ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.5 by jsr166, Thu Mar 19 05:10:42 2009 UTC vs.
Revision 1.65 by dl, Wed Aug 18 14:05:27 2010 UTC

# Line 5 | Line 5
5   */
6  
7   package jsr166y;
8 < import java.util.*;
8 >
9   import java.util.concurrent.*;
10 < import java.util.concurrent.locks.*;
11 < import java.util.concurrent.atomic.*;
12 < import sun.misc.Unsafe;
13 < import java.lang.reflect.*;
10 >
11 > import java.util.ArrayList;
12 > import java.util.Arrays;
13 > import java.util.Collection;
14 > import java.util.Collections;
15 > import java.util.List;
16 > import java.util.concurrent.locks.LockSupport;
17 > import java.util.concurrent.locks.ReentrantLock;
18 > import java.util.concurrent.atomic.AtomicInteger;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22 < * An {@link ExecutorService} for running {@link ForkJoinTask}s.  A
23 < * ForkJoinPool provides the entry point for submissions from
24 < * non-ForkJoinTasks, as well as management and monitoring operations.
25 < * Normally a single ForkJoinPool is used for a large number of
20 < * submitted tasks. Otherwise, use would not usually outweigh the
21 < * construction and bookkeeping overhead of creating a large set of
22 < * threads.
22 > * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23 > * A {@code ForkJoinPool} provides the entry point for submissions
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25 > * monitoring operations.
26   *
27 < * <p>ForkJoinPools differ from other kinds of Executors mainly in
28 < * that they provide <em>work-stealing</em>: all threads in the pool
29 < * attempt to find and execute subtasks created by other active tasks
30 < * (eventually blocking if none exist). This makes them efficient when
31 < * most tasks spawn other subtasks (as do most ForkJoinTasks), as well
32 < * as the mixed execution of some plain Runnable- or Callable- based
33 < * activities along with ForkJoinTasks. Otherwise, other
34 < * ExecutorService implementations are typically more appropriate
35 < * choices.
27 > * <p>A {@code ForkJoinPool} differs from other kinds of {@link
28 > * ExecutorService} mainly by virtue of employing
29 > * <em>work-stealing</em>: all threads in the pool attempt to find and
30 > * execute subtasks created by other active tasks (eventually blocking
31 > * waiting for work if none exist). This enables efficient processing
32 > * when most tasks spawn other subtasks (as do most {@code
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37 < * <p>A ForkJoinPool may be constructed with a given parallelism level
38 < * (target pool size), which it attempts to maintain by dynamically
39 < * adding, suspending, or resuming threads, even if some tasks are
40 < * waiting to join others. However, no such adjustments are performed
41 < * in the face of blocked IO or other unmanaged synchronization. The
42 < * nested <code>ManagedBlocker</code> interface enables extension of
43 < * the kinds of synchronization accommodated.  The target parallelism
44 < * level may also be changed dynamically (<code>setParallelism</code>)
45 < * and dynamically thread construction can be limited using methods
43 < * <code>setMaximumPoolSize</code> and/or
44 < * <code>setMaintainsParallelism</code>.
37 > * <p>A {@code ForkJoinPool} is constructed with a given target
38 > * parallelism level; by default, equal to the number of available
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
49 < * <code>getStealCount</code>) that are intended to aid in developing,
49 > * {@link #getStealCount}) that are intended to aid in developing,
50   * tuning, and monitoring fork/join applications. Also, method
51 < * <code>toString</code> returns indications of pool state in a
51 > * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88 + * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89 + * used for all parallel task execution in a program or subsystem.
90 + * Otherwise, use would not usually outweigh the construction and
91 + * bookkeeping overhead of creating a large set of threads. For
92 + * example, a common pool could be used for the {@code SortTasks}
93 + * illustrated in {@link RecursiveAction}. Because {@code
94 + * ForkJoinPool} uses threads in {@linkplain java.lang.Thread#isDaemon
95 + * daemon} mode, there is typically no need to explicitly {@link
96 + * #shutdown} such a pool upon program exit.
97 + *
98 + * <pre>
99 + * static final ForkJoinPool mainPool = new ForkJoinPool();
100 + * ...
101 + * public void sort(long[] array) {
102 + *   mainPool.invoke(new SortTask(array, 0, array.length));
103 + * }
104 + * </pre>
105 + *
106   * <p><b>Implementation notes</b>: This implementation restricts the
107   * maximum number of running threads to 32767. Attempts to create
108 < * pools with greater than the maximum result in
109 < * IllegalArgumentExceptions.
108 > * pools with greater than the maximum number result in
109 > * {@code IllegalArgumentException}.
110 > *
111 > * <p>This implementation rejects submitted tasks (that is, by throwing
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhausted.
114 > *
115 > * @since 1.7
116 > * @author Doug Lea
117   */
118   public class ForkJoinPool extends AbstractExecutorService {
119  
120      /*
121 <     * See the extended comments interspersed below for design,
122 <     * rationale, and walkthroughs.
121 >     * Implementation Overview
122 >     *
123 >     * This class provides the central bookkeeping and control for a
124 >     * set of worker threads: Submissions from non-FJ threads enter
125 >     * into a submission queue. Workers take these tasks and typically
126 >     * split them into subtasks that may be stolen by other workers.
127 >     * The main work-stealing mechanics implemented in class
128 >     * ForkJoinWorkerThread give first priority to processing tasks
129 >     * from their own queues (LIFO or FIFO, depending on mode), then
130 >     * to randomized FIFO steals of tasks in other worker queues, and
131 >     * lastly to new submissions. These mechanics do not consider
132 >     * affinities, loads, cache localities, etc, so rarely provide the
133 >     * best possible performance on a given machine, but portably
134 >     * provide good throughput by averaging over these factors.
135 >     * (Further, even if we did try to use such information, we do not
136 >     * usually have a basis for exploiting it. For example, some sets
137 >     * of tasks profit from cache affinities, but others are harmed by
138 >     * cache pollution effects.)
139 >     *
140 >     * Beyond work-stealing support and essential bookkeeping, the
141 >     * main responsibility of this framework is to take actions when
142 >     * one worker is waiting to join a task stolen (or always held by)
143 >     * another.  Becauae we are multiplexing many tasks on to a pool
144 >     * of workers, we can't just let them block (as in Thread.join).
145 >     * We also cannot just reassign the joiner's run-time stack with
146 >     * another and replace it later, which would be a form of
147 >     * "continuation", that even if possible is not necessarily a good
148 >     * idea. Given that the creation costs of most threads on most
149 >     * systems mainly surrounds setting up runtime stacks, thread
150 >     * creation and switching is usually not much more expensive than
151 >     * stack creation and switching, and is more flexible). Instead we
152 >     * combine two tactics:
153 >     *
154 >     *   Helping: Arranging for the joiner to execute some task that it
155 >     *      would be running if the steal had not occurred.  Method
156 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 >     *      links to try to find such a task.
158 >     *
159 >     *   Compensating: Unless there are already enough live threads,
160 >     *      method helpMaintainParallelism() may create or or
161 >     *      re-activate a spare thread to compensate for blocked
162 >     *      joiners until they unblock.
163 >     *
164 >     * Because the determining existence of conservatively safe
165 >     * helping targets, the availability of already-created spares,
166 >     * and the apparent need to create new spares are all racy and
167 >     * require heuristic guidance, we rely on multiple retries of
168 >     * each. Further, because it is impossible to keep exactly the
169 >     * target (parallelism) number of threads running at any given
170 >     * time, we allow compensation during joins to fail, and enlist
171 >     * all other threads to help out whenever they are not otherwise
172 >     * occupied (i.e., mainly in method preStep).
173 >     *
174 >     * The ManagedBlocker extension API can't use helping so relies
175 >     * only on compensation in method awaitBlocker.
176 >     *
177 >     * The main throughput advantages of work-stealing stem from
178 >     * decentralized control -- workers mostly steal tasks from each
179 >     * other. We do not want to negate this by creating bottlenecks
180 >     * implementing other management responsibilities. So we use a
181 >     * collection of techniques that avoid, reduce, or cope well with
182 >     * contention. These entail several instances of bit-packing into
183 >     * CASable fields to maintain only the minimally required
184 >     * atomicity. To enable such packing, we restrict maximum
185 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
186 >     * unbalanced increments and decrements) to fit into a 16 bit
187 >     * field, which is far in excess of normal operating range.  Even
188 >     * though updates to some of these bookkeeping fields do sometimes
189 >     * contend with each other, they don't normally cache-contend with
190 >     * updates to others enough to warrant memory padding or
191 >     * isolation. So they are all held as fields of ForkJoinPool
192 >     * objects.  The main capabilities are as follows:
193 >     *
194 >     * 1. Creating and removing workers. Workers are recorded in the
195 >     * "workers" array. This is an array as opposed to some other data
196 >     * structure to support index-based random steals by workers.
197 >     * Updates to the array recording new workers and unrecording
198 >     * terminated ones are protected from each other by a lock
199 >     * (workerLock) but the array is otherwise concurrently readable,
200 >     * and accessed directly by workers. To simplify index-based
201 >     * operations, the array size is always a power of two, and all
202 >     * readers must tolerate null slots. Currently, all worker thread
203 >     * creation is on-demand, triggered by task submissions,
204 >     * replacement of terminated workers, and/or compensation for
205 >     * blocked workers. However, all other support code is set up to
206 >     * work with other policies.
207 >     *
208 >     * To ensure that we do not hold on to worker references that
209 >     * would prevent GC, ALL accesses to workers are via indices into
210 >     * the workers array (which is one source of some of the unusual
211 >     * code constructions here). In essence, the workers array serves
212 >     * as a WeakReference mechanism. Thus for example the event queue
213 >     * stores worker indices, not worker references. Access to the
214 >     * workers in associated methods (for example releaseEventWaiters)
215 >     * must both index-check and null-check the IDs. All such accesses
216 >     * ignore bad IDs by returning out early from what they are doing,
217 >     * since this can only be associated with shutdown, in which case
218 >     * it is OK to give up. On termination, we just clobber these
219 >     * data structures without trying to use them.
220 >     *
221 >     * 2. Bookkeeping for dynamically adding and removing workers. We
222 >     * aim to approximately maintain the given level of parallelism.
223 >     * When some workers are known to be blocked (on joins or via
224 >     * ManagedBlocker), we may create or resume others to take their
225 >     * place until they unblock (see below). Implementing this
226 >     * requires counts of the number of "running" threads (i.e., those
227 >     * that are neither blocked nor artifically suspended) as well as
228 >     * the total number.  These two values are packed into one field,
229 >     * "workerCounts" because we need accurate snapshots when deciding
230 >     * to create, resume or suspend.  Note however that the
231 >     * correspondance of these counts to reality is not guaranteed. In
232 >     * particular updates for unblocked threads may lag until they
233 >     * actually wake up.
234 >     *
235 >     * 3. Maintaining global run state. The run state of the pool
236 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
237 >     * those in other Executor implementations, as well as a count of
238 >     * "active" workers -- those that are, or soon will be, or
239 >     * recently were executing tasks. The runLevel and active count
240 >     * are packed together in order to correctly trigger shutdown and
241 >     * termination. Without care, active counts can be subject to very
242 >     * high contention.  We substantially reduce this contention by
243 >     * relaxing update rules.  A worker must claim active status
244 >     * prospectively, by activating if it sees that a submitted or
245 >     * stealable task exists (it may find after activating that the
246 >     * task no longer exists). It stays active while processing this
247 >     * task (if it exists) and any other local subtasks it produces,
248 >     * until it cannot find any other tasks. It then tries
249 >     * inactivating (see method preStep), but upon update contention
250 >     * instead scans for more tasks, later retrying inactivation if it
251 >     * doesn't find any.
252 >     *
253 >     * 4. Managing idle workers waiting for tasks. We cannot let
254 >     * workers spin indefinitely scanning for tasks when none are
255 >     * available. On the other hand, we must quickly prod them into
256 >     * action when new tasks are submitted or generated.  We
257 >     * park/unpark these idle workers using an event-count scheme.
258 >     * Field eventCount is incremented upon events that may enable
259 >     * workers that previously could not find a task to now find one:
260 >     * Submission of a new task to the pool, or another worker pushing
261 >     * a task onto a previously empty queue.  (We also use this
262 >     * mechanism for configuration and termination actions that
263 >     * require wakeups of idle workers).  Each worker maintains its
264 >     * last known event count, and blocks when a scan for work did not
265 >     * find a task AND its lastEventCount matches the current
266 >     * eventCount. Waiting idle workers are recorded in a variant of
267 >     * Treiber stack headed by field eventWaiters which, when nonzero,
268 >     * encodes the thread index and count awaited for by the worker
269 >     * thread most recently calling eventSync. This thread in turn has
270 >     * a record (field nextEventWaiter) for the next waiting worker.
271 >     * In addition to allowing simpler decisions about need for
272 >     * wakeup, the event count bits in eventWaiters serve the role of
273 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
274 >     * released threads also try to release others (but give up upon
275 >     * contention to reduce useless flailing).  The net effect is a
276 >     * tree-like diffusion of signals, where released threads (and
277 >     * possibly others) help with unparks.  To further reduce
278 >     * contention effects a bit, failed CASes to increment field
279 >     * eventCount are tolerated without retries in signalWork.
280 >     * Conceptually they are merged into the same event, which is OK
281 >     * when their only purpose is to enable workers to scan for work.
282 >     *
283 >     * 5. Managing suspension of extra workers. When a worker is about
284 >     * to block waiting for a join (or via ManagedBlockers), we may
285 >     * create a new thread to maintain parallelism level, or at least
286 >     * avoid starvation. Usually, extra threads are needed for only
287 >     * very short periods, yet join dependencies are such that we
288 >     * sometimes need them in bursts. Rather than create new threads
289 >     * each time this happens, we suspend no-longer-needed extra ones
290 >     * as "spares". For most purposes, we don't distinguish "extra"
291 >     * spare threads from normal "core" threads: On each call to
292 >     * preStep (the only point at which we can do this) a worker
293 >     * checks to see if there are now too many running workers, and if
294 >     * so, suspends itself.  Method helpMaintainParallelism looks for
295 >     * suspended threads to resume before considering creating a new
296 >     * replacement. The spares themselves are encoded on another
297 >     * variant of a Treiber Stack, headed at field "spareWaiters".
298 >     * Note that the use of spares is intrinsically racy.  One thread
299 >     * may become a spare at about the same time as another is
300 >     * needlessly being created. We counteract this and related slop
301 >     * in part by requiring resumed spares to immediately recheck (in
302 >     * preStep) to see whether they they should re-suspend.
303 >     *
304 >     * 6. Killing off unneeded workers. The Spare and Event queues use
305 >     * similar mechanisms to shed unused workers: The oldest (first)
306 >     * waiter uses a timed rather than hard wait. When this wait times
307 >     * out without a normal wakeup, it tries to shutdown any one (for
308 >     * convenience the newest) other waiter via tryShutdownSpare or
309 >     * tryShutdownWaiter, respectively. The wakeup rates for spares
310 >     * are much shorter than for waiters. Together, they will
311 >     * eventually reduce the number of worker threads to a minimum of
312 >     * one after a long enough period without use.
313 >     *
314 >     * 7. Deciding when to create new workers. The main dynamic
315 >     * control in this class is deciding when to create extra threads
316 >     * in method helpMaintainParallelism. We would like to keep
317 >     * exactly #parallelism threads running, which is an impossble
318 >     * task. We always need to create one when the number of running
319 >     * threads would become zero and all workers are busy. Beyond
320 >     * this, we must rely on heuristics that work well in the the
321 >     * presence of transients phenomena such as GC stalls, dynamic
322 >     * compilation, and wake-up lags. These transients are extremely
323 >     * common -- we are normally trying to fully saturate the CPUs on
324 >     * a machine, so almost any activity other than running tasks
325 >     * impedes accuracy. Our main defense is to allow some slack in
326 >     * creation thresholds, using rules that reflect the fact that the
327 >     * more threads we have running, the more likely that we are
328 >     * underestimating the number running threads. (We also include
329 >     * some heuristic use of Thread.yield when all workers appear to
330 >     * be busy, to improve likelihood of counts settling.) The rules
331 >     * also better cope with the fact that some of the methods in this
332 >     * class tend to never become compiled (but are interpreted), so
333 >     * some components of the entire set of controls might execute 100
334 >     * times faster than others. And similarly for cases where the
335 >     * apparent lack of work is just due to GC stalls and other
336 >     * transient system activity.
337 >     *
338 >     * Beware that there is a lot of representation-level coupling
339 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
340 >     * ForkJoinTask.  For example, direct access to "workers" array by
341 >     * workers, and direct access to ForkJoinTask.status by both
342 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
343 >     * trying to reduce this, since any associated future changes in
344 >     * representations will need to be accompanied by algorithmic
345 >     * changes anyway.
346 >     *
347 >     * Style notes: There are lots of inline assignments (of form
348 >     * "while ((local = field) != 0)") which are usually the simplest
349 >     * way to ensure the required read orderings (which are sometimes
350 >     * critical). Also several occurrences of the unusual "do {}
351 >     * while(!cas...)" which is the simplest way to force an update of
352 >     * a CAS'ed variable. There are also other coding oddities that
353 >     * help some methods perform reasonably even when interpreted (not
354 >     * compiled), at the expense of some messy constructions that
355 >     * reduce byte code counts.
356 >     *
357 >     * The order of declarations in this file is: (1) statics (2)
358 >     * fields (along with constants used when unpacking some of them)
359 >     * (3) internal control methods (4) callbacks and other support
360 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
361 >     * methods (plus a few little helpers).
362       */
363  
65    /** Mask for packing and unpacking shorts */
66    private static final int  shortMask = 0xffff;
67
68    /** Max pool size -- must be a power of two minus 1 */
69    private static final int MAX_THREADS =  0x7FFF;
70
364      /**
365 <     * Factory for creating new ForkJoinWorkerThreads.  A
366 <     * ForkJoinWorkerThreadFactory must be defined and used for
367 <     * ForkJoinWorkerThread subclasses that extend base functionality
368 <     * or initialize threads with different contexts.
365 >     * Factory for creating new {@link ForkJoinWorkerThread}s.
366 >     * A {@code ForkJoinWorkerThreadFactory} must be defined and used
367 >     * for {@code ForkJoinWorkerThread} subclasses that extend base
368 >     * functionality or initialize threads with different contexts.
369       */
370      public static interface ForkJoinWorkerThreadFactory {
371          /**
372           * Returns a new worker thread operating in the given pool.
373           *
374           * @param pool the pool this thread works in
375 <         * @throws NullPointerException if pool is null;
375 >         * @throws NullPointerException if the pool is null
376           */
377          public ForkJoinWorkerThread newThread(ForkJoinPool pool);
378      }
379  
380      /**
381 <     * Default ForkJoinWorkerThreadFactory implementation, creates a
381 >     * Default ForkJoinWorkerThreadFactory implementation; creates a
382       * new ForkJoinWorkerThread.
383       */
384 <    static class  DefaultForkJoinWorkerThreadFactory
384 >    static class DefaultForkJoinWorkerThreadFactory
385          implements ForkJoinWorkerThreadFactory {
386          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
387 <            try {
95 <                return new ForkJoinWorkerThread(pool);
96 <            } catch (OutOfMemoryError oom)  {
97 <                return null;
98 <            }
387 >            return new ForkJoinWorkerThread(pool);
388          }
389      }
390  
# Line 131 | Line 420 | public class ForkJoinPool extends Abstra
420          new AtomicInteger();
421  
422      /**
423 <     * Array holding all worker threads in the pool. Array size must
423 >     * The wakeup interval (in nanoseconds) for the oldest worker
424 >     * worker waiting for an event invokes tryShutdownWaiter to shrink
425 >     * the number of workers.  The exact value does not matter too
426 >     * much, but should be long enough to slowly release resources
427 >     * during long periods without use without disrupting normal use.
428 >     */
429 >    private static final long SHRINK_RATE_NANOS =
430 >        60L * 1000L * 1000L * 1000L; // one minute
431 >
432 >    /**
433 >     * Absolute bound for parallelism level. Twice this number plus
434 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
435 >     * word-packing for some counts and indices.
436 >     */
437 >    private static final int MAX_WORKERS   = 0x7fff;
438 >
439 >    /**
440 >     * Array holding all worker threads in the pool.  Array size must
441       * be a power of two.  Updates and replacements are protected by
442 <     * workerLock, but it is always kept in a consistent enough state
443 <     * to be randomly accessed without locking by workers performing
444 <     * work-stealing.
442 >     * workerLock, but the array is always kept in a consistent enough
443 >     * state to be randomly accessed without locking by workers
444 >     * performing work-stealing, as well as other traversal-based
445 >     * methods in this class. All readers must tolerate that some
446 >     * array slots may be null.
447       */
448      volatile ForkJoinWorkerThread[] workers;
449  
450      /**
451 <     * Lock protecting access to workers.
451 >     * Queue for external submissions.
452       */
453 <    private final ReentrantLock workerLock;
453 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
454  
455      /**
456 <     * Condition for awaitTermination.
456 >     * Lock protecting updates to workers array.
457       */
458 <    private final Condition termination;
458 >    private final ReentrantLock workerLock;
459  
460      /**
461 <     * The uncaught exception handler used when any worker
154 <     * abrupty terminates
461 >     * Latch released upon termination.
462       */
463 <    private Thread.UncaughtExceptionHandler ueh;
463 >    private final Phaser termination;
464  
465      /**
466       * Creation factory for worker threads.
# Line 161 | Line 468 | public class ForkJoinPool extends Abstra
468      private final ForkJoinWorkerThreadFactory factory;
469  
470      /**
471 <     * Head of stack of threads that were created to maintain
472 <     * parallelism when other threads blocked, but have since
166 <     * suspended when the parallelism level rose.
471 >     * Sum of per-thread steal counts, updated only when threads are
472 >     * idle or terminating.
473       */
474 <    private volatile WaitQueueNode spareStack;
474 >    private volatile long stealCount;
475  
476      /**
477 <     * Sum of per-thread steal counts, updated only when threads are
478 <     * idle or terminating.
477 >     * Encoded record of top of treiber stack of threads waiting for
478 >     * events. The top 32 bits contain the count being waited for. The
479 >     * bottom 16 bits contains one plus the pool index of waiting
480 >     * worker thread. (Bits 16-31 are unused.)
481       */
482 <    private final AtomicLong stealCount;
482 >    private volatile long eventWaiters;
483 >
484 >    private static final int  EVENT_COUNT_SHIFT = 32;
485 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
486  
487      /**
488 <     * Queue for external submissions.
488 >     * A counter for events that may wake up worker threads:
489 >     *   - Submission of a new task to the pool
490 >     *   - A worker pushing a task on an empty queue
491 >     *   - termination
492       */
493 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
493 >    private volatile int eventCount;
494  
495      /**
496 <     * Head of Treiber stack for barrier sync. See below for explanation
496 >     * Encoded record of top of treiber stack of spare threads waiting
497 >     * for resumption. The top 16 bits contain an arbitrary count to
498 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
499 >     * index of waiting worker thread.
500       */
501 <    private volatile WaitQueueNode syncStack;
501 >    private volatile int spareWaiters;
502 >
503 >    private static final int SPARE_COUNT_SHIFT = 16;
504 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
505  
506      /**
507 <     * The count for event barrier
507 >     * Lifecycle control. The low word contains the number of workers
508 >     * that are (probably) executing tasks. This value is atomically
509 >     * incremented before a worker gets a task to run, and decremented
510 >     * when worker has no tasks and cannot find any.  Bits 16-18
511 >     * contain runLevel value. When all are zero, the pool is
512 >     * running. Level transitions are monotonic (running -> shutdown
513 >     * -> terminating -> terminated) so each transition adds a bit.
514 >     * These are bundled together to ensure consistent read for
515 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
516 >     * and active threads is zero).
517 >     *
518 >     * Notes: Most direct CASes are dependent on these bitfield
519 >     * positions.  Also, this field is non-private to enable direct
520 >     * performance-sensitive CASes in ForkJoinWorkerThread.
521 >     */
522 >    volatile int runState;
523 >
524 >    // Note: The order among run level values matters.
525 >    private static final int RUNLEVEL_SHIFT     = 16;
526 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
527 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
528 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
529 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
530 >
531 >    /**
532 >     * Holds number of total (i.e., created and not yet terminated)
533 >     * and running (i.e., not blocked on joins or other managed sync)
534 >     * threads, packed together to ensure consistent snapshot when
535 >     * making decisions about creating and suspending spare
536 >     * threads. Updated only by CAS. Note that adding a new worker
537 >     * requires incrementing both counts, since workers start off in
538 >     * running state.
539       */
540 <    private volatile long eventCount;
540 >    private volatile int workerCounts;
541 >
542 >    private static final int TOTAL_COUNT_SHIFT  = 16;
543 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
544 >    private static final int ONE_RUNNING        = 1;
545 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
546  
547      /**
548 <     * Pool number, just for assigning useful names to worker threads
548 >     * The target parallelism level.
549 >     * Accessed directly by ForkJoinWorkerThreads.
550       */
551 <    private final int poolNumber;
551 >    final int parallelism;
552  
553      /**
554 <     * The maximum allowed pool size
554 >     * True if use local fifo, not default lifo, for local polling
555 >     * Read by, and replicated by ForkJoinWorkerThreads
556       */
557 <    private volatile int maxPoolSize;
557 >    final boolean locallyFifo;
558  
559      /**
560 <     * The desired parallelism level, updated only under workerLock.
560 >     * The uncaught exception handler used when any worker abruptly
561 >     * terminates.
562       */
563 <    private volatile int parallelism;
563 >    private final Thread.UncaughtExceptionHandler ueh;
564  
565      /**
566 <     * Holds number of total (i.e., created and not yet terminated)
208 <     * and running (i.e., not blocked on joins or other managed sync)
209 <     * threads, packed into one int to ensure consistent snapshot when
210 <     * making decisions about creating and suspending spare
211 <     * threads. Updated only by CAS.  Note: CASes in
212 <     * updateRunningCount and preJoin running active count is in low
213 <     * word, so need to be modified if this changes
566 >     * Pool number, just for assigning useful names to worker threads
567       */
568 <    private volatile int workerCounts;
568 >    private final int poolNumber;
569 >
570  
571 <    private static int totalCountOf(int s)           { return s >>> 16;  }
572 <    private static int runningCountOf(int s)         { return s & shortMask; }
219 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
571 >    // Utilities for CASing fields. Note that most of these
572 >    // are usually manually inlined by callers
573  
574      /**
575 <     * Add delta (which may be negative) to running count.  This must
223 <     * be called before (with negative arg) and after (with positive)
224 <     * any managed synchronization (i.e., mainly, joins)
225 <     * @param delta the number to add
575 >     * Increments running count part of workerCounts
576       */
577 <    final void updateRunningCount(int delta) {
578 <        int s;
579 <        do;while (!casWorkerCounts(s = workerCounts, s + delta));
577 >    final void incrementRunningCount() {
578 >        int c;
579 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
580 >                                               c = workerCounts,
581 >                                               c + ONE_RUNNING));
582      }
583  
584      /**
585 <     * Add delta (which may be negative) to both total and running
234 <     * count.  This must be called upon creation and termination of
235 <     * worker threads.
236 <     * @param delta the number to add
585 >     * Tries to decrement running count unless already zero
586       */
587 <    private void updateWorkerCount(int delta) {
588 <        int d = delta + (delta << 16); // add to both lo and hi parts
589 <        int s;
590 <        do;while (!casWorkerCounts(s = workerCounts, s + d));
587 >    final boolean tryDecrementRunningCount() {
588 >        int wc = workerCounts;
589 >        if ((wc & RUNNING_COUNT_MASK) == 0)
590 >            return false;
591 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
592 >                                        wc, wc - ONE_RUNNING);
593      }
594  
595      /**
596 <     * Lifecycle control. High word contains runState, low word
597 <     * contains the number of workers that are (probably) executing
598 <     * tasks. This value is atomically incremented before a worker
599 <     * gets a task to run, and decremented when worker has no tasks
600 <     * and cannot find any. These two fields are bundled together to
250 <     * support correct termination triggering.  Note: activeCount
251 <     * CAS'es cheat by assuming active count is in low word, so need
252 <     * to be modified if this changes
596 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
597 >     * (rarely) necessary when other count updates lag.
598 >     *
599 >     * @param dr -- either zero or ONE_RUNNING
600 >     * @param dt == either zero or ONE_TOTAL
601       */
602 <    private volatile int runControl;
603 <
604 <    // RunState values. Order among values matters
605 <    private static final int RUNNING     = 0;
606 <    private static final int SHUTDOWN    = 1;
607 <    private static final int TERMINATING = 2;
608 <    private static final int TERMINATED  = 3;
609 <
610 <    private static int runStateOf(int c)             { return c >>> 16; }
611 <    private static int activeCountOf(int c)          { return c & shortMask; }
612 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
602 >    private void decrementWorkerCounts(int dr, int dt) {
603 >        for (;;) {
604 >            int wc = workerCounts;
605 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
606 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
607 >                if ((runState & TERMINATED) != 0)
608 >                    return; // lagging termination on a backout
609 >                Thread.yield();
610 >            }
611 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
612 >                                         wc, wc - (dr + dt)))
613 >                return;
614 >        }
615 >    }
616  
617      /**
618 <     * Try incrementing active count; fail on contention. Called by
268 <     * workers before/during executing tasks.
269 <     * @return true on success;
618 >     * Increments event count
619       */
620 <    final boolean tryIncrementActiveCount() {
621 <        int c = runControl;
622 <        return casRunControl(c, c+1);
620 >    private void advanceEventCount() {
621 >        int c;
622 >        do {} while(!UNSAFE.compareAndSwapInt(this, eventCountOffset,
623 >                                              c = eventCount, c+1));
624      }
625  
626      /**
627 <     * Try decrementing active count; fail on contention.
628 <     * Possibly trigger termination on success
629 <     * Called by workers when they can't find tasks.
627 >     * Tries incrementing active count; fails on contention.
628 >     * Called by workers before executing tasks.
629 >     *
630       * @return true on success
631       */
632 <    final boolean tryDecrementActiveCount() {
633 <        int c = runControl;
634 <        int nextc = c - 1;
635 <        if (!casRunControl(c, nextc))
286 <            return false;
287 <        if (canTerminateOnShutdown(nextc))
288 <            terminateOnShutdown();
289 <        return true;
632 >    final boolean tryIncrementActiveCount() {
633 >        int c;
634 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
635 >                                        c = runState, c + 1);
636      }
637  
638      /**
639 <     * Return true if argument represents zero active count and
640 <     * nonzero runstate, which is the triggering condition for
295 <     * terminating on shutdown.
639 >     * Tries decrementing active count; fails on contention.
640 >     * Called when workers cannot find tasks to run.
641       */
642 <    private static boolean canTerminateOnShutdown(int c) {
643 <        return ((c & -c) >>> 16) != 0; // i.e. least bit is nonzero runState bit
642 >    final boolean tryDecrementActiveCount() {
643 >        int c;
644 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
645 >                                        c = runState, c - 1);
646      }
647  
648      /**
649 <     * Transition run state to at least the given state. Return true
650 <     * if not already at least given state.
649 >     * Advances to at least the given level. Returns true if not
650 >     * already in at least the given level.
651       */
652 <    private boolean transitionRunStateTo(int state) {
652 >    private boolean advanceRunLevel(int level) {
653          for (;;) {
654 <            int c = runControl;
655 <            if (runStateOf(c) >= state)
654 >            int s = runState;
655 >            if ((s & level) != 0)
656                  return false;
657 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
657 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
658                  return true;
659          }
660      }
661  
662 +    // workers array maintenance
663 +
664 +    /**
665 +     * Records and returns a workers array index for new worker.
666 +     */
667 +    private int recordWorker(ForkJoinWorkerThread w) {
668 +        // Try using slot totalCount-1. If not available, scan and/or resize
669 +        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
670 +        final ReentrantLock lock = this.workerLock;
671 +        lock.lock();
672 +        try {
673 +            ForkJoinWorkerThread[] ws = workers;
674 +            int n = ws.length;
675 +            if (k < 0 || k >= n || ws[k] != null) {
676 +                for (k = 0; k < n && ws[k] != null; ++k)
677 +                    ;
678 +                if (k == n)
679 +                    ws = Arrays.copyOf(ws, n << 1);
680 +            }
681 +            ws[k] = w;
682 +            workers = ws; // volatile array write ensures slot visibility
683 +        } finally {
684 +            lock.unlock();
685 +        }
686 +        return k;
687 +    }
688 +
689      /**
690 <     * Controls whether to add spares to maintain parallelism
690 >     * Nulls out record of worker in workers array
691       */
692 <    private volatile boolean maintainsParallelism;
692 >    private void forgetWorker(ForkJoinWorkerThread w) {
693 >        int idx = w.poolIndex;
694 >        // Locking helps method recordWorker avoid unecessary expansion
695 >        final ReentrantLock lock = this.workerLock;
696 >        lock.lock();
697 >        try {
698 >            ForkJoinWorkerThread[] ws = workers;
699 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
700 >                ws[idx] = null;
701 >        } finally {
702 >            lock.unlock();
703 >        }
704 >    }
705  
706 <    // Constructors
706 >    // adding and removing workers
707  
708      /**
709 <     * Creates a ForkJoinPool with a pool size equal to the number of
710 <     * processors available on the system and using the default
711 <     * ForkJoinWorkerThreadFactory,
712 <     * @throws SecurityException if a security manager exists and
713 <     *         the caller is not permitted to modify threads
328 <     *         because it does not hold {@link
329 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
709 >     * Tries to create and add new worker. Assumes that worker counts
710 >     * are already updated to accommodate the worker, so adjusts on
711 >     * failure.
712 >     *
713 >     * @return the worker, or null on failure
714       */
715 <    public ForkJoinPool() {
716 <        this(Runtime.getRuntime().availableProcessors(),
717 <             defaultForkJoinWorkerThreadFactory);
715 >    private ForkJoinWorkerThread addWorker() {
716 >        ForkJoinWorkerThread w = null;
717 >        try {
718 >            w = factory.newThread(this);
719 >        } finally { // Adjust on either null or exceptional factory return
720 >            if (w == null) {
721 >                decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
722 >                tryTerminate(false); // in case of failure during shutdown
723 >            }
724 >        }
725 >        if (w != null) {
726 >            w.start(recordWorker(w), ueh);
727 >            advanceEventCount();
728 >        }
729 >        return w;
730      }
731  
732      /**
733 <     * Creates a ForkJoinPool with the indicated parellelism level
734 <     * threads, and using the default ForkJoinWorkerThreadFactory,
735 <     * @param parallelism the number of worker threads
736 <     * @throws IllegalArgumentException if parallelism less than or
737 <     * equal to zero
342 <     * @throws SecurityException if a security manager exists and
343 <     *         the caller is not permitted to modify threads
344 <     *         because it does not hold {@link
345 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
733 >     * Final callback from terminating worker.  Removes record of
734 >     * worker from array, and adjusts counts. If pool is shutting
735 >     * down, tries to complete terminatation.
736 >     *
737 >     * @param w the worker
738       */
739 <    public ForkJoinPool(int parallelism) {
740 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
739 >    final void workerTerminated(ForkJoinWorkerThread w) {
740 >        forgetWorker(w);
741 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
742 >        while (w.stealCount != 0) // collect final count
743 >            tryAccumulateStealCount(w);
744 >        tryTerminate(false);
745 >    }
746 >
747 >    // Waiting for and signalling events
748 >
749 >    /**
750 >     * Releases workers blocked on a count not equal to current count.
751 >     * Normally called after precheck that eventWaiters isn't zero to
752 >     * avoid wasted array checks. Gives up upon a change in count or
753 >     * contention, letting other workers take over.
754 >     */
755 >    private void releaseEventWaiters() {
756 >        ForkJoinWorkerThread[] ws = workers;
757 >        int n = ws.length;
758 >        long h = eventWaiters;
759 >        int ec = eventCount;
760 >        ForkJoinWorkerThread w; int id;
761 >        while ((int)(h >>> EVENT_COUNT_SHIFT) != ec &&
762 >               (id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
763 >               id < n && (w = ws[id]) != null &&
764 >               UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765 >                                         h,  h = w.nextWaiter)) {
766 >            LockSupport.unpark(w);
767 >            if (eventWaiters != h || eventCount != ec)
768 >                break;
769 >        }
770      }
771  
772      /**
773 <     * Creates a ForkJoinPool with parallelism equal to the number of
774 <     * processors available on the system and using the given
354 <     * ForkJoinWorkerThreadFactory,
355 <     * @param factory the factory for creating new threads
356 <     * @throws NullPointerException if factory is null
357 <     * @throws SecurityException if a security manager exists and
358 <     *         the caller is not permitted to modify threads
359 <     *         because it does not hold {@link
360 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
773 >     * Tries to advance eventCount and releases waiters. Called only
774 >     * from workers.
775       */
776 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
777 <        this(Runtime.getRuntime().availableProcessors(), factory);
776 >    final void signalWork() {
777 >        int c; // try to increment event count -- CAS failure OK
778 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
779 >        if (eventWaiters != 0L)
780 >            releaseEventWaiters();
781      }
782  
783      /**
784 <     * Creates a ForkJoinPool with the given parallelism and factory.
784 >     * Adds the given worker to event queue and blocks until
785 >     * terminating or event count advances from the workers
786 >     * lastEventCount value
787       *
788 <     * @param parallelism the targeted number of worker threads
370 <     * @param factory the factory for creating new threads
371 <     * @throws IllegalArgumentException if parallelism less than or
372 <     * equal to zero, or greater than implementation limit.
373 <     * @throws NullPointerException if factory is null
374 <     * @throws SecurityException if a security manager exists and
375 <     *         the caller is not permitted to modify threads
376 <     *         because it does not hold {@link
377 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
788 >     * @param w the calling worker thread
789       */
790 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
791 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
792 <            throw new IllegalArgumentException();
793 <        if (factory == null)
794 <            throw new NullPointerException();
795 <        checkPermission();
796 <        this.factory = factory;
797 <        this.parallelism = parallelism;
798 <        this.maxPoolSize = MAX_THREADS;
799 <        this.maintainsParallelism = true;
800 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
801 <        this.workerLock = new ReentrantLock();
802 <        this.termination = workerLock.newCondition();
803 <        this.stealCount = new AtomicLong();
393 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
394 <        createAndStartInitialWorkers(parallelism);
790 >    private void eventSync(ForkJoinWorkerThread w) {
791 >        int ec = w.lastEventCount;
792 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
793 >        long h;
794 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
795 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
796 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
797 >               eventCount == ec) {
798 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
799 >                                          w.nextWaiter = h, nh)) {
800 >                awaitEvent(w, ec);
801 >                break;
802 >            }
803 >        }
804      }
805  
806      /**
807 <     * Create new worker using factory.
808 <     * @param index the index to assign worker
809 <     * @return new worker, or null of factory failed
807 >     * Blocks the given worker (that has already been entered as an
808 >     * event waiter) until terminating or event count advances from
809 >     * the given value. The oldest (first) waiter uses a timed wait to
810 >     * occasionally one-by-one shrink the number of workers (to a
811 >     * minumum of one) if the pool has not been used for extended
812 >     * periods.
813 >     *
814 >     * @param w the calling worker thread
815 >     * @param ec the count
816       */
817 <    private ForkJoinWorkerThread createWorker(int index) {
818 <        Thread.UncaughtExceptionHandler h = ueh;
819 <        ForkJoinWorkerThread w = factory.newThread(this);
820 <        if (w != null) {
821 <            w.poolIndex = index;
822 <            w.setDaemon(true);
823 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
824 <            if (h != null)
825 <                w.setUncaughtExceptionHandler(h);
817 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
818 >        while (eventCount == ec) {
819 >            if (tryAccumulateStealCount(w)) { // transfer while idle
820 >                boolean untimed = (w.nextWaiter != 0L ||
821 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
822 >                long startTime = untimed? 0 : System.nanoTime();
823 >                Thread.interrupted();         // clear/ignore interrupt
824 >                if (eventCount != ec || !w.isRunning() ||
825 >                    runState >= TERMINATING)  // recheck after clear
826 >                    break;
827 >                if (untimed)
828 >                    LockSupport.park(w);
829 >                else {
830 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
831 >                    if (eventCount != ec || !w.isRunning() ||
832 >                        runState >= TERMINATING)
833 >                        break;
834 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
835 >                        tryShutdownWaiter(ec);
836 >                }
837 >            }
838          }
412        return w;
839      }
840  
841      /**
842 <     * Return a good size for worker array given pool size.
843 <     * Currently requires size to be a power of two.
842 >     * Callback from the oldest waiter in awaitEvent waking up after a
843 >     * period of non-use. Tries (once) to shutdown an event waiter (or
844 >     * a spare, if one exists). Note that we don't need CAS or locks
845 >     * here because the method is called only from one thread
846 >     * occasionally waking (and even misfires are OK). Note that
847 >     * until the shutdown worker fully terminates, workerCounts
848 >     * will overestimate total count, which is tolerable.
849 >     *
850 >     * @param ec the event count waited on by caller (to abort
851 >     * attempt if count has since changed).
852       */
853 <    private static int arraySizeFor(int ps) {
854 <        return ps <= 1? 1 : (1 << (32 - Integer.numberOfLeadingZeros(ps-1)));
853 >    private void tryShutdownWaiter(int ec) {
854 >        if (spareWaiters != 0) { // prefer killing spares
855 >            tryShutdownSpare();
856 >            return;
857 >        }
858 >        ForkJoinWorkerThread[] ws = workers;
859 >        int n = ws.length;
860 >        long h = eventWaiters;
861 >        ForkJoinWorkerThread w; int id; long nh;
862 >        if (runState == 0 &&
863 >            submissionQueue.isEmpty() &&
864 >            eventCount == ec &&
865 >            (id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
866 >            id < n && (w = ws[id]) != null &&
867 >            (nh = w.nextWaiter) != 0L && // keep at least one worker
868 >            UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh)) {
869 >            w.shutdown();
870 >            LockSupport.unpark(w);
871 >        }
872 >        releaseEventWaiters();
873      }
874  
875 +    // Maintaining spares
876 +
877      /**
878 <     * Create or resize array if necessary to hold newLength
425 <     * @return the array
878 >     * Pushes worker onto the spare stack
879       */
880 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
881 <        ForkJoinWorkerThread[] ws = workers;
882 <        if (ws == null)
883 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
431 <        else if (newLength > ws.length)
432 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
433 <        else
434 <            return ws;
880 >    final void pushSpare(ForkJoinWorkerThread w) {
881 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
882 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
883 >                                               w.nextSpare = spareWaiters,ns));
884      }
885  
886      /**
887 <     * Try to shrink workers into smaller array after one or more terminate
887 >     * Callback from oldest spare occasionally waking up.  Tries
888 >     * (once) to shutdown a spare. Same idea as tryShutdownWaiter.
889       */
890 <    private void tryShrinkWorkerArray() {
890 >    final void tryShutdownSpare() {
891 >        int sw, id;
892 >        ForkJoinWorkerThread w;
893 >        ForkJoinWorkerThread[] ws;
894 >        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
895 >            id < (ws = workers).length && (w = ws[id]) != null &&
896 >            (workerCounts & RUNNING_COUNT_MASK) >= parallelism &&
897 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
898 >                                     sw, w.nextSpare)) {
899 >            w.shutdown();
900 >            LockSupport.unpark(w);
901 >            advanceEventCount();
902 >        }
903 >    }
904 >
905 >    /**
906 >     * Tries (once) to resume a spare if worker counts match
907 >     * the given count.
908 >     *
909 >     * @param wc workerCounts value on invocation of this method
910 >     */
911 >    private void tryResumeSpare(int wc) {
912          ForkJoinWorkerThread[] ws = workers;
913 <        int len = ws.length;
914 <        int last = len - 1;
915 <        while (last >= 0 && ws[last] == null)
916 <            --last;
917 <        int newLength = arraySizeFor(last+1);
918 <        if (newLength < len)
919 <            workers = Arrays.copyOf(ws, newLength);
913 >        int n = ws.length;
914 >        int sw, id, rs;  ForkJoinWorkerThread w;
915 >        if ((id = ((sw = spareWaiters) & SPARE_ID_MASK) - 1) >= 0 &&
916 >            id < n && (w = ws[id]) != null &&
917 >            (rs = runState) < TERMINATING &&
918 >            eventWaiters == 0L && workerCounts == wc) {
919 >            // In case all workers busy, heuristically back off to let settle
920 >            Thread.yield();
921 >            if (eventWaiters == 0L && runState == rs && // recheck
922 >                workerCounts == wc && spareWaiters == sw &&
923 >                UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
924 >                                         sw, w.nextSpare)) {
925 >                int c;              // increment running count before resume
926 >                do {} while(!UNSAFE.compareAndSwapInt
927 >                            (this, workerCountsOffset,
928 >                             c = workerCounts, c + ONE_RUNNING));
929 >                if (w.tryUnsuspend())
930 >                    LockSupport.unpark(w);
931 >                else               // back out if w was shutdown
932 >                    decrementWorkerCounts(ONE_RUNNING, 0);
933 >            }
934 >        }
935 >    }
936 >
937 >    // adding workers on demand
938 >
939 >    /**
940 >     * Adds one or more workers if needed to establish target parallelism.
941 >     * Retries upon contention.
942 >     */
943 >    private void addWorkerIfBelowTarget() {
944 >        int pc = parallelism;
945 >        int wc;
946 >        while (((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < pc &&
947 >               runState < TERMINATING) {
948 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
949 >                                         wc + (ONE_RUNNING|ONE_TOTAL))) {
950 >                if (addWorker() == null)
951 >                    break;
952 >            }
953 >        }
954      }
955  
956      /**
957 <     * Initial worker array and worker creation and startup. (This
958 <     * must be done under lock to avoid interference by some of the
959 <     * newly started threads while creating others.)
957 >     * Tries (once) to add a new worker if all existing workers are
958 >     * busy, and there are either no running workers or the deficit is
959 >     * at least twice the surplus.
960 >     *
961 >     * @param wc workerCounts value on invocation of this method
962       */
963 <    private void createAndStartInitialWorkers(int ps) {
964 <        final ReentrantLock lock = this.workerLock;
965 <        lock.lock();
966 <        try {
967 <            ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
968 <            for (int i = 0; i < ps; ++i) {
969 <                ForkJoinWorkerThread w = createWorker(i);
970 <                if (w != null) {
971 <                    ws[i] = w;
972 <                    w.start();
973 <                    updateWorkerCount(1);
963 >    private void tryAddWorkerIfBusy(int wc) {
964 >        int tc, rc, rs;
965 >        int pc = parallelism;
966 >        if ((tc = wc >>> TOTAL_COUNT_SHIFT) < MAX_WORKERS &&
967 >            ((rc = wc & RUNNING_COUNT_MASK) == 0 ||
968 >             rc < pc - ((tc - pc) << 1)) &&
969 >            (rs = runState) < TERMINATING &&
970 >            (rs & ACTIVE_COUNT_MASK) == tc) {
971 >            // Since all workers busy, heuristically back off to let settle
972 >            Thread.yield();
973 >            if (eventWaiters == 0L && spareWaiters == 0 && // recheck
974 >                runState == rs && workerCounts == wc &&
975 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
976 >                                         wc + (ONE_RUNNING|ONE_TOTAL)))
977 >                addWorker();
978 >        }
979 >    }
980 >
981 >    /**
982 >     * Does at most one of:
983 >     *
984 >     * 1. Help wake up existing workers waiting for work via
985 >     *    releaseEventWaiters. (If any exist, then it doesn't
986 >     *    matter right now if under target parallelism level.)
987 >     *
988 >     * 2. If a spare exists, try (once) to resume it via tryResumeSpare.
989 >     *
990 >     * 3. If there are not enough total workers, add some
991 >     *    via addWorkerIfBelowTarget;
992 >     *
993 >     * 4. Try (once) to add a new worker if all existing workers
994 >     *     are busy, via tryAddWorkerIfBusy
995 >     */
996 >    private void helpMaintainParallelism() {
997 >        long h; int pc, wc;
998 >        if (((int)((h = eventWaiters) & WAITER_ID_MASK)) != 0) {
999 >            if ((int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1000 >                releaseEventWaiters(); // avoid useless call
1001 >        }
1002 >        else if ((pc = parallelism) >
1003 >                 ((wc = workerCounts) & RUNNING_COUNT_MASK)) {
1004 >            if (spareWaiters != 0)
1005 >                tryResumeSpare(wc);
1006 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
1007 >                addWorkerIfBelowTarget();
1008 >            else
1009 >                tryAddWorkerIfBusy(wc);
1010 >        }
1011 >    }
1012 >
1013 >    /**
1014 >     * Callback from workers invoked upon each top-level action (i.e.,
1015 >     * stealing a task or taking a submission and running it).
1016 >     * Performs one or more of the following:
1017 >     *
1018 >     * 1. If the worker is active, try to set its active status to
1019 >     *    inactive and update activeCount. On contention, we may try
1020 >     *    again on this or subsequent call.
1021 >     *
1022 >     * 2. Release any existing event waiters that are now relesable
1023 >     *
1024 >     * 3. If there are too many running threads, suspend this worker
1025 >     *    (first forcing inactive if necessary).  If it is not
1026 >     *    needed, it may be killed while suspended via
1027 >     *    tryShutdownSpare. Otherwise, upon resume it rechecks to make
1028 >     *    sure that it is still needed.
1029 >     *
1030 >     * 4. If more than 1 miss, await the next task event via
1031 >     *    eventSync (first forcing inactivation if necessary), upon
1032 >     *    which worker may also be killed, via tryShutdownWaiter.
1033 >     *
1034 >     * 5. Help reactivate other workers via helpMaintainParallelism
1035 >     *
1036 >     * @param w the worker
1037 >     * @param misses the number of scans by caller failing to find work
1038 >     * (saturating at 2 to avoid wraparound)
1039 >     */
1040 >    final void preStep(ForkJoinWorkerThread w, int misses) {
1041 >        boolean active = w.active;
1042 >        int pc = parallelism;
1043 >        for (;;) {
1044 >            int rs, wc, rc, ec; long h;
1045 >            if (active && UNSAFE.compareAndSwapInt(this, runStateOffset,
1046 >                                                   rs = runState, rs - 1))
1047 >                active = w.active = false;
1048 >            if (((int)((h = eventWaiters) & WAITER_ID_MASK)) != 0 &&
1049 >                (int)(h >>> EVENT_COUNT_SHIFT) != eventCount) {
1050 >                releaseEventWaiters();
1051 >                if (misses > 1)
1052 >                    continue;                  // clear before sync below
1053 >            }
1054 >            if ((rc = ((wc = workerCounts) & RUNNING_COUNT_MASK)) > pc) {
1055 >                if (!active &&                 // must inactivate to suspend
1056 >                    workerCounts == wc &&      // try to suspend as spare
1057 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1058 >                                             wc, wc - ONE_RUNNING)) {
1059 >                    w.suspendAsSpare();
1060 >                    if (!w.isRunning())
1061 >                        break;                 // was killed while spare
1062                  }
1063 +                continue;
1064              }
1065 <        } finally {
1066 <            lock.unlock();
1065 >            if (misses > 0) {
1066 >                if ((ec = eventCount) == w.lastEventCount && misses > 1) {
1067 >                    if (!active) {             // must inactivate to sync
1068 >                        eventSync(w);
1069 >                        if (w.isRunning())
1070 >                            misses = 1;        // don't re-sync
1071 >                        else
1072 >                            break;             // was killed while waiting
1073 >                    }
1074 >                    continue;
1075 >                }
1076 >                w.lastEventCount = ec;
1077 >            }
1078 >            if (rc < pc)
1079 >                helpMaintainParallelism();
1080 >            break;
1081          }
1082      }
1083  
1084      /**
1085 <     * Worker creation and startup for threads added via setParallelism.
1085 >     * Helps and/or blocks awaiting join of the given task.
1086 >     * Alternates between helpJoinTask() and helpMaintainParallelism()
1087 >     * as many times as there is a deficit in running count (or longer
1088 >     * if running count would become zero), then blocks if task still
1089 >     * not done.
1090 >     *
1091 >     * @param joinMe the task to join
1092       */
1093 <    private void createAndStartAddedWorkers() {
1094 <        resumeAllSpares();  // Allow spares to convert to nonspare
1095 <        int ps = parallelism;
1096 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1097 <        int len = ws.length;
1098 <        // Sweep through slots, to keep lowest indices most populated
1099 <        int k = 0;
1100 <        while (k < len) {
1101 <            if (ws[k] != null) {
1102 <                ++k;
1103 <                continue;
1093 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1094 >        int threshold = parallelism;         // descend blocking thresholds
1095 >        while (joinMe.status >= 0) {
1096 >            boolean block; int wc;
1097 >            worker.helpJoinTask(joinMe);
1098 >            if (joinMe.status < 0)
1099 >                break;
1100 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1101 >                if (threshold > 0)
1102 >                    --threshold;
1103 >                else
1104 >                    advanceEventCount(); // force release
1105 >                block = false;
1106              }
1107 <            int s = workerCounts;
1108 <            int tc = totalCountOf(s);
1109 <            int rc = runningCountOf(s);
1110 <            if (rc >= ps || tc >= ps)
1107 >            else
1108 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1109 >                                                 wc, wc - ONE_RUNNING);
1110 >            helpMaintainParallelism();
1111 >            if (block) {
1112 >                int c;
1113 >                joinMe.internalAwaitDone();
1114 >                do {} while (!UNSAFE.compareAndSwapInt
1115 >                             (this, workerCountsOffset,
1116 >                              c = workerCounts, c + ONE_RUNNING));
1117                  break;
1118 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1119 <                ForkJoinWorkerThread w = createWorker(k);
1120 <                if (w != null) {
1121 <                    ws[k++] = w;
1122 <                    w.start();
1118 >            }
1119 >        }
1120 >    }
1121 >
1122 >    /**
1123 >     * Same idea as awaitJoin, but no helping
1124 >     */
1125 >    final void awaitBlocker(ManagedBlocker blocker)
1126 >        throws InterruptedException {
1127 >        int threshold = parallelism;
1128 >        while (!blocker.isReleasable()) {
1129 >            boolean block; int wc;
1130 >            if (((wc = workerCounts) & RUNNING_COUNT_MASK) <= threshold) {
1131 >                if (threshold > 0)
1132 >                    --threshold;
1133 >                else
1134 >                    advanceEventCount();
1135 >                block = false;
1136 >            }
1137 >            else
1138 >                block = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1139 >                                                 wc, wc - ONE_RUNNING);
1140 >            helpMaintainParallelism();
1141 >            if (block) {
1142 >                try {
1143 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1144 >                } finally {
1145 >                    int c;
1146 >                    do {} while (!UNSAFE.compareAndSwapInt
1147 >                                 (this, workerCountsOffset,
1148 >                                  c = workerCounts, c + ONE_RUNNING));
1149                  }
1150 <                else {
1151 <                    updateWorkerCount(-1); // back out on failed creation
1152 <                    break;
1150 >                break;
1151 >            }
1152 >        }
1153 >    }
1154 >
1155 >    /**
1156 >     * Possibly initiates and/or completes termination.
1157 >     *
1158 >     * @param now if true, unconditionally terminate, else only
1159 >     * if shutdown and empty queue and no active workers
1160 >     * @return true if now terminating or terminated
1161 >     */
1162 >    private boolean tryTerminate(boolean now) {
1163 >        if (now)
1164 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1165 >        else if (runState < SHUTDOWN ||
1166 >                 !submissionQueue.isEmpty() ||
1167 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1168 >            return false;
1169 >
1170 >        if (advanceRunLevel(TERMINATING))
1171 >            startTerminating();
1172 >
1173 >        // Finish now if all threads terminated; else in some subsequent call
1174 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1175 >            advanceRunLevel(TERMINATED);
1176 >            termination.arrive();
1177 >        }
1178 >        return true;
1179 >    }
1180 >
1181 >    /**
1182 >     * Actions on transition to TERMINATING
1183 >     *
1184 >     * Runs up to four passes through workers: (0) shutting down each
1185 >     * (without waking up if parked) to quickly spread notifications
1186 >     * without unnecessary bouncing around event queues etc (1) wake
1187 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1188 >     * interrupted workers
1189 >     */
1190 >    private void startTerminating() {
1191 >        cancelSubmissions();
1192 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1193 >            advanceEventCount();
1194 >            eventWaiters = 0L; // clobber lists
1195 >            spareWaiters = 0;
1196 >            ForkJoinWorkerThread[] ws = workers;
1197 >            int n = ws.length;
1198 >            for (int i = 0; i < n; ++i) {
1199 >                ForkJoinWorkerThread w = ws[i];
1200 >                if (w != null) {
1201 >                    w.shutdown();
1202 >                    if (passes > 0 && !w.isTerminated()) {
1203 >                        w.cancelTasks();
1204 >                        LockSupport.unpark(w);
1205 >                        if (passes > 1) {
1206 >                            try {
1207 >                                w.interrupt();
1208 >                            } catch (SecurityException ignore) {
1209 >                            }
1210 >                        }
1211 >                    }
1212                  }
1213              }
1214          }
1215      }
1216  
1217 +    /**
1218 +     * Clear out and cancel submissions, ignoring exceptions
1219 +     */
1220 +    private void cancelSubmissions() {
1221 +        ForkJoinTask<?> task;
1222 +        while ((task = submissionQueue.poll()) != null) {
1223 +            try {
1224 +                task.cancel(false);
1225 +            } catch (Throwable ignore) {
1226 +            }
1227 +        }
1228 +    }
1229 +
1230 +    // misc support for ForkJoinWorkerThread
1231 +
1232 +    /**
1233 +     * Returns pool number
1234 +     */
1235 +    final int getPoolNumber() {
1236 +        return poolNumber;
1237 +    }
1238 +
1239 +    /**
1240 +     * Tries to accumulates steal count from a worker, clearing
1241 +     * the worker's value.
1242 +     *
1243 +     * @return true if worker steal count now zero
1244 +     */
1245 +    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1246 +        int sc = w.stealCount;
1247 +        long c = stealCount;
1248 +        // CAS even if zero, for fence effects
1249 +        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1250 +            if (sc != 0)
1251 +                w.stealCount = 0;
1252 +            return true;
1253 +        }
1254 +        return sc == 0;
1255 +    }
1256 +
1257 +    /**
1258 +     * Returns the approximate (non-atomic) number of idle threads per
1259 +     * active thread.
1260 +     */
1261 +    final int idlePerActive() {
1262 +        int pc = parallelism; // use parallelism, not rc
1263 +        int ac = runState;    // no mask -- artifically boosts during shutdown
1264 +        // Use exact results for small values, saturate past 4
1265 +        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1266 +    }
1267 +
1268 +    // Public and protected methods
1269 +
1270 +    // Constructors
1271 +
1272 +    /**
1273 +     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1274 +     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1275 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1276 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1277 +     *
1278 +     * @throws SecurityException if a security manager exists and
1279 +     *         the caller is not permitted to modify threads
1280 +     *         because it does not hold {@link
1281 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1282 +     */
1283 +    public ForkJoinPool() {
1284 +        this(Runtime.getRuntime().availableProcessors(),
1285 +             defaultForkJoinWorkerThreadFactory, null, false);
1286 +    }
1287 +
1288 +    /**
1289 +     * Creates a {@code ForkJoinPool} with the indicated parallelism
1290 +     * level, the {@linkplain
1291 +     * #defaultForkJoinWorkerThreadFactory default thread factory},
1292 +     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1293 +     *
1294 +     * @param parallelism the parallelism level
1295 +     * @throws IllegalArgumentException if parallelism less than or
1296 +     *         equal to zero, or greater than implementation limit
1297 +     * @throws SecurityException if a security manager exists and
1298 +     *         the caller is not permitted to modify threads
1299 +     *         because it does not hold {@link
1300 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1301 +     */
1302 +    public ForkJoinPool(int parallelism) {
1303 +        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1304 +    }
1305 +
1306 +    /**
1307 +     * Creates a {@code ForkJoinPool} with the given parameters.
1308 +     *
1309 +     * @param parallelism the parallelism level. For default value,
1310 +     * use {@link java.lang.Runtime#availableProcessors}.
1311 +     * @param factory the factory for creating new threads. For default value,
1312 +     * use {@link #defaultForkJoinWorkerThreadFactory}.
1313 +     * @param handler the handler for internal worker threads that
1314 +     * terminate due to unrecoverable errors encountered while executing
1315 +     * tasks. For default value, use <code>null</code>.
1316 +     * @param asyncMode if true,
1317 +     * establishes local first-in-first-out scheduling mode for forked
1318 +     * tasks that are never joined. This mode may be more appropriate
1319 +     * than default locally stack-based mode in applications in which
1320 +     * worker threads only process event-style asynchronous tasks.
1321 +     * For default value, use <code>false</code>.
1322 +     * @throws IllegalArgumentException if parallelism less than or
1323 +     *         equal to zero, or greater than implementation limit
1324 +     * @throws NullPointerException if the factory is null
1325 +     * @throws SecurityException if a security manager exists and
1326 +     *         the caller is not permitted to modify threads
1327 +     *         because it does not hold {@link
1328 +     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1329 +     */
1330 +    public ForkJoinPool(int parallelism,
1331 +                        ForkJoinWorkerThreadFactory factory,
1332 +                        Thread.UncaughtExceptionHandler handler,
1333 +                        boolean asyncMode) {
1334 +        checkPermission();
1335 +        if (factory == null)
1336 +            throw new NullPointerException();
1337 +        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1338 +            throw new IllegalArgumentException();
1339 +        this.parallelism = parallelism;
1340 +        this.factory = factory;
1341 +        this.ueh = handler;
1342 +        this.locallyFifo = asyncMode;
1343 +        int arraySize = initialArraySizeFor(parallelism);
1344 +        this.workers = new ForkJoinWorkerThread[arraySize];
1345 +        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1346 +        this.workerLock = new ReentrantLock();
1347 +        this.termination = new Phaser(1);
1348 +        this.poolNumber = poolNumberGenerator.incrementAndGet();
1349 +    }
1350 +
1351 +    /**
1352 +     * Returns initial power of two size for workers array.
1353 +     * @param pc the initial parallelism level
1354 +     */
1355 +    private static int initialArraySizeFor(int pc) {
1356 +        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1357 +        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1358 +        size |= size >>> 1;
1359 +        size |= size >>> 2;
1360 +        size |= size >>> 4;
1361 +        size |= size >>> 8;
1362 +        return size + 1;
1363 +    }
1364 +
1365      // Execution methods
1366  
1367      /**
1368       * Common code for execute, invoke and submit
1369       */
1370      private <T> void doSubmit(ForkJoinTask<T> task) {
1371 <        if (isShutdown())
1371 >        if (task == null)
1372 >            throw new NullPointerException();
1373 >        if (runState >= SHUTDOWN)
1374              throw new RejectedExecutionException();
1375          submissionQueue.offer(task);
1376 <        signalIdleWorkers();
1376 >        advanceEventCount();
1377 >        if (eventWaiters != 0L)
1378 >            releaseEventWaiters();
1379 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1380 >            addWorkerIfBelowTarget();
1381      }
1382  
1383      /**
1384 <     * Performs the given task; returning its result upon completion
1384 >     * Performs the given task, returning its result upon completion.
1385 >     *
1386       * @param task the task
1387       * @return the task's result
1388 <     * @throws NullPointerException if task is null
1389 <     * @throws RejectedExecutionException if pool is shut down
1388 >     * @throws NullPointerException if the task is null
1389 >     * @throws RejectedExecutionException if the task cannot be
1390 >     *         scheduled for execution
1391       */
1392      public <T> T invoke(ForkJoinTask<T> task) {
1393          doSubmit(task);
# Line 531 | Line 1396 | public class ForkJoinPool extends Abstra
1396  
1397      /**
1398       * Arranges for (asynchronous) execution of the given task.
1399 +     *
1400       * @param task the task
1401 <     * @throws NullPointerException if task is null
1402 <     * @throws RejectedExecutionException if pool is shut down
1401 >     * @throws NullPointerException if the task is null
1402 >     * @throws RejectedExecutionException if the task cannot be
1403 >     *         scheduled for execution
1404       */
1405 <    public <T> void execute(ForkJoinTask<T> task) {
1405 >    public void execute(ForkJoinTask<?> task) {
1406          doSubmit(task);
1407      }
1408  
1409      // AbstractExecutorService methods
1410  
1411 +    /**
1412 +     * @throws NullPointerException if the task is null
1413 +     * @throws RejectedExecutionException if the task cannot be
1414 +     *         scheduled for execution
1415 +     */
1416      public void execute(Runnable task) {
1417 <        doSubmit(new AdaptedRunnable<Void>(task, null));
1417 >        ForkJoinTask<?> job;
1418 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1419 >            job = (ForkJoinTask<?>) task;
1420 >        else
1421 >            job = ForkJoinTask.adapt(task, null);
1422 >        doSubmit(job);
1423      }
1424  
1425 +    /**
1426 +     * Submits a ForkJoinTask for execution.
1427 +     *
1428 +     * @param task the task to submit
1429 +     * @return the task
1430 +     * @throws NullPointerException if the task is null
1431 +     * @throws RejectedExecutionException if the task cannot be
1432 +     *         scheduled for execution
1433 +     */
1434 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1435 +        doSubmit(task);
1436 +        return task;
1437 +    }
1438 +
1439 +    /**
1440 +     * @throws NullPointerException if the task is null
1441 +     * @throws RejectedExecutionException if the task cannot be
1442 +     *         scheduled for execution
1443 +     */
1444      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1445 <        ForkJoinTask<T> job = new AdaptedCallable<T>(task);
1445 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1446          doSubmit(job);
1447          return job;
1448      }
1449  
1450 +    /**
1451 +     * @throws NullPointerException if the task is null
1452 +     * @throws RejectedExecutionException if the task cannot be
1453 +     *         scheduled for execution
1454 +     */
1455      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1456 <        ForkJoinTask<T> job = new AdaptedRunnable<T>(task, result);
1456 >        ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1457          doSubmit(job);
1458          return job;
1459      }
1460  
1461 +    /**
1462 +     * @throws NullPointerException if the task is null
1463 +     * @throws RejectedExecutionException if the task cannot be
1464 +     *         scheduled for execution
1465 +     */
1466      public ForkJoinTask<?> submit(Runnable task) {
1467 <        ForkJoinTask<Void> job = new AdaptedRunnable<Void>(task, null);
1467 >        ForkJoinTask<?> job;
1468 >        if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1469 >            job = (ForkJoinTask<?>) task;
1470 >        else
1471 >            job = ForkJoinTask.adapt(task, null);
1472          doSubmit(job);
1473          return job;
1474      }
1475  
1476      /**
1477 <     * Adaptor for Runnables. This implements RunnableFuture
1478 <     * to be compliant with AbstractExecutorService constraints
1477 >     * @throws NullPointerException       {@inheritDoc}
1478 >     * @throws RejectedExecutionException {@inheritDoc}
1479       */
570    static final class AdaptedRunnable<T> extends ForkJoinTask<T>
571        implements RunnableFuture<T> {
572        final Runnable runnable;
573        final T resultOnCompletion;
574        T result;
575        AdaptedRunnable(Runnable runnable, T result) {
576            if (runnable == null) throw new NullPointerException();
577            this.runnable = runnable;
578            this.resultOnCompletion = result;
579        }
580        public T getRawResult() { return result; }
581        public void setRawResult(T v) { result = v; }
582        public boolean exec() {
583            runnable.run();
584            result = resultOnCompletion;
585            return true;
586        }
587        public void run() { invoke(); }
588    }
589
590    /**
591     * Adaptor for Callables
592     */
593    static final class AdaptedCallable<T> extends ForkJoinTask<T>
594        implements RunnableFuture<T> {
595        final Callable<T> callable;
596        T result;
597        AdaptedCallable(Callable<T> callable) {
598            if (callable == null) throw new NullPointerException();
599            this.callable = callable;
600        }
601        public T getRawResult() { return result; }
602        public void setRawResult(T v) { result = v; }
603        public boolean exec() {
604            try {
605                result = callable.call();
606                return true;
607            } catch (Error err) {
608                throw err;
609            } catch (RuntimeException rex) {
610                throw rex;
611            } catch (Exception ex) {
612                throw new RuntimeException(ex);
613            }
614        }
615        public void run() { invoke(); }
616    }
617
1480      public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
1481 <        ArrayList<ForkJoinTask<T>> ts =
1481 >        ArrayList<ForkJoinTask<T>> forkJoinTasks =
1482              new ArrayList<ForkJoinTask<T>>(tasks.size());
1483 <        for (Callable<T> c : tasks)
1484 <            ts.add(new AdaptedCallable<T>(c));
1485 <        invoke(new InvokeAll<T>(ts));
1486 <        return (List<Future<T>>)(List)ts;
1483 >        for (Callable<T> task : tasks)
1484 >            forkJoinTasks.add(ForkJoinTask.adapt(task));
1485 >        invoke(new InvokeAll<T>(forkJoinTasks));
1486 >
1487 >        @SuppressWarnings({"unchecked", "rawtypes"})
1488 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1489 >        return futures;
1490      }
1491  
1492      static final class InvokeAll<T> extends RecursiveAction {
1493          final ArrayList<ForkJoinTask<T>> tasks;
1494          InvokeAll(ArrayList<ForkJoinTask<T>> tasks) { this.tasks = tasks; }
1495          public void compute() {
1496 <            try { invokeAll(tasks); } catch(Exception ignore) {}
1496 >            try { invokeAll(tasks); }
1497 >            catch (Exception ignore) {}
1498          }
1499 +        private static final long serialVersionUID = -7914297376763021607L;
1500      }
1501  
635    // Configuration and status settings and queries
636
1502      /**
1503 <     * Returns the factory used for constructing new workers
1503 >     * Returns the factory used for constructing new workers.
1504       *
1505       * @return the factory used for constructing new workers
1506       */
# Line 646 | Line 1511 | public class ForkJoinPool extends Abstra
1511      /**
1512       * Returns the handler for internal worker threads that terminate
1513       * due to unrecoverable errors encountered while executing tasks.
649     * @return the handler, or null if none
650     */
651    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
652        Thread.UncaughtExceptionHandler h;
653        final ReentrantLock lock = this.workerLock;
654        lock.lock();
655        try {
656            h = ueh;
657        } finally {
658            lock.unlock();
659        }
660        return h;
661    }
662
663    /**
664     * Sets the handler for internal worker threads that terminate due
665     * to unrecoverable errors encountered while executing tasks.
666     * Unless set, the current default or ThreadGroup handler is used
667     * as handler.
1514       *
1515 <     * @param h the new handler
670 <     * @return the old handler, or null if none
671 <     * @throws SecurityException if a security manager exists and
672 <     *         the caller is not permitted to modify threads
673 <     *         because it does not hold {@link
674 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
675 <     */
676 <    public Thread.UncaughtExceptionHandler
677 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
678 <        checkPermission();
679 <        Thread.UncaughtExceptionHandler old = null;
680 <        final ReentrantLock lock = this.workerLock;
681 <        lock.lock();
682 <        try {
683 <            old = ueh;
684 <            ueh = h;
685 <            ForkJoinWorkerThread[] ws = workers;
686 <            for (int i = 0; i < ws.length; ++i) {
687 <                ForkJoinWorkerThread w = ws[i];
688 <                if (w != null)
689 <                    w.setUncaughtExceptionHandler(h);
690 <            }
691 <        } finally {
692 <            lock.unlock();
693 <        }
694 <        return old;
695 <    }
696 <
697 <
698 <    /**
699 <     * Sets the target paralleism level of this pool.
700 <     * @param parallelism the target parallelism
701 <     * @throws IllegalArgumentException if parallelism less than or
702 <     * equal to zero or greater than maximum size bounds.
703 <     * @throws SecurityException if a security manager exists and
704 <     *         the caller is not permitted to modify threads
705 <     *         because it does not hold {@link
706 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1515 >     * @return the handler, or {@code null} if none
1516       */
1517 <    public void setParallelism(int parallelism) {
1518 <        checkPermission();
710 <        if (parallelism <= 0 || parallelism > maxPoolSize)
711 <            throw new IllegalArgumentException();
712 <        final ReentrantLock lock = this.workerLock;
713 <        lock.lock();
714 <        try {
715 <            if (!isTerminating()) {
716 <                int p = this.parallelism;
717 <                this.parallelism = parallelism;
718 <                if (parallelism > p)
719 <                    createAndStartAddedWorkers();
720 <                else
721 <                    trimSpares();
722 <            }
723 <        } finally {
724 <            lock.unlock();
725 <        }
726 <        signalIdleWorkers();
1517 >    public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1518 >        return ueh;
1519      }
1520  
1521      /**
1522 <     * Returns the targeted number of worker threads in this pool.
1522 >     * Returns the targeted parallelism level of this pool.
1523       *
1524 <     * @return the targeted number of worker threads in this pool
1524 >     * @return the targeted parallelism level of this pool
1525       */
1526      public int getParallelism() {
1527          return parallelism;
# Line 738 | Line 1530 | public class ForkJoinPool extends Abstra
1530      /**
1531       * Returns the number of worker threads that have started but not
1532       * yet terminated.  This result returned by this method may differ
1533 <     * from <code>getParallelism</code> when threads are created to
1533 >     * from {@link #getParallelism} when threads are created to
1534       * maintain parallelism when others are cooperatively blocked.
1535       *
1536       * @return the number of worker threads
1537       */
1538      public int getPoolSize() {
1539 <        return totalCountOf(workerCounts);
1539 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1540      }
1541  
1542      /**
1543 <     * Returns the maximum number of threads allowed to exist in the
1544 <     * pool, even if there are insufficient unblocked running threads.
1545 <     * @return the maximum
1546 <     */
755 <    public int getMaximumPoolSize() {
756 <        return maxPoolSize;
757 <    }
758 <
759 <    /**
760 <     * Sets the maximum number of threads allowed to exist in the
761 <     * pool, even if there are insufficient unblocked running threads.
762 <     * Setting this value has no effect on current pool size. It
763 <     * controls construction of new threads.
764 <     * @throws IllegalArgumentException if negative or greater then
765 <     * internal implementation limit.
766 <     */
767 <    public void setMaximumPoolSize(int newMax) {
768 <        if (newMax < 0 || newMax > MAX_THREADS)
769 <            throw new IllegalArgumentException();
770 <        maxPoolSize = newMax;
771 <    }
772 <
773 <
774 <    /**
775 <     * Returns true if this pool dynamically maintains its target
776 <     * parallelism level. If false, new threads are added only to
777 <     * avoid possible starvation.
778 <     * This setting is by default true;
779 <     * @return true if maintains parallelism
780 <     */
781 <    public boolean getMaintainsParallelism() {
782 <        return maintainsParallelism;
783 <    }
784 <
785 <    /**
786 <     * Sets whether this pool dynamically maintains its target
787 <     * parallelism level. If false, new threads are added only to
788 <     * avoid possible starvation.
789 <     * @param enable true to maintains parallelism
1543 >     * Returns {@code true} if this pool uses local first-in-first-out
1544 >     * scheduling mode for forked tasks that are never joined.
1545 >     *
1546 >     * @return {@code true} if this pool uses async mode
1547       */
1548 <    public void setMaintainsParallelism(boolean enable) {
1549 <        maintainsParallelism = enable;
1548 >    public boolean getAsyncMode() {
1549 >        return locallyFifo;
1550      }
1551  
1552      /**
1553       * Returns an estimate of the number of worker threads that are
1554       * not blocked waiting to join tasks or for other managed
1555 <     * synchronization.
1555 >     * synchronization. This method may overestimate the
1556 >     * number of running threads.
1557       *
1558       * @return the number of worker threads
1559       */
1560      public int getRunningThreadCount() {
1561 <        return runningCountOf(workerCounts);
1561 >        return workerCounts & RUNNING_COUNT_MASK;
1562      }
1563  
1564      /**
1565       * Returns an estimate of the number of threads that are currently
1566       * stealing or executing tasks. This method may overestimate the
1567       * number of active threads.
1568 <     * @return the number of active threads.
1568 >     *
1569 >     * @return the number of active threads
1570       */
1571      public int getActiveThreadCount() {
1572 <        return activeCountOf(runControl);
1572 >        return runState & ACTIVE_COUNT_MASK;
1573      }
1574  
1575      /**
1576 <     * Returns an estimate of the number of threads that are currently
1577 <     * idle waiting for tasks. This method may underestimate the
1578 <     * number of idle threads.
1579 <     * @return the number of idle threads.
1580 <     */
1581 <    final int getIdleThreadCount() {
1582 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
1583 <        return (c <= 0)? 0 : c;
1584 <    }
826 <
827 <    /**
828 <     * Returns true if all worker threads are currently idle. An idle
829 <     * worker is one that cannot obtain a task to execute because none
830 <     * are available to steal from other threads, and there are no
831 <     * pending submissions to the pool. This method is conservative:
832 <     * It might not return true immediately upon idleness of all
833 <     * threads, but will eventually become true if threads remain
834 <     * inactive.
835 <     * @return true if all threads are currently idle
1576 >     * Returns {@code true} if all worker threads are currently idle.
1577 >     * An idle worker is one that cannot obtain a task to execute
1578 >     * because none are available to steal from other threads, and
1579 >     * there are no pending submissions to the pool. This method is
1580 >     * conservative; it might not return {@code true} immediately upon
1581 >     * idleness of all threads, but will eventually become true if
1582 >     * threads remain inactive.
1583 >     *
1584 >     * @return {@code true} if all threads are currently idle
1585       */
1586      public boolean isQuiescent() {
1587 <        return activeCountOf(runControl) == 0;
1587 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1588      }
1589  
1590      /**
# Line 843 | Line 1592 | public class ForkJoinPool extends Abstra
1592       * one thread's work queue by another. The reported value
1593       * underestimates the actual total number of steals when the pool
1594       * is not quiescent. This value may be useful for monitoring and
1595 <     * tuning fork/join programs: In general, steal counts should be
1595 >     * tuning fork/join programs: in general, steal counts should be
1596       * high enough to keep threads busy, but low enough to avoid
1597       * overhead and contention across threads.
1598 <     * @return the number of steals.
1598 >     *
1599 >     * @return the number of steals
1600       */
1601      public long getStealCount() {
1602 <        return stealCount.get();
853 <    }
854 <
855 <    /**
856 <     * Accumulate steal count from a worker. Call only
857 <     * when worker known to be idle.
858 <     */
859 <    private void updateStealCount(ForkJoinWorkerThread w) {
860 <        int sc = w.getAndClearStealCount();
861 <        if (sc != 0)
862 <            stealCount.addAndGet(sc);
1602 >        return stealCount;
1603      }
1604  
1605      /**
# Line 869 | Line 1609 | public class ForkJoinPool extends Abstra
1609       * an approximation, obtained by iterating across all threads in
1610       * the pool. This method may be useful for tuning task
1611       * granularities.
1612 <     * @return the number of queued tasks.
1612 >     *
1613 >     * @return the number of queued tasks
1614       */
1615      public long getQueuedTaskCount() {
1616          long count = 0;
1617          ForkJoinWorkerThread[] ws = workers;
1618 <        for (int i = 0; i < ws.length; ++i) {
1619 <            ForkJoinWorkerThread t = ws[i];
1620 <            if (t != null)
1621 <                count += t.getQueueSize();
1618 >        int n = ws.length;
1619 >        for (int i = 0; i < n; ++i) {
1620 >            ForkJoinWorkerThread w = ws[i];
1621 >            if (w != null)
1622 >                count += w.getQueueSize();
1623          }
1624          return count;
1625      }
1626  
1627      /**
1628 <     * Returns an estimate of the number tasks submitted to this pool
1629 <     * that have not yet begun executing. This method takes time
1628 >     * Returns an estimate of the number of tasks submitted to this
1629 >     * pool that have not yet begun executing.  This method takes time
1630       * proportional to the number of submissions.
1631 <     * @return the number of queued submissions.
1631 >     *
1632 >     * @return the number of queued submissions
1633       */
1634      public int getQueuedSubmissionCount() {
1635          return submissionQueue.size();
1636      }
1637  
1638      /**
1639 <     * Returns true if there are any tasks submitted to this pool
1640 <     * that have not yet begun executing.
1641 <     * @return <code>true</code> if there are any queued submissions.
1639 >     * Returns {@code true} if there are any tasks submitted to this
1640 >     * pool that have not yet begun executing.
1641 >     *
1642 >     * @return {@code true} if there are any queued submissions
1643       */
1644      public boolean hasQueuedSubmissions() {
1645          return !submissionQueue.isEmpty();
# Line 905 | Line 1649 | public class ForkJoinPool extends Abstra
1649       * Removes and returns the next unexecuted submission if one is
1650       * available.  This method may be useful in extensions to this
1651       * class that re-assign work in systems with multiple pools.
1652 <     * @return the next submission, or null if none
1652 >     *
1653 >     * @return the next submission, or {@code null} if none
1654       */
1655      protected ForkJoinTask<?> pollSubmission() {
1656          return submissionQueue.poll();
1657      }
1658  
1659      /**
1660 +     * Removes all available unexecuted submitted and forked tasks
1661 +     * from scheduling queues and adds them to the given collection,
1662 +     * without altering their execution status. These may include
1663 +     * artificially generated or wrapped tasks. This method is
1664 +     * designed to be invoked only when the pool is known to be
1665 +     * quiescent. Invocations at other times may not remove all
1666 +     * tasks. A failure encountered while attempting to add elements
1667 +     * to collection {@code c} may result in elements being in
1668 +     * neither, either or both collections when the associated
1669 +     * exception is thrown.  The behavior of this operation is
1670 +     * undefined if the specified collection is modified while the
1671 +     * operation is in progress.
1672 +     *
1673 +     * @param c the collection to transfer elements into
1674 +     * @return the number of elements transferred
1675 +     */
1676 +    protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1677 +        int count = submissionQueue.drainTo(c);
1678 +        ForkJoinWorkerThread[] ws = workers;
1679 +        int n = ws.length;
1680 +        for (int i = 0; i < n; ++i) {
1681 +            ForkJoinWorkerThread w = ws[i];
1682 +            if (w != null)
1683 +                count += w.drainTasksTo(c);
1684 +        }
1685 +        return count;
1686 +    }
1687 +
1688 +    /**
1689       * Returns a string identifying this pool, as well as its state,
1690       * including indications of run state, parallelism level, and
1691       * worker and task counts.
# Line 919 | Line 1693 | public class ForkJoinPool extends Abstra
1693       * @return a string identifying this pool, as well as its state
1694       */
1695      public String toString() {
922        int ps = parallelism;
923        int wc = workerCounts;
924        int rc = runControl;
1696          long st = getStealCount();
1697          long qt = getQueuedTaskCount();
1698          long qs = getQueuedSubmissionCount();
1699 +        int wc = workerCounts;
1700 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1701 +        int rc = wc & RUNNING_COUNT_MASK;
1702 +        int pc = parallelism;
1703 +        int rs = runState;
1704 +        int ac = rs & ACTIVE_COUNT_MASK;
1705          return super.toString() +
1706 <            "[" + runStateToString(runStateOf(rc)) +
1707 <            ", parallelism = " + ps +
1708 <            ", size = " + totalCountOf(wc) +
1709 <            ", active = " + activeCountOf(rc) +
1710 <            ", running = " + runningCountOf(wc) +
1706 >            "[" + runLevelToString(rs) +
1707 >            ", parallelism = " + pc +
1708 >            ", size = " + tc +
1709 >            ", active = " + ac +
1710 >            ", running = " + rc +
1711              ", steals = " + st +
1712              ", tasks = " + qt +
1713              ", submissions = " + qs +
1714              "]";
1715      }
1716  
1717 <    private static String runStateToString(int rs) {
1718 <        switch(rs) {
1719 <        case RUNNING: return "Running";
1720 <        case SHUTDOWN: return "Shutting down";
1721 <        case TERMINATING: return "Terminating";
945 <        case TERMINATED: return "Terminated";
946 <        default: throw new Error("Unknown run state");
947 <        }
1717 >    private static String runLevelToString(int s) {
1718 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1719 >                ((s & TERMINATING) != 0 ? "Terminating" :
1720 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1721 >                  "Running")));
1722      }
1723  
950    // lifecycle control
951
1724      /**
1725       * Initiates an orderly shutdown in which previously submitted
1726       * tasks are executed, but no new tasks will be accepted.
1727       * Invocation has no additional effect if already shut down.
1728       * Tasks that are in the process of being submitted concurrently
1729       * during the course of this method may or may not be rejected.
1730 +     *
1731       * @throws SecurityException if a security manager exists and
1732       *         the caller is not permitted to modify threads
1733       *         because it does not hold {@link
1734 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1734 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1735       */
1736      public void shutdown() {
1737          checkPermission();
1738 <        transitionRunStateTo(SHUTDOWN);
1739 <        if (canTerminateOnShutdown(runControl))
967 <            terminateOnShutdown();
1738 >        advanceRunLevel(SHUTDOWN);
1739 >        tryTerminate(false);
1740      }
1741  
1742      /**
1743 <     * Attempts to stop all actively executing tasks, and cancels all
1744 <     * waiting tasks.  Tasks that are in the process of being
1745 <     * submitted or executed concurrently during the course of this
1746 <     * method may or may not be rejected. Unlike some other executors,
1747 <     * this method cancels rather than collects non-executed tasks,
1748 <     * so always returns an empty list.
1743 >     * Attempts to cancel and/or stop all tasks, and reject all
1744 >     * subsequently submitted tasks.  Tasks that are in the process of
1745 >     * being submitted or executed concurrently during the course of
1746 >     * this method may or may not be rejected. This method cancels
1747 >     * both existing and unexecuted tasks, in order to permit
1748 >     * termination in the presence of task dependencies. So the method
1749 >     * always returns an empty list (unlike the case for some other
1750 >     * Executors).
1751 >     *
1752       * @return an empty list
1753       * @throws SecurityException if a security manager exists and
1754       *         the caller is not permitted to modify threads
1755       *         because it does not hold {@link
1756 <     *         java.lang.RuntimePermission}<code>("modifyThread")</code>,
1756 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1757       */
1758      public List<Runnable> shutdownNow() {
1759          checkPermission();
1760 <        terminate();
1760 >        tryTerminate(true);
1761          return Collections.emptyList();
1762      }
1763  
1764      /**
1765 <     * Returns <code>true</code> if all tasks have completed following shut down.
1765 >     * Returns {@code true} if all tasks have completed following shut down.
1766       *
1767 <     * @return <code>true</code> if all tasks have completed following shut down
1767 >     * @return {@code true} if all tasks have completed following shut down
1768       */
1769      public boolean isTerminated() {
1770 <        return runStateOf(runControl) == TERMINATED;
1770 >        return runState >= TERMINATED;
1771      }
1772  
1773      /**
1774 <     * Returns <code>true</code> if the process of termination has
1775 <     * commenced but possibly not yet completed.
1774 >     * Returns {@code true} if the process of termination has
1775 >     * commenced but not yet completed.  This method may be useful for
1776 >     * debugging. A return of {@code true} reported a sufficient
1777 >     * period after shutdown may indicate that submitted tasks have
1778 >     * ignored or suppressed interruption, causing this executor not
1779 >     * to properly terminate.
1780       *
1781 <     * @return <code>true</code> if terminating
1781 >     * @return {@code true} if terminating but not yet terminated
1782       */
1783      public boolean isTerminating() {
1784 <        return runStateOf(runControl) >= TERMINATING;
1784 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1785      }
1786  
1787      /**
1788 <     * Returns <code>true</code> if this pool has been shut down.
1788 >     * Returns {@code true} if this pool has been shut down.
1789       *
1790 <     * @return <code>true</code> if this pool has been shut down
1790 >     * @return {@code true} if this pool has been shut down
1791       */
1792      public boolean isShutdown() {
1793 <        return runStateOf(runControl) >= SHUTDOWN;
1793 >        return runState >= SHUTDOWN;
1794      }
1795  
1796      /**
# Line 1021 | Line 1800 | public class ForkJoinPool extends Abstra
1800       *
1801       * @param timeout the maximum time to wait
1802       * @param unit the time unit of the timeout argument
1803 <     * @return <code>true</code> if this executor terminated and
1804 <     *         <code>false</code> if the timeout elapsed before termination
1803 >     * @return {@code true} if this executor terminated and
1804 >     *         {@code false} if the timeout elapsed before termination
1805       * @throws InterruptedException if interrupted while waiting
1806       */
1807      public boolean awaitTermination(long timeout, TimeUnit unit)
1808          throws InterruptedException {
1030        long nanos = unit.toNanos(timeout);
1031        final ReentrantLock lock = this.workerLock;
1032        lock.lock();
1033        try {
1034            for (;;) {
1035                if (isTerminated())
1036                    return true;
1037                if (nanos <= 0)
1038                    return false;
1039                nanos = termination.awaitNanos(nanos);
1040            }
1041        } finally {
1042            lock.unlock();
1043        }
1044    }
1045
1046    // Shutdown and termination support
1047
1048    /**
1049     * Callback from terminating worker. Null out the corresponding
1050     * workers slot, and if terminating, try to terminate, else try to
1051     * shrink workers array.
1052     * @param w the worker
1053     */
1054    final void workerTerminated(ForkJoinWorkerThread w) {
1055        updateStealCount(w);
1056        updateWorkerCount(-1);
1057        final ReentrantLock lock = this.workerLock;
1058        lock.lock();
1059        try {
1060            ForkJoinWorkerThread[] ws = workers;
1061            int idx = w.poolIndex;
1062            if (idx >= 0 && idx < ws.length && ws[idx] == w)
1063                ws[idx] = null;
1064            if (totalCountOf(workerCounts) == 0) {
1065                terminate(); // no-op if already terminating
1066                transitionRunStateTo(TERMINATED);
1067                termination.signalAll();
1068            }
1069            else if (!isTerminating()) {
1070                tryShrinkWorkerArray();
1071                tryResumeSpare(true); // allow replacement
1072            }
1073        } finally {
1074            lock.unlock();
1075        }
1076        signalIdleWorkers();
1077    }
1078
1079    /**
1080     * Initiate termination.
1081     */
1082    private void terminate() {
1083        if (transitionRunStateTo(TERMINATING)) {
1084            stopAllWorkers();
1085            resumeAllSpares();
1086            signalIdleWorkers();
1087            cancelQueuedSubmissions();
1088            cancelQueuedWorkerTasks();
1089            interruptUnterminatedWorkers();
1090            signalIdleWorkers(); // resignal after interrupt
1091        }
1092    }
1093
1094    /**
1095     * Possibly terminate when on shutdown state
1096     */
1097    private void terminateOnShutdown() {
1098        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1099            terminate();
1100    }
1101
1102    /**
1103     * Clear out and cancel submissions
1104     */
1105    private void cancelQueuedSubmissions() {
1106        ForkJoinTask<?> task;
1107        while ((task = pollSubmission()) != null)
1108            task.cancel(false);
1109    }
1110
1111    /**
1112     * Clean out worker queues.
1113     */
1114    private void cancelQueuedWorkerTasks() {
1115        final ReentrantLock lock = this.workerLock;
1116        lock.lock();
1809          try {
1810 <            ForkJoinWorkerThread[] ws = workers;
1811 <            for (int i = 0; i < ws.length; ++i) {
1120 <                ForkJoinWorkerThread t = ws[i];
1121 <                if (t != null)
1122 <                    t.cancelTasks();
1123 <            }
1124 <        } finally {
1125 <            lock.unlock();
1126 <        }
1127 <    }
1128 <
1129 <    /**
1130 <     * Set each worker's status to terminating. Requires lock to avoid
1131 <     * conflicts with add/remove
1132 <     */
1133 <    private void stopAllWorkers() {
1134 <        final ReentrantLock lock = this.workerLock;
1135 <        lock.lock();
1136 <        try {
1137 <            ForkJoinWorkerThread[] ws = workers;
1138 <            for (int i = 0; i < ws.length; ++i) {
1139 <                ForkJoinWorkerThread t = ws[i];
1140 <                if (t != null)
1141 <                    t.shutdownNow();
1142 <            }
1143 <        } finally {
1144 <            lock.unlock();
1145 <        }
1146 <    }
1147 <
1148 <    /**
1149 <     * Interrupt all unterminated workers.  This is not required for
1150 <     * sake of internal control, but may help unstick user code during
1151 <     * shutdown.
1152 <     */
1153 <    private void interruptUnterminatedWorkers() {
1154 <        final ReentrantLock lock = this.workerLock;
1155 <        lock.lock();
1156 <        try {
1157 <            ForkJoinWorkerThread[] ws = workers;
1158 <            for (int i = 0; i < ws.length; ++i) {
1159 <                ForkJoinWorkerThread t = ws[i];
1160 <                if (t != null && !t.isTerminated()) {
1161 <                    try {
1162 <                        t.interrupt();
1163 <                    } catch (SecurityException ignore) {
1164 <                    }
1165 <                }
1166 <            }
1167 <        } finally {
1168 <            lock.unlock();
1169 <        }
1170 <    }
1171 <
1172 <
1173 <    /*
1174 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1175 <     * are basic Treiber stack nodes, also used for spare stack.
1176 <     *
1177 <     * The event barrier has an event count and a wait queue (actually
1178 <     * a Treiber stack).  Workers are enabled to look for work when
1179 <     * the eventCount is incremented. If they fail to find work, they
1180 <     * may wait for next count. Upon release, threads help others wake
1181 <     * up.
1182 <     *
1183 <     * Synchronization events occur only in enough contexts to
1184 <     * maintain overall liveness:
1185 <     *
1186 <     *   - Submission of a new task to the pool
1187 <     *   - Resizes or other changes to the workers array
1188 <     *   - pool termination
1189 <     *   - A worker pushing a task on an empty queue
1190 <     *
1191 <     * The case of pushing a task occurs often enough, and is heavy
1192 <     * enough compared to simple stack pushes, to require special
1193 <     * handling: Method signalWork returns without advancing count if
1194 <     * the queue appears to be empty.  This would ordinarily result in
1195 <     * races causing some queued waiters not to be woken up. To avoid
1196 <     * this, the first worker enqueued in method sync (see
1197 <     * syncIsReleasable) rescans for tasks after being enqueued, and
1198 <     * helps signal if any are found. This works well because the
1199 <     * worker has nothing better to do, and so might as well help
1200 <     * alleviate the overhead and contention on the threads actually
1201 <     * doing work.  Also, since event counts increments on task
1202 <     * availability exist to maintain liveness (rather than to force
1203 <     * refreshes etc), it is OK for callers to exit early if
1204 <     * contending with another signaller.
1205 <     */
1206 <    static final class WaitQueueNode {
1207 <        WaitQueueNode next; // only written before enqueued
1208 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1209 <        final long count; // unused for spare stack
1210 <
1211 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1212 <            count = c;
1213 <            thread = w;
1214 <        }
1215 <
1216 <        /**
1217 <         * Wake up waiter, returning false if known to already
1218 <         */
1219 <        boolean signal() {
1220 <            ForkJoinWorkerThread t = thread;
1221 <            if (t == null)
1222 <                return false;
1223 <            thread = null;
1224 <            LockSupport.unpark(t);
1225 <            return true;
1226 <        }
1227 <
1228 <        /**
1229 <         * Await release on sync
1230 <         */
1231 <        void awaitSyncRelease(ForkJoinPool p) {
1232 <            while (thread != null && !p.syncIsReleasable(this))
1233 <                LockSupport.park(this);
1234 <        }
1235 <
1236 <        /**
1237 <         * Await resumption as spare
1238 <         */
1239 <        void awaitSpareRelease() {
1240 <            while (thread != null) {
1241 <                if (!Thread.interrupted())
1242 <                    LockSupport.park(this);
1243 <            }
1244 <        }
1245 <    }
1246 <
1247 <    /**
1248 <     * Ensures that no thread is waiting for count to advance from the
1249 <     * current value of eventCount read on entry to this method, by
1250 <     * releasing waiting threads if necessary.
1251 <     * @return the count
1252 <     */
1253 <    final long ensureSync() {
1254 <        long c = eventCount;
1255 <        WaitQueueNode q;
1256 <        while ((q = syncStack) != null && q.count < c) {
1257 <            if (casBarrierStack(q, null)) {
1258 <                do {
1259 <                    q.signal();
1260 <                } while ((q = q.next) != null);
1261 <                break;
1262 <            }
1263 <        }
1264 <        return c;
1265 <    }
1266 <
1267 <    /**
1268 <     * Increments event count and releases waiting threads.
1269 <     */
1270 <    private void signalIdleWorkers() {
1271 <        long c;
1272 <        do;while (!casEventCount(c = eventCount, c+1));
1273 <        ensureSync();
1274 <    }
1275 <
1276 <    /**
1277 <     * Signal threads waiting to poll a task. Because method sync
1278 <     * rechecks availability, it is OK to only proceed if queue
1279 <     * appears to be non-empty, and OK to skip under contention to
1280 <     * increment count (since some other thread succeeded).
1281 <     */
1282 <    final void signalWork() {
1283 <        long c;
1284 <        WaitQueueNode q;
1285 <        if (syncStack != null &&
1286 <            casEventCount(c = eventCount, c+1) &&
1287 <            (((q = syncStack) != null && q.count <= c) &&
1288 <             (!casBarrierStack(q, q.next) || !q.signal())))
1289 <            ensureSync();
1290 <    }
1291 <
1292 <    /**
1293 <     * Waits until event count advances from last value held by
1294 <     * caller, or if excess threads, caller is resumed as spare, or
1295 <     * caller or pool is terminating. Updates caller's event on exit.
1296 <     * @param w the calling worker thread
1297 <     */
1298 <    final void sync(ForkJoinWorkerThread w) {
1299 <        updateStealCount(w); // Transfer w's count while it is idle
1300 <
1301 <        while (!w.isShutdown() && !isTerminating() && !suspendIfSpare(w)) {
1302 <            long prev = w.lastEventCount;
1303 <            WaitQueueNode node = null;
1304 <            WaitQueueNode h;
1305 <            while (eventCount == prev &&
1306 <                   ((h = syncStack) == null || h.count == prev)) {
1307 <                if (node == null)
1308 <                    node = new WaitQueueNode(prev, w);
1309 <                if (casBarrierStack(node.next = h, node)) {
1310 <                    node.awaitSyncRelease(this);
1311 <                    break;
1312 <                }
1313 <            }
1314 <            long ec = ensureSync();
1315 <            if (ec != prev) {
1316 <                w.lastEventCount = ec;
1317 <                break;
1318 <            }
1319 <        }
1320 <    }
1321 <
1322 <    /**
1323 <     * Returns true if worker waiting on sync can proceed:
1324 <     *  - on signal (thread == null)
1325 <     *  - on event count advance (winning race to notify vs signaller)
1326 <     *  - on Interrupt
1327 <     *  - if the first queued node, we find work available
1328 <     * If node was not signalled and event count not advanced on exit,
1329 <     * then we also help advance event count.
1330 <     * @return true if node can be released
1331 <     */
1332 <    final boolean syncIsReleasable(WaitQueueNode node) {
1333 <        long prev = node.count;
1334 <        if (!Thread.interrupted() && node.thread != null &&
1335 <            (node.next != null ||
1336 <             !ForkJoinWorkerThread.hasQueuedTasks(workers)) &&
1337 <            eventCount == prev)
1810 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1811 >        } catch(TimeoutException ex) {
1812              return false;
1339        if (node.thread != null) {
1340            node.thread = null;
1341            long ec = eventCount;
1342            if (prev <= ec) // help signal
1343                casEventCount(ec, ec+1);
1344        }
1345        return true;
1346    }
1347
1348    /**
1349     * Returns true if a new sync event occurred since last call to
1350     * sync or this method, if so, updating caller's count.
1351     */
1352    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1353        long lc = w.lastEventCount;
1354        long ec = ensureSync();
1355        if (ec == lc)
1356            return false;
1357        w.lastEventCount = ec;
1358        return true;
1359    }
1360
1361    //  Parallelism maintenance
1362
1363    /**
1364     * Decrement running count; if too low, add spare.
1365     *
1366     * Conceptually, all we need to do here is add or resume a
1367     * spare thread when one is about to block (and remove or
1368     * suspend it later when unblocked -- see suspendIfSpare).
1369     * However, implementing this idea requires coping with
1370     * several problems: We have imperfect information about the
1371     * states of threads. Some count updates can and usually do
1372     * lag run state changes, despite arrangements to keep them
1373     * accurate (for example, when possible, updating counts
1374     * before signalling or resuming), especially when running on
1375     * dynamic JVMs that don't optimize the infrequent paths that
1376     * update counts. Generating too many threads can make these
1377     * problems become worse, because excess threads are more
1378     * likely to be context-switched with others, slowing them all
1379     * down, especially if there is no work available, so all are
1380     * busy scanning or idling.  Also, excess spare threads can
1381     * only be suspended or removed when they are idle, not
1382     * immediately when they aren't needed. So adding threads will
1383     * raise parallelism level for longer than necessary.  Also,
1384     * FJ applications often enounter highly transient peaks when
1385     * many threads are blocked joining, but for less time than it
1386     * takes to create or resume spares.
1387     *
1388     * @param joinMe if non-null, return early if done
1389     * @param maintainParallelism if true, try to stay within
1390     * target counts, else create only to avoid starvation
1391     * @return true if joinMe known to be done
1392     */
1393    final boolean preJoin(ForkJoinTask<?> joinMe, boolean maintainParallelism) {
1394        maintainParallelism &= maintainsParallelism; // overrride
1395        boolean dec = false;  // true when running count decremented
1396        while (spareStack == null || !tryResumeSpare(dec)) {
1397            int counts = workerCounts;
1398            if (dec || (dec = casWorkerCounts(counts, --counts))) { // CAS cheat
1399                if (!needSpare(counts, maintainParallelism))
1400                    break;
1401                if (joinMe.status < 0)
1402                    return true;
1403                if (tryAddSpare(counts))
1404                    break;
1405            }
1406        }
1407        return false;
1408    }
1409
1410    /**
1411     * Same idea as preJoin
1412     */
1413    final boolean preBlock(ManagedBlocker blocker, boolean maintainParallelism){
1414        maintainParallelism &= maintainsParallelism;
1415        boolean dec = false;
1416        while (spareStack == null || !tryResumeSpare(dec)) {
1417            int counts = workerCounts;
1418            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1419                if (!needSpare(counts, maintainParallelism))
1420                    break;
1421                if (blocker.isReleasable())
1422                    return true;
1423                if (tryAddSpare(counts))
1424                    break;
1425            }
1426        }
1427        return false;
1428    }
1429
1430    /**
1431     * Returns true if a spare thread appears to be needed.  If
1432     * maintaining parallelism, returns true when the deficit in
1433     * running threads is more than the surplus of total threads, and
1434     * there is apparently some work to do.  This self-limiting rule
1435     * means that the more threads that have already been added, the
1436     * less parallelism we will tolerate before adding another.
1437     * @param counts current worker counts
1438     * @param maintainParallelism try to maintain parallelism
1439     */
1440    private boolean needSpare(int counts, boolean maintainParallelism) {
1441        int ps = parallelism;
1442        int rc = runningCountOf(counts);
1443        int tc = totalCountOf(counts);
1444        int runningDeficit = ps - rc;
1445        int totalSurplus = tc - ps;
1446        return (tc < maxPoolSize &&
1447                (rc == 0 || totalSurplus < 0 ||
1448                 (maintainParallelism &&
1449                  runningDeficit > totalSurplus &&
1450                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1451    }
1452
1453    /**
1454     * Add a spare worker if lock available and no more than the
1455     * expected numbers of threads exist
1456     * @return true if successful
1457     */
1458    private boolean tryAddSpare(int expectedCounts) {
1459        final ReentrantLock lock = this.workerLock;
1460        int expectedRunning = runningCountOf(expectedCounts);
1461        int expectedTotal = totalCountOf(expectedCounts);
1462        boolean success = false;
1463        boolean locked = false;
1464        // confirm counts while locking; CAS after obtaining lock
1465        try {
1466            for (;;) {
1467                int s = workerCounts;
1468                int tc = totalCountOf(s);
1469                int rc = runningCountOf(s);
1470                if (rc > expectedRunning || tc > expectedTotal)
1471                    break;
1472                if (!locked && !(locked = lock.tryLock()))
1473                    break;
1474                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1475                    createAndStartSpare(tc);
1476                    success = true;
1477                    break;
1478                }
1479            }
1480        } finally {
1481            if (locked)
1482                lock.unlock();
1483        }
1484        return success;
1485    }
1486
1487    /**
1488     * Add the kth spare worker. On entry, pool coounts are already
1489     * adjusted to reflect addition.
1490     */
1491    private void createAndStartSpare(int k) {
1492        ForkJoinWorkerThread w = null;
1493        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1494        int len = ws.length;
1495        // Probably, we can place at slot k. If not, find empty slot
1496        if (k < len && ws[k] != null) {
1497            for (k = 0; k < len && ws[k] != null; ++k)
1498                ;
1499        }
1500        if (k < len && !isTerminating() && (w = createWorker(k)) != null) {
1501            ws[k] = w;
1502            w.start();
1503        }
1504        else
1505            updateWorkerCount(-1); // adjust on failure
1506        signalIdleWorkers();
1507    }
1508
1509    /**
1510     * Suspend calling thread w if there are excess threads.  Called
1511     * only from sync.  Spares are enqueued in a Treiber stack
1512     * using the same WaitQueueNodes as barriers.  They are resumed
1513     * mainly in preJoin, but are also woken on pool events that
1514     * require all threads to check run state.
1515     * @param w the caller
1516     */
1517    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1518        WaitQueueNode node = null;
1519        int s;
1520        while (parallelism < runningCountOf(s = workerCounts)) {
1521            if (node == null)
1522                node = new WaitQueueNode(0, w);
1523            if (casWorkerCounts(s, s-1)) { // representation-dependent
1524                // push onto stack
1525                do;while (!casSpareStack(node.next = spareStack, node));
1526                // block until released by resumeSpare
1527                node.awaitSpareRelease();
1528                return true;
1529            }
1530        }
1531        return false;
1532    }
1533
1534    /**
1535     * Try to pop and resume a spare thread.
1536     * @param updateCount if true, increment running count on success
1537     * @return true if successful
1538     */
1539    private boolean tryResumeSpare(boolean updateCount) {
1540        WaitQueueNode q;
1541        while ((q = spareStack) != null) {
1542            if (casSpareStack(q, q.next)) {
1543                if (updateCount)
1544                    updateRunningCount(1);
1545                q.signal();
1546                return true;
1547            }
1548        }
1549        return false;
1550    }
1551
1552    /**
1553     * Pop and resume all spare threads. Same idea as ensureSync.
1554     * @return true if any spares released
1555     */
1556    private boolean resumeAllSpares() {
1557        WaitQueueNode q;
1558        while ( (q = spareStack) != null) {
1559            if (casSpareStack(q, null)) {
1560                do {
1561                    updateRunningCount(1);
1562                    q.signal();
1563                } while ((q = q.next) != null);
1564                return true;
1565            }
1566        }
1567        return false;
1568    }
1569
1570    /**
1571     * Pop and shutdown excessive spare threads. Call only while
1572     * holding lock. This is not guaranteed to eliminate all excess
1573     * threads, only those suspended as spares, which are the ones
1574     * unlikely to be needed in the future.
1575     */
1576    private void trimSpares() {
1577        int surplus = totalCountOf(workerCounts) - parallelism;
1578        WaitQueueNode q;
1579        while (surplus > 0 && (q = spareStack) != null) {
1580            if (casSpareStack(q, null)) {
1581                do {
1582                    updateRunningCount(1);
1583                    ForkJoinWorkerThread w = q.thread;
1584                    if (w != null && surplus > 0 &&
1585                        runningCountOf(workerCounts) > 0 && w.shutdown())
1586                        --surplus;
1587                    q.signal();
1588                } while ((q = q.next) != null);
1589            }
1813          }
1814      }
1815  
1816      /**
1817       * Interface for extending managed parallelism for tasks running
1818 <     * in ForkJoinPools. A ManagedBlocker provides two methods.
1819 <     * Method <code>isReleasable</code> must return true if blocking is not
1820 <     * necessary. Method <code>block</code> blocks the current thread
1821 <     * if necessary (perhaps internally invoking isReleasable before
1822 <     * actually blocking.).
1818 >     * in {@link ForkJoinPool}s.
1819 >     *
1820 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1821 >     * {@code isReleasable} must return {@code true} if blocking is
1822 >     * not necessary. Method {@code block} blocks the current thread
1823 >     * if necessary (perhaps internally invoking {@code isReleasable}
1824 >     * before actually blocking). The unusual methods in this API
1825 >     * accommodate synchronizers that may, but don't usually, block
1826 >     * for long periods. Similarly, they allow more efficient internal
1827 >     * handling of cases in which additional workers may be, but
1828 >     * usually are not, needed to ensure sufficient parallelism.
1829 >     * Toward this end, implementations of method {@code isReleasable}
1830 >     * must be amenable to repeated invocation.
1831 >     *
1832       * <p>For example, here is a ManagedBlocker based on a
1833       * ReentrantLock:
1834 <     * <pre>
1835 <     *   class ManagedLocker implements ManagedBlocker {
1836 <     *     final ReentrantLock lock;
1837 <     *     boolean hasLock = false;
1838 <     *     ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1839 <     *     public boolean block() {
1840 <     *        if (!hasLock)
1841 <     *           lock.lock();
1842 <     *        return true;
1611 <     *     }
1612 <     *     public boolean isReleasable() {
1613 <     *        return hasLock || (hasLock = lock.tryLock());
1614 <     *     }
1834 >     *  <pre> {@code
1835 >     * class ManagedLocker implements ManagedBlocker {
1836 >     *   final ReentrantLock lock;
1837 >     *   boolean hasLock = false;
1838 >     *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
1839 >     *   public boolean block() {
1840 >     *     if (!hasLock)
1841 >     *       lock.lock();
1842 >     *     return true;
1843       *   }
1844 <     * </pre>
1844 >     *   public boolean isReleasable() {
1845 >     *     return hasLock || (hasLock = lock.tryLock());
1846 >     *   }
1847 >     * }}</pre>
1848 >     *
1849 >     * <p>Here is a class that possibly blocks waiting for an
1850 >     * item on a given queue:
1851 >     *  <pre> {@code
1852 >     * class QueueTaker<E> implements ManagedBlocker {
1853 >     *   final BlockingQueue<E> queue;
1854 >     *   volatile E item = null;
1855 >     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1856 >     *   public boolean block() throws InterruptedException {
1857 >     *     if (item == null)
1858 >     *       item = queue.take();
1859 >     *     return true;
1860 >     *   }
1861 >     *   public boolean isReleasable() {
1862 >     *     return item != null || (item = queue.poll()) != null;
1863 >     *   }
1864 >     *   public E getItem() { // call after pool.managedBlock completes
1865 >     *     return item;
1866 >     *   }
1867 >     * }}</pre>
1868       */
1869      public static interface ManagedBlocker {
1870          /**
1871           * Possibly blocks the current thread, for example waiting for
1872           * a lock or condition.
1873 <         * @return true if no additional blocking is necessary (i.e.,
1874 <         * if isReleasable would return true).
1873 >         *
1874 >         * @return {@code true} if no additional blocking is necessary
1875 >         * (i.e., if isReleasable would return true)
1876           * @throws InterruptedException if interrupted while waiting
1877 <         * (the method is not required to do so, but is allowe to).
1877 >         * (the method is not required to do so, but is allowed to)
1878           */
1879          boolean block() throws InterruptedException;
1880  
1881          /**
1882 <         * Returns true if blocking is unnecessary.
1882 >         * Returns {@code true} if blocking is unnecessary.
1883           */
1884          boolean isReleasable();
1885      }
1886  
1887      /**
1888       * Blocks in accord with the given blocker.  If the current thread
1889 <     * is a ForkJoinWorkerThread, this method possibly arranges for a
1890 <     * spare thread to be activated if necessary to ensure parallelism
1891 <     * while the current thread is blocked.  If
1892 <     * <code>maintainParallelism</code> is true and the pool supports
1893 <     * it ({@link #getMaintainsParallelism}), this method attempts to
1894 <     * maintain the pool's nominal parallelism. Otherwise if activates
1895 <     * a thread only if necessary to avoid complete starvation. This
1896 <     * option may be preferable when blockages use timeouts, or are
1897 <     * almost always brief.
1898 <     *
1899 <     * <p> If the caller is not a ForkJoinTask, this method is behaviorally
1900 <     * equivalent to
1901 <     * <pre>
1902 <     *   while (!blocker.isReleasable())
1651 <     *      if (blocker.block())
1652 <     *         return;
1653 <     * </pre>
1654 <     * If the caller is a ForkJoinTask, then the pool may first
1655 <     * be expanded to ensure parallelism, and later adjusted.
1889 >     * is a {@link ForkJoinWorkerThread}, this method possibly
1890 >     * arranges for a spare thread to be activated if necessary to
1891 >     * ensure sufficient parallelism while the current thread is blocked.
1892 >     *
1893 >     * <p>If the caller is not a {@link ForkJoinTask}, this method is
1894 >     * behaviorally equivalent to
1895 >     *  <pre> {@code
1896 >     * while (!blocker.isReleasable())
1897 >     *   if (blocker.block())
1898 >     *     return;
1899 >     * }</pre>
1900 >     *
1901 >     * If the caller is a {@code ForkJoinTask}, then the pool may
1902 >     * first be expanded to ensure parallelism, and later adjusted.
1903       *
1904       * @param blocker the blocker
1905 <     * @param maintainParallelism if true and supported by this pool,
1659 <     * attempt to maintain the pool's nominal parallelism; otherwise
1660 <     * activate a thread only if necessary to avoid complete
1661 <     * starvation.
1662 <     * @throws InterruptedException if blocker.block did so.
1905 >     * @throws InterruptedException if blocker.block did so
1906       */
1907 <    public static void managedBlock(ManagedBlocker blocker,
1665 <                                    boolean maintainParallelism)
1907 >    public static void managedBlock(ManagedBlocker blocker)
1908          throws InterruptedException {
1909          Thread t = Thread.currentThread();
1910 <        ForkJoinPool pool = (t instanceof ForkJoinWorkerThread?
1911 <                             ((ForkJoinWorkerThread)t).pool : null);
1912 <        if (!blocker.isReleasable()) {
1913 <            try {
1914 <                if (pool == null ||
1915 <                    !pool.preBlock(blocker, maintainParallelism))
1674 <                    awaitBlocker(blocker);
1675 <            } finally {
1676 <                if (pool != null)
1677 <                    pool.updateRunningCount(1);
1678 <            }
1910 >        if (t instanceof ForkJoinWorkerThread) {
1911 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1912 >            w.pool.awaitBlocker(blocker);
1913 >        }
1914 >        else {
1915 >            do {} while (!blocker.isReleasable() && !blocker.block());
1916          }
1917      }
1918  
1919 <    private static void awaitBlocker(ManagedBlocker blocker)
1920 <        throws InterruptedException {
1921 <        do;while (!blocker.isReleasable() && !blocker.block());
1685 <    }
1686 <
1687 <    // AbstractExecutorService overrides
1919 >    // AbstractExecutorService overrides.  These rely on undocumented
1920 >    // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
1921 >    // implement RunnableFuture.
1922  
1923      protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
1924 <        return new AdaptedRunnable(runnable, value);
1924 >        return (RunnableFuture<T>) ForkJoinTask.adapt(runnable, value);
1925      }
1926  
1927      protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
1928 <        return new AdaptedCallable(callable);
1928 >        return (RunnableFuture<T>) ForkJoinTask.adapt(callable);
1929      }
1930  
1931 +    // Unsafe mechanics
1932 +
1933 +    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1934 +    private static final long workerCountsOffset =
1935 +        objectFieldOffset("workerCounts", ForkJoinPool.class);
1936 +    private static final long runStateOffset =
1937 +        objectFieldOffset("runState", ForkJoinPool.class);
1938 +    private static final long eventCountOffset =
1939 +        objectFieldOffset("eventCount", ForkJoinPool.class);
1940 +    private static final long eventWaitersOffset =
1941 +        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1942 +    private static final long stealCountOffset =
1943 +        objectFieldOffset("stealCount",ForkJoinPool.class);
1944 +    private static final long spareWaitersOffset =
1945 +        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1946  
1947 <    // Temporary Unsafe mechanics for preliminary release
1699 <    private static Unsafe getUnsafe() throws Throwable {
1947 >    private static long objectFieldOffset(String field, Class<?> klazz) {
1948          try {
1949 <            return Unsafe.getUnsafe();
1949 >            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
1950 >        } catch (NoSuchFieldException e) {
1951 >            // Convert Exception to corresponding Error
1952 >            NoSuchFieldError error = new NoSuchFieldError(field);
1953 >            error.initCause(e);
1954 >            throw error;
1955 >        }
1956 >    }
1957 >
1958 >    /**
1959 >     * Returns a sun.misc.Unsafe.  Suitable for use in a 3rd party package.
1960 >     * Replace with a simple call to Unsafe.getUnsafe when integrating
1961 >     * into a jdk.
1962 >     *
1963 >     * @return a sun.misc.Unsafe
1964 >     */
1965 >    private static sun.misc.Unsafe getUnsafe() {
1966 >        try {
1967 >            return sun.misc.Unsafe.getUnsafe();
1968          } catch (SecurityException se) {
1969              try {
1970                  return java.security.AccessController.doPrivileged
1971 <                    (new java.security.PrivilegedExceptionAction<Unsafe>() {
1972 <                        public Unsafe run() throws Exception {
1973 <                            return getUnsafePrivileged();
1971 >                    (new java.security
1972 >                     .PrivilegedExceptionAction<sun.misc.Unsafe>() {
1973 >                        public sun.misc.Unsafe run() throws Exception {
1974 >                            java.lang.reflect.Field f = sun.misc
1975 >                                .Unsafe.class.getDeclaredField("theUnsafe");
1976 >                            f.setAccessible(true);
1977 >                            return (sun.misc.Unsafe) f.get(null);
1978                          }});
1979              } catch (java.security.PrivilegedActionException e) {
1980 <                throw e.getCause();
1980 >                throw new RuntimeException("Could not initialize intrinsics",
1981 >                                           e.getCause());
1982              }
1983          }
1984      }
1714
1715    private static Unsafe getUnsafePrivileged()
1716            throws NoSuchFieldException, IllegalAccessException {
1717        Field f = Unsafe.class.getDeclaredField("theUnsafe");
1718        f.setAccessible(true);
1719        return (Unsafe) f.get(null);
1720    }
1721
1722    private static long fieldOffset(String fieldName)
1723            throws NoSuchFieldException {
1724        return _unsafe.objectFieldOffset
1725            (ForkJoinPool.class.getDeclaredField(fieldName));
1726    }
1727
1728    static final Unsafe _unsafe;
1729    static final long eventCountOffset;
1730    static final long workerCountsOffset;
1731    static final long runControlOffset;
1732    static final long syncStackOffset;
1733    static final long spareStackOffset;
1734
1735    static {
1736        try {
1737            _unsafe = getUnsafe();
1738            eventCountOffset = fieldOffset("eventCount");
1739            workerCountsOffset = fieldOffset("workerCounts");
1740            runControlOffset = fieldOffset("runControl");
1741            syncStackOffset = fieldOffset("syncStack");
1742            spareStackOffset = fieldOffset("spareStack");
1743        } catch (Throwable e) {
1744            throw new RuntimeException("Could not initialize intrinsics", e);
1745        }
1746    }
1747
1748    private boolean casEventCount(long cmp, long val) {
1749        return _unsafe.compareAndSwapLong(this, eventCountOffset, cmp, val);
1750    }
1751    private boolean casWorkerCounts(int cmp, int val) {
1752        return _unsafe.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1753    }
1754    private boolean casRunControl(int cmp, int val) {
1755        return _unsafe.compareAndSwapInt(this, runControlOffset, cmp, val);
1756    }
1757    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1758        return _unsafe.compareAndSwapObject(this, spareStackOffset, cmp, val);
1759    }
1760    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1761        return _unsafe.compareAndSwapObject(this, syncStackOffset, cmp, val);
1762    }
1985   }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines