ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.50 by dl, Fri Dec 4 12:09:46 2009 UTC vs.
Revision 1.93 by dl, Wed Feb 23 12:48:43 2011 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.Random;
15 > import java.util.concurrent.AbstractExecutorService;
16 > import java.util.concurrent.Callable;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
26 < import java.util.concurrent.atomic.AtomicInteger;
20 < import java.util.concurrent.atomic.AtomicLong;
26 > import java.util.concurrent.locks.Condition;
27  
28   /**
29   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
30   * A {@code ForkJoinPool} provides the entry point for submissions
31 < * from non-{@code ForkJoinTask}s, as well as management and
31 > * from non-{@code ForkJoinTask} clients, as well as management and
32   * monitoring operations.
33   *
34   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 31 | Line 37 | import java.util.concurrent.atomic.Atomi
37   * execute subtasks created by other active tasks (eventually blocking
38   * waiting for work if none exist). This enables efficient processing
39   * when most tasks spawn other subtasks (as do most {@code
40 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
41 < * execution of some plain {@code Runnable}- or {@code Callable}-
42 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
40 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
41 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
42 > * with event-style tasks that are never joined.
43   *
44   * <p>A {@code ForkJoinPool} is constructed with a given target
45   * parallelism level; by default, equal to the number of available
46 < * processors. Unless configured otherwise via {@link
47 < * #setMaintainsParallelism}, the pool attempts to maintain this
48 < * number of active (or available) threads by dynamically adding,
49 < * suspending, or resuming internal worker threads, even if some tasks
50 < * are stalled waiting to join others. However, no such adjustments
51 < * are performed in the face of blocked IO or other unmanaged
52 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
46 > * processors. The pool attempts to maintain enough active (or
47 > * available) threads by dynamically adding, suspending, or resuming
48 > * internal worker threads, even if some tasks are stalled waiting to
49 > * join others. However, no such adjustments are guaranteed in the
50 > * face of blocked IO or other unmanaged synchronization. The nested
51 > * {@link ManagedBlocker} interface enables extension of the kinds of
52 > * synchronization accommodated.
53   *
54   * <p>In addition to execution and lifecycle control methods, this
55   * class provides status check methods (for example
# Line 62 | Line 58 | import java.util.concurrent.atomic.Atomi
58   * {@link #toString} returns indications of pool state in a
59   * convenient form for informal monitoring.
60   *
61 + * <p> As is the case with other ExecutorServices, there are three
62 + * main task execution methods summarized in the following
63 + * table. These are designed to be used by clients not already engaged
64 + * in fork/join computations in the current pool.  The main forms of
65 + * these methods accept instances of {@code ForkJoinTask}, but
66 + * overloaded forms also allow mixed execution of plain {@code
67 + * Runnable}- or {@code Callable}- based activities as well.  However,
68 + * tasks that are already executing in a pool should normally
69 + * <em>NOT</em> use these pool execution methods, but instead use the
70 + * within-computation forms listed in the table.
71 + *
72 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
73 + *  <tr>
74 + *    <td></td>
75 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
76 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
77 + *  </tr>
78 + *  <tr>
79 + *    <td> <b>Arrange async execution</td>
80 + *    <td> {@link #execute(ForkJoinTask)}</td>
81 + *    <td> {@link ForkJoinTask#fork}</td>
82 + *  </tr>
83 + *  <tr>
84 + *    <td> <b>Await and obtain result</td>
85 + *    <td> {@link #invoke(ForkJoinTask)}</td>
86 + *    <td> {@link ForkJoinTask#invoke}</td>
87 + *  </tr>
88 + *  <tr>
89 + *    <td> <b>Arrange exec and obtain Future</td>
90 + *    <td> {@link #submit(ForkJoinTask)}</td>
91 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
92 + *  </tr>
93 + * </table>
94 + *
95   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
96   * used for all parallel task execution in a program or subsystem.
97   * Otherwise, use would not usually outweigh the construction and
# Line 86 | Line 116 | import java.util.concurrent.atomic.Atomi
116   * {@code IllegalArgumentException}.
117   *
118   * <p>This implementation rejects submitted tasks (that is, by throwing
119 < * {@link RejectedExecutionException}) only when the pool is shut down.
119 > * {@link RejectedExecutionException}) only when the pool is shut down
120 > * or internal resources have been exhausted.
121   *
122   * @since 1.7
123   * @author Doug Lea
# Line 94 | Line 125 | import java.util.concurrent.atomic.Atomi
125   public class ForkJoinPool extends AbstractExecutorService {
126  
127      /*
128 <     * See the extended comments interspersed below for design,
129 <     * rationale, and walkthroughs.
128 >     * Implementation Overview
129 >     *
130 >     * This class provides the central bookkeeping and control for a
131 >     * set of worker threads: Submissions from non-FJ threads enter
132 >     * into a submission queue. Workers take these tasks and typically
133 >     * split them into subtasks that may be stolen by other workers.
134 >     * Preference rules give first priority to processing tasks from
135 >     * their own queues (LIFO or FIFO, depending on mode), then to
136 >     * randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions.
138 >     *
139 >     * The main throughput advantages of work-stealing stem from
140 >     * decentralized control -- workers mostly take tasks from
141 >     * themselves or each other. We cannot negate this in the
142 >     * implementation of other management responsibilities. The main
143 >     * tactic for avoiding bottlenecks is packing nearly all
144 >     * essentially atomic control state into a single 64bit volatile
145 >     * variable ("ctl"). This variable is read on the order of 10-100
146 >     * times as often as it is modified (always via CAS). (There is
147 >     * some additional control state, for example variable "shutdown"
148 >     * for which we can cope with uncoordinated updates.)  This
149 >     * streamlines synchronization and control at the expense of messy
150 >     * constructions needed to repack status bits upon updates.
151 >     * Updates tend not to contend with each other except during
152 >     * bursts while submitted tasks begin or end.  In some cases when
153 >     * they do contend, threads can instead do something else
154 >     * (usually, scan for tesks) until contention subsides.
155 >     *
156 >     * To enable packing, we restrict maximum parallelism to (1<<15)-1
157 >     * (which is far in excess of normal operating range) to allow
158 >     * ids, counts, and their negations (used for thresholding) to fit
159 >     * into 16bit fields.
160 >     *
161 >     * Recording Workers.  Workers are recorded in the "workers" array
162 >     * that is created upon pool construction and expanded if (rarely)
163 >     * necessary.  This is an array as opposed to some other data
164 >     * structure to support index-based random steals by workers.
165 >     * Updates to the array recording new workers and unrecording
166 >     * terminated ones are protected from each other by a seqLock
167 >     * (scanGuard) but the array is otherwise concurrently readable,
168 >     * and accessed directly by workers. To simplify index-based
169 >     * operations, the array size is always a power of two, and all
170 >     * readers must tolerate null slots. To avoid flailing during
171 >     * start-up, the array is presized to hold twice #parallelism
172 >     * workers (which is unlikely to need further resizing during
173 >     * execution). But to avoid dealing with so many null slots,
174 >     * variable scanGuard includes a mask for the nearest power of two
175 >     * that contains all current workers.  All worker thread creation
176 >     * is on-demand, triggered by task submissions, replacement of
177 >     * terminated workers, and/or compensation for blocked
178 >     * workers. However, all other support code is set up to work with
179 >     * other policies.  To ensure that we do not hold on to worker
180 >     * references that would prevent GC, ALL accesses to workers are
181 >     * via indices into the workers array (which is one source of some
182 >     * of the messy code constructions here). In essence, the workers
183 >     * array serves as a weak reference mechanism. Thus for example
184 >     * the wait queue field of ctl stores worker indices, not worker
185 >     * references.  Access to the workers in associated methods (for
186 >     * example signalWork) must both index-check and null-check the
187 >     * IDs. All such accesses ignore bad IDs by returning out early
188 >     * from what they are doing, since this can only be associated
189 >     * with termination, in which case it is OK to give up.
190 >     *
191 >     * All uses of the workers array, as well as queue arrays, check
192 >     * that the array is non-null (even if previously non-null). This
193 >     * allows nulling during termination, which is currently not
194 >     * necessary, but remains an option for resource-revocation-based
195 >     * shutdown schemes.
196 >     *
197 >     * Wait Queuing. Unlike HPC work-stealing frameworks, we cannot
198 >     * let workers spin indefinitely scanning for tasks when none are
199 >     * can be immediately found, and we cannot start/resume workers
200 >     * unless there appear to be tasks available.  On the other hand,
201 >     * we must quickly prod them into action when new tasks are
202 >     * submitted or generated.  We park/unpark workers after placing
203 >     * in an event wait queue when they cannot find work. This "queue"
204 >     * is actually a simple Treiber stack, headed by the "id" field of
205 >     * ctl, plus a 15bit counter value to both wake up waiters (by
206 >     * advancing their count) and avoid ABA effects. Successors are
207 >     * held in worker field "nextWait".  Queuing deals with several
208 >     * intrinsic races, mainly that a task-producing thread can miss
209 >     * seeing (and signalling) another thread that gave up looking for
210 >     * work but has not yet entered the wait queue. We solve this by
211 >     * requiring a full sweep of all workers both before (in scan())
212 >     * and after (in awaitWork()) a newly waiting worker is added to
213 >     * the wait queue. During a rescan, the worker might release some
214 >     * other queued worker rather than itself, which has the same net
215 >     * effect.
216 >     *
217 >     * Signalling.  We create or wake up workers only when there
218 >     * appears to be at least one task they might be able to find and
219 >     * execute.  When a submission is added or another worker adds a
220 >     * task to a queue that previously had two or fewer tasks, they
221 >     * signal waiting workers (or trigger creation of new ones if
222 >     * fewer than the given parallelism level -- see signalWork).
223 >     * These primary signals are buttressed by signals during rescans
224 >     * as well as those performed when a worker steals a task and
225 >     * notices that there are more tasks too; together these cover the
226 >     * signals needed in cases when more than two tasks are pushed
227 >     * but untaken.
228 >     *
229 >     * Trimming workers. To release resources after periods of lack of
230 >     * use, a worker starting to wait when the pool is quiescent will
231 >     * time out and terminate if the pool has remained quiescent for
232 >     * SHRINK_RATE nanosecs.
233 >     *
234 >     * Submissions. External submissions are maintained in an
235 >     * array-based queue that is structured identically to
236 >     * ForkJoinWorkerThread queues (which see) except for the use of
237 >     * submissionLock in method addSubmission. Unlike worker queues,
238 >     * multiple external threads can add new submissions.
239 >     *
240 >     * Compensation. Beyond work-stealing support and lifecycle
241 >     * control, the main responsibility of this framework is to take
242 >     * actions when one worker is waiting to join a task stolen (or
243 >     * always held by) another.  Because we are multiplexing many
244 >     * tasks on to a pool of workers, we can't just let them block (as
245 >     * in Thread.join).  We also cannot just reassign the joiner's
246 >     * run-time stack with another and replace it later, which would
247 >     * be a form of "continuation", that even if possible is not
248 >     * necessarily a good idea since we sometimes need both an
249 >     * unblocked task and its continuation to progress. Instead we
250 >     * combine two tactics:
251 >     *
252 >     *   Helping: Arranging for the joiner to execute some task that it
253 >     *      would be running if the steal had not occurred.  Method
254 >     *      ForkJoinWorkerThread.joinTask tracks joining->stealing
255 >     *      links to try to find such a task.
256 >     *
257 >     *   Compensating: Unless there are already enough live threads,
258 >     *      method tryPreBlock() may create or re-activate a spare
259 >     *      thread to compensate for blocked joiners until they
260 >     *      unblock.
261 >     *
262 >     * The ManagedBlocker extension API can't use helping so relies
263 >     * only on compensation in method awaitBlocker.
264 >     *
265 >     * It is impossible to keep exactly the target parallelism number
266 >     * of threads running at any given time.  Determining the
267 >     * existence of conservatively safe helping targets, the
268 >     * availability of already-created spares, and the apparent need
269 >     * to create new spares are all racy and require heuristic
270 >     * guidance, so we rely on multiple retries of each.  Currently,
271 >     * in keeping with on-demand signalling policy, we compensate only
272 >     * if blocking would leave less than one active (non-waiting,
273 >     * non-blocked) worker. Additionally, to avoid some false alarms
274 >     * due to GC, lagging counters, system activity, etc, compensated
275 >     * blocking for joins is only attempted after a number of rechecks
276 >     * proportional to the current apparent deficit (where retries are
277 >     * interspersed with Thread.yield, for good citizenship).  The
278 >     * variable blockedCount, incremented before blocking and
279 >     * decremented after, is sometimes needed to distinguish cases of
280 >     * waiting for work vs blocking on joins or other managed sync,
281 >     * but both the cases are equivalent for most pool control, so we
282 >     * can update non-atomically. (Additionally, contention on
283 >     * blockedCount alleviates some contention on ctl).
284 >     *
285 >     * Shutdown and Termination. A call to shutdownNow atomically sets
286 >     * the ctl stop bit and then (non-atomically) sets each workers
287 >     * "terminate" status, cancels all unprocessed tasks, and wakes up
288 >     * all waiting workers.  Detecting whether termination should
289 >     * commence after a non-abrupt shutdown() call requires more work
290 >     * and bookkeeping. We need consensus about quiesence (i.e., that
291 >     * there is no more work) which is reflected in active counts so
292 >     * long as there are no current blockers, as well as possible
293 >     * re-evaluations during independent changes in blocking or
294 >     * quiescing workers.
295 >     *
296 >     * Style notes: There is a lot of representation-level coupling
297 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
298 >     * ForkJoinTask.  Most fields of ForkJoinWorkerThread maintain
299 >     * data structures managed by ForkJoinPool, so are directly
300 >     * accessed.  Conversely we allow access to "workers" array by
301 >     * workers, and direct access to ForkJoinTask.status by both
302 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
303 >     * trying to reduce this, since any associated future changes in
304 >     * representations will need to be accompanied by algorithmic
305 >     * changes anyway. All together, these low-level implementation
306 >     * choices produce as much as a factor of 4 performance
307 >     * improvement compared to naive implementations, and enable the
308 >     * processing of billions of tasks per second, at the expense of
309 >     * some ugliness.
310 >     *
311 >     * Methods signalWork() and scan() are the main bottlenecks so are
312 >     * especially heavily micro-optimized/mangled.  There are lots of
313 >     * inline assignments (of form "while ((local = field) != 0)")
314 >     * which are usually the simplest way to ensure the required read
315 >     * orderings (which are sometimes critical). This leads to a
316 >     * "C"-like style of listing declarations of these locals at the
317 >     * heads of methods or blocks.  There are several occurrences of
318 >     * the unusual "do {} while (!cas...)"  which is the simplest way
319 >     * to force an update of a CAS'ed variable. There are also other
320 >     * coding oddities that help some methods perform reasonably even
321 >     * when interpreted (not compiled).
322 >     *
323 >     * The order of declarations in this file is: (1) declarations of
324 >     * statics (2) fields (along with constants used when unpacking
325 >     * some of them), listed in an order that tends to reduce
326 >     * contention among them a bit under most JVMs.  (3) internal
327 >     * control methods (4) callbacks and other support for
328 >     * ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
329 >     * methods (plus a few little helpers). (6) static block
330 >     * initializing all statics in a minimally dependent order.
331       */
332  
101    /** Mask for packing and unpacking shorts */
102    private static final int  shortMask = 0xffff;
103
104    /** Max pool size -- must be a power of two minus 1 */
105    private static final int MAX_THREADS =  0x7FFF;
106
333      /**
334       * Factory for creating new {@link ForkJoinWorkerThread}s.
335       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 124 | Line 350 | public class ForkJoinPool extends Abstra
350       * Default ForkJoinWorkerThreadFactory implementation; creates a
351       * new ForkJoinWorkerThread.
352       */
353 <    static class  DefaultForkJoinWorkerThreadFactory
353 >    static class DefaultForkJoinWorkerThreadFactory
354          implements ForkJoinWorkerThreadFactory {
355          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
356 <            try {
131 <                return new ForkJoinWorkerThread(pool);
132 <            } catch (OutOfMemoryError oom)  {
133 <                return null;
134 <            }
356 >            return new ForkJoinWorkerThread(pool);
357          }
358      }
359  
# Line 140 | Line 362 | public class ForkJoinPool extends Abstra
362       * overridden in ForkJoinPool constructors.
363       */
364      public static final ForkJoinWorkerThreadFactory
365 <        defaultForkJoinWorkerThreadFactory =
144 <        new DefaultForkJoinWorkerThreadFactory();
365 >        defaultForkJoinWorkerThreadFactory;
366  
367      /**
368       * Permission required for callers of methods that may start or
369       * kill threads.
370       */
371 <    private static final RuntimePermission modifyThreadPermission =
151 <        new RuntimePermission("modifyThread");
371 >    private static final RuntimePermission modifyThreadPermission;
372  
373      /**
374       * If there is a security manager, makes sure caller has
# Line 163 | Line 383 | public class ForkJoinPool extends Abstra
383      /**
384       * Generator for assigning sequence numbers as pool names.
385       */
386 <    private static final AtomicInteger poolNumberGenerator =
167 <        new AtomicInteger();
386 >    private static final AtomicInteger poolNumberGenerator;
387  
388      /**
389 <     * Array holding all worker threads in the pool. Initialized upon
390 <     * first use. Array size must be a power of two.  Updates and
391 <     * replacements are protected by workerLock, but it is always kept
392 <     * in a consistent enough state to be randomly accessed without
393 <     * locking by workers performing work-stealing.
389 >     * Generator for initial random seeds for worker victim
390 >     * selection. This is used only to create initial seeds. Random
391 >     * steals use a cheaper xorshift generator per steal attempt. We
392 >     * don't expect much contention on seedGenerator, so just use a
393 >     * plain Random.
394       */
395 <    volatile ForkJoinWorkerThread[] workers;
395 >    static final Random workerSeedGenerator;
396  
397      /**
398 <     * Lock protecting access to workers.
398 >     * Array holding all worker threads in the pool.  Initialized upon
399 >     * construction. Array size must be a power of two.  Updates and
400 >     * replacements are protected by scanGuard, but the array is
401 >     * always kept in a consistent enough state to be randomly
402 >     * accessed without locking by workers performing work-stealing,
403 >     * as well as other traversal-based methods in this class, so long
404 >     * as reads memory-acquire by first reading ctl. All readers must
405 >     * tolerate that some array slots may be null.
406       */
407 <    private final ReentrantLock workerLock;
407 >    ForkJoinWorkerThread[] workers;
408  
409      /**
410 <     * Condition for awaitTermination.
410 >     * Initial size for submission queue array. Must be a power of
411 >     * two.  In many applications, these always stay small so we use a
412 >     * small initial cap.
413       */
414 <    private final Condition termination;
414 >    private static final int INITIAL_QUEUE_CAPACITY = 8;
415 >
416 >    /**
417 >     * Maximum size for submission queue array. Must be a power of two
418 >     * less than or equal to 1 << (31 - width of array entry) to
419 >     * ensure lack of index wraparound, but is capped at a lower
420 >     * value to help users trap runaway computations.
421 >     */
422 >    private static final int MAXIMUM_QUEUE_CAPACITY = 1 << 24; // 16M
423  
424      /**
425 <     * The uncaught exception handler used when any worker
190 <     * abruptly terminates
425 >     * Array serving as submission queue. Initialized upon construction.
426       */
427 <    private Thread.UncaughtExceptionHandler ueh;
427 >    private ForkJoinTask<?>[] submissionQueue;
428 >
429 >    /**
430 >     * Lock protecting submissions array for addSubmission
431 >     */
432 >    private final ReentrantLock submissionLock;
433 >
434 >    /**
435 >     * Condition for awaitTermination, using submissionLock for
436 >     * convenience.
437 >     */
438 >    private final Condition termination;
439  
440      /**
441       * Creation factory for worker threads.
# Line 197 | Line 443 | public class ForkJoinPool extends Abstra
443      private final ForkJoinWorkerThreadFactory factory;
444  
445      /**
446 <     * Head of stack of threads that were created to maintain
447 <     * parallelism when other threads blocked, but have since
202 <     * suspended when the parallelism level rose.
446 >     * The uncaught exception handler used when any worker abruptly
447 >     * terminates.
448       */
449 <    private volatile WaitQueueNode spareStack;
449 >    final Thread.UncaughtExceptionHandler ueh;
450  
451      /**
452 <     * Sum of per-thread steal counts, updated only when threads are
208 <     * idle or terminating.
452 >     * Prefix for assigning names to worker threads
453       */
454 <    private final AtomicLong stealCount;
454 >    private final String workerNamePrefix;
455  
456      /**
457 <     * Queue for external submissions.
457 >     * Sum of per-thread steal counts, updated only when threads are
458 >     * idle or terminating.
459       */
460 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
460 >    private volatile long stealCount;
461  
462      /**
463 <     * Head of Treiber stack for barrier sync. See below for explanation.
463 >     * Main pool control -- a long packed with:
464 >     * AC: Number of active running workers minus target parallelism (16 bits)
465 >     * TC: Number of total workers minus target parallelism (16bits)
466 >     * ST: true if pool is terminating (1 bit)
467 >     * EC: the wait count of top waiting thread (15 bits)
468 >     * ID: ~poolIndex of top of Treiber stack of waiting threads (16 bits)
469 >     *
470 >     * When convenient, we can extract the upper 32 bits of counts and
471 >     * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
472 >     * (int)ctl.  The ec field is never accessed alone, but always
473 >     * together with id and st. The offsets of counts by the target
474 >     * parallelism and the positionings of fields makes it possible to
475 >     * perform the most common checks via sign tests of fields: When
476 >     * ac is negative, there are not enough active workers, when tc is
477 >     * negative, there are not enough total workers, when id is
478 >     * negative, there is at least one waiting worker, and when e is
479 >     * negative, the pool is terminating.  To deal with these possibly
480 >     * negative fields, we use casts in and out of "short" and/or
481 >     * signed shifts to maintain signedness.  Note: AC_SHIFT is
482 >     * redundantly declared in ForkJoinWorkerThread in order to
483 >     * integrate a surplus-threads check.
484       */
485 <    private volatile WaitQueueNode syncStack;
485 >    volatile long ctl;
486 >
487 >    // bit positions/shifts for fields
488 >    private static final int  AC_SHIFT   = 48;
489 >    private static final int  TC_SHIFT   = 32;
490 >    private static final int  ST_SHIFT   = 31;
491 >    private static final int  EC_SHIFT   = 16;
492 >
493 >    // bounds
494 >    private static final int  MAX_ID     = 0x7fff;  // max poolIndex
495 >    private static final int  SMASK      = 0xffff;  // mask short bits
496 >    private static final int  SHORT_SIGN = 1 << 15;
497 >    private static final int  INT_SIGN   = 1 << 31;
498 >
499 >    // masks
500 >    private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
501 >    private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
502 >    private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
503 >
504 >    // units for incrementing and decrementing
505 >    private static final long TC_UNIT    = 1L << TC_SHIFT;
506 >    private static final long AC_UNIT    = 1L << AC_SHIFT;
507 >
508 >    // masks and units for dealing with u = (int)(ctl >>> 32)
509 >    private static final int  UAC_SHIFT  = AC_SHIFT - 32;
510 >    private static final int  UTC_SHIFT  = TC_SHIFT - 32;
511 >    private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
512 >    private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
513 >    private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
514 >    private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
515 >
516 >    // masks and units for dealing with e = (int)ctl
517 >    private static final int  E_MASK     = 0x7fffffff; // no STOP_BIT
518 >    private static final int  EC_UNIT    = 1 << EC_SHIFT;
519  
520      /**
521 <     * The count for event barrier
521 >     * The target parallelism level.
522       */
523 <    private volatile long eventCount;
523 >    final int parallelism;
524  
525      /**
526 <     * Pool number, just for assigning useful names to worker threads
526 >     * Index (mod submission queue length) of next element to take
527 >     * from submission queue.
528       */
529 <    private final int poolNumber;
529 >    volatile int queueBase;
530  
531      /**
532 <     * The maximum allowed pool size
532 >     * Index (mod submission queue length) of next element to add
533 >     * in submission queue.
534       */
535 <    private volatile int maxPoolSize;
535 >    int queueTop;
536  
537      /**
538 <     * The desired parallelism level, updated only under workerLock.
538 >     * True when shutdown() has been called.
539       */
540 <    private volatile int parallelism;
540 >    volatile boolean shutdown;
541  
542      /**
543       * True if use local fifo, not default lifo, for local polling
544 +     * Read by, and replicated by ForkJoinWorkerThreads
545       */
546 <    private volatile boolean locallyFifo;
546 >    final boolean locallyFifo;
547  
548      /**
549 <     * Holds number of total (i.e., created and not yet terminated)
550 <     * and running (i.e., not blocked on joins or other managed sync)
551 <     * threads, packed into one int to ensure consistent snapshot when
251 <     * making decisions about creating and suspending spare
252 <     * threads. Updated only by CAS.  Note: CASes in
253 <     * updateRunningCount and preJoin assume that running active count
254 <     * is in low word, so need to be modified if this changes.
549 >     * The number of threads in ForkJoinWorkerThreads.helpQuiescePool.
550 >     * When non-zero, suppresses automatic shutdown when active
551 >     * counts become zero.
552       */
553 <    private volatile int workerCounts;
553 >    volatile int quiescerCount;
554  
555 <    private static int totalCountOf(int s)           { return s >>> 16;  }
556 <    private static int runningCountOf(int s)         { return s & shortMask; }
557 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
555 >    /**
556 >     * The number of threads blocked in join.
557 >     */
558 >    volatile int blockedCount;
559  
560      /**
561 <     * Adds delta (which may be negative) to running count.  This must
264 <     * be called before (with negative arg) and after (with positive)
265 <     * any managed synchronization (i.e., mainly, joins).
266 <     *
267 <     * @param delta the number to add
561 >     * Counter for worker Thread names (unrelated to their poolIndex)
562       */
563 <    final void updateRunningCount(int delta) {
270 <        int s;
271 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
272 <    }
563 >    private volatile int nextWorkerNumber;
564  
565      /**
566 <     * Adds delta (which may be negative) to both total and running
276 <     * count.  This must be called upon creation and termination of
277 <     * worker threads.
278 <     *
279 <     * @param delta the number to add
566 >     * The index for the next created worker. Accessed under scanGuard.
567       */
568 <    private void updateWorkerCount(int delta) {
282 <        int d = delta + (delta << 16); // add to both lo and hi parts
283 <        int s;
284 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
285 <    }
568 >    private int nextWorkerIndex;
569  
570      /**
571 <     * Lifecycle control. High word contains runState, low word
572 <     * contains the number of workers that are (probably) executing
573 <     * tasks. This value is atomically incremented before a worker
574 <     * gets a task to run, and decremented when worker has no tasks
575 <     * and cannot find any. These two fields are bundled together to
576 <     * support correct termination triggering.  Note: activeCount
577 <     * CAS'es cheat by assuming active count is in low word, so need
578 <     * to be modified if this changes
571 >     * SeqLock and index masking for for updates to workers array.
572 >     * Locked when SG_UNIT is set. Unlocking clears bit by adding
573 >     * SG_UNIT. Staleness of read-only operations can be checked by
574 >     * comparing scanGuard to value before the reads. The low 16 bits
575 >     * (i.e, anding with SMASK) hold (the smallest power of two
576 >     * covering all worker indices, minus one, and is used to avoid
577 >     * dealing with large numbers of null slots when the workers array
578 >     * is overallocated.
579       */
580 <    private volatile int runControl;
580 >    volatile int scanGuard;
581  
582 <    // RunState values. Order among values matters
300 <    private static final int RUNNING     = 0;
301 <    private static final int SHUTDOWN    = 1;
302 <    private static final int TERMINATING = 2;
303 <    private static final int TERMINATED  = 3;
582 >    private static final int SG_UNIT = 1 << 16;
583  
584 <    private static int runStateOf(int c)             { return c >>> 16; }
585 <    private static int activeCountOf(int c)          { return c & shortMask; }
586 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
584 >    /**
585 >     * The wakeup interval (in nanoseconds) for a worker waiting for a
586 >     * task when the pool is quiescent to instead try to shrink the
587 >     * number of workers.  The exact value does not matter too
588 >     * much. It must be short enough to release resources during
589 >     * sustained periods of idleness, but not so short that threads
590 >     * are continually re-created.
591 >     */
592 >    private static final long SHRINK_RATE =
593 >        4L * 1000L * 1000L * 1000L; // 4 seconds
594  
595      /**
596 <     * Tries incrementing active count; fails on contention.
597 <     * Called by workers before/during executing tasks.
596 >     * Top-level loop for worker threads: On each step: if the
597 >     * previous step swept through all queues and found no tasks, or
598 >     * there are excess threads, then possibly blocks. Otherwise,
599 >     * scans for and, if found, executes a task. Returns when pool
600 >     * and/or worker terminate.
601       *
602 <     * @return true on success
602 >     * @param w the worker
603       */
604 <    final boolean tryIncrementActiveCount() {
605 <        int c = runControl;
606 <        return casRunControl(c, c+1);
604 >    final void work(ForkJoinWorkerThread w) {
605 >        boolean swept = false;                // true on empty scans
606 >        long c;
607 >        while (!w.terminate && (int)(c = ctl) >= 0) {
608 >            int a;                            // active count
609 >            if (!swept && (a = (int)(c >> AC_SHIFT)) <= 0)
610 >                swept = scan(w, a);
611 >            else if (tryAwaitWork(w, c))
612 >                swept = false;
613 >        }
614      }
615  
616 +    // Signalling
617 +
618      /**
619 <     * Tries decrementing active count; fails on contention.
322 <     * Possibly triggers termination on success.
323 <     * Called by workers when they can't find tasks.
324 <     *
325 <     * @return true on success
619 >     * Wakes up or creates a worker.
620       */
621 <    final boolean tryDecrementActiveCount() {
622 <        int c = runControl;
623 <        int nextc = c - 1;
624 <        if (!casRunControl(c, nextc))
625 <            return false;
626 <        if (canTerminateOnShutdown(nextc))
627 <            terminateOnShutdown();
628 <        return true;
621 >    final void signalWork() {
622 >        /*
623 >         * The while condition is true if: (there is are too few total
624 >         * workers OR there is at least one waiter) AND (there are too
625 >         * few active workers OR the pool is terminating).  The value
626 >         * of e distinguishes the remaining cases: zero (no waiters)
627 >         * for create, negative if terminating (in which case do
628 >         * nothing), else release a waiter. The secondary checks for
629 >         * release (non-null array etc) can fail if the pool begins
630 >         * terminating after the test, and don't impose any added cost
631 >         * because JVMs must perform null and bounds checks anyway.
632 >         */
633 >        long c; int e, u;
634 >        while ((((e = (int)(c = ctl)) | (u = (int)(c >>> 32))) &
635 >                (INT_SIGN|SHORT_SIGN)) == (INT_SIGN|SHORT_SIGN) && e >= 0) {
636 >            if (e > 0) {                         // release a waiting worker
637 >                int i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
638 >                if ((ws = workers) == null ||
639 >                    (i = ~e & SMASK) >= ws.length ||
640 >                    (w = ws[i]) == null)
641 >                    break;
642 >                long nc = (((long)(w.nextWait & E_MASK)) |
643 >                           ((long)(u + UAC_UNIT) << 32));
644 >                if (w.eventCount == e &&
645 >                    UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
646 >                    w.eventCount = (e + EC_UNIT) & E_MASK;
647 >                    if (w.parked)
648 >                        UNSAFE.unpark(w);
649 >                    break;
650 >                }
651 >            }
652 >            else if (UNSAFE.compareAndSwapLong
653 >                     (this, ctlOffset, c,
654 >                      (long)(((u + UTC_UNIT) & UTC_MASK) |
655 >                             ((u + UAC_UNIT) & UAC_MASK)) << 32)) {
656 >                addWorker();
657 >                break;
658 >            }
659 >        }
660      }
661  
662      /**
663 <     * Returns {@code true} if argument represents zero active count
664 <     * and nonzero runstate, which is the triggering condition for
665 <     * terminating on shutdown.
663 >     * Variant of signalWork to help release waiters on rescans.
664 >     * Tries once to release a waiter if active count < 0.
665 >     *
666 >     * @return false if failed due to contention, else true
667       */
668 <    private static boolean canTerminateOnShutdown(int c) {
669 <        // i.e. least bit is nonzero runState bit
670 <        return ((c & -c) >>> 16) != 0;
668 >    private boolean tryReleaseWaiter() {
669 >        long c; int e, i; ForkJoinWorkerThread w; ForkJoinWorkerThread[] ws;
670 >        if ((e = (int)(c = ctl)) > 0 &&
671 >            (int)(c >> AC_SHIFT) < 0 &&
672 >            (ws = workers) != null &&
673 >            (i = ~e & SMASK) < ws.length &&
674 >            (w = ws[i]) != null) {
675 >            long nc = ((long)(w.nextWait & E_MASK) |
676 >                       ((c + AC_UNIT) & (AC_MASK|TC_MASK)));
677 >            if (w.eventCount != e ||
678 >                !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
679 >                return false;
680 >            w.eventCount = (e + EC_UNIT) & E_MASK;
681 >            if (w.parked)
682 >                UNSAFE.unpark(w);
683 >        }
684 >        return true;
685      }
686  
687 +    // Scanning for tasks
688 +
689      /**
690 <     * Transition run state to at least the given state. Return true
691 <     * if not already at least given state.
690 >     * Scans for and, if found, executes one task. Scans start at a
691 >     * random index of workers array, and randomly select the first
692 >     * (2*#workers)-1 probes, and then, if all empty, resort to 2
693 >     * circular sweeps, which is necessary to check quiescence. and
694 >     * taking a submission only if no stealable tasks were found.  The
695 >     * steal code inside the loop is a specialized form of
696 >     * ForkJoinWorkerThread.deqTask, followed bookkeeping to support
697 >     * helpJoinTask and signal propagation. The code for submission
698 >     * queues is almost identical. On each steal, the worker completes
699 >     * not only the task, but also all local tasks that this task may
700 >     * have generated. On detecting staleness or contention when
701 >     * trying to take a task, this method returns without finishing
702 >     * sweep, which allows global state rechecks before retry.
703 >     *
704 >     * @param w the worker
705 >     * @param a the number of active workers
706 >     * @return true if swept all queues without finding a task
707       */
708 <    private boolean transitionRunStateTo(int state) {
709 <        for (;;) {
710 <            int c = runControl;
711 <            if (runStateOf(c) >= state)
708 >    private boolean scan(ForkJoinWorkerThread w, int a) {
709 >        int g = scanGuard; // mask 0 avoids useless scans if only one active
710 >        int m = parallelism == 1 - a? 0 : g & SMASK;
711 >        ForkJoinWorkerThread[] ws = workers;
712 >        if (ws == null || ws.length <= m)         // staleness check
713 >            return false;
714 >        for (int r = w.seed, k = r, j = -(m + m); j <= m + m; ++j) {
715 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
716 >            ForkJoinWorkerThread v = ws[k & m];
717 >            if (v != null && (b = v.queueBase) != v.queueTop &&
718 >                (q = v.queue) != null && (i = (q.length - 1) & b) >= 0) {
719 >                long u = (i << ASHIFT) + ABASE;
720 >                if ((t = q[i]) != null && v.queueBase == b &&
721 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
722 >                    int d = (v.queueBase = b + 1) - v.queueTop;
723 >                    v.stealHint = w.poolIndex;
724 >                    if (d != 0)
725 >                        signalWork();             // propagate if nonempty
726 >                    w.execTask(t);
727 >                }
728 >                r ^= r << 13; r ^= r >>> 17; w.seed = r ^ (r << 5);
729 >                return false;                     // store next seed
730 >            }
731 >            else if (j < 0) {                     // xorshift
732 >                r ^= r << 13; r ^= r >>> 17; k = r ^= r << 5;
733 >            }
734 >            else
735 >                ++k;
736 >        }
737 >        if (scanGuard != g)                       // staleness check
738 >            return false;
739 >        else {                                    // try to take submission
740 >            ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
741 >            if ((b = queueBase) != queueTop &&
742 >                (q = submissionQueue) != null &&
743 >                (i = (q.length - 1) & b) >= 0) {
744 >                long u = (i << ASHIFT) + ABASE;
745 >                if ((t = q[i]) != null && queueBase == b &&
746 >                    UNSAFE.compareAndSwapObject(q, u, t, null)) {
747 >                    queueBase = b + 1;
748 >                    w.execTask(t);
749 >                }
750                  return false;
751 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
751 >            }
752 >            return true;                         // all queues empty
753 >        }
754 >    }
755 >
756 >    /**
757 >     * Tries to enqueue worker w in wait queue and await change in
758 >     * worker's eventCount.  If the pool is quiescent, possibly
759 >     * terminates worker upon exit.  Otherwise, before blocking,
760 >     * rescans queues to avoid missed signals.  Upon finding work,
761 >     * releases at least one worker (which may be the current
762 >     * worker). Rescans restart upon detected staleness or failure to
763 >     * release due to contention.
764 >     *
765 >     * @param w the calling worker
766 >     * @param c the ctl value on entry
767 >     * @return true if waited or another thread was released upon enq
768 >     */
769 >    private boolean tryAwaitWork(ForkJoinWorkerThread w, long c) {
770 >        int v = w.eventCount;
771 >        w.nextWait = (int)c;                      // w's successor record
772 >        long nc = (long)(v & E_MASK) | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
773 >        if (ctl != c || !UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
774 >            long d = ctl; // return true if lost to a deq, to force scan
775 >            return (int)d != (int)c && ((d - c) & AC_MASK) >= 0L;
776 >        }
777 >        for (int sc = w.stealCount; sc != 0;) {   // accumulate stealCount
778 >            long s = stealCount;
779 >            if (UNSAFE.compareAndSwapLong(this, stealCountOffset, s, s + sc))
780 >                sc = w.stealCount = 0;
781 >            else if (w.eventCount != v)
782 >                return true;                      // update next time
783 >        }
784 >        if (parallelism + (int)(nc >> AC_SHIFT) == 0 &&
785 >            blockedCount == 0 && quiescerCount == 0)
786 >            idleAwaitWork(w, nc, c, v);           // quiescent
787 >        for (boolean rescanned = false;;) {
788 >            if (w.eventCount != v)
789                  return true;
790 +            if (!rescanned) {
791 +                int g = scanGuard, m = g & SMASK;
792 +                ForkJoinWorkerThread[] ws = workers;
793 +                if (ws != null && m < ws.length) {
794 +                    rescanned = true;
795 +                    for (int i = 0; i <= m; ++i) {
796 +                        ForkJoinWorkerThread u = ws[i];
797 +                        if (u != null) {
798 +                            if (u.queueBase != u.queueTop &&
799 +                                !tryReleaseWaiter())
800 +                                rescanned = false; // contended
801 +                            if (w.eventCount != v)
802 +                                return true;
803 +                        }
804 +                    }
805 +                }
806 +                if (scanGuard != g ||              // stale
807 +                    (queueBase != queueTop && !tryReleaseWaiter()))
808 +                    rescanned = false;
809 +                if (!rescanned)
810 +                    Thread.yield();                // reduce contention
811 +                else
812 +                    Thread.interrupted();          // clear before park
813 +            }
814 +            else {
815 +                w.parked = true;                   // must recheck
816 +                if (w.eventCount != v) {
817 +                    w.parked = false;
818 +                    return true;
819 +                }
820 +                LockSupport.park(this);
821 +                rescanned = w.parked = false;
822 +            }
823          }
824      }
825  
826      /**
827 <     * Controls whether to add spares to maintain parallelism
828 <     */
829 <    private volatile boolean maintainsParallelism;
827 >     * If inactivating worker w has caused pool to become
828 >     * quiescent, check for pool termination, and wait for event
829 >     * for up to SHRINK_RATE nanosecs (rescans are unnecessary in
830 >     * this case because quiescence reflects consensus about lack
831 >     * of work). On timeout, if ctl has not changed, terminate the
832 >     * worker. Upon its termination (see deregisterWorker), it may
833 >     * wake up another worker to possibly repeat this process.
834 >     *
835 >     * @param w the calling worker
836 >     * @param currentCtl the ctl value after enqueuing w
837 >     * @param prevCtl the ctl value if w terminated
838 >     * @param v the eventCount w awaits change
839 >     */
840 >    private void idleAwaitWork(ForkJoinWorkerThread w, long currentCtl,
841 >                               long prevCtl, int v) {
842 >        if (w.eventCount == v) {
843 >            if (shutdown)
844 >                tryTerminate(false);
845 >            ForkJoinTask.helpExpungeStaleExceptions(); // help clean weak refs
846 >            while (ctl == currentCtl) {
847 >                long startTime = System.nanoTime();
848 >                w.parked = true;
849 >                if (w.eventCount == v)             // must recheck
850 >                    LockSupport.parkNanos(this, SHRINK_RATE);
851 >                w.parked = false;
852 >                if (w.eventCount != v)
853 >                    break;
854 >                else if (System.nanoTime() - startTime < SHRINK_RATE)
855 >                    Thread.interrupted();          // spurious wakeup
856 >                else if (UNSAFE.compareAndSwapLong(this, ctlOffset,
857 >                                                   currentCtl, prevCtl)) {
858 >                    w.terminate = true;            // restore previous
859 >                    w.eventCount = ((int)currentCtl + EC_UNIT) & E_MASK;
860 >                    break;
861 >                }
862 >            }
863 >        }
864 >    }
865  
866 <    // Constructors
866 >    // Submissions
867  
868      /**
869 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
870 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
371 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
869 >     * Enqueues the given task in the submissionQueue.  Same idea as
870 >     * ForkJoinWorkerThread.pushTask except for use of submissionLock.
871       *
872 <     * @throws SecurityException if a security manager exists and
374 <     *         the caller is not permitted to modify threads
375 <     *         because it does not hold {@link
376 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
872 >     * @param t the task
873       */
874 <    public ForkJoinPool() {
875 <        this(Runtime.getRuntime().availableProcessors(),
876 <             defaultForkJoinWorkerThreadFactory);
874 >    private void addSubmission(ForkJoinTask<?> t) {
875 >        final ReentrantLock lock = this.submissionLock;
876 >        lock.lock();
877 >        try {
878 >            ForkJoinTask<?>[] q; int s, m;
879 >            if ((q = submissionQueue) != null) {    // ignore if queue removed
880 >                long u = (((s = queueTop) & (m = q.length-1)) << ASHIFT)+ABASE;
881 >                UNSAFE.putOrderedObject(q, u, t);
882 >                queueTop = s + 1;
883 >                if (s - queueBase == m)
884 >                    growSubmissionQueue();
885 >            }
886 >        } finally {
887 >            lock.unlock();
888 >        }
889 >        signalWork();
890      }
891  
892 +    //  (pollSubmission is defined below with exported methods)
893 +
894      /**
895 <     * Creates a {@code ForkJoinPool} with the indicated parallelism
896 <     * level and using the {@linkplain
386 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
387 <     *
388 <     * @param parallelism the parallelism level
389 <     * @throws IllegalArgumentException if parallelism less than or
390 <     *         equal to zero, or greater than implementation limit
391 <     * @throws SecurityException if a security manager exists and
392 <     *         the caller is not permitted to modify threads
393 <     *         because it does not hold {@link
394 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
895 >     * Creates or doubles submissionQueue array.
896 >     * Basically identical to ForkJoinWorkerThread version
897       */
898 <    public ForkJoinPool(int parallelism) {
899 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
898 >    private void growSubmissionQueue() {
899 >        ForkJoinTask<?>[] oldQ = submissionQueue;
900 >        int size = oldQ != null ? oldQ.length << 1 : INITIAL_QUEUE_CAPACITY;
901 >        if (size > MAXIMUM_QUEUE_CAPACITY)
902 >            throw new RejectedExecutionException("Queue capacity exceeded");
903 >        if (size < INITIAL_QUEUE_CAPACITY)
904 >            size = INITIAL_QUEUE_CAPACITY;
905 >        ForkJoinTask<?>[] q = submissionQueue = new ForkJoinTask<?>[size];
906 >        int mask = size - 1;
907 >        int top = queueTop;
908 >        int oldMask;
909 >        if (oldQ != null && (oldMask = oldQ.length - 1) >= 0) {
910 >            for (int b = queueBase; b != top; ++b) {
911 >                long u = ((b & oldMask) << ASHIFT) + ABASE;
912 >                Object x = UNSAFE.getObjectVolatile(oldQ, u);
913 >                if (x != null && UNSAFE.compareAndSwapObject(oldQ, u, x, null))
914 >                    UNSAFE.putObjectVolatile
915 >                        (q, ((b & mask) << ASHIFT) + ABASE, x);
916 >            }
917 >        }
918 >    }
919 >
920 >    // Blocking support
921 >
922 >    /**
923 >     * Tries to increment blockedCount, decrement active count
924 >     * (sometimes implicitly) and possibly release or create a
925 >     * compensating worker in preparation for blocking. Fails
926 >     * on contention or termination.
927 >     *
928 >     * @return true if the caller can block, else should recheck and retry
929 >     */
930 >    private boolean tryPreBlock() {
931 >        int b = blockedCount;
932 >        if (UNSAFE.compareAndSwapInt(this, blockedCountOffset, b, b + 1)) {
933 >            int pc = parallelism;
934 >            do {
935 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
936 >                int e, ac, tc, rc, i;
937 >                long c = ctl;
938 >                int u = (int)(c >>> 32);
939 >                if ((e = (int)c) < 0) {
940 >                                                 // skip -- terminating
941 >                }
942 >                else if ((ac = (u >> UAC_SHIFT)) <= 0 && e != 0 &&
943 >                         (ws = workers) != null &&
944 >                         (i = ~e & SMASK) < ws.length &&
945 >                         (w = ws[i]) != null) {
946 >                    long nc = ((long)(w.nextWait & E_MASK) |
947 >                               (c & (AC_MASK|TC_MASK)));
948 >                    if (w.eventCount == e &&
949 >                        UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
950 >                        w.eventCount = (e + EC_UNIT) & E_MASK;
951 >                        if (w.parked)
952 >                            UNSAFE.unpark(w);
953 >                        return true;             // release an idle worker
954 >                    }
955 >                }
956 >                else if ((tc = (short)(u >>> UTC_SHIFT)) >= 0 && ac + pc > 1) {
957 >                    long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
958 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc))
959 >                        return true;             // no compensation needed
960 >                }
961 >                else if (tc + pc < MAX_ID) {
962 >                    long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
963 >                    if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, nc)) {
964 >                        addWorker();
965 >                        return true;            // create a replacement
966 >                    }
967 >                }
968 >                // try to back out on any failure and let caller retry
969 >            } while (!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
970 >                                               b = blockedCount, b - 1));
971 >        }
972 >        return false;
973      }
974  
975      /**
976 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
402 <     * java.lang.Runtime#availableProcessors}, and using the given
403 <     * thread factory.
404 <     *
405 <     * @param factory the factory for creating new threads
406 <     * @throws NullPointerException if the factory is null
407 <     * @throws SecurityException if a security manager exists and
408 <     *         the caller is not permitted to modify threads
409 <     *         because it does not hold {@link
410 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
976 >     * Decrements blockedCount and increments active count
977       */
978 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
979 <        this(Runtime.getRuntime().availableProcessors(), factory);
978 >    private void postBlock() {
979 >        long c;
980 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset,  // no mask
981 >                                                c = ctl, c + AC_UNIT));
982 >        int b;
983 >        do {} while(!UNSAFE.compareAndSwapInt(this, blockedCountOffset,
984 >                                              b = blockedCount, b - 1));
985      }
986  
987      /**
988 <     * Creates a {@code ForkJoinPool} with the given parallelism and
989 <     * thread factory.
988 >     * Possibly blocks waiting for the given task to complete, or
989 >     * cancels the task if terminating.  Fails to wait if contended.
990       *
991 <     * @param parallelism the parallelism level
421 <     * @param factory the factory for creating new threads
422 <     * @throws IllegalArgumentException if parallelism less than or
423 <     *         equal to zero, or greater than implementation limit
424 <     * @throws NullPointerException if the factory is null
425 <     * @throws SecurityException if a security manager exists and
426 <     *         the caller is not permitted to modify threads
427 <     *         because it does not hold {@link
428 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
991 >     * @param joinMe the task
992       */
993 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
994 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
995 <            throw new IllegalArgumentException();
996 <        if (factory == null)
997 <            throw new NullPointerException();
998 <        checkPermission();
999 <        this.factory = factory;
1000 <        this.parallelism = parallelism;
1001 <        this.maxPoolSize = MAX_THREADS;
1002 <        this.maintainsParallelism = true;
1003 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
441 <        this.workerLock = new ReentrantLock();
442 <        this.termination = workerLock.newCondition();
443 <        this.stealCount = new AtomicLong();
444 <        this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
445 <        // worker array and workers are lazily constructed
993 >    final void tryAwaitJoin(ForkJoinTask<?> joinMe) {
994 >        int s;
995 >        Thread.interrupted(); // clear interrupts before checking termination
996 >        if (joinMe.status >= 0) {
997 >            if (tryPreBlock()) {
998 >                joinMe.tryAwaitDone(0L);
999 >                postBlock();
1000 >            }
1001 >            if ((ctl & STOP_BIT) != 0L)
1002 >                joinMe.cancelIgnoringExceptions();
1003 >        }
1004      }
1005  
1006      /**
1007 <     * Creates a new worker thread using factory.
1007 >     * Possibly blocks the given worker waiting for joinMe to
1008 >     * complete or timeout
1009       *
1010 <     * @param index the index to assign worker
1011 <     * @return new worker, or null if factory failed
1010 >     * @param joinMe the task
1011 >     * @param millis the wait time for underlying Object.wait
1012       */
1013 <    private ForkJoinWorkerThread createWorker(int index) {
1014 <        Thread.UncaughtExceptionHandler h = ueh;
1015 <        ForkJoinWorkerThread w = factory.newThread(this);
1016 <        if (w != null) {
1017 <            w.poolIndex = index;
1018 <            w.setDaemon(true);
1019 <            w.setAsyncMode(locallyFifo);
1020 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
1021 <            if (h != null)
1022 <                w.setUncaughtExceptionHandler(h);
1013 >    final void timedAwaitJoin(ForkJoinTask<?> joinMe, long nanos) {
1014 >        while (joinMe.status >= 0) {
1015 >            Thread.interrupted();
1016 >            if ((ctl & STOP_BIT) != 0L) {
1017 >                joinMe.cancelIgnoringExceptions();
1018 >                break;
1019 >            }
1020 >            if (tryPreBlock()) {
1021 >                long last = System.nanoTime();
1022 >                while (joinMe.status >= 0) {
1023 >                    long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
1024 >                    if (millis <= 0)
1025 >                        break;
1026 >                    joinMe.tryAwaitDone(millis);
1027 >                    if (joinMe.status < 0)
1028 >                        break;
1029 >                    if ((ctl & STOP_BIT) != 0L) {
1030 >                        joinMe.cancelIgnoringExceptions();
1031 >                        break;
1032 >                    }
1033 >                    long now = System.nanoTime();
1034 >                    nanos -= now - last;
1035 >                    last = now;
1036 >                }
1037 >                postBlock();
1038 >                break;
1039 >            }
1040          }
465        return w;
1041      }
1042  
1043      /**
1044 <     * Returns a good size for worker array given pool size.
470 <     * Currently requires size to be a power of two.
1044 >     * If necessary, compensates for blocker, and blocks
1045       */
1046 <    private static int arraySizeFor(int poolSize) {
1047 <        if (poolSize <= 1)
1048 <            return 1;
1049 <        // See Hackers Delight, sec 3.2
1050 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
1051 <        c |= c >>>  1;
1052 <        c |= c >>>  2;
1053 <        c |= c >>>  4;
1054 <        c |= c >>>  8;
1055 <        c |= c >>> 16;
1056 <        return c + 1;
1046 >    private void awaitBlocker(ManagedBlocker blocker)
1047 >        throws InterruptedException {
1048 >        while (!blocker.isReleasable()) {
1049 >            if (tryPreBlock()) {
1050 >                try {
1051 >                    do {} while (!blocker.isReleasable() && !blocker.block());
1052 >                } finally {
1053 >                    postBlock();
1054 >                }
1055 >                break;
1056 >            }
1057 >        }
1058      }
1059  
1060 +    // Creating, registering and deregistring workers
1061 +
1062      /**
1063 <     * Creates or resizes array if necessary to hold newLength.
1064 <     * Call only under exclusion.
488 <     *
489 <     * @return the array
1063 >     * Tries to create and start a worker; minimally rolls back counts
1064 >     * on failure.
1065       */
1066 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
1067 <        ForkJoinWorkerThread[] ws = workers;
1068 <        if (ws == null)
1069 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
1070 <        else if (newLength > ws.length)
1071 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
1066 >    private void addWorker() {
1067 >        Throwable ex = null;
1068 >        ForkJoinWorkerThread t = null;
1069 >        try {
1070 >            t = factory.newThread(this);
1071 >        } catch (Throwable e) {
1072 >            ex = e;
1073 >        }
1074 >        if (t == null) {  // null or exceptional factory return
1075 >            long c;       // adjust counts
1076 >            do {} while (!UNSAFE.compareAndSwapLong
1077 >                         (this, ctlOffset, c = ctl,
1078 >                          (((c - AC_UNIT) & AC_MASK) |
1079 >                           ((c - TC_UNIT) & TC_MASK) |
1080 >                           (c & ~(AC_MASK|TC_MASK)))));
1081 >            // Propagate exception if originating from an external caller
1082 >            if (!tryTerminate(false) && ex != null &&
1083 >                !(Thread.currentThread() instanceof ForkJoinWorkerThread))
1084 >                UNSAFE.throwException(ex);
1085 >        }
1086          else
1087 <            return ws;
1087 >            t.start();
1088      }
1089  
1090      /**
1091 <     * Tries to shrink workers into smaller array after one or more terminate.
1091 >     * Callback from ForkJoinWorkerThread constructor to assign a
1092 >     * public name
1093       */
1094 <    private void tryShrinkWorkerArray() {
1095 <        ForkJoinWorkerThread[] ws = workers;
1096 <        if (ws != null) {
1097 <            int len = ws.length;
1098 <            int last = len - 1;
509 <            while (last >= 0 && ws[last] == null)
510 <                --last;
511 <            int newLength = arraySizeFor(last+1);
512 <            if (newLength < len)
513 <                workers = Arrays.copyOf(ws, newLength);
1094 >    final String nextWorkerName() {
1095 >        for (int n;;) {
1096 >            if (UNSAFE.compareAndSwapInt(this, nextWorkerNumberOffset,
1097 >                                         n = nextWorkerNumber, ++n))
1098 >                return workerNamePrefix + n;
1099          }
1100      }
1101  
1102      /**
1103 <     * Initializes workers if necessary.
1103 >     * Callback from ForkJoinWorkerThread constructor to
1104 >     * determine its poolIndex and record in workers array.
1105 >     *
1106 >     * @param w the worker
1107 >     * @return the worker's pool index
1108       */
1109 <    final void ensureWorkerInitialization() {
1110 <        ForkJoinWorkerThread[] ws = workers;
1111 <        if (ws == null) {
1112 <            final ReentrantLock lock = this.workerLock;
1113 <            lock.lock();
1114 <            try {
1115 <                ws = workers;
1116 <                if (ws == null) {
1117 <                    int ps = parallelism;
1118 <                    updateWorkerCount(ps);
1119 <                    ws = ensureWorkerArrayCapacity(ps);
1120 <                    for (int i = 0; i < ps; ++i) {
1121 <                        ForkJoinWorkerThread w = createWorker(i);
1122 <                        if (w != null) {
1123 <                            ws[i] = w;
1124 <                            w.start();
1109 >    final int registerWorker(ForkJoinWorkerThread w) {
1110 >        /*
1111 >         * In the typical case, a new worker acquires the lock, uses
1112 >         * next available index and returns quickly.  Since we should
1113 >         * not block callers (ultimately from signalWork or
1114 >         * tryPreBlock) waiting for the lock needed to do this, we
1115 >         * instead help release other workers while waiting for the
1116 >         * lock.
1117 >         */
1118 >        for (int g;;) {
1119 >            ForkJoinWorkerThread[] ws;
1120 >            if (((g = scanGuard) & SG_UNIT) == 0 &&
1121 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1122 >                                         g, g | SG_UNIT)) {
1123 >                int k = nextWorkerIndex;
1124 >                try {
1125 >                    if ((ws = workers) != null) { // ignore on shutdown
1126 >                        int n = ws.length;
1127 >                        if (k < 0 || k >= n || ws[k] != null) {
1128 >                            for (k = 0; k < n && ws[k] != null; ++k)
1129 >                                ;
1130 >                            if (k == n)
1131 >                                ws = workers = Arrays.copyOf(ws, n << 1);
1132                          }
1133 <                        else
1134 <                            updateWorkerCount(-1);
1133 >                        ws[k] = w;
1134 >                        nextWorkerIndex = k + 1;
1135 >                        int m = g & SMASK;
1136 >                        g = k >= m? ((m << 1) + 1) & SMASK : g + (SG_UNIT<<1);
1137 >                    }
1138 >                } finally {
1139 >                    scanGuard = g;
1140 >                }
1141 >                return k;
1142 >            }
1143 >            else if ((ws = workers) != null) { // help release others
1144 >                for (ForkJoinWorkerThread u : ws) {
1145 >                    if (u != null && u.queueBase != u.queueTop) {
1146 >                        if (tryReleaseWaiter())
1147 >                            break;
1148                      }
1149                  }
541            } finally {
542                lock.unlock();
1150              }
1151          }
1152      }
1153  
1154      /**
1155 <     * Worker creation and startup for threads added via setParallelism.
1155 >     * Final callback from terminating worker.  Removes record of
1156 >     * worker from array, and adjusts counts. If pool is shutting
1157 >     * down, tries to complete termination.
1158 >     *
1159 >     * @param w the worker
1160       */
1161 <    private void createAndStartAddedWorkers() {
1162 <        resumeAllSpares();  // Allow spares to convert to nonspare
1163 <        int ps = parallelism;
1164 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1165 <        int len = ws.length;
1166 <        // Sweep through slots, to keep lowest indices most populated
1167 <        int k = 0;
1168 <        while (k < len) {
1169 <            if (ws[k] != null) {
1170 <                ++k;
1171 <                continue;
1161 >    final void deregisterWorker(ForkJoinWorkerThread w, Throwable ex) {
1162 >        int idx = w.poolIndex;
1163 >        int sc = w.stealCount;
1164 >        int steps = 0;
1165 >        // Remove from array, adjust worker counts and collect steal count.
1166 >        // We can intermix failed removes or adjusts with steal updates
1167 >        do {
1168 >            long s, c;
1169 >            int g;
1170 >            if (steps == 0 && ((g = scanGuard) & SG_UNIT) == 0 &&
1171 >                UNSAFE.compareAndSwapInt(this, scanGuardOffset,
1172 >                                         g, g |= SG_UNIT)) {
1173 >                ForkJoinWorkerThread[] ws = workers;
1174 >                if (ws != null && idx >= 0 &&
1175 >                    idx < ws.length && ws[idx] == w)
1176 >                    ws[idx] = null;    // verify
1177 >                nextWorkerIndex = idx;
1178 >                scanGuard = g + SG_UNIT;
1179 >                steps = 1;
1180 >            }
1181 >            if (steps == 1 &&
1182 >                UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1183 >                                          (((c - AC_UNIT) & AC_MASK) |
1184 >                                           ((c - TC_UNIT) & TC_MASK) |
1185 >                                           (c & ~(AC_MASK|TC_MASK)))))
1186 >                steps = 2;
1187 >            if (sc != 0 &&
1188 >                UNSAFE.compareAndSwapLong(this, stealCountOffset,
1189 >                                          s = stealCount, s + sc))
1190 >                sc = 0;
1191 >        } while (steps != 2 || sc != 0);
1192 >        if (!tryTerminate(false)) {
1193 >            if (ex != null)   // possibly replace if died abnormally
1194 >                signalWork();
1195 >            else
1196 >                tryReleaseWaiter();
1197 >        }
1198 >    }
1199 >
1200 >    // Shutdown and termination
1201 >
1202 >    /**
1203 >     * Possibly initiates and/or completes termination.
1204 >     *
1205 >     * @param now if true, unconditionally terminate, else only
1206 >     * if shutdown and empty queue and no active workers
1207 >     * @return true if now terminating or terminated
1208 >     */
1209 >    private boolean tryTerminate(boolean now) {
1210 >        long c;
1211 >        while (((c = ctl) & STOP_BIT) == 0) {
1212 >            if (!now) {
1213 >                if ((int)(c >> AC_SHIFT) != -parallelism)
1214 >                    return false;
1215 >                if (!shutdown || blockedCount != 0 || quiescerCount != 0 ||
1216 >                    queueTop - queueBase > 0) {
1217 >                    if (ctl == c) // staleness check
1218 >                        return false;
1219 >                    continue;
1220 >                }
1221              }
1222 <            int s = workerCounts;
1223 <            int tc = totalCountOf(s);
1224 <            int rc = runningCountOf(s);
1225 <            if (rc >= ps || tc >= ps)
1226 <                break;
1227 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
1228 <                ForkJoinWorkerThread w = createWorker(k);
1229 <                if (w != null) {
1230 <                    ws[k++] = w;
1231 <                    w.start();
1222 >            if (UNSAFE.compareAndSwapLong(this, ctlOffset, c, c | STOP_BIT))
1223 >                startTerminating();
1224 >        }
1225 >        if ((short)(c >>> TC_SHIFT) == -parallelism) {
1226 >            submissionLock.lock();
1227 >            termination.signalAll();
1228 >            submissionLock.unlock();
1229 >        }
1230 >        return true;
1231 >    }
1232 >
1233 >    /**
1234 >     * Runs up to three passes through workers: (0) Setting
1235 >     * termination status for each worker, followed by wakeups up
1236 >     * queued workers (1) helping cancel tasks (2) interrupting
1237 >     * lagging threads (likely in external tasks, but possibly also
1238 >     * blocked in joins).  Each pass repeats previous steps because of
1239 >     * potential lagging thread creation.
1240 >     */
1241 >    private void startTerminating() {
1242 >        cancelSubmissions();
1243 >        for (int pass = 0; pass < 3; ++pass) {
1244 >            ForkJoinWorkerThread[] ws = workers;
1245 >            if (ws != null) {
1246 >                for (ForkJoinWorkerThread w : ws) {
1247 >                    if (w != null) {
1248 >                        w.terminate = true;
1249 >                        if (pass > 0) {
1250 >                            w.cancelTasks();
1251 >                            if (pass > 1 && !w.isInterrupted()) {
1252 >                                try {
1253 >                                    w.interrupt();
1254 >                                } catch (SecurityException ignore) {
1255 >                                }
1256 >                            }
1257 >                        }
1258 >                    }
1259                  }
1260 <                else {
1261 <                    updateWorkerCount(-1); // back out on failed creation
1262 <                    break;
1260 >                terminateWaiters();
1261 >            }
1262 >        }
1263 >    }
1264 >
1265 >    /**
1266 >     * Polls and cancels all submissions. Called only during termination.
1267 >     */
1268 >    private void cancelSubmissions() {
1269 >        while (queueBase != queueTop) {
1270 >            ForkJoinTask<?> task = pollSubmission();
1271 >            if (task != null) {
1272 >                try {
1273 >                    task.cancel(false);
1274 >                } catch (Throwable ignore) {
1275                  }
1276              }
1277          }
1278      }
1279  
1280 <    // Execution methods
1280 >    /**
1281 >     * Tries to set the termination status of waiting workers, and
1282 >     * then wake them up (after which they will terminate).
1283 >     */
1284 >    private void terminateWaiters() {
1285 >        ForkJoinWorkerThread[] ws = workers;
1286 >        if (ws != null) {
1287 >            ForkJoinWorkerThread w; long c; int i, e;
1288 >            int n = ws.length;
1289 >            while ((i = ~(e = (int)(c = ctl)) & SMASK) < n &&
1290 >                   (w = ws[i]) != null && w.eventCount == (e & E_MASK)) {
1291 >                if (UNSAFE.compareAndSwapLong(this, ctlOffset, c,
1292 >                                              (long)(w.nextWait & E_MASK) |
1293 >                                              ((c + AC_UNIT) & AC_MASK) |
1294 >                                              (c & (TC_MASK|STOP_BIT)))) {
1295 >                    w.terminate = true;
1296 >                    w.eventCount = e + EC_UNIT;
1297 >                    if (w.parked)
1298 >                        UNSAFE.unpark(w);
1299 >                }
1300 >            }
1301 >        }
1302 >    }
1303 >
1304 >    // misc ForkJoinWorkerThread support
1305  
1306      /**
1307 <     * Common code for execute, invoke and submit
1307 >     * Increment or decrement quiescerCount. Needed only to prevent
1308 >     * triggering shutdown if a worker is transiently inactive while
1309 >     * checking quiescence.
1310 >     *
1311 >     * @param delta 1 for increment, -1 for decrement
1312       */
1313 <    private <T> void doSubmit(ForkJoinTask<T> task) {
1314 <        if (task == null)
1313 >    final void addQuiescerCount(int delta) {
1314 >        int c;
1315 >        do {} while(!UNSAFE.compareAndSwapInt(this, quiescerCountOffset,
1316 >                                              c = quiescerCount, c + delta));
1317 >    }
1318 >
1319 >    /**
1320 >     * Directly increment or decrement active count without
1321 >     * queuing. This method is used to transiently assert inactivation
1322 >     * while checking quiescence.
1323 >     *
1324 >     * @param delta 1 for increment, -1 for decrement
1325 >     */
1326 >    final void addActiveCount(int delta) {
1327 >        long d = delta < 0 ? -AC_UNIT : AC_UNIT;
1328 >        long c;
1329 >        do {} while (!UNSAFE.compareAndSwapLong(this, ctlOffset, c = ctl,
1330 >                                                ((c + d) & AC_MASK) |
1331 >                                                (c & ~AC_MASK)));
1332 >    }
1333 >
1334 >    /**
1335 >     * Returns the approximate (non-atomic) number of idle threads per
1336 >     * active thread.
1337 >     */
1338 >    final int idlePerActive() {
1339 >        // Approximate at powers of two for small values, saturate past 4
1340 >        int p = parallelism;
1341 >        int a = p + (int)(ctl >> AC_SHIFT);
1342 >        return (a > (p >>>= 1) ? 0 :
1343 >                a > (p >>>= 1) ? 1 :
1344 >                a > (p >>>= 1) ? 2 :
1345 >                a > (p >>>= 1) ? 4 :
1346 >                8);
1347 >    }
1348 >
1349 >    // Exported methods
1350 >
1351 >    // Constructors
1352 >
1353 >    /**
1354 >     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1355 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1356 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1357 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1358 >     *
1359 >     * @throws SecurityException if a security manager exists and
1360 >     *         the caller is not permitted to modify threads
1361 >     *         because it does not hold {@link
1362 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1363 >     */
1364 >    public ForkJoinPool() {
1365 >        this(Runtime.getRuntime().availableProcessors(),
1366 >             defaultForkJoinWorkerThreadFactory, null, false);
1367 >    }
1368 >
1369 >    /**
1370 >     * Creates a {@code ForkJoinPool} with the indicated parallelism
1371 >     * level, the {@linkplain
1372 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1373 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1374 >     *
1375 >     * @param parallelism the parallelism level
1376 >     * @throws IllegalArgumentException if parallelism less than or
1377 >     *         equal to zero, or greater than implementation limit
1378 >     * @throws SecurityException if a security manager exists and
1379 >     *         the caller is not permitted to modify threads
1380 >     *         because it does not hold {@link
1381 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1382 >     */
1383 >    public ForkJoinPool(int parallelism) {
1384 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1385 >    }
1386 >
1387 >    /**
1388 >     * Creates a {@code ForkJoinPool} with the given parameters.
1389 >     *
1390 >     * @param parallelism the parallelism level. For default value,
1391 >     * use {@link java.lang.Runtime#availableProcessors}.
1392 >     * @param factory the factory for creating new threads. For default value,
1393 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1394 >     * @param handler the handler for internal worker threads that
1395 >     * terminate due to unrecoverable errors encountered while executing
1396 >     * tasks. For default value, use {@code null}.
1397 >     * @param asyncMode if true,
1398 >     * establishes local first-in-first-out scheduling mode for forked
1399 >     * tasks that are never joined. This mode may be more appropriate
1400 >     * than default locally stack-based mode in applications in which
1401 >     * worker threads only process event-style asynchronous tasks.
1402 >     * For default value, use {@code false}.
1403 >     * @throws IllegalArgumentException if parallelism less than or
1404 >     *         equal to zero, or greater than implementation limit
1405 >     * @throws NullPointerException if the factory is null
1406 >     * @throws SecurityException if a security manager exists and
1407 >     *         the caller is not permitted to modify threads
1408 >     *         because it does not hold {@link
1409 >     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1410 >     */
1411 >    public ForkJoinPool(int parallelism,
1412 >                        ForkJoinWorkerThreadFactory factory,
1413 >                        Thread.UncaughtExceptionHandler handler,
1414 >                        boolean asyncMode) {
1415 >        checkPermission();
1416 >        if (factory == null)
1417              throw new NullPointerException();
1418 <        if (isShutdown())
1419 <            throw new RejectedExecutionException();
1420 <        if (workers == null)
1421 <            ensureWorkerInitialization();
1422 <        submissionQueue.offer(task);
1423 <        signalIdleWorkers();
1418 >        if (parallelism <= 0 || parallelism > MAX_ID)
1419 >            throw new IllegalArgumentException();
1420 >        this.parallelism = parallelism;
1421 >        this.factory = factory;
1422 >        this.ueh = handler;
1423 >        this.locallyFifo = asyncMode;
1424 >        long np = (long)(-parallelism); // offset ctl counts
1425 >        this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
1426 >        this.submissionQueue = new ForkJoinTask<?>[INITIAL_QUEUE_CAPACITY];
1427 >        // initialize workers array with room for 2*parallelism if possible
1428 >        int n = parallelism << 1;
1429 >        if (n >= MAX_ID)
1430 >            n = MAX_ID;
1431 >        else { // See Hackers Delight, sec 3.2, where n < (1 << 16)
1432 >            n |= n >>> 1; n |= n >>> 2; n |= n >>> 4; n |= n >>> 8;
1433 >        }
1434 >        workers = new ForkJoinWorkerThread[n + 1];
1435 >        this.submissionLock = new ReentrantLock();
1436 >        this.termination = submissionLock.newCondition();
1437 >        StringBuilder sb = new StringBuilder("ForkJoinPool-");
1438 >        sb.append(poolNumberGenerator.incrementAndGet());
1439 >        sb.append("-worker-");
1440 >        this.workerNamePrefix = sb.toString();
1441      }
1442  
1443 +    // Execution methods
1444 +
1445      /**
1446       * Performs the given task, returning its result upon completion.
1447 +     * If the computation encounters an unchecked Exception or Error,
1448 +     * it is rethrown as the outcome of this invocation.  Rethrown
1449 +     * exceptions behave in the same way as regular exceptions, but,
1450 +     * when possible, contain stack traces (as displayed for example
1451 +     * using {@code ex.printStackTrace()}) of both the current thread
1452 +     * as well as the thread actually encountering the exception;
1453 +     * minimally only the latter.
1454       *
1455       * @param task the task
1456       * @return the task's result
# Line 604 | Line 1459 | public class ForkJoinPool extends Abstra
1459       *         scheduled for execution
1460       */
1461      public <T> T invoke(ForkJoinTask<T> task) {
1462 <        doSubmit(task);
1463 <        return task.join();
1462 >        Thread t = Thread.currentThread();
1463 >        if (task == null)
1464 >            throw new NullPointerException();
1465 >        if (shutdown)
1466 >            throw new RejectedExecutionException();
1467 >        if ((t instanceof ForkJoinWorkerThread) &&
1468 >            ((ForkJoinWorkerThread)t).pool == this)
1469 >            return task.invoke();  // bypass submit if in same pool
1470 >        else {
1471 >            addSubmission(task);
1472 >            return task.join();
1473 >        }
1474 >    }
1475 >
1476 >    /**
1477 >     * Unless terminating, forks task if within an ongoing FJ
1478 >     * computation in the current pool, else submits as external task.
1479 >     */
1480 >    private <T> void forkOrSubmit(ForkJoinTask<T> task) {
1481 >        ForkJoinWorkerThread w;
1482 >        Thread t = Thread.currentThread();
1483 >        if (shutdown)
1484 >            throw new RejectedExecutionException();
1485 >        if ((t instanceof ForkJoinWorkerThread) &&
1486 >            (w = (ForkJoinWorkerThread)t).pool == this)
1487 >            w.pushTask(task);
1488 >        else
1489 >            addSubmission(task);
1490      }
1491  
1492      /**
# Line 617 | Line 1498 | public class ForkJoinPool extends Abstra
1498       *         scheduled for execution
1499       */
1500      public void execute(ForkJoinTask<?> task) {
1501 <        doSubmit(task);
1501 >        if (task == null)
1502 >            throw new NullPointerException();
1503 >        forkOrSubmit(task);
1504      }
1505  
1506      // AbstractExecutorService methods
# Line 628 | Line 1511 | public class ForkJoinPool extends Abstra
1511       *         scheduled for execution
1512       */
1513      public void execute(Runnable task) {
1514 +        if (task == null)
1515 +            throw new NullPointerException();
1516          ForkJoinTask<?> job;
1517          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1518              job = (ForkJoinTask<?>) task;
1519          else
1520              job = ForkJoinTask.adapt(task, null);
1521 <        doSubmit(job);
1521 >        forkOrSubmit(job);
1522 >    }
1523 >
1524 >    /**
1525 >     * Submits a ForkJoinTask for execution.
1526 >     *
1527 >     * @param task the task to submit
1528 >     * @return the task
1529 >     * @throws NullPointerException if the task is null
1530 >     * @throws RejectedExecutionException if the task cannot be
1531 >     *         scheduled for execution
1532 >     */
1533 >    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1534 >        if (task == null)
1535 >            throw new NullPointerException();
1536 >        forkOrSubmit(task);
1537 >        return task;
1538      }
1539  
1540      /**
# Line 642 | Line 1543 | public class ForkJoinPool extends Abstra
1543       *         scheduled for execution
1544       */
1545      public <T> ForkJoinTask<T> submit(Callable<T> task) {
1546 +        if (task == null)
1547 +            throw new NullPointerException();
1548          ForkJoinTask<T> job = ForkJoinTask.adapt(task);
1549 <        doSubmit(job);
1549 >        forkOrSubmit(job);
1550          return job;
1551      }
1552  
# Line 653 | Line 1556 | public class ForkJoinPool extends Abstra
1556       *         scheduled for execution
1557       */
1558      public <T> ForkJoinTask<T> submit(Runnable task, T result) {
1559 +        if (task == null)
1560 +            throw new NullPointerException();
1561          ForkJoinTask<T> job = ForkJoinTask.adapt(task, result);
1562 <        doSubmit(job);
1562 >        forkOrSubmit(job);
1563          return job;
1564      }
1565  
# Line 664 | Line 1569 | public class ForkJoinPool extends Abstra
1569       *         scheduled for execution
1570       */
1571      public ForkJoinTask<?> submit(Runnable task) {
1572 +        if (task == null)
1573 +            throw new NullPointerException();
1574          ForkJoinTask<?> job;
1575          if (task instanceof ForkJoinTask<?>) // avoid re-wrap
1576              job = (ForkJoinTask<?>) task;
1577          else
1578              job = ForkJoinTask.adapt(task, null);
1579 <        doSubmit(job);
1579 >        forkOrSubmit(job);
1580          return job;
1581      }
1582  
1583      /**
677     * Submits a ForkJoinTask for execution.
678     *
679     * @param task the task to submit
680     * @return the task
681     * @throws NullPointerException if the task is null
682     * @throws RejectedExecutionException if the task cannot be
683     *         scheduled for execution
684     */
685    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
686        doSubmit(task);
687        return task;
688    }
689
690
691    /**
1584       * @throws NullPointerException       {@inheritDoc}
1585       * @throws RejectedExecutionException {@inheritDoc}
1586       */
# Line 700 | Line 1592 | public class ForkJoinPool extends Abstra
1592          invoke(new InvokeAll<T>(forkJoinTasks));
1593  
1594          @SuppressWarnings({"unchecked", "rawtypes"})
1595 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1595 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1596          return futures;
1597      }
1598  
# Line 714 | Line 1606 | public class ForkJoinPool extends Abstra
1606          private static final long serialVersionUID = -7914297376763021607L;
1607      }
1608  
717    // Configuration and status settings and queries
718
1609      /**
1610       * Returns the factory used for constructing new workers.
1611       *
# Line 732 | Line 1622 | public class ForkJoinPool extends Abstra
1622       * @return the handler, or {@code null} if none
1623       */
1624      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1625 <        Thread.UncaughtExceptionHandler h;
736 <        final ReentrantLock lock = this.workerLock;
737 <        lock.lock();
738 <        try {
739 <            h = ueh;
740 <        } finally {
741 <            lock.unlock();
742 <        }
743 <        return h;
744 <    }
745 <
746 <    /**
747 <     * Sets the handler for internal worker threads that terminate due
748 <     * to unrecoverable errors encountered while executing tasks.
749 <     * Unless set, the current default or ThreadGroup handler is used
750 <     * as handler.
751 <     *
752 <     * @param h the new handler
753 <     * @return the old handler, or {@code null} if none
754 <     * @throws SecurityException if a security manager exists and
755 <     *         the caller is not permitted to modify threads
756 <     *         because it does not hold {@link
757 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
758 <     */
759 <    public Thread.UncaughtExceptionHandler
760 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
761 <        checkPermission();
762 <        Thread.UncaughtExceptionHandler old = null;
763 <        final ReentrantLock lock = this.workerLock;
764 <        lock.lock();
765 <        try {
766 <            old = ueh;
767 <            ueh = h;
768 <            ForkJoinWorkerThread[] ws = workers;
769 <            if (ws != null) {
770 <                for (int i = 0; i < ws.length; ++i) {
771 <                    ForkJoinWorkerThread w = ws[i];
772 <                    if (w != null)
773 <                        w.setUncaughtExceptionHandler(h);
774 <                }
775 <            }
776 <        } finally {
777 <            lock.unlock();
778 <        }
779 <        return old;
780 <    }
781 <
782 <
783 <    /**
784 <     * Sets the target parallelism level of this pool.
785 <     *
786 <     * @param parallelism the target parallelism
787 <     * @throws IllegalArgumentException if parallelism less than or
788 <     * equal to zero or greater than maximum size bounds
789 <     * @throws SecurityException if a security manager exists and
790 <     *         the caller is not permitted to modify threads
791 <     *         because it does not hold {@link
792 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
793 <     */
794 <    public void setParallelism(int parallelism) {
795 <        checkPermission();
796 <        if (parallelism <= 0 || parallelism > maxPoolSize)
797 <            throw new IllegalArgumentException();
798 <        final ReentrantLock lock = this.workerLock;
799 <        lock.lock();
800 <        try {
801 <            if (isProcessingTasks()) {
802 <                int p = this.parallelism;
803 <                this.parallelism = parallelism;
804 <                if (workers != null) {
805 <                    if (parallelism > p)
806 <                        createAndStartAddedWorkers();
807 <                    else
808 <                        trimSpares();
809 <                }
810 <            }
811 <        } finally {
812 <            lock.unlock();
813 <        }
814 <        signalIdleWorkers();
1625 >        return ueh;
1626      }
1627  
1628      /**
# Line 825 | Line 1636 | public class ForkJoinPool extends Abstra
1636  
1637      /**
1638       * Returns the number of worker threads that have started but not
1639 <     * yet terminated.  This result returned by this method may differ
1639 >     * yet terminated.  The result returned by this method may differ
1640       * from {@link #getParallelism} when threads are created to
1641       * maintain parallelism when others are cooperatively blocked.
1642       *
1643       * @return the number of worker threads
1644       */
1645      public int getPoolSize() {
1646 <        return totalCountOf(workerCounts);
836 <    }
837 <
838 <    /**
839 <     * Returns the maximum number of threads allowed to exist in the
840 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
841 <     * maximum is an implementation-defined value designed only to
842 <     * prevent runaway growth.
843 <     *
844 <     * @return the maximum
845 <     */
846 <    public int getMaximumPoolSize() {
847 <        return maxPoolSize;
848 <    }
849 <
850 <    /**
851 <     * Sets the maximum number of threads allowed to exist in the
852 <     * pool. The given value should normally be greater than or equal
853 <     * to the {@link #getParallelism parallelism} level. Setting this
854 <     * value has no effect on current pool size. It controls
855 <     * construction of new threads.
856 <     *
857 <     * @throws IllegalArgumentException if negative or greater than
858 <     * internal implementation limit
859 <     */
860 <    public void setMaximumPoolSize(int newMax) {
861 <        if (newMax < 0 || newMax > MAX_THREADS)
862 <            throw new IllegalArgumentException();
863 <        maxPoolSize = newMax;
864 <    }
865 <
866 <
867 <    /**
868 <     * Returns {@code true} if this pool dynamically maintains its
869 <     * target parallelism level. If false, new threads are added only
870 <     * to avoid possible starvation.  This setting is by default true.
871 <     *
872 <     * @return {@code true} if maintains parallelism
873 <     */
874 <    public boolean getMaintainsParallelism() {
875 <        return maintainsParallelism;
876 <    }
877 <
878 <    /**
879 <     * Sets whether this pool dynamically maintains its target
880 <     * parallelism level. If false, new threads are added only to
881 <     * avoid possible starvation.
882 <     *
883 <     * @param enable {@code true} to maintain parallelism
884 <     */
885 <    public void setMaintainsParallelism(boolean enable) {
886 <        maintainsParallelism = enable;
887 <    }
888 <
889 <    /**
890 <     * Establishes local first-in-first-out scheduling mode for forked
891 <     * tasks that are never joined. This mode may be more appropriate
892 <     * than default locally stack-based mode in applications in which
893 <     * worker threads only process asynchronous tasks.  This method is
894 <     * designed to be invoked only when the pool is quiescent, and
895 <     * typically only before any tasks are submitted. The effects of
896 <     * invocations at other times may be unpredictable.
897 <     *
898 <     * @param async if {@code true}, use locally FIFO scheduling
899 <     * @return the previous mode
900 <     * @see #getAsyncMode
901 <     */
902 <    public boolean setAsyncMode(boolean async) {
903 <        boolean oldMode = locallyFifo;
904 <        locallyFifo = async;
905 <        ForkJoinWorkerThread[] ws = workers;
906 <        if (ws != null) {
907 <            for (int i = 0; i < ws.length; ++i) {
908 <                ForkJoinWorkerThread t = ws[i];
909 <                if (t != null)
910 <                    t.setAsyncMode(async);
911 <            }
912 <        }
913 <        return oldMode;
1646 >        return parallelism + (short)(ctl >>> TC_SHIFT);
1647      }
1648  
1649      /**
# Line 918 | Line 1651 | public class ForkJoinPool extends Abstra
1651       * scheduling mode for forked tasks that are never joined.
1652       *
1653       * @return {@code true} if this pool uses async mode
921     * @see #setAsyncMode
1654       */
1655      public boolean getAsyncMode() {
1656          return locallyFifo;
# Line 927 | Line 1659 | public class ForkJoinPool extends Abstra
1659      /**
1660       * Returns an estimate of the number of worker threads that are
1661       * not blocked waiting to join tasks or for other managed
1662 <     * synchronization.
1662 >     * synchronization. This method may overestimate the
1663 >     * number of running threads.
1664       *
1665       * @return the number of worker threads
1666       */
1667      public int getRunningThreadCount() {
1668 <        return runningCountOf(workerCounts);
1668 >        int r = parallelism + (int)(ctl >> AC_SHIFT);
1669 >        return r <= 0? 0 : r; // suppress momentarily negative values
1670      }
1671  
1672      /**
# Line 943 | Line 1677 | public class ForkJoinPool extends Abstra
1677       * @return the number of active threads
1678       */
1679      public int getActiveThreadCount() {
1680 <        return activeCountOf(runControl);
1681 <    }
948 <
949 <    /**
950 <     * Returns an estimate of the number of threads that are currently
951 <     * idle waiting for tasks. This method may underestimate the
952 <     * number of idle threads.
953 <     *
954 <     * @return the number of idle threads
955 <     */
956 <    final int getIdleThreadCount() {
957 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
958 <        return (c <= 0) ? 0 : c;
1680 >        int r = parallelism + (int)(ctl >> AC_SHIFT) + blockedCount;
1681 >        return r <= 0? 0 : r; // suppress momentarily negative values
1682      }
1683  
1684      /**
# Line 970 | Line 1693 | public class ForkJoinPool extends Abstra
1693       * @return {@code true} if all threads are currently idle
1694       */
1695      public boolean isQuiescent() {
1696 <        return activeCountOf(runControl) == 0;
1696 >        return parallelism + (int)(ctl >> AC_SHIFT) + blockedCount == 0;
1697      }
1698  
1699      /**
# Line 985 | Line 1708 | public class ForkJoinPool extends Abstra
1708       * @return the number of steals
1709       */
1710      public long getStealCount() {
1711 <        return stealCount.get();
989 <    }
990 <
991 <    /**
992 <     * Accumulates steal count from a worker.
993 <     * Call only when worker known to be idle.
994 <     */
995 <    private void updateStealCount(ForkJoinWorkerThread w) {
996 <        int sc = w.getAndClearStealCount();
997 <        if (sc != 0)
998 <            stealCount.addAndGet(sc);
1711 >        return stealCount;
1712      }
1713  
1714      /**
# Line 1010 | Line 1723 | public class ForkJoinPool extends Abstra
1723       */
1724      public long getQueuedTaskCount() {
1725          long count = 0;
1726 <        ForkJoinWorkerThread[] ws = workers;
1727 <        if (ws != null) {
1728 <            for (int i = 0; i < ws.length; ++i) {
1729 <                ForkJoinWorkerThread t = ws[i];
1730 <                if (t != null)
1731 <                    count += t.getQueueSize();
1019 <            }
1726 >        ForkJoinWorkerThread[] ws;
1727 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1728 >            (ws = workers) != null) {
1729 >            for (ForkJoinWorkerThread w : ws)
1730 >                if (w != null)
1731 >                    count -= w.queueBase - w.queueTop; // must read base first
1732          }
1733          return count;
1734      }
1735  
1736      /**
1737       * Returns an estimate of the number of tasks submitted to this
1738 <     * pool that have not yet begun executing.  This method takes time
1739 <     * proportional to the number of submissions.
1738 >     * pool that have not yet begun executing.  This meThod may take
1739 >     * time proportional to the number of submissions.
1740       *
1741       * @return the number of queued submissions
1742       */
1743      public int getQueuedSubmissionCount() {
1744 <        return submissionQueue.size();
1744 >        return -queueBase + queueTop;
1745      }
1746  
1747      /**
# Line 1039 | Line 1751 | public class ForkJoinPool extends Abstra
1751       * @return {@code true} if there are any queued submissions
1752       */
1753      public boolean hasQueuedSubmissions() {
1754 <        return !submissionQueue.isEmpty();
1754 >        return queueBase != queueTop;
1755      }
1756  
1757      /**
# Line 1050 | Line 1762 | public class ForkJoinPool extends Abstra
1762       * @return the next submission, or {@code null} if none
1763       */
1764      protected ForkJoinTask<?> pollSubmission() {
1765 <        return submissionQueue.poll();
1765 >        ForkJoinTask<?> t; ForkJoinTask<?>[] q; int b, i;
1766 >        while ((b = queueBase) != queueTop &&
1767 >               (q = submissionQueue) != null &&
1768 >               (i = (q.length - 1) & b) >= 0) {
1769 >            long u = (i << ASHIFT) + ABASE;
1770 >            if ((t = q[i]) != null &&
1771 >                queueBase == b &&
1772 >                UNSAFE.compareAndSwapObject(q, u, t, null)) {
1773 >                queueBase = b + 1;
1774 >                return t;
1775 >            }
1776 >        }
1777 >        return null;
1778      }
1779  
1780      /**
# Line 1071 | Line 1795 | public class ForkJoinPool extends Abstra
1795       * @return the number of elements transferred
1796       */
1797      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1798 <        int n = submissionQueue.drainTo(c);
1799 <        ForkJoinWorkerThread[] ws = workers;
1800 <        if (ws != null) {
1801 <            for (int i = 0; i < ws.length; ++i) {
1802 <                ForkJoinWorkerThread w = ws[i];
1803 <                if (w != null)
1080 <                    n += w.drainTasksTo(c);
1798 >        int count = 0;
1799 >        while (queueBase != queueTop) {
1800 >            ForkJoinTask<?> t = pollSubmission();
1801 >            if (t != null) {
1802 >                c.add(t);
1803 >                ++count;
1804              }
1805          }
1806 <        return n;
1806 >        ForkJoinWorkerThread[] ws;
1807 >        if ((short)(ctl >>> TC_SHIFT) > -parallelism &&
1808 >            (ws = workers) != null) {
1809 >            for (ForkJoinWorkerThread w : ws)
1810 >                if (w != null)
1811 >                    count += w.drainTasksTo(c);
1812 >        }
1813 >        return count;
1814      }
1815  
1816      /**
# Line 1091 | Line 1821 | public class ForkJoinPool extends Abstra
1821       * @return a string identifying this pool, as well as its state
1822       */
1823      public String toString() {
1094        int ps = parallelism;
1095        int wc = workerCounts;
1096        int rc = runControl;
1824          long st = getStealCount();
1825          long qt = getQueuedTaskCount();
1826          long qs = getQueuedSubmissionCount();
1827 +        int pc = parallelism;
1828 +        long c = ctl;
1829 +        int tc = pc + (short)(c >>> TC_SHIFT);
1830 +        int rc = pc + (int)(c >> AC_SHIFT);
1831 +        if (rc < 0) // ignore transient negative
1832 +            rc = 0;
1833 +        int ac = rc + blockedCount;
1834 +        String level;
1835 +        if ((c & STOP_BIT) != 0)
1836 +            level = (tc == 0)? "Terminated" : "Terminating";
1837 +        else
1838 +            level = shutdown? "Shutting down" : "Running";
1839          return super.toString() +
1840 <            "[" + runStateToString(runStateOf(rc)) +
1841 <            ", parallelism = " + ps +
1842 <            ", size = " + totalCountOf(wc) +
1843 <            ", active = " + activeCountOf(rc) +
1844 <            ", running = " + runningCountOf(wc) +
1840 >            "[" + level +
1841 >            ", parallelism = " + pc +
1842 >            ", size = " + tc +
1843 >            ", active = " + ac +
1844 >            ", running = " + rc +
1845              ", steals = " + st +
1846              ", tasks = " + qt +
1847              ", submissions = " + qs +
1848              "]";
1849      }
1850  
1112    private static String runStateToString(int rs) {
1113        switch (rs) {
1114        case RUNNING: return "Running";
1115        case SHUTDOWN: return "Shutting down";
1116        case TERMINATING: return "Terminating";
1117        case TERMINATED: return "Terminated";
1118        default: throw new Error("Unknown run state");
1119        }
1120    }
1121
1122    // lifecycle control
1123
1851      /**
1852       * Initiates an orderly shutdown in which previously submitted
1853       * tasks are executed, but no new tasks will be accepted.
# Line 1135 | Line 1862 | public class ForkJoinPool extends Abstra
1862       */
1863      public void shutdown() {
1864          checkPermission();
1865 <        transitionRunStateTo(SHUTDOWN);
1866 <        if (canTerminateOnShutdown(runControl)) {
1140 <            if (workers == null) { // shutting down before workers created
1141 <                final ReentrantLock lock = this.workerLock;
1142 <                lock.lock();
1143 <                try {
1144 <                    if (workers == null) {
1145 <                        terminate();
1146 <                        transitionRunStateTo(TERMINATED);
1147 <                        termination.signalAll();
1148 <                    }
1149 <                } finally {
1150 <                    lock.unlock();
1151 <                }
1152 <            }
1153 <            terminateOnShutdown();
1154 <        }
1865 >        shutdown = true;
1866 >        tryTerminate(false);
1867      }
1868  
1869      /**
# Line 1172 | Line 1884 | public class ForkJoinPool extends Abstra
1884       */
1885      public List<Runnable> shutdownNow() {
1886          checkPermission();
1887 <        terminate();
1887 >        shutdown = true;
1888 >        tryTerminate(true);
1889          return Collections.emptyList();
1890      }
1891  
# Line 1182 | Line 1895 | public class ForkJoinPool extends Abstra
1895       * @return {@code true} if all tasks have completed following shut down
1896       */
1897      public boolean isTerminated() {
1898 <        return runStateOf(runControl) == TERMINATED;
1898 >        long c = ctl;
1899 >        return ((c & STOP_BIT) != 0L &&
1900 >                (short)(c >>> TC_SHIFT) == -parallelism);
1901      }
1902  
1903      /**
# Line 1190 | Line 1905 | public class ForkJoinPool extends Abstra
1905       * commenced but not yet completed.  This method may be useful for
1906       * debugging. A return of {@code true} reported a sufficient
1907       * period after shutdown may indicate that submitted tasks have
1908 <     * ignored or suppressed interruption, causing this executor not
1909 <     * to properly terminate.
1908 >     * ignored or suppressed interruption, or are waiting for IO,
1909 >     * causing this executor not to properly terminate. (See the
1910 >     * advisory notes for class {@link ForkJoinTask} stating that
1911 >     * tasks should not normally entail blocking operations.  But if
1912 >     * they do, they must abort them on interrupt.)
1913       *
1914       * @return {@code true} if terminating but not yet terminated
1915       */
1916      public boolean isTerminating() {
1917 <        return runStateOf(runControl) == TERMINATING;
1917 >        long c = ctl;
1918 >        return ((c & STOP_BIT) != 0L &&
1919 >                (short)(c >>> TC_SHIFT) != -parallelism);
1920      }
1921  
1922      /**
1923 <     * Returns {@code true} if this pool has been shut down.
1204 <     *
1205 <     * @return {@code true} if this pool has been shut down
1923 >     * Returns true if terminating or terminated. Used by ForkJoinWorkerThread.
1924       */
1925 <    public boolean isShutdown() {
1926 <        return runStateOf(runControl) >= SHUTDOWN;
1925 >    final boolean isAtLeastTerminating() {
1926 >        return (ctl & STOP_BIT) != 0L;
1927      }
1928  
1929      /**
1930 <     * Returns true if pool is not terminating or terminated.
1931 <     * Used internally to suppress execution when terminating.
1930 >     * Returns {@code true} if this pool has been shut down.
1931 >     *
1932 >     * @return {@code true} if this pool has been shut down
1933       */
1934 <    final boolean isProcessingTasks() {
1935 <        return runStateOf(runControl) < TERMINATING;
1934 >    public boolean isShutdown() {
1935 >        return shutdown;
1936      }
1937  
1938      /**
# Line 1230 | Line 1949 | public class ForkJoinPool extends Abstra
1949      public boolean awaitTermination(long timeout, TimeUnit unit)
1950          throws InterruptedException {
1951          long nanos = unit.toNanos(timeout);
1952 <        final ReentrantLock lock = this.workerLock;
1952 >        final ReentrantLock lock = this.submissionLock;
1953          lock.lock();
1954          try {
1955              for (;;) {
# Line 1245 | Line 1964 | public class ForkJoinPool extends Abstra
1964          }
1965      }
1966  
1248    // Shutdown and termination support
1249
1250    /**
1251     * Callback from terminating worker. Nulls out the corresponding
1252     * workers slot, and if terminating, tries to terminate; else
1253     * tries to shrink workers array.
1254     *
1255     * @param w the worker
1256     */
1257    final void workerTerminated(ForkJoinWorkerThread w) {
1258        updateStealCount(w);
1259        updateWorkerCount(-1);
1260        final ReentrantLock lock = this.workerLock;
1261        lock.lock();
1262        try {
1263            ForkJoinWorkerThread[] ws = workers;
1264            if (ws != null) {
1265                int idx = w.poolIndex;
1266                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1267                    ws[idx] = null;
1268                if (totalCountOf(workerCounts) == 0) {
1269                    terminate(); // no-op if already terminating
1270                    transitionRunStateTo(TERMINATED);
1271                    termination.signalAll();
1272                }
1273                else if (isProcessingTasks()) {
1274                    tryShrinkWorkerArray();
1275                    tryResumeSpare(true); // allow replacement
1276                }
1277            }
1278        } finally {
1279            lock.unlock();
1280        }
1281        signalIdleWorkers();
1282    }
1283
1284    /**
1285     * Initiates termination.
1286     */
1287    private void terminate() {
1288        if (transitionRunStateTo(TERMINATING)) {
1289            stopAllWorkers();
1290            resumeAllSpares();
1291            signalIdleWorkers();
1292            cancelQueuedSubmissions();
1293            cancelQueuedWorkerTasks();
1294            interruptUnterminatedWorkers();
1295            signalIdleWorkers(); // resignal after interrupt
1296        }
1297    }
1298
1299    /**
1300     * Possibly terminates when on shutdown state.
1301     */
1302    private void terminateOnShutdown() {
1303        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1304            terminate();
1305    }
1306
1307    /**
1308     * Clears out and cancels submissions.
1309     */
1310    private void cancelQueuedSubmissions() {
1311        ForkJoinTask<?> task;
1312        while ((task = pollSubmission()) != null)
1313            task.cancel(false);
1314    }
1315
1316    /**
1317     * Cleans out worker queues.
1318     */
1319    private void cancelQueuedWorkerTasks() {
1320        final ReentrantLock lock = this.workerLock;
1321        lock.lock();
1322        try {
1323            ForkJoinWorkerThread[] ws = workers;
1324            if (ws != null) {
1325                for (int i = 0; i < ws.length; ++i) {
1326                    ForkJoinWorkerThread t = ws[i];
1327                    if (t != null)
1328                        t.cancelTasks();
1329                }
1330            }
1331        } finally {
1332            lock.unlock();
1333        }
1334    }
1335
1336    /**
1337     * Sets each worker's status to terminating. Requires lock to avoid
1338     * conflicts with add/remove.
1339     */
1340    private void stopAllWorkers() {
1341        final ReentrantLock lock = this.workerLock;
1342        lock.lock();
1343        try {
1344            ForkJoinWorkerThread[] ws = workers;
1345            if (ws != null) {
1346                for (int i = 0; i < ws.length; ++i) {
1347                    ForkJoinWorkerThread t = ws[i];
1348                    if (t != null)
1349                        t.shutdownNow();
1350                }
1351            }
1352        } finally {
1353            lock.unlock();
1354        }
1355    }
1356
1357    /**
1358     * Interrupts all unterminated workers.  This is not required for
1359     * sake of internal control, but may help unstick user code during
1360     * shutdown.
1361     */
1362    private void interruptUnterminatedWorkers() {
1363        final ReentrantLock lock = this.workerLock;
1364        lock.lock();
1365        try {
1366            ForkJoinWorkerThread[] ws = workers;
1367            if (ws != null) {
1368                for (int i = 0; i < ws.length; ++i) {
1369                    ForkJoinWorkerThread t = ws[i];
1370                    if (t != null && !t.isTerminated()) {
1371                        try {
1372                            t.interrupt();
1373                        } catch (SecurityException ignore) {
1374                        }
1375                    }
1376                }
1377            }
1378        } finally {
1379            lock.unlock();
1380        }
1381    }
1382
1383    /*
1384     * Nodes for event barrier to manage idle threads.  Queue nodes
1385     * are basic Treiber stack nodes, also used for spare stack.
1386     *
1387     * The event barrier has an event count and a wait queue (actually
1388     * a Treiber stack).  Workers are enabled to look for work when
1389     * the eventCount is incremented. If they fail to find work, they
1390     * may wait for next count. Upon release, threads help others wake
1391     * up.
1392     *
1393     * Synchronization events occur only in enough contexts to
1394     * maintain overall liveness:
1395     *
1396     *   - Submission of a new task to the pool
1397     *   - Resizes or other changes to the workers array
1398     *   - pool termination
1399     *   - A worker pushing a task on an empty queue
1400     *
1401     * The case of pushing a task occurs often enough, and is heavy
1402     * enough compared to simple stack pushes, to require special
1403     * handling: Method signalWork returns without advancing count if
1404     * the queue appears to be empty.  This would ordinarily result in
1405     * races causing some queued waiters not to be woken up. To avoid
1406     * this, the first worker enqueued in method sync rescans for
1407     * tasks after being enqueued, and helps signal if any are
1408     * found. This works well because the worker has nothing better to
1409     * do, and so might as well help alleviate the overhead and
1410     * contention on the threads actually doing work.  Also, since
1411     * event counts increments on task availability exist to maintain
1412     * liveness (rather than to force refreshes etc), it is OK for
1413     * callers to exit early if contending with another signaller.
1414     */
1415    static final class WaitQueueNode {
1416        WaitQueueNode next; // only written before enqueued
1417        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1418        final long count; // unused for spare stack
1419
1420        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1421            count = c;
1422            thread = w;
1423        }
1424
1425        /**
1426         * Wakes up waiter, returning false if known to already be awake
1427         */
1428        boolean signal() {
1429            ForkJoinWorkerThread t = thread;
1430            if (t == null)
1431                return false;
1432            thread = null;
1433            LockSupport.unpark(t);
1434            return true;
1435        }
1436    }
1437
1438    /**
1439     * Ensures that no thread is waiting for count to advance from the
1440     * current value of eventCount read on entry to this method, by
1441     * releasing waiting threads if necessary.
1442     */
1443    final void ensureSync() {
1444        long c = eventCount;
1445        WaitQueueNode q;
1446        while ((q = syncStack) != null && q.count < c) {
1447            if (casBarrierStack(q, null)) {
1448                do {
1449                    q.signal();
1450                } while ((q = q.next) != null);
1451                break;
1452            }
1453        }
1454    }
1455
1456    /**
1457     * Increments event count and releases waiting threads.
1458     */
1459    private void signalIdleWorkers() {
1460        long c;
1461        do {} while (!casEventCount(c = eventCount, c+1));
1462        ensureSync();
1463    }
1464
1465    /**
1466     * Signals threads waiting to poll a task. Because method sync
1467     * rechecks availability, it is OK to only proceed if queue
1468     * appears to be non-empty, and OK if CAS to increment count
1469     * fails (since some other thread succeeded).
1470     */
1471    final void signalWork() {
1472        if (syncStack != null) {
1473            long c;
1474            casEventCount(c = eventCount, c+1);
1475            WaitQueueNode q = syncStack;
1476            if (q != null && q.count <= c &&
1477                (!casBarrierStack(q, q.next) || !q.signal()))
1478                ensureSync();
1479        }
1480    }
1481
1482    /**
1483     * Waits until event count advances from last value held by
1484     * caller, or if excess threads, caller is resumed as spare, or
1485     * caller or pool is terminating. Updates caller's event on exit.
1486     *
1487     * @param w the calling worker thread
1488     */
1489    final void sync(ForkJoinWorkerThread w) {
1490        updateStealCount(w); // Transfer w's count while it is idle
1491
1492        if (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1493            long prev = w.lastEventCount;
1494            WaitQueueNode node = null;
1495            WaitQueueNode h;
1496            boolean helpSignal = false;
1497            while (eventCount == prev &&
1498                   ((h = syncStack) == null || h.count == prev)) {
1499                if (node == null)
1500                    node = new WaitQueueNode(prev, w);
1501                if (casBarrierStack(node.next = h, node)) {
1502                    if (!Thread.interrupted() && node.thread != null &&
1503                        eventCount == prev) {
1504                        if (h == null && // cover signalWork race
1505                            ForkJoinWorkerThread.hasQueuedTasks(workers))
1506                            helpSignal = true;
1507                        else
1508                            LockSupport.park(this);
1509                    }
1510                    if (node.thread != null)
1511                        node.thread = null;
1512                    break;
1513                }
1514            }
1515            long ec = eventCount;
1516            if (ec != prev)
1517                w.lastEventCount = ec;
1518            else if (helpSignal)
1519                casEventCount(ec, ec + 1);
1520            ensureSync();
1521        }
1522    }
1523
1524
1525    /**
1526     * Returns {@code true} if a new sync event occurred since last
1527     * call to sync or this method, if so, updating caller's count.
1528     */
1529    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1530        long lc = w.lastEventCount;
1531        long ec = eventCount;
1532        if (lc != ec)
1533            w.lastEventCount = ec;
1534        ensureSync();
1535        return lc != ec || lc != eventCount;
1536    }
1537
1538    //  Parallelism maintenance
1539
1540    /**
1541     * Decrements running count; if too low, adds spare.
1542     *
1543     * Conceptually, all we need to do here is add or resume a
1544     * spare thread when one is about to block (and remove or
1545     * suspend it later when unblocked -- see suspendIfSpare).
1546     * However, implementing this idea requires coping with
1547     * several problems: we have imperfect information about the
1548     * states of threads. Some count updates can and usually do
1549     * lag run state changes, despite arrangements to keep them
1550     * accurate (for example, when possible, updating counts
1551     * before signalling or resuming), especially when running on
1552     * dynamic JVMs that don't optimize the infrequent paths that
1553     * update counts. Generating too many threads can make these
1554     * problems become worse, because excess threads are more
1555     * likely to be context-switched with others, slowing them all
1556     * down, especially if there is no work available, so all are
1557     * busy scanning or idling.  Also, excess spare threads can
1558     * only be suspended or removed when they are idle, not
1559     * immediately when they aren't needed. So adding threads will
1560     * raise parallelism level for longer than necessary.  Also,
1561     * FJ applications often encounter highly transient peaks when
1562     * many threads are blocked joining, but for less time than it
1563     * takes to create or resume spares.
1564     *
1565     * @param joinMe if non-null, return early if done
1566     * @param maintainParallelism if true, try to stay within
1567     * target counts, else create only to avoid starvation
1568     * @return true if joinMe known to be done
1569     */
1570    final boolean preJoin(ForkJoinTask<?> joinMe,
1571                          boolean maintainParallelism) {
1572        maintainParallelism &= maintainsParallelism; // overrride
1573        boolean dec = false;  // true when running count decremented
1574        while (spareStack == null || !tryResumeSpare(dec)) {
1575            int counts = workerCounts;
1576            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1577                if (!needSpare(counts, maintainParallelism))
1578                    break;
1579                if (joinMe.status < 0)
1580                    return true;
1581                if (tryAddSpare(counts))
1582                    break;
1583            }
1584        }
1585        return false;
1586    }
1587
1588    /**
1589     * Same idea as preJoin
1590     */
1591    final boolean preBlock(ManagedBlocker blocker,
1592                           boolean maintainParallelism) {
1593        maintainParallelism &= maintainsParallelism;
1594        boolean dec = false;
1595        while (spareStack == null || !tryResumeSpare(dec)) {
1596            int counts = workerCounts;
1597            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1598                if (!needSpare(counts, maintainParallelism))
1599                    break;
1600                if (blocker.isReleasable())
1601                    return true;
1602                if (tryAddSpare(counts))
1603                    break;
1604            }
1605        }
1606        return false;
1607    }
1608
1609    /**
1610     * Returns {@code true} if a spare thread appears to be needed.
1611     * If maintaining parallelism, returns true when the deficit in
1612     * running threads is more than the surplus of total threads, and
1613     * there is apparently some work to do.  This self-limiting rule
1614     * means that the more threads that have already been added, the
1615     * less parallelism we will tolerate before adding another.
1616     *
1617     * @param counts current worker counts
1618     * @param maintainParallelism try to maintain parallelism
1619     */
1620    private boolean needSpare(int counts, boolean maintainParallelism) {
1621        int ps = parallelism;
1622        int rc = runningCountOf(counts);
1623        int tc = totalCountOf(counts);
1624        int runningDeficit = ps - rc;
1625        int totalSurplus = tc - ps;
1626        return (tc < maxPoolSize &&
1627                (rc == 0 || totalSurplus < 0 ||
1628                 (maintainParallelism &&
1629                  runningDeficit > totalSurplus &&
1630                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1631    }
1632
1633    /**
1634     * Adds a spare worker if lock available and no more than the
1635     * expected numbers of threads exist.
1636     *
1637     * @return true if successful
1638     */
1639    private boolean tryAddSpare(int expectedCounts) {
1640        final ReentrantLock lock = this.workerLock;
1641        int expectedRunning = runningCountOf(expectedCounts);
1642        int expectedTotal = totalCountOf(expectedCounts);
1643        boolean success = false;
1644        boolean locked = false;
1645        // confirm counts while locking; CAS after obtaining lock
1646        try {
1647            for (;;) {
1648                int s = workerCounts;
1649                int tc = totalCountOf(s);
1650                int rc = runningCountOf(s);
1651                if (rc > expectedRunning || tc > expectedTotal)
1652                    break;
1653                if (!locked && !(locked = lock.tryLock()))
1654                    break;
1655                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1656                    createAndStartSpare(tc);
1657                    success = true;
1658                    break;
1659                }
1660            }
1661        } finally {
1662            if (locked)
1663                lock.unlock();
1664        }
1665        return success;
1666    }
1667
1668    /**
1669     * Adds the kth spare worker. On entry, pool counts are already
1670     * adjusted to reflect addition.
1671     */
1672    private void createAndStartSpare(int k) {
1673        ForkJoinWorkerThread w = null;
1674        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1675        int len = ws.length;
1676        // Probably, we can place at slot k. If not, find empty slot
1677        if (k < len && ws[k] != null) {
1678            for (k = 0; k < len && ws[k] != null; ++k)
1679                ;
1680        }
1681        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1682            ws[k] = w;
1683            w.start();
1684        }
1685        else
1686            updateWorkerCount(-1); // adjust on failure
1687        signalIdleWorkers();
1688    }
1689
1690    /**
1691     * Suspends calling thread w if there are excess threads.  Called
1692     * only from sync.  Spares are enqueued in a Treiber stack using
1693     * the same WaitQueueNodes as barriers.  They are resumed mainly
1694     * in preJoin, but are also woken on pool events that require all
1695     * threads to check run state.
1696     *
1697     * @param w the caller
1698     */
1699    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1700        WaitQueueNode node = null;
1701        for (;;) {
1702            int p = parallelism;
1703            int s = workerCounts;
1704            int r = runningCountOf(s);
1705            int t = totalCountOf(s);
1706            // use t as bound if r transiently out of sync
1707            if (t <= p || r <= p)
1708                return false; // not a spare
1709            if (node == null)
1710                node = new WaitQueueNode(0, w);
1711            if (casWorkerCounts(s, workerCountsFor(t, r - 1)))
1712                break;
1713        }
1714        // push onto stack
1715        do {} while (!casSpareStack(node.next = spareStack, node));
1716        // block until released by resumeSpare
1717        while (!Thread.interrupted() && node.thread != null)
1718            LockSupport.park(this);
1719        return true;
1720    }
1721
1722    /**
1723     * Tries to pop and resume a spare thread.
1724     *
1725     * @param updateCount if true, increment running count on success
1726     * @return true if successful
1727     */
1728    private boolean tryResumeSpare(boolean updateCount) {
1729        WaitQueueNode q;
1730        while ((q = spareStack) != null) {
1731            if (casSpareStack(q, q.next)) {
1732                if (updateCount)
1733                    updateRunningCount(1);
1734                q.signal();
1735                return true;
1736            }
1737        }
1738        return false;
1739    }
1740
1741    /**
1742     * Pops and resumes all spare threads. Same idea as ensureSync.
1743     *
1744     * @return true if any spares released
1745     */
1746    private boolean resumeAllSpares() {
1747        WaitQueueNode q;
1748        while ( (q = spareStack) != null) {
1749            if (casSpareStack(q, null)) {
1750                do {
1751                    updateRunningCount(1);
1752                    q.signal();
1753                } while ((q = q.next) != null);
1754                return true;
1755            }
1756        }
1757        return false;
1758    }
1759
1760    /**
1761     * Pops and shuts down excessive spare threads. Call only while
1762     * holding lock. This is not guaranteed to eliminate all excess
1763     * threads, only those suspended as spares, which are the ones
1764     * unlikely to be needed in the future.
1765     */
1766    private void trimSpares() {
1767        int surplus = totalCountOf(workerCounts) - parallelism;
1768        WaitQueueNode q;
1769        while (surplus > 0 && (q = spareStack) != null) {
1770            if (casSpareStack(q, null)) {
1771                do {
1772                    updateRunningCount(1);
1773                    ForkJoinWorkerThread w = q.thread;
1774                    if (w != null && surplus > 0 &&
1775                        runningCountOf(workerCounts) > 0 && w.shutdown())
1776                        --surplus;
1777                    q.signal();
1778                } while ((q = q.next) != null);
1779            }
1780        }
1781    }
1782
1967      /**
1968       * Interface for extending managed parallelism for tasks running
1969       * in {@link ForkJoinPool}s.
1970       *
1971 <     * <p>A {@code ManagedBlocker} provides two methods.
1972 <     * Method {@code isReleasable} must return {@code true} if
1973 <     * blocking is not necessary. Method {@code block} blocks the
1974 <     * current thread if necessary (perhaps internally invoking
1975 <     * {@code isReleasable} before actually blocking).
1971 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1972 >     * {@code isReleasable} must return {@code true} if blocking is
1973 >     * not necessary. Method {@code block} blocks the current thread
1974 >     * if necessary (perhaps internally invoking {@code isReleasable}
1975 >     * before actually blocking). These actions are performed by any
1976 >     * thread invoking {@link ForkJoinPool#managedBlock}.  The
1977 >     * unusual methods in this API accommodate synchronizers that may,
1978 >     * but don't usually, block for long periods. Similarly, they
1979 >     * allow more efficient internal handling of cases in which
1980 >     * additional workers may be, but usually are not, needed to
1981 >     * ensure sufficient parallelism.  Toward this end,
1982 >     * implementations of method {@code isReleasable} must be amenable
1983 >     * to repeated invocation.
1984       *
1985       * <p>For example, here is a ManagedBlocker based on a
1986       * ReentrantLock:
# Line 1806 | Line 1998 | public class ForkJoinPool extends Abstra
1998       *     return hasLock || (hasLock = lock.tryLock());
1999       *   }
2000       * }}</pre>
2001 +     *
2002 +     * <p>Here is a class that possibly blocks waiting for an
2003 +     * item on a given queue:
2004 +     *  <pre> {@code
2005 +     * class QueueTaker<E> implements ManagedBlocker {
2006 +     *   final BlockingQueue<E> queue;
2007 +     *   volatile E item = null;
2008 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
2009 +     *   public boolean block() throws InterruptedException {
2010 +     *     if (item == null)
2011 +     *       item = queue.take();
2012 +     *     return true;
2013 +     *   }
2014 +     *   public boolean isReleasable() {
2015 +     *     return item != null || (item = queue.poll()) != null;
2016 +     *   }
2017 +     *   public E getItem() { // call after pool.managedBlock completes
2018 +     *     return item;
2019 +     *   }
2020 +     * }}</pre>
2021       */
2022      public static interface ManagedBlocker {
2023          /**
# Line 1829 | Line 2041 | public class ForkJoinPool extends Abstra
2041       * Blocks in accord with the given blocker.  If the current thread
2042       * is a {@link ForkJoinWorkerThread}, this method possibly
2043       * arranges for a spare thread to be activated if necessary to
2044 <     * ensure parallelism while the current thread is blocked.
1833 <     *
1834 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1835 <     * supports it ({@link #getMaintainsParallelism}), this method
1836 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1837 <     * it activates a thread only if necessary to avoid complete
1838 <     * starvation. This option may be preferable when blockages use
1839 <     * timeouts, or are almost always brief.
2044 >     * ensure sufficient parallelism while the current thread is blocked.
2045       *
2046       * <p>If the caller is not a {@link ForkJoinTask}, this method is
2047       * behaviorally equivalent to
# Line 1850 | Line 2055 | public class ForkJoinPool extends Abstra
2055       * first be expanded to ensure parallelism, and later adjusted.
2056       *
2057       * @param blocker the blocker
1853     * @param maintainParallelism if {@code true} and supported by
1854     * this pool, attempt to maintain the pool's nominal parallelism;
1855     * otherwise activate a thread only if necessary to avoid
1856     * complete starvation.
2058       * @throws InterruptedException if blocker.block did so
2059       */
2060 <    public static void managedBlock(ManagedBlocker blocker,
1860 <                                    boolean maintainParallelism)
2060 >    public static void managedBlock(ManagedBlocker blocker)
2061          throws InterruptedException {
2062          Thread t = Thread.currentThread();
2063 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
2064 <                             ((ForkJoinWorkerThread) t).pool : null);
2065 <        if (!blocker.isReleasable()) {
2066 <            try {
2067 <                if (pool == null ||
2068 <                    !pool.preBlock(blocker, maintainParallelism))
1869 <                    awaitBlocker(blocker);
1870 <            } finally {
1871 <                if (pool != null)
1872 <                    pool.updateRunningCount(1);
1873 <            }
2063 >        if (t instanceof ForkJoinWorkerThread) {
2064 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
2065 >            w.pool.awaitBlocker(blocker);
2066 >        }
2067 >        else {
2068 >            do {} while (!blocker.isReleasable() && !blocker.block());
2069          }
1875    }
1876
1877    private static void awaitBlocker(ManagedBlocker blocker)
1878        throws InterruptedException {
1879        do {} while (!blocker.isReleasable() && !blocker.block());
2070      }
2071  
2072      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1892 | Line 2082 | public class ForkJoinPool extends Abstra
2082      }
2083  
2084      // Unsafe mechanics
2085 <
2086 <    private static final sun.misc.Unsafe UNSAFE = getUnsafe();
2087 <    private static final long eventCountOffset =
2088 <        objectFieldOffset("eventCount", ForkJoinPool.class);
2089 <    private static final long workerCountsOffset =
2090 <        objectFieldOffset("workerCounts", ForkJoinPool.class);
2091 <    private static final long runControlOffset =
2092 <        objectFieldOffset("runControl", ForkJoinPool.class);
2093 <    private static final long syncStackOffset =
2094 <        objectFieldOffset("syncStack",ForkJoinPool.class);
2095 <    private static final long spareStackOffset =
2096 <        objectFieldOffset("spareStack", ForkJoinPool.class);
2097 <
2098 <    private boolean casEventCount(long cmp, long val) {
2099 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
2100 <    }
2101 <    private boolean casWorkerCounts(int cmp, int val) {
1912 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1913 <    }
1914 <    private boolean casRunControl(int cmp, int val) {
1915 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1916 <    }
1917 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1918 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1919 <    }
1920 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1921 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1922 <    }
1923 <
1924 <    private static long objectFieldOffset(String field, Class<?> klazz) {
2085 >    private static final sun.misc.Unsafe UNSAFE;
2086 >    private static final long ctlOffset;
2087 >    private static final long stealCountOffset;
2088 >    private static final long blockedCountOffset;
2089 >    private static final long quiescerCountOffset;
2090 >    private static final long scanGuardOffset;
2091 >    private static final long nextWorkerNumberOffset;
2092 >    private static final long ABASE;
2093 >    private static final int ASHIFT;
2094 >
2095 >    static {
2096 >        poolNumberGenerator = new AtomicInteger();
2097 >        workerSeedGenerator = new Random();
2098 >        modifyThreadPermission = new RuntimePermission("modifyThread");
2099 >        defaultForkJoinWorkerThreadFactory =
2100 >            new DefaultForkJoinWorkerThreadFactory();
2101 >        int s;
2102          try {
2103 <            return UNSAFE.objectFieldOffset(klazz.getDeclaredField(field));
2104 <        } catch (NoSuchFieldException e) {
2105 <            // Convert Exception to corresponding Error
2106 <            NoSuchFieldError error = new NoSuchFieldError(field);
2107 <            error.initCause(e);
2108 <            throw error;
2109 <        }
2103 >            UNSAFE = getUnsafe();
2104 >            Class k = ForkJoinPool.class;
2105 >            ctlOffset = UNSAFE.objectFieldOffset
2106 >                (k.getDeclaredField("ctl"));
2107 >            stealCountOffset = UNSAFE.objectFieldOffset
2108 >                (k.getDeclaredField("stealCount"));
2109 >            blockedCountOffset = UNSAFE.objectFieldOffset
2110 >                (k.getDeclaredField("blockedCount"));
2111 >            quiescerCountOffset = UNSAFE.objectFieldOffset
2112 >                (k.getDeclaredField("quiescerCount"));
2113 >            scanGuardOffset = UNSAFE.objectFieldOffset
2114 >                (k.getDeclaredField("scanGuard"));
2115 >            nextWorkerNumberOffset = UNSAFE.objectFieldOffset
2116 >                (k.getDeclaredField("nextWorkerNumber"));
2117 >            Class a = ForkJoinTask[].class;
2118 >            ABASE = UNSAFE.arrayBaseOffset(a);
2119 >            s = UNSAFE.arrayIndexScale(a);
2120 >        } catch (Exception e) {
2121 >            throw new Error(e);
2122 >        }
2123 >        if ((s & (s-1)) != 0)
2124 >            throw new Error("data type scale not a power of two");
2125 >        ASHIFT = 31 - Integer.numberOfLeadingZeros(s);
2126      }
2127  
2128      /**

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines