ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.43 by jsr166, Tue Aug 4 00:55:13 2009 UTC vs.
Revision 1.94 by dl, Tue Mar 1 10:59:04 2011 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
20 < import java.util.concurrent.atomic.AtomicLong;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30   * A {@code ForkJoinPool} provides the entry point for submissions
31 < * from non-{@code ForkJoinTask}s, as well as management and
32 < * monitoring operations.  
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32 > * monitoring operations.
33   *
34   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
35   * ExecutorService} mainly by virtue of employing
# Line 31 | Line 37 | import java.util.concurrent.atomic.Atomi
37   * execute subtasks created by other active tasks (eventually blocking
38   * waiting for work if none exist). This enables efficient processing
39   * when most tasks spawn other subtasks (as do most {@code
40 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
41 < * execution of some plain {@code Runnable}- or {@code Callable}-
42 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44   * <p>A {@code ForkJoinPool} is constructed with a given target
45   * parallelism level; by default, equal to the number of available
46 < * processors. Unless configured otherwise via {@link
47 < * #setMaintainsParallelism}, the pool attempts to maintain this
48 < * number of active (or available) threads by dynamically adding,
49 < * suspending, or resuming internal worker threads, even if some tasks
50 < * are waiting to join others. However, no such adjustments are
51 < * performed in the face of blocked IO or other unmanaged
52 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
# Line 62 | Line 58 | import java.util.concurrent.atomic.Atomi
58   * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96   * used for all parallel task execution in a program or subsystem.
97   * Otherwise, use would not usually outweigh the construction and
# Line 82 | Line 112 | import java.util.concurrent.atomic.Atomi
112   *
113   * <p><b>Implementation notes</b>: This implementation restricts the
114   * maximum number of running threads to 32767. Attempts to create
115 < * pools with greater than the maximum result in
115 > * pools with greater than the maximum number result in
116   * {@code IllegalArgumentException}.
117   *
118 + * <p>This implementation rejects submitted tasks (that is, by throwing
119 + * {@link RejectedExecutionException}) only when the pool is shut down
120 + * or internal resources have been exhausted.
121 + *
122   * @since 1.7
123   * @author Doug Lea
124   */
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tesks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none are
199 >     * can be immediately found, and we cannot start/resume workers
200 >     * unless there appear to be tasks available.  On the other hand,
201 >     * we must quickly prod them into action when new tasks are
202 >     * submitted or generated.  We park/unpark workers after placing
203 >     * in an event wait queue when they cannot find work. This "queue"
204 >     * is actually a simple Treiber stack, headed by the "id" field of
205 >     * ctl, plus a 15bit counter value to both wake up waiters (by
206 >     * advancing their count) and avoid ABA effects. Successors are
207 >     * held in worker field "nextWait".  Queuing deals with several
208 >     * intrinsic races, mainly that a task-producing thread can miss
209 >     * seeing (and signalling) another thread that gave up looking for
210 >     * work but has not yet entered the wait queue. We solve this by
211 >     * requiring a full sweep of all workers both before (in scan())
212 >     * and after (in awaitWork()) a newly waiting worker is added to
213 >     * the wait queue. During a rescan, the worker might release some
214 >     * other queued worker rather than itself, which has the same net
215 >     * effect.
216 >     *
217 >     * Signalling.  We create or wake up workers only when there
218 >     * appears to be at least one task they might be able to find and
219 >     * execute.  When a submission is added or another worker adds a
220 >     * task to a queue that previously had two or fewer tasks, they
221 >     * signal waiting workers (or trigger creation of new ones if
222 >     * fewer than the given parallelism level -- see signalWork).
223 >     * These primary signals are buttressed by signals during rescans
224 >     * as well as those performed when a worker steals a task and
225 >     * notices that there are more tasks too; together these cover the
226 >     * signals needed in cases when more than two tasks are pushed
227 >     * but untaken.
228 >     *
229 >     * Trimming workers. To release resources after periods of lack of
230 >     * use, a worker starting to wait when the pool is quiescent will
231 >     * time out and terminate if the pool has remained quiescent for
232 >     * SHRINK_RATE nanosecs.
233 >     *
234 >     * Submissions. External submissions are maintained in an
235 >     * array-based queue that is structured identically to
236 >     * ForkJoinWorkerThread queues (which see) except for the use of
237 >     * submissionLock in method addSubmission. Unlike worker queues,
238 >     * multiple external threads can add new submissions.
239 >     *
240 >     * Compensation. Beyond work-stealing support and lifecycle
241 >     * control, the main responsibility of this framework is to take
242 >     * actions when one worker is waiting to join a task stolen (or
243 >     * always held by) another.  Because we are multiplexing many
244 >     * tasks on to a pool of workers, we can't just let them block (as
245 >     * in Thread.join).  We also cannot just reassign the joiner's
246 >     * run-time stack with another and replace it later, which would
247 >     * be a form of "continuation", that even if possible is not
248 >     * necessarily a good idea since we sometimes need both an
249 >     * unblocked task and its continuation to progress. Instead we
250 >     * combine two tactics:
251 >     *
252 >     *   Helping: Arranging for the joiner to execute some task that it
253 >     *      would be running if the steal had not occurred.  Method
254 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255 >     *      links to try to find such a task.
256 >     *
257 >     *   Compensating: Unless there are already enough live threads,
258 >     *      method tryPreBlock() may create or re-activate a spare
259 >     *      thread to compensate for blocked joiners until they
260 >     *      unblock.
261 >     *
262 >     * The ManagedBlocker extension API can't use helping so relies
263 >     * only on compensation in method awaitBlocker.
264 >     *
265 >     * It is impossible to keep exactly the target parallelism number
266 >     * of threads running at any given time.  Determining the
267 >     * existence of conservatively safe helping targets, the
268 >     * availability of already-created spares, and the apparent need
269 >     * to create new spares are all racy and require heuristic
270 >     * guidance, so we rely on multiple retries of each.  Currently,
271 >     * in keeping with on-demand signalling policy, we compensate only
272 >     * if blocking would leave less than one active (non-waiting,
273 >     * non-blocked) worker. Additionally, to avoid some false alarms
274 >     * due to GC, lagging counters, system activity, etc, compensated
275 >     * blocking for joins is only attempted after a number of rechecks
276 >     * proportional to the current apparent deficit (where retries are
277 >     * interspersed with Thread.yield, for good citizenship).  The
278 >     * variable blockedCount, incremented before blocking and
279 >     * decremented after, is sometimes needed to distinguish cases of
280 >     * waiting for work vs blocking on joins or other managed sync,
281 >     * but both the cases are equivalent for most pool control, so we
282 >     * can update non-atomically. (Additionally, contention on
283 >     * blockedCount alleviates some contention on ctl).
284 >     *
285 >     * Shutdown and Termination. A call to shutdownNow atomically sets
286 >     * the ctl stop bit and then (non-atomically) sets each workers
287 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
288 >     * all waiting workers.  Detecting whether termination should
289 >     * commence after a non-abrupt shutdown() call requires more work
290 >     * and bookkeeping. We need consensus about quiesence (i.e., that
291 >     * there is no more work) which is reflected in active counts so
292 >     * long as there are no current blockers, as well as possible
293 >     * re-evaluations during independent changes in blocking or
294 >     * quiescing workers.
295 >     *
296 >     * Style notes: There is a lot of representation-level coupling
297 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
299 >     * data structures managed by ForkJoinPool, so are directly
300 >     * accessed.  Conversely we allow access to "workers" array by
301 >     * workers, and direct access to ForkJoinTask.status by both
302 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
303 >     * trying to reduce this, since any associated future changes in
304 >     * representations will need to be accompanied by algorithmic
305 >     * changes anyway. All together, these low-level implementation
306 >     * choices produce as much as a factor of 4 performance
307 >     * improvement compared to naive implementations, and enable the
308 >     * processing of billions of tasks per second, at the expense of
309 >     * some ugliness.
310 >     *
311 >     * Methods signalWork() and scan() are the main bottlenecks so are
312 >     * especially heavily micro-optimized/mangled.  There are lots of
313 >     * inline assignments (of form "while ((local = field) != 0)")
314 >     * which are usually the simplest way to ensure the required read
315 >     * orderings (which are sometimes critical). This leads to a
316 >     * "C"-like style of listing declarations of these locals at the
317 >     * heads of methods or blocks.  There are several occurrences of
318 >     * the unusual "do {} while (!cas...)"  which is the simplest way
319 >     * to force an update of a CAS'ed variable. There are also other
320 >     * coding oddities that help some methods perform reasonably even
321 >     * when interpreted (not compiled).
322 >     *
323 >     * The order of declarations in this file is: (1) declarations of
324 >     * statics (2) fields (along with constants used when unpacking
325 >     * some of them), listed in an order that tends to reduce
326 >     * contention among them a bit under most JVMs.  (3) internal
327 >     * control methods (4) callbacks and other support for
328 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 >     * methods (plus a few little helpers). (6) static block
330 >     * initializing all statics in a minimally dependent order.
331       */
332  
98    /** Mask for packing and unpacking shorts */
99    private static final int  shortMask = 0xffff;
100
101    /** Max pool size -- must be a power of two minus 1 */
102    private static final int MAX_THREADS =  0x7FFF;
103
333      /**
334       * Factory for creating new {@link ForkJoinWorkerThread}s.
335       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 112 | Line 341 | public class ForkJoinPool extends Abstra
341           * Returns a new worker thread operating in the given pool.
342           *
343           * @param pool the pool this thread works in
344 <         * @throws NullPointerException if pool is null
344 >         * @throws NullPointerException if the pool is null
345           */
346          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
347      }
# Line 121 | Line 350 | public class ForkJoinPool extends Abstra
350       * Default ForkJoinWorkerThreadFactory implementation; creates a
351       * new ForkJoinWorkerThread.
352       */
353 <    static class  DefaultForkJoinWorkerThreadFactory
353 >    static class DefaultForkJoinWorkerThreadFactory
354          implements ForkJoinWorkerThreadFactory {
355          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
356 <            try {
128 <                return new ForkJoinWorkerThread(pool);
129 <            } catch (OutOfMemoryError oom)  {
130 <                return null;
131 <            }
356 >            return new ForkJoinWorkerThread(pool);
357          }
358      }
359  
# Line 137 | Line 362 | public class ForkJoinPool extends Abstra
362       * overridden in ForkJoinPool constructors.
363       */
364      public static final ForkJoinWorkerThreadFactory
365 <        defaultForkJoinWorkerThreadFactory =
141 <        new DefaultForkJoinWorkerThreadFactory();
365 >        defaultForkJoinWorkerThreadFactory;
366  
367      /**
368       * Permission required for callers of methods that may start or
369       * kill threads.
370       */
371 <    private static final RuntimePermission modifyThreadPermission =
148 <        new RuntimePermission("modifyThread");
371 >    private static final RuntimePermission modifyThreadPermission;
372  
373      /**
374       * If there is a security manager, makes sure caller has
# Line 160 | Line 383 | public class ForkJoinPool extends Abstra
383      /**
384       * Generator for assigning sequence numbers as pool names.
385       */
386 <    private static final AtomicInteger poolNumberGenerator =
164 <        new AtomicInteger();
386 >    private static final AtomicInteger poolNumberGenerator;
387  
388      /**
389 <     * Array holding all worker threads in the pool. Initialized upon
390 <     * first use. Array size must be a power of two.  Updates and
391 <     * replacements are protected by workerLock, but it is always kept
392 <     * in a consistent enough state to be randomly accessed without
393 <     * locking by workers performing work-stealing.
389 >     * Generator for initial random seeds for worker victim
390 >     * selection. This is used only to create initial seeds. Random
391 >     * steals use a cheaper xorshift generator per steal attempt. We
392 >     * don't expect much contention on seedGenerator, so just use a
393 >     * plain Random.
394       */
395 <    volatile ForkJoinWorkerThread[] workers;
395 >    static final Random workerSeedGenerator;
396  
397      /**
398 <     * Lock protecting access to workers.
398 >     * Array holding all worker threads in the pool.  Initialized upon
399 >     * construction. Array size must be a power of two.  Updates and
400 >     * replacements are protected by scanGuard, but the array is
401 >     * always kept in a consistent enough state to be randomly
402 >     * accessed without locking by workers performing work-stealing,
403 >     * as well as other traversal-based methods in this class, so long
404 >     * as reads memory-acquire by first reading ctl. All readers must
405 >     * tolerate that some array slots may be null.
406       */
407 <    private final ReentrantLock workerLock;
407 >    ForkJoinWorkerThread[] workers;
408  
409      /**
410 <     * Condition for awaitTermination.
410 >     * Initial size for submission queue array. Must be a power of
411 >     * two.  In many applications, these always stay small so we use a
412 >     * small initial cap.
413       */
414 <    private final Condition termination;
414 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
415 >
416 >    /**
417 >     * Maximum size for submission queue array. Must be a power of two
418 >     * less than or equal to 1 << (31 - width of array entry) to
419 >     * ensure lack of index wraparound, but is capped at a lower
420 >     * value to help users trap runaway computations.
421 >     */
422 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423  
424      /**
425 <     * The uncaught exception handler used when any worker
187 <     * abruptly terminates
425 >     * Array serving as submission queue. Initialized upon construction.
426       */
427 <    private Thread.UncaughtExceptionHandler ueh;
427 >    private ForkJoinTask<?>[] submissionQueue;
428 >
429 >    /**
430 >     * Lock protecting submissions array for addSubmission
431 >     */
432 >    private final ReentrantLock submissionLock;
433 >
434 >    /**
435 >     * Condition for awaitTermination, using submissionLock for
436 >     * convenience.
437 >     */
438 >    private final Condition termination;
439  
440      /**
441       * Creation factory for worker threads.
# Line 194 | Line 443 | public class ForkJoinPool extends Abstra
443      private final ForkJoinWorkerThreadFactory factory;
444  
445      /**
446 <     * Head of stack of threads that were created to maintain
447 <     * parallelism when other threads blocked, but have since
199 <     * suspended when the parallelism level rose.
446 >     * The uncaught exception handler used when any worker abruptly
447 >     * terminates.
448       */
449 <    private volatile WaitQueueNode spareStack;
449 >    final Thread.UncaughtExceptionHandler ueh;
450  
451      /**
452 <     * Sum of per-thread steal counts, updated only when threads are
205 <     * idle or terminating.
452 >     * Prefix for assigning names to worker threads
453       */
454 <    private final AtomicLong stealCount;
454 >    private final String workerNamePrefix;
455  
456      /**
457 <     * Queue for external submissions.
457 >     * Sum of per-thread steal counts, updated only when threads are
458 >     * idle or terminating.
459       */
460 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
460 >    private volatile long stealCount;
461  
462      /**
463 <     * Head of Treiber stack for barrier sync. See below for explanation.
463 >     * Main pool control -- a long packed with:
464 >     * AC: Number of active running workers minus target parallelism (16 bits)
465 >     * TC: Number of total workers minus target parallelism (16bits)
466 >     * ST: true if pool is terminating (1 bit)
467 >     * EC: the wait count of top waiting thread (15 bits)
468 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469 >     *
470 >     * When convenient, we can extract the upper 32 bits of counts and
471 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472 >     * (int)ctl.  The ec field is never accessed alone, but always
473 >     * together with id and st. The offsets of counts by the target
474 >     * parallelism and the positionings of fields makes it possible to
475 >     * perform the most common checks via sign tests of fields: When
476 >     * ac is negative, there are not enough active workers, when tc is
477 >     * negative, there are not enough total workers, when id is
478 >     * negative, there is at least one waiting worker, and when e is
479 >     * negative, the pool is terminating.  To deal with these possibly
480 >     * negative fields, we use casts in and out of "short" and/or
481 >     * signed shifts to maintain signedness.
482       */
483 <    private volatile WaitQueueNode syncStack;
483 >    volatile long ctl;
484 >
485 >    // bit positions/shifts for fields
486 >    private static final int  AC_SHIFT   = 48;
487 >    private static final int  TC_SHIFT   = 32;
488 >    private static final int  ST_SHIFT   = 31;
489 >    private static final int  EC_SHIFT   = 16;
490 >
491 >    // bounds
492 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
493 >    private static final int  SMASK      = 0xffff;  // mask short bits
494 >    private static final int  SHORT_SIGN = 1 << 15;
495 >    private static final int  INT_SIGN   = 1 << 31;
496 >
497 >    // masks
498 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
499 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
500 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
501 >
502 >    // units for incrementing and decrementing
503 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
504 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
505 >
506 >    // masks and units for dealing with u = (int)(ctl >>> 32)
507 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
508 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
509 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
510 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
511 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
512 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
513 >
514 >    // masks and units for dealing with e = (int)ctl
515 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
516 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
517  
518      /**
519 <     * The count for event barrier
519 >     * The target parallelism level.
520       */
521 <    private volatile long eventCount;
521 >    final int parallelism;
522  
523      /**
524 <     * Pool number, just for assigning useful names to worker threads
524 >     * Index (mod submission queue length) of next element to take
525 >     * from submission queue.
526       */
527 <    private final int poolNumber;
527 >    volatile int queueBase;
528  
529      /**
530 <     * The maximum allowed pool size
530 >     * Index (mod submission queue length) of next element to add
531 >     * in submission queue.
532       */
533 <    private volatile int maxPoolSize;
533 >    int queueTop;
534  
535      /**
536 <     * The desired parallelism level, updated only under workerLock.
536 >     * True when shutdown() has been called.
537       */
538 <    private volatile int parallelism;
538 >    volatile boolean shutdown;
539  
540      /**
541       * True if use local fifo, not default lifo, for local polling
542 +     * Read by, and replicated by ForkJoinWorkerThreads
543       */
544 <    private volatile boolean locallyFifo;
544 >    final boolean locallyFifo;
545  
546      /**
547 <     * Holds number of total (i.e., created and not yet terminated)
548 <     * and running (i.e., not blocked on joins or other managed sync)
549 <     * threads, packed into one int to ensure consistent snapshot when
248 <     * making decisions about creating and suspending spare
249 <     * threads. Updated only by CAS.  Note: CASes in
250 <     * updateRunningCount and preJoin assume that running active count
251 <     * is in low word, so need to be modified if this changes.
547 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
548 >     * When non-zero, suppresses automatic shutdown when active
549 >     * counts become zero.
550       */
551 <    private volatile int workerCounts;
551 >    volatile int quiescerCount;
552  
553 <    private static int totalCountOf(int s)           { return s >>> 16;  }
554 <    private static int runningCountOf(int s)         { return s & shortMask; }
555 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
553 >    /**
554 >     * The number of threads blocked in join.
555 >     */
556 >    volatile int blockedCount;
557  
558      /**
559 <     * Adds delta (which may be negative) to running count.  This must
261 <     * be called before (with negative arg) and after (with positive)
262 <     * any managed synchronization (i.e., mainly, joins).
263 <     *
264 <     * @param delta the number to add
559 >     * Counter for worker Thread names (unrelated to their poolIndex)
560       */
561 <    final void updateRunningCount(int delta) {
267 <        int s;
268 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
269 <    }
561 >    private volatile int nextWorkerNumber;
562  
563      /**
564 <     * Adds delta (which may be negative) to both total and running
273 <     * count.  This must be called upon creation and termination of
274 <     * worker threads.
275 <     *
276 <     * @param delta the number to add
564 >     * The index for the next created worker. Accessed under scanGuard.
565       */
566 <    private void updateWorkerCount(int delta) {
279 <        int d = delta + (delta << 16); // add to both lo and hi parts
280 <        int s;
281 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
282 <    }
566 >    private int nextWorkerIndex;
567  
568      /**
569 <     * Lifecycle control. High word contains runState, low word
570 <     * contains the number of workers that are (probably) executing
571 <     * tasks. This value is atomically incremented before a worker
572 <     * gets a task to run, and decremented when worker has no tasks
573 <     * and cannot find any. These two fields are bundled together to
574 <     * support correct termination triggering.  Note: activeCount
575 <     * CAS'es cheat by assuming active count is in low word, so need
576 <     * to be modified if this changes
569 >     * SeqLock and index masking for for updates to workers array.
570 >     * Locked when SG_UNIT is set. Unlocking clears bit by adding
571 >     * SG_UNIT. Staleness of read-only operations can be checked by
572 >     * comparing scanGuard to value before the reads. The low 16 bits
573 >     * (i.e, anding with SMASK) hold (the smallest power of two
574 >     * covering all worker indices, minus one, and is used to avoid
575 >     * dealing with large numbers of null slots when the workers array
576 >     * is overallocated.
577       */
578 <    private volatile int runControl;
578 >    volatile int scanGuard;
579  
580 <    // RunState values. Order among values matters
297 <    private static final int RUNNING     = 0;
298 <    private static final int SHUTDOWN    = 1;
299 <    private static final int TERMINATING = 2;
300 <    private static final int TERMINATED  = 3;
580 >    private static final int SG_UNIT = 1 << 16;
581  
582 <    private static int runStateOf(int c)             { return c >>> 16; }
583 <    private static int activeCountOf(int c)          { return c & shortMask; }
584 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
582 >    /**
583 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
584 >     * task when the pool is quiescent to instead try to shrink the
585 >     * number of workers.  The exact value does not matter too
586 >     * much. It must be short enough to release resources during
587 >     * sustained periods of idleness, but not so short that threads
588 >     * are continually re-created.
589 >     */
590 >    private static final long SHRINK_RATE =
591 >        4L * 1000L * 1000L * 1000L; // 4 seconds
592  
593      /**
594 <     * Tries incrementing active count; fails on contention.
595 <     * Called by workers before/during executing tasks.
594 >     * Top-level loop for worker threads: On each step: if the
595 >     * previous step swept through all queues and found no tasks, or
596 >     * there are excess threads, then possibly blocks. Otherwise,
597 >     * scans for and, if found, executes a task. Returns when pool
598 >     * and/or worker terminate.
599       *
600 <     * @return true on success
600 >     * @param w the worker
601       */
602 <    final boolean tryIncrementActiveCount() {
603 <        int c = runControl;
604 <        return casRunControl(c, c+1);
602 >    final void work(ForkJoinWorkerThread w) {
603 >        boolean swept = false;                // true on empty scans
604 >        long c;
605 >        while (!w.terminate && (int)(c = ctl) >= 0) {
606 >            int a;                            // active count
607 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
608 >                swept = scan(w, a);
609 >            else if (tryAwaitWork(w, c))
610 >                swept = false;
611 >        }
612      }
613  
614 +    // Signalling
615 +
616      /**
617 <     * Tries decrementing active count; fails on contention.
319 <     * Possibly triggers termination on success.
320 <     * Called by workers when they can't find tasks.
321 <     *
322 <     * @return true on success
617 >     * Wakes up or creates a worker.
618       */
619 <    final boolean tryDecrementActiveCount() {
620 <        int c = runControl;
621 <        int nextc = c - 1;
622 <        if (!casRunControl(c, nextc))
623 <            return false;
624 <        if (canTerminateOnShutdown(nextc))
625 <            terminateOnShutdown();
626 <        return true;
619 >    final void signalWork() {
620 >        /*
621 >         * The while condition is true if: (there is are too few total
622 >         * workers OR there is at least one waiter) AND (there are too
623 >         * few active workers OR the pool is terminating).  The value
624 >         * of e distinguishes the remaining cases: zero (no waiters)
625 >         * for create, negative if terminating (in which case do
626 >         * nothing), else release a waiter. The secondary checks for
627 >         * release (non-null array etc) can fail if the pool begins
628 >         * terminating after the test, and don't impose any added cost
629 >         * because JVMs must perform null and bounds checks anyway.
630 >         */
631 >        long c; int e, u;
632 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
633 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
634 >            if (e > 0) {                         // release a waiting worker
635 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
636 >                if ((ws = workers) == null ||
637 >                    (i = ~e & SMASK) >= ws.length ||
638 >                    (w = ws[i]) == null)
639 >                    break;
640 >                long nc = (((long)(w.nextWait & E_MASK)) |
641 >                           ((long)(u + UAC_UNIT) << 32));
642 >                if (w.eventCount == e &&
643 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
644 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
645 >                    if (w.parked)
646 >                        UNSAFE.unpark(w);
647 >                    break;
648 >                }
649 >            }
650 >            else if (UNSAFE.compareAndSwapLong
651 >                     (this, ctlOffset, c,
652 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
653 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
654 >                addWorker();
655 >                break;
656 >            }
657 >        }
658      }
659  
660      /**
661 <     * Returns {@code true} if argument represents zero active count
662 <     * and nonzero runstate, which is the triggering condition for
663 <     * terminating on shutdown.
661 >     * Variant of signalWork to help release waiters on rescans.
662 >     * Tries once to release a waiter if active count < 0.
663 >     *
664 >     * @return false if failed due to contention, else true
665       */
666 <    private static boolean canTerminateOnShutdown(int c) {
667 <        // i.e. least bit is nonzero runState bit
668 <        return ((c & -c) >>> 16) != 0;
666 >    private boolean tryReleaseWaiter() {
667 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
668 >        if ((e = (int)(c = ctl)) > 0 &&
669 >            (int)(c >> AC_SHIFT) < 0 &&
670 >            (ws = workers) != null &&
671 >            (i = ~e & SMASK) < ws.length &&
672 >            (w = ws[i]) != null) {
673 >            long nc = ((long)(w.nextWait & E_MASK) |
674 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
675 >            if (w.eventCount != e ||
676 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
677 >                return false;
678 >            w.eventCount = (e + EC_UNIT) & E_MASK;
679 >            if (w.parked)
680 >                UNSAFE.unpark(w);
681 >        }
682 >        return true;
683      }
684  
685 +    // Scanning for tasks
686 +
687      /**
688 <     * Transition run state to at least the given state. Return true
689 <     * if not already at least given state.
688 >     * Scans for and, if found, executes one task. Scans start at a
689 >     * random index of workers array, and randomly select the first
690 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
691 >     * circular sweeps, which is necessary to check quiescence. and
692 >     * taking a submission only if no stealable tasks were found.  The
693 >     * steal code inside the loop is a specialized form of
694 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
695 >     * helpJoinTask and signal propagation. The code for submission
696 >     * queues is almost identical. On each steal, the worker completes
697 >     * not only the task, but also all local tasks that this task may
698 >     * have generated. On detecting staleness or contention when
699 >     * trying to take a task, this method returns without finishing
700 >     * sweep, which allows global state rechecks before retry.
701 >     *
702 >     * @param w the worker
703 >     * @param a the number of active workers
704 >     * @return true if swept all queues without finding a task
705       */
706 <    private boolean transitionRunStateTo(int state) {
707 <        for (;;) {
708 <            int c = runControl;
709 <            if (runStateOf(c) >= state)
706 >    private boolean scan(ForkJoinWorkerThread w, int a) {
707 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
708 >        int m = parallelism == 1 - a? 0 : g & SMASK;
709 >        ForkJoinWorkerThread[] ws = workers;
710 >        if (ws == null || ws.length <= m)         // staleness check
711 >            return false;
712 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
713 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
714 >            ForkJoinWorkerThread v = ws[k & m];
715 >            if (v != null && (b = v.queueBase) != v.queueTop &&
716 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
717 >                long u = (i << ASHIFT) + ABASE;
718 >                if ((t = q[i]) != null && v.queueBase == b &&
719 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
720 >                    int d = (v.queueBase = b + 1) - v.queueTop;
721 >                    v.stealHint = w.poolIndex;
722 >                    if (d != 0)
723 >                        signalWork();             // propagate if nonempty
724 >                    w.execTask(t);
725 >                }
726 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
727 >                return false;                     // store next seed
728 >            }
729 >            else if (j < 0) {                     // xorshift
730 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
731 >            }
732 >            else
733 >                ++k;
734 >        }
735 >        if (scanGuard != g)                       // staleness check
736 >            return false;
737 >        else {                                    // try to take submission
738 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
739 >            if ((b = queueBase) != queueTop &&
740 >                (q = submissionQueue) != null &&
741 >                (i = (q.length - 1) & b) >= 0) {
742 >                long u = (i << ASHIFT) + ABASE;
743 >                if ((t = q[i]) != null && queueBase == b &&
744 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
745 >                    queueBase = b + 1;
746 >                    w.execTask(t);
747 >                }
748                  return false;
749 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
749 >            }
750 >            return true;                         // all queues empty
751 >        }
752 >    }
753 >
754 >    /**
755 >     * Tries to enqueue worker w in wait queue and await change in
756 >     * worker's eventCount.  If the pool is quiescent, possibly
757 >     * terminates worker upon exit.  Otherwise, before blocking,
758 >     * rescans queues to avoid missed signals.  Upon finding work,
759 >     * releases at least one worker (which may be the current
760 >     * worker). Rescans restart upon detected staleness or failure to
761 >     * release due to contention.
762 >     *
763 >     * @param w the calling worker
764 >     * @param c the ctl value on entry
765 >     * @return true if waited or another thread was released upon enq
766 >     */
767 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
768 >        int v = w.eventCount;
769 >        w.nextWait = (int)c;                      // w's successor record
770 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
771 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
772 >            long d = ctl; // return true if lost to a deq, to force scan
773 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
774 >        }
775 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
776 >            long s = stealCount;
777 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
778 >                sc = w.stealCount = 0;
779 >            else if (w.eventCount != v)
780 >                return true;                      // update next time
781 >        }
782 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
783 >            blockedCount == 0 && quiescerCount == 0)
784 >            idleAwaitWork(w, nc, c, v);           // quiescent
785 >        for (boolean rescanned = false;;) {
786 >            if (w.eventCount != v)
787                  return true;
788 +            if (!rescanned) {
789 +                int g = scanGuard, m = g & SMASK;
790 +                ForkJoinWorkerThread[] ws = workers;
791 +                if (ws != null && m < ws.length) {
792 +                    rescanned = true;
793 +                    for (int i = 0; i <= m; ++i) {
794 +                        ForkJoinWorkerThread u = ws[i];
795 +                        if (u != null) {
796 +                            if (u.queueBase != u.queueTop &&
797 +                                !tryReleaseWaiter())
798 +                                rescanned = false; // contended
799 +                            if (w.eventCount != v)
800 +                                return true;
801 +                        }
802 +                    }
803 +                }
804 +                if (scanGuard != g ||              // stale
805 +                    (queueBase != queueTop && !tryReleaseWaiter()))
806 +                    rescanned = false;
807 +                if (!rescanned)
808 +                    Thread.yield();                // reduce contention
809 +                else
810 +                    Thread.interrupted();          // clear before park
811 +            }
812 +            else {
813 +                w.parked = true;                   // must recheck
814 +                if (w.eventCount != v) {
815 +                    w.parked = false;
816 +                    return true;
817 +                }
818 +                LockSupport.park(this);
819 +                rescanned = w.parked = false;
820 +            }
821          }
822      }
823  
824      /**
825 <     * Controls whether to add spares to maintain parallelism
826 <     */
827 <    private volatile boolean maintainsParallelism;
825 >     * If inactivating worker w has caused pool to become
826 >     * quiescent, check for pool termination, and wait for event
827 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
828 >     * this case because quiescence reflects consensus about lack
829 >     * of work). On timeout, if ctl has not changed, terminate the
830 >     * worker. Upon its termination (see deregisterWorker), it may
831 >     * wake up another worker to possibly repeat this process.
832 >     *
833 >     * @param w the calling worker
834 >     * @param currentCtl the ctl value after enqueuing w
835 >     * @param prevCtl the ctl value if w terminated
836 >     * @param v the eventCount w awaits change
837 >     */
838 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
839 >                               long prevCtl, int v) {
840 >        if (w.eventCount == v) {
841 >            if (shutdown)
842 >                tryTerminate(false);
843 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
844 >            while (ctl == currentCtl) {
845 >                long startTime = System.nanoTime();
846 >                w.parked = true;
847 >                if (w.eventCount == v)             // must recheck
848 >                    LockSupport.parkNanos(this, SHRINK_RATE);
849 >                w.parked = false;
850 >                if (w.eventCount != v)
851 >                    break;
852 >                else if (System.nanoTime() - startTime < SHRINK_RATE)
853 >                    Thread.interrupted();          // spurious wakeup
854 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
855 >                                                   currentCtl, prevCtl)) {
856 >                    w.terminate = true;            // restore previous
857 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
858 >                    break;
859 >                }
860 >            }
861 >        }
862 >    }
863  
864 <    // Constructors
864 >    // Submissions
865  
866      /**
867 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
868 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
368 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
867 >     * Enqueues the given task in the submissionQueue.  Same idea as
868 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
869       *
870 <     * @throws SecurityException if a security manager exists and
371 <     *         the caller is not permitted to modify threads
372 <     *         because it does not hold {@link
373 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
870 >     * @param t the task
871       */
872 <    public ForkJoinPool() {
873 <        this(Runtime.getRuntime().availableProcessors(),
874 <             defaultForkJoinWorkerThreadFactory);
872 >    private void addSubmission(ForkJoinTask<?> t) {
873 >        final ReentrantLock lock = this.submissionLock;
874 >        lock.lock();
875 >        try {
876 >            ForkJoinTask<?>[] q; int s, m;
877 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
878 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
879 >                UNSAFE.putOrderedObject(q, u, t);
880 >                queueTop = s + 1;
881 >                if (s - queueBase == m)
882 >                    growSubmissionQueue();
883 >            }
884 >        } finally {
885 >            lock.unlock();
886 >        }
887 >        signalWork();
888      }
889  
890 +    //  (pollSubmission is defined below with exported methods)
891 +
892      /**
893 <     * Creates a {@code ForkJoinPool} with the indicated parallelism
894 <     * level and using the {@linkplain
383 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
384 <     *
385 <     * @param parallelism the parallelism level
386 <     * @throws IllegalArgumentException if parallelism less than or
387 <     * equal to zero
388 <     * @throws SecurityException if a security manager exists and
389 <     *         the caller is not permitted to modify threads
390 <     *         because it does not hold {@link
391 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
893 >     * Creates or doubles submissionQueue array.
894 >     * Basically identical to ForkJoinWorkerThread version
895       */
896 <    public ForkJoinPool(int parallelism) {
897 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
896 >    private void growSubmissionQueue() {
897 >        ForkJoinTask<?>[] oldQ = submissionQueue;
898 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
899 >        if (size > MAXIMUM_QUEUE_CAPACITY)
900 >            throw new RejectedExecutionException("Queue capacity exceeded");
901 >        if (size < INITIAL_QUEUE_CAPACITY)
902 >            size = INITIAL_QUEUE_CAPACITY;
903 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
904 >        int mask = size - 1;
905 >        int top = queueTop;
906 >        int oldMask;
907 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
908 >            for (int b = queueBase; b != top; ++b) {
909 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
910 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
911 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
912 >                    UNSAFE.putObjectVolatile
913 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
914 >            }
915 >        }
916 >    }
917 >
918 >    // Blocking support
919 >
920 >    /**
921 >     * Tries to increment blockedCount, decrement active count
922 >     * (sometimes implicitly) and possibly release or create a
923 >     * compensating worker in preparation for blocking. Fails
924 >     * on contention or termination.
925 >     *
926 >     * @return true if the caller can block, else should recheck and retry
927 >     */
928 >    private boolean tryPreBlock() {
929 >        int b = blockedCount;
930 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
931 >            int pc = parallelism;
932 >            do {
933 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
934 >                int e, ac, tc, rc, i;
935 >                long c = ctl;
936 >                int u = (int)(c >>> 32);
937 >                if ((e = (int)c) < 0) {
938 >                                                 // skip -- terminating
939 >                }
940 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
941 >                         (ws = workers) != null &&
942 >                         (i = ~e & SMASK) < ws.length &&
943 >                         (w = ws[i]) != null) {
944 >                    long nc = ((long)(w.nextWait & E_MASK) |
945 >                               (c & (AC_MASK|TC_MASK)));
946 >                    if (w.eventCount == e &&
947 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
948 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
949 >                        if (w.parked)
950 >                            UNSAFE.unpark(w);
951 >                        return true;             // release an idle worker
952 >                    }
953 >                }
954 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
955 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
956 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
957 >                        return true;             // no compensation needed
958 >                }
959 >                else if (tc + pc < MAX_ID) {
960 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
961 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
962 >                        addWorker();
963 >                        return true;            // create a replacement
964 >                    }
965 >                }
966 >                // try to back out on any failure and let caller retry
967 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
968 >                                               b = blockedCount, b - 1));
969 >        }
970 >        return false;
971      }
972  
973      /**
974 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
399 <     * java.lang.Runtime#availableProcessors}, and using the given
400 <     * thread factory.
401 <     *
402 <     * @param factory the factory for creating new threads
403 <     * @throws NullPointerException if factory is null
404 <     * @throws SecurityException if a security manager exists and
405 <     *         the caller is not permitted to modify threads
406 <     *         because it does not hold {@link
407 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
974 >     * Decrements blockedCount and increments active count
975       */
976 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
977 <        this(Runtime.getRuntime().availableProcessors(), factory);
976 >    private void postBlock() {
977 >        long c;
978 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
979 >                                                c = ctl, c + AC_UNIT));
980 >        int b;
981 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
982 >                                              b = blockedCount, b - 1));
983      }
984  
985      /**
986 <     * Creates a {@code ForkJoinPool} with the given parallelism and
987 <     * thread factory.
986 >     * Possibly blocks waiting for the given task to complete, or
987 >     * cancels the task if terminating.  Fails to wait if contended.
988       *
989 <     * @param parallelism the parallelism level
418 <     * @param factory the factory for creating new threads
419 <     * @throws IllegalArgumentException if parallelism less than or
420 <     * equal to zero, or greater than implementation limit
421 <     * @throws NullPointerException if factory is null
422 <     * @throws SecurityException if a security manager exists and
423 <     *         the caller is not permitted to modify threads
424 <     *         because it does not hold {@link
425 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
989 >     * @param joinMe the task
990       */
991 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
992 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
993 <            throw new IllegalArgumentException();
994 <        if (factory == null)
995 <            throw new NullPointerException();
996 <        checkPermission();
997 <        this.factory = factory;
998 <        this.parallelism = parallelism;
999 <        this.maxPoolSize = MAX_THREADS;
1000 <        this.maintainsParallelism = true;
1001 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
438 <        this.workerLock = new ReentrantLock();
439 <        this.termination = workerLock.newCondition();
440 <        this.stealCount = new AtomicLong();
441 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
442 <        // worker array and workers are lazily constructed
991 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
992 >        int s;
993 >        Thread.interrupted(); // clear interrupts before checking termination
994 >        if (joinMe.status >= 0) {
995 >            if (tryPreBlock()) {
996 >                joinMe.tryAwaitDone(0L);
997 >                postBlock();
998 >            }
999 >            if ((ctl & STOP_BIT) != 0L)
1000 >                joinMe.cancelIgnoringExceptions();
1001 >        }
1002      }
1003  
1004      /**
1005 <     * Creates a new worker thread using factory.
1005 >     * Possibly blocks the given worker waiting for joinMe to
1006 >     * complete or timeout
1007       *
1008 <     * @param index the index to assign worker
1009 <     * @return new worker, or null if factory failed
1008 >     * @param joinMe the task
1009 >     * @param millis the wait time for underlying Object.wait
1010       */
1011 <    private ForkJoinWorkerThread createWorker(int index) {
1012 <        Thread.UncaughtExceptionHandler h = ueh;
1013 <        ForkJoinWorkerThread w = factory.newThread(this);
1014 <        if (w != null) {
1015 <            w.poolIndex = index;
1016 <            w.setDaemon(true);
1017 <            w.setAsyncMode(locallyFifo);
1018 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1019 <            if (h != null)
1020 <                w.setUncaughtExceptionHandler(h);
1011 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1012 >        while (joinMe.status >= 0) {
1013 >            Thread.interrupted();
1014 >            if ((ctl & STOP_BIT) != 0L) {
1015 >                joinMe.cancelIgnoringExceptions();
1016 >                break;
1017 >            }
1018 >            if (tryPreBlock()) {
1019 >                long last = System.nanoTime();
1020 >                while (joinMe.status >= 0) {
1021 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1022 >                    if (millis <= 0)
1023 >                        break;
1024 >                    joinMe.tryAwaitDone(millis);
1025 >                    if (joinMe.status < 0)
1026 >                        break;
1027 >                    if ((ctl & STOP_BIT) != 0L) {
1028 >                        joinMe.cancelIgnoringExceptions();
1029 >                        break;
1030 >                    }
1031 >                    long now = System.nanoTime();
1032 >                    nanos -= now - last;
1033 >                    last = now;
1034 >                }
1035 >                postBlock();
1036 >                break;
1037 >            }
1038          }
462        return w;
1039      }
1040  
1041      /**
1042 <     * Returns a good size for worker array given pool size.
467 <     * Currently requires size to be a power of two.
1042 >     * If necessary, compensates for blocker, and blocks
1043       */
1044 <    private static int arraySizeFor(int poolSize) {
1045 <        if (poolSize <= 1)
1046 <            return 1;
1047 <        // See Hackers Delight, sec 3.2
1048 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
1049 <        c |= c >>>  1;
1050 <        c |= c >>>  2;
1051 <        c |= c >>>  4;
1052 <        c |= c >>>  8;
1053 <        c |= c >>> 16;
1054 <        return c + 1;
1044 >    private void awaitBlocker(ManagedBlocker blocker)
1045 >        throws InterruptedException {
1046 >        while (!blocker.isReleasable()) {
1047 >            if (tryPreBlock()) {
1048 >                try {
1049 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1050 >                } finally {
1051 >                    postBlock();
1052 >                }
1053 >                break;
1054 >            }
1055 >        }
1056      }
1057  
1058 +    // Creating, registering and deregistring workers
1059 +
1060      /**
1061 <     * Creates or resizes array if necessary to hold newLength.
1062 <     * Call only under exclusion.
485 <     *
486 <     * @return the array
1061 >     * Tries to create and start a worker; minimally rolls back counts
1062 >     * on failure.
1063       */
1064 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1065 <        ForkJoinWorkerThread[] ws = workers;
1066 <        if (ws == null)
1067 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1068 <        else if (newLength > ws.length)
1069 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1064 >    private void addWorker() {
1065 >        Throwable ex = null;
1066 >        ForkJoinWorkerThread t = null;
1067 >        try {
1068 >            t = factory.newThread(this);
1069 >        } catch (Throwable e) {
1070 >            ex = e;
1071 >        }
1072 >        if (t == null) {  // null or exceptional factory return
1073 >            long c;       // adjust counts
1074 >            do {} while (!UNSAFE.compareAndSwapLong
1075 >                         (this, ctlOffset, c = ctl,
1076 >                          (((c - AC_UNIT) & AC_MASK) |
1077 >                           ((c - TC_UNIT) & TC_MASK) |
1078 >                           (c & ~(AC_MASK|TC_MASK)))));
1079 >            // Propagate exception if originating from an external caller
1080 >            if (!tryTerminate(false) && ex != null &&
1081 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1082 >                UNSAFE.throwException(ex);
1083 >        }
1084          else
1085 <            return ws;
1085 >            t.start();
1086      }
1087  
1088      /**
1089 <     * Tries to shrink workers into smaller array after one or more terminate.
1089 >     * Callback from ForkJoinWorkerThread constructor to assign a
1090 >     * public name
1091       */
1092 <    private void tryShrinkWorkerArray() {
1093 <        ForkJoinWorkerThread[] ws = workers;
1094 <        if (ws != null) {
1095 <            int len = ws.length;
1096 <            int last = len - 1;
506 <            while (last >= 0 && ws[last] == null)
507 <                --last;
508 <            int newLength = arraySizeFor(last+1);
509 <            if (newLength < len)
510 <                workers = Arrays.copyOf(ws, newLength);
1092 >    final String nextWorkerName() {
1093 >        for (int n;;) {
1094 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1095 >                                         n = nextWorkerNumber, ++n))
1096 >                return workerNamePrefix + n;
1097          }
1098      }
1099  
1100      /**
1101 <     * Initializes workers if necessary.
1101 >     * Callback from ForkJoinWorkerThread constructor to
1102 >     * determine its poolIndex and record in workers array.
1103 >     *
1104 >     * @param w the worker
1105 >     * @return the worker's pool index
1106       */
1107 <    final void ensureWorkerInitialization() {
1108 <        ForkJoinWorkerThread[] ws = workers;
1109 <        if (ws == null) {
1110 <            final ReentrantLock lock = this.workerLock;
1111 <            lock.lock();
1112 <            try {
1113 <                ws = workers;
1114 <                if (ws == null) {
1115 <                    int ps = parallelism;
1116 <                    ws = ensureWorkerArrayCapacity(ps);
1117 <                    for (int i = 0; i < ps; ++i) {
1118 <                        ForkJoinWorkerThread w = createWorker(i);
1119 <                        if (w != null) {
1120 <                            ws[i] = w;
1121 <                            w.start();
1122 <                            updateWorkerCount(1);
1107 >    final int registerWorker(ForkJoinWorkerThread w) {
1108 >        /*
1109 >         * In the typical case, a new worker acquires the lock, uses
1110 >         * next available index and returns quickly.  Since we should
1111 >         * not block callers (ultimately from signalWork or
1112 >         * tryPreBlock) waiting for the lock needed to do this, we
1113 >         * instead help release other workers while waiting for the
1114 >         * lock.
1115 >         */
1116 >        for (int g;;) {
1117 >            ForkJoinWorkerThread[] ws;
1118 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1119 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1120 >                                         g, g | SG_UNIT)) {
1121 >                int k = nextWorkerIndex;
1122 >                try {
1123 >                    if ((ws = workers) != null) { // ignore on shutdown
1124 >                        int n = ws.length;
1125 >                        if (k < 0 || k >= n || ws[k] != null) {
1126 >                            for (k = 0; k < n && ws[k] != null; ++k)
1127 >                                ;
1128 >                            if (k == n)
1129 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1130                          }
1131 +                        ws[k] = w;
1132 +                        nextWorkerIndex = k + 1;
1133 +                        int m = g & SMASK;
1134 +                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1135 +                    }
1136 +                } finally {
1137 +                    scanGuard = g;
1138 +                }
1139 +                return k;
1140 +            }
1141 +            else if ((ws = workers) != null) { // help release others
1142 +                for (ForkJoinWorkerThread u : ws) {
1143 +                    if (u != null && u.queueBase != u.queueTop) {
1144 +                        if (tryReleaseWaiter())
1145 +                            break;
1146                      }
1147                  }
536            } finally {
537                lock.unlock();
1148              }
1149          }
1150      }
1151  
1152      /**
1153 <     * Worker creation and startup for threads added via setParallelism.
1153 >     * Final callback from terminating worker.  Removes record of
1154 >     * worker from array, and adjusts counts. If pool is shutting
1155 >     * down, tries to complete termination.
1156 >     *
1157 >     * @param w the worker
1158       */
1159 <    private void createAndStartAddedWorkers() {
1160 <        resumeAllSpares();  // Allow spares to convert to nonspare
1161 <        int ps = parallelism;
1162 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1163 <        int len = ws.length;
1164 <        // Sweep through slots, to keep lowest indices most populated
1165 <        int k = 0;
1166 <        while (k < len) {
1167 <            if (ws[k] != null) {
1168 <                ++k;
1169 <                continue;
1159 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1160 >        int idx = w.poolIndex;
1161 >        int sc = w.stealCount;
1162 >        int steps = 0;
1163 >        // Remove from array, adjust worker counts and collect steal count.
1164 >        // We can intermix failed removes or adjusts with steal updates
1165 >        do {
1166 >            long s, c;
1167 >            int g;
1168 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1169 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1170 >                                         g, g |= SG_UNIT)) {
1171 >                ForkJoinWorkerThread[] ws = workers;
1172 >                if (ws != null && idx >= 0 &&
1173 >                    idx < ws.length && ws[idx] == w)
1174 >                    ws[idx] = null;    // verify
1175 >                nextWorkerIndex = idx;
1176 >                scanGuard = g + SG_UNIT;
1177 >                steps = 1;
1178 >            }
1179 >            if (steps == 1 &&
1180 >                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1181 >                                          (((c - AC_UNIT) & AC_MASK) |
1182 >                                           ((c - TC_UNIT) & TC_MASK) |
1183 >                                           (c & ~(AC_MASK|TC_MASK)))))
1184 >                steps = 2;
1185 >            if (sc != 0 &&
1186 >                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1187 >                                          s = stealCount, s + sc))
1188 >                sc = 0;
1189 >        } while (steps != 2 || sc != 0);
1190 >        if (!tryTerminate(false)) {
1191 >            if (ex != null)   // possibly replace if died abnormally
1192 >                signalWork();
1193 >            else
1194 >                tryReleaseWaiter();
1195 >        }
1196 >    }
1197 >
1198 >    // Shutdown and termination
1199 >
1200 >    /**
1201 >     * Possibly initiates and/or completes termination.
1202 >     *
1203 >     * @param now if true, unconditionally terminate, else only
1204 >     * if shutdown and empty queue and no active workers
1205 >     * @return true if now terminating or terminated
1206 >     */
1207 >    private boolean tryTerminate(boolean now) {
1208 >        long c;
1209 >        while (((c = ctl) & STOP_BIT) == 0) {
1210 >            if (!now) {
1211 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1212 >                    return false;
1213 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1214 >                    queueTop - queueBase > 0) {
1215 >                    if (ctl == c) // staleness check
1216 >                        return false;
1217 >                    continue;
1218 >                }
1219              }
1220 <            int s = workerCounts;
1221 <            int tc = totalCountOf(s);
1222 <            int rc = runningCountOf(s);
1223 <            if (rc >= ps || tc >= ps)
1224 <                break;
1225 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1226 <                ForkJoinWorkerThread w = createWorker(k);
1227 <                if (w != null) {
1228 <                    ws[k++] = w;
1229 <                    w.start();
1220 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1221 >                startTerminating();
1222 >        }
1223 >        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1224 >            submissionLock.lock();
1225 >            termination.signalAll();
1226 >            submissionLock.unlock();
1227 >        }
1228 >        return true;
1229 >    }
1230 >
1231 >    /**
1232 >     * Runs up to three passes through workers: (0) Setting
1233 >     * termination status for each worker, followed by wakeups up
1234 >     * queued workers (1) helping cancel tasks (2) interrupting
1235 >     * lagging threads (likely in external tasks, but possibly also
1236 >     * blocked in joins).  Each pass repeats previous steps because of
1237 >     * potential lagging thread creation.
1238 >     */
1239 >    private void startTerminating() {
1240 >        cancelSubmissions();
1241 >        for (int pass = 0; pass < 3; ++pass) {
1242 >            ForkJoinWorkerThread[] ws = workers;
1243 >            if (ws != null) {
1244 >                for (ForkJoinWorkerThread w : ws) {
1245 >                    if (w != null) {
1246 >                        w.terminate = true;
1247 >                        if (pass > 0) {
1248 >                            w.cancelTasks();
1249 >                            if (pass > 1 && !w.isInterrupted()) {
1250 >                                try {
1251 >                                    w.interrupt();
1252 >                                } catch (SecurityException ignore) {
1253 >                                }
1254 >                            }
1255 >                        }
1256 >                    }
1257                  }
1258 <                else {
1259 <                    updateWorkerCount(-1); // back out on failed creation
1260 <                    break;
1258 >                terminateWaiters();
1259 >            }
1260 >        }
1261 >    }
1262 >
1263 >    /**
1264 >     * Polls and cancels all submissions. Called only during termination.
1265 >     */
1266 >    private void cancelSubmissions() {
1267 >        while (queueBase != queueTop) {
1268 >            ForkJoinTask<?> task = pollSubmission();
1269 >            if (task != null) {
1270 >                try {
1271 >                    task.cancel(false);
1272 >                } catch (Throwable ignore) {
1273                  }
1274              }
1275          }
1276      }
1277  
1278 <    // Execution methods
1278 >    /**
1279 >     * Tries to set the termination status of waiting workers, and
1280 >     * then wake them up (after which they will terminate).
1281 >     */
1282 >    private void terminateWaiters() {
1283 >        ForkJoinWorkerThread[] ws = workers;
1284 >        if (ws != null) {
1285 >            ForkJoinWorkerThread w; long c; int i, e;
1286 >            int n = ws.length;
1287 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1288 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1289 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1290 >                                              (long)(w.nextWait & E_MASK) |
1291 >                                              ((c + AC_UNIT) & AC_MASK) |
1292 >                                              (c & (TC_MASK|STOP_BIT)))) {
1293 >                    w.terminate = true;
1294 >                    w.eventCount = e + EC_UNIT;
1295 >                    if (w.parked)
1296 >                        UNSAFE.unpark(w);
1297 >                }
1298 >            }
1299 >        }
1300 >    }
1301 >
1302 >    // misc ForkJoinWorkerThread support
1303  
1304      /**
1305 <     * Common code for execute, invoke and submit
1305 >     * Increment or decrement quiescerCount. Needed only to prevent
1306 >     * triggering shutdown if a worker is transiently inactive while
1307 >     * checking quiescence.
1308 >     *
1309 >     * @param delta 1 for increment, -1 for decrement
1310       */
1311 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1312 <        if (task == null)
1311 >    final void addQuiescerCount(int delta) {
1312 >        int c;
1313 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1314 >                                              c = quiescerCount, c + delta));
1315 >    }
1316 >
1317 >    /**
1318 >     * Directly increment or decrement active count without
1319 >     * queuing. This method is used to transiently assert inactivation
1320 >     * while checking quiescence.
1321 >     *
1322 >     * @param delta 1 for increment, -1 for decrement
1323 >     */
1324 >    final void addActiveCount(int delta) {
1325 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1326 >        long c;
1327 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1328 >                                                ((c + d) & AC_MASK) |
1329 >                                                (c & ~AC_MASK)));
1330 >    }
1331 >
1332 >    /**
1333 >     * Returns the approximate (non-atomic) number of idle threads per
1334 >     * active thread.
1335 >     */
1336 >    final int idlePerActive() {
1337 >        // Approximate at powers of two for small values, saturate past 4
1338 >        int p = parallelism;
1339 >        int a = p + (int)(ctl >> AC_SHIFT);
1340 >        return (a > (p >>>= 1) ? 0 :
1341 >                a > (p >>>= 1) ? 1 :
1342 >                a > (p >>>= 1) ? 2 :
1343 >                a > (p >>>= 1) ? 4 :
1344 >                8);
1345 >    }
1346 >
1347 >    // Exported methods
1348 >
1349 >    // Constructors
1350 >
1351 >    /**
1352 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1353 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1354 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1355 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1356 >     *
1357 >     * @throws SecurityException if a security manager exists and
1358 >     *         the caller is not permitted to modify threads
1359 >     *         because it does not hold {@link
1360 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1361 >     */
1362 >    public ForkJoinPool() {
1363 >        this(Runtime.getRuntime().availableProcessors(),
1364 >             defaultForkJoinWorkerThreadFactory, null, false);
1365 >    }
1366 >
1367 >    /**
1368 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1369 >     * level, the {@linkplain
1370 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1371 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1372 >     *
1373 >     * @param parallelism the parallelism level
1374 >     * @throws IllegalArgumentException if parallelism less than or
1375 >     *         equal to zero, or greater than implementation limit
1376 >     * @throws SecurityException if a security manager exists and
1377 >     *         the caller is not permitted to modify threads
1378 >     *         because it does not hold {@link
1379 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1380 >     */
1381 >    public ForkJoinPool(int parallelism) {
1382 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1383 >    }
1384 >
1385 >    /**
1386 >     * Creates a {@code ForkJoinPool} with the given parameters.
1387 >     *
1388 >     * @param parallelism the parallelism level. For default value,
1389 >     * use {@link java.lang.Runtime#availableProcessors}.
1390 >     * @param factory the factory for creating new threads. For default value,
1391 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1392 >     * @param handler the handler for internal worker threads that
1393 >     * terminate due to unrecoverable errors encountered while executing
1394 >     * tasks. For default value, use {@code null}.
1395 >     * @param asyncMode if true,
1396 >     * establishes local first-in-first-out scheduling mode for forked
1397 >     * tasks that are never joined. This mode may be more appropriate
1398 >     * than default locally stack-based mode in applications in which
1399 >     * worker threads only process event-style asynchronous tasks.
1400 >     * For default value, use {@code false}.
1401 >     * @throws IllegalArgumentException if parallelism less than or
1402 >     *         equal to zero, or greater than implementation limit
1403 >     * @throws NullPointerException if the factory is null
1404 >     * @throws SecurityException if a security manager exists and
1405 >     *         the caller is not permitted to modify threads
1406 >     *         because it does not hold {@link
1407 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1408 >     */
1409 >    public ForkJoinPool(int parallelism,
1410 >                        ForkJoinWorkerThreadFactory factory,
1411 >                        Thread.UncaughtExceptionHandler handler,
1412 >                        boolean asyncMode) {
1413 >        checkPermission();
1414 >        if (factory == null)
1415              throw new NullPointerException();
1416 <        if (isShutdown())
1417 <            throw new RejectedExecutionException();
1418 <        if (workers == null)
1419 <            ensureWorkerInitialization();
1420 <        submissionQueue.offer(task);
1421 <        signalIdleWorkers();
1416 >        if (parallelism <= 0 || parallelism > MAX_ID)
1417 >            throw new IllegalArgumentException();
1418 >        this.parallelism = parallelism;
1419 >        this.factory = factory;
1420 >        this.ueh = handler;
1421 >        this.locallyFifo = asyncMode;
1422 >        long np = (long)(-parallelism); // offset ctl counts
1423 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1424 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1425 >        // initialize workers array with room for 2*parallelism if possible
1426 >        int n = parallelism << 1;
1427 >        if (n >= MAX_ID)
1428 >            n = MAX_ID;
1429 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1430 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1431 >        }
1432 >        workers = new ForkJoinWorkerThread[n + 1];
1433 >        this.submissionLock = new ReentrantLock();
1434 >        this.termination = submissionLock.newCondition();
1435 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1436 >        sb.append(poolNumberGenerator.incrementAndGet());
1437 >        sb.append("-worker-");
1438 >        this.workerNamePrefix = sb.toString();
1439      }
1440  
1441 +    // Execution methods
1442 +
1443      /**
1444       * Performs the given task, returning its result upon completion.
1445 +     * If the computation encounters an unchecked Exception or Error,
1446 +     * it is rethrown as the outcome of this invocation.  Rethrown
1447 +     * exceptions behave in the same way as regular exceptions, but,
1448 +     * when possible, contain stack traces (as displayed for example
1449 +     * using {@code ex.printStackTrace()}) of both the current thread
1450 +     * as well as the thread actually encountering the exception;
1451 +     * minimally only the latter.
1452       *
1453       * @param task the task
1454       * @return the task's result
1455 <     * @throws NullPointerException if task is null
1456 <     * @throws RejectedExecutionException if pool is shut down
1455 >     * @throws NullPointerException if the task is null
1456 >     * @throws RejectedExecutionException if the task cannot be
1457 >     *         scheduled for execution
1458       */
1459      public <T> T invoke(ForkJoinTask<T> task) {
1460 <        doSubmit(task);
1461 <        return task.join();
1460 >        Thread t = Thread.currentThread();
1461 >        if (task == null)
1462 >            throw new NullPointerException();
1463 >        if (shutdown)
1464 >            throw new RejectedExecutionException();
1465 >        if ((t instanceof ForkJoinWorkerThread) &&
1466 >            ((ForkJoinWorkerThread)t).pool == this)
1467 >            return task.invoke();  // bypass submit if in same pool
1468 >        else {
1469 >            addSubmission(task);
1470 >            return task.join();
1471 >        }
1472 >    }
1473 >
1474 >    /**
1475 >     * Unless terminating, forks task if within an ongoing FJ
1476 >     * computation in the current pool, else submits as external task.
1477 >     */
1478 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1479 >        ForkJoinWorkerThread w;
1480 >        Thread t = Thread.currentThread();
1481 >        if (shutdown)
1482 >            throw new RejectedExecutionException();
1483 >        if ((t instanceof ForkJoinWorkerThread) &&
1484 >            (w = (ForkJoinWorkerThread)t).pool == this)
1485 >            w.pushTask(task);
1486 >        else
1487 >            addSubmission(task);
1488      }
1489  
1490      /**
1491       * Arranges for (asynchronous) execution of the given task.
1492       *
1493       * @param task the task
1494 <     * @throws NullPointerException if task is null
1495 <     * @throws RejectedExecutionException if pool is shut down
1494 >     * @throws NullPointerException if the task is null
1495 >     * @throws RejectedExecutionException if the task cannot be
1496 >     *         scheduled for execution
1497       */
1498      public void execute(ForkJoinTask<?> task) {
1499 <        doSubmit(task);
1499 >        if (task == null)
1500 >            throw new NullPointerException();
1501 >        forkOrSubmit(task);
1502      }
1503  
1504      // AbstractExecutorService methods
1505  
1506 +    /**
1507 +     * @throws NullPointerException if the task is null
1508 +     * @throws RejectedExecutionException if the task cannot be
1509 +     *         scheduled for execution
1510 +     */
1511      public void execute(Runnable task) {
1512 +        if (task == null)
1513 +            throw new NullPointerException();
1514          ForkJoinTask<?> job;
1515          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1516              job = (ForkJoinTask<?>) task;
1517          else
1518              job = ForkJoinTask.adapt(task, null);
1519 <        doSubmit(job);
1519 >        forkOrSubmit(job);
1520 >    }
1521 >
1522 >    /**
1523 >     * Submits a ForkJoinTask for execution.
1524 >     *
1525 >     * @param task the task to submit
1526 >     * @return the task
1527 >     * @throws NullPointerException if the task is null
1528 >     * @throws RejectedExecutionException if the task cannot be
1529 >     *         scheduled for execution
1530 >     */
1531 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1532 >        if (task == null)
1533 >            throw new NullPointerException();
1534 >        forkOrSubmit(task);
1535 >        return task;
1536      }
1537  
1538 +    /**
1539 +     * @throws NullPointerException if the task is null
1540 +     * @throws RejectedExecutionException if the task cannot be
1541 +     *         scheduled for execution
1542 +     */
1543      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1544 +        if (task == null)
1545 +            throw new NullPointerException();
1546          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1547 <        doSubmit(job);
1547 >        forkOrSubmit(job);
1548          return job;
1549      }
1550  
1551 +    /**
1552 +     * @throws NullPointerException if the task is null
1553 +     * @throws RejectedExecutionException if the task cannot be
1554 +     *         scheduled for execution
1555 +     */
1556      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1557 +        if (task == null)
1558 +            throw new NullPointerException();
1559          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1560 <        doSubmit(job);
1560 >        forkOrSubmit(job);
1561          return job;
1562      }
1563  
1564 +    /**
1565 +     * @throws NullPointerException if the task is null
1566 +     * @throws RejectedExecutionException if the task cannot be
1567 +     *         scheduled for execution
1568 +     */
1569      public ForkJoinTask<?> submit(Runnable task) {
1570 +        if (task == null)
1571 +            throw new NullPointerException();
1572          ForkJoinTask<?> job;
1573          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1574              job = (ForkJoinTask<?>) task;
1575          else
1576              job = ForkJoinTask.adapt(task, null);
1577 <        doSubmit(job);
1577 >        forkOrSubmit(job);
1578          return job;
1579      }
1580  
1581      /**
1582 <     * Submits a ForkJoinTask for execution.
1583 <     *
652 <     * @param task the task to submit
653 <     * @return the task
654 <     * @throws RejectedExecutionException if the task cannot be
655 <     *         scheduled for execution
656 <     * @throws NullPointerException if the task is null
1582 >     * @throws NullPointerException       {@inheritDoc}
1583 >     * @throws RejectedExecutionException {@inheritDoc}
1584       */
658    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
659        doSubmit(task);
660        return task;
661    }
662
663
1585      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1586          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1587              new ArrayList<ForkJoinTask<T>>(tasks.size());
# Line 669 | Line 1590 | public class ForkJoinPool extends Abstra
1590          invoke(new InvokeAll<T>(forkJoinTasks));
1591  
1592          @SuppressWarnings({"unchecked", "rawtypes"})
1593 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1593 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1594          return futures;
1595      }
1596  
# Line 683 | Line 1604 | public class ForkJoinPool extends Abstra
1604          private static final long serialVersionUID = -7914297376763021607L;
1605      }
1606  
686    // Configuration and status settings and queries
687
1607      /**
1608       * Returns the factory used for constructing new workers.
1609       *
# Line 701 | Line 1620 | public class ForkJoinPool extends Abstra
1620       * @return the handler, or {@code null} if none
1621       */
1622      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1623 <        Thread.UncaughtExceptionHandler h;
705 <        final ReentrantLock lock = this.workerLock;
706 <        lock.lock();
707 <        try {
708 <            h = ueh;
709 <        } finally {
710 <            lock.unlock();
711 <        }
712 <        return h;
713 <    }
714 <
715 <    /**
716 <     * Sets the handler for internal worker threads that terminate due
717 <     * to unrecoverable errors encountered while executing tasks.
718 <     * Unless set, the current default or ThreadGroup handler is used
719 <     * as handler.
720 <     *
721 <     * @param h the new handler
722 <     * @return the old handler, or {@code null} if none
723 <     * @throws SecurityException if a security manager exists and
724 <     *         the caller is not permitted to modify threads
725 <     *         because it does not hold {@link
726 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
727 <     */
728 <    public Thread.UncaughtExceptionHandler
729 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
730 <        checkPermission();
731 <        Thread.UncaughtExceptionHandler old = null;
732 <        final ReentrantLock lock = this.workerLock;
733 <        lock.lock();
734 <        try {
735 <            old = ueh;
736 <            ueh = h;
737 <            ForkJoinWorkerThread[] ws = workers;
738 <            if (ws != null) {
739 <                for (int i = 0; i < ws.length; ++i) {
740 <                    ForkJoinWorkerThread w = ws[i];
741 <                    if (w != null)
742 <                        w.setUncaughtExceptionHandler(h);
743 <                }
744 <            }
745 <        } finally {
746 <            lock.unlock();
747 <        }
748 <        return old;
749 <    }
750 <
751 <
752 <    /**
753 <     * Sets the target parallelism level of this pool.
754 <     *
755 <     * @param parallelism the target parallelism
756 <     * @throws IllegalArgumentException if parallelism less than or
757 <     * equal to zero or greater than maximum size bounds
758 <     * @throws SecurityException if a security manager exists and
759 <     *         the caller is not permitted to modify threads
760 <     *         because it does not hold {@link
761 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
762 <     */
763 <    public void setParallelism(int parallelism) {
764 <        checkPermission();
765 <        if (parallelism <= 0 || parallelism > maxPoolSize)
766 <            throw new IllegalArgumentException();
767 <        final ReentrantLock lock = this.workerLock;
768 <        lock.lock();
769 <        try {
770 <            if (isProcessingTasks()) {
771 <                int p = this.parallelism;
772 <                this.parallelism = parallelism;
773 <                if (parallelism > p)
774 <                    createAndStartAddedWorkers();
775 <                else
776 <                    trimSpares();
777 <            }
778 <        } finally {
779 <            lock.unlock();
780 <        }
781 <        signalIdleWorkers();
1623 >        return ueh;
1624      }
1625  
1626      /**
# Line 792 | Line 1634 | public class ForkJoinPool extends Abstra
1634  
1635      /**
1636       * Returns the number of worker threads that have started but not
1637 <     * yet terminated.  This result returned by this method may differ
1637 >     * yet terminated.  The result returned by this method may differ
1638       * from {@link #getParallelism} when threads are created to
1639       * maintain parallelism when others are cooperatively blocked.
1640       *
1641       * @return the number of worker threads
1642       */
1643      public int getPoolSize() {
1644 <        return totalCountOf(workerCounts);
803 <    }
804 <
805 <    /**
806 <     * Returns the maximum number of threads allowed to exist in the
807 <     * pool.  Unless set using {@link #setMaximumPoolSize}, the
808 <     * maximum is an implementation-defined value designed only to
809 <     * prevent runaway growth.
810 <     *
811 <     * @return the maximum
812 <     */
813 <    public int getMaximumPoolSize() {
814 <        return maxPoolSize;
815 <    }
816 <
817 <    /**
818 <     * Sets the maximum number of threads allowed to exist in the
819 <     * pool.  Setting this value has no effect on current pool
820 <     * size. It controls construction of new threads.
821 <     *
822 <     * @throws IllegalArgumentException if negative or greater than
823 <     * internal implementation limit
824 <     */
825 <    public void setMaximumPoolSize(int newMax) {
826 <        if (newMax < 0 || newMax > MAX_THREADS)
827 <            throw new IllegalArgumentException();
828 <        maxPoolSize = newMax;
829 <    }
830 <
831 <
832 <    /**
833 <     * Returns {@code true} if this pool dynamically maintains its
834 <     * target parallelism level. If false, new threads are added only
835 <     * to avoid possible starvation.  This setting is by default true.
836 <     *
837 <     * @return {@code true} if maintains parallelism
838 <     */
839 <    public boolean getMaintainsParallelism() {
840 <        return maintainsParallelism;
841 <    }
842 <
843 <    /**
844 <     * Sets whether this pool dynamically maintains its target
845 <     * parallelism level. If false, new threads are added only to
846 <     * avoid possible starvation.
847 <     *
848 <     * @param enable {@code true} to maintain parallelism
849 <     */
850 <    public void setMaintainsParallelism(boolean enable) {
851 <        maintainsParallelism = enable;
852 <    }
853 <
854 <    /**
855 <     * Establishes local first-in-first-out scheduling mode for forked
856 <     * tasks that are never joined. This mode may be more appropriate
857 <     * than default locally stack-based mode in applications in which
858 <     * worker threads only process asynchronous tasks.  This method is
859 <     * designed to be invoked only when the pool is quiescent, and
860 <     * typically only before any tasks are submitted. The effects of
861 <     * invocations at other times may be unpredictable.
862 <     *
863 <     * @param async if {@code true}, use locally FIFO scheduling
864 <     * @return the previous mode
865 <     * @see #getAsyncMode
866 <     */
867 <    public boolean setAsyncMode(boolean async) {
868 <        boolean oldMode = locallyFifo;
869 <        locallyFifo = async;
870 <        ForkJoinWorkerThread[] ws = workers;
871 <        if (ws != null) {
872 <            for (int i = 0; i < ws.length; ++i) {
873 <                ForkJoinWorkerThread t = ws[i];
874 <                if (t != null)
875 <                    t.setAsyncMode(async);
876 <            }
877 <        }
878 <        return oldMode;
1644 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1645      }
1646  
1647      /**
# Line 883 | Line 1649 | public class ForkJoinPool extends Abstra
1649       * scheduling mode for forked tasks that are never joined.
1650       *
1651       * @return {@code true} if this pool uses async mode
886     * @see #setAsyncMode
1652       */
1653      public boolean getAsyncMode() {
1654          return locallyFifo;
# Line 892 | Line 1657 | public class ForkJoinPool extends Abstra
1657      /**
1658       * Returns an estimate of the number of worker threads that are
1659       * not blocked waiting to join tasks or for other managed
1660 <     * synchronization.
1660 >     * synchronization. This method may overestimate the
1661 >     * number of running threads.
1662       *
1663       * @return the number of worker threads
1664       */
1665      public int getRunningThreadCount() {
1666 <        return runningCountOf(workerCounts);
1666 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1667 >        return r <= 0? 0 : r; // suppress momentarily negative values
1668      }
1669  
1670      /**
# Line 908 | Line 1675 | public class ForkJoinPool extends Abstra
1675       * @return the number of active threads
1676       */
1677      public int getActiveThreadCount() {
1678 <        return activeCountOf(runControl);
1679 <    }
913 <
914 <    /**
915 <     * Returns an estimate of the number of threads that are currently
916 <     * idle waiting for tasks. This method may underestimate the
917 <     * number of idle threads.
918 <     *
919 <     * @return the number of idle threads
920 <     */
921 <    final int getIdleThreadCount() {
922 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
923 <        return (c <= 0) ? 0 : c;
1678 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1679 >        return r <= 0? 0 : r; // suppress momentarily negative values
1680      }
1681  
1682      /**
# Line 935 | Line 1691 | public class ForkJoinPool extends Abstra
1691       * @return {@code true} if all threads are currently idle
1692       */
1693      public boolean isQuiescent() {
1694 <        return activeCountOf(runControl) == 0;
1694 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1695      }
1696  
1697      /**
# Line 950 | Line 1706 | public class ForkJoinPool extends Abstra
1706       * @return the number of steals
1707       */
1708      public long getStealCount() {
1709 <        return stealCount.get();
954 <    }
955 <
956 <    /**
957 <     * Accumulates steal count from a worker.
958 <     * Call only when worker known to be idle.
959 <     */
960 <    private void updateStealCount(ForkJoinWorkerThread w) {
961 <        int sc = w.getAndClearStealCount();
962 <        if (sc != 0)
963 <            stealCount.addAndGet(sc);
1709 >        return stealCount;
1710      }
1711  
1712      /**
# Line 975 | Line 1721 | public class ForkJoinPool extends Abstra
1721       */
1722      public long getQueuedTaskCount() {
1723          long count = 0;
1724 <        ForkJoinWorkerThread[] ws = workers;
1725 <        if (ws != null) {
1726 <            for (int i = 0; i < ws.length; ++i) {
1727 <                ForkJoinWorkerThread t = ws[i];
1728 <                if (t != null)
1729 <                    count += t.getQueueSize();
984 <            }
1724 >        ForkJoinWorkerThread[] ws;
1725 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1726 >            (ws = workers) != null) {
1727 >            for (ForkJoinWorkerThread w : ws)
1728 >                if (w != null)
1729 >                    count -= w.queueBase - w.queueTop; // must read base first
1730          }
1731          return count;
1732      }
1733  
1734      /**
1735       * Returns an estimate of the number of tasks submitted to this
1736 <     * pool that have not yet begun executing.  This method takes time
1737 <     * proportional to the number of submissions.
1736 >     * pool that have not yet begun executing.  This method may take
1737 >     * time proportional to the number of submissions.
1738       *
1739       * @return the number of queued submissions
1740       */
1741      public int getQueuedSubmissionCount() {
1742 <        return submissionQueue.size();
1742 >        return -queueBase + queueTop;
1743      }
1744  
1745      /**
# Line 1004 | Line 1749 | public class ForkJoinPool extends Abstra
1749       * @return {@code true} if there are any queued submissions
1750       */
1751      public boolean hasQueuedSubmissions() {
1752 <        return !submissionQueue.isEmpty();
1752 >        return queueBase != queueTop;
1753      }
1754  
1755      /**
# Line 1015 | Line 1760 | public class ForkJoinPool extends Abstra
1760       * @return the next submission, or {@code null} if none
1761       */
1762      protected ForkJoinTask<?> pollSubmission() {
1763 <        return submissionQueue.poll();
1763 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1764 >        while ((b = queueBase) != queueTop &&
1765 >               (q = submissionQueue) != null &&
1766 >               (i = (q.length - 1) & b) >= 0) {
1767 >            long u = (i << ASHIFT) + ABASE;
1768 >            if ((t = q[i]) != null &&
1769 >                queueBase == b &&
1770 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1771 >                queueBase = b + 1;
1772 >                return t;
1773 >            }
1774 >        }
1775 >        return null;
1776      }
1777  
1778      /**
# Line 1036 | Line 1793 | public class ForkJoinPool extends Abstra
1793       * @return the number of elements transferred
1794       */
1795      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1796 <        int n = submissionQueue.drainTo(c);
1797 <        ForkJoinWorkerThread[] ws = workers;
1798 <        if (ws != null) {
1799 <            for (int i = 0; i < ws.length; ++i) {
1800 <                ForkJoinWorkerThread w = ws[i];
1801 <                if (w != null)
1045 <                    n += w.drainTasksTo(c);
1796 >        int count = 0;
1797 >        while (queueBase != queueTop) {
1798 >            ForkJoinTask<?> t = pollSubmission();
1799 >            if (t != null) {
1800 >                c.add(t);
1801 >                ++count;
1802              }
1803          }
1804 <        return n;
1804 >        ForkJoinWorkerThread[] ws;
1805 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1806 >            (ws = workers) != null) {
1807 >            for (ForkJoinWorkerThread w : ws)
1808 >                if (w != null)
1809 >                    count += w.drainTasksTo(c);
1810 >        }
1811 >        return count;
1812      }
1813  
1814      /**
# Line 1056 | Line 1819 | public class ForkJoinPool extends Abstra
1819       * @return a string identifying this pool, as well as its state
1820       */
1821      public String toString() {
1059        int ps = parallelism;
1060        int wc = workerCounts;
1061        int rc = runControl;
1822          long st = getStealCount();
1823          long qt = getQueuedTaskCount();
1824          long qs = getQueuedSubmissionCount();
1825 +        int pc = parallelism;
1826 +        long c = ctl;
1827 +        int tc = pc + (short)(c >>> TC_SHIFT);
1828 +        int rc = pc + (int)(c >> AC_SHIFT);
1829 +        if (rc < 0) // ignore transient negative
1830 +            rc = 0;
1831 +        int ac = rc + blockedCount;
1832 +        String level;
1833 +        if ((c & STOP_BIT) != 0)
1834 +            level = (tc == 0)? "Terminated" : "Terminating";
1835 +        else
1836 +            level = shutdown? "Shutting down" : "Running";
1837          return super.toString() +
1838 <            "[" + runStateToString(runStateOf(rc)) +
1839 <            ", parallelism = " + ps +
1840 <            ", size = " + totalCountOf(wc) +
1841 <            ", active = " + activeCountOf(rc) +
1842 <            ", running = " + runningCountOf(wc) +
1838 >            "[" + level +
1839 >            ", parallelism = " + pc +
1840 >            ", size = " + tc +
1841 >            ", active = " + ac +
1842 >            ", running = " + rc +
1843              ", steals = " + st +
1844              ", tasks = " + qt +
1845              ", submissions = " + qs +
1846              "]";
1847      }
1848  
1077    private static String runStateToString(int rs) {
1078        switch(rs) {
1079        case RUNNING: return "Running";
1080        case SHUTDOWN: return "Shutting down";
1081        case TERMINATING: return "Terminating";
1082        case TERMINATED: return "Terminated";
1083        default: throw new Error("Unknown run state");
1084        }
1085    }
1086
1087    // lifecycle control
1088
1849      /**
1850       * Initiates an orderly shutdown in which previously submitted
1851       * tasks are executed, but no new tasks will be accepted.
# Line 1100 | Line 1860 | public class ForkJoinPool extends Abstra
1860       */
1861      public void shutdown() {
1862          checkPermission();
1863 <        transitionRunStateTo(SHUTDOWN);
1864 <        if (canTerminateOnShutdown(runControl)) {
1105 <            if (workers == null) { // shutting down before workers created
1106 <                final ReentrantLock lock = this.workerLock;
1107 <                lock.lock();
1108 <                try {
1109 <                    if (workers == null) {
1110 <                        terminate();
1111 <                        transitionRunStateTo(TERMINATED);
1112 <                        termination.signalAll();
1113 <                    }
1114 <                } finally {
1115 <                    lock.unlock();
1116 <                }
1117 <            }
1118 <            terminateOnShutdown();
1119 <        }
1863 >        shutdown = true;
1864 >        tryTerminate(false);
1865      }
1866  
1867      /**
# Line 1137 | Line 1882 | public class ForkJoinPool extends Abstra
1882       */
1883      public List<Runnable> shutdownNow() {
1884          checkPermission();
1885 <        terminate();
1885 >        shutdown = true;
1886 >        tryTerminate(true);
1887          return Collections.emptyList();
1888      }
1889  
# Line 1147 | Line 1893 | public class ForkJoinPool extends Abstra
1893       * @return {@code true} if all tasks have completed following shut down
1894       */
1895      public boolean isTerminated() {
1896 <        return runStateOf(runControl) == TERMINATED;
1896 >        long c = ctl;
1897 >        return ((c & STOP_BIT) != 0L &&
1898 >                (short)(c >>> TC_SHIFT) == -parallelism);
1899      }
1900  
1901      /**
# Line 1155 | Line 1903 | public class ForkJoinPool extends Abstra
1903       * commenced but not yet completed.  This method may be useful for
1904       * debugging. A return of {@code true} reported a sufficient
1905       * period after shutdown may indicate that submitted tasks have
1906 <     * ignored or suppressed interruption, causing this executor not
1907 <     * to properly terminate.
1906 >     * ignored or suppressed interruption, or are waiting for IO,
1907 >     * causing this executor not to properly terminate. (See the
1908 >     * advisory notes for class {@link ForkJoinTask} stating that
1909 >     * tasks should not normally entail blocking operations.  But if
1910 >     * they do, they must abort them on interrupt.)
1911       *
1912       * @return {@code true} if terminating but not yet terminated
1913       */
1914      public boolean isTerminating() {
1915 <        return runStateOf(runControl) == TERMINATING;
1915 >        long c = ctl;
1916 >        return ((c & STOP_BIT) != 0L &&
1917 >                (short)(c >>> TC_SHIFT) != -parallelism);
1918      }
1919  
1920      /**
1921 <     * Returns {@code true} if this pool has been shut down.
1169 <     *
1170 <     * @return {@code true} if this pool has been shut down
1921 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1922       */
1923 <    public boolean isShutdown() {
1924 <        return runStateOf(runControl) >= SHUTDOWN;
1923 >    final boolean isAtLeastTerminating() {
1924 >        return (ctl & STOP_BIT) != 0L;
1925      }
1926  
1927      /**
1928 <     * Returns true if pool is not terminating or terminated.
1929 <     * Used internally to suppress execution when terminating.
1928 >     * Returns {@code true} if this pool has been shut down.
1929 >     *
1930 >     * @return {@code true} if this pool has been shut down
1931       */
1932 <    final boolean isProcessingTasks() {
1933 <        return runStateOf(runControl) < TERMINATING;
1932 >    public boolean isShutdown() {
1933 >        return shutdown;
1934      }
1935  
1936      /**
# Line 1195 | Line 1947 | public class ForkJoinPool extends Abstra
1947      public boolean awaitTermination(long timeout, TimeUnit unit)
1948          throws InterruptedException {
1949          long nanos = unit.toNanos(timeout);
1950 <        final ReentrantLock lock = this.workerLock;
1950 >        final ReentrantLock lock = this.submissionLock;
1951          lock.lock();
1952          try {
1953              for (;;) {
# Line 1210 | Line 1962 | public class ForkJoinPool extends Abstra
1962          }
1963      }
1964  
1213    // Shutdown and termination support
1214
1215    /**
1216     * Callback from terminating worker. Nulls out the corresponding
1217     * workers slot, and if terminating, tries to terminate; else
1218     * tries to shrink workers array.
1219     *
1220     * @param w the worker
1221     */
1222    final void workerTerminated(ForkJoinWorkerThread w) {
1223        updateStealCount(w);
1224        updateWorkerCount(-1);
1225        final ReentrantLock lock = this.workerLock;
1226        lock.lock();
1227        try {
1228            ForkJoinWorkerThread[] ws = workers;
1229            if (ws != null) {
1230                int idx = w.poolIndex;
1231                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1232                    ws[idx] = null;
1233                if (totalCountOf(workerCounts) == 0) {
1234                    terminate(); // no-op if already terminating
1235                    transitionRunStateTo(TERMINATED);
1236                    termination.signalAll();
1237                }
1238                else if (isProcessingTasks()) {
1239                    tryShrinkWorkerArray();
1240                    tryResumeSpare(true); // allow replacement
1241                }
1242            }
1243        } finally {
1244            lock.unlock();
1245        }
1246        signalIdleWorkers();
1247    }
1248
1249    /**
1250     * Initiates termination.
1251     */
1252    private void terminate() {
1253        if (transitionRunStateTo(TERMINATING)) {
1254            stopAllWorkers();
1255            resumeAllSpares();
1256            signalIdleWorkers();
1257            cancelQueuedSubmissions();
1258            cancelQueuedWorkerTasks();
1259            interruptUnterminatedWorkers();
1260            signalIdleWorkers(); // resignal after interrupt
1261        }
1262    }
1263
1264    /**
1265     * Possibly terminates when on shutdown state.
1266     */
1267    private void terminateOnShutdown() {
1268        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1269            terminate();
1270    }
1271
1272    /**
1273     * Clears out and cancels submissions.
1274     */
1275    private void cancelQueuedSubmissions() {
1276        ForkJoinTask<?> task;
1277        while ((task = pollSubmission()) != null)
1278            task.cancel(false);
1279    }
1280
1281    /**
1282     * Cleans out worker queues.
1283     */
1284    private void cancelQueuedWorkerTasks() {
1285        final ReentrantLock lock = this.workerLock;
1286        lock.lock();
1287        try {
1288            ForkJoinWorkerThread[] ws = workers;
1289            if (ws != null) {
1290                for (int i = 0; i < ws.length; ++i) {
1291                    ForkJoinWorkerThread t = ws[i];
1292                    if (t != null)
1293                        t.cancelTasks();
1294                }
1295            }
1296        } finally {
1297            lock.unlock();
1298        }
1299    }
1300
1301    /**
1302     * Sets each worker's status to terminating. Requires lock to avoid
1303     * conflicts with add/remove.
1304     */
1305    private void stopAllWorkers() {
1306        final ReentrantLock lock = this.workerLock;
1307        lock.lock();
1308        try {
1309            ForkJoinWorkerThread[] ws = workers;
1310            if (ws != null) {
1311                for (int i = 0; i < ws.length; ++i) {
1312                    ForkJoinWorkerThread t = ws[i];
1313                    if (t != null)
1314                        t.shutdownNow();
1315                }
1316            }
1317        } finally {
1318            lock.unlock();
1319        }
1320    }
1321
1322    /**
1323     * Interrupts all unterminated workers.  This is not required for
1324     * sake of internal control, but may help unstick user code during
1325     * shutdown.
1326     */
1327    private void interruptUnterminatedWorkers() {
1328        final ReentrantLock lock = this.workerLock;
1329        lock.lock();
1330        try {
1331            ForkJoinWorkerThread[] ws = workers;
1332            if (ws != null) {
1333                for (int i = 0; i < ws.length; ++i) {
1334                    ForkJoinWorkerThread t = ws[i];
1335                    if (t != null && !t.isTerminated()) {
1336                        try {
1337                            t.interrupt();
1338                        } catch (SecurityException ignore) {
1339                        }
1340                    }
1341                }
1342            }
1343        } finally {
1344            lock.unlock();
1345        }
1346    }
1347
1348
1349    /*
1350     * Nodes for event barrier to manage idle threads.  Queue nodes
1351     * are basic Treiber stack nodes, also used for spare stack.
1352     *
1353     * The event barrier has an event count and a wait queue (actually
1354     * a Treiber stack).  Workers are enabled to look for work when
1355     * the eventCount is incremented. If they fail to find work, they
1356     * may wait for next count. Upon release, threads help others wake
1357     * up.
1358     *
1359     * Synchronization events occur only in enough contexts to
1360     * maintain overall liveness:
1361     *
1362     *   - Submission of a new task to the pool
1363     *   - Resizes or other changes to the workers array
1364     *   - pool termination
1365     *   - A worker pushing a task on an empty queue
1366     *
1367     * The case of pushing a task occurs often enough, and is heavy
1368     * enough compared to simple stack pushes, to require special
1369     * handling: Method signalWork returns without advancing count if
1370     * the queue appears to be empty.  This would ordinarily result in
1371     * races causing some queued waiters not to be woken up. To avoid
1372     * this, the first worker enqueued in method sync (see
1373     * syncIsReleasable) rescans for tasks after being enqueued, and
1374     * helps signal if any are found. This works well because the
1375     * worker has nothing better to do, and so might as well help
1376     * alleviate the overhead and contention on the threads actually
1377     * doing work.  Also, since event counts increments on task
1378     * availability exist to maintain liveness (rather than to force
1379     * refreshes etc), it is OK for callers to exit early if
1380     * contending with another signaller.
1381     */
1382    static final class WaitQueueNode {
1383        WaitQueueNode next; // only written before enqueued
1384        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1385        final long count; // unused for spare stack
1386
1387        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1388            count = c;
1389            thread = w;
1390        }
1391
1392        /**
1393         * Wakes up waiter, returning false if known to already
1394         */
1395        boolean signal() {
1396            ForkJoinWorkerThread t = thread;
1397            if (t == null)
1398                return false;
1399            thread = null;
1400            LockSupport.unpark(t);
1401            return true;
1402        }
1403
1404        /**
1405         * Awaits release on sync.
1406         */
1407        void awaitSyncRelease(ForkJoinPool p) {
1408            while (thread != null && !p.syncIsReleasable(this))
1409                LockSupport.park(this);
1410        }
1411
1412        /**
1413         * Awaits resumption as spare.
1414         */
1415        void awaitSpareRelease() {
1416            while (thread != null) {
1417                if (!Thread.interrupted())
1418                    LockSupport.park(this);
1419            }
1420        }
1421    }
1422
1423    /**
1424     * Ensures that no thread is waiting for count to advance from the
1425     * current value of eventCount read on entry to this method, by
1426     * releasing waiting threads if necessary.
1427     *
1428     * @return the count
1429     */
1430    final long ensureSync() {
1431        long c = eventCount;
1432        WaitQueueNode q;
1433        while ((q = syncStack) != null && q.count < c) {
1434            if (casBarrierStack(q, null)) {
1435                do {
1436                    q.signal();
1437                } while ((q = q.next) != null);
1438                break;
1439            }
1440        }
1441        return c;
1442    }
1443
1444    /**
1445     * Increments event count and releases waiting threads.
1446     */
1447    private void signalIdleWorkers() {
1448        long c;
1449        do {} while (!casEventCount(c = eventCount, c+1));
1450        ensureSync();
1451    }
1452
1453    /**
1454     * Signals threads waiting to poll a task. Because method sync
1455     * rechecks availability, it is OK to only proceed if queue
1456     * appears to be non-empty, and OK to skip under contention to
1457     * increment count (since some other thread succeeded).
1458     */
1459    final void signalWork() {
1460        long c;
1461        WaitQueueNode q;
1462        if (syncStack != null &&
1463            casEventCount(c = eventCount, c+1) &&
1464            (((q = syncStack) != null && q.count <= c) &&
1465             (!casBarrierStack(q, q.next) || !q.signal())))
1466            ensureSync();
1467    }
1468
1469    /**
1470     * Waits until event count advances from last value held by
1471     * caller, or if excess threads, caller is resumed as spare, or
1472     * caller or pool is terminating. Updates caller's event on exit.
1473     *
1474     * @param w the calling worker thread
1475     */
1476    final void sync(ForkJoinWorkerThread w) {
1477        updateStealCount(w); // Transfer w's count while it is idle
1478
1479        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1480            long prev = w.lastEventCount;
1481            WaitQueueNode node = null;
1482            WaitQueueNode h;
1483            while (eventCount == prev &&
1484                   ((h = syncStack) == null || h.count == prev)) {
1485                if (node == null)
1486                    node = new WaitQueueNode(prev, w);
1487                if (casBarrierStack(node.next = h, node)) {
1488                    node.awaitSyncRelease(this);
1489                    break;
1490                }
1491            }
1492            long ec = ensureSync();
1493            if (ec != prev) {
1494                w.lastEventCount = ec;
1495                break;
1496            }
1497        }
1498    }
1499
1500    /**
1501     * Returns {@code true} if worker waiting on sync can proceed:
1502     *  - on signal (thread == null)
1503     *  - on event count advance (winning race to notify vs signaller)
1504     *  - on interrupt
1505     *  - if the first queued node, we find work available
1506     * If node was not signalled and event count not advanced on exit,
1507     * then we also help advance event count.
1508     *
1509     * @return {@code true} if node can be released
1510     */
1511    final boolean syncIsReleasable(WaitQueueNode node) {
1512        long prev = node.count;
1513        if (!Thread.interrupted() && node.thread != null &&
1514            (node.next != null ||
1515             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1516            eventCount == prev)
1517            return false;
1518        if (node.thread != null) {
1519            node.thread = null;
1520            long ec = eventCount;
1521            if (prev <= ec) // help signal
1522                casEventCount(ec, ec+1);
1523        }
1524        return true;
1525    }
1526
1527    /**
1528     * Returns {@code true} if a new sync event occurred since last
1529     * call to sync or this method, if so, updating caller's count.
1530     */
1531    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1532        long lc = w.lastEventCount;
1533        long ec = ensureSync();
1534        if (ec == lc)
1535            return false;
1536        w.lastEventCount = ec;
1537        return true;
1538    }
1539
1540    //  Parallelism maintenance
1541
1542    /**
1543     * Decrements running count; if too low, adds spare.
1544     *
1545     * Conceptually, all we need to do here is add or resume a
1546     * spare thread when one is about to block (and remove or
1547     * suspend it later when unblocked -- see suspendIfSpare).
1548     * However, implementing this idea requires coping with
1549     * several problems: we have imperfect information about the
1550     * states of threads. Some count updates can and usually do
1551     * lag run state changes, despite arrangements to keep them
1552     * accurate (for example, when possible, updating counts
1553     * before signalling or resuming), especially when running on
1554     * dynamic JVMs that don't optimize the infrequent paths that
1555     * update counts. Generating too many threads can make these
1556     * problems become worse, because excess threads are more
1557     * likely to be context-switched with others, slowing them all
1558     * down, especially if there is no work available, so all are
1559     * busy scanning or idling.  Also, excess spare threads can
1560     * only be suspended or removed when they are idle, not
1561     * immediately when they aren't needed. So adding threads will
1562     * raise parallelism level for longer than necessary.  Also,
1563     * FJ applications often encounter highly transient peaks when
1564     * many threads are blocked joining, but for less time than it
1565     * takes to create or resume spares.
1566     *
1567     * @param joinMe if non-null, return early if done
1568     * @param maintainParallelism if true, try to stay within
1569     * target counts, else create only to avoid starvation
1570     * @return true if joinMe known to be done
1571     */
1572    final boolean preJoin(ForkJoinTask<?> joinMe,
1573                          boolean maintainParallelism) {
1574        maintainParallelism &= maintainsParallelism; // overrride
1575        boolean dec = false;  // true when running count decremented
1576        while (spareStack == null || !tryResumeSpare(dec)) {
1577            int counts = workerCounts;
1578            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1579                // CAS cheat
1580                if (!needSpare(counts, maintainParallelism))
1581                    break;
1582                if (joinMe.status < 0)
1583                    return true;
1584                if (tryAddSpare(counts))
1585                    break;
1586            }
1587        }
1588        return false;
1589    }
1590
1591    /**
1592     * Same idea as preJoin
1593     */
1594    final boolean preBlock(ManagedBlocker blocker,
1595                           boolean maintainParallelism) {
1596        maintainParallelism &= maintainsParallelism;
1597        boolean dec = false;
1598        while (spareStack == null || !tryResumeSpare(dec)) {
1599            int counts = workerCounts;
1600            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1601                if (!needSpare(counts, maintainParallelism))
1602                    break;
1603                if (blocker.isReleasable())
1604                    return true;
1605                if (tryAddSpare(counts))
1606                    break;
1607            }
1608        }
1609        return false;
1610    }
1611
1612    /**
1613     * Returns {@code true} if a spare thread appears to be needed.
1614     * If maintaining parallelism, returns true when the deficit in
1615     * running threads is more than the surplus of total threads, and
1616     * there is apparently some work to do.  This self-limiting rule
1617     * means that the more threads that have already been added, the
1618     * less parallelism we will tolerate before adding another.
1619     *
1620     * @param counts current worker counts
1621     * @param maintainParallelism try to maintain parallelism
1622     */
1623    private boolean needSpare(int counts, boolean maintainParallelism) {
1624        int ps = parallelism;
1625        int rc = runningCountOf(counts);
1626        int tc = totalCountOf(counts);
1627        int runningDeficit = ps - rc;
1628        int totalSurplus = tc - ps;
1629        return (tc < maxPoolSize &&
1630                (rc == 0 || totalSurplus < 0 ||
1631                 (maintainParallelism &&
1632                  runningDeficit > totalSurplus &&
1633                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1634    }
1635
1636    /**
1637     * Adds a spare worker if lock available and no more than the
1638     * expected numbers of threads exist.
1639     *
1640     * @return true if successful
1641     */
1642    private boolean tryAddSpare(int expectedCounts) {
1643        final ReentrantLock lock = this.workerLock;
1644        int expectedRunning = runningCountOf(expectedCounts);
1645        int expectedTotal = totalCountOf(expectedCounts);
1646        boolean success = false;
1647        boolean locked = false;
1648        // confirm counts while locking; CAS after obtaining lock
1649        try {
1650            for (;;) {
1651                int s = workerCounts;
1652                int tc = totalCountOf(s);
1653                int rc = runningCountOf(s);
1654                if (rc > expectedRunning || tc > expectedTotal)
1655                    break;
1656                if (!locked && !(locked = lock.tryLock()))
1657                    break;
1658                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1659                    createAndStartSpare(tc);
1660                    success = true;
1661                    break;
1662                }
1663            }
1664        } finally {
1665            if (locked)
1666                lock.unlock();
1667        }
1668        return success;
1669    }
1670
1671    /**
1672     * Adds the kth spare worker. On entry, pool counts are already
1673     * adjusted to reflect addition.
1674     */
1675    private void createAndStartSpare(int k) {
1676        ForkJoinWorkerThread w = null;
1677        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1678        int len = ws.length;
1679        // Probably, we can place at slot k. If not, find empty slot
1680        if (k < len && ws[k] != null) {
1681            for (k = 0; k < len && ws[k] != null; ++k)
1682                ;
1683        }
1684        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1685            ws[k] = w;
1686            w.start();
1687        }
1688        else
1689            updateWorkerCount(-1); // adjust on failure
1690        signalIdleWorkers();
1691    }
1692
1693    /**
1694     * Suspends calling thread w if there are excess threads.  Called
1695     * only from sync.  Spares are enqueued in a Treiber stack using
1696     * the same WaitQueueNodes as barriers.  They are resumed mainly
1697     * in preJoin, but are also woken on pool events that require all
1698     * threads to check run state.
1699     *
1700     * @param w the caller
1701     */
1702    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1703        WaitQueueNode node = null;
1704        int s;
1705        while (parallelism < runningCountOf(s = workerCounts)) {
1706            if (node == null)
1707                node = new WaitQueueNode(0, w);
1708            if (casWorkerCounts(s, s-1)) { // representation-dependent
1709                // push onto stack
1710                do {} while (!casSpareStack(node.next = spareStack, node));
1711                // block until released by resumeSpare
1712                node.awaitSpareRelease();
1713                return true;
1714            }
1715        }
1716        return false;
1717    }
1718
1719    /**
1720     * Tries to pop and resume a spare thread.
1721     *
1722     * @param updateCount if true, increment running count on success
1723     * @return true if successful
1724     */
1725    private boolean tryResumeSpare(boolean updateCount) {
1726        WaitQueueNode q;
1727        while ((q = spareStack) != null) {
1728            if (casSpareStack(q, q.next)) {
1729                if (updateCount)
1730                    updateRunningCount(1);
1731                q.signal();
1732                return true;
1733            }
1734        }
1735        return false;
1736    }
1737
1738    /**
1739     * Pops and resumes all spare threads. Same idea as ensureSync.
1740     *
1741     * @return true if any spares released
1742     */
1743    private boolean resumeAllSpares() {
1744        WaitQueueNode q;
1745        while ( (q = spareStack) != null) {
1746            if (casSpareStack(q, null)) {
1747                do {
1748                    updateRunningCount(1);
1749                    q.signal();
1750                } while ((q = q.next) != null);
1751                return true;
1752            }
1753        }
1754        return false;
1755    }
1756
1757    /**
1758     * Pops and shuts down excessive spare threads. Call only while
1759     * holding lock. This is not guaranteed to eliminate all excess
1760     * threads, only those suspended as spares, which are the ones
1761     * unlikely to be needed in the future.
1762     */
1763    private void trimSpares() {
1764        int surplus = totalCountOf(workerCounts) - parallelism;
1765        WaitQueueNode q;
1766        while (surplus > 0 && (q = spareStack) != null) {
1767            if (casSpareStack(q, null)) {
1768                do {
1769                    updateRunningCount(1);
1770                    ForkJoinWorkerThread w = q.thread;
1771                    if (w != null && surplus > 0 &&
1772                        runningCountOf(workerCounts) > 0 && w.shutdown())
1773                        --surplus;
1774                    q.signal();
1775                } while ((q = q.next) != null);
1776            }
1777        }
1778    }
1779
1965      /**
1966       * Interface for extending managed parallelism for tasks running
1967       * in {@link ForkJoinPool}s.
1968       *
1969 <     * <p>A {@code ManagedBlocker} provides two methods.
1970 <     * Method {@code isReleasable} must return {@code true} if
1971 <     * blocking is not necessary. Method {@code block} blocks the
1972 <     * current thread if necessary (perhaps internally invoking
1973 <     * {@code isReleasable} before actually blocking).
1969 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1970 >     * {@code isReleasable} must return {@code true} if blocking is
1971 >     * not necessary. Method {@code block} blocks the current thread
1972 >     * if necessary (perhaps internally invoking {@code isReleasable}
1973 >     * before actually blocking). These actions are performed by any
1974 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1975 >     * unusual methods in this API accommodate synchronizers that may,
1976 >     * but don't usually, block for long periods. Similarly, they
1977 >     * allow more efficient internal handling of cases in which
1978 >     * additional workers may be, but usually are not, needed to
1979 >     * ensure sufficient parallelism.  Toward this end,
1980 >     * implementations of method {@code isReleasable} must be amenable
1981 >     * to repeated invocation.
1982       *
1983       * <p>For example, here is a ManagedBlocker based on a
1984       * ReentrantLock:
# Line 1803 | Line 1996 | public class ForkJoinPool extends Abstra
1996       *     return hasLock || (hasLock = lock.tryLock());
1997       *   }
1998       * }}</pre>
1999 +     *
2000 +     * <p>Here is a class that possibly blocks waiting for an
2001 +     * item on a given queue:
2002 +     *  <pre> {@code
2003 +     * class QueueTaker<E> implements ManagedBlocker {
2004 +     *   final BlockingQueue<E> queue;
2005 +     *   volatile E item = null;
2006 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2007 +     *   public boolean block() throws InterruptedException {
2008 +     *     if (item == null)
2009 +     *       item = queue.take();
2010 +     *     return true;
2011 +     *   }
2012 +     *   public boolean isReleasable() {
2013 +     *     return item != null || (item = queue.poll()) != null;
2014 +     *   }
2015 +     *   public E getItem() { // call after pool.managedBlock completes
2016 +     *     return item;
2017 +     *   }
2018 +     * }}</pre>
2019       */
2020      public static interface ManagedBlocker {
2021          /**
# Line 1826 | Line 2039 | public class ForkJoinPool extends Abstra
2039       * Blocks in accord with the given blocker.  If the current thread
2040       * is a {@link ForkJoinWorkerThread}, this method possibly
2041       * arranges for a spare thread to be activated if necessary to
2042 <     * ensure parallelism while the current thread is blocked.
1830 <     *
1831 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1832 <     * supports it ({@link #getMaintainsParallelism}), this method
1833 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1834 <     * it activates a thread only if necessary to avoid complete
1835 <     * starvation. This option may be preferable when blockages use
1836 <     * timeouts, or are almost always brief.
2042 >     * ensure sufficient parallelism while the current thread is blocked.
2043       *
2044       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2045       * behaviorally equivalent to
# Line 1847 | Line 2053 | public class ForkJoinPool extends Abstra
2053       * first be expanded to ensure parallelism, and later adjusted.
2054       *
2055       * @param blocker the blocker
1850     * @param maintainParallelism if {@code true} and supported by
1851     * this pool, attempt to maintain the pool's nominal parallelism;
1852     * otherwise activate a thread only if necessary to avoid
1853     * complete starvation.
2056       * @throws InterruptedException if blocker.block did so
2057       */
2058 <    public static void managedBlock(ManagedBlocker blocker,
1857 <                                    boolean maintainParallelism)
2058 >    public static void managedBlock(ManagedBlocker blocker)
2059          throws InterruptedException {
2060          Thread t = Thread.currentThread();
2061 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
2062 <                             ((ForkJoinWorkerThread) t).pool : null);
2063 <        if (!blocker.isReleasable()) {
2064 <            try {
2065 <                if (pool == null ||
2066 <                    !pool.preBlock(blocker, maintainParallelism))
1866 <                    awaitBlocker(blocker);
1867 <            } finally {
1868 <                if (pool != null)
1869 <                    pool.updateRunningCount(1);
1870 <            }
2061 >        if (t instanceof ForkJoinWorkerThread) {
2062 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2063 >            w.pool.awaitBlocker(blocker);
2064 >        }
2065 >        else {
2066 >            do {} while (!blocker.isReleasable() && !blocker.block());
2067          }
1872    }
1873
1874    private static void awaitBlocker(ManagedBlocker blocker)
1875        throws InterruptedException {
1876        do {} while (!blocker.isReleasable() && !blocker.block());
2068      }
2069  
2070      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1889 | Line 2080 | public class ForkJoinPool extends Abstra
2080      }
2081  
2082      // Unsafe mechanics
2083 <
2084 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2085 <    private static final long eventCountOffset =
2086 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2087 <    private static final long workerCountsOffset =
2088 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2089 <    private static final long runControlOffset =
2090 <        objectFieldOffset("runControl", ForkJoinPool.class);
2091 <    private static final long syncStackOffset =
2092 <        objectFieldOffset("syncStack",ForkJoinPool.class);
2093 <    private static final long spareStackOffset =
2094 <        objectFieldOffset("spareStack", ForkJoinPool.class);
2095 <
2096 <    private boolean casEventCount(long cmp, long val) {
2097 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
2098 <    }
2099 <    private boolean casWorkerCounts(int cmp, int val) {
1909 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1910 <    }
1911 <    private boolean casRunControl(int cmp, int val) {
1912 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1913 <    }
1914 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1915 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1916 <    }
1917 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1918 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1919 <    }
1920 <
1921 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2083 >    private static final sun.misc.Unsafe UNSAFE;
2084 >    private static final long ctlOffset;
2085 >    private static final long stealCountOffset;
2086 >    private static final long blockedCountOffset;
2087 >    private static final long quiescerCountOffset;
2088 >    private static final long scanGuardOffset;
2089 >    private static final long nextWorkerNumberOffset;
2090 >    private static final long ABASE;
2091 >    private static final int ASHIFT;
2092 >
2093 >    static {
2094 >        poolNumberGenerator = new AtomicInteger();
2095 >        workerSeedGenerator = new Random();
2096 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2097 >        defaultForkJoinWorkerThreadFactory =
2098 >            new DefaultForkJoinWorkerThreadFactory();
2099 >        int s;
2100          try {
2101 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2102 <        } catch (NoSuchFieldException e) {
2103 <            // Convert Exception to corresponding Error
2104 <            NoSuchFieldError error = new NoSuchFieldError(field);
2105 <            error.initCause(e);
2106 <            throw error;
2107 <        }
2101 >            UNSAFE = getUnsafe();
2102 >            Class k = ForkJoinPool.class;
2103 >            ctlOffset = UNSAFE.objectFieldOffset
2104 >                (k.getDeclaredField("ctl"));
2105 >            stealCountOffset = UNSAFE.objectFieldOffset
2106 >                (k.getDeclaredField("stealCount"));
2107 >            blockedCountOffset = UNSAFE.objectFieldOffset
2108 >                (k.getDeclaredField("blockedCount"));
2109 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2110 >                (k.getDeclaredField("quiescerCount"));
2111 >            scanGuardOffset = UNSAFE.objectFieldOffset
2112 >                (k.getDeclaredField("scanGuard"));
2113 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2114 >                (k.getDeclaredField("nextWorkerNumber"));
2115 >            Class a = ForkJoinTask[].class;
2116 >            ABASE = UNSAFE.arrayBaseOffset(a);
2117 >            s = UNSAFE.arrayIndexScale(a);
2118 >        } catch (Exception e) {
2119 >            throw new Error(e);
2120 >        }
2121 >        if ((s & (s-1)) != 0)
2122 >            throw new Error("data type scale not a power of two");
2123 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2124      }
2125  
2126      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines