ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.48 by jsr166, Thu Aug 6 06:41:34 2009 UTC vs.
Revision 1.84 by dl, Sat Nov 13 13:11:51 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.ExecutorService;
17 > import java.util.concurrent.Future;
18 > import java.util.concurrent.RejectedExecutionException;
19 > import java.util.concurrent.RunnableFuture;
20 > import java.util.concurrent.TimeUnit;
21 > import java.util.concurrent.TimeoutException;
22 > import java.util.concurrent.atomic.AtomicInteger;
23   import java.util.concurrent.locks.LockSupport;
24   import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
25  
26   /**
27   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
28   * A {@code ForkJoinPool} provides the entry point for submissions
29 < * from non-{@code ForkJoinTask}s, as well as management and
29 > * from non-{@code ForkJoinTask} clients, as well as management and
30   * monitoring operations.
31   *
32   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 31 | Line 35 | import java.util.concurrent.atomic.Atomi
35   * execute subtasks created by other active tasks (eventually blocking
36   * waiting for work if none exist). This enables efficient processing
37   * when most tasks spawn other subtasks (as do most {@code
38 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
39 < * execution of some plain {@code Runnable}- or {@code Callable}-
40 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
38 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
39 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
40 > * with event-style tasks that are never joined.
41   *
42   * <p>A {@code ForkJoinPool} is constructed with a given target
43   * parallelism level; by default, equal to the number of available
44 < * processors. Unless configured otherwise via {@link
45 < * #setMaintainsParallelism}, the pool attempts to maintain this
46 < * number of active (or available) threads by dynamically adding,
47 < * suspending, or resuming internal worker threads, even if some tasks
48 < * are stalled waiting to join others. However, no such adjustments
49 < * are performed in the face of blocked IO or other unmanaged
50 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
44 > * processors. The pool attempts to maintain enough active (or
45 > * available) threads by dynamically adding, suspending, or resuming
46 > * internal worker threads, even if some tasks are stalled waiting to
47 > * join others. However, no such adjustments are guaranteed in the
48 > * face of blocked IO or other unmanaged synchronization. The nested
49 > * {@link ManagedBlocker} interface enables extension of the kinds of
50 > * synchronization accommodated.
51   *
52   * <p>In addition to execution and lifecycle control methods, this
53   * class provides status check methods (for example
# Line 62 | Line 56 | import java.util.concurrent.atomic.Atomi
56   * {@link #toString} returns indications of pool state in a
57   * convenient form for informal monitoring.
58   *
59 + * <p> As is the case with other ExecutorServices, there are three
60 + * main task execution methods summarized in the following
61 + * table. These are designed to be used by clients not already engaged
62 + * in fork/join computations in the current pool.  The main forms of
63 + * these methods accept instances of {@code ForkJoinTask}, but
64 + * overloaded forms also allow mixed execution of plain {@code
65 + * Runnable}- or {@code Callable}- based activities as well.  However,
66 + * tasks that are already executing in a pool should normally
67 + * <em>NOT</em> use these pool execution methods, but instead use the
68 + * within-computation forms listed in the table.
69 + *
70 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
71 + *  <tr>
72 + *    <td></td>
73 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
74 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Arrange async execution</td>
78 + *    <td> {@link #execute(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#fork}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Await and obtain result</td>
83 + *    <td> {@link #invoke(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#invoke}</td>
85 + *  </tr>
86 + *  <tr>
87 + *    <td> <b>Arrange exec and obtain Future</td>
88 + *    <td> {@link #submit(ForkJoinTask)}</td>
89 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
90 + *  </tr>
91 + * </table>
92 + *
93   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
94   * used for all parallel task execution in a program or subsystem.
95   * Otherwise, use would not usually outweigh the construction and
# Line 86 | Line 114 | import java.util.concurrent.atomic.Atomi
114   * {@code IllegalArgumentException}.
115   *
116   * <p>This implementation rejects submitted tasks (that is, by throwing
117 < * {@link RejectedExecutionException}) only when the pool is shut down.
117 > * {@link RejectedExecutionException}) only when the pool is shut down
118 > * or internal resources have been exhausted.
119   *
120   * @since 1.7
121   * @author Doug Lea
# Line 94 | Line 123 | import java.util.concurrent.atomic.Atomi
123   public class ForkJoinPool extends AbstractExecutorService {
124  
125      /*
126 <     * See the extended comments interspersed below for design,
127 <     * rationale, and walkthroughs.
126 >     * Implementation Overview
127 >     *
128 >     * This class provides the central bookkeeping and control for a
129 >     * set of worker threads: Submissions from non-FJ threads enter
130 >     * into a submission queue. Workers take these tasks and typically
131 >     * split them into subtasks that may be stolen by other workers.
132 >     * The main work-stealing mechanics implemented in class
133 >     * ForkJoinWorkerThread give first priority to processing tasks
134 >     * from their own queues (LIFO or FIFO, depending on mode), then
135 >     * to randomized FIFO steals of tasks in other worker queues, and
136 >     * lastly to new submissions. These mechanics do not consider
137 >     * affinities, loads, cache localities, etc, so rarely provide the
138 >     * best possible performance on a given machine, but portably
139 >     * provide good throughput by averaging over these factors.
140 >     * (Further, even if we did try to use such information, we do not
141 >     * usually have a basis for exploiting it. For example, some sets
142 >     * of tasks profit from cache affinities, but others are harmed by
143 >     * cache pollution effects.)
144 >     *
145 >     * Beyond work-stealing support and essential bookkeeping, the
146 >     * main responsibility of this framework is to take actions when
147 >     * one worker is waiting to join a task stolen (or always held by)
148 >     * another.  Because we are multiplexing many tasks on to a pool
149 >     * of workers, we can't just let them block (as in Thread.join).
150 >     * We also cannot just reassign the joiner's run-time stack with
151 >     * another and replace it later, which would be a form of
152 >     * "continuation", that even if possible is not necessarily a good
153 >     * idea. Given that the creation costs of most threads on most
154 >     * systems mainly surrounds setting up runtime stacks, thread
155 >     * creation and switching is usually not much more expensive than
156 >     * stack creation and switching, and is more flexible). Instead we
157 >     * combine two tactics:
158 >     *
159 >     *   Helping: Arranging for the joiner to execute some task that it
160 >     *      would be running if the steal had not occurred.  Method
161 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
162 >     *      links to try to find such a task.
163 >     *
164 >     *   Compensating: Unless there are already enough live threads,
165 >     *      method helpMaintainParallelism() may create or
166 >     *      re-activate a spare thread to compensate for blocked
167 >     *      joiners until they unblock.
168 >     *
169 >     * It is impossible to keep exactly the target (parallelism)
170 >     * number of threads running at any given time.  Determining
171 >     * existence of conservatively safe helping targets, the
172 >     * availability of already-created spares, and the apparent need
173 >     * to create new spares are all racy and require heuristic
174 >     * guidance, so we rely on multiple retries of each.  Compensation
175 >     * occurs in slow-motion. It is triggered only upon timeouts of
176 >     * Object.wait used for joins. This reduces poor decisions that
177 >     * would otherwise be made when threads are waiting for others
178 >     * that are stalled because of unrelated activities such as
179 >     * garbage collection.
180 >     *
181 >     * The ManagedBlocker extension API can't use helping so relies
182 >     * only on compensation in method awaitBlocker.
183 >     *
184 >     * The main throughput advantages of work-stealing stem from
185 >     * decentralized control -- workers mostly steal tasks from each
186 >     * other. We do not want to negate this by creating bottlenecks
187 >     * implementing other management responsibilities. So we use a
188 >     * collection of techniques that avoid, reduce, or cope well with
189 >     * contention. These entail several instances of bit-packing into
190 >     * CASable fields to maintain only the minimally required
191 >     * atomicity. To enable such packing, we restrict maximum
192 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
193 >     * unbalanced increments and decrements) to fit into a 16 bit
194 >     * field, which is far in excess of normal operating range.  Even
195 >     * though updates to some of these bookkeeping fields do sometimes
196 >     * contend with each other, they don't normally cache-contend with
197 >     * updates to others enough to warrant memory padding or
198 >     * isolation. So they are all held as fields of ForkJoinPool
199 >     * objects.  The main capabilities are as follows:
200 >     *
201 >     * 1. Creating and removing workers. Workers are recorded in the
202 >     * "workers" array. This is an array as opposed to some other data
203 >     * structure to support index-based random steals by workers.
204 >     * Updates to the array recording new workers and unrecording
205 >     * terminated ones are protected from each other by a lock
206 >     * (workerLock) but the array is otherwise concurrently readable,
207 >     * and accessed directly by workers. To simplify index-based
208 >     * operations, the array size is always a power of two, and all
209 >     * readers must tolerate null slots. Currently, all worker thread
210 >     * creation is on-demand, triggered by task submissions,
211 >     * replacement of terminated workers, and/or compensation for
212 >     * blocked workers. However, all other support code is set up to
213 >     * work with other policies.
214 >     *
215 >     * To ensure that we do not hold on to worker references that
216 >     * would prevent GC, ALL accesses to workers are via indices into
217 >     * the workers array (which is one source of some of the unusual
218 >     * code constructions here). In essence, the workers array serves
219 >     * as a WeakReference mechanism. Thus for example the event queue
220 >     * stores worker indices, not worker references. Access to the
221 >     * workers in associated methods (for example releaseEventWaiters)
222 >     * must both index-check and null-check the IDs. All such accesses
223 >     * ignore bad IDs by returning out early from what they are doing,
224 >     * since this can only be associated with shutdown, in which case
225 >     * it is OK to give up. On termination, we just clobber these
226 >     * data structures without trying to use them.
227 >     *
228 >     * 2. Bookkeeping for dynamically adding and removing workers. We
229 >     * aim to approximately maintain the given level of parallelism.
230 >     * When some workers are known to be blocked (on joins or via
231 >     * ManagedBlocker), we may create or resume others to take their
232 >     * place until they unblock (see below). Implementing this
233 >     * requires counts of the number of "running" threads (i.e., those
234 >     * that are neither blocked nor artificially suspended) as well as
235 >     * the total number.  These two values are packed into one field,
236 >     * "workerCounts" because we need accurate snapshots when deciding
237 >     * to create, resume or suspend.  Note however that the
238 >     * correspondence of these counts to reality is not guaranteed. In
239 >     * particular updates for unblocked threads may lag until they
240 >     * actually wake up.
241 >     *
242 >     * 3. Maintaining global run state. The run state of the pool
243 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
244 >     * those in other Executor implementations, as well as a count of
245 >     * "active" workers -- those that are, or soon will be, or
246 >     * recently were executing tasks. The runLevel and active count
247 >     * are packed together in order to correctly trigger shutdown and
248 >     * termination. Without care, active counts can be subject to very
249 >     * high contention.  We substantially reduce this contention by
250 >     * relaxing update rules.  A worker must claim active status
251 >     * prospectively, by activating if it sees that a submitted or
252 >     * stealable task exists (it may find after activating that the
253 >     * task no longer exists). It stays active while processing this
254 >     * task (if it exists) and any other local subtasks it produces,
255 >     * until it cannot find any other tasks. It then tries
256 >     * inactivating (see method preStep), but upon update contention
257 >     * instead scans for more tasks, later retrying inactivation if it
258 >     * doesn't find any.
259 >     *
260 >     * 4. Managing idle workers waiting for tasks. We cannot let
261 >     * workers spin indefinitely scanning for tasks when none are
262 >     * available. On the other hand, we must quickly prod them into
263 >     * action when new tasks are submitted or generated.  We
264 >     * park/unpark these idle workers using an event-count scheme.
265 >     * Field eventCount is incremented upon events that may enable
266 >     * workers that previously could not find a task to now find one:
267 >     * Submission of a new task to the pool, or another worker pushing
268 >     * a task onto a previously empty queue.  (We also use this
269 >     * mechanism for configuration and termination actions that
270 >     * require wakeups of idle workers).  Each worker maintains its
271 >     * last known event count, and blocks when a scan for work did not
272 >     * find a task AND its lastEventCount matches the current
273 >     * eventCount. Waiting idle workers are recorded in a variant of
274 >     * Treiber stack headed by field eventWaiters which, when nonzero,
275 >     * encodes the thread index and count awaited for by the worker
276 >     * thread most recently calling eventSync. This thread in turn has
277 >     * a record (field nextEventWaiter) for the next waiting worker.
278 >     * In addition to allowing simpler decisions about need for
279 >     * wakeup, the event count bits in eventWaiters serve the role of
280 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
281 >     * released threads also try to release at most two others.  The
282 >     * net effect is a tree-like diffusion of signals, where released
283 >     * threads (and possibly others) help with unparks.  To further
284 >     * reduce contention effects a bit, failed CASes to increment
285 >     * field eventCount are tolerated without retries in signalWork.
286 >     * Conceptually they are merged into the same event, which is OK
287 >     * when their only purpose is to enable workers to scan for work.
288 >     *
289 >     * 5. Managing suspension of extra workers. When a worker notices
290 >     * (usually upon timeout of a wait()) that there are too few
291 >     * running threads, we may create a new thread to maintain
292 >     * parallelism level, or at least avoid starvation. Usually, extra
293 >     * threads are needed for only very short periods, yet join
294 >     * dependencies are such that we sometimes need them in
295 >     * bursts. Rather than create new threads each time this happens,
296 >     * we suspend no-longer-needed extra ones as "spares". For most
297 >     * purposes, we don't distinguish "extra" spare threads from
298 >     * normal "core" threads: On each call to preStep (the only point
299 >     * at which we can do this) a worker checks to see if there are
300 >     * now too many running workers, and if so, suspends itself.
301 >     * Method helpMaintainParallelism looks for suspended threads to
302 >     * resume before considering creating a new replacement. The
303 >     * spares themselves are encoded on another variant of a Treiber
304 >     * Stack, headed at field "spareWaiters".  Note that the use of
305 >     * spares is intrinsically racy.  One thread may become a spare at
306 >     * about the same time as another is needlessly being created. We
307 >     * counteract this and related slop in part by requiring resumed
308 >     * spares to immediately recheck (in preStep) to see whether they
309 >     * should re-suspend.
310 >     *
311 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
312 >     * shed unused workers: The oldest (first) event queue waiter uses
313 >     * a timed rather than hard wait. When this wait times out without
314 >     * a normal wakeup, it tries to shutdown any one (for convenience
315 >     * the newest) other spare or event waiter via
316 >     * tryShutdownUnusedWorker. This eventually reduces the number of
317 >     * worker threads to a minimum of one after a long enough period
318 >     * without use.
319 >     *
320 >     * 7. Deciding when to create new workers. The main dynamic
321 >     * control in this class is deciding when to create extra threads
322 >     * in method helpMaintainParallelism. We would like to keep
323 >     * exactly #parallelism threads running, which is an impossible
324 >     * task. We always need to create one when the number of running
325 >     * threads would become zero and all workers are busy. Beyond
326 >     * this, we must rely on heuristics that work well in the
327 >     * presence of transient phenomena such as GC stalls, dynamic
328 >     * compilation, and wake-up lags. These transients are extremely
329 >     * common -- we are normally trying to fully saturate the CPUs on
330 >     * a machine, so almost any activity other than running tasks
331 >     * impedes accuracy. Our main defense is to allow parallelism to
332 >     * lapse for a while during joins, and use a timeout to see if,
333 >     * after the resulting settling, there is still a need for
334 >     * additional workers.  This also better copes with the fact that
335 >     * some of the methods in this class tend to never become compiled
336 >     * (but are interpreted), so some components of the entire set of
337 >     * controls might execute 100 times faster than others. And
338 >     * similarly for cases where the apparent lack of work is just due
339 >     * to GC stalls and other transient system activity.
340 >     *
341 >     * Beware that there is a lot of representation-level coupling
342 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
343 >     * ForkJoinTask.  For example, direct access to "workers" array by
344 >     * workers, and direct access to ForkJoinTask.status by both
345 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
346 >     * trying to reduce this, since any associated future changes in
347 >     * representations will need to be accompanied by algorithmic
348 >     * changes anyway.
349 >     *
350 >     * Style notes: There are lots of inline assignments (of form
351 >     * "while ((local = field) != 0)") which are usually the simplest
352 >     * way to ensure the required read orderings (which are sometimes
353 >     * critical). Also several occurrences of the unusual "do {}
354 >     * while (!cas...)" which is the simplest way to force an update of
355 >     * a CAS'ed variable. There are also other coding oddities that
356 >     * help some methods perform reasonably even when interpreted (not
357 >     * compiled), at the expense of some messy constructions that
358 >     * reduce byte code counts.
359 >     *
360 >     * The order of declarations in this file is: (1) statics (2)
361 >     * fields (along with constants used when unpacking some of them)
362 >     * (3) internal control methods (4) callbacks and other support
363 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
364 >     * methods (plus a few little helpers).
365       */
366  
101    /** Mask for packing and unpacking shorts */
102    private static final int  shortMask = 0xffff;
103
104    /** Max pool size -- must be a power of two minus 1 */
105    private static final int MAX_THREADS =  0x7FFF;
106
367      /**
368       * Factory for creating new {@link ForkJoinWorkerThread}s.
369       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 124 | Line 384 | public class ForkJoinPool extends Abstra
384       * Default ForkJoinWorkerThreadFactory implementation; creates a
385       * new ForkJoinWorkerThread.
386       */
387 <    static class  DefaultForkJoinWorkerThreadFactory
387 >    static class DefaultForkJoinWorkerThreadFactory
388          implements ForkJoinWorkerThreadFactory {
389          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
390 <            try {
131 <                return new ForkJoinWorkerThread(pool);
132 <            } catch (OutOfMemoryError oom)  {
133 <                return null;
134 <            }
390 >            return new ForkJoinWorkerThread(pool);
391          }
392      }
393  
# Line 167 | Line 423 | public class ForkJoinPool extends Abstra
423          new AtomicInteger();
424  
425      /**
426 <     * Array holding all worker threads in the pool. Initialized upon
427 <     * first use. Array size must be a power of two.  Updates and
428 <     * replacements are protected by workerLock, but it is always kept
429 <     * in a consistent enough state to be randomly accessed without
430 <     * locking by workers performing work-stealing.
426 >     * The time to block in a join (see awaitJoin) before checking if
427 >     * a new worker should be (re)started to maintain parallelism
428 >     * level. The value should be short enough to maintain global
429 >     * responsiveness and progress but long enough to avoid
430 >     * counterproductive firings during GC stalls or unrelated system
431 >     * activity, and to not bog down systems with continual re-firings
432 >     * on GCs or legitimately long waits.
433 >     */
434 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
435 >
436 >    /**
437 >     * The wakeup interval (in nanoseconds) for the oldest worker
438 >     * waiting for an event to invoke tryShutdownUnusedWorker to
439 >     * shrink the number of workers.  The exact value does not matter
440 >     * too much. It must be short enough to release resources during
441 >     * sustained periods of idleness, but not so short that threads
442 >     * are continually re-created.
443 >     */
444 >    private static final long SHRINK_RATE_NANOS =
445 >        30L * 1000L * 1000L * 1000L; // 2 per minute
446 >
447 >    /**
448 >     * Absolute bound for parallelism level. Twice this number plus
449 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
450 >     * word-packing for some counts and indices.
451 >     */
452 >    private static final int MAX_WORKERS   = 0x7fff;
453 >
454 >    /**
455 >     * Array holding all worker threads in the pool.  Array size must
456 >     * be a power of two.  Updates and replacements are protected by
457 >     * workerLock, but the array is always kept in a consistent enough
458 >     * state to be randomly accessed without locking by workers
459 >     * performing work-stealing, as well as other traversal-based
460 >     * methods in this class. All readers must tolerate that some
461 >     * array slots may be null.
462       */
463      volatile ForkJoinWorkerThread[] workers;
464  
465      /**
466 <     * Lock protecting access to workers.
466 >     * Queue for external submissions.
467       */
468 <    private final ReentrantLock workerLock;
468 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
469  
470      /**
471 <     * Condition for awaitTermination.
471 >     * Lock protecting updates to workers array.
472       */
473 <    private final Condition termination;
473 >    private final ReentrantLock workerLock;
474  
475      /**
476 <     * The uncaught exception handler used when any worker
190 <     * abruptly terminates
476 >     * Latch released upon termination.
477       */
478 <    private Thread.UncaughtExceptionHandler ueh;
478 >    private final Phaser termination;
479  
480      /**
481       * Creation factory for worker threads.
# Line 197 | Line 483 | public class ForkJoinPool extends Abstra
483      private final ForkJoinWorkerThreadFactory factory;
484  
485      /**
486 <     * Head of stack of threads that were created to maintain
487 <     * parallelism when other threads blocked, but have since
202 <     * suspended when the parallelism level rose.
486 >     * Sum of per-thread steal counts, updated only when threads are
487 >     * idle or terminating.
488       */
489 <    private volatile WaitQueueNode spareStack;
489 >    private volatile long stealCount;
490  
491      /**
492 <     * Sum of per-thread steal counts, updated only when threads are
493 <     * idle or terminating.
492 >     * Encoded record of top of Treiber stack of threads waiting for
493 >     * events. The top 32 bits contain the count being waited for. The
494 >     * bottom 16 bits contains one plus the pool index of waiting
495 >     * worker thread. (Bits 16-31 are unused.)
496       */
497 <    private final AtomicLong stealCount;
497 >    private volatile long eventWaiters;
498 >
499 >    private static final int  EVENT_COUNT_SHIFT = 32;
500 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
501  
502      /**
503 <     * Queue for external submissions.
503 >     * A counter for events that may wake up worker threads:
504 >     *   - Submission of a new task to the pool
505 >     *   - A worker pushing a task on an empty queue
506 >     *   - termination
507       */
508 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
508 >    private volatile int eventCount;
509  
510      /**
511 <     * Head of Treiber stack for barrier sync. See below for explanation.
511 >     * Encoded record of top of Treiber stack of spare threads waiting
512 >     * for resumption. The top 16 bits contain an arbitrary count to
513 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
514 >     * index of waiting worker thread.
515       */
516 <    private volatile WaitQueueNode syncStack;
516 >    private volatile int spareWaiters;
517 >
518 >    private static final int SPARE_COUNT_SHIFT = 16;
519 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
520  
521      /**
522 <     * The count for event barrier
522 >     * Lifecycle control. The low word contains the number of workers
523 >     * that are (probably) executing tasks. This value is atomically
524 >     * incremented before a worker gets a task to run, and decremented
525 >     * when a worker has no tasks and cannot find any.  Bits 16-18
526 >     * contain runLevel value. When all are zero, the pool is
527 >     * running. Level transitions are monotonic (running -> shutdown
528 >     * -> terminating -> terminated) so each transition adds a bit.
529 >     * These are bundled together to ensure consistent read for
530 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
531 >     * and active threads is zero).
532 >     *
533 >     * Notes: Most direct CASes are dependent on these bitfield
534 >     * positions.  Also, this field is non-private to enable direct
535 >     * performance-sensitive CASes in ForkJoinWorkerThread.
536       */
537 <    private volatile long eventCount;
537 >    volatile int runState;
538 >
539 >    // Note: The order among run level values matters.
540 >    private static final int RUNLEVEL_SHIFT     = 16;
541 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
542 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
543 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
544 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
545 >
546 >    /**
547 >     * Holds number of total (i.e., created and not yet terminated)
548 >     * and running (i.e., not blocked on joins or other managed sync)
549 >     * threads, packed together to ensure consistent snapshot when
550 >     * making decisions about creating and suspending spare
551 >     * threads. Updated only by CAS. Note that adding a new worker
552 >     * requires incrementing both counts, since workers start off in
553 >     * running state.
554 >     */
555 >    private volatile int workerCounts;
556 >
557 >    private static final int TOTAL_COUNT_SHIFT  = 16;
558 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
559 >    private static final int ONE_RUNNING        = 1;
560 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
561 >
562 >    /**
563 >     * The target parallelism level.
564 >     * Accessed directly by ForkJoinWorkerThreads.
565 >     */
566 >    final int parallelism;
567 >
568 >    /**
569 >     * True if use local fifo, not default lifo, for local polling
570 >     * Read by, and replicated by ForkJoinWorkerThreads
571 >     */
572 >    final boolean locallyFifo;
573 >
574 >    /**
575 >     * The uncaught exception handler used when any worker abruptly
576 >     * terminates.
577 >     */
578 >    private final Thread.UncaughtExceptionHandler ueh;
579  
580      /**
581       * Pool number, just for assigning useful names to worker threads
582       */
583      private final int poolNumber;
584  
585 +    // Utilities for CASing fields. Note that most of these
586 +    // are usually manually inlined by callers
587 +
588      /**
589 <     * The maximum allowed pool size
589 >     * Increments running count part of workerCounts
590       */
591 <    private volatile int maxPoolSize;
591 >    final void incrementRunningCount() {
592 >        int c;
593 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
594 >                                               c = workerCounts,
595 >                                               c + ONE_RUNNING));
596 >    }
597  
598      /**
599 <     * The desired parallelism level, updated only under workerLock.
599 >     * Tries to decrement running count unless already zero
600       */
601 <    private volatile int parallelism;
601 >    final boolean tryDecrementRunningCount() {
602 >        int wc = workerCounts;
603 >        if ((wc & RUNNING_COUNT_MASK) == 0)
604 >            return false;
605 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
606 >                                        wc, wc - ONE_RUNNING);
607 >    }
608  
609      /**
610 <     * True if use local fifo, not default lifo, for local polling
610 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
611 >     * (rarely) necessary when other count updates lag.
612 >     *
613 >     * @param dr -- either zero or ONE_RUNNING
614 >     * @param dt -- either zero or ONE_TOTAL
615       */
616 <    private volatile boolean locallyFifo;
616 >    private void decrementWorkerCounts(int dr, int dt) {
617 >        for (;;) {
618 >            int wc = workerCounts;
619 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
620 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
621 >                if ((runState & TERMINATED) != 0)
622 >                    return; // lagging termination on a backout
623 >                Thread.yield();
624 >            }
625 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
626 >                                         wc, wc - (dr + dt)))
627 >                return;
628 >        }
629 >    }
630  
631      /**
632 <     * Holds number of total (i.e., created and not yet terminated)
633 <     * and running (i.e., not blocked on joins or other managed sync)
250 <     * threads, packed into one int to ensure consistent snapshot when
251 <     * making decisions about creating and suspending spare
252 <     * threads. Updated only by CAS.  Note: CASes in
253 <     * updateRunningCount and preJoin assume that running active count
254 <     * is in low word, so need to be modified if this changes.
632 >     * Tries decrementing active count; fails on contention.
633 >     * Called when workers cannot find tasks to run.
634       */
635 <    private volatile int workerCounts;
635 >    final boolean tryDecrementActiveCount() {
636 >        int c;
637 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
638 >                                        c = runState, c - 1);
639 >    }
640 >
641 >    /**
642 >     * Advances to at least the given level. Returns true if not
643 >     * already in at least the given level.
644 >     */
645 >    private boolean advanceRunLevel(int level) {
646 >        for (;;) {
647 >            int s = runState;
648 >            if ((s & level) != 0)
649 >                return false;
650 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
651 >                return true;
652 >        }
653 >    }
654 >
655 >    // workers array maintenance
656 >
657 >    /**
658 >     * Records and returns a workers array index for new worker.
659 >     */
660 >    private int recordWorker(ForkJoinWorkerThread w) {
661 >        // Try using slot totalCount-1. If not available, scan and/or resize
662 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
663 >        final ReentrantLock lock = this.workerLock;
664 >        lock.lock();
665 >        try {
666 >            ForkJoinWorkerThread[] ws = workers;
667 >            int n = ws.length;
668 >            if (k < 0 || k >= n || ws[k] != null) {
669 >                for (k = 0; k < n && ws[k] != null; ++k)
670 >                    ;
671 >                if (k == n)
672 >                    ws = Arrays.copyOf(ws, n << 1);
673 >            }
674 >            ws[k] = w;
675 >            workers = ws; // volatile array write ensures slot visibility
676 >        } finally {
677 >            lock.unlock();
678 >        }
679 >        return k;
680 >    }
681 >
682 >    /**
683 >     * Nulls out record of worker in workers array.
684 >     */
685 >    private void forgetWorker(ForkJoinWorkerThread w) {
686 >        int idx = w.poolIndex;
687 >        // Locking helps method recordWorker avoid unnecessary expansion
688 >        final ReentrantLock lock = this.workerLock;
689 >        lock.lock();
690 >        try {
691 >            ForkJoinWorkerThread[] ws = workers;
692 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
693 >                ws[idx] = null;
694 >        } finally {
695 >            lock.unlock();
696 >        }
697 >    }
698 >
699 >    /**
700 >     * Final callback from terminating worker.  Removes record of
701 >     * worker from array, and adjusts counts. If pool is shutting
702 >     * down, tries to complete termination.
703 >     *
704 >     * @param w the worker
705 >     */
706 >    final void workerTerminated(ForkJoinWorkerThread w) {
707 >        forgetWorker(w);
708 >        decrementWorkerCounts(w.isTrimmed() ? 0 : ONE_RUNNING, ONE_TOTAL);
709 >        while (w.stealCount != 0) // collect final count
710 >            tryAccumulateStealCount(w);
711 >        tryTerminate(false);
712 >    }
713  
714 <    private static int totalCountOf(int s)           { return s >>> 16;  }
259 <    private static int runningCountOf(int s)         { return s & shortMask; }
260 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
714 >    // Waiting for and signalling events
715  
716      /**
717 <     * Adds delta (which may be negative) to running count.  This must
718 <     * be called before (with negative arg) and after (with positive)
719 <     * any managed synchronization (i.e., mainly, joins).
717 >     * Releases workers blocked on a count not equal to current count.
718 >     * Normally called after precheck that eventWaiters isn't zero to
719 >     * avoid wasted array checks. Gives up upon a change in count or
720 >     * upon releasing two workers, letting others take over.
721 >     */
722 >    private void releaseEventWaiters() {
723 >        ForkJoinWorkerThread[] ws = workers;
724 >        int n = ws.length;
725 >        long h = eventWaiters;
726 >        int ec = eventCount;
727 >        boolean releasedOne = false;
728 >        ForkJoinWorkerThread w; int id;
729 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
730 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
731 >               id < n && (w = ws[id]) != null) {
732 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
733 >                                          h,  w.nextWaiter)) {
734 >                LockSupport.unpark(w);
735 >                if (releasedOne) // exit on second release
736 >                    break;
737 >                releasedOne = true;
738 >            }
739 >            if (eventCount != ec)
740 >                break;
741 >            h = eventWaiters;
742 >        }
743 >    }
744 >
745 >    /**
746 >     * Tries to advance eventCount and releases waiters. Called only
747 >     * from workers.
748 >     */
749 >    final void signalWork() {
750 >        int c; // try to increment event count -- CAS failure OK
751 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
752 >        if (eventWaiters != 0L)
753 >            releaseEventWaiters();
754 >    }
755 >
756 >    /**
757 >     * Adds the given worker to event queue and blocks until
758 >     * terminating or event count advances from the given value
759       *
760 <     * @param delta the number to add
760 >     * @param w the calling worker thread
761 >     * @param ec the count
762       */
763 <    final void updateRunningCount(int delta) {
764 <        int s;
765 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
763 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
764 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
765 >        long h;
766 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
767 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
768 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
769 >               eventCount == ec) {
770 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
771 >                                          w.nextWaiter = h, nh)) {
772 >                awaitEvent(w, ec);
773 >                break;
774 >            }
775 >        }
776      }
777  
778      /**
779 <     * Adds delta (which may be negative) to both total and running
780 <     * count.  This must be called upon creation and termination of
781 <     * worker threads.
779 >     * Blocks the given worker (that has already been entered as an
780 >     * event waiter) until terminating or event count advances from
781 >     * the given value. The oldest (first) waiter uses a timed wait to
782 >     * occasionally one-by-one shrink the number of workers (to a
783 >     * minimum of one) if the pool has not been used for extended
784 >     * periods.
785       *
786 <     * @param delta the number to add
786 >     * @param w the calling worker thread
787 >     * @param ec the count
788       */
789 <    private void updateWorkerCount(int delta) {
790 <        int d = delta + (delta << 16); // add to both lo and hi parts
791 <        int s;
792 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
789 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
790 >        while (eventCount == ec) {
791 >            if (tryAccumulateStealCount(w)) { // transfer while idle
792 >                boolean untimed = (w.nextWaiter != 0L ||
793 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
794 >                long startTime = untimed ? 0 : System.nanoTime();
795 >                Thread.interrupted();         // clear/ignore interrupt
796 >                if (eventCount != ec || w.isTerminating())
797 >                    break;                    // recheck after clear
798 >                if (untimed)
799 >                    LockSupport.park(w);
800 >                else {
801 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
802 >                    if (eventCount != ec || w.isTerminating())
803 >                        break;
804 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
805 >                        tryShutdownUnusedWorker(ec);
806 >                }
807 >            }
808 >        }
809      }
810  
811 +    // Maintaining parallelism
812 +
813      /**
814 <     * Lifecycle control. High word contains runState, low word
289 <     * contains the number of workers that are (probably) executing
290 <     * tasks. This value is atomically incremented before a worker
291 <     * gets a task to run, and decremented when worker has no tasks
292 <     * and cannot find any. These two fields are bundled together to
293 <     * support correct termination triggering.  Note: activeCount
294 <     * CAS'es cheat by assuming active count is in low word, so need
295 <     * to be modified if this changes
814 >     * Pushes worker onto the spare stack.
815       */
816 <    private volatile int runControl;
816 >    final void pushSpare(ForkJoinWorkerThread w) {
817 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
818 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
819 >                                               w.nextSpare = spareWaiters,ns));
820 >    }
821  
822 <    // RunState values. Order among values matters
823 <    private static final int RUNNING     = 0;
824 <    private static final int SHUTDOWN    = 1;
825 <    private static final int TERMINATING = 2;
826 <    private static final int TERMINATED  = 3;
822 >    /**
823 >     * Tries (once) to resume a spare if the number of running
824 >     * threads is less than target.
825 >     */
826 >    private void tryResumeSpare() {
827 >        int sw, id;
828 >        ForkJoinWorkerThread[] ws = workers;
829 >        int n = ws.length;
830 >        ForkJoinWorkerThread w;
831 >        if ((sw = spareWaiters) != 0 &&
832 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
833 >            id < n && (w = ws[id]) != null &&
834 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
835 >            spareWaiters == sw &&
836 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
837 >                                     sw, w.nextSpare)) {
838 >            int c; // increment running count before resume
839 >            do {} while (!UNSAFE.compareAndSwapInt
840 >                         (this, workerCountsOffset,
841 >                          c = workerCounts, c + ONE_RUNNING));
842 >            if (w.tryUnsuspend())
843 >                LockSupport.unpark(w);
844 >            else   // back out if w was shutdown
845 >                decrementWorkerCounts(ONE_RUNNING, 0);
846 >        }
847 >    }
848  
849 <    private static int runStateOf(int c)             { return c >>> 16; }
850 <    private static int activeCountOf(int c)          { return c & shortMask; }
851 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
849 >    /**
850 >     * Tries to increase the number of running workers if below target
851 >     * parallelism: If a spare exists tries to resume it via
852 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
853 >     * existing workers are busy, adds a new worker. In all cases also
854 >     * helps wake up releasable workers waiting for work.
855 >     */
856 >    private void helpMaintainParallelism() {
857 >        int pc = parallelism;
858 >        int wc, rs, tc;
859 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
860 >               (rs = runState) < TERMINATING) {
861 >            if (spareWaiters != 0)
862 >                tryResumeSpare();
863 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
864 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
865 >                break;   // enough total
866 >            else if (runState == rs && workerCounts == wc &&
867 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
868 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
869 >                ForkJoinWorkerThread w = null;
870 >                Throwable fail = null;
871 >                try {
872 >                    w = factory.newThread(this);
873 >                } catch (Throwable ex) {
874 >                    fail = ex;
875 >                }
876 >                if (w == null) { // null or exceptional factory return
877 >                    decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
878 >                    tryTerminate(false); // handle failure during shutdown
879 >                    // If originating from an external caller,
880 >                    // propagate exception, else ignore
881 >                    if (fail != null && runState < TERMINATING &&
882 >                        !(Thread.currentThread() instanceof
883 >                          ForkJoinWorkerThread))
884 >                        UNSAFE.throwException(fail);
885 >                    break;
886 >                }
887 >                w.start(recordWorker(w), ueh);
888 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
889 >                    int c; // advance event count
890 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
891 >                                             c = eventCount, c+1);
892 >                    break; // add at most one unless total below target
893 >                }
894 >            }
895 >        }
896 >        if (eventWaiters != 0L)
897 >            releaseEventWaiters();
898 >    }
899  
900      /**
901 <     * Tries incrementing active count; fails on contention.
902 <     * Called by workers before/during executing tasks.
901 >     * Callback from the oldest waiter in awaitEvent waking up after a
902 >     * period of non-use. If all workers are idle, tries (once) to
903 >     * shutdown an event waiter or a spare, if one exists. Note that
904 >     * we don't need CAS or locks here because the method is called
905 >     * only from one thread occasionally waking (and even misfires are
906 >     * OK). Note that until the shutdown worker fully terminates,
907 >     * workerCounts will overestimate total count, which is tolerable.
908       *
909 <     * @return true on success
909 >     * @param ec the event count waited on by caller (to abort
910 >     * attempt if count has since changed).
911       */
912 <    final boolean tryIncrementActiveCount() {
913 <        int c = runControl;
914 <        return casRunControl(c, c+1);
912 >    private void tryShutdownUnusedWorker(int ec) {
913 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
914 >            ForkJoinWorkerThread[] ws = workers;
915 >            int n = ws.length;
916 >            ForkJoinWorkerThread w = null;
917 >            boolean shutdown = false;
918 >            int sw;
919 >            long h;
920 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
921 >                int id = (sw & SPARE_ID_MASK) - 1;
922 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
923 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
924 >                                             sw, w.nextSpare))
925 >                    shutdown = true;
926 >            }
927 >            else if ((h = eventWaiters) != 0L) {
928 >                long nh;
929 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
930 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
931 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
932 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
933 >                    shutdown = true;
934 >            }
935 >            if (w != null && shutdown) {
936 >                w.shutdown();
937 >                LockSupport.unpark(w);
938 >            }
939 >        }
940 >        releaseEventWaiters(); // in case of interference
941      }
942  
943      /**
944 <     * Tries decrementing active count; fails on contention.
945 <     * Possibly triggers termination on success.
946 <     * Called by workers when they can't find tasks.
944 >     * Callback from workers invoked upon each top-level action (i.e.,
945 >     * stealing a task or taking a submission and running it).
946 >     * Performs one or more of the following:
947 >     *
948 >     * 1. If the worker is active and either did not run a task
949 >     *    or there are too many workers, try to set its active status
950 >     *    to inactive and update activeCount. On contention, we may
951 >     *    try again in this or a subsequent call.
952 >     *
953 >     * 2. If not enough total workers, help create some.
954 >     *
955 >     * 3. If there are too many running workers, suspend this worker
956 >     *    (first forcing inactive if necessary).  If it is not needed,
957 >     *    it may be shutdown while suspended (via
958 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
959 >     *    rechecks running thread count and need for event sync.
960 >     *
961 >     * 4. If worker did not run a task, await the next task event via
962 >     *    eventSync if necessary (first forcing inactivation), upon
963 >     *    which the worker may be shutdown via
964 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
965 >     *    existing event waiters that are now releasable,
966       *
967 <     * @return true on success
967 >     * @param w the worker
968 >     * @param ran true if worker ran a task since last call to this method
969       */
970 <    final boolean tryDecrementActiveCount() {
971 <        int c = runControl;
972 <        int nextc = c - 1;
973 <        if (!casRunControl(c, nextc))
970 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
971 >        int wec = w.lastEventCount;
972 >        boolean active = w.active;
973 >        boolean inactivate = false;
974 >        int pc = parallelism;
975 >        while (w.runState == 0) {
976 >            int rs = runState;
977 >            if (rs >= TERMINATING) { // propagate shutdown
978 >                w.shutdown();
979 >                break;
980 >            }
981 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
982 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
983 >                inactivate = active = w.active = false;
984 >            int wc = workerCounts;
985 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
986 >                if (!(inactivate |= active) && // must inactivate to suspend
987 >                    workerCounts == wc &&      // try to suspend as spare
988 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
989 >                                             wc, wc - ONE_RUNNING))
990 >                    w.suspendAsSpare();
991 >            }
992 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
993 >                helpMaintainParallelism();     // not enough workers
994 >            else if (!ran) {
995 >                long h = eventWaiters;
996 >                int ec = eventCount;
997 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
998 >                    releaseEventWaiters();     // release others before waiting
999 >                else if (ec != wec) {
1000 >                    w.lastEventCount = ec;     // no need to wait
1001 >                    break;
1002 >                }
1003 >                else if (!(inactivate |= active))
1004 >                    eventSync(w, wec);         // must inactivate before sync
1005 >            }
1006 >            else
1007 >                break;
1008 >        }
1009 >    }
1010 >
1011 >    /**
1012 >     * Helps and/or blocks awaiting join of the given task.
1013 >     * See above for explanation.
1014 >     *
1015 >     * @param joinMe the task to join
1016 >     * @param worker the current worker thread
1017 >     * @param timed true if wait should time out
1018 >     * @param nanos timeout value if timed
1019 >     */
1020 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker,
1021 >                         boolean timed, long nanos) {
1022 >        long startTime = timed? System.nanoTime() : 0L;
1023 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1024 >        while (joinMe.status >= 0) {
1025 >            int wc;
1026 >            long nt = 0L;
1027 >            if (runState >= TERMINATING) {
1028 >                joinMe.cancelIgnoringExceptions();
1029 >                break;
1030 >            }
1031 >            worker.helpJoinTask(joinMe);
1032 >            if (joinMe.status < 0)
1033 >                break;
1034 >            else if (retries > 0)
1035 >                --retries;
1036 >            else if (timed &&
1037 >                     (nt = nanos - (System.nanoTime() - startTime)) <= 0L)
1038 >                break;
1039 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1040 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1041 >                                              wc, wc - ONE_RUNNING)) {
1042 >                int stat, c; long h;
1043 >                while ((stat = joinMe.status) >= 0 &&
1044 >                       (h = eventWaiters) != 0L && // help release others
1045 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1046 >                    releaseEventWaiters();
1047 >                if (stat >= 0) {
1048 >                    if ((workerCounts & RUNNING_COUNT_MASK) != 0) {
1049 >                        long ms; int ns;
1050 >                        if (!timed) {
1051 >                            ms = JOIN_TIMEOUT_MILLIS;
1052 >                            ns = 0;
1053 >                        }
1054 >                        else { // at most JOIN_TIMEOUT_MILLIS per wait
1055 >                            ms = nt / 1000000;
1056 >                            if (ms > JOIN_TIMEOUT_MILLIS) {
1057 >                                ms = JOIN_TIMEOUT_MILLIS;
1058 >                                ns = 0;
1059 >                            }
1060 >                            else
1061 >                                ns = (int) (nt % 1000000);
1062 >                        }
1063 >                        stat = joinMe.internalAwaitDone(ms, ns);
1064 >                    }
1065 >                    if (stat >= 0) // timeout or no running workers
1066 >                        helpMaintainParallelism();
1067 >                }
1068 >                do {} while (!UNSAFE.compareAndSwapInt
1069 >                             (this, workerCountsOffset,
1070 >                              c = workerCounts, c + ONE_RUNNING));
1071 >                if (stat < 0)
1072 >                    break;   // else restart
1073 >            }
1074 >        }
1075 >    }
1076 >
1077 >    /**
1078 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1079 >     */
1080 >    final void awaitBlocker(ManagedBlocker blocker)
1081 >        throws InterruptedException {
1082 >        while (!blocker.isReleasable()) {
1083 >            int wc = workerCounts;
1084 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1085 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1086 >                                         wc, wc - ONE_RUNNING)) {
1087 >                try {
1088 >                    while (!blocker.isReleasable()) {
1089 >                        long h = eventWaiters;
1090 >                        if (h != 0L &&
1091 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1092 >                            releaseEventWaiters();
1093 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1094 >                                 runState < TERMINATING)
1095 >                            helpMaintainParallelism();
1096 >                        else if (blocker.block())
1097 >                            break;
1098 >                    }
1099 >                } finally {
1100 >                    int c;
1101 >                    do {} while (!UNSAFE.compareAndSwapInt
1102 >                                 (this, workerCountsOffset,
1103 >                                  c = workerCounts, c + ONE_RUNNING));
1104 >                }
1105 >                break;
1106 >            }
1107 >        }
1108 >    }
1109 >
1110 >    /**
1111 >     * Possibly initiates and/or completes termination.
1112 >     *
1113 >     * @param now if true, unconditionally terminate, else only
1114 >     * if shutdown and empty queue and no active workers
1115 >     * @return true if now terminating or terminated
1116 >     */
1117 >    private boolean tryTerminate(boolean now) {
1118 >        if (now)
1119 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1120 >        else if (runState < SHUTDOWN ||
1121 >                 !submissionQueue.isEmpty() ||
1122 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1123              return false;
1124 <        if (canTerminateOnShutdown(nextc))
1125 <            terminateOnShutdown();
1124 >
1125 >        if (advanceRunLevel(TERMINATING))
1126 >            startTerminating();
1127 >
1128 >        // Finish now if all threads terminated; else in some subsequent call
1129 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1130 >            advanceRunLevel(TERMINATED);
1131 >            termination.forceTermination();
1132 >        }
1133          return true;
1134      }
1135  
1136 +
1137      /**
1138 <     * Returns {@code true} if argument represents zero active count
1139 <     * and nonzero runstate, which is the triggering condition for
1140 <     * terminating on shutdown.
1138 >     * Actions on transition to TERMINATING
1139 >     *
1140 >     * Runs up to four passes through workers: (0) shutting down each
1141 >     * (without waking up if parked) to quickly spread notifications
1142 >     * without unnecessary bouncing around event queues etc (1) wake
1143 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1144 >     * interrupted workers
1145 >     */
1146 >    private void startTerminating() {
1147 >        cancelSubmissions();
1148 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1149 >            int c; // advance event count
1150 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1151 >                                     c = eventCount, c+1);
1152 >            eventWaiters = 0L; // clobber lists
1153 >            spareWaiters = 0;
1154 >            for (ForkJoinWorkerThread w : workers) {
1155 >                if (w != null) {
1156 >                    w.shutdown();
1157 >                    if (passes > 0 && !w.isTerminated()) {
1158 >                        w.cancelTasks();
1159 >                        LockSupport.unpark(w);
1160 >                        if (passes > 1 && !w.isInterrupted()) {
1161 >                            try {
1162 >                                w.interrupt();
1163 >                            } catch (SecurityException ignore) {
1164 >                            }
1165 >                        }
1166 >                    }
1167 >                }
1168 >            }
1169 >        }
1170 >    }
1171 >
1172 >    /**
1173 >     * Clears out and cancels submissions, ignoring exceptions.
1174       */
1175 <    private static boolean canTerminateOnShutdown(int c) {
1176 <        // i.e. least bit is nonzero runState bit
1177 <        return ((c & -c) >>> 16) != 0;
1175 >    private void cancelSubmissions() {
1176 >        ForkJoinTask<?> task;
1177 >        while ((task = submissionQueue.poll()) != null) {
1178 >            try {
1179 >                task.cancel(false);
1180 >            } catch (Throwable ignore) {
1181 >            }
1182 >        }
1183      }
1184  
1185 +    // misc support for ForkJoinWorkerThread
1186 +
1187      /**
1188 <     * Transition run state to at least the given state. Return true
349 <     * if not already at least given state.
1188 >     * Returns pool number.
1189       */
1190 <    private boolean transitionRunStateTo(int state) {
1191 <        for (;;) {
1192 <            int c = runControl;
1193 <            if (runStateOf(c) >= state)
1194 <                return false;
1195 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1196 <                return true;
1190 >    final int getPoolNumber() {
1191 >        return poolNumber;
1192 >    }
1193 >
1194 >    /**
1195 >     * Tries to accumulate steal count from a worker, clearing
1196 >     * the worker's value if successful.
1197 >     *
1198 >     * @return true if worker steal count now zero
1199 >     */
1200 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1201 >        int sc = w.stealCount;
1202 >        long c = stealCount;
1203 >        // CAS even if zero, for fence effects
1204 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1205 >            if (sc != 0)
1206 >                w.stealCount = 0;
1207 >            return true;
1208          }
1209 +        return sc == 0;
1210      }
1211  
1212      /**
1213 <     * Controls whether to add spares to maintain parallelism
1213 >     * Returns the approximate (non-atomic) number of idle threads per
1214 >     * active thread.
1215       */
1216 <    private volatile boolean maintainsParallelism;
1216 >    final int idlePerActive() {
1217 >        int pc = parallelism; // use parallelism, not rc
1218 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1219 >        // Use exact results for small values, saturate past 4
1220 >        return ((pc <= ac) ? 0 :
1221 >                (pc >>> 1 <= ac) ? 1 :
1222 >                (pc >>> 2 <= ac) ? 3 :
1223 >                pc >>> 3);
1224 >    }
1225 >
1226 >    // Public and protected methods
1227  
1228      // Constructors
1229  
1230      /**
1231       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1232 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1233 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1232 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1233 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1234 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1235       *
1236       * @throws SecurityException if a security manager exists and
1237       *         the caller is not permitted to modify threads
# Line 377 | Line 1240 | public class ForkJoinPool extends Abstra
1240       */
1241      public ForkJoinPool() {
1242          this(Runtime.getRuntime().availableProcessors(),
1243 <             defaultForkJoinWorkerThreadFactory);
1243 >             defaultForkJoinWorkerThreadFactory, null, false);
1244      }
1245  
1246      /**
1247       * Creates a {@code ForkJoinPool} with the indicated parallelism
1248 <     * level and using the {@linkplain
1249 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1248 >     * level, the {@linkplain
1249 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1250 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1251       *
1252       * @param parallelism the parallelism level
1253       * @throws IllegalArgumentException if parallelism less than or
# Line 394 | Line 1258 | public class ForkJoinPool extends Abstra
1258       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1259       */
1260      public ForkJoinPool(int parallelism) {
1261 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1261 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1262      }
1263  
1264      /**
1265 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
402 <     * java.lang.Runtime#availableProcessors}, and using the given
403 <     * thread factory.
1265 >     * Creates a {@code ForkJoinPool} with the given parameters.
1266       *
1267 <     * @param factory the factory for creating new threads
1268 <     * @throws NullPointerException if the factory is null
1269 <     * @throws SecurityException if a security manager exists and
1270 <     *         the caller is not permitted to modify threads
1271 <     *         because it does not hold {@link
1272 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1273 <     */
1274 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1275 <        this(Runtime.getRuntime().availableProcessors(), factory);
1276 <    }
1277 <
1278 <    /**
1279 <     * Creates a {@code ForkJoinPool} with the given parallelism and
418 <     * thread factory.
419 <     *
420 <     * @param parallelism the parallelism level
421 <     * @param factory the factory for creating new threads
1267 >     * @param parallelism the parallelism level. For default value,
1268 >     * use {@link java.lang.Runtime#availableProcessors}.
1269 >     * @param factory the factory for creating new threads. For default value,
1270 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1271 >     * @param handler the handler for internal worker threads that
1272 >     * terminate due to unrecoverable errors encountered while executing
1273 >     * tasks. For default value, use {@code null}.
1274 >     * @param asyncMode if true,
1275 >     * establishes local first-in-first-out scheduling mode for forked
1276 >     * tasks that are never joined. This mode may be more appropriate
1277 >     * than default locally stack-based mode in applications in which
1278 >     * worker threads only process event-style asynchronous tasks.
1279 >     * For default value, use {@code false}.
1280       * @throws IllegalArgumentException if parallelism less than or
1281       *         equal to zero, or greater than implementation limit
1282       * @throws NullPointerException if the factory is null
# Line 427 | Line 1285 | public class ForkJoinPool extends Abstra
1285       *         because it does not hold {@link
1286       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1287       */
1288 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1289 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1290 <            throw new IllegalArgumentException();
1288 >    public ForkJoinPool(int parallelism,
1289 >                        ForkJoinWorkerThreadFactory factory,
1290 >                        Thread.UncaughtExceptionHandler handler,
1291 >                        boolean asyncMode) {
1292 >        checkPermission();
1293          if (factory == null)
1294              throw new NullPointerException();
1295 <        checkPermission();
1296 <        this.factory = factory;
1295 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1296 >            throw new IllegalArgumentException();
1297          this.parallelism = parallelism;
1298 <        this.maxPoolSize = MAX_THREADS;
1299 <        this.maintainsParallelism = true;
1300 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1301 <        this.workerLock = new ReentrantLock();
1302 <        this.termination = workerLock.newCondition();
443 <        this.stealCount = new AtomicLong();
1298 >        this.factory = factory;
1299 >        this.ueh = handler;
1300 >        this.locallyFifo = asyncMode;
1301 >        int arraySize = initialArraySizeFor(parallelism);
1302 >        this.workers = new ForkJoinWorkerThread[arraySize];
1303          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1304 <        // worker array and workers are lazily constructed
1305 <    }
1306 <
448 <    /**
449 <     * Creates a new worker thread using factory.
450 <     *
451 <     * @param index the index to assign worker
452 <     * @return new worker, or null if factory failed
453 <     */
454 <    private ForkJoinWorkerThread createWorker(int index) {
455 <        Thread.UncaughtExceptionHandler h = ueh;
456 <        ForkJoinWorkerThread w = factory.newThread(this);
457 <        if (w != null) {
458 <            w.poolIndex = index;
459 <            w.setDaemon(true);
460 <            w.setAsyncMode(locallyFifo);
461 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
462 <            if (h != null)
463 <                w.setUncaughtExceptionHandler(h);
464 <        }
465 <        return w;
466 <    }
467 <
468 <    /**
469 <     * Returns a good size for worker array given pool size.
470 <     * Currently requires size to be a power of two.
471 <     */
472 <    private static int arraySizeFor(int poolSize) {
473 <        if (poolSize <= 1)
474 <            return 1;
475 <        // See Hackers Delight, sec 3.2
476 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
477 <        c |= c >>>  1;
478 <        c |= c >>>  2;
479 <        c |= c >>>  4;
480 <        c |= c >>>  8;
481 <        c |= c >>> 16;
482 <        return c + 1;
483 <    }
484 <
485 <    /**
486 <     * Creates or resizes array if necessary to hold newLength.
487 <     * Call only under exclusion.
488 <     *
489 <     * @return the array
490 <     */
491 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
492 <        ForkJoinWorkerThread[] ws = workers;
493 <        if (ws == null)
494 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
495 <        else if (newLength > ws.length)
496 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
497 <        else
498 <            return ws;
499 <    }
500 <
501 <    /**
502 <     * Tries to shrink workers into smaller array after one or more terminate.
503 <     */
504 <    private void tryShrinkWorkerArray() {
505 <        ForkJoinWorkerThread[] ws = workers;
506 <        if (ws != null) {
507 <            int len = ws.length;
508 <            int last = len - 1;
509 <            while (last >= 0 && ws[last] == null)
510 <                --last;
511 <            int newLength = arraySizeFor(last+1);
512 <            if (newLength < len)
513 <                workers = Arrays.copyOf(ws, newLength);
514 <        }
1304 >        this.workerLock = new ReentrantLock();
1305 >        this.termination = new Phaser(1);
1306 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1307      }
1308  
1309      /**
1310 <     * Initializes workers if necessary.
1310 >     * Returns initial power of two size for workers array.
1311 >     * @param pc the initial parallelism level
1312       */
1313 <    final void ensureWorkerInitialization() {
1314 <        ForkJoinWorkerThread[] ws = workers;
1315 <        if (ws == null) {
1316 <            final ReentrantLock lock = this.workerLock;
1317 <            lock.lock();
1318 <            try {
1319 <                ws = workers;
1320 <                if (ws == null) {
1321 <                    int ps = parallelism;
529 <                    ws = ensureWorkerArrayCapacity(ps);
530 <                    for (int i = 0; i < ps; ++i) {
531 <                        ForkJoinWorkerThread w = createWorker(i);
532 <                        if (w != null) {
533 <                            ws[i] = w;
534 <                            w.start();
535 <                            updateWorkerCount(1);
536 <                        }
537 <                    }
538 <                }
539 <            } finally {
540 <                lock.unlock();
541 <            }
542 <        }
543 <    }
544 <
545 <    /**
546 <     * Worker creation and startup for threads added via setParallelism.
547 <     */
548 <    private void createAndStartAddedWorkers() {
549 <        resumeAllSpares();  // Allow spares to convert to nonspare
550 <        int ps = parallelism;
551 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
552 <        int len = ws.length;
553 <        // Sweep through slots, to keep lowest indices most populated
554 <        int k = 0;
555 <        while (k < len) {
556 <            if (ws[k] != null) {
557 <                ++k;
558 <                continue;
559 <            }
560 <            int s = workerCounts;
561 <            int tc = totalCountOf(s);
562 <            int rc = runningCountOf(s);
563 <            if (rc >= ps || tc >= ps)
564 <                break;
565 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
566 <                ForkJoinWorkerThread w = createWorker(k);
567 <                if (w != null) {
568 <                    ws[k++] = w;
569 <                    w.start();
570 <                }
571 <                else {
572 <                    updateWorkerCount(-1); // back out on failed creation
573 <                    break;
574 <                }
575 <            }
576 <        }
1313 >    private static int initialArraySizeFor(int pc) {
1314 >        // If possible, initially allocate enough space for one spare
1315 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1316 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1317 >        size |= size >>> 1;
1318 >        size |= size >>> 2;
1319 >        size |= size >>> 4;
1320 >        size |= size >>> 8;
1321 >        return size + 1;
1322      }
1323  
1324      // Execution methods
1325  
1326      /**
1327 <     * Common code for execute, invoke and submit
1327 >     * Submits task and creates, starts, or resumes some workers if necessary
1328       */
1329      private <T> void doSubmit(ForkJoinTask<T> task) {
585        if (task == null)
586            throw new NullPointerException();
587        if (isShutdown())
588            throw new RejectedExecutionException();
589        if (workers == null)
590            ensureWorkerInitialization();
1330          submissionQueue.offer(task);
1331 <        signalIdleWorkers();
1331 >        int c; // try to increment event count -- CAS failure OK
1332 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1333 >        helpMaintainParallelism();
1334      }
1335  
1336      /**
# Line 602 | Line 1343 | public class ForkJoinPool extends Abstra
1343       *         scheduled for execution
1344       */
1345      public <T> T invoke(ForkJoinTask<T> task) {
1346 <        doSubmit(task);
1347 <        return task.join();
1346 >        if (task == null)
1347 >            throw new NullPointerException();
1348 >        if (runState >= SHUTDOWN)
1349 >            throw new RejectedExecutionException();
1350 >        Thread t = Thread.currentThread();
1351 >        if ((t instanceof ForkJoinWorkerThread) &&
1352 >            ((ForkJoinWorkerThread)t).pool == this)
1353 >            return task.invoke();  // bypass submit if in same pool
1354 >        else {
1355 >            doSubmit(task);
1356 >            return task.join();
1357 >        }
1358 >    }
1359 >
1360 >    /**
1361 >     * Unless terminating, forks task if within an ongoing FJ
1362 >     * computation in the current pool, else submits as external task.
1363 >     */
1364 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1365 >        if (runState >= SHUTDOWN)
1366 >            throw new RejectedExecutionException();
1367 >        Thread t = Thread.currentThread();
1368 >        if ((t instanceof ForkJoinWorkerThread) &&
1369 >            ((ForkJoinWorkerThread)t).pool == this)
1370 >            task.fork();
1371 >        else
1372 >            doSubmit(task);
1373      }
1374  
1375      /**
# Line 615 | Line 1381 | public class ForkJoinPool extends Abstra
1381       *         scheduled for execution
1382       */
1383      public void execute(ForkJoinTask<?> task) {
1384 <        doSubmit(task);
1384 >        if (task == null)
1385 >            throw new NullPointerException();
1386 >        forkOrSubmit(task);
1387      }
1388  
1389      // AbstractExecutorService methods
# Line 626 | Line 1394 | public class ForkJoinPool extends Abstra
1394       *         scheduled for execution
1395       */
1396      public void execute(Runnable task) {
1397 +        if (task == null)
1398 +            throw new NullPointerException();
1399          ForkJoinTask<?> job;
1400          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1401              job = (ForkJoinTask<?>) task;
1402          else
1403              job = ForkJoinTask.adapt(task, null);
1404 <        doSubmit(job);
1404 >        forkOrSubmit(job);
1405 >    }
1406 >
1407 >    /**
1408 >     * Submits a ForkJoinTask for execution.
1409 >     *
1410 >     * @param task the task to submit
1411 >     * @return the task
1412 >     * @throws NullPointerException if the task is null
1413 >     * @throws RejectedExecutionException if the task cannot be
1414 >     *         scheduled for execution
1415 >     */
1416 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1417 >        if (task == null)
1418 >            throw new NullPointerException();
1419 >        forkOrSubmit(task);
1420 >        return task;
1421      }
1422  
1423      /**
# Line 640 | Line 1426 | public class ForkJoinPool extends Abstra
1426       *         scheduled for execution
1427       */
1428      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1429 +        if (task == null)
1430 +            throw new NullPointerException();
1431          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1432 <        doSubmit(job);
1432 >        forkOrSubmit(job);
1433          return job;
1434      }
1435  
# Line 651 | Line 1439 | public class ForkJoinPool extends Abstra
1439       *         scheduled for execution
1440       */
1441      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1442 +        if (task == null)
1443 +            throw new NullPointerException();
1444          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1445 <        doSubmit(job);
1445 >        forkOrSubmit(job);
1446          return job;
1447      }
1448  
# Line 662 | Line 1452 | public class ForkJoinPool extends Abstra
1452       *         scheduled for execution
1453       */
1454      public ForkJoinTask<?> submit(Runnable task) {
1455 +        if (task == null)
1456 +            throw new NullPointerException();
1457          ForkJoinTask<?> job;
1458          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1459              job = (ForkJoinTask<?>) task;
1460          else
1461              job = ForkJoinTask.adapt(task, null);
1462 <        doSubmit(job);
1462 >        forkOrSubmit(job);
1463          return job;
1464      }
1465  
1466      /**
675     * Submits a ForkJoinTask for execution.
676     *
677     * @param task the task to submit
678     * @return the task
679     * @throws NullPointerException if the task is null
680     * @throws RejectedExecutionException if the task cannot be
681     *         scheduled for execution
682     */
683    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
684        doSubmit(task);
685        return task;
686    }
687
688
689    /**
1467       * @throws NullPointerException       {@inheritDoc}
1468       * @throws RejectedExecutionException {@inheritDoc}
1469       */
# Line 698 | Line 1475 | public class ForkJoinPool extends Abstra
1475          invoke(new InvokeAll<T>(forkJoinTasks));
1476  
1477          @SuppressWarnings({"unchecked", "rawtypes"})
1478 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1478 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1479          return futures;
1480      }
1481  
# Line 712 | Line 1489 | public class ForkJoinPool extends Abstra
1489          private static final long serialVersionUID = -7914297376763021607L;
1490      }
1491  
715    // Configuration and status settings and queries
716
1492      /**
1493       * Returns the factory used for constructing new workers.
1494       *
# Line 730 | Line 1505 | public class ForkJoinPool extends Abstra
1505       * @return the handler, or {@code null} if none
1506       */
1507      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1508 <        Thread.UncaughtExceptionHandler h;
734 <        final ReentrantLock lock = this.workerLock;
735 <        lock.lock();
736 <        try {
737 <            h = ueh;
738 <        } finally {
739 <            lock.unlock();
740 <        }
741 <        return h;
742 <    }
743 <
744 <    /**
745 <     * Sets the handler for internal worker threads that terminate due
746 <     * to unrecoverable errors encountered while executing tasks.
747 <     * Unless set, the current default or ThreadGroup handler is used
748 <     * as handler.
749 <     *
750 <     * @param h the new handler
751 <     * @return the old handler, or {@code null} if none
752 <     * @throws SecurityException if a security manager exists and
753 <     *         the caller is not permitted to modify threads
754 <     *         because it does not hold {@link
755 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
756 <     */
757 <    public Thread.UncaughtExceptionHandler
758 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
759 <        checkPermission();
760 <        Thread.UncaughtExceptionHandler old = null;
761 <        final ReentrantLock lock = this.workerLock;
762 <        lock.lock();
763 <        try {
764 <            old = ueh;
765 <            ueh = h;
766 <            ForkJoinWorkerThread[] ws = workers;
767 <            if (ws != null) {
768 <                for (int i = 0; i < ws.length; ++i) {
769 <                    ForkJoinWorkerThread w = ws[i];
770 <                    if (w != null)
771 <                        w.setUncaughtExceptionHandler(h);
772 <                }
773 <            }
774 <        } finally {
775 <            lock.unlock();
776 <        }
777 <        return old;
778 <    }
779 <
780 <
781 <    /**
782 <     * Sets the target parallelism level of this pool.
783 <     *
784 <     * @param parallelism the target parallelism
785 <     * @throws IllegalArgumentException if parallelism less than or
786 <     * equal to zero or greater than maximum size bounds
787 <     * @throws SecurityException if a security manager exists and
788 <     *         the caller is not permitted to modify threads
789 <     *         because it does not hold {@link
790 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
791 <     */
792 <    public void setParallelism(int parallelism) {
793 <        checkPermission();
794 <        if (parallelism <= 0 || parallelism > maxPoolSize)
795 <            throw new IllegalArgumentException();
796 <        final ReentrantLock lock = this.workerLock;
797 <        lock.lock();
798 <        try {
799 <            if (isProcessingTasks()) {
800 <                int p = this.parallelism;
801 <                this.parallelism = parallelism;
802 <                if (parallelism > p)
803 <                    createAndStartAddedWorkers();
804 <                else
805 <                    trimSpares();
806 <            }
807 <        } finally {
808 <            lock.unlock();
809 <        }
810 <        signalIdleWorkers();
1508 >        return ueh;
1509      }
1510  
1511      /**
# Line 821 | Line 1519 | public class ForkJoinPool extends Abstra
1519  
1520      /**
1521       * Returns the number of worker threads that have started but not
1522 <     * yet terminated.  This result returned by this method may differ
1522 >     * yet terminated.  The result returned by this method may differ
1523       * from {@link #getParallelism} when threads are created to
1524       * maintain parallelism when others are cooperatively blocked.
1525       *
1526       * @return the number of worker threads
1527       */
1528      public int getPoolSize() {
1529 <        return totalCountOf(workerCounts);
832 <    }
833 <
834 <    /**
835 <     * Returns the maximum number of threads allowed to exist in the
836 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
837 <     * maximum is an implementation-defined value designed only to
838 <     * prevent runaway growth.
839 <     *
840 <     * @return the maximum
841 <     */
842 <    public int getMaximumPoolSize() {
843 <        return maxPoolSize;
844 <    }
845 <
846 <    /**
847 <     * Sets the maximum number of threads allowed to exist in the
848 <     * pool. The given value should normally be greater than or equal
849 <     * to the {@link #getParallelism parallelism} level. Setting this
850 <     * value has no effect on current pool size. It controls
851 <     * construction of new threads.
852 <     *
853 <     * @throws IllegalArgumentException if negative or greater than
854 <     * internal implementation limit
855 <     */
856 <    public void setMaximumPoolSize(int newMax) {
857 <        if (newMax < 0 || newMax > MAX_THREADS)
858 <            throw new IllegalArgumentException();
859 <        maxPoolSize = newMax;
860 <    }
861 <
862 <
863 <    /**
864 <     * Returns {@code true} if this pool dynamically maintains its
865 <     * target parallelism level. If false, new threads are added only
866 <     * to avoid possible starvation.  This setting is by default true.
867 <     *
868 <     * @return {@code true} if maintains parallelism
869 <     */
870 <    public boolean getMaintainsParallelism() {
871 <        return maintainsParallelism;
872 <    }
873 <
874 <    /**
875 <     * Sets whether this pool dynamically maintains its target
876 <     * parallelism level. If false, new threads are added only to
877 <     * avoid possible starvation.
878 <     *
879 <     * @param enable {@code true} to maintain parallelism
880 <     */
881 <    public void setMaintainsParallelism(boolean enable) {
882 <        maintainsParallelism = enable;
883 <    }
884 <
885 <    /**
886 <     * Establishes local first-in-first-out scheduling mode for forked
887 <     * tasks that are never joined. This mode may be more appropriate
888 <     * than default locally stack-based mode in applications in which
889 <     * worker threads only process asynchronous tasks.  This method is
890 <     * designed to be invoked only when the pool is quiescent, and
891 <     * typically only before any tasks are submitted. The effects of
892 <     * invocations at other times may be unpredictable.
893 <     *
894 <     * @param async if {@code true}, use locally FIFO scheduling
895 <     * @return the previous mode
896 <     * @see #getAsyncMode
897 <     */
898 <    public boolean setAsyncMode(boolean async) {
899 <        boolean oldMode = locallyFifo;
900 <        locallyFifo = async;
901 <        ForkJoinWorkerThread[] ws = workers;
902 <        if (ws != null) {
903 <            for (int i = 0; i < ws.length; ++i) {
904 <                ForkJoinWorkerThread t = ws[i];
905 <                if (t != null)
906 <                    t.setAsyncMode(async);
907 <            }
908 <        }
909 <        return oldMode;
1529 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1530      }
1531  
1532      /**
# Line 914 | Line 1534 | public class ForkJoinPool extends Abstra
1534       * scheduling mode for forked tasks that are never joined.
1535       *
1536       * @return {@code true} if this pool uses async mode
917     * @see #setAsyncMode
1537       */
1538      public boolean getAsyncMode() {
1539          return locallyFifo;
# Line 923 | Line 1542 | public class ForkJoinPool extends Abstra
1542      /**
1543       * Returns an estimate of the number of worker threads that are
1544       * not blocked waiting to join tasks or for other managed
1545 <     * synchronization.
1545 >     * synchronization. This method may overestimate the
1546 >     * number of running threads.
1547       *
1548       * @return the number of worker threads
1549       */
1550      public int getRunningThreadCount() {
1551 <        return runningCountOf(workerCounts);
1551 >        return workerCounts & RUNNING_COUNT_MASK;
1552      }
1553  
1554      /**
# Line 939 | Line 1559 | public class ForkJoinPool extends Abstra
1559       * @return the number of active threads
1560       */
1561      public int getActiveThreadCount() {
1562 <        return activeCountOf(runControl);
943 <    }
944 <
945 <    /**
946 <     * Returns an estimate of the number of threads that are currently
947 <     * idle waiting for tasks. This method may underestimate the
948 <     * number of idle threads.
949 <     *
950 <     * @return the number of idle threads
951 <     */
952 <    final int getIdleThreadCount() {
953 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
954 <        return (c <= 0) ? 0 : c;
1562 >        return runState & ACTIVE_COUNT_MASK;
1563      }
1564  
1565      /**
# Line 966 | Line 1574 | public class ForkJoinPool extends Abstra
1574       * @return {@code true} if all threads are currently idle
1575       */
1576      public boolean isQuiescent() {
1577 <        return activeCountOf(runControl) == 0;
1577 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1578      }
1579  
1580      /**
# Line 981 | Line 1589 | public class ForkJoinPool extends Abstra
1589       * @return the number of steals
1590       */
1591      public long getStealCount() {
1592 <        return stealCount.get();
985 <    }
986 <
987 <    /**
988 <     * Accumulates steal count from a worker.
989 <     * Call only when worker known to be idle.
990 <     */
991 <    private void updateStealCount(ForkJoinWorkerThread w) {
992 <        int sc = w.getAndClearStealCount();
993 <        if (sc != 0)
994 <            stealCount.addAndGet(sc);
1592 >        return stealCount;
1593      }
1594  
1595      /**
# Line 1006 | Line 1604 | public class ForkJoinPool extends Abstra
1604       */
1605      public long getQueuedTaskCount() {
1606          long count = 0;
1607 <        ForkJoinWorkerThread[] ws = workers;
1608 <        if (ws != null) {
1609 <            for (int i = 0; i < ws.length; ++i) {
1012 <                ForkJoinWorkerThread t = ws[i];
1013 <                if (t != null)
1014 <                    count += t.getQueueSize();
1015 <            }
1016 <        }
1607 >        for (ForkJoinWorkerThread w : workers)
1608 >            if (w != null)
1609 >                count += w.getQueueSize();
1610          return count;
1611      }
1612  
# Line 1067 | Line 1660 | public class ForkJoinPool extends Abstra
1660       * @return the number of elements transferred
1661       */
1662      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1663 <        int n = submissionQueue.drainTo(c);
1664 <        ForkJoinWorkerThread[] ws = workers;
1665 <        if (ws != null) {
1666 <            for (int i = 0; i < ws.length; ++i) {
1667 <                ForkJoinWorkerThread w = ws[i];
1075 <                if (w != null)
1076 <                    n += w.drainTasksTo(c);
1077 <            }
1078 <        }
1079 <        return n;
1663 >        int count = submissionQueue.drainTo(c);
1664 >        for (ForkJoinWorkerThread w : workers)
1665 >            if (w != null)
1666 >                count += w.drainTasksTo(c);
1667 >        return count;
1668      }
1669  
1670      /**
# Line 1087 | Line 1675 | public class ForkJoinPool extends Abstra
1675       * @return a string identifying this pool, as well as its state
1676       */
1677      public String toString() {
1090        int ps = parallelism;
1091        int wc = workerCounts;
1092        int rc = runControl;
1678          long st = getStealCount();
1679          long qt = getQueuedTaskCount();
1680          long qs = getQueuedSubmissionCount();
1681 +        int wc = workerCounts;
1682 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1683 +        int rc = wc & RUNNING_COUNT_MASK;
1684 +        int pc = parallelism;
1685 +        int rs = runState;
1686 +        int ac = rs & ACTIVE_COUNT_MASK;
1687          return super.toString() +
1688 <            "[" + runStateToString(runStateOf(rc)) +
1689 <            ", parallelism = " + ps +
1690 <            ", size = " + totalCountOf(wc) +
1691 <            ", active = " + activeCountOf(rc) +
1692 <            ", running = " + runningCountOf(wc) +
1688 >            "[" + runLevelToString(rs) +
1689 >            ", parallelism = " + pc +
1690 >            ", size = " + tc +
1691 >            ", active = " + ac +
1692 >            ", running = " + rc +
1693              ", steals = " + st +
1694              ", tasks = " + qt +
1695              ", submissions = " + qs +
1696              "]";
1697      }
1698  
1699 <    private static String runStateToString(int rs) {
1700 <        switch(rs) {
1701 <        case RUNNING: return "Running";
1702 <        case SHUTDOWN: return "Shutting down";
1703 <        case TERMINATING: return "Terminating";
1113 <        case TERMINATED: return "Terminated";
1114 <        default: throw new Error("Unknown run state");
1115 <        }
1699 >    private static String runLevelToString(int s) {
1700 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1701 >                ((s & TERMINATING) != 0 ? "Terminating" :
1702 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1703 >                  "Running")));
1704      }
1705  
1118    // lifecycle control
1119
1706      /**
1707       * Initiates an orderly shutdown in which previously submitted
1708       * tasks are executed, but no new tasks will be accepted.
# Line 1131 | Line 1717 | public class ForkJoinPool extends Abstra
1717       */
1718      public void shutdown() {
1719          checkPermission();
1720 <        transitionRunStateTo(SHUTDOWN);
1721 <        if (canTerminateOnShutdown(runControl)) {
1136 <            if (workers == null) { // shutting down before workers created
1137 <                final ReentrantLock lock = this.workerLock;
1138 <                lock.lock();
1139 <                try {
1140 <                    if (workers == null) {
1141 <                        terminate();
1142 <                        transitionRunStateTo(TERMINATED);
1143 <                        termination.signalAll();
1144 <                    }
1145 <                } finally {
1146 <                    lock.unlock();
1147 <                }
1148 <            }
1149 <            terminateOnShutdown();
1150 <        }
1720 >        advanceRunLevel(SHUTDOWN);
1721 >        tryTerminate(false);
1722      }
1723  
1724      /**
# Line 1168 | Line 1739 | public class ForkJoinPool extends Abstra
1739       */
1740      public List<Runnable> shutdownNow() {
1741          checkPermission();
1742 <        terminate();
1742 >        tryTerminate(true);
1743          return Collections.emptyList();
1744      }
1745  
# Line 1178 | Line 1749 | public class ForkJoinPool extends Abstra
1749       * @return {@code true} if all tasks have completed following shut down
1750       */
1751      public boolean isTerminated() {
1752 <        return runStateOf(runControl) == TERMINATED;
1752 >        return runState >= TERMINATED;
1753      }
1754  
1755      /**
# Line 1192 | Line 1763 | public class ForkJoinPool extends Abstra
1763       * @return {@code true} if terminating but not yet terminated
1764       */
1765      public boolean isTerminating() {
1766 <        return runStateOf(runControl) == TERMINATING;
1766 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1767      }
1768  
1769      /**
1770 <     * Returns {@code true} if this pool has been shut down.
1200 <     *
1201 <     * @return {@code true} if this pool has been shut down
1770 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1771       */
1772 <    public boolean isShutdown() {
1773 <        return runStateOf(runControl) >= SHUTDOWN;
1772 >    final boolean isAtLeastTerminating() {
1773 >        return runState >= TERMINATING;
1774      }
1775  
1776      /**
1777 <     * Returns true if pool is not terminating or terminated.
1778 <     * Used internally to suppress execution when terminating.
1777 >     * Returns {@code true} if this pool has been shut down.
1778 >     *
1779 >     * @return {@code true} if this pool has been shut down
1780       */
1781 <    final boolean isProcessingTasks() {
1782 <        return runStateOf(runControl) < TERMINATING;
1781 >    public boolean isShutdown() {
1782 >        return runState >= SHUTDOWN;
1783      }
1784  
1785      /**
# Line 1225 | Line 1795 | public class ForkJoinPool extends Abstra
1795       */
1796      public boolean awaitTermination(long timeout, TimeUnit unit)
1797          throws InterruptedException {
1228        long nanos = unit.toNanos(timeout);
1229        final ReentrantLock lock = this.workerLock;
1230        lock.lock();
1798          try {
1799 <            for (;;) {
1800 <                if (isTerminated())
1234 <                    return true;
1235 <                if (nanos <= 0)
1236 <                    return false;
1237 <                nanos = termination.awaitNanos(nanos);
1238 <            }
1239 <        } finally {
1240 <            lock.unlock();
1241 <        }
1242 <    }
1243 <
1244 <    // Shutdown and termination support
1245 <
1246 <    /**
1247 <     * Callback from terminating worker. Nulls out the corresponding
1248 <     * workers slot, and if terminating, tries to terminate; else
1249 <     * tries to shrink workers array.
1250 <     *
1251 <     * @param w the worker
1252 <     */
1253 <    final void workerTerminated(ForkJoinWorkerThread w) {
1254 <        updateStealCount(w);
1255 <        updateWorkerCount(-1);
1256 <        final ReentrantLock lock = this.workerLock;
1257 <        lock.lock();
1258 <        try {
1259 <            ForkJoinWorkerThread[] ws = workers;
1260 <            if (ws != null) {
1261 <                int idx = w.poolIndex;
1262 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1263 <                    ws[idx] = null;
1264 <                if (totalCountOf(workerCounts) == 0) {
1265 <                    terminate(); // no-op if already terminating
1266 <                    transitionRunStateTo(TERMINATED);
1267 <                    termination.signalAll();
1268 <                }
1269 <                else if (isProcessingTasks()) {
1270 <                    tryShrinkWorkerArray();
1271 <                    tryResumeSpare(true); // allow replacement
1272 <                }
1273 <            }
1274 <        } finally {
1275 <            lock.unlock();
1276 <        }
1277 <        signalIdleWorkers();
1278 <    }
1279 <
1280 <    /**
1281 <     * Initiates termination.
1282 <     */
1283 <    private void terminate() {
1284 <        if (transitionRunStateTo(TERMINATING)) {
1285 <            stopAllWorkers();
1286 <            resumeAllSpares();
1287 <            signalIdleWorkers();
1288 <            cancelQueuedSubmissions();
1289 <            cancelQueuedWorkerTasks();
1290 <            interruptUnterminatedWorkers();
1291 <            signalIdleWorkers(); // resignal after interrupt
1292 <        }
1293 <    }
1294 <
1295 <    /**
1296 <     * Possibly terminates when on shutdown state.
1297 <     */
1298 <    private void terminateOnShutdown() {
1299 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1300 <            terminate();
1301 <    }
1302 <
1303 <    /**
1304 <     * Clears out and cancels submissions.
1305 <     */
1306 <    private void cancelQueuedSubmissions() {
1307 <        ForkJoinTask<?> task;
1308 <        while ((task = pollSubmission()) != null)
1309 <            task.cancel(false);
1310 <    }
1311 <
1312 <    /**
1313 <     * Cleans out worker queues.
1314 <     */
1315 <    private void cancelQueuedWorkerTasks() {
1316 <        final ReentrantLock lock = this.workerLock;
1317 <        lock.lock();
1318 <        try {
1319 <            ForkJoinWorkerThread[] ws = workers;
1320 <            if (ws != null) {
1321 <                for (int i = 0; i < ws.length; ++i) {
1322 <                    ForkJoinWorkerThread t = ws[i];
1323 <                    if (t != null)
1324 <                        t.cancelTasks();
1325 <                }
1326 <            }
1327 <        } finally {
1328 <            lock.unlock();
1329 <        }
1330 <    }
1331 <
1332 <    /**
1333 <     * Sets each worker's status to terminating. Requires lock to avoid
1334 <     * conflicts with add/remove.
1335 <     */
1336 <    private void stopAllWorkers() {
1337 <        final ReentrantLock lock = this.workerLock;
1338 <        lock.lock();
1339 <        try {
1340 <            ForkJoinWorkerThread[] ws = workers;
1341 <            if (ws != null) {
1342 <                for (int i = 0; i < ws.length; ++i) {
1343 <                    ForkJoinWorkerThread t = ws[i];
1344 <                    if (t != null)
1345 <                        t.shutdownNow();
1346 <                }
1347 <            }
1348 <        } finally {
1349 <            lock.unlock();
1350 <        }
1351 <    }
1352 <
1353 <    /**
1354 <     * Interrupts all unterminated workers.  This is not required for
1355 <     * sake of internal control, but may help unstick user code during
1356 <     * shutdown.
1357 <     */
1358 <    private void interruptUnterminatedWorkers() {
1359 <        final ReentrantLock lock = this.workerLock;
1360 <        lock.lock();
1361 <        try {
1362 <            ForkJoinWorkerThread[] ws = workers;
1363 <            if (ws != null) {
1364 <                for (int i = 0; i < ws.length; ++i) {
1365 <                    ForkJoinWorkerThread t = ws[i];
1366 <                    if (t != null && !t.isTerminated()) {
1367 <                        try {
1368 <                            t.interrupt();
1369 <                        } catch (SecurityException ignore) {
1370 <                        }
1371 <                    }
1372 <                }
1373 <            }
1374 <        } finally {
1375 <            lock.unlock();
1376 <        }
1377 <    }
1378 <
1379 <
1380 <    /*
1381 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1382 <     * are basic Treiber stack nodes, also used for spare stack.
1383 <     *
1384 <     * The event barrier has an event count and a wait queue (actually
1385 <     * a Treiber stack).  Workers are enabled to look for work when
1386 <     * the eventCount is incremented. If they fail to find work, they
1387 <     * may wait for next count. Upon release, threads help others wake
1388 <     * up.
1389 <     *
1390 <     * Synchronization events occur only in enough contexts to
1391 <     * maintain overall liveness:
1392 <     *
1393 <     *   - Submission of a new task to the pool
1394 <     *   - Resizes or other changes to the workers array
1395 <     *   - pool termination
1396 <     *   - A worker pushing a task on an empty queue
1397 <     *
1398 <     * The case of pushing a task occurs often enough, and is heavy
1399 <     * enough compared to simple stack pushes, to require special
1400 <     * handling: Method signalWork returns without advancing count if
1401 <     * the queue appears to be empty.  This would ordinarily result in
1402 <     * races causing some queued waiters not to be woken up. To avoid
1403 <     * this, the first worker enqueued in method sync (see
1404 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1405 <     * helps signal if any are found. This works well because the
1406 <     * worker has nothing better to do, and so might as well help
1407 <     * alleviate the overhead and contention on the threads actually
1408 <     * doing work.  Also, since event counts increments on task
1409 <     * availability exist to maintain liveness (rather than to force
1410 <     * refreshes etc), it is OK for callers to exit early if
1411 <     * contending with another signaller.
1412 <     */
1413 <    static final class WaitQueueNode {
1414 <        WaitQueueNode next; // only written before enqueued
1415 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1416 <        final long count; // unused for spare stack
1417 <
1418 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1419 <            count = c;
1420 <            thread = w;
1421 <        }
1422 <
1423 <        /**
1424 <         * Wakes up waiter, returning false if known to already
1425 <         */
1426 <        boolean signal() {
1427 <            ForkJoinWorkerThread t = thread;
1428 <            if (t == null)
1429 <                return false;
1430 <            thread = null;
1431 <            LockSupport.unpark(t);
1432 <            return true;
1433 <        }
1434 <
1435 <        /**
1436 <         * Awaits release on sync.
1437 <         */
1438 <        void awaitSyncRelease(ForkJoinPool p) {
1439 <            while (thread != null && !p.syncIsReleasable(this))
1440 <                LockSupport.park(this);
1441 <        }
1442 <
1443 <        /**
1444 <         * Awaits resumption as spare.
1445 <         */
1446 <        void awaitSpareRelease() {
1447 <            while (thread != null) {
1448 <                if (!Thread.interrupted())
1449 <                    LockSupport.park(this);
1450 <            }
1451 <        }
1452 <    }
1453 <
1454 <    /**
1455 <     * Ensures that no thread is waiting for count to advance from the
1456 <     * current value of eventCount read on entry to this method, by
1457 <     * releasing waiting threads if necessary.
1458 <     *
1459 <     * @return the count
1460 <     */
1461 <    final long ensureSync() {
1462 <        long c = eventCount;
1463 <        WaitQueueNode q;
1464 <        while ((q = syncStack) != null && q.count < c) {
1465 <            if (casBarrierStack(q, null)) {
1466 <                do {
1467 <                    q.signal();
1468 <                } while ((q = q.next) != null);
1469 <                break;
1470 <            }
1471 <        }
1472 <        return c;
1473 <    }
1474 <
1475 <    /**
1476 <     * Increments event count and releases waiting threads.
1477 <     */
1478 <    private void signalIdleWorkers() {
1479 <        long c;
1480 <        do {} while (!casEventCount(c = eventCount, c+1));
1481 <        ensureSync();
1482 <    }
1483 <
1484 <    /**
1485 <     * Signals threads waiting to poll a task. Because method sync
1486 <     * rechecks availability, it is OK to only proceed if queue
1487 <     * appears to be non-empty, and OK to skip under contention to
1488 <     * increment count (since some other thread succeeded).
1489 <     */
1490 <    final void signalWork() {
1491 <        long c;
1492 <        WaitQueueNode q;
1493 <        if (syncStack != null &&
1494 <            casEventCount(c = eventCount, c+1) &&
1495 <            (((q = syncStack) != null && q.count <= c) &&
1496 <             (!casBarrierStack(q, q.next) || !q.signal())))
1497 <            ensureSync();
1498 <    }
1499 <
1500 <    /**
1501 <     * Waits until event count advances from last value held by
1502 <     * caller, or if excess threads, caller is resumed as spare, or
1503 <     * caller or pool is terminating. Updates caller's event on exit.
1504 <     *
1505 <     * @param w the calling worker thread
1506 <     */
1507 <    final void sync(ForkJoinWorkerThread w) {
1508 <        updateStealCount(w); // Transfer w's count while it is idle
1509 <
1510 <        while (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1511 <            long prev = w.lastEventCount;
1512 <            WaitQueueNode node = null;
1513 <            WaitQueueNode h;
1514 <            while (eventCount == prev &&
1515 <                   ((h = syncStack) == null || h.count == prev)) {
1516 <                if (node == null)
1517 <                    node = new WaitQueueNode(prev, w);
1518 <                if (casBarrierStack(node.next = h, node)) {
1519 <                    node.awaitSyncRelease(this);
1520 <                    break;
1521 <                }
1522 <            }
1523 <            long ec = ensureSync();
1524 <            if (ec != prev) {
1525 <                w.lastEventCount = ec;
1526 <                break;
1527 <            }
1528 <        }
1529 <    }
1530 <
1531 <    /**
1532 <     * Returns {@code true} if worker waiting on sync can proceed:
1533 <     *  - on signal (thread == null)
1534 <     *  - on event count advance (winning race to notify vs signaller)
1535 <     *  - on interrupt
1536 <     *  - if the first queued node, we find work available
1537 <     * If node was not signalled and event count not advanced on exit,
1538 <     * then we also help advance event count.
1539 <     *
1540 <     * @return {@code true} if node can be released
1541 <     */
1542 <    final boolean syncIsReleasable(WaitQueueNode node) {
1543 <        long prev = node.count;
1544 <        if (!Thread.interrupted() && node.thread != null &&
1545 <            (node.next != null ||
1546 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1547 <            eventCount == prev)
1799 >            termination.awaitAdvanceInterruptibly(0, timeout, unit);
1800 >        } catch (TimeoutException ex) {
1801              return false;
1549        if (node.thread != null) {
1550            node.thread = null;
1551            long ec = eventCount;
1552            if (prev <= ec) // help signal
1553                casEventCount(ec, ec+1);
1802          }
1803          return true;
1804      }
1805  
1806      /**
1559     * Returns {@code true} if a new sync event occurred since last
1560     * call to sync or this method, if so, updating caller's count.
1561     */
1562    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1563        long lc = w.lastEventCount;
1564        long ec = ensureSync();
1565        if (ec == lc)
1566            return false;
1567        w.lastEventCount = ec;
1568        return true;
1569    }
1570
1571    //  Parallelism maintenance
1572
1573    /**
1574     * Decrements running count; if too low, adds spare.
1575     *
1576     * Conceptually, all we need to do here is add or resume a
1577     * spare thread when one is about to block (and remove or
1578     * suspend it later when unblocked -- see suspendIfSpare).
1579     * However, implementing this idea requires coping with
1580     * several problems: we have imperfect information about the
1581     * states of threads. Some count updates can and usually do
1582     * lag run state changes, despite arrangements to keep them
1583     * accurate (for example, when possible, updating counts
1584     * before signalling or resuming), especially when running on
1585     * dynamic JVMs that don't optimize the infrequent paths that
1586     * update counts. Generating too many threads can make these
1587     * problems become worse, because excess threads are more
1588     * likely to be context-switched with others, slowing them all
1589     * down, especially if there is no work available, so all are
1590     * busy scanning or idling.  Also, excess spare threads can
1591     * only be suspended or removed when they are idle, not
1592     * immediately when they aren't needed. So adding threads will
1593     * raise parallelism level for longer than necessary.  Also,
1594     * FJ applications often encounter highly transient peaks when
1595     * many threads are blocked joining, but for less time than it
1596     * takes to create or resume spares.
1597     *
1598     * @param joinMe if non-null, return early if done
1599     * @param maintainParallelism if true, try to stay within
1600     * target counts, else create only to avoid starvation
1601     * @return true if joinMe known to be done
1602     */
1603    final boolean preJoin(ForkJoinTask<?> joinMe,
1604                          boolean maintainParallelism) {
1605        maintainParallelism &= maintainsParallelism; // overrride
1606        boolean dec = false;  // true when running count decremented
1607        while (spareStack == null || !tryResumeSpare(dec)) {
1608            int counts = workerCounts;
1609            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1610                if (!needSpare(counts, maintainParallelism))
1611                    break;
1612                if (joinMe.status < 0)
1613                    return true;
1614                if (tryAddSpare(counts))
1615                    break;
1616            }
1617        }
1618        return false;
1619    }
1620
1621    /**
1622     * Same idea as preJoin
1623     */
1624    final boolean preBlock(ManagedBlocker blocker,
1625                           boolean maintainParallelism) {
1626        maintainParallelism &= maintainsParallelism;
1627        boolean dec = false;
1628        while (spareStack == null || !tryResumeSpare(dec)) {
1629            int counts = workerCounts;
1630            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1631                if (!needSpare(counts, maintainParallelism))
1632                    break;
1633                if (blocker.isReleasable())
1634                    return true;
1635                if (tryAddSpare(counts))
1636                    break;
1637            }
1638        }
1639        return false;
1640    }
1641
1642    /**
1643     * Returns {@code true} if a spare thread appears to be needed.
1644     * If maintaining parallelism, returns true when the deficit in
1645     * running threads is more than the surplus of total threads, and
1646     * there is apparently some work to do.  This self-limiting rule
1647     * means that the more threads that have already been added, the
1648     * less parallelism we will tolerate before adding another.
1649     *
1650     * @param counts current worker counts
1651     * @param maintainParallelism try to maintain parallelism
1652     */
1653    private boolean needSpare(int counts, boolean maintainParallelism) {
1654        int ps = parallelism;
1655        int rc = runningCountOf(counts);
1656        int tc = totalCountOf(counts);
1657        int runningDeficit = ps - rc;
1658        int totalSurplus = tc - ps;
1659        return (tc < maxPoolSize &&
1660                (rc == 0 || totalSurplus < 0 ||
1661                 (maintainParallelism &&
1662                  runningDeficit > totalSurplus &&
1663                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1664    }
1665
1666    /**
1667     * Adds a spare worker if lock available and no more than the
1668     * expected numbers of threads exist.
1669     *
1670     * @return true if successful
1671     */
1672    private boolean tryAddSpare(int expectedCounts) {
1673        final ReentrantLock lock = this.workerLock;
1674        int expectedRunning = runningCountOf(expectedCounts);
1675        int expectedTotal = totalCountOf(expectedCounts);
1676        boolean success = false;
1677        boolean locked = false;
1678        // confirm counts while locking; CAS after obtaining lock
1679        try {
1680            for (;;) {
1681                int s = workerCounts;
1682                int tc = totalCountOf(s);
1683                int rc = runningCountOf(s);
1684                if (rc > expectedRunning || tc > expectedTotal)
1685                    break;
1686                if (!locked && !(locked = lock.tryLock()))
1687                    break;
1688                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1689                    createAndStartSpare(tc);
1690                    success = true;
1691                    break;
1692                }
1693            }
1694        } finally {
1695            if (locked)
1696                lock.unlock();
1697        }
1698        return success;
1699    }
1700
1701    /**
1702     * Adds the kth spare worker. On entry, pool counts are already
1703     * adjusted to reflect addition.
1704     */
1705    private void createAndStartSpare(int k) {
1706        ForkJoinWorkerThread w = null;
1707        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1708        int len = ws.length;
1709        // Probably, we can place at slot k. If not, find empty slot
1710        if (k < len && ws[k] != null) {
1711            for (k = 0; k < len && ws[k] != null; ++k)
1712                ;
1713        }
1714        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1715            ws[k] = w;
1716            w.start();
1717        }
1718        else
1719            updateWorkerCount(-1); // adjust on failure
1720        signalIdleWorkers();
1721    }
1722
1723    /**
1724     * Suspends calling thread w if there are excess threads.  Called
1725     * only from sync.  Spares are enqueued in a Treiber stack using
1726     * the same WaitQueueNodes as barriers.  They are resumed mainly
1727     * in preJoin, but are also woken on pool events that require all
1728     * threads to check run state.
1729     *
1730     * @param w the caller
1731     */
1732    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1733        WaitQueueNode node = null;
1734        int s;
1735        while (parallelism < runningCountOf(s = workerCounts)) {
1736            if (node == null)
1737                node = new WaitQueueNode(0, w);
1738            if (casWorkerCounts(s, s-1)) { // representation-dependent
1739                // push onto stack
1740                do {} while (!casSpareStack(node.next = spareStack, node));
1741                // block until released by resumeSpare
1742                node.awaitSpareRelease();
1743                return true;
1744            }
1745        }
1746        return false;
1747    }
1748
1749    /**
1750     * Tries to pop and resume a spare thread.
1751     *
1752     * @param updateCount if true, increment running count on success
1753     * @return true if successful
1754     */
1755    private boolean tryResumeSpare(boolean updateCount) {
1756        WaitQueueNode q;
1757        while ((q = spareStack) != null) {
1758            if (casSpareStack(q, q.next)) {
1759                if (updateCount)
1760                    updateRunningCount(1);
1761                q.signal();
1762                return true;
1763            }
1764        }
1765        return false;
1766    }
1767
1768    /**
1769     * Pops and resumes all spare threads. Same idea as ensureSync.
1770     *
1771     * @return true if any spares released
1772     */
1773    private boolean resumeAllSpares() {
1774        WaitQueueNode q;
1775        while ( (q = spareStack) != null) {
1776            if (casSpareStack(q, null)) {
1777                do {
1778                    updateRunningCount(1);
1779                    q.signal();
1780                } while ((q = q.next) != null);
1781                return true;
1782            }
1783        }
1784        return false;
1785    }
1786
1787    /**
1788     * Pops and shuts down excessive spare threads. Call only while
1789     * holding lock. This is not guaranteed to eliminate all excess
1790     * threads, only those suspended as spares, which are the ones
1791     * unlikely to be needed in the future.
1792     */
1793    private void trimSpares() {
1794        int surplus = totalCountOf(workerCounts) - parallelism;
1795        WaitQueueNode q;
1796        while (surplus > 0 && (q = spareStack) != null) {
1797            if (casSpareStack(q, null)) {
1798                do {
1799                    updateRunningCount(1);
1800                    ForkJoinWorkerThread w = q.thread;
1801                    if (w != null && surplus > 0 &&
1802                        runningCountOf(workerCounts) > 0 && w.shutdown())
1803                        --surplus;
1804                    q.signal();
1805                } while ((q = q.next) != null);
1806            }
1807        }
1808    }
1809
1810    /**
1807       * Interface for extending managed parallelism for tasks running
1808       * in {@link ForkJoinPool}s.
1809       *
1810 <     * <p>A {@code ManagedBlocker} provides two methods.
1811 <     * Method {@code isReleasable} must return {@code true} if
1812 <     * blocking is not necessary. Method {@code block} blocks the
1813 <     * current thread if necessary (perhaps internally invoking
1814 <     * {@code isReleasable} before actually blocking).
1810 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1811 >     * {@code isReleasable} must return {@code true} if blocking is
1812 >     * not necessary. Method {@code block} blocks the current thread
1813 >     * if necessary (perhaps internally invoking {@code isReleasable}
1814 >     * before actually blocking). The unusual methods in this API
1815 >     * accommodate synchronizers that may, but don't usually, block
1816 >     * for long periods. Similarly, they allow more efficient internal
1817 >     * handling of cases in which additional workers may be, but
1818 >     * usually are not, needed to ensure sufficient parallelism.
1819 >     * Toward this end, implementations of method {@code isReleasable}
1820 >     * must be amenable to repeated invocation.
1821       *
1822       * <p>For example, here is a ManagedBlocker based on a
1823       * ReentrantLock:
# Line 1833 | Line 1835 | public class ForkJoinPool extends Abstra
1835       *     return hasLock || (hasLock = lock.tryLock());
1836       *   }
1837       * }}</pre>
1838 +     *
1839 +     * <p>Here is a class that possibly blocks waiting for an
1840 +     * item on a given queue:
1841 +     *  <pre> {@code
1842 +     * class QueueTaker<E> implements ManagedBlocker {
1843 +     *   final BlockingQueue<E> queue;
1844 +     *   volatile E item = null;
1845 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1846 +     *   public boolean block() throws InterruptedException {
1847 +     *     if (item == null)
1848 +     *       item = queue.take();
1849 +     *     return true;
1850 +     *   }
1851 +     *   public boolean isReleasable() {
1852 +     *     return item != null || (item = queue.poll()) != null;
1853 +     *   }
1854 +     *   public E getItem() { // call after pool.managedBlock completes
1855 +     *     return item;
1856 +     *   }
1857 +     * }}</pre>
1858       */
1859      public static interface ManagedBlocker {
1860          /**
# Line 1856 | Line 1878 | public class ForkJoinPool extends Abstra
1878       * Blocks in accord with the given blocker.  If the current thread
1879       * is a {@link ForkJoinWorkerThread}, this method possibly
1880       * arranges for a spare thread to be activated if necessary to
1881 <     * ensure parallelism while the current thread is blocked.
1860 <     *
1861 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1862 <     * supports it ({@link #getMaintainsParallelism}), this method
1863 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1864 <     * it activates a thread only if necessary to avoid complete
1865 <     * starvation. This option may be preferable when blockages use
1866 <     * timeouts, or are almost always brief.
1881 >     * ensure sufficient parallelism while the current thread is blocked.
1882       *
1883       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1884       * behaviorally equivalent to
# Line 1877 | Line 1892 | public class ForkJoinPool extends Abstra
1892       * first be expanded to ensure parallelism, and later adjusted.
1893       *
1894       * @param blocker the blocker
1880     * @param maintainParallelism if {@code true} and supported by
1881     * this pool, attempt to maintain the pool's nominal parallelism;
1882     * otherwise activate a thread only if necessary to avoid
1883     * complete starvation.
1895       * @throws InterruptedException if blocker.block did so
1896       */
1897 <    public static void managedBlock(ManagedBlocker blocker,
1887 <                                    boolean maintainParallelism)
1897 >    public static void managedBlock(ManagedBlocker blocker)
1898          throws InterruptedException {
1899          Thread t = Thread.currentThread();
1900 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1901 <                             ((ForkJoinWorkerThread) t).pool : null);
1902 <        if (!blocker.isReleasable()) {
1903 <            try {
1904 <                if (pool == null ||
1905 <                    !pool.preBlock(blocker, maintainParallelism))
1896 <                    awaitBlocker(blocker);
1897 <            } finally {
1898 <                if (pool != null)
1899 <                    pool.updateRunningCount(1);
1900 <            }
1900 >        if (t instanceof ForkJoinWorkerThread) {
1901 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1902 >            w.pool.awaitBlocker(blocker);
1903 >        }
1904 >        else {
1905 >            do {} while (!blocker.isReleasable() && !blocker.block());
1906          }
1902    }
1903
1904    private static void awaitBlocker(ManagedBlocker blocker)
1905        throws InterruptedException {
1906        do {} while (!blocker.isReleasable() && !blocker.block());
1907      }
1908  
1909      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1921 | Line 1921 | public class ForkJoinPool extends Abstra
1921      // Unsafe mechanics
1922  
1923      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1924    private static final long eventCountOffset =
1925        objectFieldOffset("eventCount", ForkJoinPool.class);
1924      private static final long workerCountsOffset =
1925          objectFieldOffset("workerCounts", ForkJoinPool.class);
1926 <    private static final long runControlOffset =
1927 <        objectFieldOffset("runControl", ForkJoinPool.class);
1928 <    private static final long syncStackOffset =
1929 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1930 <    private static final long spareStackOffset =
1931 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1932 <
1933 <    private boolean casEventCount(long cmp, long val) {
1934 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1935 <    }
1938 <    private boolean casWorkerCounts(int cmp, int val) {
1939 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1940 <    }
1941 <    private boolean casRunControl(int cmp, int val) {
1942 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1943 <    }
1944 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1945 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1946 <    }
1947 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1948 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1949 <    }
1926 >    private static final long runStateOffset =
1927 >        objectFieldOffset("runState", ForkJoinPool.class);
1928 >    private static final long eventCountOffset =
1929 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1930 >    private static final long eventWaitersOffset =
1931 >        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1932 >    private static final long stealCountOffset =
1933 >        objectFieldOffset("stealCount", ForkJoinPool.class);
1934 >    private static final long spareWaitersOffset =
1935 >        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1936  
1937      private static long objectFieldOffset(String field, Class<?> klazz) {
1938          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines