ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.41 by jsr166, Mon Aug 3 01:11:58 2009 UTC vs.
Revision 1.67 by jsr166, Wed Sep 1 03:32:03 2010 UTC

# Line 13 | Line 13 | import java.util.Arrays;
13   import java.util.Collection;
14   import java.util.Collections;
15   import java.util.List;
16 import java.util.concurrent.locks.Condition;
16   import java.util.concurrent.locks.LockSupport;
17   import java.util.concurrent.locks.ReentrantLock;
18   import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.atomic.AtomicLong;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24 < * from non-{@code ForkJoinTask}s, as well as management and
25 < * monitoring operations.  Normally a single {@code ForkJoinPool} is
27 < * used for a large number of submitted tasks. Otherwise, use would
28 < * not usually outweigh the construction and bookkeeping overhead of
29 < * creating a large set of threads.
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>{@code ForkJoinPool}s differ from other kinds of {@link
28 < * Executor}s mainly in that they provide <em>work-stealing</em>: all
29 < * threads in the pool attempt to find and execute subtasks created by
30 < * other active tasks (eventually blocking if none exist). This makes
31 < * them efficient when most tasks spawn other subtasks (as do most
32 < * {@code ForkJoinTask}s), as well as the mixed execution of some
33 < * plain {@code Runnable}- or {@code Callable}- based activities along
34 < * with {@code ForkJoinTask}s. When setting {@linkplain #setAsyncMode
35 < * async mode}, a {@code ForkJoinPool} may also be appropriate for use
40 < * with fine-grained tasks that are never joined. Otherwise, other
41 < * {@code ExecutorService} implementations are typically more
42 < * appropriate choices.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>A {@code ForkJoinPool} may be constructed with a given
38 < * parallelism level (target pool size), which it attempts to maintain
39 < * by dynamically adding, suspending, or resuming threads, even if
40 < * some tasks are waiting to join others. However, no such adjustments
41 < * are performed in the face of blocked IO or other unmanaged
42 < * synchronization. The nested {@link ManagedBlocker} interface
43 < * enables extension of the kinds of synchronization accommodated.
44 < * The target parallelism level may also be changed dynamically
45 < * ({@link #setParallelism}) and thread construction can be limited
53 < * using methods {@link #setMaximumPoolSize} and/or {@link
54 < * #setMaintainsParallelism}.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
# Line 60 | Line 51 | import java.util.concurrent.atomic.Atomi
51   * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arrange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 + * used for all parallel task execution in a program or subsystem.
90 + * Otherwise, use would not usually outweigh the construction and
91 + * bookkeeping overhead of creating a large set of threads. For
92 + * example, a common pool could be used for the {@code SortTasks}
93 + * illustrated in {@link RecursiveAction}. Because {@code
94 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 + * daemon} mode, there is typically no need to explicitly {@link
96 + * #shutdown} such a pool upon program exit.
97 + *
98 + * <pre>
99 + * static final ForkJoinPool mainPool = new ForkJoinPool();
100 + * ...
101 + * public void sort(long[] array) {
102 + *   mainPool.invoke(new SortTask(array, 0, array.length));
103 + * }
104 + * </pre>
105 + *
106   * <p><b>Implementation notes</b>: This implementation restricts the
107   * maximum number of running threads to 32767. Attempts to create
108 < * pools with greater than the maximum result in
108 > * pools with greater than the maximum number result in
109   * {@code IllegalArgumentException}.
110   *
111 + * <p>This implementation rejects submitted tasks (that is, by throwing
112 + * {@link RejectedExecutionException}) only when the pool is shut down
113 + * or internal resources have been exhausted.
114 + *
115   * @since 1.7
116   * @author Doug Lea
117   */
118   public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to take actions when
142 >     * one worker is waiting to join a task stolen (or always held by)
143 >     * another.  Because we are multiplexing many tasks on to a pool
144 >     * of workers, we can't just let them block (as in Thread.join).
145 >     * We also cannot just reassign the joiner's run-time stack with
146 >     * another and replace it later, which would be a form of
147 >     * "continuation", that even if possible is not necessarily a good
148 >     * idea. Given that the creation costs of most threads on most
149 >     * systems mainly surrounds setting up runtime stacks, thread
150 >     * creation and switching is usually not much more expensive than
151 >     * stack creation and switching, and is more flexible). Instead we
152 >     * combine two tactics:
153 >     *
154 >     *   Helping: Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   Compensating: Unless there are already enough live threads,
160 >     *      method helpMaintainParallelism() may create or or
161 >     *      re-activate a spare thread to compensate for blocked
162 >     *      joiners until they unblock.
163 >     *
164 >     * It is impossible to keep exactly the target (parallelism)
165 >     * number of threads running at any given time.  Determining
166 >     * existence of conservatively safe helping targets, the
167 >     * availability of already-created spares, and the apparent need
168 >     * to create new spares are all racy and require heuristic
169 >     * guidance, so we rely on multiple retries of each.  Compensation
170 >     * occurs in slow-motion. It is triggered only upon timeouts of
171 >     * Object.wait used for joins. This reduces poor decisions that
172 >     * would otherwise be made when threads are waiting for others
173 >     * that are stalled because of unrelated activities such as
174 >     * garbage collection.
175 >     *
176 >     * The ManagedBlocker extension API can't use helping so relies
177 >     * only on compensation in method awaitBlocker.
178 >     *
179 >     * The main throughput advantages of work-stealing stem from
180 >     * decentralized control -- workers mostly steal tasks from each
181 >     * other. We do not want to negate this by creating bottlenecks
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195 >     *
196 >     * 1. Creating and removing workers. Workers are recorded in the
197 >     * "workers" array. This is an array as opposed to some other data
198 >     * structure to support index-based random steals by workers.
199 >     * Updates to the array recording new workers and unrecording
200 >     * terminated ones are protected from each other by a lock
201 >     * (workerLock) but the array is otherwise concurrently readable,
202 >     * and accessed directly by workers. To simplify index-based
203 >     * operations, the array size is always a power of two, and all
204 >     * readers must tolerate null slots. Currently, all worker thread
205 >     * creation is on-demand, triggered by task submissions,
206 >     * replacement of terminated workers, and/or compensation for
207 >     * blocked workers. However, all other support code is set up to
208 >     * work with other policies.
209 >     *
210 >     * To ensure that we do not hold on to worker references that
211 >     * would prevent GC, ALL accesses to workers are via indices into
212 >     * the workers array (which is one source of some of the unusual
213 >     * code constructions here). In essence, the workers array serves
214 >     * as a WeakReference mechanism. Thus for example the event queue
215 >     * stores worker indices, not worker references. Access to the
216 >     * workers in associated methods (for example releaseEventWaiters)
217 >     * must both index-check and null-check the IDs. All such accesses
218 >     * ignore bad IDs by returning out early from what they are doing,
219 >     * since this can only be associated with shutdown, in which case
220 >     * it is OK to give up. On termination, we just clobber these
221 >     * data structures without trying to use them.
222 >     *
223 >     * 2. Bookkeeping for dynamically adding and removing workers. We
224 >     * aim to approximately maintain the given level of parallelism.
225 >     * When some workers are known to be blocked (on joins or via
226 >     * ManagedBlocker), we may create or resume others to take their
227 >     * place until they unblock (see below). Implementing this
228 >     * requires counts of the number of "running" threads (i.e., those
229 >     * that are neither blocked nor artificially suspended) as well as
230 >     * the total number.  These two values are packed into one field,
231 >     * "workerCounts" because we need accurate snapshots when deciding
232 >     * to create, resume or suspend.  Note however that the
233 >     * correspondence of these counts to reality is not guaranteed. In
234 >     * particular updates for unblocked threads may lag until they
235 >     * actually wake up.
236 >     *
237 >     * 3. Maintaining global run state. The run state of the pool
238 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
239 >     * those in other Executor implementations, as well as a count of
240 >     * "active" workers -- those that are, or soon will be, or
241 >     * recently were executing tasks. The runLevel and active count
242 >     * are packed together in order to correctly trigger shutdown and
243 >     * termination. Without care, active counts can be subject to very
244 >     * high contention.  We substantially reduce this contention by
245 >     * relaxing update rules.  A worker must claim active status
246 >     * prospectively, by activating if it sees that a submitted or
247 >     * stealable task exists (it may find after activating that the
248 >     * task no longer exists). It stays active while processing this
249 >     * task (if it exists) and any other local subtasks it produces,
250 >     * until it cannot find any other tasks. It then tries
251 >     * inactivating (see method preStep), but upon update contention
252 >     * instead scans for more tasks, later retrying inactivation if it
253 >     * doesn't find any.
254 >     *
255 >     * 4. Managing idle workers waiting for tasks. We cannot let
256 >     * workers spin indefinitely scanning for tasks when none are
257 >     * available. On the other hand, we must quickly prod them into
258 >     * action when new tasks are submitted or generated.  We
259 >     * park/unpark these idle workers using an event-count scheme.
260 >     * Field eventCount is incremented upon events that may enable
261 >     * workers that previously could not find a task to now find one:
262 >     * Submission of a new task to the pool, or another worker pushing
263 >     * a task onto a previously empty queue.  (We also use this
264 >     * mechanism for configuration and termination actions that
265 >     * require wakeups of idle workers).  Each worker maintains its
266 >     * last known event count, and blocks when a scan for work did not
267 >     * find a task AND its lastEventCount matches the current
268 >     * eventCount. Waiting idle workers are recorded in a variant of
269 >     * Treiber stack headed by field eventWaiters which, when nonzero,
270 >     * encodes the thread index and count awaited for by the worker
271 >     * thread most recently calling eventSync. This thread in turn has
272 >     * a record (field nextEventWaiter) for the next waiting worker.
273 >     * In addition to allowing simpler decisions about need for
274 >     * wakeup, the event count bits in eventWaiters serve the role of
275 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
276 >     * released threads also try to release at most two others.  The
277 >     * net effect is a tree-like diffusion of signals, where released
278 >     * threads (and possibly others) help with unparks.  To further
279 >     * reduce contention effects a bit, failed CASes to increment
280 >     * field eventCount are tolerated without retries in signalWork.
281 >     * Conceptually they are merged into the same event, which is OK
282 >     * when their only purpose is to enable workers to scan for work.
283 >     *
284 >     * 5. Managing suspension of extra workers. When a worker notices
285 >     * (usually upon timeout of a wait()) that there are too few
286 >     * running threads, we may create a new thread to maintain
287 >     * parallelism level, or at least avoid starvation. Usually, extra
288 >     * threads are needed for only very short periods, yet join
289 >     * dependencies are such that we sometimes need them in
290 >     * bursts. Rather than create new threads each time this happens,
291 >     * we suspend no-longer-needed extra ones as "spares". For most
292 >     * purposes, we don't distinguish "extra" spare threads from
293 >     * normal "core" threads: On each call to preStep (the only point
294 >     * at which we can do this) a worker checks to see if there are
295 >     * now too many running workers, and if so, suspends itself.
296 >     * Method helpMaintainParallelism looks for suspended threads to
297 >     * resume before considering creating a new replacement. The
298 >     * spares themselves are encoded on another variant of a Treiber
299 >     * Stack, headed at field "spareWaiters".  Note that the use of
300 >     * spares is intrinsically racy.  One thread may become a spare at
301 >     * about the same time as another is needlessly being created. We
302 >     * counteract this and related slop in part by requiring resumed
303 >     * spares to immediately recheck (in preStep) to see whether they
304 >     * they should re-suspend.
305 >     *
306 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
307 >     * shed unused workers: The oldest (first) event queue waiter uses
308 >     * a timed rather than hard wait. When this wait times out without
309 >     * a normal wakeup, it tries to shutdown any one (for convenience
310 >     * the newest) other spare or event waiter via
311 >     * tryShutdownUnusedWorker. This eventually reduces the number of
312 >     * worker threads to a minimum of one after a long enough period
313 >     * without use.
314 >     *
315 >     * 7. Deciding when to create new workers. The main dynamic
316 >     * control in this class is deciding when to create extra threads
317 >     * in method helpMaintainParallelism. We would like to keep
318 >     * exactly #parallelism threads running, which is an impossible
319 >     * task. We always need to create one when the number of running
320 >     * threads would become zero and all workers are busy. Beyond
321 >     * this, we must rely on heuristics that work well in the the
322 >     * presence of transients phenomena such as GC stalls, dynamic
323 >     * compilation, and wake-up lags. These transients are extremely
324 >     * common -- we are normally trying to fully saturate the CPUs on
325 >     * a machine, so almost any activity other than running tasks
326 >     * impedes accuracy. Our main defense is to allow parallelism to
327 >     * lapse for a while during joins, and use a timeout to see if,
328 >     * after the resulting settling, there is still a need for
329 >     * additional workers.  This also better copes with the fact that
330 >     * some of the methods in this class tend to never become compiled
331 >     * (but are interpreted), so some components of the entire set of
332 >     * controls might execute 100 times faster than others. And
333 >     * similarly for cases where the apparent lack of work is just due
334 >     * to GC stalls and other transient system activity.
335 >     *
336 >     * Beware that there is a lot of representation-level coupling
337 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
338 >     * ForkJoinTask.  For example, direct access to "workers" array by
339 >     * workers, and direct access to ForkJoinTask.status by both
340 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
341 >     * trying to reduce this, since any associated future changes in
342 >     * representations will need to be accompanied by algorithmic
343 >     * changes anyway.
344 >     *
345 >     * Style notes: There are lots of inline assignments (of form
346 >     * "while ((local = field) != 0)") which are usually the simplest
347 >     * way to ensure the required read orderings (which are sometimes
348 >     * critical). Also several occurrences of the unusual "do {}
349 >     * while(!cas...)" which is the simplest way to force an update of
350 >     * a CAS'ed variable. There are also other coding oddities that
351 >     * help some methods perform reasonably even when interpreted (not
352 >     * compiled), at the expense of some messy constructions that
353 >     * reduce byte code counts.
354 >     *
355 >     * The order of declarations in this file is: (1) statics (2)
356 >     * fields (along with constants used when unpacking some of them)
357 >     * (3) internal control methods (4) callbacks and other support
358 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
359 >     * methods (plus a few little helpers).
360       */
361  
78    /** Mask for packing and unpacking shorts */
79    private static final int  shortMask = 0xffff;
80
81    /** Max pool size -- must be a power of two minus 1 */
82    private static final int MAX_THREADS =  0x7FFF;
83
362      /**
363       * Factory for creating new {@link ForkJoinWorkerThread}s.
364       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 92 | Line 370 | public class ForkJoinPool extends Abstra
370           * Returns a new worker thread operating in the given pool.
371           *
372           * @param pool the pool this thread works in
373 <         * @throws NullPointerException if pool is null
373 >         * @throws NullPointerException if the pool is null
374           */
375          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
376      }
# Line 101 | Line 379 | public class ForkJoinPool extends Abstra
379       * Default ForkJoinWorkerThreadFactory implementation; creates a
380       * new ForkJoinWorkerThread.
381       */
382 <    static class  DefaultForkJoinWorkerThreadFactory
382 >    static class DefaultForkJoinWorkerThreadFactory
383          implements ForkJoinWorkerThreadFactory {
384          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
385 <            try {
108 <                return new ForkJoinWorkerThread(pool);
109 <            } catch (OutOfMemoryError oom)  {
110 <                return null;
111 <            }
385 >            return new ForkJoinWorkerThread(pool);
386          }
387      }
388  
# Line 144 | Line 418 | public class ForkJoinPool extends Abstra
418          new AtomicInteger();
419  
420      /**
421 <     * Array holding all worker threads in the pool. Initialized upon
422 <     * first use. Array size must be a power of two.  Updates and
423 <     * replacements are protected by workerLock, but it is always kept
424 <     * in a consistent enough state to be randomly accessed without
425 <     * locking by workers performing work-stealing.
421 >     * The time to block in a join (see awaitJoin) before checking if
422 >     * a new worker should be (re)started to maintain parallelism
423 >     * level. The value should be short enough to maintain global
424 >     * responsiveness and progress but long enough to avoid
425 >     * counterproductive firings during GC stalls or unrelated system
426 >     * activity, and to not bog down systems with continual re-firings
427 >     * on GCs or legitimately long waits.
428       */
429 <    volatile ForkJoinWorkerThread[] workers;
429 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
430  
431      /**
432 <     * Lock protecting access to workers.
432 >     * The wakeup interval (in nanoseconds) for the oldest worker
433 >     * worker waiting for an event invokes tryShutdownUnusedWorker to shrink
434 >     * the number of workers.  The exact value does not matter too
435 >     * much, but should be long enough to slowly release resources
436 >     * during long periods without use without disrupting normal use.
437       */
438 <    private final ReentrantLock workerLock;
438 >    private static final long SHRINK_RATE_NANOS =
439 >        30L * 1000L * 1000L * 1000L; // 2 per minute
440  
441      /**
442 <     * Condition for awaitTermination.
442 >     * Absolute bound for parallelism level. Twice this number plus
443 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
444 >     * word-packing for some counts and indices.
445       */
446 <    private final Condition termination;
446 >    private static final int MAX_WORKERS   = 0x7fff;
447  
448      /**
449 <     * The uncaught exception handler used when any worker
450 <     * abruptly terminates
449 >     * Array holding all worker threads in the pool.  Array size must
450 >     * be a power of two.  Updates and replacements are protected by
451 >     * workerLock, but the array is always kept in a consistent enough
452 >     * state to be randomly accessed without locking by workers
453 >     * performing work-stealing, as well as other traversal-based
454 >     * methods in this class. All readers must tolerate that some
455 >     * array slots may be null.
456       */
457 <    private Thread.UncaughtExceptionHandler ueh;
457 >    volatile ForkJoinWorkerThread[] workers;
458  
459      /**
460 <     * Creation factory for worker threads.
460 >     * Queue for external submissions.
461       */
462 <    private final ForkJoinWorkerThreadFactory factory;
462 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
463  
464      /**
465 <     * Head of stack of threads that were created to maintain
178 <     * parallelism when other threads blocked, but have since
179 <     * suspended when the parallelism level rose.
465 >     * Lock protecting updates to workers array.
466       */
467 <    private volatile WaitQueueNode spareStack;
467 >    private final ReentrantLock workerLock;
468  
469      /**
470 <     * Sum of per-thread steal counts, updated only when threads are
185 <     * idle or terminating.
470 >     * Latch released upon termination.
471       */
472 <    private final AtomicLong stealCount;
472 >    private final Phaser termination;
473  
474      /**
475 <     * Queue for external submissions.
475 >     * Creation factory for worker threads.
476       */
477 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
477 >    private final ForkJoinWorkerThreadFactory factory;
478  
479      /**
480 <     * Head of Treiber stack for barrier sync. See below for explanation.
480 >     * Sum of per-thread steal counts, updated only when threads are
481 >     * idle or terminating.
482       */
483 <    private volatile WaitQueueNode syncStack;
483 >    private volatile long stealCount;
484  
485      /**
486 <     * The count for event barrier
486 >     * Encoded record of top of Treiber stack of threads waiting for
487 >     * events. The top 32 bits contain the count being waited for. The
488 >     * bottom 16 bits contains one plus the pool index of waiting
489 >     * worker thread. (Bits 16-31 are unused.)
490       */
491 <    private volatile long eventCount;
491 >    private volatile long eventWaiters;
492  
493 <    /**
494 <     * Pool number, just for assigning useful names to worker threads
206 <     */
207 <    private final int poolNumber;
493 >    private static final int  EVENT_COUNT_SHIFT = 32;
494 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
495  
496      /**
497 <     * The maximum allowed pool size
497 >     * A counter for events that may wake up worker threads:
498 >     *   - Submission of a new task to the pool
499 >     *   - A worker pushing a task on an empty queue
500 >     *   - termination
501       */
502 <    private volatile int maxPoolSize;
502 >    private volatile int eventCount;
503  
504      /**
505 <     * The desired parallelism level, updated only under workerLock.
505 >     * Encoded record of top of Treiber stack of spare threads waiting
506 >     * for resumption. The top 16 bits contain an arbitrary count to
507 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
508 >     * index of waiting worker thread.
509       */
510 <    private volatile int parallelism;
510 >    private volatile int spareWaiters;
511 >
512 >    private static final int SPARE_COUNT_SHIFT = 16;
513 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
514  
515      /**
516 <     * True if use local fifo, not default lifo, for local polling
516 >     * Lifecycle control. The low word contains the number of workers
517 >     * that are (probably) executing tasks. This value is atomically
518 >     * incremented before a worker gets a task to run, and decremented
519 >     * when worker has no tasks and cannot find any.  Bits 16-18
520 >     * contain runLevel value. When all are zero, the pool is
521 >     * running. Level transitions are monotonic (running -> shutdown
522 >     * -> terminating -> terminated) so each transition adds a bit.
523 >     * These are bundled together to ensure consistent read for
524 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
525 >     * and active threads is zero).
526 >     *
527 >     * Notes: Most direct CASes are dependent on these bitfield
528 >     * positions.  Also, this field is non-private to enable direct
529 >     * performance-sensitive CASes in ForkJoinWorkerThread.
530       */
531 <    private volatile boolean locallyFifo;
531 >    volatile int runState;
532 >
533 >    // Note: The order among run level values matters.
534 >    private static final int RUNLEVEL_SHIFT     = 16;
535 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
536 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
537 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
538 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
539  
540      /**
541       * Holds number of total (i.e., created and not yet terminated)
542       * and running (i.e., not blocked on joins or other managed sync)
543 <     * threads, packed into one int to ensure consistent snapshot when
543 >     * threads, packed together to ensure consistent snapshot when
544       * making decisions about creating and suspending spare
545 <     * threads. Updated only by CAS.  Note: CASes in
546 <     * updateRunningCount and preJoin assume that running active count
547 <     * is in low word, so need to be modified if this changes.
545 >     * threads. Updated only by CAS. Note that adding a new worker
546 >     * requires incrementing both counts, since workers start off in
547 >     * running state.
548       */
549      private volatile int workerCounts;
550  
551 <    private static int totalCountOf(int s)           { return s >>> 16;  }
552 <    private static int runningCountOf(int s)         { return s & shortMask; }
553 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
551 >    private static final int TOTAL_COUNT_SHIFT  = 16;
552 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
553 >    private static final int ONE_RUNNING        = 1;
554 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
555  
556      /**
557 <     * Adds delta (which may be negative) to running count.  This must
558 <     * be called before (with negative arg) and after (with positive)
242 <     * any managed synchronization (i.e., mainly, joins).
243 <     *
244 <     * @param delta the number to add
557 >     * The target parallelism level.
558 >     * Accessed directly by ForkJoinWorkerThreads.
559       */
560 <    final void updateRunningCount(int delta) {
247 <        int s;
248 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
249 <    }
560 >    final int parallelism;
561  
562      /**
563 <     * Adds delta (which may be negative) to both total and running
564 <     * count.  This must be called upon creation and termination of
254 <     * worker threads.
255 <     *
256 <     * @param delta the number to add
563 >     * True if use local fifo, not default lifo, for local polling
564 >     * Read by, and replicated by ForkJoinWorkerThreads
565       */
566 <    private void updateWorkerCount(int delta) {
259 <        int d = delta + (delta << 16); // add to both lo and hi parts
260 <        int s;
261 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
262 <    }
566 >    final boolean locallyFifo;
567  
568      /**
569 <     * Lifecycle control. High word contains runState, low word
570 <     * contains the number of workers that are (probably) executing
267 <     * tasks. This value is atomically incremented before a worker
268 <     * gets a task to run, and decremented when worker has no tasks
269 <     * and cannot find any. These two fields are bundled together to
270 <     * support correct termination triggering.  Note: activeCount
271 <     * CAS'es cheat by assuming active count is in low word, so need
272 <     * to be modified if this changes
569 >     * The uncaught exception handler used when any worker abruptly
570 >     * terminates.
571       */
572 <    private volatile int runControl;
572 >    private final Thread.UncaughtExceptionHandler ueh;
573  
574 <    // RunState values. Order among values matters
575 <    private static final int RUNNING     = 0;
576 <    private static final int SHUTDOWN    = 1;
577 <    private static final int TERMINATING = 2;
280 <    private static final int TERMINATED  = 3;
574 >    /**
575 >     * Pool number, just for assigning useful names to worker threads
576 >     */
577 >    private final int poolNumber;
578  
579 <    private static int runStateOf(int c)             { return c >>> 16; }
580 <    private static int activeCountOf(int c)          { return c & shortMask; }
284 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
579 >    // Utilities for CASing fields. Note that most of these
580 >    // are usually manually inlined by callers
581  
582      /**
583 <     * Tries incrementing active count; fails on contention.
288 <     * Called by workers before/during executing tasks.
289 <     *
290 <     * @return true on success
583 >     * Increments running count part of workerCounts
584       */
585 <    final boolean tryIncrementActiveCount() {
586 <        int c = runControl;
587 <        return casRunControl(c, c+1);
585 >    final void incrementRunningCount() {
586 >        int c;
587 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
588 >                                               c = workerCounts,
589 >                                               c + ONE_RUNNING));
590      }
591  
592      /**
593 <     * Tries decrementing active count; fails on contention.
299 <     * Possibly triggers termination on success.
300 <     * Called by workers when they can't find tasks.
301 <     *
302 <     * @return true on success
593 >     * Tries to decrement running count unless already zero
594       */
595 <    final boolean tryDecrementActiveCount() {
596 <        int c = runControl;
597 <        int nextc = c - 1;
307 <        if (!casRunControl(c, nextc))
595 >    final boolean tryDecrementRunningCount() {
596 >        int wc = workerCounts;
597 >        if ((wc & RUNNING_COUNT_MASK) == 0)
598              return false;
599 <        if (canTerminateOnShutdown(nextc))
600 <            terminateOnShutdown();
311 <        return true;
599 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
600 >                                        wc, wc - ONE_RUNNING);
601      }
602  
603      /**
604 <     * Returns {@code true} if argument represents zero active count
605 <     * and nonzero runstate, which is the triggering condition for
606 <     * terminating on shutdown.
604 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
605 >     * (rarely) necessary when other count updates lag.
606 >     *
607 >     * @param dr -- either zero or ONE_RUNNING
608 >     * @param dt == either zero or ONE_TOTAL
609       */
610 <    private static boolean canTerminateOnShutdown(int c) {
611 <        // i.e. least bit is nonzero runState bit
612 <        return ((c & -c) >>> 16) != 0;
610 >    private void decrementWorkerCounts(int dr, int dt) {
611 >        for (;;) {
612 >            int wc = workerCounts;
613 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
614 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
615 >                if ((runState & TERMINATED) != 0)
616 >                    return; // lagging termination on a backout
617 >                Thread.yield();
618 >            }
619 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
620 >                                         wc, wc - (dr + dt)))
621 >                return;
622 >        }
623 >    }
624 >
625 >    /**
626 >     * Tries decrementing active count; fails on contention.
627 >     * Called when workers cannot find tasks to run.
628 >     */
629 >    final boolean tryDecrementActiveCount() {
630 >        int c;
631 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
632 >                                        c = runState, c - 1);
633      }
634  
635      /**
636 <     * Transition run state to at least the given state. Return true
637 <     * if not already at least given state.
636 >     * Advances to at least the given level. Returns true if not
637 >     * already in at least the given level.
638       */
639 <    private boolean transitionRunStateTo(int state) {
639 >    private boolean advanceRunLevel(int level) {
640          for (;;) {
641 <            int c = runControl;
642 <            if (runStateOf(c) >= state)
641 >            int s = runState;
642 >            if ((s & level) != 0)
643                  return false;
644 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
644 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
645                  return true;
646          }
647      }
648  
649 +    // workers array maintenance
650 +
651      /**
652 <     * Controls whether to add spares to maintain parallelism
652 >     * Records and returns a workers array index for new worker.
653       */
654 <    private volatile boolean maintainsParallelism;
654 >    private int recordWorker(ForkJoinWorkerThread w) {
655 >        // Try using slot totalCount-1. If not available, scan and/or resize
656 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
657 >        final ReentrantLock lock = this.workerLock;
658 >        lock.lock();
659 >        try {
660 >            ForkJoinWorkerThread[] ws = workers;
661 >            int n = ws.length;
662 >            if (k < 0 || k >= n || ws[k] != null) {
663 >                for (k = 0; k < n && ws[k] != null; ++k)
664 >                    ;
665 >                if (k == n)
666 >                    ws = Arrays.copyOf(ws, n << 1);
667 >            }
668 >            ws[k] = w;
669 >            workers = ws; // volatile array write ensures slot visibility
670 >        } finally {
671 >            lock.unlock();
672 >        }
673 >        return k;
674 >    }
675  
676 <    // Constructors
676 >    /**
677 >     * Nulls out record of worker in workers array
678 >     */
679 >    private void forgetWorker(ForkJoinWorkerThread w) {
680 >        int idx = w.poolIndex;
681 >        // Locking helps method recordWorker avoid unnecessary expansion
682 >        final ReentrantLock lock = this.workerLock;
683 >        lock.lock();
684 >        try {
685 >            ForkJoinWorkerThread[] ws = workers;
686 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
687 >                ws[idx] = null;
688 >        } finally {
689 >            lock.unlock();
690 >        }
691 >    }
692  
693      /**
694 <     * Creates a {@code ForkJoinPool} with a pool size equal to the
695 <     * number of processors available on the system, using the
696 <     * {@linkplain #defaultForkJoinWorkerThreadFactory default thread factory}.
694 >     * Final callback from terminating worker.  Removes record of
695 >     * worker from array, and adjusts counts. If pool is shutting
696 >     * down, tries to complete termination.
697       *
698 <     * @throws SecurityException if a security manager exists and
351 <     *         the caller is not permitted to modify threads
352 <     *         because it does not hold {@link
353 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
698 >     * @param w the worker
699       */
700 <    public ForkJoinPool() {
701 <        this(Runtime.getRuntime().availableProcessors(),
702 <             defaultForkJoinWorkerThreadFactory);
700 >    final void workerTerminated(ForkJoinWorkerThread w) {
701 >        forgetWorker(w);
702 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
703 >        while (w.stealCount != 0) // collect final count
704 >            tryAccumulateStealCount(w);
705 >        tryTerminate(false);
706      }
707  
708 +    // Waiting for and signalling events
709 +
710      /**
711 <     * Creates a {@code ForkJoinPool} with the indicated parallelism level
712 <     * threads and using the
713 <     * {@linkplain #defaultForkJoinWorkerThreadFactory default thread factory}.
714 <     *
365 <     * @param parallelism the number of worker threads
366 <     * @throws IllegalArgumentException if parallelism less than or
367 <     * equal to zero
368 <     * @throws SecurityException if a security manager exists and
369 <     *         the caller is not permitted to modify threads
370 <     *         because it does not hold {@link
371 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
711 >     * Releases workers blocked on a count not equal to current count.
712 >     * Normally called after precheck that eventWaiters isn't zero to
713 >     * avoid wasted array checks. Gives up upon a change in count or
714 >     * upon releasing two workers, letting others take over.
715       */
716 <    public ForkJoinPool(int parallelism) {
717 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
716 >    private void releaseEventWaiters() {
717 >        ForkJoinWorkerThread[] ws = workers;
718 >        int n = ws.length;
719 >        long h = eventWaiters;
720 >        int ec = eventCount;
721 >        boolean releasedOne = false;
722 >        ForkJoinWorkerThread w; int id;
723 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
724 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
725 >               id < n && (w = ws[id]) != null) {
726 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
727 >                                          h,  w.nextWaiter)) {
728 >                LockSupport.unpark(w);
729 >                if (releasedOne) // exit on second release
730 >                    break;
731 >                releasedOne = true;
732 >            }
733 >            if (eventCount != ec)
734 >                break;
735 >            h = eventWaiters;
736 >        }
737      }
738  
739      /**
740 <     * Creates a {@code ForkJoinPool} with parallelism equal to the
741 <     * number of processors available on the system and using the
380 <     * given thread factory.
381 <     *
382 <     * @param factory the factory for creating new threads
383 <     * @throws NullPointerException if factory is null
384 <     * @throws SecurityException if a security manager exists and
385 <     *         the caller is not permitted to modify threads
386 <     *         because it does not hold {@link
387 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
740 >     * Tries to advance eventCount and releases waiters. Called only
741 >     * from workers.
742       */
743 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
744 <        this(Runtime.getRuntime().availableProcessors(), factory);
743 >    final void signalWork() {
744 >        int c; // try to increment event count -- CAS failure OK
745 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
746 >        if (eventWaiters != 0L)
747 >            releaseEventWaiters();
748      }
749  
750      /**
751 <     * Creates a {@code ForkJoinPool} with the given parallelism and
752 <     * thread factory.
751 >     * Adds the given worker to event queue and blocks until
752 >     * terminating or event count advances from the given value
753       *
754 <     * @param parallelism the targeted number of worker threads
755 <     * @param factory the factory for creating new threads
399 <     * @throws IllegalArgumentException if parallelism less than or
400 <     * equal to zero, or greater than implementation limit
401 <     * @throws NullPointerException if factory is null
402 <     * @throws SecurityException if a security manager exists and
403 <     *         the caller is not permitted to modify threads
404 <     *         because it does not hold {@link
405 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
754 >     * @param w the calling worker thread
755 >     * @param ec the count
756       */
757 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
758 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
759 <            throw new IllegalArgumentException();
760 <        if (factory == null)
761 <            throw new NullPointerException();
762 <        checkPermission();
763 <        this.factory = factory;
764 <        this.parallelism = parallelism;
765 <        this.maxPoolSize = MAX_THREADS;
766 <        this.maintainsParallelism = true;
767 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
768 <        this.workerLock = new ReentrantLock();
769 <        this.termination = workerLock.newCondition();
420 <        this.stealCount = new AtomicLong();
421 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
422 <        // worker array and workers are lazily constructed
757 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
758 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
759 >        long h;
760 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
761 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
762 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
763 >               eventCount == ec) {
764 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765 >                                          w.nextWaiter = h, nh)) {
766 >                awaitEvent(w, ec);
767 >                break;
768 >            }
769 >        }
770      }
771  
772      /**
773 <     * Creates a new worker thread using factory.
773 >     * Blocks the given worker (that has already been entered as an
774 >     * event waiter) until terminating or event count advances from
775 >     * the given value. The oldest (first) waiter uses a timed wait to
776 >     * occasionally one-by-one shrink the number of workers (to a
777 >     * minimum of one) if the pool has not been used for extended
778 >     * periods.
779       *
780 <     * @param index the index to assign worker
781 <     * @return new worker, or null if factory failed
780 >     * @param w the calling worker thread
781 >     * @param ec the count
782       */
783 <    private ForkJoinWorkerThread createWorker(int index) {
784 <        Thread.UncaughtExceptionHandler h = ueh;
785 <        ForkJoinWorkerThread w = factory.newThread(this);
786 <        if (w != null) {
787 <            w.poolIndex = index;
788 <            w.setDaemon(true);
789 <            w.setAsyncMode(locallyFifo);
790 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
791 <            if (h != null)
792 <                w.setUncaughtExceptionHandler(h);
783 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
784 >        while (eventCount == ec) {
785 >            if (tryAccumulateStealCount(w)) { // transfer while idle
786 >                boolean untimed = (w.nextWaiter != 0L ||
787 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
788 >                long startTime = untimed? 0 : System.nanoTime();
789 >                Thread.interrupted();         // clear/ignore interrupt
790 >                if (eventCount != ec || w.runState != 0 ||
791 >                    runState >= TERMINATING)  // recheck after clear
792 >                    break;
793 >                if (untimed)
794 >                    LockSupport.park(w);
795 >                else {
796 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
797 >                    if (eventCount != ec || w.runState != 0 ||
798 >                        runState >= TERMINATING)
799 >                        break;
800 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
801 >                        tryShutdownUnusedWorker(ec);
802 >                }
803 >            }
804          }
442        return w;
805      }
806  
807 +    // Maintaining parallelism
808 +
809      /**
810 <     * Returns a good size for worker array given pool size.
447 <     * Currently requires size to be a power of two.
810 >     * Pushes worker onto the spare stack
811       */
812 <    private static int arraySizeFor(int poolSize) {
813 <        return (poolSize <= 1) ? 1 :
814 <            (1 << (32 - Integer.numberOfLeadingZeros(poolSize-1)));
812 >    final void pushSpare(ForkJoinWorkerThread w) {
813 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
814 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
815 >                                               w.nextSpare = spareWaiters,ns));
816      }
817  
818      /**
819 <     * Creates or resizes array if necessary to hold newLength.
820 <     * Call only under exclusion.
457 <     *
458 <     * @return the array
819 >     * Tries (once) to resume a spare if the number of running
820 >     * threads is less than target.
821       */
822 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
822 >    private void tryResumeSpare() {
823 >        int sw, id;
824          ForkJoinWorkerThread[] ws = workers;
825 <        if (ws == null)
826 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
827 <        else if (newLength > ws.length)
828 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
829 <        else
830 <            return ws;
825 >        int n = ws.length;
826 >        ForkJoinWorkerThread w;
827 >        if ((sw = spareWaiters) != 0 &&
828 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
829 >            id < n && (w = ws[id]) != null &&
830 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
831 >            spareWaiters == sw &&
832 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
833 >                                     sw, w.nextSpare)) {
834 >            int c; // increment running count before resume
835 >            do {} while(!UNSAFE.compareAndSwapInt
836 >                        (this, workerCountsOffset,
837 >                         c = workerCounts, c + ONE_RUNNING));
838 >            if (w.tryUnsuspend())
839 >                LockSupport.unpark(w);
840 >            else   // back out if w was shutdown
841 >                decrementWorkerCounts(ONE_RUNNING, 0);
842 >        }
843      }
844  
845      /**
846 <     * Tries to shrink workers into smaller array after one or more terminate.
847 <     */
848 <    private void tryShrinkWorkerArray() {
849 <        ForkJoinWorkerThread[] ws = workers;
850 <        if (ws != null) {
851 <            int len = ws.length;
852 <            int last = len - 1;
853 <            while (last >= 0 && ws[last] == null)
854 <                --last;
855 <            int newLength = arraySizeFor(last+1);
856 <            if (newLength < len)
857 <                workers = Arrays.copyOf(ws, newLength);
846 >     * Tries to increase the number of running workers if below target
847 >     * parallelism: If a spare exists tries to resume it via
848 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
849 >     * existing workers are busy, adds a new worker. In all cases also
850 >     * helps wake up releasable workers waiting for work.
851 >     */
852 >    private void helpMaintainParallelism() {
853 >        int pc = parallelism;
854 >        int wc, rs, tc;
855 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
856 >               (rs = runState) < TERMINATING) {
857 >            if (spareWaiters != 0)
858 >                tryResumeSpare();
859 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
860 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
861 >                break;   // enough total
862 >            else if (runState == rs && workerCounts == wc &&
863 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
864 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
865 >                ForkJoinWorkerThread w = null;
866 >                try {
867 >                    w = factory.newThread(this);
868 >                } finally { // adjust on null or exceptional factory return
869 >                    if (w == null) {
870 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
871 >                        tryTerminate(false); // handle failure during shutdown
872 >                    }
873 >                }
874 >                if (w == null)
875 >                    break;
876 >                w.start(recordWorker(w), ueh);
877 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
878 >                    int c; // advance event count
879 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
880 >                                             c = eventCount, c+1);
881 >                    break; // add at most one unless total below target
882 >                }
883 >            }
884          }
885 +        if (eventWaiters != 0L)
886 +            releaseEventWaiters();
887      }
888  
889      /**
890 <     * Initializes workers if necessary.
890 >     * Callback from the oldest waiter in awaitEvent waking up after a
891 >     * period of non-use. If all workers are idle, tries (once) to
892 >     * shutdown an event waiter or a spare, if one exists. Note that
893 >     * we don't need CAS or locks here because the method is called
894 >     * only from one thread occasionally waking (and even misfires are
895 >     * OK). Note that until the shutdown worker fully terminates,
896 >     * workerCounts will overestimate total count, which is tolerable.
897 >     *
898 >     * @param ec the event count waited on by caller (to abort
899 >     * attempt if count has since changed).
900       */
901 <    final void ensureWorkerInitialization() {
902 <        ForkJoinWorkerThread[] ws = workers;
903 <        if (ws == null) {
904 <            final ReentrantLock lock = this.workerLock;
905 <            lock.lock();
906 <            try {
907 <                ws = workers;
908 <                if (ws == null) {
909 <                    int ps = parallelism;
910 <                    ws = ensureWorkerArrayCapacity(ps);
911 <                    for (int i = 0; i < ps; ++i) {
912 <                        ForkJoinWorkerThread w = createWorker(i);
913 <                        if (w != null) {
914 <                            ws[i] = w;
915 <                            w.start();
916 <                            updateWorkerCount(1);
917 <                        }
918 <                    }
901 >    private void tryShutdownUnusedWorker(int ec) {
902 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
903 >            ForkJoinWorkerThread[] ws = workers;
904 >            int n = ws.length;
905 >            ForkJoinWorkerThread w = null;
906 >            boolean shutdown = false;
907 >            int sw;
908 >            long h;
909 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
910 >                int id = (sw & SPARE_ID_MASK) - 1;
911 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
912 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
913 >                                             sw, w.nextSpare))
914 >                    shutdown = true;
915 >            }
916 >            else if ((h = eventWaiters) != 0L) {
917 >                long nh;
918 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
919 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
920 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
921 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
922 >                    shutdown = true;
923 >            }
924 >            if (w != null && shutdown) {
925 >                w.shutdown();
926 >                LockSupport.unpark(w);
927 >            }
928 >        }
929 >        releaseEventWaiters(); // in case of interference
930 >    }
931 >
932 >    /**
933 >     * Callback from workers invoked upon each top-level action (i.e.,
934 >     * stealing a task or taking a submission and running it).
935 >     * Performs one or more of the following:
936 >     *
937 >     * 1. If the worker is active and either did not run a task
938 >     *    or there are too many workers, try to set its active status
939 >     *    to inactive and update activeCount. On contention, we may
940 >     *    try again in this or a subsequent call.
941 >     *
942 >     * 2. If not enough total workers, help create some.
943 >     *
944 >     * 3. If there are too many running workers, suspend this worker
945 >     *    (first forcing inactive if necessary).  If it is not needed,
946 >     *    it may be shutdown while suspended (via
947 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
948 >     *    rechecks running thread count and need for event sync.
949 >     *
950 >     * 4. If worker did not run a task, await the next task event via
951 >     *    eventSync if necessary (first forcing inactivation), upon
952 >     *    which the worker may be shutdown via
953 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
954 >     *    existing event waiters that are now releasable,
955 >     *
956 >     * @param w the worker
957 >     * @param ran true if worker ran a task since last call to this method
958 >     */
959 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
960 >        int wec = w.lastEventCount;
961 >        boolean active = w.active;
962 >        boolean inactivate = false;
963 >        int pc = parallelism;
964 >        int rs;
965 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
966 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
967 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
968 >                inactivate = active = w.active = false;
969 >            int wc = workerCounts;
970 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
971 >                if (!(inactivate |= active) && // must inactivate to suspend
972 >                    workerCounts == wc &&      // try to suspend as spare
973 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
974 >                                             wc, wc - ONE_RUNNING))
975 >                    w.suspendAsSpare();
976 >            }
977 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
978 >                helpMaintainParallelism();     // not enough workers
979 >            else if (!ran) {
980 >                long h = eventWaiters;
981 >                int ec = eventCount;
982 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
983 >                    releaseEventWaiters();     // release others before waiting
984 >                else if (ec != wec) {
985 >                    w.lastEventCount = ec;     // no need to wait
986 >                    break;
987                  }
988 <            } finally {
989 <                lock.unlock();
988 >                else if (!(inactivate |= active))  
989 >                    eventSync(w, wec);         // must inactivate before sync
990              }
991 +            else
992 +                break;
993          }
994      }
995  
996      /**
997 <     * Worker creation and startup for threads added via setParallelism.
997 >     * Helps and/or blocks awaiting join of the given task.
998 >     * See above for explanation.
999 >     *
1000 >     * @param joinMe the task to join
1001 >     * @param worker the current worker thread
1002       */
1003 <    private void createAndStartAddedWorkers() {
1004 <        resumeAllSpares();  // Allow spares to convert to nonspare
1005 <        int ps = parallelism;
1006 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1007 <        int len = ws.length;
1008 <        // Sweep through slots, to keep lowest indices most populated
1009 <        int k = 0;
1010 <        while (k < len) {
1011 <            if (ws[k] != null) {
1012 <                ++k;
1013 <                continue;
1003 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1004 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1005 >        while (joinMe.status >= 0) {
1006 >            int wc;
1007 >            worker.helpJoinTask(joinMe);
1008 >            if (joinMe.status < 0)
1009 >                break;
1010 >            else if (retries > 0)
1011 >                --retries;
1012 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1013 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1014 >                                              wc, wc - ONE_RUNNING)) {
1015 >                int stat, c; long h;
1016 >                while ((stat = joinMe.status) >= 0 &&
1017 >                       (h = eventWaiters) != 0L && // help release others
1018 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1019 >                    releaseEventWaiters();
1020 >                if (stat >= 0 &&
1021 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1022 >                     (stat =
1023 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1024 >                    helpMaintainParallelism(); // timeout or no running workers
1025 >                do {} while (!UNSAFE.compareAndSwapInt
1026 >                             (this, workerCountsOffset,
1027 >                              c = workerCounts, c + ONE_RUNNING));
1028 >                if (stat < 0)
1029 >                    break;   // else restart
1030              }
1031 <            int s = workerCounts;
1032 <            int tc = totalCountOf(s);
1033 <            int rc = runningCountOf(s);
1034 <            if (rc >= ps || tc >= ps)
1031 >        }
1032 >    }
1033 >
1034 >    /**
1035 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1036 >     */
1037 >    final void awaitBlocker(ManagedBlocker blocker)
1038 >        throws InterruptedException {
1039 >        while (!blocker.isReleasable()) {
1040 >            int wc = workerCounts;
1041 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1042 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1043 >                                         wc, wc - ONE_RUNNING)) {
1044 >                try {
1045 >                    while (!blocker.isReleasable()) {
1046 >                        long h = eventWaiters;
1047 >                        if (h != 0L &&
1048 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1049 >                            releaseEventWaiters();
1050 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1051 >                                 runState < TERMINATING)
1052 >                            helpMaintainParallelism();
1053 >                        else if (blocker.block())
1054 >                            break;
1055 >                    }
1056 >                } finally {
1057 >                    int c;
1058 >                    do {} while (!UNSAFE.compareAndSwapInt
1059 >                                 (this, workerCountsOffset,
1060 >                                  c = workerCounts, c + ONE_RUNNING));
1061 >                }
1062                  break;
1063 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1064 <                ForkJoinWorkerThread w = createWorker(k);
1063 >            }
1064 >        }
1065 >    }
1066 >
1067 >    /**
1068 >     * Possibly initiates and/or completes termination.
1069 >     *
1070 >     * @param now if true, unconditionally terminate, else only
1071 >     * if shutdown and empty queue and no active workers
1072 >     * @return true if now terminating or terminated
1073 >     */
1074 >    private boolean tryTerminate(boolean now) {
1075 >        if (now)
1076 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1077 >        else if (runState < SHUTDOWN ||
1078 >                 !submissionQueue.isEmpty() ||
1079 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1080 >            return false;
1081 >
1082 >        if (advanceRunLevel(TERMINATING))
1083 >            startTerminating();
1084 >
1085 >        // Finish now if all threads terminated; else in some subsequent call
1086 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1087 >            advanceRunLevel(TERMINATED);
1088 >            termination.arrive();
1089 >        }
1090 >        return true;
1091 >    }
1092 >
1093 >    /**
1094 >     * Actions on transition to TERMINATING
1095 >     *
1096 >     * Runs up to four passes through workers: (0) shutting down each
1097 >     * (without waking up if parked) to quickly spread notifications
1098 >     * without unnecessary bouncing around event queues etc (1) wake
1099 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1100 >     * interrupted workers
1101 >     */
1102 >    private void startTerminating() {
1103 >        cancelSubmissions();
1104 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1105 >            int c; // advance event count
1106 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1107 >                                     c = eventCount, c+1);
1108 >            eventWaiters = 0L; // clobber lists
1109 >            spareWaiters = 0;
1110 >            ForkJoinWorkerThread[] ws = workers;
1111 >            int n = ws.length;
1112 >            for (int i = 0; i < n; ++i) {
1113 >                ForkJoinWorkerThread w = ws[i];
1114                  if (w != null) {
1115 <                    ws[k++] = w;
1116 <                    w.start();
1117 <                }
1118 <                else {
1119 <                    updateWorkerCount(-1); // back out on failed creation
1120 <                    break;
1115 >                    w.shutdown();
1116 >                    if (passes > 0 && !w.isTerminated()) {
1117 >                        w.cancelTasks();
1118 >                        LockSupport.unpark(w);
1119 >                        if (passes > 1) {
1120 >                            try {
1121 >                                w.interrupt();
1122 >                            } catch (SecurityException ignore) {
1123 >                            }
1124 >                        }
1125 >                    }
1126                  }
1127              }
1128          }
1129      }
1130  
1131 +    /**
1132 +     * Clear out and cancel submissions, ignoring exceptions
1133 +     */
1134 +    private void cancelSubmissions() {
1135 +        ForkJoinTask<?> task;
1136 +        while ((task = submissionQueue.poll()) != null) {
1137 +            try {
1138 +                task.cancel(false);
1139 +            } catch (Throwable ignore) {
1140 +            }
1141 +        }
1142 +    }
1143 +
1144 +    // misc support for ForkJoinWorkerThread
1145 +
1146 +    /**
1147 +     * Returns pool number
1148 +     */
1149 +    final int getPoolNumber() {
1150 +        return poolNumber;
1151 +    }
1152 +
1153 +    /**
1154 +     * Tries to accumulates steal count from a worker, clearing
1155 +     * the worker's value.
1156 +     *
1157 +     * @return true if worker steal count now zero
1158 +     */
1159 +    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1160 +        int sc = w.stealCount;
1161 +        long c = stealCount;
1162 +        // CAS even if zero, for fence effects
1163 +        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1164 +            if (sc != 0)
1165 +                w.stealCount = 0;
1166 +            return true;
1167 +        }
1168 +        return sc == 0;
1169 +    }
1170 +
1171 +    /**
1172 +     * Returns the approximate (non-atomic) number of idle threads per
1173 +     * active thread.
1174 +     */
1175 +    final int idlePerActive() {
1176 +        int pc = parallelism; // use parallelism, not rc
1177 +        int ac = runState;    // no mask -- artificially boosts during shutdown
1178 +        // Use exact results for small values, saturate past 4
1179 +        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1180 +    }
1181 +
1182 +    // Public and protected methods
1183 +
1184 +    // Constructors
1185 +
1186 +    /**
1187 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1188 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1189 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1190 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1191 +     *
1192 +     * @throws SecurityException if a security manager exists and
1193 +     *         the caller is not permitted to modify threads
1194 +     *         because it does not hold {@link
1195 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1196 +     */
1197 +    public ForkJoinPool() {
1198 +        this(Runtime.getRuntime().availableProcessors(),
1199 +             defaultForkJoinWorkerThreadFactory, null, false);
1200 +    }
1201 +
1202 +    /**
1203 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1204 +     * level, the {@linkplain
1205 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1206 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1207 +     *
1208 +     * @param parallelism the parallelism level
1209 +     * @throws IllegalArgumentException if parallelism less than or
1210 +     *         equal to zero, or greater than implementation limit
1211 +     * @throws SecurityException if a security manager exists and
1212 +     *         the caller is not permitted to modify threads
1213 +     *         because it does not hold {@link
1214 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1215 +     */
1216 +    public ForkJoinPool(int parallelism) {
1217 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1218 +    }
1219 +
1220 +    /**
1221 +     * Creates a {@code ForkJoinPool} with the given parameters.
1222 +     *
1223 +     * @param parallelism the parallelism level. For default value,
1224 +     * use {@link java.lang.Runtime#availableProcessors}.
1225 +     * @param factory the factory for creating new threads. For default value,
1226 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1227 +     * @param handler the handler for internal worker threads that
1228 +     * terminate due to unrecoverable errors encountered while executing
1229 +     * tasks. For default value, use <code>null</code>.
1230 +     * @param asyncMode if true,
1231 +     * establishes local first-in-first-out scheduling mode for forked
1232 +     * tasks that are never joined. This mode may be more appropriate
1233 +     * than default locally stack-based mode in applications in which
1234 +     * worker threads only process event-style asynchronous tasks.
1235 +     * For default value, use <code>false</code>.
1236 +     * @throws IllegalArgumentException if parallelism less than or
1237 +     *         equal to zero, or greater than implementation limit
1238 +     * @throws NullPointerException if the factory is null
1239 +     * @throws SecurityException if a security manager exists and
1240 +     *         the caller is not permitted to modify threads
1241 +     *         because it does not hold {@link
1242 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1243 +     */
1244 +    public ForkJoinPool(int parallelism,
1245 +                        ForkJoinWorkerThreadFactory factory,
1246 +                        Thread.UncaughtExceptionHandler handler,
1247 +                        boolean asyncMode) {
1248 +        checkPermission();
1249 +        if (factory == null)
1250 +            throw new NullPointerException();
1251 +        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1252 +            throw new IllegalArgumentException();
1253 +        this.parallelism = parallelism;
1254 +        this.factory = factory;
1255 +        this.ueh = handler;
1256 +        this.locallyFifo = asyncMode;
1257 +        int arraySize = initialArraySizeFor(parallelism);
1258 +        this.workers = new ForkJoinWorkerThread[arraySize];
1259 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1260 +        this.workerLock = new ReentrantLock();
1261 +        this.termination = new Phaser(1);
1262 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1263 +    }
1264 +
1265 +    /**
1266 +     * Returns initial power of two size for workers array.
1267 +     * @param pc the initial parallelism level
1268 +     */
1269 +    private static int initialArraySizeFor(int pc) {
1270 +        // If possible, initially allocate enough space for one spare
1271 +        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1272 +        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1273 +        size |= size >>> 1;
1274 +        size |= size >>> 2;
1275 +        size |= size >>> 4;
1276 +        size |= size >>> 8;
1277 +        return size + 1;
1278 +    }
1279 +
1280      // Execution methods
1281  
1282      /**
# Line 553 | Line 1285 | public class ForkJoinPool extends Abstra
1285      private <T> void doSubmit(ForkJoinTask<T> task) {
1286          if (task == null)
1287              throw new NullPointerException();
1288 <        if (isShutdown())
1288 >        if (runState >= SHUTDOWN)
1289              throw new RejectedExecutionException();
558        if (workers == null)
559            ensureWorkerInitialization();
1290          submissionQueue.offer(task);
1291 <        signalIdleWorkers();
1291 >        int c; // try to increment event count -- CAS failure OK
1292 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1293 >        helpMaintainParallelism(); // create, start, or resume some workers
1294      }
1295  
1296      /**
# Line 566 | Line 1298 | public class ForkJoinPool extends Abstra
1298       *
1299       * @param task the task
1300       * @return the task's result
1301 <     * @throws NullPointerException if task is null
1302 <     * @throws RejectedExecutionException if pool is shut down
1301 >     * @throws NullPointerException if the task is null
1302 >     * @throws RejectedExecutionException if the task cannot be
1303 >     *         scheduled for execution
1304       */
1305      public <T> T invoke(ForkJoinTask<T> task) {
1306          doSubmit(task);
# Line 578 | Line 1311 | public class ForkJoinPool extends Abstra
1311       * Arranges for (asynchronous) execution of the given task.
1312       *
1313       * @param task the task
1314 <     * @throws NullPointerException if task is null
1315 <     * @throws RejectedExecutionException if pool is shut down
1314 >     * @throws NullPointerException if the task is null
1315 >     * @throws RejectedExecutionException if the task cannot be
1316 >     *         scheduled for execution
1317       */
1318      public void execute(ForkJoinTask<?> task) {
1319          doSubmit(task);
# Line 587 | Line 1321 | public class ForkJoinPool extends Abstra
1321  
1322      // AbstractExecutorService methods
1323  
1324 +    /**
1325 +     * @throws NullPointerException if the task is null
1326 +     * @throws RejectedExecutionException if the task cannot be
1327 +     *         scheduled for execution
1328 +     */
1329      public void execute(Runnable task) {
1330          ForkJoinTask<?> job;
1331          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 596 | Line 1335 | public class ForkJoinPool extends Abstra
1335          doSubmit(job);
1336      }
1337  
1338 +    /**
1339 +     * Submits a ForkJoinTask for execution.
1340 +     *
1341 +     * @param task the task to submit
1342 +     * @return the task
1343 +     * @throws NullPointerException if the task is null
1344 +     * @throws RejectedExecutionException if the task cannot be
1345 +     *         scheduled for execution
1346 +     */
1347 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1348 +        doSubmit(task);
1349 +        return task;
1350 +    }
1351 +
1352 +    /**
1353 +     * @throws NullPointerException if the task is null
1354 +     * @throws RejectedExecutionException if the task cannot be
1355 +     *         scheduled for execution
1356 +     */
1357      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1358          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1359          doSubmit(job);
1360          return job;
1361      }
1362  
1363 +    /**
1364 +     * @throws NullPointerException if the task is null
1365 +     * @throws RejectedExecutionException if the task cannot be
1366 +     *         scheduled for execution
1367 +     */
1368      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1369          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1370          doSubmit(job);
1371          return job;
1372      }
1373  
1374 +    /**
1375 +     * @throws NullPointerException if the task is null
1376 +     * @throws RejectedExecutionException if the task cannot be
1377 +     *         scheduled for execution
1378 +     */
1379      public ForkJoinTask<?> submit(Runnable task) {
1380          ForkJoinTask<?> job;
1381          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 619 | Line 1387 | public class ForkJoinPool extends Abstra
1387      }
1388  
1389      /**
1390 <     * Submits a ForkJoinTask for execution.
1391 <     *
624 <     * @param task the task to submit
625 <     * @return the task
626 <     * @throws RejectedExecutionException if the task cannot be
627 <     *         scheduled for execution
628 <     * @throws NullPointerException if the task is null
1390 >     * @throws NullPointerException       {@inheritDoc}
1391 >     * @throws RejectedExecutionException {@inheritDoc}
1392       */
630    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
631        doSubmit(task);
632        return task;
633    }
634
635
1393      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1394          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1395              new ArrayList<ForkJoinTask<T>>(tasks.size());
# Line 641 | Line 1398 | public class ForkJoinPool extends Abstra
1398          invoke(new InvokeAll<T>(forkJoinTasks));
1399  
1400          @SuppressWarnings({"unchecked", "rawtypes"})
1401 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1401 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1402          return futures;
1403      }
1404  
# Line 655 | Line 1412 | public class ForkJoinPool extends Abstra
1412          private static final long serialVersionUID = -7914297376763021607L;
1413      }
1414  
658    // Configuration and status settings and queries
659
1415      /**
1416       * Returns the factory used for constructing new workers.
1417       *
# Line 673 | Line 1428 | public class ForkJoinPool extends Abstra
1428       * @return the handler, or {@code null} if none
1429       */
1430      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1431 <        Thread.UncaughtExceptionHandler h;
677 <        final ReentrantLock lock = this.workerLock;
678 <        lock.lock();
679 <        try {
680 <            h = ueh;
681 <        } finally {
682 <            lock.unlock();
683 <        }
684 <        return h;
685 <    }
686 <
687 <    /**
688 <     * Sets the handler for internal worker threads that terminate due
689 <     * to unrecoverable errors encountered while executing tasks.
690 <     * Unless set, the current default or ThreadGroup handler is used
691 <     * as handler.
692 <     *
693 <     * @param h the new handler
694 <     * @return the old handler, or {@code null} if none
695 <     * @throws SecurityException if a security manager exists and
696 <     *         the caller is not permitted to modify threads
697 <     *         because it does not hold {@link
698 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
699 <     */
700 <    public Thread.UncaughtExceptionHandler
701 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
702 <        checkPermission();
703 <        Thread.UncaughtExceptionHandler old = null;
704 <        final ReentrantLock lock = this.workerLock;
705 <        lock.lock();
706 <        try {
707 <            old = ueh;
708 <            ueh = h;
709 <            ForkJoinWorkerThread[] ws = workers;
710 <            if (ws != null) {
711 <                for (int i = 0; i < ws.length; ++i) {
712 <                    ForkJoinWorkerThread w = ws[i];
713 <                    if (w != null)
714 <                        w.setUncaughtExceptionHandler(h);
715 <                }
716 <            }
717 <        } finally {
718 <            lock.unlock();
719 <        }
720 <        return old;
1431 >        return ueh;
1432      }
1433  
723
1434      /**
1435 <     * Sets the target parallelism level of this pool.
1435 >     * Returns the targeted parallelism level of this pool.
1436       *
1437 <     * @param parallelism the target parallelism
728 <     * @throws IllegalArgumentException if parallelism less than or
729 <     * equal to zero or greater than maximum size bounds
730 <     * @throws SecurityException if a security manager exists and
731 <     *         the caller is not permitted to modify threads
732 <     *         because it does not hold {@link
733 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
734 <     */
735 <    public void setParallelism(int parallelism) {
736 <        checkPermission();
737 <        if (parallelism <= 0 || parallelism > maxPoolSize)
738 <            throw new IllegalArgumentException();
739 <        final ReentrantLock lock = this.workerLock;
740 <        lock.lock();
741 <        try {
742 <            if (!isTerminating()) {
743 <                int p = this.parallelism;
744 <                this.parallelism = parallelism;
745 <                if (parallelism > p)
746 <                    createAndStartAddedWorkers();
747 <                else
748 <                    trimSpares();
749 <            }
750 <        } finally {
751 <            lock.unlock();
752 <        }
753 <        signalIdleWorkers();
754 <    }
755 <
756 <    /**
757 <     * Returns the targeted number of worker threads in this pool.
758 <     *
759 <     * @return the targeted number of worker threads in this pool
1437 >     * @return the targeted parallelism level of this pool
1438       */
1439      public int getParallelism() {
1440          return parallelism;
# Line 771 | Line 1449 | public class ForkJoinPool extends Abstra
1449       * @return the number of worker threads
1450       */
1451      public int getPoolSize() {
1452 <        return totalCountOf(workerCounts);
775 <    }
776 <
777 <    /**
778 <     * Returns the maximum number of threads allowed to exist in the
779 <     * pool, even if there are insufficient unblocked running threads.
780 <     *
781 <     * @return the maximum
782 <     */
783 <    public int getMaximumPoolSize() {
784 <        return maxPoolSize;
785 <    }
786 <
787 <    /**
788 <     * Sets the maximum number of threads allowed to exist in the
789 <     * pool, even if there are insufficient unblocked running threads.
790 <     * Setting this value has no effect on current pool size. It
791 <     * controls construction of new threads.
792 <     *
793 <     * @throws IllegalArgumentException if negative or greater than
794 <     * internal implementation limit
795 <     */
796 <    public void setMaximumPoolSize(int newMax) {
797 <        if (newMax < 0 || newMax > MAX_THREADS)
798 <            throw new IllegalArgumentException();
799 <        maxPoolSize = newMax;
800 <    }
801 <
802 <
803 <    /**
804 <     * Returns {@code true} if this pool dynamically maintains its
805 <     * target parallelism level. If false, new threads are added only
806 <     * to avoid possible starvation.  This setting is by default true.
807 <     *
808 <     * @return {@code true} if maintains parallelism
809 <     */
810 <    public boolean getMaintainsParallelism() {
811 <        return maintainsParallelism;
812 <    }
813 <
814 <    /**
815 <     * Sets whether this pool dynamically maintains its target
816 <     * parallelism level. If false, new threads are added only to
817 <     * avoid possible starvation.
818 <     *
819 <     * @param enable {@code true} to maintain parallelism
820 <     */
821 <    public void setMaintainsParallelism(boolean enable) {
822 <        maintainsParallelism = enable;
823 <    }
824 <
825 <    /**
826 <     * Establishes local first-in-first-out scheduling mode for forked
827 <     * tasks that are never joined. This mode may be more appropriate
828 <     * than default locally stack-based mode in applications in which
829 <     * worker threads only process asynchronous tasks.  This method is
830 <     * designed to be invoked only when the pool is quiescent, and
831 <     * typically only before any tasks are submitted. The effects of
832 <     * invocations at other times may be unpredictable.
833 <     *
834 <     * @param async if {@code true}, use locally FIFO scheduling
835 <     * @return the previous mode
836 <     * @see #getAsyncMode
837 <     */
838 <    public boolean setAsyncMode(boolean async) {
839 <        boolean oldMode = locallyFifo;
840 <        locallyFifo = async;
841 <        ForkJoinWorkerThread[] ws = workers;
842 <        if (ws != null) {
843 <            for (int i = 0; i < ws.length; ++i) {
844 <                ForkJoinWorkerThread t = ws[i];
845 <                if (t != null)
846 <                    t.setAsyncMode(async);
847 <            }
848 <        }
849 <        return oldMode;
1452 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1453      }
1454  
1455      /**
# Line 854 | Line 1457 | public class ForkJoinPool extends Abstra
1457       * scheduling mode for forked tasks that are never joined.
1458       *
1459       * @return {@code true} if this pool uses async mode
857     * @see #setAsyncMode
1460       */
1461      public boolean getAsyncMode() {
1462          return locallyFifo;
# Line 863 | Line 1465 | public class ForkJoinPool extends Abstra
1465      /**
1466       * Returns an estimate of the number of worker threads that are
1467       * not blocked waiting to join tasks or for other managed
1468 <     * synchronization.
1468 >     * synchronization. This method may overestimate the
1469 >     * number of running threads.
1470       *
1471       * @return the number of worker threads
1472       */
1473      public int getRunningThreadCount() {
1474 <        return runningCountOf(workerCounts);
1474 >        return workerCounts & RUNNING_COUNT_MASK;
1475      }
1476  
1477      /**
# Line 879 | Line 1482 | public class ForkJoinPool extends Abstra
1482       * @return the number of active threads
1483       */
1484      public int getActiveThreadCount() {
1485 <        return activeCountOf(runControl);
883 <    }
884 <
885 <    /**
886 <     * Returns an estimate of the number of threads that are currently
887 <     * idle waiting for tasks. This method may underestimate the
888 <     * number of idle threads.
889 <     *
890 <     * @return the number of idle threads
891 <     */
892 <    final int getIdleThreadCount() {
893 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
894 <        return (c <= 0) ? 0 : c;
1485 >        return runState & ACTIVE_COUNT_MASK;
1486      }
1487  
1488      /**
# Line 906 | Line 1497 | public class ForkJoinPool extends Abstra
1497       * @return {@code true} if all threads are currently idle
1498       */
1499      public boolean isQuiescent() {
1500 <        return activeCountOf(runControl) == 0;
1500 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1501      }
1502  
1503      /**
# Line 921 | Line 1512 | public class ForkJoinPool extends Abstra
1512       * @return the number of steals
1513       */
1514      public long getStealCount() {
1515 <        return stealCount.get();
925 <    }
926 <
927 <    /**
928 <     * Accumulates steal count from a worker.
929 <     * Call only when worker known to be idle.
930 <     */
931 <    private void updateStealCount(ForkJoinWorkerThread w) {
932 <        int sc = w.getAndClearStealCount();
933 <        if (sc != 0)
934 <            stealCount.addAndGet(sc);
1515 >        return stealCount;
1516      }
1517  
1518      /**
# Line 947 | Line 1528 | public class ForkJoinPool extends Abstra
1528      public long getQueuedTaskCount() {
1529          long count = 0;
1530          ForkJoinWorkerThread[] ws = workers;
1531 <        if (ws != null) {
1532 <            for (int i = 0; i < ws.length; ++i) {
1533 <                ForkJoinWorkerThread t = ws[i];
1534 <                if (t != null)
1535 <                    count += t.getQueueSize();
955 <            }
1531 >        int n = ws.length;
1532 >        for (int i = 0; i < n; ++i) {
1533 >            ForkJoinWorkerThread w = ws[i];
1534 >            if (w != null)
1535 >                count += w.getQueueSize();
1536          }
1537          return count;
1538      }
# Line 1007 | Line 1587 | public class ForkJoinPool extends Abstra
1587       * @return the number of elements transferred
1588       */
1589      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1590 <        int n = submissionQueue.drainTo(c);
1590 >        int count = submissionQueue.drainTo(c);
1591          ForkJoinWorkerThread[] ws = workers;
1592 <        if (ws != null) {
1593 <            for (int i = 0; i < ws.length; ++i) {
1594 <                ForkJoinWorkerThread w = ws[i];
1595 <                if (w != null)
1596 <                    n += w.drainTasksTo(c);
1017 <            }
1592 >        int n = ws.length;
1593 >        for (int i = 0; i < n; ++i) {
1594 >            ForkJoinWorkerThread w = ws[i];
1595 >            if (w != null)
1596 >                count += w.drainTasksTo(c);
1597          }
1598 <        return n;
1598 >        return count;
1599      }
1600  
1601      /**
# Line 1027 | Line 1606 | public class ForkJoinPool extends Abstra
1606       * @return a string identifying this pool, as well as its state
1607       */
1608      public String toString() {
1030        int ps = parallelism;
1031        int wc = workerCounts;
1032        int rc = runControl;
1609          long st = getStealCount();
1610          long qt = getQueuedTaskCount();
1611          long qs = getQueuedSubmissionCount();
1612 +        int wc = workerCounts;
1613 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1614 +        int rc = wc & RUNNING_COUNT_MASK;
1615 +        int pc = parallelism;
1616 +        int rs = runState;
1617 +        int ac = rs & ACTIVE_COUNT_MASK;
1618          return super.toString() +
1619 <            "[" + runStateToString(runStateOf(rc)) +
1620 <            ", parallelism = " + ps +
1621 <            ", size = " + totalCountOf(wc) +
1622 <            ", active = " + activeCountOf(rc) +
1623 <            ", running = " + runningCountOf(wc) +
1619 >            "[" + runLevelToString(rs) +
1620 >            ", parallelism = " + pc +
1621 >            ", size = " + tc +
1622 >            ", active = " + ac +
1623 >            ", running = " + rc +
1624              ", steals = " + st +
1625              ", tasks = " + qt +
1626              ", submissions = " + qs +
1627              "]";
1628      }
1629  
1630 <    private static String runStateToString(int rs) {
1631 <        switch(rs) {
1632 <        case RUNNING: return "Running";
1633 <        case SHUTDOWN: return "Shutting down";
1634 <        case TERMINATING: return "Terminating";
1053 <        case TERMINATED: return "Terminated";
1054 <        default: throw new Error("Unknown run state");
1055 <        }
1630 >    private static String runLevelToString(int s) {
1631 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1632 >                ((s & TERMINATING) != 0 ? "Terminating" :
1633 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1634 >                  "Running")));
1635      }
1636  
1058    // lifecycle control
1059
1637      /**
1638       * Initiates an orderly shutdown in which previously submitted
1639       * tasks are executed, but no new tasks will be accepted.
# Line 1071 | Line 1648 | public class ForkJoinPool extends Abstra
1648       */
1649      public void shutdown() {
1650          checkPermission();
1651 <        transitionRunStateTo(SHUTDOWN);
1652 <        if (canTerminateOnShutdown(runControl)) {
1076 <            if (workers == null) { // shutting down before workers created
1077 <                final ReentrantLock lock = this.workerLock;
1078 <                lock.lock();
1079 <                try {
1080 <                    if (workers == null) {
1081 <                        terminate();
1082 <                        transitionRunStateTo(TERMINATED);
1083 <                        termination.signalAll();
1084 <                    }
1085 <                } finally {
1086 <                    lock.unlock();
1087 <                }
1088 <            }
1089 <            terminateOnShutdown();
1090 <        }
1651 >        advanceRunLevel(SHUTDOWN);
1652 >        tryTerminate(false);
1653      }
1654  
1655      /**
1656 <     * Attempts to stop all actively executing tasks, and cancels all
1657 <     * waiting tasks.  Tasks that are in the process of being
1658 <     * submitted or executed concurrently during the course of this
1659 <     * method may or may not be rejected. Unlike some other executors,
1660 <     * this method cancels rather than collects non-executed tasks
1661 <     * upon termination, so always returns an empty list. However, you
1662 <     * can use method {@link #drainTasksTo} before invoking this
1663 <     * method to transfer unexecuted tasks to another collection.
1656 >     * Attempts to cancel and/or stop all tasks, and reject all
1657 >     * subsequently submitted tasks.  Tasks that are in the process of
1658 >     * being submitted or executed concurrently during the course of
1659 >     * this method may or may not be rejected. This method cancels
1660 >     * both existing and unexecuted tasks, in order to permit
1661 >     * termination in the presence of task dependencies. So the method
1662 >     * always returns an empty list (unlike the case for some other
1663 >     * Executors).
1664       *
1665       * @return an empty list
1666       * @throws SecurityException if a security manager exists and
# Line 1108 | Line 1670 | public class ForkJoinPool extends Abstra
1670       */
1671      public List<Runnable> shutdownNow() {
1672          checkPermission();
1673 <        terminate();
1673 >        tryTerminate(true);
1674          return Collections.emptyList();
1675      }
1676  
# Line 1118 | Line 1680 | public class ForkJoinPool extends Abstra
1680       * @return {@code true} if all tasks have completed following shut down
1681       */
1682      public boolean isTerminated() {
1683 <        return runStateOf(runControl) == TERMINATED;
1683 >        return runState >= TERMINATED;
1684      }
1685  
1686      /**
1687       * Returns {@code true} if the process of termination has
1688 <     * commenced but possibly not yet completed.
1688 >     * commenced but not yet completed.  This method may be useful for
1689 >     * debugging. A return of {@code true} reported a sufficient
1690 >     * period after shutdown may indicate that submitted tasks have
1691 >     * ignored or suppressed interruption, causing this executor not
1692 >     * to properly terminate.
1693       *
1694 <     * @return {@code true} if terminating
1694 >     * @return {@code true} if terminating but not yet terminated
1695       */
1696      public boolean isTerminating() {
1697 <        return runStateOf(runControl) >= TERMINATING;
1697 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1698      }
1699  
1700      /**
# Line 1137 | Line 1703 | public class ForkJoinPool extends Abstra
1703       * @return {@code true} if this pool has been shut down
1704       */
1705      public boolean isShutdown() {
1706 <        return runStateOf(runControl) >= SHUTDOWN;
1706 >        return runState >= SHUTDOWN;
1707      }
1708  
1709      /**
# Line 1153 | Line 1719 | public class ForkJoinPool extends Abstra
1719       */
1720      public boolean awaitTermination(long timeout, TimeUnit unit)
1721          throws InterruptedException {
1156        long nanos = unit.toNanos(timeout);
1157        final ReentrantLock lock = this.workerLock;
1158        lock.lock();
1159        try {
1160            for (;;) {
1161                if (isTerminated())
1162                    return true;
1163                if (nanos <= 0)
1164                    return false;
1165                nanos = termination.awaitNanos(nanos);
1166            }
1167        } finally {
1168            lock.unlock();
1169        }
1170    }
1171
1172    // Shutdown and termination support
1173
1174    /**
1175     * Callback from terminating worker. Nulls out the corresponding
1176     * workers slot, and if terminating, tries to terminate; else
1177     * tries to shrink workers array.
1178     *
1179     * @param w the worker
1180     */
1181    final void workerTerminated(ForkJoinWorkerThread w) {
1182        updateStealCount(w);
1183        updateWorkerCount(-1);
1184        final ReentrantLock lock = this.workerLock;
1185        lock.lock();
1186        try {
1187            ForkJoinWorkerThread[] ws = workers;
1188            if (ws != null) {
1189                int idx = w.poolIndex;
1190                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1191                    ws[idx] = null;
1192                if (totalCountOf(workerCounts) == 0) {
1193                    terminate(); // no-op if already terminating
1194                    transitionRunStateTo(TERMINATED);
1195                    termination.signalAll();
1196                }
1197                else if (!isTerminating()) {
1198                    tryShrinkWorkerArray();
1199                    tryResumeSpare(true); // allow replacement
1200                }
1201            }
1202        } finally {
1203            lock.unlock();
1204        }
1205        signalIdleWorkers();
1206    }
1207
1208    /**
1209     * Initiates termination.
1210     */
1211    private void terminate() {
1212        if (transitionRunStateTo(TERMINATING)) {
1213            stopAllWorkers();
1214            resumeAllSpares();
1215            signalIdleWorkers();
1216            cancelQueuedSubmissions();
1217            cancelQueuedWorkerTasks();
1218            interruptUnterminatedWorkers();
1219            signalIdleWorkers(); // resignal after interrupt
1220        }
1221    }
1222
1223    /**
1224     * Possibly terminates when on shutdown state.
1225     */
1226    private void terminateOnShutdown() {
1227        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1228            terminate();
1229    }
1230
1231    /**
1232     * Clears out and cancels submissions.
1233     */
1234    private void cancelQueuedSubmissions() {
1235        ForkJoinTask<?> task;
1236        while ((task = pollSubmission()) != null)
1237            task.cancel(false);
1238    }
1239
1240    /**
1241     * Cleans out worker queues.
1242     */
1243    private void cancelQueuedWorkerTasks() {
1244        final ReentrantLock lock = this.workerLock;
1245        lock.lock();
1722          try {
1723 <            ForkJoinWorkerThread[] ws = workers;
1724 <            if (ws != null) {
1249 <                for (int i = 0; i < ws.length; ++i) {
1250 <                    ForkJoinWorkerThread t = ws[i];
1251 <                    if (t != null)
1252 <                        t.cancelTasks();
1253 <                }
1254 <            }
1255 <        } finally {
1256 <            lock.unlock();
1257 <        }
1258 <    }
1259 <
1260 <    /**
1261 <     * Sets each worker's status to terminating. Requires lock to avoid
1262 <     * conflicts with add/remove.
1263 <     */
1264 <    private void stopAllWorkers() {
1265 <        final ReentrantLock lock = this.workerLock;
1266 <        lock.lock();
1267 <        try {
1268 <            ForkJoinWorkerThread[] ws = workers;
1269 <            if (ws != null) {
1270 <                for (int i = 0; i < ws.length; ++i) {
1271 <                    ForkJoinWorkerThread t = ws[i];
1272 <                    if (t != null)
1273 <                        t.shutdownNow();
1274 <                }
1275 <            }
1276 <        } finally {
1277 <            lock.unlock();
1278 <        }
1279 <    }
1280 <
1281 <    /**
1282 <     * Interrupts all unterminated workers.  This is not required for
1283 <     * sake of internal control, but may help unstick user code during
1284 <     * shutdown.
1285 <     */
1286 <    private void interruptUnterminatedWorkers() {
1287 <        final ReentrantLock lock = this.workerLock;
1288 <        lock.lock();
1289 <        try {
1290 <            ForkJoinWorkerThread[] ws = workers;
1291 <            if (ws != null) {
1292 <                for (int i = 0; i < ws.length; ++i) {
1293 <                    ForkJoinWorkerThread t = ws[i];
1294 <                    if (t != null && !t.isTerminated()) {
1295 <                        try {
1296 <                            t.interrupt();
1297 <                        } catch (SecurityException ignore) {
1298 <                        }
1299 <                    }
1300 <                }
1301 <            }
1302 <        } finally {
1303 <            lock.unlock();
1304 <        }
1305 <    }
1306 <
1307 <
1308 <    /*
1309 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1310 <     * are basic Treiber stack nodes, also used for spare stack.
1311 <     *
1312 <     * The event barrier has an event count and a wait queue (actually
1313 <     * a Treiber stack).  Workers are enabled to look for work when
1314 <     * the eventCount is incremented. If they fail to find work, they
1315 <     * may wait for next count. Upon release, threads help others wake
1316 <     * up.
1317 <     *
1318 <     * Synchronization events occur only in enough contexts to
1319 <     * maintain overall liveness:
1320 <     *
1321 <     *   - Submission of a new task to the pool
1322 <     *   - Resizes or other changes to the workers array
1323 <     *   - pool termination
1324 <     *   - A worker pushing a task on an empty queue
1325 <     *
1326 <     * The case of pushing a task occurs often enough, and is heavy
1327 <     * enough compared to simple stack pushes, to require special
1328 <     * handling: Method signalWork returns without advancing count if
1329 <     * the queue appears to be empty.  This would ordinarily result in
1330 <     * races causing some queued waiters not to be woken up. To avoid
1331 <     * this, the first worker enqueued in method sync (see
1332 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1333 <     * helps signal if any are found. This works well because the
1334 <     * worker has nothing better to do, and so might as well help
1335 <     * alleviate the overhead and contention on the threads actually
1336 <     * doing work.  Also, since event counts increments on task
1337 <     * availability exist to maintain liveness (rather than to force
1338 <     * refreshes etc), it is OK for callers to exit early if
1339 <     * contending with another signaller.
1340 <     */
1341 <    static final class WaitQueueNode {
1342 <        WaitQueueNode next; // only written before enqueued
1343 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1344 <        final long count; // unused for spare stack
1345 <
1346 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1347 <            count = c;
1348 <            thread = w;
1349 <        }
1350 <
1351 <        /**
1352 <         * Wakes up waiter, returning false if known to already
1353 <         */
1354 <        boolean signal() {
1355 <            ForkJoinWorkerThread t = thread;
1356 <            if (t == null)
1357 <                return false;
1358 <            thread = null;
1359 <            LockSupport.unpark(t);
1360 <            return true;
1361 <        }
1362 <
1363 <        /**
1364 <         * Awaits release on sync.
1365 <         */
1366 <        void awaitSyncRelease(ForkJoinPool p) {
1367 <            while (thread != null && !p.syncIsReleasable(this))
1368 <                LockSupport.park(this);
1369 <        }
1370 <
1371 <        /**
1372 <         * Awaits resumption as spare.
1373 <         */
1374 <        void awaitSpareRelease() {
1375 <            while (thread != null) {
1376 <                if (!Thread.interrupted())
1377 <                    LockSupport.park(this);
1378 <            }
1379 <        }
1380 <    }
1381 <
1382 <    /**
1383 <     * Ensures that no thread is waiting for count to advance from the
1384 <     * current value of eventCount read on entry to this method, by
1385 <     * releasing waiting threads if necessary.
1386 <     *
1387 <     * @return the count
1388 <     */
1389 <    final long ensureSync() {
1390 <        long c = eventCount;
1391 <        WaitQueueNode q;
1392 <        while ((q = syncStack) != null && q.count < c) {
1393 <            if (casBarrierStack(q, null)) {
1394 <                do {
1395 <                    q.signal();
1396 <                } while ((q = q.next) != null);
1397 <                break;
1398 <            }
1399 <        }
1400 <        return c;
1401 <    }
1402 <
1403 <    /**
1404 <     * Increments event count and releases waiting threads.
1405 <     */
1406 <    private void signalIdleWorkers() {
1407 <        long c;
1408 <        do {} while (!casEventCount(c = eventCount, c+1));
1409 <        ensureSync();
1410 <    }
1411 <
1412 <    /**
1413 <     * Signals threads waiting to poll a task. Because method sync
1414 <     * rechecks availability, it is OK to only proceed if queue
1415 <     * appears to be non-empty, and OK to skip under contention to
1416 <     * increment count (since some other thread succeeded).
1417 <     */
1418 <    final void signalWork() {
1419 <        long c;
1420 <        WaitQueueNode q;
1421 <        if (syncStack != null &&
1422 <            casEventCount(c = eventCount, c+1) &&
1423 <            (((q = syncStack) != null && q.count <= c) &&
1424 <             (!casBarrierStack(q, q.next) || !q.signal())))
1425 <            ensureSync();
1426 <    }
1427 <
1428 <    /**
1429 <     * Waits until event count advances from last value held by
1430 <     * caller, or if excess threads, caller is resumed as spare, or
1431 <     * caller or pool is terminating. Updates caller's event on exit.
1432 <     *
1433 <     * @param w the calling worker thread
1434 <     */
1435 <    final void sync(ForkJoinWorkerThread w) {
1436 <        updateStealCount(w); // Transfer w's count while it is idle
1437 <
1438 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1439 <            long prev = w.lastEventCount;
1440 <            WaitQueueNode node = null;
1441 <            WaitQueueNode h;
1442 <            while (eventCount == prev &&
1443 <                   ((h = syncStack) == null || h.count == prev)) {
1444 <                if (node == null)
1445 <                    node = new WaitQueueNode(prev, w);
1446 <                if (casBarrierStack(node.next = h, node)) {
1447 <                    node.awaitSyncRelease(this);
1448 <                    break;
1449 <                }
1450 <            }
1451 <            long ec = ensureSync();
1452 <            if (ec != prev) {
1453 <                w.lastEventCount = ec;
1454 <                break;
1455 <            }
1456 <        }
1457 <    }
1458 <
1459 <    /**
1460 <     * Returns {@code true} if worker waiting on sync can proceed:
1461 <     *  - on signal (thread == null)
1462 <     *  - on event count advance (winning race to notify vs signaller)
1463 <     *  - on interrupt
1464 <     *  - if the first queued node, we find work available
1465 <     * If node was not signalled and event count not advanced on exit,
1466 <     * then we also help advance event count.
1467 <     *
1468 <     * @return {@code true} if node can be released
1469 <     */
1470 <    final boolean syncIsReleasable(WaitQueueNode node) {
1471 <        long prev = node.count;
1472 <        if (!Thread.interrupted() && node.thread != null &&
1473 <            (node.next != null ||
1474 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1475 <            eventCount == prev)
1476 <            return false;
1477 <        if (node.thread != null) {
1478 <            node.thread = null;
1479 <            long ec = eventCount;
1480 <            if (prev <= ec) // help signal
1481 <                casEventCount(ec, ec+1);
1482 <        }
1483 <        return true;
1484 <    }
1485 <
1486 <    /**
1487 <     * Returns {@code true} if a new sync event occurred since last
1488 <     * call to sync or this method, if so, updating caller's count.
1489 <     */
1490 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1491 <        long lc = w.lastEventCount;
1492 <        long ec = ensureSync();
1493 <        if (ec == lc)
1723 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1724 >        } catch(TimeoutException ex) {
1725              return false;
1495        w.lastEventCount = ec;
1496        return true;
1497    }
1498
1499    //  Parallelism maintenance
1500
1501    /**
1502     * Decrements running count; if too low, adds spare.
1503     *
1504     * Conceptually, all we need to do here is add or resume a
1505     * spare thread when one is about to block (and remove or
1506     * suspend it later when unblocked -- see suspendIfSpare).
1507     * However, implementing this idea requires coping with
1508     * several problems: we have imperfect information about the
1509     * states of threads. Some count updates can and usually do
1510     * lag run state changes, despite arrangements to keep them
1511     * accurate (for example, when possible, updating counts
1512     * before signalling or resuming), especially when running on
1513     * dynamic JVMs that don't optimize the infrequent paths that
1514     * update counts. Generating too many threads can make these
1515     * problems become worse, because excess threads are more
1516     * likely to be context-switched with others, slowing them all
1517     * down, especially if there is no work available, so all are
1518     * busy scanning or idling.  Also, excess spare threads can
1519     * only be suspended or removed when they are idle, not
1520     * immediately when they aren't needed. So adding threads will
1521     * raise parallelism level for longer than necessary.  Also,
1522     * FJ applications often encounter highly transient peaks when
1523     * many threads are blocked joining, but for less time than it
1524     * takes to create or resume spares.
1525     *
1526     * @param joinMe if non-null, return early if done
1527     * @param maintainParallelism if true, try to stay within
1528     * target counts, else create only to avoid starvation
1529     * @return true if joinMe known to be done
1530     */
1531    final boolean preJoin(ForkJoinTask<?> joinMe,
1532                          boolean maintainParallelism) {
1533        maintainParallelism &= maintainsParallelism; // overrride
1534        boolean dec = false;  // true when running count decremented
1535        while (spareStack == null || !tryResumeSpare(dec)) {
1536            int counts = workerCounts;
1537            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1538                // CAS cheat
1539                if (!needSpare(counts, maintainParallelism))
1540                    break;
1541                if (joinMe.status < 0)
1542                    return true;
1543                if (tryAddSpare(counts))
1544                    break;
1545            }
1546        }
1547        return false;
1548    }
1549
1550    /**
1551     * Same idea as preJoin
1552     */
1553    final boolean preBlock(ManagedBlocker blocker,
1554                           boolean maintainParallelism) {
1555        maintainParallelism &= maintainsParallelism;
1556        boolean dec = false;
1557        while (spareStack == null || !tryResumeSpare(dec)) {
1558            int counts = workerCounts;
1559            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1560                if (!needSpare(counts, maintainParallelism))
1561                    break;
1562                if (blocker.isReleasable())
1563                    return true;
1564                if (tryAddSpare(counts))
1565                    break;
1566            }
1567        }
1568        return false;
1569    }
1570
1571    /**
1572     * Returns {@code true} if a spare thread appears to be needed.
1573     * If maintaining parallelism, returns true when the deficit in
1574     * running threads is more than the surplus of total threads, and
1575     * there is apparently some work to do.  This self-limiting rule
1576     * means that the more threads that have already been added, the
1577     * less parallelism we will tolerate before adding another.
1578     *
1579     * @param counts current worker counts
1580     * @param maintainParallelism try to maintain parallelism
1581     */
1582    private boolean needSpare(int counts, boolean maintainParallelism) {
1583        int ps = parallelism;
1584        int rc = runningCountOf(counts);
1585        int tc = totalCountOf(counts);
1586        int runningDeficit = ps - rc;
1587        int totalSurplus = tc - ps;
1588        return (tc < maxPoolSize &&
1589                (rc == 0 || totalSurplus < 0 ||
1590                 (maintainParallelism &&
1591                  runningDeficit > totalSurplus &&
1592                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1593    }
1594
1595    /**
1596     * Adds a spare worker if lock available and no more than the
1597     * expected numbers of threads exist.
1598     *
1599     * @return true if successful
1600     */
1601    private boolean tryAddSpare(int expectedCounts) {
1602        final ReentrantLock lock = this.workerLock;
1603        int expectedRunning = runningCountOf(expectedCounts);
1604        int expectedTotal = totalCountOf(expectedCounts);
1605        boolean success = false;
1606        boolean locked = false;
1607        // confirm counts while locking; CAS after obtaining lock
1608        try {
1609            for (;;) {
1610                int s = workerCounts;
1611                int tc = totalCountOf(s);
1612                int rc = runningCountOf(s);
1613                if (rc > expectedRunning || tc > expectedTotal)
1614                    break;
1615                if (!locked && !(locked = lock.tryLock()))
1616                    break;
1617                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1618                    createAndStartSpare(tc);
1619                    success = true;
1620                    break;
1621                }
1622            }
1623        } finally {
1624            if (locked)
1625                lock.unlock();
1626        }
1627        return success;
1628    }
1629
1630    /**
1631     * Adds the kth spare worker. On entry, pool counts are already
1632     * adjusted to reflect addition.
1633     */
1634    private void createAndStartSpare(int k) {
1635        ForkJoinWorkerThread w = null;
1636        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1637        int len = ws.length;
1638        // Probably, we can place at slot k. If not, find empty slot
1639        if (k < len && ws[k] != null) {
1640            for (k = 0; k < len && ws[k] != null; ++k)
1641                ;
1642        }
1643        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1644            ws[k] = w;
1645            w.start();
1646        }
1647        else
1648            updateWorkerCount(-1); // adjust on failure
1649        signalIdleWorkers();
1650    }
1651
1652    /**
1653     * Suspends calling thread w if there are excess threads.  Called
1654     * only from sync.  Spares are enqueued in a Treiber stack using
1655     * the same WaitQueueNodes as barriers.  They are resumed mainly
1656     * in preJoin, but are also woken on pool events that require all
1657     * threads to check run state.
1658     *
1659     * @param w the caller
1660     */
1661    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1662        WaitQueueNode node = null;
1663        int s;
1664        while (parallelism < runningCountOf(s = workerCounts)) {
1665            if (node == null)
1666                node = new WaitQueueNode(0, w);
1667            if (casWorkerCounts(s, s-1)) { // representation-dependent
1668                // push onto stack
1669                do {} while (!casSpareStack(node.next = spareStack, node));
1670                // block until released by resumeSpare
1671                node.awaitSpareRelease();
1672                return true;
1673            }
1674        }
1675        return false;
1676    }
1677
1678    /**
1679     * Tries to pop and resume a spare thread.
1680     *
1681     * @param updateCount if true, increment running count on success
1682     * @return true if successful
1683     */
1684    private boolean tryResumeSpare(boolean updateCount) {
1685        WaitQueueNode q;
1686        while ((q = spareStack) != null) {
1687            if (casSpareStack(q, q.next)) {
1688                if (updateCount)
1689                    updateRunningCount(1);
1690                q.signal();
1691                return true;
1692            }
1693        }
1694        return false;
1695    }
1696
1697    /**
1698     * Pops and resumes all spare threads. Same idea as ensureSync.
1699     *
1700     * @return true if any spares released
1701     */
1702    private boolean resumeAllSpares() {
1703        WaitQueueNode q;
1704        while ( (q = spareStack) != null) {
1705            if (casSpareStack(q, null)) {
1706                do {
1707                    updateRunningCount(1);
1708                    q.signal();
1709                } while ((q = q.next) != null);
1710                return true;
1711            }
1712        }
1713        return false;
1714    }
1715
1716    /**
1717     * Pops and shuts down excessive spare threads. Call only while
1718     * holding lock. This is not guaranteed to eliminate all excess
1719     * threads, only those suspended as spares, which are the ones
1720     * unlikely to be needed in the future.
1721     */
1722    private void trimSpares() {
1723        int surplus = totalCountOf(workerCounts) - parallelism;
1724        WaitQueueNode q;
1725        while (surplus > 0 && (q = spareStack) != null) {
1726            if (casSpareStack(q, null)) {
1727                do {
1728                    updateRunningCount(1);
1729                    ForkJoinWorkerThread w = q.thread;
1730                    if (w != null && surplus > 0 &&
1731                        runningCountOf(workerCounts) > 0 && w.shutdown())
1732                        --surplus;
1733                    q.signal();
1734                } while ((q = q.next) != null);
1735            }
1726          }
1727      }
1728  
# Line 1740 | Line 1730 | public class ForkJoinPool extends Abstra
1730       * Interface for extending managed parallelism for tasks running
1731       * in {@link ForkJoinPool}s.
1732       *
1733 <     * <p>A {@code ManagedBlocker} provides two methods.
1734 <     * Method {@code isReleasable} must return {@code true} if
1735 <     * blocking is not necessary. Method {@code block} blocks the
1736 <     * current thread if necessary (perhaps internally invoking
1737 <     * {@code isReleasable} before actually blocking).
1733 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1734 >     * {@code isReleasable} must return {@code true} if blocking is
1735 >     * not necessary. Method {@code block} blocks the current thread
1736 >     * if necessary (perhaps internally invoking {@code isReleasable}
1737 >     * before actually blocking). The unusual methods in this API
1738 >     * accommodate synchronizers that may, but don't usually, block
1739 >     * for long periods. Similarly, they allow more efficient internal
1740 >     * handling of cases in which additional workers may be, but
1741 >     * usually are not, needed to ensure sufficient parallelism.
1742 >     * Toward this end, implementations of method {@code isReleasable}
1743 >     * must be amenable to repeated invocation.
1744       *
1745       * <p>For example, here is a ManagedBlocker based on a
1746       * ReentrantLock:
# Line 1762 | Line 1758 | public class ForkJoinPool extends Abstra
1758       *     return hasLock || (hasLock = lock.tryLock());
1759       *   }
1760       * }}</pre>
1761 +     *
1762 +     * <p>Here is a class that possibly blocks waiting for an
1763 +     * item on a given queue:
1764 +     *  <pre> {@code
1765 +     * class QueueTaker<E> implements ManagedBlocker {
1766 +     *   final BlockingQueue<E> queue;
1767 +     *   volatile E item = null;
1768 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1769 +     *   public boolean block() throws InterruptedException {
1770 +     *     if (item == null)
1771 +     *       item = queue.take();
1772 +     *     return true;
1773 +     *   }
1774 +     *   public boolean isReleasable() {
1775 +     *     return item != null || (item = queue.poll()) != null;
1776 +     *   }
1777 +     *   public E getItem() { // call after pool.managedBlock completes
1778 +     *     return item;
1779 +     *   }
1780 +     * }}</pre>
1781       */
1782      public static interface ManagedBlocker {
1783          /**
# Line 1785 | Line 1801 | public class ForkJoinPool extends Abstra
1801       * Blocks in accord with the given blocker.  If the current thread
1802       * is a {@link ForkJoinWorkerThread}, this method possibly
1803       * arranges for a spare thread to be activated if necessary to
1804 <     * ensure parallelism while the current thread is blocked.
1789 <     *
1790 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1791 <     * supports it ({@link #getMaintainsParallelism}), this method
1792 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1793 <     * it activates a thread only if necessary to avoid complete
1794 <     * starvation. This option may be preferable when blockages use
1795 <     * timeouts, or are almost always brief.
1804 >     * ensure sufficient parallelism while the current thread is blocked.
1805       *
1806       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1807       * behaviorally equivalent to
# Line 1806 | Line 1815 | public class ForkJoinPool extends Abstra
1815       * first be expanded to ensure parallelism, and later adjusted.
1816       *
1817       * @param blocker the blocker
1809     * @param maintainParallelism if {@code true} and supported by
1810     * this pool, attempt to maintain the pool's nominal parallelism;
1811     * otherwise activate a thread only if necessary to avoid
1812     * complete starvation.
1818       * @throws InterruptedException if blocker.block did so
1819       */
1820 <    public static void managedBlock(ManagedBlocker blocker,
1816 <                                    boolean maintainParallelism)
1820 >    public static void managedBlock(ManagedBlocker blocker)
1821          throws InterruptedException {
1822          Thread t = Thread.currentThread();
1823 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1824 <                             ((ForkJoinWorkerThread) t).pool : null);
1825 <        if (!blocker.isReleasable()) {
1826 <            try {
1827 <                if (pool == null ||
1828 <                    !pool.preBlock(blocker, maintainParallelism))
1825 <                    awaitBlocker(blocker);
1826 <            } finally {
1827 <                if (pool != null)
1828 <                    pool.updateRunningCount(1);
1829 <            }
1823 >        if (t instanceof ForkJoinWorkerThread) {
1824 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1825 >            w.pool.awaitBlocker(blocker);
1826 >        }
1827 >        else {
1828 >            do {} while (!blocker.isReleasable() && !blocker.block());
1829          }
1831    }
1832
1833    private static void awaitBlocker(ManagedBlocker blocker)
1834        throws InterruptedException {
1835        do {} while (!blocker.isReleasable() && !blocker.block());
1830      }
1831  
1832      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1850 | Line 1844 | public class ForkJoinPool extends Abstra
1844      // Unsafe mechanics
1845  
1846      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1853    private static final long eventCountOffset =
1854        objectFieldOffset("eventCount", ForkJoinPool.class);
1847      private static final long workerCountsOffset =
1848          objectFieldOffset("workerCounts", ForkJoinPool.class);
1849 <    private static final long runControlOffset =
1850 <        objectFieldOffset("runControl", ForkJoinPool.class);
1851 <    private static final long syncStackOffset =
1852 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1853 <    private static final long spareStackOffset =
1854 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1855 <
1856 <    private boolean casEventCount(long cmp, long val) {
1857 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1858 <    }
1867 <    private boolean casWorkerCounts(int cmp, int val) {
1868 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1869 <    }
1870 <    private boolean casRunControl(int cmp, int val) {
1871 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1872 <    }
1873 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1874 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1875 <    }
1876 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1877 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1878 <    }
1849 >    private static final long runStateOffset =
1850 >        objectFieldOffset("runState", ForkJoinPool.class);
1851 >    private static final long eventCountOffset =
1852 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1853 >    private static final long eventWaitersOffset =
1854 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1855 >    private static final long stealCountOffset =
1856 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1857 >    private static final long spareWaitersOffset =
1858 >        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1859  
1860      private static long objectFieldOffset(String field, Class<?> klazz) {
1861          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines