ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.46 by dl, Tue Aug 4 14:19:00 2009 UTC vs.
Revision 1.55 by dl, Sun Apr 18 13:59:57 2010 UTC

# Line 13 | Line 13 | import java.util.Arrays;
13   import java.util.Collection;
14   import java.util.Collections;
15   import java.util.List;
16 import java.util.concurrent.locks.Condition;
16   import java.util.concurrent.locks.LockSupport;
17   import java.util.concurrent.locks.ReentrantLock;
18   import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.atomic.AtomicLong;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24   * from non-{@code ForkJoinTask}s, as well as management and
25 < * monitoring operations.  
25 > * monitoring operations.
26   *
27   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28   * ExecutorService} mainly by virtue of employing
# Line 53 | Line 52 | import java.util.concurrent.atomic.Atomi
52   * ({@link #setParallelism}). The total number of threads may be
53   * limited using method {@link #setMaximumPoolSize}, in which case it
54   * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks.
55 > * the lack of available threads to process new tasks. When the pool
56 > * is executing tasks, these and other configuration setting methods
57 > * may only gradually affect actual pool sizes. It is normally best
58 > * practice to invoke these methods only when the pool is known to be
59 > * quiescent.
60   *
61   * <p>In addition to execution and lifecycle control methods, this
62   * class provides status check methods (for example
# Line 82 | Line 85 | import java.util.concurrent.atomic.Atomi
85   *
86   * <p><b>Implementation notes</b>: This implementation restricts the
87   * maximum number of running threads to 32767. Attempts to create
88 < * pools with greater than the maximum result in
88 > * pools with greater than the maximum number result in
89   * {@code IllegalArgumentException}.
90   *
91 + * <p>This implementation rejects submitted tasks (that is, by throwing
92 + * {@link RejectedExecutionException}) only when the pool is shut down.
93 + *
94   * @since 1.7
95   * @author Doug Lea
96   */
97   public class ForkJoinPool extends AbstractExecutorService {
98  
99      /*
100 <     * See the extended comments interspersed below for design,
101 <     * rationale, and walkthroughs.
100 >     * Implementation Overview
101 >     *
102 >     * This class provides the central bookkeeping and control for a
103 >     * set of worker threads: Submissions from non-FJ threads enter
104 >     * into a submission queue. Workers take these tasks and typically
105 >     * split them into subtasks that may be stolen by other workers.
106 >     * The main work-stealing mechanics implemented in class
107 >     * ForkJoinWorkerThread give first priority to processing tasks
108 >     * from their own queues (LIFO or FIFO, depending on mode), then
109 >     * to randomized FIFO steals of tasks in other worker queues, and
110 >     * lastly to new submissions. These mechanics do not consider
111 >     * affinities, loads, cache localities, etc, so rarely provide the
112 >     * best possible performance on a given machine, but portably
113 >     * provide good throughput by averaging over these factors.
114 >     * (Further, even if we did try to use such information, we do not
115 >     * usually have a basis for exploiting it. For example, some sets
116 >     * of tasks profit from cache affinities, but others are harmed by
117 >     * cache pollution effects.)
118 >     *
119 >     * The main throughput advantages of work-stealing stem from
120 >     * decentralized control -- workers mostly steal tasks from each
121 >     * other. We do not want to negate this by creating bottlenecks
122 >     * implementing the management responsibilities of this class. So
123 >     * we use a collection of techniques that avoid, reduce, or cope
124 >     * well with contention. These entail several instances of
125 >     * bit-packing into CASable fields to maintain only the minimally
126 >     * required atomicity. To enable such packing, we restrict maximum
127 >     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
128 >     * bit field), which is far in excess of normal operating range.
129 >     * Even though updates to some of these bookkeeping fields do
130 >     * sometimes contend with each other, they don't normally
131 >     * cache-contend with updates to others enough to warrant memory
132 >     * padding or isolation. So they are all held as fields of
133 >     * ForkJoinPool objects.  The main capabilities are as follows:
134 >     *
135 >     * 1. Creating and removing workers. Workers are recorded in the
136 >     * "workers" array. This is an array as opposed to some other data
137 >     * structure to support index-based random steals by workers.
138 >     * Updates to the array recording new workers and unrecording
139 >     * terminated ones are protected from each other by a lock
140 >     * (workerLock) but the array is otherwise concurrently readable,
141 >     * and accessed directly by workers. To simplify index-based
142 >     * operations, the array size is always a power of two, and all
143 >     * readers must tolerate null slots. Currently, all but the first
144 >     * worker thread creation is on-demand, triggered by task
145 >     * submissions, replacement of terminated workers, and/or
146 >     * compensation for blocked workers. However, all other support
147 >     * code is set up to work with other policies.
148 >     *
149 >     * 2. Bookkeeping for dynamically adding and removing workers. We
150 >     * maintain a given level of parallelism (or, if
151 >     * maintainsParallelism is false, at least avoid starvation). When
152 >     * some workers are known to be blocked (on joins or via
153 >     * ManagedBlocker), we may create or resume others to take their
154 >     * place until they unblock (see below). Implementing this
155 >     * requires counts of the number of "running" threads (i.e., those
156 >     * that are neither blocked nor artifically suspended) as well as
157 >     * the total number.  These two values are packed into one field,
158 >     * "workerCounts" because we need accurate snapshots when deciding
159 >     * to create, resume or suspend.  To support these decisions,
160 >     * updates must be prospective (not retrospective).  For example,
161 >     * the running count is decremented before blocking by a thread
162 >     * about to block, but incremented by the thread about to unblock
163 >     * it. (In a few cases, these prospective updates may need to be
164 >     * rolled back, for example when deciding to create a new worker
165 >     * but the thread factory fails or returns null. In these cases,
166 >     * we are no worse off wrt other decisions than we would be
167 >     * otherwise.)  Updates to the workerCounts field sometimes
168 >     * transiently encounter a fair amount of contention when join
169 >     * dependencies are such that many threads block or unblock at
170 >     * about the same time. We alleviate this by sometimes bundling
171 >     * updates (for example blocking one thread on join and resuming a
172 >     * spare cancel each other out), and in most other cases
173 >     * performing an alternative action (like releasing waiters and
174 >     * finding spares; see below) as a more productive form of
175 >     * backoff.
176 >     *
177 >     * 3. Maintaining global run state. The run state of the pool
178 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
179 >     * those in other Executor implementations, as well as a count of
180 >     * "active" workers -- those that are, or soon will be, or
181 >     * recently were executing tasks. The runLevel and active count
182 >     * are packed together in order to correctly trigger shutdown and
183 >     * termination. Without care, active counts can be subject to very
184 >     * high contention.  We substantially reduce this contention by
185 >     * relaxing update rules.  A worker must claim active status
186 >     * prospectively, by activating if it sees that a submitted or
187 >     * stealable task exists (it may find after activating that the
188 >     * task no longer exists). It stays active while processing this
189 >     * task (if it exists) and any other local subtasks it produces,
190 >     * until it cannot find any other tasks. It then tries
191 >     * inactivating (see method preStep), but upon update contention
192 >     * instead scans for more tasks, later retrying inactivation if it
193 >     * doesn't find any.
194 >     *
195 >     * 4. Managing idle workers waiting for tasks. We cannot let
196 >     * workers spin indefinitely scanning for tasks when none are
197 >     * available. On the other hand, we must quickly prod them into
198 >     * action when new tasks are submitted or generated.  We
199 >     * park/unpark these idle workers using an event-count scheme.
200 >     * Field eventCount is incremented upon events that may enable
201 >     * workers that previously could not find a task to now find one:
202 >     * Submission of a new task to the pool, or another worker pushing
203 >     * a task onto a previously empty queue.  (We also use this
204 >     * mechanism for termination and reconfiguration actions that
205 >     * require wakeups of idle workers).  Each worker maintains its
206 >     * last known event count, and blocks when a scan for work did not
207 >     * find a task AND its lastEventCount matches the current
208 >     * eventCount. Waiting idle workers are recorded in a variant of
209 >     * Treiber stack headed by field eventWaiters which, when nonzero,
210 >     * encodes the thread index and count awaited for by the worker
211 >     * thread most recently calling eventSync. This thread in turn has
212 >     * a record (field nextEventWaiter) for the next waiting worker.
213 >     * In addition to allowing simpler decisions about need for
214 >     * wakeup, the event count bits in eventWaiters serve the role of
215 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
216 >     * in task diffusion, workers not otherwise occupied may invoke
217 >     * method releaseWaiters, that removes and signals (unparks)
218 >     * workers not waiting on current count. To minimize task
219 >     * production stalls associate with signalling, any worker pushing
220 >     * a task on an empty queue invokes the weaker method signalWork,
221 >     * that only releases idle workers until it detects interference
222 >     * by other threads trying to release, and lets them take
223 >     * over. The net effect is a tree-like diffusion of signals, where
224 >     * released threads and possibly others) help with unparks.  To
225 >     * further reduce contention effects a bit, failed CASes to
226 >     * increment field eventCount are tolerated without retries.
227 >     * Conceptually they are merged into the same event, which is OK
228 >     * when their only purpose is to enable workers to scan for work.
229 >     *
230 >     * 5. Managing suspension of extra workers. When a worker is about
231 >     * to block waiting for a join (or via ManagedBlockers), we may
232 >     * create a new thread to maintain parallelism level, or at least
233 >     * avoid starvation (see below). Usually, extra threads are needed
234 >     * for only very short periods, yet join dependencies are such
235 >     * that we sometimes need them in bursts. Rather than create new
236 >     * threads each time this happens, we suspend no-longer-needed
237 >     * extra ones as "spares". For most purposes, we don't distinguish
238 >     * "extra" spare threads from normal "core" threads: On each call
239 >     * to preStep (the only point at which we can do this) a worker
240 >     * checks to see if there are now too many running workers, and if
241 >     * so, suspends itself.  Methods preJoin and doBlock look for
242 >     * suspended threads to resume before considering creating a new
243 >     * replacement. We don't need a special data structure to maintain
244 >     * spares; simply scanning the workers array looking for
245 >     * worker.isSuspended() is fine because the calling thread is
246 >     * otherwise not doing anything useful anyway; we are at least as
247 >     * happy if after locating a spare, the caller doesn't actually
248 >     * block because the join is ready before we try to adjust and
249 >     * compensate.  Note that this is intrinsically racy.  One thread
250 >     * may become a spare at about the same time as another is
251 >     * needlessly being created. We counteract this and related slop
252 >     * in part by requiring resumed spares to immediately recheck (in
253 >     * preStep) to see whether they they should re-suspend. The only
254 >     * effective difference between "extra" and "core" threads is that
255 >     * we allow the "extra" ones to time out and die if they are not
256 >     * resumed within a keep-alive interval of a few seconds. This is
257 >     * implemented mainly within ForkJoinWorkerThread, but requires
258 >     * some coordination (isTrimmed() -- meaning killed while
259 >     * suspended) to correctly maintain pool counts.
260 >     *
261 >     * 6. Deciding when to create new workers. The main dynamic
262 >     * control in this class is deciding when to create extra threads,
263 >     * in methods preJoin and doBlock. We always need to create one
264 >     * when the number of running threads becomes zero. But because
265 >     * blocked joins are typically dependent, we don't necessarily
266 >     * need or want one-to-one replacement. Using a one-to-one
267 >     * compensation rule often leads to enough useless overhead
268 >     * creating, suspending, resuming, and/or killing threads to
269 >     * signficantly degrade throughput.  We use a rule reflecting the
270 >     * idea that, the more spare threads you already have, the more
271 >     * evidence you need to create another one; where "evidence" is
272 >     * expressed as the current deficit -- target minus running
273 >     * threads. To reduce flickering and drift around target values,
274 >     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
275 >     * (where dc is deficit, sc is number of spare threads and pc is
276 >     * target parallelism.)  This effectively reduces churn at the
277 >     * price of systematically undershooting target parallelism when
278 >     * many threads are blocked.  However, biasing toward undeshooting
279 >     * partially compensates for the above mechanics to suspend extra
280 >     * threads, that normally lead to overshoot because we can only
281 >     * suspend workers in-between top-level actions. It also better
282 >     * copes with the fact that some of the methods in this class tend
283 >     * to never become compiled (but are interpreted), so some
284 >     * components of the entire set of controls might execute many
285 >     * times faster than others. And similarly for cases where the
286 >     * apparent lack of work is just due to GC stalls and other
287 >     * transient system activity.
288 >     *
289 >     * 7. Maintaining other configuration parameters and monitoring
290 >     * statistics. Updates to fields controlling parallelism level,
291 >     * max size, etc can only meaningfully take effect for individual
292 >     * threads upon their next top-level actions; i.e., between
293 >     * stealing/running tasks/submission, which are separated by calls
294 >     * to preStep.  Memory ordering for these (assumed infrequent)
295 >     * reconfiguration calls is ensured by using reads and writes to
296 >     * volatile field workerCounts (that must be read in preStep anyway)
297 >     * as "fences" -- user-level reads are preceded by reads of
298 >     * workCounts, and writes are followed by no-op CAS to
299 >     * workerCounts. The values reported by other management and
300 >     * monitoring methods are either computed on demand, or are kept
301 >     * in fields that are only updated when threads are otherwise
302 >     * idle.
303 >     *
304 >     * Beware that there is a lot of representation-level coupling
305 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
306 >     * ForkJoinTask.  For example, direct access to "workers" array by
307 >     * workers, and direct access to ForkJoinTask.status by both
308 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
309 >     * trying to reduce this, since any associated future changes in
310 >     * representations will need to be accompanied by algorithmic
311 >     * changes anyway.
312 >     *
313 >     * Style notes: There are lots of inline assignments (of form
314 >     * "while ((local = field) != 0)") which are usually the simplest
315 >     * way to ensure read orderings. Also several occurrences of the
316 >     * unusual "do {} while(!cas...)" which is the simplest way to
317 >     * force an update of a CAS'ed variable. There are also a few
318 >     * other coding oddities that help some methods perform reasonably
319 >     * even when interpreted (not compiled).
320 >     *
321 >     * The order of declarations in this file is: (1) statics (2)
322 >     * fields (along with constants used when unpacking some of them)
323 >     * (3) internal control methods (4) callbacks and other support
324 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
325 >     * methods (plus a few little helpers).
326       */
327  
98    /** Mask for packing and unpacking shorts */
99    private static final int  shortMask = 0xffff;
100
101    /** Max pool size -- must be a power of two minus 1 */
102    private static final int MAX_THREADS =  0x7FFF;
103
328      /**
329       * Factory for creating new {@link ForkJoinWorkerThread}s.
330       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 112 | Line 336 | public class ForkJoinPool extends Abstra
336           * Returns a new worker thread operating in the given pool.
337           *
338           * @param pool the pool this thread works in
339 <         * @throws NullPointerException if pool is null
339 >         * @throws NullPointerException if the pool is null
340           */
341          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
342      }
# Line 124 | Line 348 | public class ForkJoinPool extends Abstra
348      static class  DefaultForkJoinWorkerThreadFactory
349          implements ForkJoinWorkerThreadFactory {
350          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
351 <            try {
128 <                return new ForkJoinWorkerThread(pool);
129 <            } catch (OutOfMemoryError oom)  {
130 <                return null;
131 <            }
351 >            return new ForkJoinWorkerThread(pool);
352          }
353      }
354  
# Line 164 | Line 384 | public class ForkJoinPool extends Abstra
384          new AtomicInteger();
385  
386      /**
387 <     * Array holding all worker threads in the pool. Initialized upon
388 <     * first use. Array size must be a power of two.  Updates and
389 <     * replacements are protected by workerLock, but it is always kept
390 <     * in a consistent enough state to be randomly accessed without
391 <     * locking by workers performing work-stealing.
387 >     * Absolute bound for parallelism level. Twice this number must
388 >     * fit into a 16bit field to enable word-packing for some counts.
389 >     */
390 >    private static final int MAX_THREADS = 0x7fff;
391 >
392 >    /**
393 >     * Array holding all worker threads in the pool.  Array size must
394 >     * be a power of two.  Updates and replacements are protected by
395 >     * workerLock, but the array is always kept in a consistent enough
396 >     * state to be randomly accessed without locking by workers
397 >     * performing work-stealing, as well as other traversal-based
398 >     * methods in this class. All readers must tolerate that some
399 >     * array slots may be null.
400       */
401      volatile ForkJoinWorkerThread[] workers;
402  
403      /**
404 <     * Lock protecting access to workers.
404 >     * Queue for external submissions.
405       */
406 <    private final ReentrantLock workerLock;
406 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
407  
408      /**
409 <     * Condition for awaitTermination.
409 >     * Lock protecting updates to workers array.
410       */
411 <    private final Condition termination;
411 >    private final ReentrantLock workerLock;
412  
413      /**
414 <     * The uncaught exception handler used when any worker
187 <     * abruptly terminates
414 >     * Latch released upon termination.
415       */
416 <    private Thread.UncaughtExceptionHandler ueh;
416 >    private final CountDownLatch terminationLatch;
417  
418      /**
419       * Creation factory for worker threads.
# Line 194 | Line 421 | public class ForkJoinPool extends Abstra
421      private final ForkJoinWorkerThreadFactory factory;
422  
423      /**
424 <     * Head of stack of threads that were created to maintain
425 <     * parallelism when other threads blocked, but have since
199 <     * suspended when the parallelism level rose.
424 >     * Sum of per-thread steal counts, updated only when threads are
425 >     * idle or terminating.
426       */
427 <    private volatile WaitQueueNode spareStack;
427 >    private volatile long stealCount;
428  
429      /**
430 <     * Sum of per-thread steal counts, updated only when threads are
431 <     * idle or terminating.
430 >     * Encoded record of top of treiber stack of threads waiting for
431 >     * events. The top 32 bits contain the count being waited for. The
432 >     * bottom word contains one plus the pool index of waiting worker
433 >     * thread.
434       */
435 <    private final AtomicLong stealCount;
435 >    private volatile long eventWaiters;
436 >
437 >    private static final int  EVENT_COUNT_SHIFT = 32;
438 >    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
439  
440      /**
441 <     * Queue for external submissions.
441 >     * A counter for events that may wake up worker threads:
442 >     *   - Submission of a new task to the pool
443 >     *   - A worker pushing a task on an empty queue
444 >     *   - termination and reconfiguration
445       */
446 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
446 >    private volatile int eventCount;
447 >
448 >    /**
449 >     * Lifecycle control. The low word contains the number of workers
450 >     * that are (probably) executing tasks. This value is atomically
451 >     * incremented before a worker gets a task to run, and decremented
452 >     * when worker has no tasks and cannot find any.  Bits 16-18
453 >     * contain runLevel value. When all are zero, the pool is
454 >     * running. Level transitions are monotonic (running -> shutdown
455 >     * -> terminating -> terminated) so each transition adds a bit.
456 >     * These are bundled together to ensure consistent read for
457 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
458 >     * and active threads is zero).
459 >     */
460 >    private volatile int runState;
461 >
462 >    // Note: The order among run level values matters.
463 >    private static final int RUNLEVEL_SHIFT     = 16;
464 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
465 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
466 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
467 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
468 >    private static final int ONE_ACTIVE         = 1; // active update delta
469  
470      /**
471 <     * Head of Treiber stack for barrier sync. See below for explanation.
471 >     * Holds number of total (i.e., created and not yet terminated)
472 >     * and running (i.e., not blocked on joins or other managed sync)
473 >     * threads, packed together to ensure consistent snapshot when
474 >     * making decisions about creating and suspending spare
475 >     * threads. Updated only by CAS. Note that adding a new worker
476 >     * requires incrementing both counts, since workers start off in
477 >     * running state.  This field is also used for memory-fencing
478 >     * configuration parameters.
479 >     */
480 >    private volatile int workerCounts;
481 >
482 >    private static final int TOTAL_COUNT_SHIFT  = 16;
483 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
484 >    private static final int ONE_RUNNING        = 1;
485 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
486 >
487 >    /*
488 >     * Fields parallelism. maxPoolSize, locallyFifo,
489 >     * maintainsParallelism, and ueh are non-volatile, but external
490 >     * reads/writes use workerCount fences to ensure visability.
491       */
217    private volatile WaitQueueNode syncStack;
492  
493      /**
494 <     * The count for event barrier
494 >     * The target parallelism level.
495       */
496 <    private volatile long eventCount;
496 >    private int parallelism;
497  
498      /**
499 <     * Pool number, just for assigning useful names to worker threads
499 >     * The maximum allowed pool size.
500       */
501 <    private final int poolNumber;
501 >    private int maxPoolSize;
502  
503      /**
504 <     * The maximum allowed pool size
504 >     * True if use local fifo, not default lifo, for local polling
505 >     * Replicated by ForkJoinWorkerThreads
506       */
507 <    private volatile int maxPoolSize;
507 >    private boolean locallyFifo;
508  
509      /**
510 <     * The desired parallelism level, updated only under workerLock.
510 >     * Controls whether to add spares to maintain parallelism
511       */
512 <    private volatile int parallelism;
512 >    private boolean maintainsParallelism;
513  
514      /**
515 <     * True if use local fifo, not default lifo, for local polling
515 >     * The uncaught exception handler used when any worker
516 >     * abruptly terminates
517       */
518 <    private volatile boolean locallyFifo;
518 >    private Thread.UncaughtExceptionHandler ueh;
519  
520      /**
521 <     * Holds number of total (i.e., created and not yet terminated)
246 <     * and running (i.e., not blocked on joins or other managed sync)
247 <     * threads, packed into one int to ensure consistent snapshot when
248 <     * making decisions about creating and suspending spare
249 <     * threads. Updated only by CAS.  Note: CASes in
250 <     * updateRunningCount and preJoin assume that running active count
251 <     * is in low word, so need to be modified if this changes.
521 >     * Pool number, just for assigning useful names to worker threads
522       */
523 <    private volatile int workerCounts;
523 >    private final int poolNumber;
524  
525 <    private static int totalCountOf(int s)           { return s >>> 16;  }
256 <    private static int runningCountOf(int s)         { return s & shortMask; }
257 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
525 >    // utilities for updating fields
526  
527      /**
528 <     * Adds delta (which may be negative) to running count.  This must
261 <     * be called before (with negative arg) and after (with positive)
262 <     * any managed synchronization (i.e., mainly, joins).
528 >     * Adds delta to running count.  Used mainly by ForkJoinTask.
529       *
530       * @param delta the number to add
531       */
532      final void updateRunningCount(int delta) {
533 <        int s;
534 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
533 >        int wc;
534 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535 >                                               wc = workerCounts,
536 >                                               wc + delta));
537      }
538  
539      /**
540 <     * Adds delta (which may be negative) to both total and running
541 <     * count.  This must be called upon creation and termination of
274 <     * worker threads.
275 <     *
276 <     * @param delta the number to add
540 >     * Write fence for user modifications of pool parameters
541 >     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
542       */
543 <    private void updateWorkerCount(int delta) {
544 <        int d = delta + (delta << 16); // add to both lo and hi parts
545 <        int s;
546 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
543 >    private void workerCountWriteFence() {
544 >        int wc;
545 >        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 >                                 wc = workerCounts, wc);
547      }
548  
549      /**
550 <     * Lifecycle control. High word contains runState, low word
551 <     * contains the number of workers that are (probably) executing
552 <     * tasks. This value is atomically incremented before a worker
553 <     * gets a task to run, and decremented when worker has no tasks
554 <     * and cannot find any. These two fields are bundled together to
555 <     * support correct termination triggering.  Note: activeCount
291 <     * CAS'es cheat by assuming active count is in low word, so need
292 <     * to be modified if this changes
293 <     */
294 <    private volatile int runControl;
295 <
296 <    // RunState values. Order among values matters
297 <    private static final int RUNNING     = 0;
298 <    private static final int SHUTDOWN    = 1;
299 <    private static final int TERMINATING = 2;
300 <    private static final int TERMINATED  = 3;
301 <
302 <    private static int runStateOf(int c)             { return c >>> 16; }
303 <    private static int activeCountOf(int c)          { return c & shortMask; }
304 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
550 >     * Read fence for external reads of pool parameters
551 >     * (parallelism. maxPoolSize, etc).
552 >     */
553 >    private void workerCountReadFence() {
554 >        int ignore = workerCounts;
555 >    }
556  
557      /**
558       * Tries incrementing active count; fails on contention.
559 <     * Called by workers before/during executing tasks.
559 >     * Called by workers before executing tasks.
560       *
561       * @return true on success
562       */
563      final boolean tryIncrementActiveCount() {
564 <        int c = runControl;
565 <        return casRunControl(c, c+1);
564 >        int c;
565 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
566 >                                        c = runState, c + ONE_ACTIVE);
567      }
568  
569      /**
570       * Tries decrementing active count; fails on contention.
571 <     * Possibly triggers termination on success.
320 <     * Called by workers when they can't find tasks.
321 <     *
322 <     * @return true on success
571 >     * Called when workers cannot find tasks to run.
572       */
573      final boolean tryDecrementActiveCount() {
574 <        int c = runControl;
575 <        int nextc = c - 1;
576 <        if (!casRunControl(c, nextc))
574 >        int c;
575 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
576 >                                        c = runState, c - ONE_ACTIVE);
577 >    }
578 >
579 >    /**
580 >     * Advances to at least the given level. Returns true if not
581 >     * already in at least the given level.
582 >     */
583 >    private boolean advanceRunLevel(int level) {
584 >        for (;;) {
585 >            int s = runState;
586 >            if ((s & level) != 0)
587 >                return false;
588 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
589 >                return true;
590 >        }
591 >    }
592 >
593 >    // workers array maintenance
594 >
595 >    /**
596 >     * Records and returns a workers array index for new worker.
597 >     */
598 >    private int recordWorker(ForkJoinWorkerThread w) {
599 >        // Try using slot totalCount-1. If not available, scan and/or resize
600 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
601 >        final ReentrantLock lock = this.workerLock;
602 >        lock.lock();
603 >        try {
604 >            ForkJoinWorkerThread[] ws = workers;
605 >            int len = ws.length;
606 >            if (k < 0 || k >= len || ws[k] != null) {
607 >                for (k = 0; k < len && ws[k] != null; ++k)
608 >                    ;
609 >                if (k == len)
610 >                    ws = Arrays.copyOf(ws, len << 1);
611 >            }
612 >            ws[k] = w;
613 >            workers = ws; // volatile array write ensures slot visibility
614 >        } finally {
615 >            lock.unlock();
616 >        }
617 >        return k;
618 >    }
619 >
620 >    /**
621 >     * Nulls out record of worker in workers array
622 >     */
623 >    private void forgetWorker(ForkJoinWorkerThread w) {
624 >        int idx = w.poolIndex;
625 >        // Locking helps method recordWorker avoid unecessary expansion
626 >        final ReentrantLock lock = this.workerLock;
627 >        lock.lock();
628 >        try {
629 >            ForkJoinWorkerThread[] ws = workers;
630 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
631 >                ws[idx] = null;
632 >        } finally {
633 >            lock.unlock();
634 >        }
635 >    }
636 >
637 >    // adding and removing workers
638 >
639 >    /**
640 >     * Tries to create and add new worker. Assumes that worker counts
641 >     * are already updated to accommodate the worker, so adjusts on
642 >     * failure.
643 >     *
644 >     * @return new worker or null if creation failed
645 >     */
646 >    private ForkJoinWorkerThread addWorker() {
647 >        ForkJoinWorkerThread w = null;
648 >        try {
649 >            w = factory.newThread(this);
650 >        } finally { // Adjust on either null or exceptional factory return
651 >            if (w == null) {
652 >                onWorkerCreationFailure();
653 >                return null;
654 >            }
655 >        }
656 >        w.start(recordWorker(w), locallyFifo, ueh);
657 >        return w;
658 >    }
659 >
660 >    /**
661 >     * Adjusts counts upon failure to create worker
662 >     */
663 >    private void onWorkerCreationFailure() {
664 >        int c;
665 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
666 >                                               c = workerCounts,
667 >                                               c - (ONE_RUNNING|ONE_TOTAL)));
668 >        tryTerminate(false); // in case of failure during shutdown
669 >    }
670 >
671 >    /**
672 >     * Create enough total workers to establish target parallelism,
673 >     * giving up if terminating or addWorker fails
674 >     */
675 >    private void ensureEnoughTotalWorkers() {
676 >        int wc;
677 >        while (runState < TERMINATING &&
678 >               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
679 >            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
680 >                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
681 >                 addWorker() == null))
682 >                break;
683 >        }
684 >    }
685 >
686 >    /**
687 >     * Final callback from terminating worker.  Removes record of
688 >     * worker from array, and adjusts counts. If pool is shutting
689 >     * down, tries to complete terminatation, else possibly replaces
690 >     * the worker.
691 >     *
692 >     * @param w the worker
693 >     */
694 >    final void workerTerminated(ForkJoinWorkerThread w) {
695 >        if (w.active) { // force inactive
696 >            w.active = false;
697 >            do {} while (!tryDecrementActiveCount());
698 >        }
699 >        forgetWorker(w);
700 >
701 >        // decrement total count, and if was running, running count
702 >        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703 >        int wc;
704 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705 >                                               wc = workerCounts, wc - unit));
706 >
707 >        accumulateStealCount(w); // collect final count
708 >        if (!tryTerminate(false))
709 >            ensureEnoughTotalWorkers();
710 >    }
711 >
712 >    // Waiting for and signalling events
713 >
714 >    /**
715 >     * Ensures eventCount on exit is different (mod 2^32) than on
716 >     * entry.  CAS failures are OK -- any change in count suffices.
717 >     */
718 >    private void advanceEventCount() {
719 >        int c;
720 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
721 >    }
722 >
723 >    /**
724 >     * Releases workers blocked on a count not equal to current count.
725 >     */
726 >    final void releaseWaiters() {
727 >        long top;
728 >        int id;
729 >        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
730 >               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
731 >            ForkJoinWorkerThread[] ws = workers;
732 >            ForkJoinWorkerThread w;
733 >            if (ws.length >= id && (w = ws[id - 1]) != null &&
734 >                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
735 >                                          top, w.nextWaiter))
736 >                LockSupport.unpark(w);
737 >        }
738 >    }
739 >
740 >    /**
741 >     * Advances eventCount and releases waiters until interference by
742 >     * other releasing threads is detected.
743 >     */
744 >    final void signalWork() {
745 >        int ec;
746 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
747 >        outer:for (;;) {
748 >            long top = eventWaiters;
749 >            ec = eventCount;
750 >            for (;;) {
751 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
752 >                int id = (int)(top & WAITER_INDEX_MASK);
753 >                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
754 >                    return;
755 >                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
756 >                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
757 >                                               top, top = w.nextWaiter))
758 >                    continue outer;      // possibly stale; reread
759 >                LockSupport.unpark(w);
760 >                if (top != eventWaiters) // let someone else take over
761 >                    return;
762 >            }
763 >        }
764 >    }
765 >
766 >    /**
767 >     * If worker is inactive, blocks until terminating or event count
768 >     * advances from last value held by worker; in any case helps
769 >     * release others.
770 >     *
771 >     * @param w the calling worker thread
772 >     */
773 >    private void eventSync(ForkJoinWorkerThread w) {
774 >        if (!w.active) {
775 >            int prev = w.lastEventCount;
776 >            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
777 >                            ((long)(w.poolIndex + 1)));
778 >            long top;
779 >            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
780 >                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
781 >                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
782 >                   eventCount == prev) {
783 >                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
784 >                                              w.nextWaiter = top, nextTop)) {
785 >                    accumulateStealCount(w); // transfer steals while idle
786 >                    Thread.interrupted();    // clear/ignore interrupt
787 >                    while (eventCount == prev)
788 >                        w.doPark();
789 >                    break;
790 >                }
791 >            }
792 >            w.lastEventCount = eventCount;
793 >        }
794 >        releaseWaiters();
795 >    }
796 >
797 >    /**
798 >     * Callback from workers invoked upon each top-level action (i.e.,
799 >     * stealing a task or taking a submission and running
800 >     * it). Performs one or both of the following:
801 >     *
802 >     * * If the worker cannot find work, updates its active status to
803 >     * inactive and updates activeCount unless there is contention, in
804 >     * which case it may try again (either in this or a subsequent
805 >     * call).  Additionally, awaits the next task event and/or helps
806 >     * wake up other releasable waiters.
807 >     *
808 >     * * If there are too many running threads, suspends this worker
809 >     * (first forcing inactivation if necessary).  If it is not
810 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
811 >     * -- killed while suspended within suspendAsSpare. Otherwise,
812 >     * upon resume it rechecks to make sure that it is still needed.
813 >     *
814 >     * @param w the worker
815 >     * @param worked false if the worker scanned for work but didn't
816 >     * find any (in which case it may block waiting for work).
817 >     */
818 >    final void preStep(ForkJoinWorkerThread w, boolean worked) {
819 >        boolean active = w.active;
820 >        boolean inactivate = !worked & active;
821 >        for (;;) {
822 >            if (inactivate) {
823 >                int c = runState;
824 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
825 >                                             c, c - ONE_ACTIVE))
826 >                    inactivate = active = w.active = false;
827 >            }
828 >            int wc = workerCounts;
829 >            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
830 >                if (!worked)
831 >                    eventSync(w);
832 >                return;
833 >            }
834 >            if (!(inactivate |= active) &&  // must inactivate to suspend
835 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836 >                                         wc, wc - ONE_RUNNING) &&
837 >                !w.suspendAsSpare())        // false if trimmed
838 >                return;
839 >        }
840 >    }
841 >
842 >    /**
843 >     * Adjusts counts and creates or resumes compensating threads for
844 >     * a worker about to block on task joinMe, returning early if
845 >     * joinMe becomes ready. First tries resuming an existing spare
846 >     * (which usually also avoids any count adjustment), but must then
847 >     * decrement running count to determine whether a new thread is
848 >     * needed. See above for fuller explanation.
849 >     */
850 >    final void preJoin(ForkJoinTask<?> joinMe) {
851 >        boolean dec = false;       // true when running count decremented
852 >        for (;;) {
853 >            releaseWaiters();      // help other threads progress
854 >
855 >            if (joinMe.status < 0) // surround spare search with done checks
856 >                return;
857 >            ForkJoinWorkerThread spare = null;
858 >            for (ForkJoinWorkerThread w : workers) {
859 >                if (w != null && w.isSuspended()) {
860 >                    spare = w;
861 >                    break;
862 >                }
863 >            }
864 >            if (joinMe.status < 0)
865 >                return;
866 >
867 >            if (spare != null && spare.tryUnsuspend()) {
868 >                if (dec || joinMe.requestSignal() < 0) {
869 >                    int c;
870 >                    do {} while (!UNSAFE.compareAndSwapInt(this,
871 >                                                           workerCountsOffset,
872 >                                                           c = workerCounts,
873 >                                                           c + ONE_RUNNING));
874 >                } // else no net count change
875 >                LockSupport.unpark(spare);
876 >                return;
877 >            }
878 >
879 >            int wc = workerCounts; // decrement running count
880 >            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 >                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 >                                                wc, wc -= ONE_RUNNING)) &&
883 >                joinMe.requestSignal() < 0) { // cannot block
884 >                int c;                        // back out
885 >                do {} while (!UNSAFE.compareAndSwapInt(this,
886 >                                                       workerCountsOffset,
887 >                                                       c = workerCounts,
888 >                                                       c + ONE_RUNNING));
889 >                return;
890 >            }
891 >
892 >            if (dec) {
893 >                int tc = wc >>> TOTAL_COUNT_SHIFT;
894 >                int pc = parallelism;
895 >                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896 >                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897 >                                 !maintainsParallelism)) ||
898 >                    tc >= maxPoolSize) // cannot add
899 >                    return;
900 >                if (spare == null &&
901 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 >                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 >                    addWorker();
904 >                    return;
905 >                }
906 >            }
907 >        }
908 >    }
909 >
910 >    /**
911 >     * Same idea as preJoin but with too many differing details to
912 >     * integrate: There are no task-based signal counts, and only one
913 >     * way to do the actual blocking. So for simplicity it is directly
914 >     * incorporated into this method.
915 >     */
916 >    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
917 >        throws InterruptedException {
918 >        maintainPar &= maintainsParallelism; // override
919 >        boolean dec = false;
920 >        boolean done = false;
921 >        for (;;) {
922 >            releaseWaiters();
923 >            if (done = blocker.isReleasable())
924 >                break;
925 >            ForkJoinWorkerThread spare = null;
926 >            for (ForkJoinWorkerThread w : workers) {
927 >                if (w != null && w.isSuspended()) {
928 >                    spare = w;
929 >                    break;
930 >                }
931 >            }
932 >            if (done = blocker.isReleasable())
933 >                break;
934 >            if (spare != null && spare.tryUnsuspend()) {
935 >                if (dec) {
936 >                    int c;
937 >                    do {} while (!UNSAFE.compareAndSwapInt(this,
938 >                                                           workerCountsOffset,
939 >                                                           c = workerCounts,
940 >                                                           c + ONE_RUNNING));
941 >                }
942 >                LockSupport.unpark(spare);
943 >                break;
944 >            }
945 >            int wc = workerCounts;
946 >            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947 >                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948 >                                               wc, wc -= ONE_RUNNING);
949 >            if (dec) {
950 >                int tc = wc >>> TOTAL_COUNT_SHIFT;
951 >                int pc = parallelism;
952 >                int dc = pc - (wc & RUNNING_COUNT_MASK);
953 >                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954 >                                 !maintainPar)) ||
955 >                    tc >= maxPoolSize)
956 >                    break;
957 >                if (spare == null &&
958 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959 >                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960 >                    addWorker();
961 >                    break;
962 >                }
963 >            }
964 >        }
965 >
966 >        try {
967 >            if (!done)
968 >                do {} while (!blocker.isReleasable() && !blocker.block());
969 >        } finally {
970 >            if (dec) {
971 >                int c;
972 >                do {} while (!UNSAFE.compareAndSwapInt(this,
973 >                                                       workerCountsOffset,
974 >                                                       c = workerCounts,
975 >                                                       c + ONE_RUNNING));
976 >            }
977 >        }
978 >    }
979 >
980 >    /**
981 >     * Unless there are not enough other running threads, adjusts
982 >     * counts for a a worker in performing helpJoin that cannot find
983 >     * any work, so that this worker can now block.
984 >     *
985 >     * @return true if worker may block
986 >     */
987 >    final boolean preBlockHelpingJoin(ForkJoinTask<?> joinMe) {
988 >        while (joinMe.status >= 0) {
989 >            releaseWaiters(); // help other threads progress
990 >
991 >            // if a spare exists, resume it to maintain parallelism level
992 >            if ((workerCounts & RUNNING_COUNT_MASK) <= parallelism) {
993 >                ForkJoinWorkerThread spare = null;
994 >                for (ForkJoinWorkerThread w : workers) {
995 >                    if (w != null && w.isSuspended()) {
996 >                        spare = w;
997 >                        break;
998 >                    }
999 >                }
1000 >                if (joinMe.status < 0)
1001 >                    break;
1002 >                if (spare != null) {
1003 >                    if (spare.tryUnsuspend()) {
1004 >                        boolean canBlock = true;
1005 >                        if (joinMe.requestSignal() < 0) {
1006 >                            canBlock = false; // already done
1007 >                            int c;
1008 >                            do {} while (!UNSAFE.compareAndSwapInt
1009 >                                         (this, workerCountsOffset,
1010 >                                          c = workerCounts, c + ONE_RUNNING));
1011 >                        }
1012 >                        LockSupport.unpark(spare);
1013 >                        return canBlock;
1014 >                    }
1015 >                    continue; // recheck -- another spare may exist
1016 >                }
1017 >            }
1018 >
1019 >            int wc = workerCounts; // reread to shorten CAS window
1020 >            int rc = wc & RUNNING_COUNT_MASK;
1021 >            if (rc <= 2) // keep this and at most one other thread alive
1022 >                break;
1023 >
1024 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1025 >                                         wc, wc - ONE_RUNNING)) {
1026 >                if (joinMe.requestSignal() >= 0)
1027 >                    return true;
1028 >                int c;                        // back out
1029 >                do {} while (!UNSAFE.compareAndSwapInt
1030 >                             (this, workerCountsOffset,
1031 >                              c = workerCounts, c + ONE_RUNNING));
1032 >                break;
1033 >            }
1034 >        }
1035 >        return false;
1036 >    }
1037 >
1038 >    /**
1039 >     * Possibly initiates and/or completes termination.
1040 >     *
1041 >     * @param now if true, unconditionally terminate, else only
1042 >     * if shutdown and empty queue and no active workers
1043 >     * @return true if now terminating or terminated
1044 >     */
1045 >    private boolean tryTerminate(boolean now) {
1046 >        if (now)
1047 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1048 >        else if (runState < SHUTDOWN ||
1049 >                 !submissionQueue.isEmpty() ||
1050 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1051              return false;
1052 <        if (canTerminateOnShutdown(nextc))
1053 <            terminateOnShutdown();
1052 >
1053 >        if (advanceRunLevel(TERMINATING))
1054 >            startTerminating();
1055 >
1056 >        // Finish now if all threads terminated; else in some subsequent call
1057 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1058 >            advanceRunLevel(TERMINATED);
1059 >            terminationLatch.countDown();
1060 >        }
1061          return true;
1062      }
1063  
1064      /**
1065 <     * Returns {@code true} if argument represents zero active count
1066 <     * and nonzero runstate, which is the triggering condition for
1067 <     * terminating on shutdown.
1065 >     * Actions on transition to TERMINATING
1066 >     */
1067 >    private void startTerminating() {
1068 >        // Clear out and cancel submissions, ignoring exceptions
1069 >        ForkJoinTask<?> task;
1070 >        while ((task = submissionQueue.poll()) != null) {
1071 >            try {
1072 >                task.cancel(false);
1073 >            } catch (Throwable ignore) {
1074 >            }
1075 >        }
1076 >        // Propagate run level
1077 >        for (ForkJoinWorkerThread w : workers) {
1078 >            if (w != null)
1079 >                w.shutdown();    // also resumes suspended workers
1080 >        }
1081 >        // Ensure no straggling local tasks
1082 >        for (ForkJoinWorkerThread w : workers) {
1083 >            if (w != null)
1084 >                w.cancelTasks();
1085 >        }
1086 >        // Wake up idle workers
1087 >        advanceEventCount();
1088 >        releaseWaiters();
1089 >        // Unstick pending joins
1090 >        for (ForkJoinWorkerThread w : workers) {
1091 >            if (w != null && !w.isTerminated()) {
1092 >                try {
1093 >                    w.interrupt();
1094 >                } catch (SecurityException ignore) {
1095 >                }
1096 >            }
1097 >        }
1098 >    }
1099 >
1100 >    // misc support for ForkJoinWorkerThread
1101 >
1102 >    /**
1103 >     * Returns pool number
1104       */
1105 <    private static boolean canTerminateOnShutdown(int c) {
1106 <        // i.e. least bit is nonzero runState bit
341 <        return ((c & -c) >>> 16) != 0;
1105 >    final int getPoolNumber() {
1106 >        return poolNumber;
1107      }
1108  
1109      /**
1110 <     * Transition run state to at least the given state. Return true
1111 <     * if not already at least given state.
1110 >     * Accumulates steal count from a worker, clearing
1111 >     * the worker's value
1112       */
1113 <    private boolean transitionRunStateTo(int state) {
1114 <        for (;;) {
1115 <            int c = runControl;
1116 <            if (runStateOf(c) >= state)
1117 <                return false;
1118 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1119 <                return true;
1113 >    final void accumulateStealCount(ForkJoinWorkerThread w) {
1114 >        int sc = w.stealCount;
1115 >        if (sc != 0) {
1116 >            long c;
1117 >            w.stealCount = 0;
1118 >            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1119 >                                                    c = stealCount, c + sc));
1120          }
1121      }
1122  
1123      /**
1124 <     * Controls whether to add spares to maintain parallelism
1124 >     * Returns the approximate (non-atomic) number of idle threads per
1125 >     * active thread.
1126       */
1127 <    private volatile boolean maintainsParallelism;
1127 >    final int idlePerActive() {
1128 >        int ac = runState;    // no mask -- artifically boosts during shutdown
1129 >        int pc = parallelism; // use targeted parallelism, not rc
1130 >        // Use exact results for small values, saturate past 4
1131 >        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1132 >    }
1133 >
1134 >    // Public and protected methods
1135  
1136      // Constructors
1137  
# Line 384 | Line 1157 | public class ForkJoinPool extends Abstra
1157       *
1158       * @param parallelism the parallelism level
1159       * @throws IllegalArgumentException if parallelism less than or
1160 <     * equal to zero
1160 >     *         equal to zero, or greater than implementation limit
1161       * @throws SecurityException if a security manager exists and
1162       *         the caller is not permitted to modify threads
1163       *         because it does not hold {@link
# Line 400 | Line 1173 | public class ForkJoinPool extends Abstra
1173       * thread factory.
1174       *
1175       * @param factory the factory for creating new threads
1176 <     * @throws NullPointerException if factory is null
1176 >     * @throws NullPointerException if the factory is null
1177       * @throws SecurityException if a security manager exists and
1178       *         the caller is not permitted to modify threads
1179       *         because it does not hold {@link
# Line 417 | Line 1190 | public class ForkJoinPool extends Abstra
1190       * @param parallelism the parallelism level
1191       * @param factory the factory for creating new threads
1192       * @throws IllegalArgumentException if parallelism less than or
1193 <     * equal to zero, or greater than implementation limit
1194 <     * @throws NullPointerException if factory is null
1193 >     *         equal to zero, or greater than implementation limit
1194 >     * @throws NullPointerException if the factory is null
1195       * @throws SecurityException if a security manager exists and
1196       *         the caller is not permitted to modify threads
1197       *         because it does not hold {@link
1198       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1199       */
1200      public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1201 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
429 <            throw new IllegalArgumentException();
1201 >        checkPermission();
1202          if (factory == null)
1203              throw new NullPointerException();
1204 <        checkPermission();
1205 <        this.factory = factory;
1204 >        if (parallelism <= 0 || parallelism > MAX_THREADS)
1205 >            throw new IllegalArgumentException();
1206 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1207 >        int arraySize = initialArraySizeFor(parallelism);
1208          this.parallelism = parallelism;
1209 +        this.factory = factory;
1210          this.maxPoolSize = MAX_THREADS;
1211          this.maintainsParallelism = true;
1212 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
438 <        this.workerLock = new ReentrantLock();
439 <        this.termination = workerLock.newCondition();
440 <        this.stealCount = new AtomicLong();
1212 >        this.workers = new ForkJoinWorkerThread[arraySize];
1213          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1214 <        // worker array and workers are lazily constructed
1215 <    }
1216 <
1217 <    /**
1218 <     * Creates a new worker thread using factory.
447 <     *
448 <     * @param index the index to assign worker
449 <     * @return new worker, or null if factory failed
450 <     */
451 <    private ForkJoinWorkerThread createWorker(int index) {
452 <        Thread.UncaughtExceptionHandler h = ueh;
453 <        ForkJoinWorkerThread w = factory.newThread(this);
454 <        if (w != null) {
455 <            w.poolIndex = index;
456 <            w.setDaemon(true);
457 <            w.setAsyncMode(locallyFifo);
458 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
459 <            if (h != null)
460 <                w.setUncaughtExceptionHandler(h);
461 <        }
462 <        return w;
463 <    }
464 <
465 <    /**
466 <     * Returns a good size for worker array given pool size.
467 <     * Currently requires size to be a power of two.
468 <     */
469 <    private static int arraySizeFor(int poolSize) {
470 <        if (poolSize <= 1)
471 <            return 1;
472 <        // See Hackers Delight, sec 3.2
473 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
474 <        c |= c >>>  1;
475 <        c |= c >>>  2;
476 <        c |= c >>>  4;
477 <        c |= c >>>  8;
478 <        c |= c >>> 16;
479 <        return c + 1;
480 <    }
481 <
482 <    /**
483 <     * Creates or resizes array if necessary to hold newLength.
484 <     * Call only under exclusion.
485 <     *
486 <     * @return the array
487 <     */
488 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
489 <        ForkJoinWorkerThread[] ws = workers;
490 <        if (ws == null)
491 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
492 <        else if (newLength > ws.length)
493 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
494 <        else
495 <            return ws;
496 <    }
497 <
498 <    /**
499 <     * Tries to shrink workers into smaller array after one or more terminate.
500 <     */
501 <    private void tryShrinkWorkerArray() {
502 <        ForkJoinWorkerThread[] ws = workers;
503 <        if (ws != null) {
504 <            int len = ws.length;
505 <            int last = len - 1;
506 <            while (last >= 0 && ws[last] == null)
507 <                --last;
508 <            int newLength = arraySizeFor(last+1);
509 <            if (newLength < len)
510 <                workers = Arrays.copyOf(ws, newLength);
511 <        }
1214 >        this.workerLock = new ReentrantLock();
1215 >        this.terminationLatch = new CountDownLatch(1);
1216 >        // Start first worker; remaining workers added upon first submission
1217 >        workerCounts = ONE_RUNNING | ONE_TOTAL;
1218 >        addWorker();
1219      }
1220  
1221      /**
1222 <     * Initializes workers if necessary.
1223 <     */
1224 <    final void ensureWorkerInitialization() {
1225 <        ForkJoinWorkerThread[] ws = workers;
1226 <        if (ws == null) {
1227 <            final ReentrantLock lock = this.workerLock;
1228 <            lock.lock();
1229 <            try {
1230 <                ws = workers;
1231 <                if (ws == null) {
1232 <                    int ps = parallelism;
526 <                    ws = ensureWorkerArrayCapacity(ps);
527 <                    for (int i = 0; i < ps; ++i) {
528 <                        ForkJoinWorkerThread w = createWorker(i);
529 <                        if (w != null) {
530 <                            ws[i] = w;
531 <                            w.start();
532 <                            updateWorkerCount(1);
533 <                        }
534 <                    }
535 <                }
536 <            } finally {
537 <                lock.unlock();
538 <            }
539 <        }
540 <    }
541 <
542 <    /**
543 <     * Worker creation and startup for threads added via setParallelism.
544 <     */
545 <    private void createAndStartAddedWorkers() {
546 <        resumeAllSpares();  // Allow spares to convert to nonspare
547 <        int ps = parallelism;
548 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
549 <        int len = ws.length;
550 <        // Sweep through slots, to keep lowest indices most populated
551 <        int k = 0;
552 <        while (k < len) {
553 <            if (ws[k] != null) {
554 <                ++k;
555 <                continue;
556 <            }
557 <            int s = workerCounts;
558 <            int tc = totalCountOf(s);
559 <            int rc = runningCountOf(s);
560 <            if (rc >= ps || tc >= ps)
561 <                break;
562 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
563 <                ForkJoinWorkerThread w = createWorker(k);
564 <                if (w != null) {
565 <                    ws[k++] = w;
566 <                    w.start();
567 <                }
568 <                else {
569 <                    updateWorkerCount(-1); // back out on failed creation
570 <                    break;
571 <                }
572 <            }
573 <        }
1222 >     * Returns initial power of two size for workers array.
1223 >     * @param pc the initial parallelism level
1224 >     */
1225 >    private static int initialArraySizeFor(int pc) {
1226 >        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1227 >        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1228 >        size |= size >>> 1;
1229 >        size |= size >>> 2;
1230 >        size |= size >>> 4;
1231 >        size |= size >>> 8;
1232 >        return size + 1;
1233      }
1234  
1235      // Execution methods
# Line 581 | Line 1240 | public class ForkJoinPool extends Abstra
1240      private <T> void doSubmit(ForkJoinTask<T> task) {
1241          if (task == null)
1242              throw new NullPointerException();
1243 <        if (isShutdown())
1243 >        if (runState >= SHUTDOWN)
1244              throw new RejectedExecutionException();
586        if (workers == null)
587            ensureWorkerInitialization();
1245          submissionQueue.offer(task);
1246 <        signalIdleWorkers();
1246 >        advanceEventCount();
1247 >        releaseWaiters();
1248 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1249 >            ensureEnoughTotalWorkers();
1250      }
1251  
1252      /**
# Line 594 | Line 1254 | public class ForkJoinPool extends Abstra
1254       *
1255       * @param task the task
1256       * @return the task's result
1257 <     * @throws NullPointerException if task is null
1258 <     * @throws RejectedExecutionException if pool is shut down
1257 >     * @throws NullPointerException if the task is null
1258 >     * @throws RejectedExecutionException if the task cannot be
1259 >     *         scheduled for execution
1260       */
1261      public <T> T invoke(ForkJoinTask<T> task) {
1262          doSubmit(task);
# Line 606 | Line 1267 | public class ForkJoinPool extends Abstra
1267       * Arranges for (asynchronous) execution of the given task.
1268       *
1269       * @param task the task
1270 <     * @throws NullPointerException if task is null
1271 <     * @throws RejectedExecutionException if pool is shut down
1270 >     * @throws NullPointerException if the task is null
1271 >     * @throws RejectedExecutionException if the task cannot be
1272 >     *         scheduled for execution
1273       */
1274      public void execute(ForkJoinTask<?> task) {
1275          doSubmit(task);
# Line 615 | Line 1277 | public class ForkJoinPool extends Abstra
1277  
1278      // AbstractExecutorService methods
1279  
1280 +    /**
1281 +     * @throws NullPointerException if the task is null
1282 +     * @throws RejectedExecutionException if the task cannot be
1283 +     *         scheduled for execution
1284 +     */
1285      public void execute(Runnable task) {
1286          ForkJoinTask<?> job;
1287          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 624 | Line 1291 | public class ForkJoinPool extends Abstra
1291          doSubmit(job);
1292      }
1293  
1294 +    /**
1295 +     * @throws NullPointerException if the task is null
1296 +     * @throws RejectedExecutionException if the task cannot be
1297 +     *         scheduled for execution
1298 +     */
1299      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1300          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1301          doSubmit(job);
1302          return job;
1303      }
1304  
1305 +    /**
1306 +     * @throws NullPointerException if the task is null
1307 +     * @throws RejectedExecutionException if the task cannot be
1308 +     *         scheduled for execution
1309 +     */
1310      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1311          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1312          doSubmit(job);
1313          return job;
1314      }
1315  
1316 +    /**
1317 +     * @throws NullPointerException if the task is null
1318 +     * @throws RejectedExecutionException if the task cannot be
1319 +     *         scheduled for execution
1320 +     */
1321      public ForkJoinTask<?> submit(Runnable task) {
1322          ForkJoinTask<?> job;
1323          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
# Line 651 | Line 1333 | public class ForkJoinPool extends Abstra
1333       *
1334       * @param task the task to submit
1335       * @return the task
1336 +     * @throws NullPointerException if the task is null
1337       * @throws RejectedExecutionException if the task cannot be
1338       *         scheduled for execution
656     * @throws NullPointerException if the task is null
1339       */
1340      public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1341          doSubmit(task);
1342          return task;
1343      }
1344  
1345 <
1345 >    /**
1346 >     * @throws NullPointerException       {@inheritDoc}
1347 >     * @throws RejectedExecutionException {@inheritDoc}
1348 >     */
1349      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1350          ArrayList<ForkJoinTask<T>> forkJoinTasks =
1351              new ArrayList<ForkJoinTask<T>>(tasks.size());
# Line 669 | Line 1354 | public class ForkJoinPool extends Abstra
1354          invoke(new InvokeAll<T>(forkJoinTasks));
1355  
1356          @SuppressWarnings({"unchecked", "rawtypes"})
1357 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1357 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1358          return futures;
1359      }
1360  
# Line 683 | Line 1368 | public class ForkJoinPool extends Abstra
1368          private static final long serialVersionUID = -7914297376763021607L;
1369      }
1370  
686    // Configuration and status settings and queries
687
1371      /**
1372       * Returns the factory used for constructing new workers.
1373       *
# Line 701 | Line 1384 | public class ForkJoinPool extends Abstra
1384       * @return the handler, or {@code null} if none
1385       */
1386      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1387 <        Thread.UncaughtExceptionHandler h;
1388 <        final ReentrantLock lock = this.workerLock;
706 <        lock.lock();
707 <        try {
708 <            h = ueh;
709 <        } finally {
710 <            lock.unlock();
711 <        }
712 <        return h;
1387 >        workerCountReadFence();
1388 >        return ueh;
1389      }
1390  
1391      /**
# Line 728 | Line 1404 | public class ForkJoinPool extends Abstra
1404      public Thread.UncaughtExceptionHandler
1405          setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1406          checkPermission();
1407 <        Thread.UncaughtExceptionHandler old = null;
1408 <        final ReentrantLock lock = this.workerLock;
1409 <        lock.lock();
734 <        try {
735 <            old = ueh;
1407 >        workerCountReadFence();
1408 >        Thread.UncaughtExceptionHandler old = ueh;
1409 >        if (h != old) {
1410              ueh = h;
1411 <            ForkJoinWorkerThread[] ws = workers;
1412 <            if (ws != null) {
1413 <                for (int i = 0; i < ws.length; ++i) {
1414 <                    ForkJoinWorkerThread w = ws[i];
741 <                    if (w != null)
742 <                        w.setUncaughtExceptionHandler(h);
743 <                }
1411 >            workerCountWriteFence();
1412 >            for (ForkJoinWorkerThread w : workers) {
1413 >                if (w != null)
1414 >                    w.setUncaughtExceptionHandler(h);
1415              }
745        } finally {
746            lock.unlock();
1416          }
1417          return old;
1418      }
1419  
751
1420      /**
1421       * Sets the target parallelism level of this pool.
1422       *
# Line 764 | Line 1432 | public class ForkJoinPool extends Abstra
1432          checkPermission();
1433          if (parallelism <= 0 || parallelism > maxPoolSize)
1434              throw new IllegalArgumentException();
1435 <        final ReentrantLock lock = this.workerLock;
1436 <        lock.lock();
1437 <        try {
1438 <            if (isProcessingTasks()) {
1439 <                int p = this.parallelism;
1440 <                this.parallelism = parallelism;
1441 <                if (parallelism > p)
1442 <                    createAndStartAddedWorkers();
1443 <                else
1444 <                    trimSpares();
1435 >        workerCountReadFence();
1436 >        int pc = this.parallelism;
1437 >        if (pc != parallelism) {
1438 >            this.parallelism = parallelism;
1439 >            workerCountWriteFence();
1440 >            // Release spares. If too many, some will die after re-suspend
1441 >            for (ForkJoinWorkerThread w : workers) {
1442 >                if (w != null && w.tryUnsuspend()) {
1443 >                    updateRunningCount(1);
1444 >                    LockSupport.unpark(w);
1445 >                }
1446              }
1447 <        } finally {
1448 <            lock.unlock();
1447 >            ensureEnoughTotalWorkers();
1448 >            advanceEventCount();
1449 >            releaseWaiters(); // force config recheck by existing workers
1450          }
781        signalIdleWorkers();
1451      }
1452  
1453      /**
# Line 787 | Line 1456 | public class ForkJoinPool extends Abstra
1456       * @return the targeted parallelism level of this pool
1457       */
1458      public int getParallelism() {
1459 +        //        workerCountReadFence(); // inlined below
1460 +        int ignore = workerCounts;
1461          return parallelism;
1462      }
1463  
# Line 799 | Line 1470 | public class ForkJoinPool extends Abstra
1470       * @return the number of worker threads
1471       */
1472      public int getPoolSize() {
1473 <        return totalCountOf(workerCounts);
1473 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1474      }
1475  
1476      /**
# Line 811 | Line 1482 | public class ForkJoinPool extends Abstra
1482       * @return the maximum
1483       */
1484      public int getMaximumPoolSize() {
1485 +        workerCountReadFence();
1486          return maxPoolSize;
1487      }
1488  
# Line 819 | Line 1491 | public class ForkJoinPool extends Abstra
1491       * pool. The given value should normally be greater than or equal
1492       * to the {@link #getParallelism parallelism} level. Setting this
1493       * value has no effect on current pool size. It controls
1494 <     * construction of new threads.
1494 >     * construction of new threads. The use of this method may cause
1495 >     * tasks that intrinsically require extra threads for dependent
1496 >     * computations to indefinitely stall. If you are instead trying
1497 >     * to minimize internal thread creation, consider setting {@link
1498 >     * #setMaintainsParallelism} as false.
1499       *
1500       * @throws IllegalArgumentException if negative or greater than
1501       * internal implementation limit
# Line 828 | Line 1504 | public class ForkJoinPool extends Abstra
1504          if (newMax < 0 || newMax > MAX_THREADS)
1505              throw new IllegalArgumentException();
1506          maxPoolSize = newMax;
1507 +        workerCountWriteFence();
1508      }
1509  
833
1510      /**
1511       * Returns {@code true} if this pool dynamically maintains its
1512       * target parallelism level. If false, new threads are added only
# Line 839 | Line 1515 | public class ForkJoinPool extends Abstra
1515       * @return {@code true} if maintains parallelism
1516       */
1517      public boolean getMaintainsParallelism() {
1518 +        workerCountReadFence();
1519          return maintainsParallelism;
1520      }
1521  
# Line 851 | Line 1528 | public class ForkJoinPool extends Abstra
1528       */
1529      public void setMaintainsParallelism(boolean enable) {
1530          maintainsParallelism = enable;
1531 +        workerCountWriteFence();
1532      }
1533  
1534      /**
# Line 867 | Line 1545 | public class ForkJoinPool extends Abstra
1545       * @see #getAsyncMode
1546       */
1547      public boolean setAsyncMode(boolean async) {
1548 +        workerCountReadFence();
1549          boolean oldMode = locallyFifo;
1550 <        locallyFifo = async;
1551 <        ForkJoinWorkerThread[] ws = workers;
1552 <        if (ws != null) {
1553 <            for (int i = 0; i < ws.length; ++i) {
1554 <                ForkJoinWorkerThread t = ws[i];
1555 <                if (t != null)
877 <                    t.setAsyncMode(async);
1550 >        if (oldMode != async) {
1551 >            locallyFifo = async;
1552 >            workerCountWriteFence();
1553 >            for (ForkJoinWorkerThread w : workers) {
1554 >                if (w != null)
1555 >                    w.setAsyncMode(async);
1556              }
1557          }
1558          return oldMode;
# Line 888 | Line 1566 | public class ForkJoinPool extends Abstra
1566       * @see #setAsyncMode
1567       */
1568      public boolean getAsyncMode() {
1569 +        workerCountReadFence();
1570          return locallyFifo;
1571      }
1572  
1573      /**
1574       * Returns an estimate of the number of worker threads that are
1575       * not blocked waiting to join tasks or for other managed
1576 <     * synchronization.
1576 >     * synchronization. This method may overestimate the
1577 >     * number of running threads.
1578       *
1579       * @return the number of worker threads
1580       */
1581      public int getRunningThreadCount() {
1582 <        return runningCountOf(workerCounts);
1582 >        return workerCounts & RUNNING_COUNT_MASK;
1583      }
1584  
1585      /**
# Line 910 | Line 1590 | public class ForkJoinPool extends Abstra
1590       * @return the number of active threads
1591       */
1592      public int getActiveThreadCount() {
1593 <        return activeCountOf(runControl);
914 <    }
915 <
916 <    /**
917 <     * Returns an estimate of the number of threads that are currently
918 <     * idle waiting for tasks. This method may underestimate the
919 <     * number of idle threads.
920 <     *
921 <     * @return the number of idle threads
922 <     */
923 <    final int getIdleThreadCount() {
924 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
925 <        return (c <= 0) ? 0 : c;
1593 >        return runState & ACTIVE_COUNT_MASK;
1594      }
1595  
1596      /**
# Line 937 | Line 1605 | public class ForkJoinPool extends Abstra
1605       * @return {@code true} if all threads are currently idle
1606       */
1607      public boolean isQuiescent() {
1608 <        return activeCountOf(runControl) == 0;
1608 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1609      }
1610  
1611      /**
# Line 952 | Line 1620 | public class ForkJoinPool extends Abstra
1620       * @return the number of steals
1621       */
1622      public long getStealCount() {
1623 <        return stealCount.get();
956 <    }
957 <
958 <    /**
959 <     * Accumulates steal count from a worker.
960 <     * Call only when worker known to be idle.
961 <     */
962 <    private void updateStealCount(ForkJoinWorkerThread w) {
963 <        int sc = w.getAndClearStealCount();
964 <        if (sc != 0)
965 <            stealCount.addAndGet(sc);
1623 >        return stealCount;
1624      }
1625  
1626      /**
# Line 977 | Line 1635 | public class ForkJoinPool extends Abstra
1635       */
1636      public long getQueuedTaskCount() {
1637          long count = 0;
1638 <        ForkJoinWorkerThread[] ws = workers;
1639 <        if (ws != null) {
1640 <            for (int i = 0; i < ws.length; ++i) {
983 <                ForkJoinWorkerThread t = ws[i];
984 <                if (t != null)
985 <                    count += t.getQueueSize();
986 <            }
1638 >        for (ForkJoinWorkerThread w : workers) {
1639 >            if (w != null)
1640 >                count += w.getQueueSize();
1641          }
1642          return count;
1643      }
# Line 1039 | Line 1693 | public class ForkJoinPool extends Abstra
1693       */
1694      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1695          int n = submissionQueue.drainTo(c);
1696 <        ForkJoinWorkerThread[] ws = workers;
1697 <        if (ws != null) {
1698 <            for (int i = 0; i < ws.length; ++i) {
1045 <                ForkJoinWorkerThread w = ws[i];
1046 <                if (w != null)
1047 <                    n += w.drainTasksTo(c);
1048 <            }
1696 >        for (ForkJoinWorkerThread w : workers) {
1697 >            if (w != null)
1698 >                n += w.drainTasksTo(c);
1699          }
1700          return n;
1701      }
# Line 1058 | Line 1708 | public class ForkJoinPool extends Abstra
1708       * @return a string identifying this pool, as well as its state
1709       */
1710      public String toString() {
1061        int ps = parallelism;
1062        int wc = workerCounts;
1063        int rc = runControl;
1711          long st = getStealCount();
1712          long qt = getQueuedTaskCount();
1713          long qs = getQueuedSubmissionCount();
1714 +        int wc = workerCounts;
1715 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1716 +        int rc = wc & RUNNING_COUNT_MASK;
1717 +        int pc = parallelism;
1718 +        int rs = runState;
1719 +        int ac = rs & ACTIVE_COUNT_MASK;
1720          return super.toString() +
1721 <            "[" + runStateToString(runStateOf(rc)) +
1722 <            ", parallelism = " + ps +
1723 <            ", size = " + totalCountOf(wc) +
1724 <            ", active = " + activeCountOf(rc) +
1725 <            ", running = " + runningCountOf(wc) +
1721 >            "[" + runLevelToString(rs) +
1722 >            ", parallelism = " + pc +
1723 >            ", size = " + tc +
1724 >            ", active = " + ac +
1725 >            ", running = " + rc +
1726              ", steals = " + st +
1727              ", tasks = " + qt +
1728              ", submissions = " + qs +
1729              "]";
1730      }
1731  
1732 <    private static String runStateToString(int rs) {
1733 <        switch(rs) {
1734 <        case RUNNING: return "Running";
1735 <        case SHUTDOWN: return "Shutting down";
1736 <        case TERMINATING: return "Terminating";
1084 <        case TERMINATED: return "Terminated";
1085 <        default: throw new Error("Unknown run state");
1086 <        }
1732 >    private static String runLevelToString(int s) {
1733 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1734 >                ((s & TERMINATING) != 0 ? "Terminating" :
1735 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1736 >                  "Running")));
1737      }
1738  
1089    // lifecycle control
1090
1739      /**
1740       * Initiates an orderly shutdown in which previously submitted
1741       * tasks are executed, but no new tasks will be accepted.
# Line 1102 | Line 1750 | public class ForkJoinPool extends Abstra
1750       */
1751      public void shutdown() {
1752          checkPermission();
1753 <        transitionRunStateTo(SHUTDOWN);
1754 <        if (canTerminateOnShutdown(runControl)) {
1107 <            if (workers == null) { // shutting down before workers created
1108 <                final ReentrantLock lock = this.workerLock;
1109 <                lock.lock();
1110 <                try {
1111 <                    if (workers == null) {
1112 <                        terminate();
1113 <                        transitionRunStateTo(TERMINATED);
1114 <                        termination.signalAll();
1115 <                    }
1116 <                } finally {
1117 <                    lock.unlock();
1118 <                }
1119 <            }
1120 <            terminateOnShutdown();
1121 <        }
1753 >        advanceRunLevel(SHUTDOWN);
1754 >        tryTerminate(false);
1755      }
1756  
1757      /**
# Line 1139 | Line 1772 | public class ForkJoinPool extends Abstra
1772       */
1773      public List<Runnable> shutdownNow() {
1774          checkPermission();
1775 <        terminate();
1775 >        tryTerminate(true);
1776          return Collections.emptyList();
1777      }
1778  
# Line 1149 | Line 1782 | public class ForkJoinPool extends Abstra
1782       * @return {@code true} if all tasks have completed following shut down
1783       */
1784      public boolean isTerminated() {
1785 <        return runStateOf(runControl) == TERMINATED;
1785 >        return runState >= TERMINATED;
1786      }
1787  
1788      /**
# Line 1163 | Line 1796 | public class ForkJoinPool extends Abstra
1796       * @return {@code true} if terminating but not yet terminated
1797       */
1798      public boolean isTerminating() {
1799 <        return runStateOf(runControl) == TERMINATING;
1799 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1800      }
1801  
1802      /**
# Line 1172 | Line 1805 | public class ForkJoinPool extends Abstra
1805       * @return {@code true} if this pool has been shut down
1806       */
1807      public boolean isShutdown() {
1808 <        return runStateOf(runControl) >= SHUTDOWN;
1176 <    }
1177 <
1178 <    /**
1179 <     * Returns true if pool is not terminating or terminated.
1180 <     * Used internally to suppress execution when terminating.
1181 <     */
1182 <    final boolean isProcessingTasks() {
1183 <        return runStateOf(runControl) < TERMINATING;
1808 >        return runState >= SHUTDOWN;
1809      }
1810  
1811      /**
# Line 1196 | Line 1821 | public class ForkJoinPool extends Abstra
1821       */
1822      public boolean awaitTermination(long timeout, TimeUnit unit)
1823          throws InterruptedException {
1824 <        long nanos = unit.toNanos(timeout);
1200 <        final ReentrantLock lock = this.workerLock;
1201 <        lock.lock();
1202 <        try {
1203 <            for (;;) {
1204 <                if (isTerminated())
1205 <                    return true;
1206 <                if (nanos <= 0)
1207 <                    return false;
1208 <                nanos = termination.awaitNanos(nanos);
1209 <            }
1210 <        } finally {
1211 <            lock.unlock();
1212 <        }
1213 <    }
1214 <
1215 <    // Shutdown and termination support
1216 <
1217 <    /**
1218 <     * Callback from terminating worker. Nulls out the corresponding
1219 <     * workers slot, and if terminating, tries to terminate; else
1220 <     * tries to shrink workers array.
1221 <     *
1222 <     * @param w the worker
1223 <     */
1224 <    final void workerTerminated(ForkJoinWorkerThread w) {
1225 <        updateStealCount(w);
1226 <        updateWorkerCount(-1);
1227 <        final ReentrantLock lock = this.workerLock;
1228 <        lock.lock();
1229 <        try {
1230 <            ForkJoinWorkerThread[] ws = workers;
1231 <            if (ws != null) {
1232 <                int idx = w.poolIndex;
1233 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1234 <                    ws[idx] = null;
1235 <                if (totalCountOf(workerCounts) == 0) {
1236 <                    terminate(); // no-op if already terminating
1237 <                    transitionRunStateTo(TERMINATED);
1238 <                    termination.signalAll();
1239 <                }
1240 <                else if (isProcessingTasks()) {
1241 <                    tryShrinkWorkerArray();
1242 <                    tryResumeSpare(true); // allow replacement
1243 <                }
1244 <            }
1245 <        } finally {
1246 <            lock.unlock();
1247 <        }
1248 <        signalIdleWorkers();
1249 <    }
1250 <
1251 <    /**
1252 <     * Initiates termination.
1253 <     */
1254 <    private void terminate() {
1255 <        if (transitionRunStateTo(TERMINATING)) {
1256 <            stopAllWorkers();
1257 <            resumeAllSpares();
1258 <            signalIdleWorkers();
1259 <            cancelQueuedSubmissions();
1260 <            cancelQueuedWorkerTasks();
1261 <            interruptUnterminatedWorkers();
1262 <            signalIdleWorkers(); // resignal after interrupt
1263 <        }
1264 <    }
1265 <
1266 <    /**
1267 <     * Possibly terminates when on shutdown state.
1268 <     */
1269 <    private void terminateOnShutdown() {
1270 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1271 <            terminate();
1272 <    }
1273 <
1274 <    /**
1275 <     * Clears out and cancels submissions.
1276 <     */
1277 <    private void cancelQueuedSubmissions() {
1278 <        ForkJoinTask<?> task;
1279 <        while ((task = pollSubmission()) != null)
1280 <            task.cancel(false);
1281 <    }
1282 <
1283 <    /**
1284 <     * Cleans out worker queues.
1285 <     */
1286 <    private void cancelQueuedWorkerTasks() {
1287 <        final ReentrantLock lock = this.workerLock;
1288 <        lock.lock();
1289 <        try {
1290 <            ForkJoinWorkerThread[] ws = workers;
1291 <            if (ws != null) {
1292 <                for (int i = 0; i < ws.length; ++i) {
1293 <                    ForkJoinWorkerThread t = ws[i];
1294 <                    if (t != null)
1295 <                        t.cancelTasks();
1296 <                }
1297 <            }
1298 <        } finally {
1299 <            lock.unlock();
1300 <        }
1301 <    }
1302 <
1303 <    /**
1304 <     * Sets each worker's status to terminating. Requires lock to avoid
1305 <     * conflicts with add/remove.
1306 <     */
1307 <    private void stopAllWorkers() {
1308 <        final ReentrantLock lock = this.workerLock;
1309 <        lock.lock();
1310 <        try {
1311 <            ForkJoinWorkerThread[] ws = workers;
1312 <            if (ws != null) {
1313 <                for (int i = 0; i < ws.length; ++i) {
1314 <                    ForkJoinWorkerThread t = ws[i];
1315 <                    if (t != null)
1316 <                        t.shutdownNow();
1317 <                }
1318 <            }
1319 <        } finally {
1320 <            lock.unlock();
1321 <        }
1322 <    }
1323 <
1324 <    /**
1325 <     * Interrupts all unterminated workers.  This is not required for
1326 <     * sake of internal control, but may help unstick user code during
1327 <     * shutdown.
1328 <     */
1329 <    private void interruptUnterminatedWorkers() {
1330 <        final ReentrantLock lock = this.workerLock;
1331 <        lock.lock();
1332 <        try {
1333 <            ForkJoinWorkerThread[] ws = workers;
1334 <            if (ws != null) {
1335 <                for (int i = 0; i < ws.length; ++i) {
1336 <                    ForkJoinWorkerThread t = ws[i];
1337 <                    if (t != null && !t.isTerminated()) {
1338 <                        try {
1339 <                            t.interrupt();
1340 <                        } catch (SecurityException ignore) {
1341 <                        }
1342 <                    }
1343 <                }
1344 <            }
1345 <        } finally {
1346 <            lock.unlock();
1347 <        }
1348 <    }
1349 <
1350 <
1351 <    /*
1352 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1353 <     * are basic Treiber stack nodes, also used for spare stack.
1354 <     *
1355 <     * The event barrier has an event count and a wait queue (actually
1356 <     * a Treiber stack).  Workers are enabled to look for work when
1357 <     * the eventCount is incremented. If they fail to find work, they
1358 <     * may wait for next count. Upon release, threads help others wake
1359 <     * up.
1360 <     *
1361 <     * Synchronization events occur only in enough contexts to
1362 <     * maintain overall liveness:
1363 <     *
1364 <     *   - Submission of a new task to the pool
1365 <     *   - Resizes or other changes to the workers array
1366 <     *   - pool termination
1367 <     *   - A worker pushing a task on an empty queue
1368 <     *
1369 <     * The case of pushing a task occurs often enough, and is heavy
1370 <     * enough compared to simple stack pushes, to require special
1371 <     * handling: Method signalWork returns without advancing count if
1372 <     * the queue appears to be empty.  This would ordinarily result in
1373 <     * races causing some queued waiters not to be woken up. To avoid
1374 <     * this, the first worker enqueued in method sync (see
1375 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1376 <     * helps signal if any are found. This works well because the
1377 <     * worker has nothing better to do, and so might as well help
1378 <     * alleviate the overhead and contention on the threads actually
1379 <     * doing work.  Also, since event counts increments on task
1380 <     * availability exist to maintain liveness (rather than to force
1381 <     * refreshes etc), it is OK for callers to exit early if
1382 <     * contending with another signaller.
1383 <     */
1384 <    static final class WaitQueueNode {
1385 <        WaitQueueNode next; // only written before enqueued
1386 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1387 <        final long count; // unused for spare stack
1388 <
1389 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1390 <            count = c;
1391 <            thread = w;
1392 <        }
1393 <
1394 <        /**
1395 <         * Wakes up waiter, returning false if known to already
1396 <         */
1397 <        boolean signal() {
1398 <            ForkJoinWorkerThread t = thread;
1399 <            if (t == null)
1400 <                return false;
1401 <            thread = null;
1402 <            LockSupport.unpark(t);
1403 <            return true;
1404 <        }
1405 <
1406 <        /**
1407 <         * Awaits release on sync.
1408 <         */
1409 <        void awaitSyncRelease(ForkJoinPool p) {
1410 <            while (thread != null && !p.syncIsReleasable(this))
1411 <                LockSupport.park(this);
1412 <        }
1413 <
1414 <        /**
1415 <         * Awaits resumption as spare.
1416 <         */
1417 <        void awaitSpareRelease() {
1418 <            while (thread != null) {
1419 <                if (!Thread.interrupted())
1420 <                    LockSupport.park(this);
1421 <            }
1422 <        }
1423 <    }
1424 <
1425 <    /**
1426 <     * Ensures that no thread is waiting for count to advance from the
1427 <     * current value of eventCount read on entry to this method, by
1428 <     * releasing waiting threads if necessary.
1429 <     *
1430 <     * @return the count
1431 <     */
1432 <    final long ensureSync() {
1433 <        long c = eventCount;
1434 <        WaitQueueNode q;
1435 <        while ((q = syncStack) != null && q.count < c) {
1436 <            if (casBarrierStack(q, null)) {
1437 <                do {
1438 <                    q.signal();
1439 <                } while ((q = q.next) != null);
1440 <                break;
1441 <            }
1442 <        }
1443 <        return c;
1444 <    }
1445 <
1446 <    /**
1447 <     * Increments event count and releases waiting threads.
1448 <     */
1449 <    private void signalIdleWorkers() {
1450 <        long c;
1451 <        do {} while (!casEventCount(c = eventCount, c+1));
1452 <        ensureSync();
1453 <    }
1454 <
1455 <    /**
1456 <     * Signals threads waiting to poll a task. Because method sync
1457 <     * rechecks availability, it is OK to only proceed if queue
1458 <     * appears to be non-empty, and OK to skip under contention to
1459 <     * increment count (since some other thread succeeded).
1460 <     */
1461 <    final void signalWork() {
1462 <        long c;
1463 <        WaitQueueNode q;
1464 <        if (syncStack != null &&
1465 <            casEventCount(c = eventCount, c+1) &&
1466 <            (((q = syncStack) != null && q.count <= c) &&
1467 <             (!casBarrierStack(q, q.next) || !q.signal())))
1468 <            ensureSync();
1469 <    }
1470 <
1471 <    /**
1472 <     * Waits until event count advances from last value held by
1473 <     * caller, or if excess threads, caller is resumed as spare, or
1474 <     * caller or pool is terminating. Updates caller's event on exit.
1475 <     *
1476 <     * @param w the calling worker thread
1477 <     */
1478 <    final void sync(ForkJoinWorkerThread w) {
1479 <        updateStealCount(w); // Transfer w's count while it is idle
1480 <
1481 <        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1482 <            long prev = w.lastEventCount;
1483 <            WaitQueueNode node = null;
1484 <            WaitQueueNode h;
1485 <            while (eventCount == prev &&
1486 <                   ((h = syncStack) == null || h.count == prev)) {
1487 <                if (node == null)
1488 <                    node = new WaitQueueNode(prev, w);
1489 <                if (casBarrierStack(node.next = h, node)) {
1490 <                    node.awaitSyncRelease(this);
1491 <                    break;
1492 <                }
1493 <            }
1494 <            long ec = ensureSync();
1495 <            if (ec != prev) {
1496 <                w.lastEventCount = ec;
1497 <                break;
1498 <            }
1499 <        }
1500 <    }
1501 <
1502 <    /**
1503 <     * Returns {@code true} if worker waiting on sync can proceed:
1504 <     *  - on signal (thread == null)
1505 <     *  - on event count advance (winning race to notify vs signaller)
1506 <     *  - on interrupt
1507 <     *  - if the first queued node, we find work available
1508 <     * If node was not signalled and event count not advanced on exit,
1509 <     * then we also help advance event count.
1510 <     *
1511 <     * @return {@code true} if node can be released
1512 <     */
1513 <    final boolean syncIsReleasable(WaitQueueNode node) {
1514 <        long prev = node.count;
1515 <        if (!Thread.interrupted() && node.thread != null &&
1516 <            (node.next != null ||
1517 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1518 <            eventCount == prev)
1519 <            return false;
1520 <        if (node.thread != null) {
1521 <            node.thread = null;
1522 <            long ec = eventCount;
1523 <            if (prev <= ec) // help signal
1524 <                casEventCount(ec, ec+1);
1525 <        }
1526 <        return true;
1527 <    }
1528 <
1529 <    /**
1530 <     * Returns {@code true} if a new sync event occurred since last
1531 <     * call to sync or this method, if so, updating caller's count.
1532 <     */
1533 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1534 <        long lc = w.lastEventCount;
1535 <        long ec = ensureSync();
1536 <        if (ec == lc)
1537 <            return false;
1538 <        w.lastEventCount = ec;
1539 <        return true;
1540 <    }
1541 <
1542 <    //  Parallelism maintenance
1543 <
1544 <    /**
1545 <     * Decrements running count; if too low, adds spare.
1546 <     *
1547 <     * Conceptually, all we need to do here is add or resume a
1548 <     * spare thread when one is about to block (and remove or
1549 <     * suspend it later when unblocked -- see suspendIfSpare).
1550 <     * However, implementing this idea requires coping with
1551 <     * several problems: we have imperfect information about the
1552 <     * states of threads. Some count updates can and usually do
1553 <     * lag run state changes, despite arrangements to keep them
1554 <     * accurate (for example, when possible, updating counts
1555 <     * before signalling or resuming), especially when running on
1556 <     * dynamic JVMs that don't optimize the infrequent paths that
1557 <     * update counts. Generating too many threads can make these
1558 <     * problems become worse, because excess threads are more
1559 <     * likely to be context-switched with others, slowing them all
1560 <     * down, especially if there is no work available, so all are
1561 <     * busy scanning or idling.  Also, excess spare threads can
1562 <     * only be suspended or removed when they are idle, not
1563 <     * immediately when they aren't needed. So adding threads will
1564 <     * raise parallelism level for longer than necessary.  Also,
1565 <     * FJ applications often encounter highly transient peaks when
1566 <     * many threads are blocked joining, but for less time than it
1567 <     * takes to create or resume spares.
1568 <     *
1569 <     * @param joinMe if non-null, return early if done
1570 <     * @param maintainParallelism if true, try to stay within
1571 <     * target counts, else create only to avoid starvation
1572 <     * @return true if joinMe known to be done
1573 <     */
1574 <    final boolean preJoin(ForkJoinTask<?> joinMe,
1575 <                          boolean maintainParallelism) {
1576 <        maintainParallelism &= maintainsParallelism; // overrride
1577 <        boolean dec = false;  // true when running count decremented
1578 <        while (spareStack == null || !tryResumeSpare(dec)) {
1579 <            int counts = workerCounts;
1580 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1581 <                if (!needSpare(counts, maintainParallelism))
1582 <                    break;
1583 <                if (joinMe.status < 0)
1584 <                    return true;
1585 <                if (tryAddSpare(counts))
1586 <                    break;
1587 <            }
1588 <        }
1589 <        return false;
1590 <    }
1591 <
1592 <    /**
1593 <     * Same idea as preJoin
1594 <     */
1595 <    final boolean preBlock(ManagedBlocker blocker,
1596 <                           boolean maintainParallelism) {
1597 <        maintainParallelism &= maintainsParallelism;
1598 <        boolean dec = false;
1599 <        while (spareStack == null || !tryResumeSpare(dec)) {
1600 <            int counts = workerCounts;
1601 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1602 <                if (!needSpare(counts, maintainParallelism))
1603 <                    break;
1604 <                if (blocker.isReleasable())
1605 <                    return true;
1606 <                if (tryAddSpare(counts))
1607 <                    break;
1608 <            }
1609 <        }
1610 <        return false;
1611 <    }
1612 <
1613 <    /**
1614 <     * Returns {@code true} if a spare thread appears to be needed.
1615 <     * If maintaining parallelism, returns true when the deficit in
1616 <     * running threads is more than the surplus of total threads, and
1617 <     * there is apparently some work to do.  This self-limiting rule
1618 <     * means that the more threads that have already been added, the
1619 <     * less parallelism we will tolerate before adding another.
1620 <     *
1621 <     * @param counts current worker counts
1622 <     * @param maintainParallelism try to maintain parallelism
1623 <     */
1624 <    private boolean needSpare(int counts, boolean maintainParallelism) {
1625 <        int ps = parallelism;
1626 <        int rc = runningCountOf(counts);
1627 <        int tc = totalCountOf(counts);
1628 <        int runningDeficit = ps - rc;
1629 <        int totalSurplus = tc - ps;
1630 <        return (tc < maxPoolSize &&
1631 <                (rc == 0 || totalSurplus < 0 ||
1632 <                 (maintainParallelism &&
1633 <                  runningDeficit > totalSurplus &&
1634 <                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1635 <    }
1636 <
1637 <    /**
1638 <     * Adds a spare worker if lock available and no more than the
1639 <     * expected numbers of threads exist.
1640 <     *
1641 <     * @return true if successful
1642 <     */
1643 <    private boolean tryAddSpare(int expectedCounts) {
1644 <        final ReentrantLock lock = this.workerLock;
1645 <        int expectedRunning = runningCountOf(expectedCounts);
1646 <        int expectedTotal = totalCountOf(expectedCounts);
1647 <        boolean success = false;
1648 <        boolean locked = false;
1649 <        // confirm counts while locking; CAS after obtaining lock
1650 <        try {
1651 <            for (;;) {
1652 <                int s = workerCounts;
1653 <                int tc = totalCountOf(s);
1654 <                int rc = runningCountOf(s);
1655 <                if (rc > expectedRunning || tc > expectedTotal)
1656 <                    break;
1657 <                if (!locked && !(locked = lock.tryLock()))
1658 <                    break;
1659 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1660 <                    createAndStartSpare(tc);
1661 <                    success = true;
1662 <                    break;
1663 <                }
1664 <            }
1665 <        } finally {
1666 <            if (locked)
1667 <                lock.unlock();
1668 <        }
1669 <        return success;
1670 <    }
1671 <
1672 <    /**
1673 <     * Adds the kth spare worker. On entry, pool counts are already
1674 <     * adjusted to reflect addition.
1675 <     */
1676 <    private void createAndStartSpare(int k) {
1677 <        ForkJoinWorkerThread w = null;
1678 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1679 <        int len = ws.length;
1680 <        // Probably, we can place at slot k. If not, find empty slot
1681 <        if (k < len && ws[k] != null) {
1682 <            for (k = 0; k < len && ws[k] != null; ++k)
1683 <                ;
1684 <        }
1685 <        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1686 <            ws[k] = w;
1687 <            w.start();
1688 <        }
1689 <        else
1690 <            updateWorkerCount(-1); // adjust on failure
1691 <        signalIdleWorkers();
1692 <    }
1693 <
1694 <    /**
1695 <     * Suspends calling thread w if there are excess threads.  Called
1696 <     * only from sync.  Spares are enqueued in a Treiber stack using
1697 <     * the same WaitQueueNodes as barriers.  They are resumed mainly
1698 <     * in preJoin, but are also woken on pool events that require all
1699 <     * threads to check run state.
1700 <     *
1701 <     * @param w the caller
1702 <     */
1703 <    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1704 <        WaitQueueNode node = null;
1705 <        int s;
1706 <        while (parallelism < runningCountOf(s = workerCounts)) {
1707 <            if (node == null)
1708 <                node = new WaitQueueNode(0, w);
1709 <            if (casWorkerCounts(s, s-1)) { // representation-dependent
1710 <                // push onto stack
1711 <                do {} while (!casSpareStack(node.next = spareStack, node));
1712 <                // block until released by resumeSpare
1713 <                node.awaitSpareRelease();
1714 <                return true;
1715 <            }
1716 <        }
1717 <        return false;
1718 <    }
1719 <
1720 <    /**
1721 <     * Tries to pop and resume a spare thread.
1722 <     *
1723 <     * @param updateCount if true, increment running count on success
1724 <     * @return true if successful
1725 <     */
1726 <    private boolean tryResumeSpare(boolean updateCount) {
1727 <        WaitQueueNode q;
1728 <        while ((q = spareStack) != null) {
1729 <            if (casSpareStack(q, q.next)) {
1730 <                if (updateCount)
1731 <                    updateRunningCount(1);
1732 <                q.signal();
1733 <                return true;
1734 <            }
1735 <        }
1736 <        return false;
1737 <    }
1738 <
1739 <    /**
1740 <     * Pops and resumes all spare threads. Same idea as ensureSync.
1741 <     *
1742 <     * @return true if any spares released
1743 <     */
1744 <    private boolean resumeAllSpares() {
1745 <        WaitQueueNode q;
1746 <        while ( (q = spareStack) != null) {
1747 <            if (casSpareStack(q, null)) {
1748 <                do {
1749 <                    updateRunningCount(1);
1750 <                    q.signal();
1751 <                } while ((q = q.next) != null);
1752 <                return true;
1753 <            }
1754 <        }
1755 <        return false;
1756 <    }
1757 <
1758 <    /**
1759 <     * Pops and shuts down excessive spare threads. Call only while
1760 <     * holding lock. This is not guaranteed to eliminate all excess
1761 <     * threads, only those suspended as spares, which are the ones
1762 <     * unlikely to be needed in the future.
1763 <     */
1764 <    private void trimSpares() {
1765 <        int surplus = totalCountOf(workerCounts) - parallelism;
1766 <        WaitQueueNode q;
1767 <        while (surplus > 0 && (q = spareStack) != null) {
1768 <            if (casSpareStack(q, null)) {
1769 <                do {
1770 <                    updateRunningCount(1);
1771 <                    ForkJoinWorkerThread w = q.thread;
1772 <                    if (w != null && surplus > 0 &&
1773 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1774 <                        --surplus;
1775 <                    q.signal();
1776 <                } while ((q = q.next) != null);
1777 <            }
1778 <        }
1824 >        return terminationLatch.await(timeout, unit);
1825      }
1826  
1827      /**
# Line 1858 | Line 1904 | public class ForkJoinPool extends Abstra
1904                                      boolean maintainParallelism)
1905          throws InterruptedException {
1906          Thread t = Thread.currentThread();
1907 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1908 <                             ((ForkJoinWorkerThread) t).pool : null);
1909 <        if (!blocker.isReleasable()) {
1910 <            try {
1911 <                if (pool == null ||
1866 <                    !pool.preBlock(blocker, maintainParallelism))
1867 <                    awaitBlocker(blocker);
1868 <            } finally {
1869 <                if (pool != null)
1870 <                    pool.updateRunningCount(1);
1871 <            }
1872 <        }
1907 >        if (t instanceof ForkJoinWorkerThread)
1908 >            ((ForkJoinWorkerThread) t).pool.
1909 >                doBlock(blocker, maintainParallelism);
1910 >        else
1911 >            awaitBlocker(blocker);
1912      }
1913  
1914 +    /**
1915 +     * Performs Non-FJ blocking
1916 +     */
1917      private static void awaitBlocker(ManagedBlocker blocker)
1918          throws InterruptedException {
1919          do {} while (!blocker.isReleasable() && !blocker.block());
# Line 1892 | Line 1934 | public class ForkJoinPool extends Abstra
1934      // Unsafe mechanics
1935  
1936      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1895    private static final long eventCountOffset =
1896        objectFieldOffset("eventCount", ForkJoinPool.class);
1937      private static final long workerCountsOffset =
1938          objectFieldOffset("workerCounts", ForkJoinPool.class);
1939 <    private static final long runControlOffset =
1940 <        objectFieldOffset("runControl", ForkJoinPool.class);
1941 <    private static final long syncStackOffset =
1942 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1943 <    private static final long spareStackOffset =
1944 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1945 <
1946 <    private boolean casEventCount(long cmp, long val) {
1947 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1908 <    }
1909 <    private boolean casWorkerCounts(int cmp, int val) {
1910 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1911 <    }
1912 <    private boolean casRunControl(int cmp, int val) {
1913 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1914 <    }
1915 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1916 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1917 <    }
1918 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1919 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1920 <    }
1939 >    private static final long runStateOffset =
1940 >        objectFieldOffset("runState", ForkJoinPool.class);
1941 >    private static final long eventCountOffset =
1942 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1943 >    private static final long eventWaitersOffset =
1944 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1945 >    private static final long stealCountOffset =
1946 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1947 >
1948  
1949      private static long objectFieldOffset(String field, Class<?> klazz) {
1950          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines