ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.42 by dl, Mon Aug 3 13:01:15 2009 UTC vs.
Revision 1.102 by jsr166, Thu Apr 14 01:17:58 2011 UTC

# Line 1 | Line 1
1   /*
2   * Written by Doug Lea with assistance from members of JCP JSR-166
3   * Expert Group and released to the public domain, as explained at
4 < * http://creativecommons.org/licenses/publicdomain
4 > * http://creativecommons.org/publicdomain/zero/1.0/
5   */
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
20 < import java.util.concurrent.atomic.AtomicLong;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30   * A {@code ForkJoinPool} provides the entry point for submissions
31 < * from non-{@code ForkJoinTask}s, as well as management and
32 < * monitoring operations.  
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32 > * monitoring operations.
33   *
34   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35   * ExecutorService} mainly by virtue of employing
# Line 31 | Line 37 | import java.util.concurrent.atomic.Atomi
37   * execute subtasks created by other active tasks (eventually blocking
38   * waiting for work if none exist). This enables efficient processing
39   * when most tasks spawn other subtasks (as do most {@code
40 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
41 < * execution of some plain {@code Runnable}- or {@code Callable}-
42 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44   * <p>A {@code ForkJoinPool} is constructed with a given target
45   * parallelism level; by default, equal to the number of available
46 < * processors. Unless configured otherwise via {@link
47 < * #setMaintainsParallelism}, the pool attempts to maintain this
48 < * number of active (or available) threads by dynamically adding,
49 < * suspending, or resuming internal worker threads, even if some tasks
50 < * are waiting to join others. However, no such adjustments are
51 < * performed in the face of blocked IO or other unmanaged
52 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
# Line 62 | Line 58 | import java.util.concurrent.atomic.Atomi
58   * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96   * used for all parallel task execution in a program or subsystem.
97   * Otherwise, use would not usually outweigh the construction and
98   * bookkeeping overhead of creating a large set of threads. For
99 < * example a common pool could be used for the {@code SortTasks}
99 > * example, a common pool could be used for the {@code SortTasks}
100   * illustrated in {@link RecursiveAction}. Because {@code
101   * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
102 < * daemon} mode, there is typically no need to explictly {@link
102 > * daemon} mode, there is typically no need to explicitly {@link
103   * #shutdown} such a pool upon program exit.
104   *
105   * <pre>
# Line 82 | Line 112 | import java.util.concurrent.atomic.Atomi
112   *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
115 > * pools with greater than the maximum number result in
116   * {@code IllegalArgumentException}.
117   *
118 + * <p>This implementation rejects submitted tasks (that is, by throwing
119 + * {@link RejectedExecutionException}) only when the pool is shut down
120 + * or internal resources have been exhausted.
121 + *
122   * @since 1.7
123   * @author Doug Lea
124   */
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tasks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none can
199 >     * be found immediately, and we cannot start/resume workers unless
200 >     * there appear to be tasks available.  On the other hand, we must
201 >     * quickly prod them into action when new tasks are submitted or
202 >     * generated.  We park/unpark workers after placing in an event
203 >     * wait queue when they cannot find work. This "queue" is actually
204 >     * a simple Treiber stack, headed by the "id" field of ctl, plus a
205 >     * 15bit counter value to both wake up waiters (by advancing their
206 >     * count) and avoid ABA effects. Successors are held in worker
207 >     * field "nextWait".  Queuing deals with several intrinsic races,
208 >     * mainly that a task-producing thread can miss seeing (and
209 >     * signalling) another thread that gave up looking for work but
210 >     * has not yet entered the wait queue. We solve this by requiring
211 >     * a full sweep of all workers both before (in scan()) and after
212 >     * (in tryAwaitWork()) a newly waiting worker is added to the wait
213 >     * queue. During a rescan, the worker might release some other
214 >     * queued worker rather than itself, which has the same net
215 >     * effect. Because enqueued workers may actually be rescanning
216 >     * rather than waiting, we set and clear the "parked" field of
217 >     * ForkJoinWorkerThread to reduce unnecessary calls to unpark.
218 >     * (Use of the parked field requires a secondary recheck to avoid
219 >     * missed signals.)
220 >     *
221 >     * Signalling.  We create or wake up workers only when there
222 >     * appears to be at least one task they might be able to find and
223 >     * execute.  When a submission is added or another worker adds a
224 >     * task to a queue that previously had two or fewer tasks, they
225 >     * signal waiting workers (or trigger creation of new ones if
226 >     * fewer than the given parallelism level -- see signalWork).
227 >     * These primary signals are buttressed by signals during rescans
228 >     * as well as those performed when a worker steals a task and
229 >     * notices that there are more tasks too; together these cover the
230 >     * signals needed in cases when more than two tasks are pushed
231 >     * but untaken.
232 >     *
233 >     * Trimming workers. To release resources after periods of lack of
234 >     * use, a worker starting to wait when the pool is quiescent will
235 >     * time out and terminate if the pool has remained quiescent for
236 >     * SHRINK_RATE nanosecs. This will slowly propagate, eventually
237 >     * terminating all workers after long periods of non-use.
238 >     *
239 >     * Submissions. External submissions are maintained in an
240 >     * array-based queue that is structured identically to
241 >     * ForkJoinWorkerThread queues except for the use of
242 >     * submissionLock in method addSubmission. Unlike the case for
243 >     * worker queues, multiple external threads can add new
244 >     * submissions, so adding requires a lock.
245 >     *
246 >     * Compensation. Beyond work-stealing support and lifecycle
247 >     * control, the main responsibility of this framework is to take
248 >     * actions when one worker is waiting to join a task stolen (or
249 >     * always held by) another.  Because we are multiplexing many
250 >     * tasks on to a pool of workers, we can't just let them block (as
251 >     * in Thread.join).  We also cannot just reassign the joiner's
252 >     * run-time stack with another and replace it later, which would
253 >     * be a form of "continuation", that even if possible is not
254 >     * necessarily a good idea since we sometimes need both an
255 >     * unblocked task and its continuation to progress. Instead we
256 >     * combine two tactics:
257 >     *
258 >     *   Helping: Arranging for the joiner to execute some task that it
259 >     *      would be running if the steal had not occurred.  Method
260 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
261 >     *      links to try to find such a task.
262 >     *
263 >     *   Compensating: Unless there are already enough live threads,
264 >     *      method tryPreBlock() may create or re-activate a spare
265 >     *      thread to compensate for blocked joiners until they
266 >     *      unblock.
267 >     *
268 >     * The ManagedBlocker extension API can't use helping so relies
269 >     * only on compensation in method awaitBlocker.
270 >     *
271 >     * It is impossible to keep exactly the target parallelism number
272 >     * of threads running at any given time.  Determining the
273 >     * existence of conservatively safe helping targets, the
274 >     * availability of already-created spares, and the apparent need
275 >     * to create new spares are all racy and require heuristic
276 >     * guidance, so we rely on multiple retries of each.  Currently,
277 >     * in keeping with on-demand signalling policy, we compensate only
278 >     * if blocking would leave less than one active (non-waiting,
279 >     * non-blocked) worker. Additionally, to avoid some false alarms
280 >     * due to GC, lagging counters, system activity, etc, compensated
281 >     * blocking for joins is only attempted after rechecks stabilize
282 >     * (retries are interspersed with Thread.yield, for good
283 >     * citizenship).  The variable blockedCount, incremented before
284 >     * blocking and decremented after, is sometimes needed to
285 >     * distinguish cases of waiting for work vs blocking on joins or
286 >     * other managed sync. Both cases are equivalent for most pool
287 >     * control, so we can update non-atomically. (Additionally,
288 >     * contention on blockedCount alleviates some contention on ctl).
289 >     *
290 >     * Shutdown and Termination. A call to shutdownNow atomically sets
291 >     * the ctl stop bit and then (non-atomically) sets each workers
292 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
293 >     * all waiting workers.  Detecting whether termination should
294 >     * commence after a non-abrupt shutdown() call requires more work
295 >     * and bookkeeping. We need consensus about quiesence (i.e., that
296 >     * there is no more work) which is reflected in active counts so
297 >     * long as there are no current blockers, as well as possible
298 >     * re-evaluations during independent changes in blocking or
299 >     * quiescing workers.
300 >     *
301 >     * Style notes: There is a lot of representation-level coupling
302 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
303 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
304 >     * data structures managed by ForkJoinPool, so are directly
305 >     * accessed.  Conversely we allow access to "workers" array by
306 >     * workers, and direct access to ForkJoinTask.status by both
307 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
308 >     * trying to reduce this, since any associated future changes in
309 >     * representations will need to be accompanied by algorithmic
310 >     * changes anyway. All together, these low-level implementation
311 >     * choices produce as much as a factor of 4 performance
312 >     * improvement compared to naive implementations, and enable the
313 >     * processing of billions of tasks per second, at the expense of
314 >     * some ugliness.
315 >     *
316 >     * Methods signalWork() and scan() are the main bottlenecks so are
317 >     * especially heavily micro-optimized/mangled.  There are lots of
318 >     * inline assignments (of form "while ((local = field) != 0)")
319 >     * which are usually the simplest way to ensure the required read
320 >     * orderings (which are sometimes critical). This leads to a
321 >     * "C"-like style of listing declarations of these locals at the
322 >     * heads of methods or blocks.  There are several occurrences of
323 >     * the unusual "do {} while (!cas...)"  which is the simplest way
324 >     * to force an update of a CAS'ed variable. There are also other
325 >     * coding oddities that help some methods perform reasonably even
326 >     * when interpreted (not compiled).
327 >     *
328 >     * The order of declarations in this file is: (1) declarations of
329 >     * statics (2) fields (along with constants used when unpacking
330 >     * some of them), listed in an order that tends to reduce
331 >     * contention among them a bit under most JVMs.  (3) internal
332 >     * control methods (4) callbacks and other support for
333 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
334 >     * methods (plus a few little helpers). (6) static block
335 >     * initializing all statics in a minimally dependent order.
336       */
337  
98    /** Mask for packing and unpacking shorts */
99    private static final int  shortMask = 0xffff;
100
101    /** Max pool size -- must be a power of two minus 1 */
102    private static final int MAX_THREADS =  0x7FFF;
103
338      /**
339       * Factory for creating new {@link ForkJoinWorkerThread}s.
340       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 112 | Line 346 | public class ForkJoinPool extends Abstra
346           * Returns a new worker thread operating in the given pool.
347           *
348           * @param pool the pool this thread works in
349 <         * @throws NullPointerException if pool is null
349 >         * @throws NullPointerException if the pool is null
350           */
351          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
352      }
# Line 121 | Line 355 | public class ForkJoinPool extends Abstra
355       * Default ForkJoinWorkerThreadFactory implementation; creates a
356       * new ForkJoinWorkerThread.
357       */
358 <    static class  DefaultForkJoinWorkerThreadFactory
358 >    static class DefaultForkJoinWorkerThreadFactory
359          implements ForkJoinWorkerThreadFactory {
360          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
361 <            try {
128 <                return new ForkJoinWorkerThread(pool);
129 <            } catch (OutOfMemoryError oom)  {
130 <                return null;
131 <            }
361 >            return new ForkJoinWorkerThread(pool);
362          }
363      }
364  
# Line 137 | Line 367 | public class ForkJoinPool extends Abstra
367       * overridden in ForkJoinPool constructors.
368       */
369      public static final ForkJoinWorkerThreadFactory
370 <        defaultForkJoinWorkerThreadFactory =
141 <        new DefaultForkJoinWorkerThreadFactory();
370 >        defaultForkJoinWorkerThreadFactory;
371  
372      /**
373       * Permission required for callers of methods that may start or
374       * kill threads.
375       */
376 <    private static final RuntimePermission modifyThreadPermission =
148 <        new RuntimePermission("modifyThread");
376 >    private static final RuntimePermission modifyThreadPermission;
377  
378      /**
379       * If there is a security manager, makes sure caller has
# Line 160 | Line 388 | public class ForkJoinPool extends Abstra
388      /**
389       * Generator for assigning sequence numbers as pool names.
390       */
391 <    private static final AtomicInteger poolNumberGenerator =
164 <        new AtomicInteger();
391 >    private static final AtomicInteger poolNumberGenerator;
392  
393      /**
394 <     * Array holding all worker threads in the pool. Initialized upon
395 <     * first use. Array size must be a power of two.  Updates and
396 <     * replacements are protected by workerLock, but it is always kept
397 <     * in a consistent enough state to be randomly accessed without
398 <     * locking by workers performing work-stealing.
394 >     * Generator for initial random seeds for worker victim
395 >     * selection. This is used only to create initial seeds. Random
396 >     * steals use a cheaper xorshift generator per steal attempt. We
397 >     * don't expect much contention on seedGenerator, so just use a
398 >     * plain Random.
399       */
400 <    volatile ForkJoinWorkerThread[] workers;
400 >    static final Random workerSeedGenerator;
401  
402      /**
403 <     * Lock protecting access to workers.
403 >     * Array holding all worker threads in the pool.  Initialized upon
404 >     * construction. Array size must be a power of two.  Updates and
405 >     * replacements are protected by scanGuard, but the array is
406 >     * always kept in a consistent enough state to be randomly
407 >     * accessed without locking by workers performing work-stealing,
408 >     * as well as other traversal-based methods in this class, so long
409 >     * as reads memory-acquire by first reading ctl. All readers must
410 >     * tolerate that some array slots may be null.
411       */
412 <    private final ReentrantLock workerLock;
412 >    ForkJoinWorkerThread[] workers;
413  
414      /**
415 <     * Condition for awaitTermination.
415 >     * Initial size for submission queue array. Must be a power of
416 >     * two.  In many applications, these always stay small so we use a
417 >     * small initial cap.
418       */
419 <    private final Condition termination;
419 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
420 >
421 >    /**
422 >     * Maximum size for submission queue array. Must be a power of two
423 >     * less than or equal to 1 << (31 - width of array entry) to
424 >     * ensure lack of index wraparound, but is capped at a lower
425 >     * value to help users trap runaway computations.
426 >     */
427 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
428  
429      /**
430 <     * The uncaught exception handler used when any worker
187 <     * abruptly terminates
430 >     * Array serving as submission queue. Initialized upon construction.
431       */
432 <    private Thread.UncaughtExceptionHandler ueh;
432 >    private ForkJoinTask<?>[] submissionQueue;
433 >
434 >    /**
435 >     * Lock protecting submissions array for addSubmission
436 >     */
437 >    private final ReentrantLock submissionLock;
438 >
439 >    /**
440 >     * Condition for awaitTermination, using submissionLock for
441 >     * convenience.
442 >     */
443 >    private final Condition termination;
444  
445      /**
446       * Creation factory for worker threads.
# Line 194 | Line 448 | public class ForkJoinPool extends Abstra
448      private final ForkJoinWorkerThreadFactory factory;
449  
450      /**
451 <     * Head of stack of threads that were created to maintain
452 <     * parallelism when other threads blocked, but have since
199 <     * suspended when the parallelism level rose.
451 >     * The uncaught exception handler used when any worker abruptly
452 >     * terminates.
453       */
454 <    private volatile WaitQueueNode spareStack;
454 >    final Thread.UncaughtExceptionHandler ueh;
455  
456      /**
457 <     * Sum of per-thread steal counts, updated only when threads are
205 <     * idle or terminating.
457 >     * Prefix for assigning names to worker threads
458       */
459 <    private final AtomicLong stealCount;
459 >    private final String workerNamePrefix;
460  
461      /**
462 <     * Queue for external submissions.
462 >     * Sum of per-thread steal counts, updated only when threads are
463 >     * idle or terminating.
464       */
465 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
465 >    private volatile long stealCount;
466  
467      /**
468 <     * Head of Treiber stack for barrier sync. See below for explanation.
468 >     * Main pool control -- a long packed with:
469 >     * AC: Number of active running workers minus target parallelism (16 bits)
470 >     * TC: Number of total workers minus target parallelism (16bits)
471 >     * ST: true if pool is terminating (1 bit)
472 >     * EC: the wait count of top waiting thread (15 bits)
473 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
474 >     *
475 >     * When convenient, we can extract the upper 32 bits of counts and
476 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
477 >     * (int)ctl.  The ec field is never accessed alone, but always
478 >     * together with id and st. The offsets of counts by the target
479 >     * parallelism and the positionings of fields makes it possible to
480 >     * perform the most common checks via sign tests of fields: When
481 >     * ac is negative, there are not enough active workers, when tc is
482 >     * negative, there are not enough total workers, when id is
483 >     * negative, there is at least one waiting worker, and when e is
484 >     * negative, the pool is terminating.  To deal with these possibly
485 >     * negative fields, we use casts in and out of "short" and/or
486 >     * signed shifts to maintain signedness.
487       */
488 <    private volatile WaitQueueNode syncStack;
488 >    volatile long ctl;
489 >
490 >    // bit positions/shifts for fields
491 >    private static final int  AC_SHIFT   = 48;
492 >    private static final int  TC_SHIFT   = 32;
493 >    private static final int  ST_SHIFT   = 31;
494 >    private static final int  EC_SHIFT   = 16;
495 >
496 >    // bounds
497 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
498 >    private static final int  SMASK      = 0xffff;  // mask short bits
499 >    private static final int  SHORT_SIGN = 1 << 15;
500 >    private static final int  INT_SIGN   = 1 << 31;
501 >
502 >    // masks
503 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
504 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
505 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
506 >
507 >    // units for incrementing and decrementing
508 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
509 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
510 >
511 >    // masks and units for dealing with u = (int)(ctl >>> 32)
512 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
513 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
514 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
515 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
516 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
517 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
518 >
519 >    // masks and units for dealing with e = (int)ctl
520 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
521 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
522  
523      /**
524 <     * The count for event barrier
524 >     * The target parallelism level.
525       */
526 <    private volatile long eventCount;
526 >    final int parallelism;
527  
528      /**
529 <     * Pool number, just for assigning useful names to worker threads
529 >     * Index (mod submission queue length) of next element to take
530 >     * from submission queue. Usage is identical to that for
531 >     * per-worker queues -- see ForkJoinWorkerThread internal
532 >     * documentation.
533       */
534 <    private final int poolNumber;
534 >    volatile int queueBase;
535  
536      /**
537 <     * The maximum allowed pool size
537 >     * Index (mod submission queue length) of next element to add
538 >     * in submission queue. Usage is identical to that for
539 >     * per-worker queues -- see ForkJoinWorkerThread internal
540 >     * documentation.
541       */
542 <    private volatile int maxPoolSize;
542 >    int queueTop;
543  
544      /**
545 <     * The desired parallelism level, updated only under workerLock.
545 >     * True when shutdown() has been called.
546       */
547 <    private volatile int parallelism;
547 >    volatile boolean shutdown;
548  
549      /**
550       * True if use local fifo, not default lifo, for local polling
551 +     * Read by, and replicated by ForkJoinWorkerThreads
552       */
553 <    private volatile boolean locallyFifo;
553 >    final boolean locallyFifo;
554  
555      /**
556 <     * Holds number of total (i.e., created and not yet terminated)
557 <     * and running (i.e., not blocked on joins or other managed sync)
558 <     * threads, packed into one int to ensure consistent snapshot when
248 <     * making decisions about creating and suspending spare
249 <     * threads. Updated only by CAS.  Note: CASes in
250 <     * updateRunningCount and preJoin assume that running active count
251 <     * is in low word, so need to be modified if this changes.
556 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
557 >     * When non-zero, suppresses automatic shutdown when active
558 >     * counts become zero.
559       */
560 <    private volatile int workerCounts;
560 >    volatile int quiescerCount;
561  
562 <    private static int totalCountOf(int s)           { return s >>> 16;  }
563 <    private static int runningCountOf(int s)         { return s & shortMask; }
564 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
562 >    /**
563 >     * The number of threads blocked in join.
564 >     */
565 >    volatile int blockedCount;
566  
567      /**
568 <     * Adds delta (which may be negative) to running count.  This must
261 <     * be called before (with negative arg) and after (with positive)
262 <     * any managed synchronization (i.e., mainly, joins).
263 <     *
264 <     * @param delta the number to add
568 >     * Counter for worker Thread names (unrelated to their poolIndex)
569       */
570 <    final void updateRunningCount(int delta) {
267 <        int s;
268 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
269 <    }
570 >    private volatile int nextWorkerNumber;
571  
572      /**
573 <     * Adds delta (which may be negative) to both total and running
273 <     * count.  This must be called upon creation and termination of
274 <     * worker threads.
275 <     *
276 <     * @param delta the number to add
573 >     * The index for the next created worker. Accessed under scanGuard.
574       */
575 <    private void updateWorkerCount(int delta) {
279 <        int d = delta + (delta << 16); // add to both lo and hi parts
280 <        int s;
281 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
282 <    }
575 >    private int nextWorkerIndex;
576  
577      /**
578 <     * Lifecycle control. High word contains runState, low word
579 <     * contains the number of workers that are (probably) executing
580 <     * tasks. This value is atomically incremented before a worker
581 <     * gets a task to run, and decremented when worker has no tasks
582 <     * and cannot find any. These two fields are bundled together to
583 <     * support correct termination triggering.  Note: activeCount
584 <     * CAS'es cheat by assuming active count is in low word, so need
585 <     * to be modified if this changes
578 >     * SeqLock and index masking for updates to workers array.  Locked
579 >     * when SG_UNIT is set. Unlocking clears bit by adding
580 >     * SG_UNIT. Staleness of read-only operations can be checked by
581 >     * comparing scanGuard to value before the reads. The low 16 bits
582 >     * (i.e, anding with SMASK) hold (the smallest power of two
583 >     * covering all worker indices, minus one, and is used to avoid
584 >     * dealing with large numbers of null slots when the workers array
585 >     * is overallocated.
586       */
587 <    private volatile int runControl;
587 >    volatile int scanGuard;
588  
589 <    // RunState values. Order among values matters
297 <    private static final int RUNNING     = 0;
298 <    private static final int SHUTDOWN    = 1;
299 <    private static final int TERMINATING = 2;
300 <    private static final int TERMINATED  = 3;
589 >    private static final int SG_UNIT = 1 << 16;
590  
591 <    private static int runStateOf(int c)             { return c >>> 16; }
592 <    private static int activeCountOf(int c)          { return c & shortMask; }
593 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
591 >    /**
592 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
593 >     * task when the pool is quiescent to instead try to shrink the
594 >     * number of workers.  The exact value does not matter too
595 >     * much. It must be short enough to release resources during
596 >     * sustained periods of idleness, but not so short that threads
597 >     * are continually re-created.
598 >     */
599 >    private static final long SHRINK_RATE =
600 >        4L * 1000L * 1000L * 1000L; // 4 seconds
601  
602      /**
603 <     * Tries incrementing active count; fails on contention.
604 <     * Called by workers before/during executing tasks.
603 >     * Top-level loop for worker threads: On each step: if the
604 >     * previous step swept through all queues and found no tasks, or
605 >     * there are excess threads, then possibly blocks. Otherwise,
606 >     * scans for and, if found, executes a task. Returns when pool
607 >     * and/or worker terminate.
608       *
609 <     * @return true on success
609 >     * @param w the worker
610       */
611 <    final boolean tryIncrementActiveCount() {
612 <        int c = runControl;
613 <        return casRunControl(c, c+1);
611 >    final void work(ForkJoinWorkerThread w) {
612 >        boolean swept = false;                // true on empty scans
613 >        long c;
614 >        while (!w.terminate && (int)(c = ctl) >= 0) {
615 >            int a;                            // active count
616 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
617 >                swept = scan(w, a);
618 >            else if (tryAwaitWork(w, c))
619 >                swept = false;
620 >        }
621      }
622  
623 +    // Signalling
624 +
625      /**
626 <     * Tries decrementing active count; fails on contention.
319 <     * Possibly triggers termination on success.
320 <     * Called by workers when they can't find tasks.
321 <     *
322 <     * @return true on success
626 >     * Wakes up or creates a worker.
627       */
628 <    final boolean tryDecrementActiveCount() {
629 <        int c = runControl;
630 <        int nextc = c - 1;
631 <        if (!casRunControl(c, nextc))
632 <            return false;
633 <        if (canTerminateOnShutdown(nextc))
634 <            terminateOnShutdown();
635 <        return true;
628 >    final void signalWork() {
629 >        /*
630 >         * The while condition is true if: (there is are too few total
631 >         * workers OR there is at least one waiter) AND (there are too
632 >         * few active workers OR the pool is terminating).  The value
633 >         * of e distinguishes the remaining cases: zero (no waiters)
634 >         * for create, negative if terminating (in which case do
635 >         * nothing), else release a waiter. The secondary checks for
636 >         * release (non-null array etc) can fail if the pool begins
637 >         * terminating after the test, and don't impose any added cost
638 >         * because JVMs must perform null and bounds checks anyway.
639 >         */
640 >        long c; int e, u;
641 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
642 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
643 >            if (e > 0) {                         // release a waiting worker
644 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
645 >                if ((ws = workers) == null ||
646 >                    (i = ~e & SMASK) >= ws.length ||
647 >                    (w = ws[i]) == null)
648 >                    break;
649 >                long nc = (((long)(w.nextWait & E_MASK)) |
650 >                           ((long)(u + UAC_UNIT) << 32));
651 >                if (w.eventCount == e &&
652 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
653 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
654 >                    if (w.parked)
655 >                        UNSAFE.unpark(w);
656 >                    break;
657 >                }
658 >            }
659 >            else if (UNSAFE.compareAndSwapLong
660 >                     (this, ctlOffset, c,
661 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
662 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
663 >                addWorker();
664 >                break;
665 >            }
666 >        }
667      }
668  
669      /**
670 <     * Returns {@code true} if argument represents zero active count
671 <     * and nonzero runstate, which is the triggering condition for
672 <     * terminating on shutdown.
670 >     * Variant of signalWork to help release waiters on rescans.
671 >     * Tries once to release a waiter if active count < 0.
672 >     *
673 >     * @return false if failed due to contention, else true
674       */
675 <    private static boolean canTerminateOnShutdown(int c) {
676 <        // i.e. least bit is nonzero runState bit
677 <        return ((c & -c) >>> 16) != 0;
675 >    private boolean tryReleaseWaiter() {
676 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
677 >        if ((e = (int)(c = ctl)) > 0 &&
678 >            (int)(c >> AC_SHIFT) < 0 &&
679 >            (ws = workers) != null &&
680 >            (i = ~e & SMASK) < ws.length &&
681 >            (w = ws[i]) != null) {
682 >            long nc = ((long)(w.nextWait & E_MASK) |
683 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
684 >            if (w.eventCount != e ||
685 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
686 >                return false;
687 >            w.eventCount = (e + EC_UNIT) & E_MASK;
688 >            if (w.parked)
689 >                UNSAFE.unpark(w);
690 >        }
691 >        return true;
692      }
693  
694 +    // Scanning for tasks
695 +
696      /**
697 <     * Transition run state to at least the given state. Return true
698 <     * if not already at least given state.
697 >     * Scans for and, if found, executes one task. Scans start at a
698 >     * random index of workers array, and randomly select the first
699 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
700 >     * circular sweeps, which is necessary to check quiescence. and
701 >     * taking a submission only if no stealable tasks were found.  The
702 >     * steal code inside the loop is a specialized form of
703 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
704 >     * helpJoinTask and signal propagation. The code for submission
705 >     * queues is almost identical. On each steal, the worker completes
706 >     * not only the task, but also all local tasks that this task may
707 >     * have generated. On detecting staleness or contention when
708 >     * trying to take a task, this method returns without finishing
709 >     * sweep, which allows global state rechecks before retry.
710 >     *
711 >     * @param w the worker
712 >     * @param a the number of active workers
713 >     * @return true if swept all queues without finding a task
714       */
715 <    private boolean transitionRunStateTo(int state) {
716 <        for (;;) {
717 <            int c = runControl;
718 <            if (runStateOf(c) >= state)
715 >    private boolean scan(ForkJoinWorkerThread w, int a) {
716 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
717 >        int m = (parallelism == 1 - a && blockedCount == 0) ? 0 : g & SMASK;
718 >        ForkJoinWorkerThread[] ws = workers;
719 >        if (ws == null || ws.length <= m)         // staleness check
720 >            return false;
721 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
722 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
723 >            ForkJoinWorkerThread v = ws[k & m];
724 >            if (v != null && (b = v.queueBase) != v.queueTop &&
725 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
726 >                long u = (i << ASHIFT) + ABASE;
727 >                if ((t = q[i]) != null && v.queueBase == b &&
728 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
729 >                    int d = (v.queueBase = b + 1) - v.queueTop;
730 >                    v.stealHint = w.poolIndex;
731 >                    if (d != 0)
732 >                        signalWork();             // propagate if nonempty
733 >                    w.execTask(t);
734 >                }
735 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
736 >                return false;                     // store next seed
737 >            }
738 >            else if (j < 0) {                     // xorshift
739 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
740 >            }
741 >            else
742 >                ++k;
743 >        }
744 >        if (scanGuard != g)                       // staleness check
745 >            return false;
746 >        else {                                    // try to take submission
747 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
748 >            if ((b = queueBase) != queueTop &&
749 >                (q = submissionQueue) != null &&
750 >                (i = (q.length - 1) & b) >= 0) {
751 >                long u = (i << ASHIFT) + ABASE;
752 >                if ((t = q[i]) != null && queueBase == b &&
753 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
754 >                    queueBase = b + 1;
755 >                    w.execTask(t);
756 >                }
757                  return false;
758 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
758 >            }
759 >            return true;                         // all queues empty
760 >        }
761 >    }
762 >
763 >    /**
764 >     * Tries to enqueue worker w in wait queue and await change in
765 >     * worker's eventCount.  If the pool is quiescent and there is
766 >     * more than one worker, possibly terminates worker upon exit.
767 >     * Otherwise, before blocking, rescans queues to avoid missed
768 >     * signals.  Upon finding work, releases at least one worker
769 >     * (which may be the current worker). Rescans restart upon
770 >     * detected staleness or failure to release due to
771 >     * contention. Note the unusual conventions about Thread.interrupt
772 >     * here and elsewhere: Because interrupts are used solely to alert
773 >     * threads to check termination, which is checked here anyway, we
774 >     * clear status (using Thread.interrupted) before any call to
775 >     * park, so that park does not immediately return due to status
776 >     * being set via some other unrelated call to interrupt in user
777 >     * code.
778 >     *
779 >     * @param w the calling worker
780 >     * @param c the ctl value on entry
781 >     * @return true if waited or another thread was released upon enq
782 >     */
783 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
784 >        int v = w.eventCount;
785 >        w.nextWait = (int)c;                      // w's successor record
786 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
787 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
788 >            long d = ctl; // return true if lost to a deq, to force scan
789 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
790 >        }
791 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
792 >            long s = stealCount;
793 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
794 >                sc = w.stealCount = 0;
795 >            else if (w.eventCount != v)
796 >                return true;                      // update next time
797 >        }
798 >        if ((!shutdown || !tryTerminate(false)) &&
799 >            (int)c != 0 && parallelism + (int)(nc >> AC_SHIFT) == 0 &&
800 >            blockedCount == 0 && quiescerCount == 0)
801 >            idleAwaitWork(w, nc, c, v);           // quiescent
802 >        for (boolean rescanned = false;;) {
803 >            if (w.eventCount != v)
804                  return true;
805 +            if (!rescanned) {
806 +                int g = scanGuard, m = g & SMASK;
807 +                ForkJoinWorkerThread[] ws = workers;
808 +                if (ws != null && m < ws.length) {
809 +                    rescanned = true;
810 +                    for (int i = 0; i <= m; ++i) {
811 +                        ForkJoinWorkerThread u = ws[i];
812 +                        if (u != null) {
813 +                            if (u.queueBase != u.queueTop &&
814 +                                !tryReleaseWaiter())
815 +                                rescanned = false; // contended
816 +                            if (w.eventCount != v)
817 +                                return true;
818 +                        }
819 +                    }
820 +                }
821 +                if (scanGuard != g ||              // stale
822 +                    (queueBase != queueTop && !tryReleaseWaiter()))
823 +                    rescanned = false;
824 +                if (!rescanned)
825 +                    Thread.yield();                // reduce contention
826 +                else
827 +                    Thread.interrupted();          // clear before park
828 +            }
829 +            else {
830 +                w.parked = true;                   // must recheck
831 +                if (w.eventCount != v) {
832 +                    w.parked = false;
833 +                    return true;
834 +                }
835 +                LockSupport.park(this);
836 +                rescanned = w.parked = false;
837 +            }
838          }
839      }
840  
841      /**
842 <     * Controls whether to add spares to maintain parallelism
843 <     */
844 <    private volatile boolean maintainsParallelism;
842 >     * If inactivating worker w has caused pool to become
843 >     * quiescent, check for pool termination, and wait for event
844 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
845 >     * this case because quiescence reflects consensus about lack
846 >     * of work). On timeout, if ctl has not changed, terminate the
847 >     * worker. Upon its termination (see deregisterWorker), it may
848 >     * wake up another worker to possibly repeat this process.
849 >     *
850 >     * @param w the calling worker
851 >     * @param currentCtl the ctl value after enqueuing w
852 >     * @param prevCtl the ctl value if w terminated
853 >     * @param v the eventCount w awaits change
854 >     */
855 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
856 >                               long prevCtl, int v) {
857 >        if (w.eventCount == v) {
858 >            if (shutdown)
859 >                tryTerminate(false);
860 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
861 >            while (ctl == currentCtl) {
862 >                long startTime = System.nanoTime();
863 >                w.parked = true;
864 >                if (w.eventCount == v)             // must recheck
865 >                    LockSupport.parkNanos(this, SHRINK_RATE);
866 >                w.parked = false;
867 >                if (w.eventCount != v)
868 >                    break;
869 >                else if (System.nanoTime() - startTime <
870 >                         SHRINK_RATE - (SHRINK_RATE / 10)) // timing slop
871 >                    Thread.interrupted();          // spurious wakeup
872 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
873 >                                                   currentCtl, prevCtl)) {
874 >                    w.terminate = true;            // restore previous
875 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
876 >                    break;
877 >                }
878 >            }
879 >        }
880 >    }
881  
882 <    // Constructors
882 >    // Submissions
883  
884      /**
885 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
886 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
368 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
885 >     * Enqueues the given task in the submissionQueue.  Same idea as
886 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
887       *
888 <     * @throws SecurityException if a security manager exists and
371 <     *         the caller is not permitted to modify threads
372 <     *         because it does not hold {@link
373 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
888 >     * @param t the task
889       */
890 <    public ForkJoinPool() {
891 <        this(Runtime.getRuntime().availableProcessors(),
892 <             defaultForkJoinWorkerThreadFactory);
890 >    private void addSubmission(ForkJoinTask<?> t) {
891 >        final ReentrantLock lock = this.submissionLock;
892 >        lock.lock();
893 >        try {
894 >            ForkJoinTask<?>[] q; int s, m;
895 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
896 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
897 >                UNSAFE.putOrderedObject(q, u, t);
898 >                queueTop = s + 1;
899 >                if (s - queueBase == m)
900 >                    growSubmissionQueue();
901 >            }
902 >        } finally {
903 >            lock.unlock();
904 >        }
905 >        signalWork();
906      }
907  
908 +    //  (pollSubmission is defined below with exported methods)
909 +
910      /**
911 <     * Creates a {@code ForkJoinPool} with the indicated parallelism
912 <     * level and using the {@linkplain
383 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
384 <     *
385 <     * @param parallelism the parallelism level
386 <     * @throws IllegalArgumentException if parallelism less than or
387 <     * equal to zero
388 <     * @throws SecurityException if a security manager exists and
389 <     *         the caller is not permitted to modify threads
390 <     *         because it does not hold {@link
391 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
911 >     * Creates or doubles submissionQueue array.
912 >     * Basically identical to ForkJoinWorkerThread version.
913       */
914 <    public ForkJoinPool(int parallelism) {
915 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
914 >    private void growSubmissionQueue() {
915 >        ForkJoinTask<?>[] oldQ = submissionQueue;
916 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
917 >        if (size > MAXIMUM_QUEUE_CAPACITY)
918 >            throw new RejectedExecutionException("Queue capacity exceeded");
919 >        if (size < INITIAL_QUEUE_CAPACITY)
920 >            size = INITIAL_QUEUE_CAPACITY;
921 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
922 >        int mask = size - 1;
923 >        int top = queueTop;
924 >        int oldMask;
925 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
926 >            for (int b = queueBase; b != top; ++b) {
927 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
928 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
929 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
930 >                    UNSAFE.putObjectVolatile
931 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
932 >            }
933 >        }
934 >    }
935 >
936 >    // Blocking support
937 >
938 >    /**
939 >     * Tries to increment blockedCount, decrement active count
940 >     * (sometimes implicitly) and possibly release or create a
941 >     * compensating worker in preparation for blocking. Fails
942 >     * on contention or termination.
943 >     *
944 >     * @return true if the caller can block, else should recheck and retry
945 >     */
946 >    private boolean tryPreBlock() {
947 >        int b = blockedCount;
948 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
949 >            int pc = parallelism;
950 >            do {
951 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
952 >                int e, ac, tc, rc, i;
953 >                long c = ctl;
954 >                int u = (int)(c >>> 32);
955 >                if ((e = (int)c) < 0) {
956 >                                                 // skip -- terminating
957 >                }
958 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
959 >                         (ws = workers) != null &&
960 >                         (i = ~e & SMASK) < ws.length &&
961 >                         (w = ws[i]) != null) {
962 >                    long nc = ((long)(w.nextWait & E_MASK) |
963 >                               (c & (AC_MASK|TC_MASK)));
964 >                    if (w.eventCount == e &&
965 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
966 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
967 >                        if (w.parked)
968 >                            UNSAFE.unpark(w);
969 >                        return true;             // release an idle worker
970 >                    }
971 >                }
972 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
973 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
974 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
975 >                        return true;             // no compensation needed
976 >                }
977 >                else if (tc + pc < MAX_ID) {
978 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
979 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
980 >                        addWorker();
981 >                        return true;            // create a replacement
982 >                    }
983 >                }
984 >                // try to back out on any failure and let caller retry
985 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
986 >                                               b = blockedCount, b - 1));
987 >        }
988 >        return false;
989      }
990  
991      /**
992 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
399 <     * java.lang.Runtime#availableProcessors}, and using the given
400 <     * thread factory.
401 <     *
402 <     * @param factory the factory for creating new threads
403 <     * @throws NullPointerException if factory is null
404 <     * @throws SecurityException if a security manager exists and
405 <     *         the caller is not permitted to modify threads
406 <     *         because it does not hold {@link
407 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
992 >     * Decrements blockedCount and increments active count
993       */
994 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
995 <        this(Runtime.getRuntime().availableProcessors(), factory);
994 >    private void postBlock() {
995 >        long c;
996 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
997 >                                                c = ctl, c + AC_UNIT));
998 >        int b;
999 >        do {} while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
1000 >                                               b = blockedCount, b - 1));
1001      }
1002  
1003      /**
1004 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1005 <     * thread factory.
1004 >     * Possibly blocks waiting for the given task to complete, or
1005 >     * cancels the task if terminating.  Fails to wait if contended.
1006       *
1007 <     * @param parallelism the parallelism level
418 <     * @param factory the factory for creating new threads
419 <     * @throws IllegalArgumentException if parallelism less than or
420 <     * equal to zero, or greater than implementation limit
421 <     * @throws NullPointerException if factory is null
422 <     * @throws SecurityException if a security manager exists and
423 <     *         the caller is not permitted to modify threads
424 <     *         because it does not hold {@link
425 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1007 >     * @param joinMe the task
1008       */
1009 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1010 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1011 <            throw new IllegalArgumentException();
1012 <        if (factory == null)
1013 <            throw new NullPointerException();
1014 <        checkPermission();
1015 <        this.factory = factory;
1016 <        this.parallelism = parallelism;
1017 <        this.maxPoolSize = MAX_THREADS;
1018 <        this.maintainsParallelism = true;
1019 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
438 <        this.workerLock = new ReentrantLock();
439 <        this.termination = workerLock.newCondition();
440 <        this.stealCount = new AtomicLong();
441 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
442 <        // worker array and workers are lazily constructed
1009 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
1010 >        int s;
1011 >        Thread.interrupted(); // clear interrupts before checking termination
1012 >        if (joinMe.status >= 0) {
1013 >            if (tryPreBlock()) {
1014 >                joinMe.tryAwaitDone(0L);
1015 >                postBlock();
1016 >            }
1017 >            else if ((ctl & STOP_BIT) != 0L)
1018 >                joinMe.cancelIgnoringExceptions();
1019 >        }
1020      }
1021  
1022      /**
1023 <     * Creates a new worker thread using factory.
1023 >     * Possibly blocks the given worker waiting for joinMe to
1024 >     * complete or timeout
1025       *
1026 <     * @param index the index to assign worker
1027 <     * @return new worker, or null if factory failed
1026 >     * @param joinMe the task
1027 >     * @param millis the wait time for underlying Object.wait
1028       */
1029 <    private ForkJoinWorkerThread createWorker(int index) {
1030 <        Thread.UncaughtExceptionHandler h = ueh;
1031 <        ForkJoinWorkerThread w = factory.newThread(this);
1032 <        if (w != null) {
1033 <            w.poolIndex = index;
1034 <            w.setDaemon(true);
1035 <            w.setAsyncMode(locallyFifo);
1036 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1037 <            if (h != null)
1038 <                w.setUncaughtExceptionHandler(h);
1029 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1030 >        while (joinMe.status >= 0) {
1031 >            Thread.interrupted();
1032 >            if ((ctl & STOP_BIT) != 0L) {
1033 >                joinMe.cancelIgnoringExceptions();
1034 >                break;
1035 >            }
1036 >            if (tryPreBlock()) {
1037 >                long last = System.nanoTime();
1038 >                while (joinMe.status >= 0) {
1039 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1040 >                    if (millis <= 0)
1041 >                        break;
1042 >                    joinMe.tryAwaitDone(millis);
1043 >                    if (joinMe.status < 0)
1044 >                        break;
1045 >                    if ((ctl & STOP_BIT) != 0L) {
1046 >                        joinMe.cancelIgnoringExceptions();
1047 >                        break;
1048 >                    }
1049 >                    long now = System.nanoTime();
1050 >                    nanos -= now - last;
1051 >                    last = now;
1052 >                }
1053 >                postBlock();
1054 >                break;
1055 >            }
1056          }
462        return w;
1057      }
1058  
1059      /**
1060 <     * Returns a good size for worker array given pool size.
467 <     * Currently requires size to be a power of two.
1060 >     * If necessary, compensates for blocker, and blocks
1061       */
1062 <    private static int arraySizeFor(int poolSize) {
1063 <        if (poolSize <= 1)
1064 <            return 1;
1065 <        // See Hackers Delight, sec 3.2
1066 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
1067 <        c |= c >>>  1;
1068 <        c |= c >>>  2;
1069 <        c |= c >>>  4;
1070 <        c |= c >>>  8;
1071 <        c |= c >>> 16;
1072 <        return c + 1;
1062 >    private void awaitBlocker(ManagedBlocker blocker)
1063 >        throws InterruptedException {
1064 >        while (!blocker.isReleasable()) {
1065 >            if (tryPreBlock()) {
1066 >                try {
1067 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1068 >                } finally {
1069 >                    postBlock();
1070 >                }
1071 >                break;
1072 >            }
1073 >        }
1074      }
1075  
1076 +    // Creating, registering and deregistring workers
1077 +
1078      /**
1079 <     * Creates or resizes array if necessary to hold newLength.
1080 <     * Call only under exclusion.
485 <     *
486 <     * @return the array
1079 >     * Tries to create and start a worker; minimally rolls back counts
1080 >     * on failure.
1081       */
1082 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1083 <        ForkJoinWorkerThread[] ws = workers;
1084 <        if (ws == null)
1085 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1086 <        else if (newLength > ws.length)
1087 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1082 >    private void addWorker() {
1083 >        Throwable ex = null;
1084 >        ForkJoinWorkerThread t = null;
1085 >        try {
1086 >            t = factory.newThread(this);
1087 >        } catch (Throwable e) {
1088 >            ex = e;
1089 >        }
1090 >        if (t == null) {  // null or exceptional factory return
1091 >            long c;       // adjust counts
1092 >            do {} while (!UNSAFE.compareAndSwapLong
1093 >                         (this, ctlOffset, c = ctl,
1094 >                          (((c - AC_UNIT) & AC_MASK) |
1095 >                           ((c - TC_UNIT) & TC_MASK) |
1096 >                           (c & ~(AC_MASK|TC_MASK)))));
1097 >            // Propagate exception if originating from an external caller
1098 >            if (!tryTerminate(false) && ex != null &&
1099 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1100 >                UNSAFE.throwException(ex);
1101 >        }
1102          else
1103 <            return ws;
1103 >            t.start();
1104      }
1105  
1106      /**
1107 <     * Tries to shrink workers into smaller array after one or more terminate.
1107 >     * Callback from ForkJoinWorkerThread constructor to assign a
1108 >     * public name
1109       */
1110 <    private void tryShrinkWorkerArray() {
1111 <        ForkJoinWorkerThread[] ws = workers;
1112 <        if (ws != null) {
1113 <            int len = ws.length;
1114 <            int last = len - 1;
506 <            while (last >= 0 && ws[last] == null)
507 <                --last;
508 <            int newLength = arraySizeFor(last+1);
509 <            if (newLength < len)
510 <                workers = Arrays.copyOf(ws, newLength);
1110 >    final String nextWorkerName() {
1111 >        for (int n;;) {
1112 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1113 >                                         n = nextWorkerNumber, ++n))
1114 >                return workerNamePrefix + n;
1115          }
1116      }
1117  
1118      /**
1119 <     * Initializes workers if necessary.
1119 >     * Callback from ForkJoinWorkerThread constructor to
1120 >     * determine its poolIndex and record in workers array.
1121 >     *
1122 >     * @param w the worker
1123 >     * @return the worker's pool index
1124       */
1125 <    final void ensureWorkerInitialization() {
1126 <        ForkJoinWorkerThread[] ws = workers;
1127 <        if (ws == null) {
1128 <            final ReentrantLock lock = this.workerLock;
1129 <            lock.lock();
1130 <            try {
1131 <                ws = workers;
1132 <                if (ws == null) {
1133 <                    int ps = parallelism;
1134 <                    ws = ensureWorkerArrayCapacity(ps);
1135 <                    for (int i = 0; i < ps; ++i) {
1136 <                        ForkJoinWorkerThread w = createWorker(i);
1137 <                        if (w != null) {
1138 <                            ws[i] = w;
1139 <                            w.start();
1140 <                            updateWorkerCount(1);
1125 >    final int registerWorker(ForkJoinWorkerThread w) {
1126 >        /*
1127 >         * In the typical case, a new worker acquires the lock, uses
1128 >         * next available index and returns quickly.  Since we should
1129 >         * not block callers (ultimately from signalWork or
1130 >         * tryPreBlock) waiting for the lock needed to do this, we
1131 >         * instead help release other workers while waiting for the
1132 >         * lock.
1133 >         */
1134 >        for (int g;;) {
1135 >            ForkJoinWorkerThread[] ws;
1136 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1137 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1138 >                                         g, g | SG_UNIT)) {
1139 >                int k = nextWorkerIndex;
1140 >                try {
1141 >                    if ((ws = workers) != null) { // ignore on shutdown
1142 >                        int n = ws.length;
1143 >                        if (k < 0 || k >= n || ws[k] != null) {
1144 >                            for (k = 0; k < n && ws[k] != null; ++k)
1145 >                                ;
1146 >                            if (k == n)
1147 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1148                          }
1149 +                        ws[k] = w;
1150 +                        nextWorkerIndex = k + 1;
1151 +                        int m = g & SMASK;
1152 +                        g = (k > m) ? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1153 +                    }
1154 +                } finally {
1155 +                    scanGuard = g;
1156 +                }
1157 +                return k;
1158 +            }
1159 +            else if ((ws = workers) != null) { // help release others
1160 +                for (ForkJoinWorkerThread u : ws) {
1161 +                    if (u != null && u.queueBase != u.queueTop) {
1162 +                        if (tryReleaseWaiter())
1163 +                            break;
1164                      }
1165                  }
1166 +            }
1167 +        }
1168 +    }
1169 +
1170 +    /**
1171 +     * Final callback from terminating worker.  Removes record of
1172 +     * worker from array, and adjusts counts. If pool is shutting
1173 +     * down, tries to complete termination.
1174 +     *
1175 +     * @param w the worker
1176 +     */
1177 +    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1178 +        int idx = w.poolIndex;
1179 +        int sc = w.stealCount;
1180 +        int steps = 0;
1181 +        // Remove from array, adjust worker counts and collect steal count.
1182 +        // We can intermix failed removes or adjusts with steal updates
1183 +        do {
1184 +            long s, c;
1185 +            int g;
1186 +            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1187 +                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1188 +                                         g, g |= SG_UNIT)) {
1189 +                ForkJoinWorkerThread[] ws = workers;
1190 +                if (ws != null && idx >= 0 &&
1191 +                    idx < ws.length && ws[idx] == w)
1192 +                    ws[idx] = null;    // verify
1193 +                nextWorkerIndex = idx;
1194 +                scanGuard = g + SG_UNIT;
1195 +                steps = 1;
1196 +            }
1197 +            if (steps == 1 &&
1198 +                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1199 +                                          (((c - AC_UNIT) & AC_MASK) |
1200 +                                           ((c - TC_UNIT) & TC_MASK) |
1201 +                                           (c & ~(AC_MASK|TC_MASK)))))
1202 +                steps = 2;
1203 +            if (sc != 0 &&
1204 +                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1205 +                                          s = stealCount, s + sc))
1206 +                sc = 0;
1207 +        } while (steps != 2 || sc != 0);
1208 +        if (!tryTerminate(false)) {
1209 +            if (ex != null)   // possibly replace if died abnormally
1210 +                signalWork();
1211 +            else
1212 +                tryReleaseWaiter();
1213 +        }
1214 +    }
1215 +
1216 +    // Shutdown and termination
1217 +
1218 +    /**
1219 +     * Possibly initiates and/or completes termination.
1220 +     *
1221 +     * @param now if true, unconditionally terminate, else only
1222 +     * if shutdown and empty queue and no active workers
1223 +     * @return true if now terminating or terminated
1224 +     */
1225 +    private boolean tryTerminate(boolean now) {
1226 +        long c;
1227 +        while (((c = ctl) & STOP_BIT) == 0) {
1228 +            if (!now) {
1229 +                if ((int)(c >> AC_SHIFT) != -parallelism)
1230 +                    return false;
1231 +                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1232 +                    queueBase != queueTop) {
1233 +                    if (ctl == c) // staleness check
1234 +                        return false;
1235 +                    continue;
1236 +                }
1237 +            }
1238 +            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1239 +                startTerminating();
1240 +        }
1241 +        if ((short)(c >>> TC_SHIFT) == -parallelism) { // signal when 0 workers
1242 +            final ReentrantLock lock = this.submissionLock;
1243 +            lock.lock();
1244 +            try {
1245 +                termination.signalAll();
1246              } finally {
1247                  lock.unlock();
1248              }
1249          }
1250 +        return true;
1251      }
1252  
1253      /**
1254 <     * Worker creation and startup for threads added via setParallelism.
1255 <     */
1256 <    private void createAndStartAddedWorkers() {
1257 <        resumeAllSpares();  // Allow spares to convert to nonspare
1258 <        int ps = parallelism;
1259 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1260 <        int len = ws.length;
1261 <        // Sweep through slots, to keep lowest indices most populated
1262 <        int k = 0;
1263 <        while (k < len) {
1264 <            if (ws[k] != null) {
1265 <                ++k;
1266 <                continue;
1254 >     * Runs up to three passes through workers: (0) Setting
1255 >     * termination status for each worker, followed by wakeups up to
1256 >     * queued workers; (1) helping cancel tasks; (2) interrupting
1257 >     * lagging threads (likely in external tasks, but possibly also
1258 >     * blocked in joins).  Each pass repeats previous steps because of
1259 >     * potential lagging thread creation.
1260 >     */
1261 >    private void startTerminating() {
1262 >        cancelSubmissions();
1263 >        for (int pass = 0; pass < 3; ++pass) {
1264 >            ForkJoinWorkerThread[] ws = workers;
1265 >            if (ws != null) {
1266 >                for (ForkJoinWorkerThread w : ws) {
1267 >                    if (w != null) {
1268 >                        w.terminate = true;
1269 >                        if (pass > 0) {
1270 >                            w.cancelTasks();
1271 >                            if (pass > 1 && !w.isInterrupted()) {
1272 >                                try {
1273 >                                    w.interrupt();
1274 >                                } catch (SecurityException ignore) {
1275 >                                }
1276 >                            }
1277 >                        }
1278 >                    }
1279 >                }
1280 >                terminateWaiters();
1281              }
1282 <            int s = workerCounts;
1283 <            int tc = totalCountOf(s);
1284 <            int rc = runningCountOf(s);
1285 <            if (rc >= ps || tc >= ps)
1286 <                break;
1287 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1288 <                ForkJoinWorkerThread w = createWorker(k);
1289 <                if (w != null) {
1290 <                    ws[k++] = w;
1291 <                    w.start();
1282 >        }
1283 >    }
1284 >
1285 >    /**
1286 >     * Polls and cancels all submissions. Called only during termination.
1287 >     */
1288 >    private void cancelSubmissions() {
1289 >        while (queueBase != queueTop) {
1290 >            ForkJoinTask<?> task = pollSubmission();
1291 >            if (task != null) {
1292 >                try {
1293 >                    task.cancel(false);
1294 >                } catch (Throwable ignore) {
1295                  }
1296 <                else {
1297 <                    updateWorkerCount(-1); // back out on failed creation
1298 <                    break;
1296 >            }
1297 >        }
1298 >    }
1299 >
1300 >    /**
1301 >     * Tries to set the termination status of waiting workers, and
1302 >     * then wakes them up (after which they will terminate).
1303 >     */
1304 >    private void terminateWaiters() {
1305 >        ForkJoinWorkerThread[] ws = workers;
1306 >        if (ws != null) {
1307 >            ForkJoinWorkerThread w; long c; int i, e;
1308 >            int n = ws.length;
1309 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1310 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1311 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1312 >                                              (long)(w.nextWait & E_MASK) |
1313 >                                              ((c + AC_UNIT) & AC_MASK) |
1314 >                                              (c & (TC_MASK|STOP_BIT)))) {
1315 >                    w.terminate = true;
1316 >                    w.eventCount = e + EC_UNIT;
1317 >                    if (w.parked)
1318 >                        UNSAFE.unpark(w);
1319                  }
1320              }
1321          }
1322      }
1323  
1324 <    // Execution methods
1324 >    // misc ForkJoinWorkerThread support
1325  
1326      /**
1327 <     * Common code for execute, invoke and submit
1327 >     * Increment or decrement quiescerCount. Needed only to prevent
1328 >     * triggering shutdown if a worker is transiently inactive while
1329 >     * checking quiescence.
1330 >     *
1331 >     * @param delta 1 for increment, -1 for decrement
1332       */
1333 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1334 <        if (task == null)
1333 >    final void addQuiescerCount(int delta) {
1334 >        int c;
1335 >        do {} while (!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1336 >                                               c = quiescerCount, c + delta));
1337 >    }
1338 >
1339 >    /**
1340 >     * Directly increment or decrement active count without
1341 >     * queuing. This method is used to transiently assert inactivation
1342 >     * while checking quiescence.
1343 >     *
1344 >     * @param delta 1 for increment, -1 for decrement
1345 >     */
1346 >    final void addActiveCount(int delta) {
1347 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1348 >        long c;
1349 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1350 >                                                ((c + d) & AC_MASK) |
1351 >                                                (c & ~AC_MASK)));
1352 >    }
1353 >
1354 >    /**
1355 >     * Returns the approximate (non-atomic) number of idle threads per
1356 >     * active thread.
1357 >     */
1358 >    final int idlePerActive() {
1359 >        // Approximate at powers of two for small values, saturate past 4
1360 >        int p = parallelism;
1361 >        int a = p + (int)(ctl >> AC_SHIFT);
1362 >        return (a > (p >>>= 1) ? 0 :
1363 >                a > (p >>>= 1) ? 1 :
1364 >                a > (p >>>= 1) ? 2 :
1365 >                a > (p >>>= 1) ? 4 :
1366 >                8);
1367 >    }
1368 >
1369 >    // Exported methods
1370 >
1371 >    // Constructors
1372 >
1373 >    /**
1374 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1375 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1376 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1377 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1378 >     *
1379 >     * @throws SecurityException if a security manager exists and
1380 >     *         the caller is not permitted to modify threads
1381 >     *         because it does not hold {@link
1382 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1383 >     */
1384 >    public ForkJoinPool() {
1385 >        this(Runtime.getRuntime().availableProcessors(),
1386 >             defaultForkJoinWorkerThreadFactory, null, false);
1387 >    }
1388 >
1389 >    /**
1390 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1391 >     * level, the {@linkplain
1392 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1393 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1394 >     *
1395 >     * @param parallelism the parallelism level
1396 >     * @throws IllegalArgumentException if parallelism less than or
1397 >     *         equal to zero, or greater than implementation limit
1398 >     * @throws SecurityException if a security manager exists and
1399 >     *         the caller is not permitted to modify threads
1400 >     *         because it does not hold {@link
1401 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1402 >     */
1403 >    public ForkJoinPool(int parallelism) {
1404 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1405 >    }
1406 >
1407 >    /**
1408 >     * Creates a {@code ForkJoinPool} with the given parameters.
1409 >     *
1410 >     * @param parallelism the parallelism level. For default value,
1411 >     * use {@link java.lang.Runtime#availableProcessors}.
1412 >     * @param factory the factory for creating new threads. For default value,
1413 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1414 >     * @param handler the handler for internal worker threads that
1415 >     * terminate due to unrecoverable errors encountered while executing
1416 >     * tasks. For default value, use {@code null}.
1417 >     * @param asyncMode if true,
1418 >     * establishes local first-in-first-out scheduling mode for forked
1419 >     * tasks that are never joined. This mode may be more appropriate
1420 >     * than default locally stack-based mode in applications in which
1421 >     * worker threads only process event-style asynchronous tasks.
1422 >     * For default value, use {@code false}.
1423 >     * @throws IllegalArgumentException if parallelism less than or
1424 >     *         equal to zero, or greater than implementation limit
1425 >     * @throws NullPointerException if the factory is null
1426 >     * @throws SecurityException if a security manager exists and
1427 >     *         the caller is not permitted to modify threads
1428 >     *         because it does not hold {@link
1429 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1430 >     */
1431 >    public ForkJoinPool(int parallelism,
1432 >                        ForkJoinWorkerThreadFactory factory,
1433 >                        Thread.UncaughtExceptionHandler handler,
1434 >                        boolean asyncMode) {
1435 >        checkPermission();
1436 >        if (factory == null)
1437              throw new NullPointerException();
1438 <        if (isShutdown())
1439 <            throw new RejectedExecutionException();
1440 <        if (workers == null)
1441 <            ensureWorkerInitialization();
1442 <        submissionQueue.offer(task);
1443 <        signalIdleWorkers();
1438 >        if (parallelism <= 0 || parallelism > MAX_ID)
1439 >            throw new IllegalArgumentException();
1440 >        this.parallelism = parallelism;
1441 >        this.factory = factory;
1442 >        this.ueh = handler;
1443 >        this.locallyFifo = asyncMode;
1444 >        long np = (long)(-parallelism); // offset ctl counts
1445 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1446 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1447 >        // initialize workers array with room for 2*parallelism if possible
1448 >        int n = parallelism << 1;
1449 >        if (n >= MAX_ID)
1450 >            n = MAX_ID;
1451 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1452 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1453 >        }
1454 >        workers = new ForkJoinWorkerThread[n + 1];
1455 >        this.submissionLock = new ReentrantLock();
1456 >        this.termination = submissionLock.newCondition();
1457 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1458 >        sb.append(poolNumberGenerator.incrementAndGet());
1459 >        sb.append("-worker-");
1460 >        this.workerNamePrefix = sb.toString();
1461      }
1462  
1463 +    // Execution methods
1464 +
1465      /**
1466       * Performs the given task, returning its result upon completion.
1467 +     * If the computation encounters an unchecked Exception or Error,
1468 +     * it is rethrown as the outcome of this invocation.  Rethrown
1469 +     * exceptions behave in the same way as regular exceptions, but,
1470 +     * when possible, contain stack traces (as displayed for example
1471 +     * using {@code ex.printStackTrace()}) of both the current thread
1472 +     * as well as the thread actually encountering the exception;
1473 +     * minimally only the latter.
1474       *
1475       * @param task the task
1476       * @return the task's result
1477 <     * @throws NullPointerException if task is null
1478 <     * @throws RejectedExecutionException if pool is shut down
1477 >     * @throws NullPointerException if the task is null
1478 >     * @throws RejectedExecutionException if the task cannot be
1479 >     *         scheduled for execution
1480       */
1481      public <T> T invoke(ForkJoinTask<T> task) {
1482 <        doSubmit(task);
1483 <        return task.join();
1482 >        Thread t = Thread.currentThread();
1483 >        if (task == null)
1484 >            throw new NullPointerException();
1485 >        if (shutdown)
1486 >            throw new RejectedExecutionException();
1487 >        if ((t instanceof ForkJoinWorkerThread) &&
1488 >            ((ForkJoinWorkerThread)t).pool == this)
1489 >            return task.invoke();  // bypass submit if in same pool
1490 >        else {
1491 >            addSubmission(task);
1492 >            return task.join();
1493 >        }
1494 >    }
1495 >
1496 >    /**
1497 >     * Unless terminating, forks task if within an ongoing FJ
1498 >     * computation in the current pool, else submits as external task.
1499 >     */
1500 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1501 >        ForkJoinWorkerThread w;
1502 >        Thread t = Thread.currentThread();
1503 >        if (shutdown)
1504 >            throw new RejectedExecutionException();
1505 >        if ((t instanceof ForkJoinWorkerThread) &&
1506 >            (w = (ForkJoinWorkerThread)t).pool == this)
1507 >            w.pushTask(task);
1508 >        else
1509 >            addSubmission(task);
1510      }
1511  
1512      /**
1513       * Arranges for (asynchronous) execution of the given task.
1514       *
1515       * @param task the task
1516 <     * @throws NullPointerException if task is null
1517 <     * @throws RejectedExecutionException if pool is shut down
1516 >     * @throws NullPointerException if the task is null
1517 >     * @throws RejectedExecutionException if the task cannot be
1518 >     *         scheduled for execution
1519       */
1520      public void execute(ForkJoinTask<?> task) {
1521 <        doSubmit(task);
1521 >        if (task == null)
1522 >            throw new NullPointerException();
1523 >        forkOrSubmit(task);
1524      }
1525  
1526      // AbstractExecutorService methods
1527  
1528 +    /**
1529 +     * @throws NullPointerException if the task is null
1530 +     * @throws RejectedExecutionException if the task cannot be
1531 +     *         scheduled for execution
1532 +     */
1533      public void execute(Runnable task) {
1534 +        if (task == null)
1535 +            throw new NullPointerException();
1536          ForkJoinTask<?> job;
1537          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1538              job = (ForkJoinTask<?>) task;
1539          else
1540              job = ForkJoinTask.adapt(task, null);
1541 <        doSubmit(job);
1541 >        forkOrSubmit(job);
1542 >    }
1543 >
1544 >    /**
1545 >     * Submits a ForkJoinTask for execution.
1546 >     *
1547 >     * @param task the task to submit
1548 >     * @return the task
1549 >     * @throws NullPointerException if the task is null
1550 >     * @throws RejectedExecutionException if the task cannot be
1551 >     *         scheduled for execution
1552 >     */
1553 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1554 >        if (task == null)
1555 >            throw new NullPointerException();
1556 >        forkOrSubmit(task);
1557 >        return task;
1558      }
1559  
1560 +    /**
1561 +     * @throws NullPointerException if the task is null
1562 +     * @throws RejectedExecutionException if the task cannot be
1563 +     *         scheduled for execution
1564 +     */
1565      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1566 +        if (task == null)
1567 +            throw new NullPointerException();
1568          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1569 <        doSubmit(job);
1569 >        forkOrSubmit(job);
1570          return job;
1571      }
1572  
1573 +    /**
1574 +     * @throws NullPointerException if the task is null
1575 +     * @throws RejectedExecutionException if the task cannot be
1576 +     *         scheduled for execution
1577 +     */
1578      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1579 +        if (task == null)
1580 +            throw new NullPointerException();
1581          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1582 <        doSubmit(job);
1582 >        forkOrSubmit(job);
1583          return job;
1584      }
1585  
1586 +    /**
1587 +     * @throws NullPointerException if the task is null
1588 +     * @throws RejectedExecutionException if the task cannot be
1589 +     *         scheduled for execution
1590 +     */
1591      public ForkJoinTask<?> submit(Runnable task) {
1592 +        if (task == null)
1593 +            throw new NullPointerException();
1594          ForkJoinTask<?> job;
1595          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1596              job = (ForkJoinTask<?>) task;
1597          else
1598              job = ForkJoinTask.adapt(task, null);
1599 <        doSubmit(job);
1599 >        forkOrSubmit(job);
1600          return job;
1601      }
1602  
1603      /**
1604 <     * Submits a ForkJoinTask for execution.
1605 <     *
652 <     * @param task the task to submit
653 <     * @return the task
654 <     * @throws RejectedExecutionException if the task cannot be
655 <     *         scheduled for execution
656 <     * @throws NullPointerException if the task is null
1604 >     * @throws NullPointerException       {@inheritDoc}
1605 >     * @throws RejectedExecutionException {@inheritDoc}
1606       */
658    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
659        doSubmit(task);
660        return task;
661    }
662
663
1607      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1608          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1609              new ArrayList<ForkJoinTask<T>>(tasks.size());
# Line 669 | Line 1612 | public class ForkJoinPool extends Abstra
1612          invoke(new InvokeAll<T>(forkJoinTasks));
1613  
1614          @SuppressWarnings({"unchecked", "rawtypes"})
1615 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1615 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1616          return futures;
1617      }
1618  
# Line 683 | Line 1626 | public class ForkJoinPool extends Abstra
1626          private static final long serialVersionUID = -7914297376763021607L;
1627      }
1628  
686    // Configuration and status settings and queries
687
1629      /**
1630       * Returns the factory used for constructing new workers.
1631       *
# Line 701 | Line 1642 | public class ForkJoinPool extends Abstra
1642       * @return the handler, or {@code null} if none
1643       */
1644      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1645 <        Thread.UncaughtExceptionHandler h;
705 <        final ReentrantLock lock = this.workerLock;
706 <        lock.lock();
707 <        try {
708 <            h = ueh;
709 <        } finally {
710 <            lock.unlock();
711 <        }
712 <        return h;
713 <    }
714 <
715 <    /**
716 <     * Sets the handler for internal worker threads that terminate due
717 <     * to unrecoverable errors encountered while executing tasks.
718 <     * Unless set, the current default or ThreadGroup handler is used
719 <     * as handler.
720 <     *
721 <     * @param h the new handler
722 <     * @return the old handler, or {@code null} if none
723 <     * @throws SecurityException if a security manager exists and
724 <     *         the caller is not permitted to modify threads
725 <     *         because it does not hold {@link
726 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
727 <     */
728 <    public Thread.UncaughtExceptionHandler
729 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
730 <        checkPermission();
731 <        Thread.UncaughtExceptionHandler old = null;
732 <        final ReentrantLock lock = this.workerLock;
733 <        lock.lock();
734 <        try {
735 <            old = ueh;
736 <            ueh = h;
737 <            ForkJoinWorkerThread[] ws = workers;
738 <            if (ws != null) {
739 <                for (int i = 0; i < ws.length; ++i) {
740 <                    ForkJoinWorkerThread w = ws[i];
741 <                    if (w != null)
742 <                        w.setUncaughtExceptionHandler(h);
743 <                }
744 <            }
745 <        } finally {
746 <            lock.unlock();
747 <        }
748 <        return old;
749 <    }
750 <
751 <
752 <    /**
753 <     * Sets the target parallelism level of this pool.
754 <     *
755 <     * @param parallelism the target parallelism
756 <     * @throws IllegalArgumentException if parallelism less than or
757 <     * equal to zero or greater than maximum size bounds
758 <     * @throws SecurityException if a security manager exists and
759 <     *         the caller is not permitted to modify threads
760 <     *         because it does not hold {@link
761 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
762 <     */
763 <    public void setParallelism(int parallelism) {
764 <        checkPermission();
765 <        if (parallelism <= 0 || parallelism > maxPoolSize)
766 <            throw new IllegalArgumentException();
767 <        final ReentrantLock lock = this.workerLock;
768 <        lock.lock();
769 <        try {
770 <            if (isProcessingTasks()) {
771 <                int p = this.parallelism;
772 <                this.parallelism = parallelism;
773 <                if (parallelism > p)
774 <                    createAndStartAddedWorkers();
775 <                else
776 <                    trimSpares();
777 <            }
778 <        } finally {
779 <            lock.unlock();
780 <        }
781 <        signalIdleWorkers();
1645 >        return ueh;
1646      }
1647  
1648      /**
# Line 792 | Line 1656 | public class ForkJoinPool extends Abstra
1656  
1657      /**
1658       * Returns the number of worker threads that have started but not
1659 <     * yet terminated.  This result returned by this method may differ
1659 >     * yet terminated.  The result returned by this method may differ
1660       * from {@link #getParallelism} when threads are created to
1661       * maintain parallelism when others are cooperatively blocked.
1662       *
1663       * @return the number of worker threads
1664       */
1665      public int getPoolSize() {
1666 <        return totalCountOf(workerCounts);
803 <    }
804 <
805 <    /**
806 <     * Returns the maximum number of threads allowed to exist in the
807 <     * pool.  Unless set using {@link #setMaximumPoolSize}, the
808 <     * maximum is an implementation-defined value designed only to
809 <     * prevent runaway growth.
810 <     *
811 <     * @return the maximum
812 <     */
813 <    public int getMaximumPoolSize() {
814 <        return maxPoolSize;
815 <    }
816 <
817 <    /**
818 <     * Sets the maximum number of threads allowed to exist in the
819 <     * pool.  Setting this value has no effect on current pool
820 <     * size. It controls construction of new threads.
821 <     *
822 <     * @throws IllegalArgumentException if negative or greater than
823 <     * internal implementation limit
824 <     */
825 <    public void setMaximumPoolSize(int newMax) {
826 <        if (newMax < 0 || newMax > MAX_THREADS)
827 <            throw new IllegalArgumentException();
828 <        maxPoolSize = newMax;
829 <    }
830 <
831 <
832 <    /**
833 <     * Returns {@code true} if this pool dynamically maintains its
834 <     * target parallelism level. If false, new threads are added only
835 <     * to avoid possible starvation.  This setting is by default true.
836 <     *
837 <     * @return {@code true} if maintains parallelism
838 <     */
839 <    public boolean getMaintainsParallelism() {
840 <        return maintainsParallelism;
841 <    }
842 <
843 <    /**
844 <     * Sets whether this pool dynamically maintains its target
845 <     * parallelism level. If false, new threads are added only to
846 <     * avoid possible starvation.
847 <     *
848 <     * @param enable {@code true} to maintain parallelism
849 <     */
850 <    public void setMaintainsParallelism(boolean enable) {
851 <        maintainsParallelism = enable;
852 <    }
853 <
854 <    /**
855 <     * Establishes local first-in-first-out scheduling mode for forked
856 <     * tasks that are never joined. This mode may be more appropriate
857 <     * than default locally stack-based mode in applications in which
858 <     * worker threads only process asynchronous tasks.  This method is
859 <     * designed to be invoked only when the pool is quiescent, and
860 <     * typically only before any tasks are submitted. The effects of
861 <     * invocations at other times may be unpredictable.
862 <     *
863 <     * @param async if {@code true}, use locally FIFO scheduling
864 <     * @return the previous mode
865 <     * @see #getAsyncMode
866 <     */
867 <    public boolean setAsyncMode(boolean async) {
868 <        boolean oldMode = locallyFifo;
869 <        locallyFifo = async;
870 <        ForkJoinWorkerThread[] ws = workers;
871 <        if (ws != null) {
872 <            for (int i = 0; i < ws.length; ++i) {
873 <                ForkJoinWorkerThread t = ws[i];
874 <                if (t != null)
875 <                    t.setAsyncMode(async);
876 <            }
877 <        }
878 <        return oldMode;
1666 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1667      }
1668  
1669      /**
# Line 883 | Line 1671 | public class ForkJoinPool extends Abstra
1671       * scheduling mode for forked tasks that are never joined.
1672       *
1673       * @return {@code true} if this pool uses async mode
886     * @see #setAsyncMode
1674       */
1675      public boolean getAsyncMode() {
1676          return locallyFifo;
# Line 892 | Line 1679 | public class ForkJoinPool extends Abstra
1679      /**
1680       * Returns an estimate of the number of worker threads that are
1681       * not blocked waiting to join tasks or for other managed
1682 <     * synchronization.
1682 >     * synchronization. This method may overestimate the
1683 >     * number of running threads.
1684       *
1685       * @return the number of worker threads
1686       */
1687      public int getRunningThreadCount() {
1688 <        return runningCountOf(workerCounts);
1688 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1689 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1690      }
1691  
1692      /**
# Line 908 | Line 1697 | public class ForkJoinPool extends Abstra
1697       * @return the number of active threads
1698       */
1699      public int getActiveThreadCount() {
1700 <        return activeCountOf(runControl);
1701 <    }
913 <
914 <    /**
915 <     * Returns an estimate of the number of threads that are currently
916 <     * idle waiting for tasks. This method may underestimate the
917 <     * number of idle threads.
918 <     *
919 <     * @return the number of idle threads
920 <     */
921 <    final int getIdleThreadCount() {
922 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
923 <        return (c <= 0) ? 0 : c;
1700 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1701 >        return (r <= 0) ? 0 : r; // suppress momentarily negative values
1702      }
1703  
1704      /**
# Line 935 | Line 1713 | public class ForkJoinPool extends Abstra
1713       * @return {@code true} if all threads are currently idle
1714       */
1715      public boolean isQuiescent() {
1716 <        return activeCountOf(runControl) == 0;
1716 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1717      }
1718  
1719      /**
# Line 950 | Line 1728 | public class ForkJoinPool extends Abstra
1728       * @return the number of steals
1729       */
1730      public long getStealCount() {
1731 <        return stealCount.get();
954 <    }
955 <
956 <    /**
957 <     * Accumulates steal count from a worker.
958 <     * Call only when worker known to be idle.
959 <     */
960 <    private void updateStealCount(ForkJoinWorkerThread w) {
961 <        int sc = w.getAndClearStealCount();
962 <        if (sc != 0)
963 <            stealCount.addAndGet(sc);
1731 >        return stealCount;
1732      }
1733  
1734      /**
# Line 975 | Line 1743 | public class ForkJoinPool extends Abstra
1743       */
1744      public long getQueuedTaskCount() {
1745          long count = 0;
1746 <        ForkJoinWorkerThread[] ws = workers;
1747 <        if (ws != null) {
1748 <            for (int i = 0; i < ws.length; ++i) {
1749 <                ForkJoinWorkerThread t = ws[i];
1750 <                if (t != null)
1751 <                    count += t.getQueueSize();
984 <            }
1746 >        ForkJoinWorkerThread[] ws;
1747 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1748 >            (ws = workers) != null) {
1749 >            for (ForkJoinWorkerThread w : ws)
1750 >                if (w != null)
1751 >                    count -= w.queueBase - w.queueTop; // must read base first
1752          }
1753          return count;
1754      }
1755  
1756      /**
1757       * Returns an estimate of the number of tasks submitted to this
1758 <     * pool that have not yet begun executing.  This method takes time
1759 <     * proportional to the number of submissions.
1758 >     * pool that have not yet begun executing.  This method may take
1759 >     * time proportional to the number of submissions.
1760       *
1761       * @return the number of queued submissions
1762       */
1763      public int getQueuedSubmissionCount() {
1764 <        return submissionQueue.size();
1764 >        return -queueBase + queueTop;
1765      }
1766  
1767      /**
# Line 1004 | Line 1771 | public class ForkJoinPool extends Abstra
1771       * @return {@code true} if there are any queued submissions
1772       */
1773      public boolean hasQueuedSubmissions() {
1774 <        return !submissionQueue.isEmpty();
1774 >        return queueBase != queueTop;
1775      }
1776  
1777      /**
# Line 1015 | Line 1782 | public class ForkJoinPool extends Abstra
1782       * @return the next submission, or {@code null} if none
1783       */
1784      protected ForkJoinTask<?> pollSubmission() {
1785 <        return submissionQueue.poll();
1785 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1786 >        while ((b = queueBase) != queueTop &&
1787 >               (q = submissionQueue) != null &&
1788 >               (i = (q.length - 1) & b) >= 0) {
1789 >            long u = (i << ASHIFT) + ABASE;
1790 >            if ((t = q[i]) != null &&
1791 >                queueBase == b &&
1792 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1793 >                queueBase = b + 1;
1794 >                return t;
1795 >            }
1796 >        }
1797 >        return null;
1798      }
1799  
1800      /**
# Line 1036 | Line 1815 | public class ForkJoinPool extends Abstra
1815       * @return the number of elements transferred
1816       */
1817      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1818 <        int n = submissionQueue.drainTo(c);
1819 <        ForkJoinWorkerThread[] ws = workers;
1820 <        if (ws != null) {
1821 <            for (int i = 0; i < ws.length; ++i) {
1822 <                ForkJoinWorkerThread w = ws[i];
1823 <                if (w != null)
1045 <                    n += w.drainTasksTo(c);
1818 >        int count = 0;
1819 >        while (queueBase != queueTop) {
1820 >            ForkJoinTask<?> t = pollSubmission();
1821 >            if (t != null) {
1822 >                c.add(t);
1823 >                ++count;
1824              }
1825          }
1826 <        return n;
1826 >        ForkJoinWorkerThread[] ws;
1827 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1828 >            (ws = workers) != null) {
1829 >            for (ForkJoinWorkerThread w : ws)
1830 >                if (w != null)
1831 >                    count += w.drainTasksTo(c);
1832 >        }
1833 >        return count;
1834      }
1835  
1836      /**
# Line 1056 | Line 1841 | public class ForkJoinPool extends Abstra
1841       * @return a string identifying this pool, as well as its state
1842       */
1843      public String toString() {
1059        int ps = parallelism;
1060        int wc = workerCounts;
1061        int rc = runControl;
1844          long st = getStealCount();
1845          long qt = getQueuedTaskCount();
1846          long qs = getQueuedSubmissionCount();
1847 +        int pc = parallelism;
1848 +        long c = ctl;
1849 +        int tc = pc + (short)(c >>> TC_SHIFT);
1850 +        int rc = pc + (int)(c >> AC_SHIFT);
1851 +        if (rc < 0) // ignore transient negative
1852 +            rc = 0;
1853 +        int ac = rc + blockedCount;
1854 +        String level;
1855 +        if ((c & STOP_BIT) != 0)
1856 +            level = (tc == 0) ? "Terminated" : "Terminating";
1857 +        else
1858 +            level = shutdown ? "Shutting down" : "Running";
1859          return super.toString() +
1860 <            "[" + runStateToString(runStateOf(rc)) +
1861 <            ", parallelism = " + ps +
1862 <            ", size = " + totalCountOf(wc) +
1863 <            ", active = " + activeCountOf(rc) +
1864 <            ", running = " + runningCountOf(wc) +
1860 >            "[" + level +
1861 >            ", parallelism = " + pc +
1862 >            ", size = " + tc +
1863 >            ", active = " + ac +
1864 >            ", running = " + rc +
1865              ", steals = " + st +
1866              ", tasks = " + qt +
1867              ", submissions = " + qs +
1868              "]";
1869      }
1870  
1077    private static String runStateToString(int rs) {
1078        switch(rs) {
1079        case RUNNING: return "Running";
1080        case SHUTDOWN: return "Shutting down";
1081        case TERMINATING: return "Terminating";
1082        case TERMINATED: return "Terminated";
1083        default: throw new Error("Unknown run state");
1084        }
1085    }
1086
1087    // lifecycle control
1088
1871      /**
1872       * Initiates an orderly shutdown in which previously submitted
1873       * tasks are executed, but no new tasks will be accepted.
# Line 1100 | Line 1882 | public class ForkJoinPool extends Abstra
1882       */
1883      public void shutdown() {
1884          checkPermission();
1885 <        transitionRunStateTo(SHUTDOWN);
1886 <        if (canTerminateOnShutdown(runControl)) {
1105 <            if (workers == null) { // shutting down before workers created
1106 <                final ReentrantLock lock = this.workerLock;
1107 <                lock.lock();
1108 <                try {
1109 <                    if (workers == null) {
1110 <                        terminate();
1111 <                        transitionRunStateTo(TERMINATED);
1112 <                        termination.signalAll();
1113 <                    }
1114 <                } finally {
1115 <                    lock.unlock();
1116 <                }
1117 <            }
1118 <            terminateOnShutdown();
1119 <        }
1885 >        shutdown = true;
1886 >        tryTerminate(false);
1887      }
1888  
1889      /**
# Line 1137 | Line 1904 | public class ForkJoinPool extends Abstra
1904       */
1905      public List<Runnable> shutdownNow() {
1906          checkPermission();
1907 <        terminate();
1907 >        shutdown = true;
1908 >        tryTerminate(true);
1909          return Collections.emptyList();
1910      }
1911  
# Line 1147 | Line 1915 | public class ForkJoinPool extends Abstra
1915       * @return {@code true} if all tasks have completed following shut down
1916       */
1917      public boolean isTerminated() {
1918 <        return runStateOf(runControl) == TERMINATED;
1918 >        long c = ctl;
1919 >        return ((c & STOP_BIT) != 0L &&
1920 >                (short)(c >>> TC_SHIFT) == -parallelism);
1921      }
1922  
1923      /**
# Line 1155 | Line 1925 | public class ForkJoinPool extends Abstra
1925       * commenced but not yet completed.  This method may be useful for
1926       * debugging. A return of {@code true} reported a sufficient
1927       * period after shutdown may indicate that submitted tasks have
1928 <     * ignored or suppressed interruption, causing this executor not
1929 <     * to properly terminate.
1928 >     * ignored or suppressed interruption, or are waiting for IO,
1929 >     * causing this executor not to properly terminate. (See the
1930 >     * advisory notes for class {@link ForkJoinTask} stating that
1931 >     * tasks should not normally entail blocking operations.  But if
1932 >     * they do, they must abort them on interrupt.)
1933       *
1934       * @return {@code true} if terminating but not yet terminated
1935       */
1936      public boolean isTerminating() {
1937 <        return runStateOf(runControl) == TERMINATING;
1937 >        long c = ctl;
1938 >        return ((c & STOP_BIT) != 0L &&
1939 >                (short)(c >>> TC_SHIFT) != -parallelism);
1940      }
1941  
1942      /**
1943 <     * Returns {@code true} if this pool has been shut down.
1169 <     *
1170 <     * @return {@code true} if this pool has been shut down
1943 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1944       */
1945 <    public boolean isShutdown() {
1946 <        return runStateOf(runControl) >= SHUTDOWN;
1945 >    final boolean isAtLeastTerminating() {
1946 >        return (ctl & STOP_BIT) != 0L;
1947      }
1948  
1949      /**
1950 <     * Returns true if pool is not terminating or terminated.
1951 <     * Used internally to suppress execution when terminating.
1950 >     * Returns {@code true} if this pool has been shut down.
1951 >     *
1952 >     * @return {@code true} if this pool has been shut down
1953       */
1954 <    final boolean isProcessingTasks() {
1955 <        return runStateOf(runControl) < TERMINATING;
1954 >    public boolean isShutdown() {
1955 >        return shutdown;
1956      }
1957  
1958      /**
# Line 1195 | Line 1969 | public class ForkJoinPool extends Abstra
1969      public boolean awaitTermination(long timeout, TimeUnit unit)
1970          throws InterruptedException {
1971          long nanos = unit.toNanos(timeout);
1972 <        final ReentrantLock lock = this.workerLock;
1972 >        final ReentrantLock lock = this.submissionLock;
1973          lock.lock();
1974          try {
1975              for (;;) {
# Line 1210 | Line 1984 | public class ForkJoinPool extends Abstra
1984          }
1985      }
1986  
1213    // Shutdown and termination support
1214
1215    /**
1216     * Callback from terminating worker. Nulls out the corresponding
1217     * workers slot, and if terminating, tries to terminate; else
1218     * tries to shrink workers array.
1219     *
1220     * @param w the worker
1221     */
1222    final void workerTerminated(ForkJoinWorkerThread w) {
1223        updateStealCount(w);
1224        updateWorkerCount(-1);
1225        final ReentrantLock lock = this.workerLock;
1226        lock.lock();
1227        try {
1228            ForkJoinWorkerThread[] ws = workers;
1229            if (ws != null) {
1230                int idx = w.poolIndex;
1231                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1232                    ws[idx] = null;
1233                if (totalCountOf(workerCounts) == 0) {
1234                    terminate(); // no-op if already terminating
1235                    transitionRunStateTo(TERMINATED);
1236                    termination.signalAll();
1237                }
1238                else if (isProcessingTasks()) {
1239                    tryShrinkWorkerArray();
1240                    tryResumeSpare(true); // allow replacement
1241                }
1242            }
1243        } finally {
1244            lock.unlock();
1245        }
1246        signalIdleWorkers();
1247    }
1248
1249    /**
1250     * Initiates termination.
1251     */
1252    private void terminate() {
1253        if (transitionRunStateTo(TERMINATING)) {
1254            stopAllWorkers();
1255            resumeAllSpares();
1256            signalIdleWorkers();
1257            cancelQueuedSubmissions();
1258            cancelQueuedWorkerTasks();
1259            interruptUnterminatedWorkers();
1260            signalIdleWorkers(); // resignal after interrupt
1261        }
1262    }
1263
1264    /**
1265     * Possibly terminates when on shutdown state.
1266     */
1267    private void terminateOnShutdown() {
1268        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1269            terminate();
1270    }
1271
1272    /**
1273     * Clears out and cancels submissions.
1274     */
1275    private void cancelQueuedSubmissions() {
1276        ForkJoinTask<?> task;
1277        while ((task = pollSubmission()) != null)
1278            task.cancel(false);
1279    }
1280
1281    /**
1282     * Cleans out worker queues.
1283     */
1284    private void cancelQueuedWorkerTasks() {
1285        final ReentrantLock lock = this.workerLock;
1286        lock.lock();
1287        try {
1288            ForkJoinWorkerThread[] ws = workers;
1289            if (ws != null) {
1290                for (int i = 0; i < ws.length; ++i) {
1291                    ForkJoinWorkerThread t = ws[i];
1292                    if (t != null)
1293                        t.cancelTasks();
1294                }
1295            }
1296        } finally {
1297            lock.unlock();
1298        }
1299    }
1300
1301    /**
1302     * Sets each worker's status to terminating. Requires lock to avoid
1303     * conflicts with add/remove.
1304     */
1305    private void stopAllWorkers() {
1306        final ReentrantLock lock = this.workerLock;
1307        lock.lock();
1308        try {
1309            ForkJoinWorkerThread[] ws = workers;
1310            if (ws != null) {
1311                for (int i = 0; i < ws.length; ++i) {
1312                    ForkJoinWorkerThread t = ws[i];
1313                    if (t != null)
1314                        t.shutdownNow();
1315                }
1316            }
1317        } finally {
1318            lock.unlock();
1319        }
1320    }
1321
1322    /**
1323     * Interrupts all unterminated workers.  This is not required for
1324     * sake of internal control, but may help unstick user code during
1325     * shutdown.
1326     */
1327    private void interruptUnterminatedWorkers() {
1328        final ReentrantLock lock = this.workerLock;
1329        lock.lock();
1330        try {
1331            ForkJoinWorkerThread[] ws = workers;
1332            if (ws != null) {
1333                for (int i = 0; i < ws.length; ++i) {
1334                    ForkJoinWorkerThread t = ws[i];
1335                    if (t != null && !t.isTerminated()) {
1336                        try {
1337                            t.interrupt();
1338                        } catch (SecurityException ignore) {
1339                        }
1340                    }
1341                }
1342            }
1343        } finally {
1344            lock.unlock();
1345        }
1346    }
1347
1348
1349    /*
1350     * Nodes for event barrier to manage idle threads.  Queue nodes
1351     * are basic Treiber stack nodes, also used for spare stack.
1352     *
1353     * The event barrier has an event count and a wait queue (actually
1354     * a Treiber stack).  Workers are enabled to look for work when
1355     * the eventCount is incremented. If they fail to find work, they
1356     * may wait for next count. Upon release, threads help others wake
1357     * up.
1358     *
1359     * Synchronization events occur only in enough contexts to
1360     * maintain overall liveness:
1361     *
1362     *   - Submission of a new task to the pool
1363     *   - Resizes or other changes to the workers array
1364     *   - pool termination
1365     *   - A worker pushing a task on an empty queue
1366     *
1367     * The case of pushing a task occurs often enough, and is heavy
1368     * enough compared to simple stack pushes, to require special
1369     * handling: Method signalWork returns without advancing count if
1370     * the queue appears to be empty.  This would ordinarily result in
1371     * races causing some queued waiters not to be woken up. To avoid
1372     * this, the first worker enqueued in method sync (see
1373     * syncIsReleasable) rescans for tasks after being enqueued, and
1374     * helps signal if any are found. This works well because the
1375     * worker has nothing better to do, and so might as well help
1376     * alleviate the overhead and contention on the threads actually
1377     * doing work.  Also, since event counts increments on task
1378     * availability exist to maintain liveness (rather than to force
1379     * refreshes etc), it is OK for callers to exit early if
1380     * contending with another signaller.
1381     */
1382    static final class WaitQueueNode {
1383        WaitQueueNode next; // only written before enqueued
1384        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1385        final long count; // unused for spare stack
1386
1387        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1388            count = c;
1389            thread = w;
1390        }
1391
1392        /**
1393         * Wakes up waiter, returning false if known to already
1394         */
1395        boolean signal() {
1396            ForkJoinWorkerThread t = thread;
1397            if (t == null)
1398                return false;
1399            thread = null;
1400            LockSupport.unpark(t);
1401            return true;
1402        }
1403
1404        /**
1405         * Awaits release on sync.
1406         */
1407        void awaitSyncRelease(ForkJoinPool p) {
1408            while (thread != null && !p.syncIsReleasable(this))
1409                LockSupport.park(this);
1410        }
1411
1412        /**
1413         * Awaits resumption as spare.
1414         */
1415        void awaitSpareRelease() {
1416            while (thread != null) {
1417                if (!Thread.interrupted())
1418                    LockSupport.park(this);
1419            }
1420        }
1421    }
1422
1423    /**
1424     * Ensures that no thread is waiting for count to advance from the
1425     * current value of eventCount read on entry to this method, by
1426     * releasing waiting threads if necessary.
1427     *
1428     * @return the count
1429     */
1430    final long ensureSync() {
1431        long c = eventCount;
1432        WaitQueueNode q;
1433        while ((q = syncStack) != null && q.count < c) {
1434            if (casBarrierStack(q, null)) {
1435                do {
1436                    q.signal();
1437                } while ((q = q.next) != null);
1438                break;
1439            }
1440        }
1441        return c;
1442    }
1443
1444    /**
1445     * Increments event count and releases waiting threads.
1446     */
1447    private void signalIdleWorkers() {
1448        long c;
1449        do {} while (!casEventCount(c = eventCount, c+1));
1450        ensureSync();
1451    }
1452
1453    /**
1454     * Signals threads waiting to poll a task. Because method sync
1455     * rechecks availability, it is OK to only proceed if queue
1456     * appears to be non-empty, and OK to skip under contention to
1457     * increment count (since some other thread succeeded).
1458     */
1459    final void signalWork() {
1460        long c;
1461        WaitQueueNode q;
1462        if (syncStack != null &&
1463            casEventCount(c = eventCount, c+1) &&
1464            (((q = syncStack) != null && q.count <= c) &&
1465             (!casBarrierStack(q, q.next) || !q.signal())))
1466            ensureSync();
1467    }
1468
1469    /**
1470     * Waits until event count advances from last value held by
1471     * caller, or if excess threads, caller is resumed as spare, or
1472     * caller or pool is terminating. Updates caller's event on exit.
1473     *
1474     * @param w the calling worker thread
1475     */
1476    final void sync(ForkJoinWorkerThread w) {
1477        updateStealCount(w); // Transfer w's count while it is idle
1478
1479        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1480            long prev = w.lastEventCount;
1481            WaitQueueNode node = null;
1482            WaitQueueNode h;
1483            while (eventCount == prev &&
1484                   ((h = syncStack) == null || h.count == prev)) {
1485                if (node == null)
1486                    node = new WaitQueueNode(prev, w);
1487                if (casBarrierStack(node.next = h, node)) {
1488                    node.awaitSyncRelease(this);
1489                    break;
1490                }
1491            }
1492            long ec = ensureSync();
1493            if (ec != prev) {
1494                w.lastEventCount = ec;
1495                break;
1496            }
1497        }
1498    }
1499
1500    /**
1501     * Returns {@code true} if worker waiting on sync can proceed:
1502     *  - on signal (thread == null)
1503     *  - on event count advance (winning race to notify vs signaller)
1504     *  - on interrupt
1505     *  - if the first queued node, we find work available
1506     * If node was not signalled and event count not advanced on exit,
1507     * then we also help advance event count.
1508     *
1509     * @return {@code true} if node can be released
1510     */
1511    final boolean syncIsReleasable(WaitQueueNode node) {
1512        long prev = node.count;
1513        if (!Thread.interrupted() && node.thread != null &&
1514            (node.next != null ||
1515             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1516            eventCount == prev)
1517            return false;
1518        if (node.thread != null) {
1519            node.thread = null;
1520            long ec = eventCount;
1521            if (prev <= ec) // help signal
1522                casEventCount(ec, ec+1);
1523        }
1524        return true;
1525    }
1526
1527    /**
1528     * Returns {@code true} if a new sync event occurred since last
1529     * call to sync or this method, if so, updating caller's count.
1530     */
1531    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1532        long lc = w.lastEventCount;
1533        long ec = ensureSync();
1534        if (ec == lc)
1535            return false;
1536        w.lastEventCount = ec;
1537        return true;
1538    }
1539
1540    //  Parallelism maintenance
1541
1542    /**
1543     * Decrements running count; if too low, adds spare.
1544     *
1545     * Conceptually, all we need to do here is add or resume a
1546     * spare thread when one is about to block (and remove or
1547     * suspend it later when unblocked -- see suspendIfSpare).
1548     * However, implementing this idea requires coping with
1549     * several problems: we have imperfect information about the
1550     * states of threads. Some count updates can and usually do
1551     * lag run state changes, despite arrangements to keep them
1552     * accurate (for example, when possible, updating counts
1553     * before signalling or resuming), especially when running on
1554     * dynamic JVMs that don't optimize the infrequent paths that
1555     * update counts. Generating too many threads can make these
1556     * problems become worse, because excess threads are more
1557     * likely to be context-switched with others, slowing them all
1558     * down, especially if there is no work available, so all are
1559     * busy scanning or idling.  Also, excess spare threads can
1560     * only be suspended or removed when they are idle, not
1561     * immediately when they aren't needed. So adding threads will
1562     * raise parallelism level for longer than necessary.  Also,
1563     * FJ applications often encounter highly transient peaks when
1564     * many threads are blocked joining, but for less time than it
1565     * takes to create or resume spares.
1566     *
1567     * @param joinMe if non-null, return early if done
1568     * @param maintainParallelism if true, try to stay within
1569     * target counts, else create only to avoid starvation
1570     * @return true if joinMe known to be done
1571     */
1572    final boolean preJoin(ForkJoinTask<?> joinMe,
1573                          boolean maintainParallelism) {
1574        maintainParallelism &= maintainsParallelism; // overrride
1575        boolean dec = false;  // true when running count decremented
1576        while (spareStack == null || !tryResumeSpare(dec)) {
1577            int counts = workerCounts;
1578            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1579                // CAS cheat
1580                if (!needSpare(counts, maintainParallelism))
1581                    break;
1582                if (joinMe.status < 0)
1583                    return true;
1584                if (tryAddSpare(counts))
1585                    break;
1586            }
1587        }
1588        return false;
1589    }
1590
1591    /**
1592     * Same idea as preJoin
1593     */
1594    final boolean preBlock(ManagedBlocker blocker,
1595                           boolean maintainParallelism) {
1596        maintainParallelism &= maintainsParallelism;
1597        boolean dec = false;
1598        while (spareStack == null || !tryResumeSpare(dec)) {
1599            int counts = workerCounts;
1600            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1601                if (!needSpare(counts, maintainParallelism))
1602                    break;
1603                if (blocker.isReleasable())
1604                    return true;
1605                if (tryAddSpare(counts))
1606                    break;
1607            }
1608        }
1609        return false;
1610    }
1611
1612    /**
1613     * Returns {@code true} if a spare thread appears to be needed.
1614     * If maintaining parallelism, returns true when the deficit in
1615     * running threads is more than the surplus of total threads, and
1616     * there is apparently some work to do.  This self-limiting rule
1617     * means that the more threads that have already been added, the
1618     * less parallelism we will tolerate before adding another.
1619     *
1620     * @param counts current worker counts
1621     * @param maintainParallelism try to maintain parallelism
1622     */
1623    private boolean needSpare(int counts, boolean maintainParallelism) {
1624        int ps = parallelism;
1625        int rc = runningCountOf(counts);
1626        int tc = totalCountOf(counts);
1627        int runningDeficit = ps - rc;
1628        int totalSurplus = tc - ps;
1629        return (tc < maxPoolSize &&
1630                (rc == 0 || totalSurplus < 0 ||
1631                 (maintainParallelism &&
1632                  runningDeficit > totalSurplus &&
1633                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1634    }
1635
1636    /**
1637     * Adds a spare worker if lock available and no more than the
1638     * expected numbers of threads exist.
1639     *
1640     * @return true if successful
1641     */
1642    private boolean tryAddSpare(int expectedCounts) {
1643        final ReentrantLock lock = this.workerLock;
1644        int expectedRunning = runningCountOf(expectedCounts);
1645        int expectedTotal = totalCountOf(expectedCounts);
1646        boolean success = false;
1647        boolean locked = false;
1648        // confirm counts while locking; CAS after obtaining lock
1649        try {
1650            for (;;) {
1651                int s = workerCounts;
1652                int tc = totalCountOf(s);
1653                int rc = runningCountOf(s);
1654                if (rc > expectedRunning || tc > expectedTotal)
1655                    break;
1656                if (!locked && !(locked = lock.tryLock()))
1657                    break;
1658                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1659                    createAndStartSpare(tc);
1660                    success = true;
1661                    break;
1662                }
1663            }
1664        } finally {
1665            if (locked)
1666                lock.unlock();
1667        }
1668        return success;
1669    }
1670
1671    /**
1672     * Adds the kth spare worker. On entry, pool counts are already
1673     * adjusted to reflect addition.
1674     */
1675    private void createAndStartSpare(int k) {
1676        ForkJoinWorkerThread w = null;
1677        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1678        int len = ws.length;
1679        // Probably, we can place at slot k. If not, find empty slot
1680        if (k < len && ws[k] != null) {
1681            for (k = 0; k < len && ws[k] != null; ++k)
1682                ;
1683        }
1684        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1685            ws[k] = w;
1686            w.start();
1687        }
1688        else
1689            updateWorkerCount(-1); // adjust on failure
1690        signalIdleWorkers();
1691    }
1692
1693    /**
1694     * Suspends calling thread w if there are excess threads.  Called
1695     * only from sync.  Spares are enqueued in a Treiber stack using
1696     * the same WaitQueueNodes as barriers.  They are resumed mainly
1697     * in preJoin, but are also woken on pool events that require all
1698     * threads to check run state.
1699     *
1700     * @param w the caller
1701     */
1702    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1703        WaitQueueNode node = null;
1704        int s;
1705        while (parallelism < runningCountOf(s = workerCounts)) {
1706            if (node == null)
1707                node = new WaitQueueNode(0, w);
1708            if (casWorkerCounts(s, s-1)) { // representation-dependent
1709                // push onto stack
1710                do {} while (!casSpareStack(node.next = spareStack, node));
1711                // block until released by resumeSpare
1712                node.awaitSpareRelease();
1713                return true;
1714            }
1715        }
1716        return false;
1717    }
1718
1719    /**
1720     * Tries to pop and resume a spare thread.
1721     *
1722     * @param updateCount if true, increment running count on success
1723     * @return true if successful
1724     */
1725    private boolean tryResumeSpare(boolean updateCount) {
1726        WaitQueueNode q;
1727        while ((q = spareStack) != null) {
1728            if (casSpareStack(q, q.next)) {
1729                if (updateCount)
1730                    updateRunningCount(1);
1731                q.signal();
1732                return true;
1733            }
1734        }
1735        return false;
1736    }
1737
1738    /**
1739     * Pops and resumes all spare threads. Same idea as ensureSync.
1740     *
1741     * @return true if any spares released
1742     */
1743    private boolean resumeAllSpares() {
1744        WaitQueueNode q;
1745        while ( (q = spareStack) != null) {
1746            if (casSpareStack(q, null)) {
1747                do {
1748                    updateRunningCount(1);
1749                    q.signal();
1750                } while ((q = q.next) != null);
1751                return true;
1752            }
1753        }
1754        return false;
1755    }
1756
1757    /**
1758     * Pops and shuts down excessive spare threads. Call only while
1759     * holding lock. This is not guaranteed to eliminate all excess
1760     * threads, only those suspended as spares, which are the ones
1761     * unlikely to be needed in the future.
1762     */
1763    private void trimSpares() {
1764        int surplus = totalCountOf(workerCounts) - parallelism;
1765        WaitQueueNode q;
1766        while (surplus > 0 && (q = spareStack) != null) {
1767            if (casSpareStack(q, null)) {
1768                do {
1769                    updateRunningCount(1);
1770                    ForkJoinWorkerThread w = q.thread;
1771                    if (w != null && surplus > 0 &&
1772                        runningCountOf(workerCounts) > 0 && w.shutdown())
1773                        --surplus;
1774                    q.signal();
1775                } while ((q = q.next) != null);
1776            }
1777        }
1778    }
1779
1987      /**
1988       * Interface for extending managed parallelism for tasks running
1989       * in {@link ForkJoinPool}s.
1990       *
1991 <     * <p>A {@code ManagedBlocker} provides two methods.
1992 <     * Method {@code isReleasable} must return {@code true} if
1993 <     * blocking is not necessary. Method {@code block} blocks the
1994 <     * current thread if necessary (perhaps internally invoking
1995 <     * {@code isReleasable} before actually blocking).
1991 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1992 >     * {@code isReleasable} must return {@code true} if blocking is
1993 >     * not necessary. Method {@code block} blocks the current thread
1994 >     * if necessary (perhaps internally invoking {@code isReleasable}
1995 >     * before actually blocking). These actions are performed by any
1996 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1997 >     * unusual methods in this API accommodate synchronizers that may,
1998 >     * but don't usually, block for long periods. Similarly, they
1999 >     * allow more efficient internal handling of cases in which
2000 >     * additional workers may be, but usually are not, needed to
2001 >     * ensure sufficient parallelism.  Toward this end,
2002 >     * implementations of method {@code isReleasable} must be amenable
2003 >     * to repeated invocation.
2004       *
2005       * <p>For example, here is a ManagedBlocker based on a
2006       * ReentrantLock:
# Line 1803 | Line 2018 | public class ForkJoinPool extends Abstra
2018       *     return hasLock || (hasLock = lock.tryLock());
2019       *   }
2020       * }}</pre>
2021 +     *
2022 +     * <p>Here is a class that possibly blocks waiting for an
2023 +     * item on a given queue:
2024 +     *  <pre> {@code
2025 +     * class QueueTaker<E> implements ManagedBlocker {
2026 +     *   final BlockingQueue<E> queue;
2027 +     *   volatile E item = null;
2028 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2029 +     *   public boolean block() throws InterruptedException {
2030 +     *     if (item == null)
2031 +     *       item = queue.take();
2032 +     *     return true;
2033 +     *   }
2034 +     *   public boolean isReleasable() {
2035 +     *     return item != null || (item = queue.poll()) != null;
2036 +     *   }
2037 +     *   public E getItem() { // call after pool.managedBlock completes
2038 +     *     return item;
2039 +     *   }
2040 +     * }}</pre>
2041       */
2042      public static interface ManagedBlocker {
2043          /**
# Line 1826 | Line 2061 | public class ForkJoinPool extends Abstra
2061       * Blocks in accord with the given blocker.  If the current thread
2062       * is a {@link ForkJoinWorkerThread}, this method possibly
2063       * arranges for a spare thread to be activated if necessary to
2064 <     * ensure parallelism while the current thread is blocked.
1830 <     *
1831 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1832 <     * supports it ({@link #getMaintainsParallelism}), this method
1833 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1834 <     * it activates a thread only if necessary to avoid complete
1835 <     * starvation. This option may be preferable when blockages use
1836 <     * timeouts, or are almost always brief.
2064 >     * ensure sufficient parallelism while the current thread is blocked.
2065       *
2066       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2067       * behaviorally equivalent to
# Line 1847 | Line 2075 | public class ForkJoinPool extends Abstra
2075       * first be expanded to ensure parallelism, and later adjusted.
2076       *
2077       * @param blocker the blocker
1850     * @param maintainParallelism if {@code true} and supported by
1851     * this pool, attempt to maintain the pool's nominal parallelism;
1852     * otherwise activate a thread only if necessary to avoid
1853     * complete starvation.
2078       * @throws InterruptedException if blocker.block did so
2079       */
2080 <    public static void managedBlock(ManagedBlocker blocker,
1857 <                                    boolean maintainParallelism)
2080 >    public static void managedBlock(ManagedBlocker blocker)
2081          throws InterruptedException {
2082          Thread t = Thread.currentThread();
2083 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
2084 <                             ((ForkJoinWorkerThread) t).pool : null);
2085 <        if (!blocker.isReleasable()) {
2086 <            try {
2087 <                if (pool == null ||
2088 <                    !pool.preBlock(blocker, maintainParallelism))
1866 <                    awaitBlocker(blocker);
1867 <            } finally {
1868 <                if (pool != null)
1869 <                    pool.updateRunningCount(1);
1870 <            }
2083 >        if (t instanceof ForkJoinWorkerThread) {
2084 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2085 >            w.pool.awaitBlocker(blocker);
2086 >        }
2087 >        else {
2088 >            do {} while (!blocker.isReleasable() && !blocker.block());
2089          }
1872    }
1873
1874    private static void awaitBlocker(ManagedBlocker blocker)
1875        throws InterruptedException {
1876        do {} while (!blocker.isReleasable() && !blocker.block());
2090      }
2091  
2092      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1889 | Line 2102 | public class ForkJoinPool extends Abstra
2102      }
2103  
2104      // Unsafe mechanics
2105 <
2106 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2107 <    private static final long eventCountOffset =
2108 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2109 <    private static final long workerCountsOffset =
2110 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2111 <    private static final long runControlOffset =
2112 <        objectFieldOffset("runControl", ForkJoinPool.class);
2113 <    private static final long syncStackOffset =
2114 <        objectFieldOffset("syncStack",ForkJoinPool.class);
2115 <    private static final long spareStackOffset =
2116 <        objectFieldOffset("spareStack", ForkJoinPool.class);
2117 <
2118 <    private boolean casEventCount(long cmp, long val) {
2119 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
2120 <    }
2121 <    private boolean casWorkerCounts(int cmp, int val) {
1909 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1910 <    }
1911 <    private boolean casRunControl(int cmp, int val) {
1912 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1913 <    }
1914 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1915 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1916 <    }
1917 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1918 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1919 <    }
1920 <
1921 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2105 >    private static final sun.misc.Unsafe UNSAFE;
2106 >    private static final long ctlOffset;
2107 >    private static final long stealCountOffset;
2108 >    private static final long blockedCountOffset;
2109 >    private static final long quiescerCountOffset;
2110 >    private static final long scanGuardOffset;
2111 >    private static final long nextWorkerNumberOffset;
2112 >    private static final long ABASE;
2113 >    private static final int ASHIFT;
2114 >
2115 >    static {
2116 >        poolNumberGenerator = new AtomicInteger();
2117 >        workerSeedGenerator = new Random();
2118 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2119 >        defaultForkJoinWorkerThreadFactory =
2120 >            new DefaultForkJoinWorkerThreadFactory();
2121 >        int s;
2122          try {
2123 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2124 <        } catch (NoSuchFieldException e) {
2125 <            // Convert Exception to corresponding Error
2126 <            NoSuchFieldError error = new NoSuchFieldError(field);
2127 <            error.initCause(e);
2128 <            throw error;
2129 <        }
2123 >            UNSAFE = getUnsafe();
2124 >            Class k = ForkJoinPool.class;
2125 >            ctlOffset = UNSAFE.objectFieldOffset
2126 >                (k.getDeclaredField("ctl"));
2127 >            stealCountOffset = UNSAFE.objectFieldOffset
2128 >                (k.getDeclaredField("stealCount"));
2129 >            blockedCountOffset = UNSAFE.objectFieldOffset
2130 >                (k.getDeclaredField("blockedCount"));
2131 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2132 >                (k.getDeclaredField("quiescerCount"));
2133 >            scanGuardOffset = UNSAFE.objectFieldOffset
2134 >                (k.getDeclaredField("scanGuard"));
2135 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2136 >                (k.getDeclaredField("nextWorkerNumber"));
2137 >            Class a = ForkJoinTask[].class;
2138 >            ABASE = UNSAFE.arrayBaseOffset(a);
2139 >            s = UNSAFE.arrayIndexScale(a);
2140 >        } catch (Exception e) {
2141 >            throw new Error(e);
2142 >        }
2143 >        if ((s & (s-1)) != 0)
2144 >            throw new Error("data type scale not a power of two");
2145 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2146      }
2147  
2148      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines