;
742 <                this.parallelism = parallelism;
743 <                if (parallelism > p)
744 <                    createAndStartAddedWorkers();
745 <                else
746 <                    trimSpares();
747 <            }
748 <        } finally {
749 <            lock.unlock();
750 <        }
751 <        signalIdleWorkers();
752 <    }
753 <
754 <    /**
755 <     * Returns the targeted number of worker threads in this pool.
756 <     *
757 <     * @return the targeted number of worker threads in this pool
1422 >     * @return the targeted parallelism level of this pool
1423       */
1424      public int getParallelism() {
1425          return parallelism;
# Line 769 | Line 1434 | public class ForkJoinPool extends Abstra
1434       * @return the number of worker threads
1435       */
1436      public int getPoolSize() {
1437 <        return totalCountOf(workerCounts);
773 <    }
774 <
775 <    /**
776 <     * Returns the maximum number of threads allowed to exist in the
777 <     * pool, even if there are insufficient unblocked running threads.
778 <     *
779 <     * @return the maximum
780 <     */
781 <    public int getMaximumPoolSize() {
782 <        return maxPoolSize;
783 <    }
784 <
785 <    /**
786 <     * Sets the maximum number of threads allowed to exist in the
787 <     * pool, even if there are insufficient unblocked running threads.
788 <     * Setting this value has no effect on current pool size. It
789 <     * controls construction of new threads.
790 <     *
791 <     * @throws IllegalArgumentException if negative or greater than
792 <     * internal implementation limit
793 <     */
794 <    public void setMaximumPoolSize(int newMax) {
795 <        if (newMax < 0 || newMax > MAX_THREADS)
796 <            throw new IllegalArgumentException();
797 <        maxPoolSize = newMax;
798 <    }
799 <
800 <
801 <    /**
802 <     * Returns {@code true} if this pool dynamically maintains its
803 <     * target parallelism level. If false, new threads are added only
804 <     * to avoid possible starvation.  This setting is by default true.
805 <     *
806 <     * @return {@code true} if maintains parallelism
807 <     */
808 <    public boolean getMaintainsParallelism() {
809 <        return maintainsParallelism;
810 <    }
811 <
812 <    /**
813 <     * Sets whether this pool dynamically maintains its target
814 <     * parallelism level. If false, new threads are added only to
815 <     * avoid possible starvation.
816 <     *
817 <     * @param enable {@code true} to maintain parallelism
818 <     */
819 <    public void setMaintainsParallelism(boolean enable) {
820 <        maintainsParallelism = enable;
821 <    }
822 <
823 <    /**
824 <     * Establishes local first-in-first-out scheduling mode for forked
825 <     * tasks that are never joined. This mode may be more appropriate
826 <     * than default locally stack-based mode in applications in which
827 <     * worker threads only process asynchronous tasks.  This method is
828 <     * designed to be invoked only when the pool is quiescent, and
829 <     * typically only before any tasks are submitted. The effects of
830 <     * invocations at other times may be unpredictable.
831 <     *
832 <     * @param async if {@code true}, use locally FIFO scheduling
833 <     * @return the previous mode
834 <     * @see #getAsyncMode
835 <     */
836 <    public boolean setAsyncMode(boolean async) {
837 <        boolean oldMode = locallyFifo;
838 <        locallyFifo = async;
839 <        ForkJoinWorkerThread[] ws = workers;
840 <        if (ws != null) {
841 <            for (int i = 0; i < ws.length; ++i) {
842 <                ForkJoinWorkerThread t = ws[i];
843 <                if (t != null)
844 <                    t.setAsyncMode(async);
845 <            }
846 <        }
847 <        return oldMode;
1437 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1438      }
1439  
1440      /**
# Line 852 | Line 1442 | public class ForkJoinPool extends Abstra
1442       * scheduling mode for forked tasks that are never joined.
1443       *
1444       * @return {@code true} if this pool uses async mode
855     * @see #setAsyncMode
1445       */
1446      public boolean getAsyncMode() {
1447          return locallyFifo;
# Line 861 | Line 1450 | public class ForkJoinPool extends Abstra
1450      /**
1451       * Returns an estimate of the number of worker threads that are
1452       * not blocked waiting to join tasks or for other managed
1453 <     * synchronization.
1453 >     * synchronization. This method may overestimate the
1454 >     * number of running threads.
1455       *
1456       * @return the number of worker threads
1457       */
1458      public int getRunningThreadCount() {
1459 <        return runningCountOf(workerCounts);
1459 >        return workerCounts & RUNNING_COUNT_MASK;
1460      }
1461  
1462      /**
# Line 877 | Line 1467 | public class ForkJoinPool extends Abstra
1467       * @return the number of active threads
1468       */
1469      public int getActiveThreadCount() {
1470 <        return activeCountOf(runControl);
881 <    }
882 <
883 <    /**
884 <     * Returns an estimate of the number of threads that are currently
885 <     * idle waiting for tasks. This method may underestimate the
886 <     * number of idle threads.
887 <     *
888 <     * @return the number of idle threads
889 <     */
890 <    final int getIdleThreadCount() {
891 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
892 <        return (c <= 0) ? 0 : c;
1470 >        return runState & ACTIVE_COUNT_MASK;
1471      }
1472  
1473      /**
# Line 904 | Line 1482 | public class ForkJoinPool extends Abstra
1482       * @return {@code true} if all threads are currently idle
1483       */
1484      public boolean isQuiescent() {
1485 <        return activeCountOf(runControl) == 0;
1485 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1486      }
1487  
1488      /**
# Line 919 | Line 1497 | public class ForkJoinPool extends Abstra
1497       * @return the number of steals
1498       */
1499      public long getStealCount() {
1500 <        return stealCount.get();
923 <    }
924 <
925 <    /**
926 <     * Accumulates steal count from a worker.
927 <     * Call only when worker known to be idle.
928 <     */
929 <    private void updateStealCount(ForkJoinWorkerThread w) {
930 <        int sc = w.getAndClearStealCount();
931 <        if (sc != 0)
932 <            stealCount.addAndGet(sc);
1500 >        return stealCount;
1501      }
1502  
1503      /**
# Line 945 | Line 1513 | public class ForkJoinPool extends Abstra
1513      public long getQueuedTaskCount() {
1514          long count = 0;
1515          ForkJoinWorkerThread[] ws = workers;
1516 <        if (ws != null) {
1517 <            for (int i = 0; i < ws.length; ++i) {
1518 <                ForkJoinWorkerThread t = ws[i];
1519 <                if (t != null)
1520 <                    count += t.getQueueSize();
953 <            }
1516 >        int n = ws.length;
1517 >        for (int i = 0; i < n; ++i) {
1518 >            ForkJoinWorkerThread w = ws[i];
1519 >            if (w != null)
1520 >                count += w.getQueueSize();
1521          }
1522          return count;
1523      }
1524  
1525      /**
1526 <     * Returns an estimate of the number tasks submitted to this pool
1527 <     * that have not yet begun executing. This method takes time
1526 >     * Returns an estimate of the number of tasks submitted to this
1527 >     * pool that have not yet begun executing.  This method takes time
1528       * proportional to the number of submissions.
1529       *
1530       * @return the number of queued submissions
# Line 991 | Line 1558 | public class ForkJoinPool extends Abstra
1558       * Removes all available unexecuted submitted and forked tasks
1559       * from scheduling queues and adds them to the given collection,
1560       * without altering their execution status. These may include
1561 <     * artificially generated or wrapped tasks. This method is designed
1562 <     * to be invoked only when the pool is known to be
1561 >     * artificially generated or wrapped tasks. This method is
1562 >     * designed to be invoked only when the pool is known to be
1563       * quiescent. Invocations at other times may not remove all
1564       * tasks. A failure encountered while attempting to add elements
1565       * to collection {@code c} may result in elements being in
# Line 1005 | Line 1572 | public class ForkJoinPool extends Abstra
1572       * @return the number of elements transferred
1573       */
1574      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1575 <        int n = submissionQueue.drainTo(c);
1575 >        int count = submissionQueue.drainTo(c);
1576          ForkJoinWorkerThread[] ws = workers;
1577 <        if (ws != null) {
1578 <            for (int i = 0; i < ws.length; ++i) {
1579 <                ForkJoinWorkerThread w = ws[i];
1580 <                if (w != null)
1581 <                    n += w.drainTasksTo(c);
1015 <            }
1577 >        int n = ws.length;
1578 >        for (int i = 0; i < n; ++i) {
1579 >            ForkJoinWorkerThread w = ws[i];
1580 >            if (w != null)
1581 >                count += w.drainTasksTo(c);
1582          }
1583 <        return n;
1583 >        return count;
1584      }
1585  
1586      /**
# Line 1025 | Line 1591 | public class ForkJoinPool extends Abstra
1591       * @return a string identifying this pool, as well as its state
1592       */
1593      public String toString() {
1028        int ps = parallelism;
1029        int wc = workerCounts;
1030        int rc = runControl;
1594          long st = getStealCount();
1595          long qt = getQueuedTaskCount();
1596          long qs = getQueuedSubmissionCount();
1597 +        int wc = workerCounts;
1598 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1599 +        int rc = wc & RUNNING_COUNT_MASK;
1600 +        int pc = parallelism;
1601 +        int rs = runState;
1602 +        int ac = rs & ACTIVE_COUNT_MASK;
1603          return super.toString() +
1604 <            "[" + runStateToString(runStateOf(rc)) +
1605 <            ", parallelism = " + ps +
1606 <            ", size = " + totalCountOf(wc) +
1607 <            ", active = " + activeCountOf(rc) +
1608 <            ", running = " + runningCountOf(wc) +
1604 >            "[" + runLevelToString(rs) +
1605 >            ", parallelism = " + pc +
1606 >            ", size = " + tc +
1607 >            ", active = " + ac +
1608 >            ", running = " + rc +
1609              ", steals = " + st +
1610              ", tasks = " + qt +
1611              ", submissions = " + qs +
1612              "]";
1613      }
1614  
1615 <    private static String runStateToString(int rs) {
1616 <        switch(rs) {
1617 <        case RUNNING: return "Running";
1618 <        case SHUTDOWN: return "Shutting down";
1619 <        case TERMINATING: return "Terminating";
1051 <        case TERMINATED: return "Terminated";
1052 <        default: throw new Error("Unknown run state");
1053 <        }
1615 >    private static String runLevelToString(int s) {
1616 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1617 >                ((s & TERMINATING) != 0 ? "Terminating" :
1618 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1619 >                  "Running")));
1620      }
1621  
1056    // lifecycle control
1057
1622      /**
1623       * Initiates an orderly shutdown in which previously submitted
1624       * tasks are executed, but no new tasks will be accepted.
# Line 1069 | Line 1633 | public class ForkJoinPool extends Abstra
1633       */
1634      public void shutdown() {
1635          checkPermission();
1636 <        transitionRunStateTo(SHUTDOWN);
1637 <        if (canTerminateOnShutdown(runControl)) {
1074 <            if (workers == null) { // shutting down before workers created
1075 <                final ReentrantLock lock = this.workerLock;
1076 <                lock.lock();
1077 <                try {
1078 <                    if (workers == null) {
1079 <                        terminate();
1080 <                        transitionRunStateTo(TERMINATED);
1081 <                        termination.signalAll();
1082 <                    }
1083 <                } finally {
1084 <                    lock.unlock();
1085 <                }
1086 <            }
1087 <            terminateOnShutdown();
1088 <        }
1636 >        advanceRunLevel(SHUTDOWN);
1637 >        tryTerminate(false);
1638      }
1639  
1640      /**
1641 <     * Attempts to stop all actively executing tasks, and cancels all
1642 <     * waiting tasks.  Tasks that are in the process of being
1643 <     * submitted or executed concurrently during the course of this
1644 <     * method may or may not be rejected. Unlike some other executors,
1645 <     * this method cancels rather than collects non-executed tasks
1646 <     * upon termination, so always returns an empty list. However, you
1647 <     * can use method {@link #drainTasksTo} before invoking this
1648 <     * method to transfer unexecuted tasks to another collection.
1641 >     * Attempts to cancel and/or stop all tasks, and reject all
1642 >     * subsequently submitted tasks.  Tasks that are in the process of
1643 >     * being submitted or executed concurrently during the course of
1644 >     * this method may or may not be rejected. This method cancels
1645 >     * both existing and unexecuted tasks, in order to permit
1646 >     * termination in the presence of task dependencies. So the method
1647 >     * always returns an empty list (unlike the case for some other
1648 >     * Executors).
1649       *
1650       * @return an empty list
1651       * @throws SecurityException if a security manager exists and
# Line 1106 | Line 1655 | public class ForkJoinPool extends Abstra
1655       */
1656      public List<Runnable> shutdownNow() {
1657          checkPermission();
1658 <        terminate();
1658 >        tryTerminate(true);
1659          return Collections.emptyList();
1660      }
1661  
# Line 1116 | Line 1665 | public class ForkJoinPool extends Abstra
1665       * @return {@code true} if all tasks have completed following shut down
1666       */
1667      public boolean isTerminated() {
1668 <        return runStateOf(runControl) == TERMINATED;
1668 >        return runState >= TERMINATED;
1669      }
1670  
1671      /**
1672       * Returns {@code true} if the process of termination has
1673 <     * commenced but possibly not yet completed.
1673 >     * commenced but not yet completed.  This method may be useful for
1674 >     * debugging. A return of {@code true} reported a sufficient
1675 >     * period after shutdown may indicate that submitted tasks have
1676 >     * ignored or suppressed interruption, causing this executor not
1677 >     * to properly terminate.
1678       *
1679 <     * @return {@code true} if terminating
1679 >     * @return {@code true} if terminating but not yet terminated
1680       */
1681      public boolean isTerminating() {
1682 <        return runStateOf(runControl) >= TERMINATING;
1682 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1683      }
1684  
1685      /**
# Line 1135 | Line 1688 | public class ForkJoinPool extends Abstra
1688       * @return {@code true} if this pool has been shut down
1689       */
1690      public boolean isShutdown() {
1691 <        return runStateOf(runControl) >= SHUTDOWN;
1691 >        return runState >= SHUTDOWN;
1692      }
1693  
1694      /**
# Line 1151 | Line 1704 | public class ForkJoinPool extends Abstra
1704       */
1705      public boolean awaitTermination(long timeout, TimeUnit unit)
1706          throws InterruptedException {
1154        long nanos = unit.toNanos(timeout);
1155        final ReentrantLock lock = this.workerLock;
1156        lock.lock();
1707          try {
1708 <            for (;;) {
1709 <                if (isTerminated())
1160 <                    return true;
1161 <                if (nanos <= 0)
1162 <                    return false;
1163 <                nanos = termination.awaitNanos(nanos);
1164 <            }
1165 <        } finally {
1166 <            lock.unlock();
1167 <        }
1168 <    }
1169 <
1170 <    // Shutdown and termination support
1171 <
1172 <    /**
1173 <     * Callback from terminating worker. Nulls out the corresponding
1174 <     * workers slot, and if terminating, tries to terminate; else
1175 <     * tries to shrink workers array.
1176 <     *
1177 <     * @param w the worker
1178 <     */
1179 <    final void workerTerminated(ForkJoinWorkerThread w) {
1180 <        updateStealCount(w);
1181 <        updateWorkerCount(-1);
1182 <        final ReentrantLock lock = this.workerLock;
1183 <        lock.lock();
1184 <        try {
1185 <            ForkJoinWorkerThread[] ws = workers;
1186 <            if (ws != null) {
1187 <                int idx = w.poolIndex;
1188 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1189 <                    ws[idx] = null;
1190 <                if (totalCountOf(workerCounts) == 0) {
1191 <                    terminate(); // no-op if already terminating
1192 <                    transitionRunStateTo(TERMINATED);
1193 <                    termination.signalAll();
1194 <                }
1195 <                else if (!isTerminating()) {
1196 <                    tryShrinkWorkerArray();
1197 <                    tryResumeSpare(true); // allow replacement
1198 <                }
1199 <            }
1200 <        } finally {
1201 <            lock.unlock();
1202 <        }
1203 <        signalIdleWorkers();
1204 <    }
1205 <
1206 <    /**
1207 <     * Initiates termination.
1208 <     */
1209 <    private void terminate() {
1210 <        if (transitionRunStateTo(TERMINATING)) {
1211 <            stopAllWorkers();
1212 <            resumeAllSpares();
1213 <            signalIdleWorkers();
1214 <            cancelQueuedSubmissions();
1215 <            cancelQueuedWorkerTasks();
1216 <            interruptUnterminatedWorkers();
1217 <            signalIdleWorkers(); // resignal after interrupt
1218 <        }
1219 <    }
1220 <
1221 <    /**
1222 <     * Possibly terminates when on shutdown state.
1223 <     */
1224 <    private void terminateOnShutdown() {
1225 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1226 <            terminate();
1227 <    }
1228 <
1229 <    /**
1230 <     * Clears out and cancels submissions.
1231 <     */
1232 <    private void cancelQueuedSubmissions() {
1233 <        ForkJoinTask<?> task;
1234 <        while ((task = pollSubmission()) != null)
1235 <            task.cancel(false);
1236 <    }
1237 <
1238 <    /**
1239 <     * Cleans out worker queues.
1240 <     */
1241 <    private void cancelQueuedWorkerTasks() {
1242 <        final ReentrantLock lock = this.workerLock;
1243 <        lock.lock();
1244 <        try {
1245 <            ForkJoinWorkerThread[] ws = workers;
1246 <            if (ws != null) {
1247 <                for (int i = 0; i < ws.length; ++i) {
1248 <                    ForkJoinWorkerThread t = ws[i];
1249 <                    if (t != null)
1250 <                        t.cancelTasks();
1251 <                }
1252 <            }
1253 <        } finally {
1254 <            lock.unlock();
1255 <        }
1256 <    }
1257 <
1258 <    /**
1259 <     * Sets each worker's status to terminating. Requires lock to avoid
1260 <     * conflicts with add/remove.
1261 <     */
1262 <    private void stopAllWorkers() {
1263 <        final ReentrantLock lock = this.workerLock;
1264 <        lock.lock();
1265 <        try {
1266 <            ForkJoinWorkerThread[] ws = workers;
1267 <            if (ws != null) {
1268 <                for (int i = 0; i < ws.length; ++i) {
1269 <                    ForkJoinWorkerThread t = ws[i];
1270 <                    if (t != null)
1271 <                        t.shutdownNow();
1272 <                }
1273 <            }
1274 <        } finally {
1275 <            lock.unlock();
1276 <        }
1277 <    }
1278 <
1279 <    /**
1280 <     * Interrupts all unterminated workers.  This is not required for
1281 <     * sake of internal control, but may help unstick user code during
1282 <     * shutdown.
1283 <     */
1284 <    private void interruptUnterminatedWorkers() {
1285 <        final ReentrantLock lock = this.workerLock;
1286 <        lock.lock();
1287 <        try {
1288 <            ForkJoinWorkerThread[] ws = workers;
1289 <            if (ws != null) {
1290 <                for (int i = 0; i < ws.length; ++i) {
1291 <                    ForkJoinWorkerThread t = ws[i];
1292 <                    if (t != null && !t.isTerminated()) {
1293 <                        try {
1294 <                            t.interrupt();
1295 <                        } catch (SecurityException ignore) {
1296 <                        }
1297 <                    }
1298 <                }
1299 <            }
1300 <        } finally {
1301 <            lock.unlock();
1302 <        }
1303 <    }
1304 <
1305 <
1306 <    /*
1307 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1308 <     * are basic Treiber stack nodes, also used for spare stack.
1309 <     *
1310 <     * The event barrier has an event count and a wait queue (actually
1311 <     * a Treiber stack).  Workers are enabled to look for work when
1312 <     * the eventCount is incremented. If they fail to find work, they
1313 <     * may wait for next count. Upon release, threads help others wake
1314 <     * up.
1315 <     *
1316 <     * Synchronization events occur only in enough contexts to
1317 <     * maintain overall liveness:
1318 <     *
1319 <     *   - Submission of a new task to the pool
1320 <     *   - Resizes or other changes to the workers array
1321 <     *   - pool termination
1322 <     *   - A worker pushing a task on an empty queue
1323 <     *
1324 <     * The case of pushing a task occurs often enough, and is heavy
1325 <     * enough compared to simple stack pushes, to require special
1326 <     * handling: Method signalWork returns without advancing count if
1327 <     * the queue appears to be empty.  This would ordinarily result in
1328 <     * races causing some queued waiters not to be woken up. To avoid
1329 <     * this, the first worker enqueued in method sync (see
1330 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1331 <     * helps signal if any are found. This works well because the
1332 <     * worker has nothing better to do, and so might as well help
1333 <     * alleviate the overhead and contention on the threads actually
1334 <     * doing work.  Also, since event counts increments on task
1335 <     * availability exist to maintain liveness (rather than to force
1336 <     * refreshes etc), it is OK for callers to exit early if
1337 <     * contending with another signaller.
1338 <     */
1339 <    static final class WaitQueueNode {
1340 <        WaitQueueNode next; // only written before enqueued
1341 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1342 <        final long count; // unused for spare stack
1343 <
1344 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1345 <            count = c;
1346 <            thread = w;
1347 <        }
1348 <
1349 <        /**
1350 <         * Wakes up waiter, returning false if known to already
1351 <         */
1352 <        boolean signal() {
1353 <            ForkJoinWorkerThread t = thread;
1354 <            if (t == null)
1355 <                return false;
1356 <            thread = null;
1357 <            LockSupport.unpark(t);
1358 <            return true;
1359 <        }
1360 <
1361 <        /**
1362 <         * Awaits release on sync.
1363 <         */
1364 <        void awaitSyncRelease(ForkJoinPool p) {
1365 <            while (thread != null && !p.syncIsReleasable(this))
1366 <                LockSupport.park(this);
1367 <        }
1368 <
1369 <        /**
1370 <         * Awaits resumption as spare.
1371 <         */
1372 <        void awaitSpareRelease() {
1373 <            while (thread != null) {
1374 <                if (!Thread.interrupted())
1375 <                    LockSupport.park(this);
1376 <            }
1377 <        }
1378 <    }
1379 <
1380 <    /**
1381 <     * Ensures that no thread is waiting for count to advance from the
1382 <     * current value of eventCount read on entry to this method, by
1383 <     * releasing waiting threads if necessary.
1384 <     *
1385 <     * @return the count
1386 <     */
1387 <    final long ensureSync() {
1388 <        long c = eventCount;
1389 <        WaitQueueNode q;
1390 <        while ((q = syncStack) != null && q.count < c) {
1391 <            if (casBarrierStack(q, null)) {
1392 <                do {
1393 <                    q.signal();
1394 <                } while ((q = q.next) != null);
1395 <                break;
1396 <            }
1397 <        }
1398 <        return c;
1399 <    }
1400 <
1401 <    /**
1402 <     * Increments event count and releases waiting threads.
1403 <     */
1404 <    private void signalIdleWorkers() {
1405 <        long c;
1406 <        do {} while (!casEventCount(c = eventCount, c+1));
1407 <        ensureSync();
1408 <    }
1409 <
1410 <    /**
1411 <     * Signals threads waiting to poll a task. Because method sync
1412 <     * rechecks availability, it is OK to only proceed if queue
1413 <     * appears to be non-empty, and OK to skip under contention to
1414 <     * increment count (since some other thread succeeded).
1415 <     */
1416 <    final void signalWork() {
1417 <        long c;
1418 <        WaitQueueNode q;
1419 <        if (syncStack != null &&
1420 <            casEventCount(c = eventCount, c+1) &&
1421 <            (((q = syncStack) != null && q.count <= c) &&
1422 <             (!casBarrierStack(q, q.next) || !q.signal())))
1423 <            ensureSync();
1424 <    }
1425 <
1426 <    /**
1427 <     * Waits until event count advances from last value held by
1428 <     * caller, or if excess threads, caller is resumed as spare, or
1429 <     * caller or pool is terminating. Updates caller's event on exit.
1430 <     *
1431 <     * @param w the calling worker thread
1432 <     */
1433 <    final void sync(ForkJoinWorkerThread w) {
1434 <        updateStealCount(w); // Transfer w's count while it is idle
1435 <
1436 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1437 <            long prev = w.lastEventCount;
1438 <            WaitQueueNode node = null;
1439 <            WaitQueueNode h;
1440 <            while (eventCount == prev &&
1441 <                   ((h = syncStack) == null || h.count == prev)) {
1442 <                if (node == null)
1443 <                    node = new WaitQueueNode(prev, w);
1444 <                if (casBarrierStack(node.next = h, node)) {
1445 <                    node.awaitSyncRelease(this);
1446 <                    break;
1447 <                }
1448 <            }
1449 <            long ec = ensureSync();
1450 <            if (ec != prev) {
1451 <                w.lastEventCount = ec;
1452 <                break;
1453 <            }
1454 <        }
1455 <    }
1456 <
1457 <    /**
1458 <     * Returns {@code true} if worker waiting on sync can proceed:
1459 <     *  - on signal (thread == null)
1460 <     *  - on event count advance (winning race to notify vs signaller)
1461 <     *  - on interrupt
1462 <     *  - if the first queued node, we find work available
1463 <     * If node was not signalled and event count not advanced on exit,
1464 <     * then we also help advance event count.
1465 <     *
1466 <     * @return {@code true} if node can be released
1467 <     */
1468 <    final boolean syncIsReleasable(WaitQueueNode node) {
1469 <        long prev = node.count;
1470 <        if (!Thread.interrupted() && node.thread != null &&
1471 <            (node.next != null ||
1472 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1473 <            eventCount == prev)
1474 <            return false;
1475 <        if (node.thread != null) {
1476 <            node.thread = null;
1477 <            long ec = eventCount;
1478 <            if (prev <= ec) // help signal
1479 <                casEventCount(ec, ec+1);
1480 <        }
1481 <        return true;
1482 <    }
1483 <
1484 <    /**
1485 <     * Returns {@code true} if a new sync event occurred since last
1486 <     * call to sync or this method, if so, updating caller's count.
1487 <     */
1488 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1489 <        long lc = w.lastEventCount;
1490 <        long ec = ensureSync();
1491 <        if (ec == lc)
1708 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1709 >        } catch(TimeoutException ex) {
1710              return false;
1493        w.lastEventCount = ec;
1494        return true;
1495    }
1496
1497    //  Parallelism maintenance
1498
1499    /**
1500     * Decrements running count; if too low, adds spare.
1501     *
1502     * Conceptually, all we need to do here is add or resume a
1503     * spare thread when one is about to block (and remove or
1504     * suspend it later when unblocked -- see suspendIfSpare).
1505     * However, implementing this idea requires coping with
1506     * several problems: we have imperfect information about the
1507     * states of threads. Some count updates can and usually do
1508     * lag run state changes, despite arrangements to keep them
1509     * accurate (for example, when possible, updating counts
1510     * before signalling or resuming), especially when running on
1511     * dynamic JVMs that don't optimize the infrequent paths that
1512     * update counts. Generating too many threads can make these
1513     * problems become worse, because excess threads are more
1514     * likely to be context-switched with others, slowing them all
1515     * down, especially if there is no work available, so all are
1516     * busy scanning or idling.  Also, excess spare threads can
1517     * only be suspended or removed when they are idle, not
1518     * immediately when they aren't needed. So adding threads will
1519     * raise parallelism level for longer than necessary.  Also,
1520     * FJ applications often encounter highly transient peaks when
1521     * many threads are blocked joining, but for less time than it
1522     * takes to create or resume spares.
1523     *
1524     * @param joinMe if non-null, return early if done
1525     * @param maintainParallelism if true, try to stay within
1526     * target counts, else create only to avoid starvation
1527     * @return true if joinMe known to be done
1528     */
1529    final boolean preJoin(ForkJoinTask<?> joinMe,
1530                          boolean maintainParallelism) {
1531        maintainParallelism &= maintainsParallelism; // overrride
1532        boolean dec = false;  // true when running count decremented
1533        while (spareStack == null || !tryResumeSpare(dec)) {
1534            int counts = workerCounts;
1535            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1536                // CAS cheat
1537                if (!needSpare(counts, maintainParallelism))
1538                    break;
1539                if (joinMe.status < 0)
1540                    return true;
1541                if (tryAddSpare(counts))
1542                    break;
1543            }
1544        }
1545        return false;
1546    }
1547
1548    /**
1549     * Same idea as preJoin
1550     */
1551    final boolean preBlock(ManagedBlocker blocker,
1552                           boolean maintainParallelism) {
1553        maintainParallelism &= maintainsParallelism;
1554        boolean dec = false;
1555        while (spareStack == null || !tryResumeSpare(dec)) {
1556            int counts = workerCounts;
1557            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1558                if (!needSpare(counts, maintainParallelism))
1559                    break;
1560                if (blocker.isReleasable())
1561                    return true;
1562                if (tryAddSpare(counts))
1563                    break;
1564            }
1565        }
1566        return false;
1567    }
1568
1569    /**
1570     * Returns {@code true} if a spare thread appears to be needed.
1571     * If maintaining parallelism, returns true when the deficit in
1572     * running threads is more than the surplus of total threads, and
1573     * there is apparently some work to do.  This self-limiting rule
1574     * means that the more threads that have already been added, the
1575     * less parallelism we will tolerate before adding another.
1576     *
1577     * @param counts current worker counts
1578     * @param maintainParallelism try to maintain parallelism
1579     */
1580    private boolean needSpare(int counts, boolean maintainParallelism) {
1581        int ps = parallelism;
1582        int rc = runningCountOf(counts);
1583        int tc = totalCountOf(counts);
1584        int runningDeficit = ps - rc;
1585        int totalSurplus = tc - ps;
1586        return (tc < maxPoolSize &&
1587                (rc == 0 || totalSurplus < 0 ||
1588                 (maintainParallelism &&
1589                  runningDeficit > totalSurplus &&
1590                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1591    }
1592
1593    /**
1594     * Adds a spare worker if lock available and no more than the
1595     * expected numbers of threads exist.
1596     *
1597     * @return true if successful
1598     */
1599    private boolean tryAddSpare(int expectedCounts) {
1600        final ReentrantLock lock = this.workerLock;
1601        int expectedRunning = runningCountOf(expectedCounts);
1602        int expectedTotal = totalCountOf(expectedCounts);
1603        boolean success = false;
1604        boolean locked = false;
1605        // confirm counts while locking; CAS after obtaining lock
1606        try {
1607            for (;;) {
1608                int s = workerCounts;
1609                int tc = totalCountOf(s);
1610                int rc = runningCountOf(s);
1611                if (rc > expectedRunning || tc > expectedTotal)
1612                    break;
1613                if (!locked && !(locked = lock.tryLock()))
1614                    break;
1615                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1616                    createAndStartSpare(tc);
1617                    success = true;
1618                    break;
1619                }
1620            }
1621        } finally {
1622            if (locked)
1623                lock.unlock();
1624        }
1625        return success;
1626    }
1627
1628    /**
1629     * Adds the kth spare worker. On entry, pool counts are already
1630     * adjusted to reflect addition.
1631     */
1632    private void createAndStartSpare(int k) {
1633        ForkJoinWorkerThread w = null;
1634        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1635        int len = ws.length;
1636        // Probably, we can place at slot k. If not, find empty slot
1637        if (k < len && ws[k] != null) {
1638            for (k = 0; k < len && ws[k] != null; ++k)
1639                ;
1640        }
1641        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1642            ws[k] = w;
1643            w.start();
1644        }
1645        else
1646            updateWorkerCount(-1); // adjust on failure
1647        signalIdleWorkers();
1648    }
1649
1650    /**
1651     * Suspends calling thread w if there are excess threads.  Called
1652     * only from sync.  Spares are enqueued in a Treiber stack using
1653     * the same WaitQueueNodes as barriers.  They are resumed mainly
1654     * in preJoin, but are also woken on pool events that require all
1655     * threads to check run state.
1656     *
1657     * @param w the caller
1658     */
1659    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1660        WaitQueueNode node = null;
1661        int s;
1662        while (parallelism < runningCountOf(s = workerCounts)) {
1663            if (node == null)
1664                node = new WaitQueueNode(0, w);
1665            if (casWorkerCounts(s, s-1)) { // representation-dependent
1666                // push onto stack
1667                do {} while (!casSpareStack(node.next = spareStack, node));
1668                // block until released by resumeSpare
1669                node.awaitSpareRelease();
1670                return true;
1671            }
1672        }
1673        return false;
1674    }
1675
1676    /**
1677     * Tries to pop and resume a spare thread.
1678     *
1679     * @param updateCount if true, increment running count on success
1680     * @return true if successful
1681     */
1682    private boolean tryResumeSpare(boolean updateCount) {
1683        WaitQueueNode q;
1684        while ((q = spareStack) != null) {
1685            if (casSpareStack(q, q.next)) {
1686                if (updateCount)
1687                    updateRunningCount(1);
1688                q.signal();
1689                return true;
1690            }
1691        }
1692        return false;
1693    }
1694
1695    /**
1696     * Pops and resumes all spare threads. Same idea as ensureSync.
1697     *
1698     * @return true if any spares released
1699     */
1700    private boolean resumeAllSpares() {
1701        WaitQueueNode q;
1702        while ( (q = spareStack) != null) {
1703            if (casSpareStack(q, null)) {
1704                do {
1705                    updateRunningCount(1);
1706                    q.signal();
1707                } while ((q = q.next) != null);
1708                return true;
1709            }
1710        }
1711        return false;
1712    }
1713
1714    /**
1715     * Pops and shuts down excessive spare threads. Call only while
1716     * holding lock. This is not guaranteed to eliminate all excess
1717     * threads, only those suspended as spares, which are the ones
1718     * unlikely to be needed in the future.
1719     */
1720    private void trimSpares() {
1721        int surplus = totalCountOf(workerCounts) - parallelism;
1722        WaitQueueNode q;
1723        while (surplus > 0 && (q = spareStack) != null) {
1724            if (casSpareStack(q, null)) {
1725                do {
1726                    updateRunningCount(1);
1727                    ForkJoinWorkerThread w = q.thread;
1728                    if (w != null && surplus > 0 &&
1729                        runningCountOf(workerCounts) > 0 && w.shutdown())
1730                        --surplus;
1731                    q.signal();
1732                } while ((q = q.next) != null);
1733            }
1711          }
1712      }
1713  
# Line 1738 | Line 1715 | public class ForkJoinPool extends Abstra
1715       * Interface for extending managed parallelism for tasks running
1716       * in {@link ForkJoinPool}s.
1717       *
1718 <     * <p>A {@code ManagedBlocker} provides two methods.
1719 <     * Method {@code isReleasable} must return {@code true} if
1720 <     * blocking is not necessary. Method {@code block} blocks the
1721 <     * current thread if necessary (perhaps internally invoking
1722 <     * {@code isReleasable} before actually blocking.).
1718 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1719 >     * {@code isReleasable} must return {@code true} if blocking is
1720 >     * not necessary. Method {@code block} blocks the current thread
1721 >     * if necessary (perhaps internally invoking {@code isReleasable}
1722 >     * before actually blocking). The unusual methods in this API
1723 >     * accommodate synchronizers that may, but don't usually, block
1724 >     * for long periods. Similarly, they allow more efficient internal
1725 >     * handling of cases in which additional workers may be, but
1726 >     * usually are not, needed to ensure sufficient parallelism.
1727 >     * Toward this end, implementations of method {@code isReleasable}
1728 >     * must be amenable to repeated invocation.
1729       *
1730       * <p>For example, here is a ManagedBlocker based on a
1731       * ReentrantLock:
# Line 1760 | Line 1743 | public class ForkJoinPool extends Abstra
1743       *     return hasLock || (hasLock = lock.tryLock());
1744       *   }
1745       * }}</pre>
1746 +     *
1747 +     * <p>Here is a class that possibly blocks waiting for an
1748 +     * item on a given queue:
1749 +     *  <pre> {@code
1750 +     * class QueueTaker<E> implements ManagedBlocker {
1751 +     *   final BlockingQueue<E> queue;
1752 +     *   volatile E item = null;
1753 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1754 +     *   public boolean block() throws InterruptedException {
1755 +     *     if (item == null)
1756 +     *       item = queue.take
1757 +     *     return true;
1758 +     *   }
1759 +     *   public boolean isReleasable() {
1760 +     *     return item != null || (item = queue.poll) != null;
1761 +     *   }
1762 +     *   public E getItem() { // call after pool.managedBlock completes
1763 +     *     return item;
1764 +     *   }
1765 +     * }}</pre>
1766       */
1767      public static interface ManagedBlocker {
1768          /**
# Line 1783 | Line 1786 | public class ForkJoinPool extends Abstra
1786       * Blocks in accord with the given blocker.  If the current thread
1787       * is a {@link ForkJoinWorkerThread}, this method possibly
1788       * arranges for a spare thread to be activated if necessary to
1789 <     * ensure parallelism while the current thread is blocked.
1787 <     *
1788 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1789 <     * supports it ({@link #getMaintainsParallelism}), this method
1790 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1791 <     * it activates a thread only if necessary to avoid complete
1792 <     * starvation. This option may be preferable when blockages use
1793 <     * timeouts, or are almost always brief.
1789 >     * ensure sufficient parallelism while the current thread is blocked.
1790       *
1791       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1792       * behaviorally equivalent to
# Line 1804 | Line 1800 | public class ForkJoinPool extends Abstra
1800       * first be expanded to ensure parallelism, and later adjusted.
1801       *
1802       * @param blocker the blocker
1807     * @param maintainParallelism if {@code true} and supported by
1808     * this pool, attempt to maintain the pool's nominal parallelism;
1809     * otherwise activate a thread only if necessary to avoid
1810     * complete starvation.
1803       * @throws InterruptedException if blocker.block did so
1804       */
1805 <    public static void managedBlock(ManagedBlocker blocker,
1814 <                                    boolean maintainParallelism)
1805 >    public static void managedBlock(ManagedBlocker blocker)
1806          throws InterruptedException {
1807          Thread t = Thread.currentThread();
1808 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1809 <                             ((ForkJoinWorkerThread) t).pool : null);
1810 <        if (!blocker.isReleasable()) {
1811 <            try {
1812 <                if (pool == null ||
1813 <                    !pool.preBlock(blocker, maintainParallelism))
1823 <                    awaitBlocker(blocker);
1824 <            } finally {
1825 <                if (pool != null)
1826 <                    pool.updateRunningCount(1);
1827 <            }
1808 >        if (t instanceof ForkJoinWorkerThread) {
1809 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1810 >            w.pool.awaitBlocker(blocker);
1811 >        }
1812 >        else {
1813 >            do {} while (!blocker.isReleasable() && !blocker.block());
1814          }
1829    }
1830
1831    private static void awaitBlocker(ManagedBlocker blocker)
1832        throws InterruptedException {
1833        do {} while (!blocker.isReleasable() && !blocker.block());
1815      }
1816  
1817      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1848 | Line 1829 | public class ForkJoinPool extends Abstra
1829      // Unsafe mechanics
1830  
1831      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1851    private static final long eventCountOffset =
1852        objectFieldOffset("eventCount", ForkJoinPool.class);
1832      private static final long workerCountsOffset =
1833          objectFieldOffset("workerCounts", ForkJoinPool.class);
1834 <    private static final long runControlOffset =
1835 <        objectFieldOffset("runControl", ForkJoinPool.class);
1836 <    private static final long syncStackOffset =
1837 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1838 <    private static final long spareStackOffset =
1839 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1840 <
1841 <    private boolean casEventCount(long cmp, long val) {
1842 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1843 <    }
1865 <    private boolean casWorkerCounts(int cmp, int val) {
1866 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1867 <    }
1868 <    private boolean casRunControl(int cmp, int val) {
1869 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1870 <    }
1871 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1872 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1873 <    }
1874 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1875 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1876 <    }
1834 >    private static final long runStateOffset =
1835 >        objectFieldOffset("runState", ForkJoinPool.class);
1836 >    private static final long eventCountOffset =
1837 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1838 >    private static final long eventWaitersOffset =
1839 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1840 >    private static final long stealCountOffset =
1841 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1842 >    private static final long spareWaitersOffset =
1843 >        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1844  
1845      private static long objectFieldOffset(String field, Class<?> klazz) {
1846          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines