ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.51 by dl, Fri Dec 4 15:46:38 2009 UTC vs.
Revision 1.78 by dl, Tue Sep 7 14:52:24 2010 UTC

# Line 6 | Line 6
6  
7   package jsr166y;
8  
9 import java.util.concurrent.*;
10
9   import java.util.ArrayList;
10   import java.util.Arrays;
11   import java.util.Collection;
12   import java.util.Collections;
13   import java.util.List;
14 < import java.util.concurrent.locks.Condition;
14 > import java.util.concurrent.AbstractExecutorService;
15 > import java.util.concurrent.Callable;
16 > import java.util.concurrent.CountDownLatch;
17 > import java.util.concurrent.ExecutorService;
18 > import java.util.concurrent.Future;
19 > import java.util.concurrent.RejectedExecutionException;
20 > import java.util.concurrent.RunnableFuture;
21 > import java.util.concurrent.TimeUnit;
22 > import java.util.concurrent.TimeoutException;
23 > import java.util.concurrent.atomic.AtomicInteger;
24   import java.util.concurrent.locks.LockSupport;
25   import java.util.concurrent.locks.ReentrantLock;
19 import java.util.concurrent.atomic.AtomicInteger;
20 import java.util.concurrent.atomic.AtomicLong;
26  
27   /**
28   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
29   * A {@code ForkJoinPool} provides the entry point for submissions
30 < * from non-{@code ForkJoinTask}s, as well as management and
30 > * from non-{@code ForkJoinTask} clients, as well as management and
31   * monitoring operations.
32   *
33   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 31 | Line 36 | import java.util.concurrent.atomic.Atomi
36   * execute subtasks created by other active tasks (eventually blocking
37   * waiting for work if none exist). This enables efficient processing
38   * when most tasks spawn other subtasks (as do most {@code
39 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
40 < * execution of some plain {@code Runnable}- or {@code Callable}-
41 < * based activities along with {@code ForkJoinTask}s. When setting
37 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
38 < * also be appropriate for use with fine-grained tasks of any form
39 < * that are never joined. Otherwise, other {@code ExecutorService}
40 < * implementations are typically more appropriate choices.
39 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
40 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
41 > * with event-style tasks that are never joined.
42   *
43   * <p>A {@code ForkJoinPool} is constructed with a given target
44   * parallelism level; by default, equal to the number of available
45 < * processors. Unless configured otherwise via {@link
46 < * #setMaintainsParallelism}, the pool attempts to maintain this
47 < * number of active (or available) threads by dynamically adding,
48 < * suspending, or resuming internal worker threads, even if some tasks
49 < * are stalled waiting to join others. However, no such adjustments
50 < * are performed in the face of blocked IO or other unmanaged
51 < * synchronization. The nested {@link ManagedBlocker} interface
51 < * enables extension of the kinds of synchronization accommodated.
52 < * The target parallelism level may also be changed dynamically
53 < * ({@link #setParallelism}). The total number of threads may be
54 < * limited using method {@link #setMaximumPoolSize}, in which case it
55 < * may become possible for the activities of a pool to stall due to
56 < * the lack of available threads to process new tasks.
45 > * processors. The pool attempts to maintain enough active (or
46 > * available) threads by dynamically adding, suspending, or resuming
47 > * internal worker threads, even if some tasks are stalled waiting to
48 > * join others. However, no such adjustments are guaranteed in the
49 > * face of blocked IO or other unmanaged synchronization. The nested
50 > * {@link ManagedBlocker} interface enables extension of the kinds of
51 > * synchronization accommodated.
52   *
53   * <p>In addition to execution and lifecycle control methods, this
54   * class provides status check methods (for example
# Line 62 | Line 57 | import java.util.concurrent.atomic.Atomi
57   * {@link #toString} returns indications of pool state in a
58   * convenient form for informal monitoring.
59   *
60 + * <p> As is the case with other ExecutorServices, there are three
61 + * main task execution methods summarized in the following
62 + * table. These are designed to be used by clients not already engaged
63 + * in fork/join computations in the current pool.  The main forms of
64 + * these methods accept instances of {@code ForkJoinTask}, but
65 + * overloaded forms also allow mixed execution of plain {@code
66 + * Runnable}- or {@code Callable}- based activities as well.  However,
67 + * tasks that are already executing in a pool should normally
68 + * <em>NOT</em> use these pool execution methods, but instead use the
69 + * within-computation forms listed in the table.
70 + *
71 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
72 + *  <tr>
73 + *    <td></td>
74 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
75 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
76 + *  </tr>
77 + *  <tr>
78 + *    <td> <b>Arrange async execution</td>
79 + *    <td> {@link #execute(ForkJoinTask)}</td>
80 + *    <td> {@link ForkJoinTask#fork}</td>
81 + *  </tr>
82 + *  <tr>
83 + *    <td> <b>Await and obtain result</td>
84 + *    <td> {@link #invoke(ForkJoinTask)}</td>
85 + *    <td> {@link ForkJoinTask#invoke}</td>
86 + *  </tr>
87 + *  <tr>
88 + *    <td> <b>Arrange exec and obtain Future</td>
89 + *    <td> {@link #submit(ForkJoinTask)}</td>
90 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
91 + *  </tr>
92 + * </table>
93 + *
94   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
95   * used for all parallel task execution in a program or subsystem.
96   * Otherwise, use would not usually outweigh the construction and
# Line 86 | Line 115 | import java.util.concurrent.atomic.Atomi
115   * {@code IllegalArgumentException}.
116   *
117   * <p>This implementation rejects submitted tasks (that is, by throwing
118 < * {@link RejectedExecutionException}) only when the pool is shut down.
118 > * {@link RejectedExecutionException}) only when the pool is shut down
119 > * or internal resources have been exhausted.
120   *
121   * @since 1.7
122   * @author Doug Lea
# Line 94 | Line 124 | import java.util.concurrent.atomic.Atomi
124   public class ForkJoinPool extends AbstractExecutorService {
125  
126      /*
127 <     * See the extended comments interspersed below for design,
128 <     * rationale, and walkthroughs.
127 >     * Implementation Overview
128 >     *
129 >     * This class provides the central bookkeeping and control for a
130 >     * set of worker threads: Submissions from non-FJ threads enter
131 >     * into a submission queue. Workers take these tasks and typically
132 >     * split them into subtasks that may be stolen by other workers.
133 >     * The main work-stealing mechanics implemented in class
134 >     * ForkJoinWorkerThread give first priority to processing tasks
135 >     * from their own queues (LIFO or FIFO, depending on mode), then
136 >     * to randomized FIFO steals of tasks in other worker queues, and
137 >     * lastly to new submissions. These mechanics do not consider
138 >     * affinities, loads, cache localities, etc, so rarely provide the
139 >     * best possible performance on a given machine, but portably
140 >     * provide good throughput by averaging over these factors.
141 >     * (Further, even if we did try to use such information, we do not
142 >     * usually have a basis for exploiting it. For example, some sets
143 >     * of tasks profit from cache affinities, but others are harmed by
144 >     * cache pollution effects.)
145 >     *
146 >     * Beyond work-stealing support and essential bookkeeping, the
147 >     * main responsibility of this framework is to take actions when
148 >     * one worker is waiting to join a task stolen (or always held by)
149 >     * another.  Because we are multiplexing many tasks on to a pool
150 >     * of workers, we can't just let them block (as in Thread.join).
151 >     * We also cannot just reassign the joiner's run-time stack with
152 >     * another and replace it later, which would be a form of
153 >     * "continuation", that even if possible is not necessarily a good
154 >     * idea. Given that the creation costs of most threads on most
155 >     * systems mainly surrounds setting up runtime stacks, thread
156 >     * creation and switching is usually not much more expensive than
157 >     * stack creation and switching, and is more flexible). Instead we
158 >     * combine two tactics:
159 >     *
160 >     *   Helping: Arranging for the joiner to execute some task that it
161 >     *      would be running if the steal had not occurred.  Method
162 >     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
163 >     *      links to try to find such a task.
164 >     *
165 >     *   Compensating: Unless there are already enough live threads,
166 >     *      method helpMaintainParallelism() may create or
167 >     *      re-activate a spare thread to compensate for blocked
168 >     *      joiners until they unblock.
169 >     *
170 >     * It is impossible to keep exactly the target (parallelism)
171 >     * number of threads running at any given time.  Determining
172 >     * existence of conservatively safe helping targets, the
173 >     * availability of already-created spares, and the apparent need
174 >     * to create new spares are all racy and require heuristic
175 >     * guidance, so we rely on multiple retries of each.  Compensation
176 >     * occurs in slow-motion. It is triggered only upon timeouts of
177 >     * Object.wait used for joins. This reduces poor decisions that
178 >     * would otherwise be made when threads are waiting for others
179 >     * that are stalled because of unrelated activities such as
180 >     * garbage collection.
181 >     *
182 >     * The ManagedBlocker extension API can't use helping so relies
183 >     * only on compensation in method awaitBlocker.
184 >     *
185 >     * The main throughput advantages of work-stealing stem from
186 >     * decentralized control -- workers mostly steal tasks from each
187 >     * other. We do not want to negate this by creating bottlenecks
188 >     * implementing other management responsibilities. So we use a
189 >     * collection of techniques that avoid, reduce, or cope well with
190 >     * contention. These entail several instances of bit-packing into
191 >     * CASable fields to maintain only the minimally required
192 >     * atomicity. To enable such packing, we restrict maximum
193 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
194 >     * unbalanced increments and decrements) to fit into a 16 bit
195 >     * field, which is far in excess of normal operating range.  Even
196 >     * though updates to some of these bookkeeping fields do sometimes
197 >     * contend with each other, they don't normally cache-contend with
198 >     * updates to others enough to warrant memory padding or
199 >     * isolation. So they are all held as fields of ForkJoinPool
200 >     * objects.  The main capabilities are as follows:
201 >     *
202 >     * 1. Creating and removing workers. Workers are recorded in the
203 >     * "workers" array. This is an array as opposed to some other data
204 >     * structure to support index-based random steals by workers.
205 >     * Updates to the array recording new workers and unrecording
206 >     * terminated ones are protected from each other by a lock
207 >     * (workerLock) but the array is otherwise concurrently readable,
208 >     * and accessed directly by workers. To simplify index-based
209 >     * operations, the array size is always a power of two, and all
210 >     * readers must tolerate null slots. Currently, all worker thread
211 >     * creation is on-demand, triggered by task submissions,
212 >     * replacement of terminated workers, and/or compensation for
213 >     * blocked workers. However, all other support code is set up to
214 >     * work with other policies.
215 >     *
216 >     * To ensure that we do not hold on to worker references that
217 >     * would prevent GC, ALL accesses to workers are via indices into
218 >     * the workers array (which is one source of some of the unusual
219 >     * code constructions here). In essence, the workers array serves
220 >     * as a WeakReference mechanism. Thus for example the event queue
221 >     * stores worker indices, not worker references. Access to the
222 >     * workers in associated methods (for example releaseEventWaiters)
223 >     * must both index-check and null-check the IDs. All such accesses
224 >     * ignore bad IDs by returning out early from what they are doing,
225 >     * since this can only be associated with shutdown, in which case
226 >     * it is OK to give up. On termination, we just clobber these
227 >     * data structures without trying to use them.
228 >     *
229 >     * 2. Bookkeeping for dynamically adding and removing workers. We
230 >     * aim to approximately maintain the given level of parallelism.
231 >     * When some workers are known to be blocked (on joins or via
232 >     * ManagedBlocker), we may create or resume others to take their
233 >     * place until they unblock (see below). Implementing this
234 >     * requires counts of the number of "running" threads (i.e., those
235 >     * that are neither blocked nor artificially suspended) as well as
236 >     * the total number.  These two values are packed into one field,
237 >     * "workerCounts" because we need accurate snapshots when deciding
238 >     * to create, resume or suspend.  Note however that the
239 >     * correspondence of these counts to reality is not guaranteed. In
240 >     * particular updates for unblocked threads may lag until they
241 >     * actually wake up.
242 >     *
243 >     * 3. Maintaining global run state. The run state of the pool
244 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
245 >     * those in other Executor implementations, as well as a count of
246 >     * "active" workers -- those that are, or soon will be, or
247 >     * recently were executing tasks. The runLevel and active count
248 >     * are packed together in order to correctly trigger shutdown and
249 >     * termination. Without care, active counts can be subject to very
250 >     * high contention.  We substantially reduce this contention by
251 >     * relaxing update rules.  A worker must claim active status
252 >     * prospectively, by activating if it sees that a submitted or
253 >     * stealable task exists (it may find after activating that the
254 >     * task no longer exists). It stays active while processing this
255 >     * task (if it exists) and any other local subtasks it produces,
256 >     * until it cannot find any other tasks. It then tries
257 >     * inactivating (see method preStep), but upon update contention
258 >     * instead scans for more tasks, later retrying inactivation if it
259 >     * doesn't find any.
260 >     *
261 >     * 4. Managing idle workers waiting for tasks. We cannot let
262 >     * workers spin indefinitely scanning for tasks when none are
263 >     * available. On the other hand, we must quickly prod them into
264 >     * action when new tasks are submitted or generated.  We
265 >     * park/unpark these idle workers using an event-count scheme.
266 >     * Field eventCount is incremented upon events that may enable
267 >     * workers that previously could not find a task to now find one:
268 >     * Submission of a new task to the pool, or another worker pushing
269 >     * a task onto a previously empty queue.  (We also use this
270 >     * mechanism for configuration and termination actions that
271 >     * require wakeups of idle workers).  Each worker maintains its
272 >     * last known event count, and blocks when a scan for work did not
273 >     * find a task AND its lastEventCount matches the current
274 >     * eventCount. Waiting idle workers are recorded in a variant of
275 >     * Treiber stack headed by field eventWaiters which, when nonzero,
276 >     * encodes the thread index and count awaited for by the worker
277 >     * thread most recently calling eventSync. This thread in turn has
278 >     * a record (field nextEventWaiter) for the next waiting worker.
279 >     * In addition to allowing simpler decisions about need for
280 >     * wakeup, the event count bits in eventWaiters serve the role of
281 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
282 >     * released threads also try to release at most two others.  The
283 >     * net effect is a tree-like diffusion of signals, where released
284 >     * threads (and possibly others) help with unparks.  To further
285 >     * reduce contention effects a bit, failed CASes to increment
286 >     * field eventCount are tolerated without retries in signalWork.
287 >     * Conceptually they are merged into the same event, which is OK
288 >     * when their only purpose is to enable workers to scan for work.
289 >     *
290 >     * 5. Managing suspension of extra workers. When a worker notices
291 >     * (usually upon timeout of a wait()) that there are too few
292 >     * running threads, we may create a new thread to maintain
293 >     * parallelism level, or at least avoid starvation. Usually, extra
294 >     * threads are needed for only very short periods, yet join
295 >     * dependencies are such that we sometimes need them in
296 >     * bursts. Rather than create new threads each time this happens,
297 >     * we suspend no-longer-needed extra ones as "spares". For most
298 >     * purposes, we don't distinguish "extra" spare threads from
299 >     * normal "core" threads: On each call to preStep (the only point
300 >     * at which we can do this) a worker checks to see if there are
301 >     * now too many running workers, and if so, suspends itself.
302 >     * Method helpMaintainParallelism looks for suspended threads to
303 >     * resume before considering creating a new replacement. The
304 >     * spares themselves are encoded on another variant of a Treiber
305 >     * Stack, headed at field "spareWaiters".  Note that the use of
306 >     * spares is intrinsically racy.  One thread may become a spare at
307 >     * about the same time as another is needlessly being created. We
308 >     * counteract this and related slop in part by requiring resumed
309 >     * spares to immediately recheck (in preStep) to see whether they
310 >     * should re-suspend.
311 >     *
312 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
313 >     * shed unused workers: The oldest (first) event queue waiter uses
314 >     * a timed rather than hard wait. When this wait times out without
315 >     * a normal wakeup, it tries to shutdown any one (for convenience
316 >     * the newest) other spare or event waiter via
317 >     * tryShutdownUnusedWorker. This eventually reduces the number of
318 >     * worker threads to a minimum of one after a long enough period
319 >     * without use.
320 >     *
321 >     * 7. Deciding when to create new workers. The main dynamic
322 >     * control in this class is deciding when to create extra threads
323 >     * in method helpMaintainParallelism. We would like to keep
324 >     * exactly #parallelism threads running, which is an impossible
325 >     * task. We always need to create one when the number of running
326 >     * threads would become zero and all workers are busy. Beyond
327 >     * this, we must rely on heuristics that work well in the
328 >     * presence of transient phenomena such as GC stalls, dynamic
329 >     * compilation, and wake-up lags. These transients are extremely
330 >     * common -- we are normally trying to fully saturate the CPUs on
331 >     * a machine, so almost any activity other than running tasks
332 >     * impedes accuracy. Our main defense is to allow parallelism to
333 >     * lapse for a while during joins, and use a timeout to see if,
334 >     * after the resulting settling, there is still a need for
335 >     * additional workers.  This also better copes with the fact that
336 >     * some of the methods in this class tend to never become compiled
337 >     * (but are interpreted), so some components of the entire set of
338 >     * controls might execute 100 times faster than others. And
339 >     * similarly for cases where the apparent lack of work is just due
340 >     * to GC stalls and other transient system activity.
341 >     *
342 >     * Beware that there is a lot of representation-level coupling
343 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
344 >     * ForkJoinTask.  For example, direct access to "workers" array by
345 >     * workers, and direct access to ForkJoinTask.status by both
346 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
347 >     * trying to reduce this, since any associated future changes in
348 >     * representations will need to be accompanied by algorithmic
349 >     * changes anyway.
350 >     *
351 >     * Style notes: There are lots of inline assignments (of form
352 >     * "while ((local = field) != 0)") which are usually the simplest
353 >     * way to ensure the required read orderings (which are sometimes
354 >     * critical). Also several occurrences of the unusual "do {}
355 >     * while (!cas...)" which is the simplest way to force an update of
356 >     * a CAS'ed variable. There are also other coding oddities that
357 >     * help some methods perform reasonably even when interpreted (not
358 >     * compiled), at the expense of some messy constructions that
359 >     * reduce byte code counts.
360 >     *
361 >     * The order of declarations in this file is: (1) statics (2)
362 >     * fields (along with constants used when unpacking some of them)
363 >     * (3) internal control methods (4) callbacks and other support
364 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
365 >     * methods (plus a few little helpers).
366       */
367  
101    /** Mask for packing and unpacking shorts */
102    private static final int  shortMask = 0xffff;
103
104    /** Max pool size -- must be a power of two minus 1 */
105    private static final int MAX_THREADS =  0x7FFF;
106
368      /**
369       * Factory for creating new {@link ForkJoinWorkerThread}s.
370       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 124 | Line 385 | public class ForkJoinPool extends Abstra
385       * Default ForkJoinWorkerThreadFactory implementation; creates a
386       * new ForkJoinWorkerThread.
387       */
388 <    static class  DefaultForkJoinWorkerThreadFactory
388 >    static class DefaultForkJoinWorkerThreadFactory
389          implements ForkJoinWorkerThreadFactory {
390          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
391 <            try {
131 <                return new ForkJoinWorkerThread(pool);
132 <            } catch (OutOfMemoryError oom)  {
133 <                return null;
134 <            }
391 >            return new ForkJoinWorkerThread(pool);
392          }
393      }
394  
# Line 167 | Line 424 | public class ForkJoinPool extends Abstra
424          new AtomicInteger();
425  
426      /**
427 <     * Array holding all worker threads in the pool. Initialized upon
428 <     * first use. Array size must be a power of two.  Updates and
429 <     * replacements are protected by workerLock, but it is always kept
430 <     * in a consistent enough state to be randomly accessed without
431 <     * locking by workers performing work-stealing.
427 >     * The time to block in a join (see awaitJoin) before checking if
428 >     * a new worker should be (re)started to maintain parallelism
429 >     * level. The value should be short enough to maintain global
430 >     * responsiveness and progress but long enough to avoid
431 >     * counterproductive firings during GC stalls or unrelated system
432 >     * activity, and to not bog down systems with continual re-firings
433 >     * on GCs or legitimately long waits.
434 >     */
435 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
436 >
437 >    /**
438 >     * The wakeup interval (in nanoseconds) for the oldest worker
439 >     * waiting for an event to invoke tryShutdownUnusedWorker to
440 >     * shrink the number of workers.  The exact value does not matter
441 >     * too much. It must be short enough to release resources during
442 >     * sustained periods of idleness, but not so short that threads
443 >     * are continually re-created.
444 >     */
445 >    private static final long SHRINK_RATE_NANOS =
446 >        30L * 1000L * 1000L * 1000L; // 2 per minute
447 >
448 >    /**
449 >     * Absolute bound for parallelism level. Twice this number plus
450 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
451 >     * word-packing for some counts and indices.
452 >     */
453 >    private static final int MAX_WORKERS   = 0x7fff;
454 >
455 >    /**
456 >     * Array holding all worker threads in the pool.  Array size must
457 >     * be a power of two.  Updates and replacements are protected by
458 >     * workerLock, but the array is always kept in a consistent enough
459 >     * state to be randomly accessed without locking by workers
460 >     * performing work-stealing, as well as other traversal-based
461 >     * methods in this class. All readers must tolerate that some
462 >     * array slots may be null.
463       */
464      volatile ForkJoinWorkerThread[] workers;
465  
466      /**
467 <     * Lock protecting access to workers.
467 >     * Queue for external submissions.
468       */
469 <    private final ReentrantLock workerLock;
469 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
470  
471      /**
472 <     * Condition for awaitTermination.
472 >     * Lock protecting updates to workers array.
473       */
474 <    private final Condition termination;
474 >    private final ReentrantLock workerLock;
475  
476      /**
477 <     * The uncaught exception handler used when any worker
190 <     * abruptly terminates
477 >     * Latch released upon termination.
478       */
479 <    private Thread.UncaughtExceptionHandler ueh;
479 >    private final Phaser termination;
480  
481      /**
482       * Creation factory for worker threads.
# Line 197 | Line 484 | public class ForkJoinPool extends Abstra
484      private final ForkJoinWorkerThreadFactory factory;
485  
486      /**
487 <     * Head of stack of threads that were created to maintain
488 <     * parallelism when other threads blocked, but have since
202 <     * suspended when the parallelism level rose.
487 >     * Sum of per-thread steal counts, updated only when threads are
488 >     * idle or terminating.
489       */
490 <    private volatile WaitQueueNode spareStack;
490 >    private volatile long stealCount;
491  
492      /**
493 <     * Sum of per-thread steal counts, updated only when threads are
494 <     * idle or terminating.
493 >     * Encoded record of top of Treiber stack of threads waiting for
494 >     * events. The top 32 bits contain the count being waited for. The
495 >     * bottom 16 bits contains one plus the pool index of waiting
496 >     * worker thread. (Bits 16-31 are unused.)
497       */
498 <    private final AtomicLong stealCount;
498 >    private volatile long eventWaiters;
499 >
500 >    private static final int  EVENT_COUNT_SHIFT = 32;
501 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
502  
503      /**
504 <     * Queue for external submissions.
504 >     * A counter for events that may wake up worker threads:
505 >     *   - Submission of a new task to the pool
506 >     *   - A worker pushing a task on an empty queue
507 >     *   - termination
508       */
509 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
509 >    private volatile int eventCount;
510 >
511 >    /**
512 >     * Encoded record of top of Treiber stack of spare threads waiting
513 >     * for resumption. The top 16 bits contain an arbitrary count to
514 >     * avoid ABA effects. The bottom 16bits contains one plus the pool
515 >     * index of waiting worker thread.
516 >     */
517 >    private volatile int spareWaiters;
518 >
519 >    private static final int SPARE_COUNT_SHIFT = 16;
520 >    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
521 >
522 >    /**
523 >     * Lifecycle control. The low word contains the number of workers
524 >     * that are (probably) executing tasks. This value is atomically
525 >     * incremented before a worker gets a task to run, and decremented
526 >     * when worker has no tasks and cannot find any.  Bits 16-18
527 >     * contain runLevel value. When all are zero, the pool is
528 >     * running. Level transitions are monotonic (running -> shutdown
529 >     * -> terminating -> terminated) so each transition adds a bit.
530 >     * These are bundled together to ensure consistent read for
531 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
532 >     * and active threads is zero).
533 >     *
534 >     * Notes: Most direct CASes are dependent on these bitfield
535 >     * positions.  Also, this field is non-private to enable direct
536 >     * performance-sensitive CASes in ForkJoinWorkerThread.
537 >     */
538 >    volatile int runState;
539 >
540 >    // Note: The order among run level values matters.
541 >    private static final int RUNLEVEL_SHIFT     = 16;
542 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
543 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
544 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
545 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
546  
547      /**
548 <     * Head of Treiber stack for barrier sync. See below for explanation.
548 >     * Holds number of total (i.e., created and not yet terminated)
549 >     * and running (i.e., not blocked on joins or other managed sync)
550 >     * threads, packed together to ensure consistent snapshot when
551 >     * making decisions about creating and suspending spare
552 >     * threads. Updated only by CAS. Note that adding a new worker
553 >     * requires incrementing both counts, since workers start off in
554 >     * running state.
555       */
556 <    private volatile WaitQueueNode syncStack;
556 >    private volatile int workerCounts;
557 >
558 >    private static final int TOTAL_COUNT_SHIFT  = 16;
559 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
560 >    private static final int ONE_RUNNING        = 1;
561 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
562  
563      /**
564 <     * The count for event barrier
564 >     * The target parallelism level.
565 >     * Accessed directly by ForkJoinWorkerThreads.
566       */
567 <    private volatile long eventCount;
567 >    final int parallelism;
568 >
569 >    /**
570 >     * True if use local fifo, not default lifo, for local polling
571 >     * Read by, and replicated by ForkJoinWorkerThreads
572 >     */
573 >    final boolean locallyFifo;
574 >
575 >    /**
576 >     * The uncaught exception handler used when any worker abruptly
577 >     * terminates.
578 >     */
579 >    private final Thread.UncaughtExceptionHandler ueh;
580  
581      /**
582       * Pool number, just for assigning useful names to worker threads
583       */
584      private final int poolNumber;
585  
586 +    // Utilities for CASing fields. Note that most of these
587 +    // are usually manually inlined by callers
588 +
589      /**
590 <     * The maximum allowed pool size
590 >     * Increments running count part of workerCounts
591       */
592 <    private volatile int maxPoolSize;
592 >    final void incrementRunningCount() {
593 >        int c;
594 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
595 >                                               c = workerCounts,
596 >                                               c + ONE_RUNNING));
597 >    }
598  
599      /**
600 <     * The desired parallelism level, updated only under workerLock.
600 >     * Tries to decrement running count unless already zero
601       */
602 <    private volatile int parallelism;
602 >    final boolean tryDecrementRunningCount() {
603 >        int wc = workerCounts;
604 >        if ((wc & RUNNING_COUNT_MASK) == 0)
605 >            return false;
606 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
607 >                                        wc, wc - ONE_RUNNING);
608 >    }
609  
610      /**
611 <     * True if use local fifo, not default lifo, for local polling
611 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
612 >     * (rarely) necessary when other count updates lag.
613 >     *
614 >     * @param dr -- either zero or ONE_RUNNING
615 >     * @param dt -- either zero or ONE_TOTAL
616       */
617 <    private volatile boolean locallyFifo;
617 >    private void decrementWorkerCounts(int dr, int dt) {
618 >        for (;;) {
619 >            int wc = workerCounts;
620 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
621 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
622 >                if ((runState & TERMINATED) != 0)
623 >                    return; // lagging termination on a backout
624 >                Thread.yield();
625 >            }
626 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
627 >                                         wc, wc - (dr + dt)))
628 >                return;
629 >        }
630 >    }
631  
632      /**
633 <     * Holds number of total (i.e., created and not yet terminated)
634 <     * and running (i.e., not blocked on joins or other managed sync)
250 <     * threads, packed into one int to ensure consistent snapshot when
251 <     * making decisions about creating and suspending spare
252 <     * threads. Updated only by CAS.  Note: CASes in
253 <     * updateRunningCount and preJoin assume that running active count
254 <     * is in low word, so need to be modified if this changes.
633 >     * Tries decrementing active count; fails on contention.
634 >     * Called when workers cannot find tasks to run.
635       */
636 <    private volatile int workerCounts;
636 >    final boolean tryDecrementActiveCount() {
637 >        int c;
638 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
639 >                                        c = runState, c - 1);
640 >    }
641 >
642 >    /**
643 >     * Advances to at least the given level. Returns true if not
644 >     * already in at least the given level.
645 >     */
646 >    private boolean advanceRunLevel(int level) {
647 >        for (;;) {
648 >            int s = runState;
649 >            if ((s & level) != 0)
650 >                return false;
651 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
652 >                return true;
653 >        }
654 >    }
655  
656 <    private static int totalCountOf(int s)           { return s >>> 16;  }
259 <    private static int runningCountOf(int s)         { return s & shortMask; }
260 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
656 >    // workers array maintenance
657  
658      /**
659 <     * Adds delta (which may be negative) to running count.  This must
660 <     * be called before (with negative arg) and after (with positive)
661 <     * any managed synchronization (i.e., mainly, joins).
659 >     * Records and returns a workers array index for new worker.
660 >     */
661 >    private int recordWorker(ForkJoinWorkerThread w) {
662 >        // Try using slot totalCount-1. If not available, scan and/or resize
663 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
664 >        final ReentrantLock lock = this.workerLock;
665 >        lock.lock();
666 >        try {
667 >            ForkJoinWorkerThread[] ws = workers;
668 >            int n = ws.length;
669 >            if (k < 0 || k >= n || ws[k] != null) {
670 >                for (k = 0; k < n && ws[k] != null; ++k)
671 >                    ;
672 >                if (k == n)
673 >                    ws = Arrays.copyOf(ws, n << 1);
674 >            }
675 >            ws[k] = w;
676 >            workers = ws; // volatile array write ensures slot visibility
677 >        } finally {
678 >            lock.unlock();
679 >        }
680 >        return k;
681 >    }
682 >
683 >    /**
684 >     * Nulls out record of worker in workers array.
685 >     */
686 >    private void forgetWorker(ForkJoinWorkerThread w) {
687 >        int idx = w.poolIndex;
688 >        // Locking helps method recordWorker avoid unnecessary expansion
689 >        final ReentrantLock lock = this.workerLock;
690 >        lock.lock();
691 >        try {
692 >            ForkJoinWorkerThread[] ws = workers;
693 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
694 >                ws[idx] = null;
695 >        } finally {
696 >            lock.unlock();
697 >        }
698 >    }
699 >
700 >    /**
701 >     * Final callback from terminating worker.  Removes record of
702 >     * worker from array, and adjusts counts. If pool is shutting
703 >     * down, tries to complete termination.
704       *
705 <     * @param delta the number to add
705 >     * @param w the worker
706       */
707 <    final void updateRunningCount(int delta) {
708 <        int s;
709 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
707 >    final void workerTerminated(ForkJoinWorkerThread w) {
708 >        forgetWorker(w);
709 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
710 >        while (w.stealCount != 0) // collect final count
711 >            tryAccumulateStealCount(w);
712 >        tryTerminate(false);
713 >    }
714 >
715 >    // Waiting for and signalling events
716 >
717 >    /**
718 >     * Releases workers blocked on a count not equal to current count.
719 >     * Normally called after precheck that eventWaiters isn't zero to
720 >     * avoid wasted array checks. Gives up upon a change in count or
721 >     * upon releasing two workers, letting others take over.
722 >     */
723 >    private void releaseEventWaiters() {
724 >        ForkJoinWorkerThread[] ws = workers;
725 >        int n = ws.length;
726 >        long h = eventWaiters;
727 >        int ec = eventCount;
728 >        boolean releasedOne = false;
729 >        ForkJoinWorkerThread w; int id;
730 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
731 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
732 >               id < n && (w = ws[id]) != null) {
733 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
734 >                                          h,  w.nextWaiter)) {
735 >                LockSupport.unpark(w);
736 >                if (releasedOne) // exit on second release
737 >                    break;
738 >                releasedOne = true;
739 >            }
740 >            if (eventCount != ec)
741 >                break;
742 >            h = eventWaiters;
743 >        }
744 >    }
745 >
746 >    /**
747 >     * Tries to advance eventCount and releases waiters. Called only
748 >     * from workers.
749 >     */
750 >    final void signalWork() {
751 >        int c; // try to increment event count -- CAS failure OK
752 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
753 >        if (eventWaiters != 0L)
754 >            releaseEventWaiters();
755 >    }
756 >
757 >    /**
758 >     * Adds the given worker to event queue and blocks until
759 >     * terminating or event count advances from the given value
760 >     *
761 >     * @param w the calling worker thread
762 >     * @param ec the count
763 >     */
764 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
765 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
766 >        long h;
767 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
768 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
769 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
770 >               eventCount == ec) {
771 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
772 >                                          w.nextWaiter = h, nh)) {
773 >                awaitEvent(w, ec);
774 >                break;
775 >            }
776 >        }
777      }
778  
779      /**
780 <     * Adds delta (which may be negative) to both total and running
781 <     * count.  This must be called upon creation and termination of
782 <     * worker threads.
780 >     * Blocks the given worker (that has already been entered as an
781 >     * event waiter) until terminating or event count advances from
782 >     * the given value. The oldest (first) waiter uses a timed wait to
783 >     * occasionally one-by-one shrink the number of workers (to a
784 >     * minimum of one) if the pool has not been used for extended
785 >     * periods.
786       *
787 <     * @param delta the number to add
787 >     * @param w the calling worker thread
788 >     * @param ec the count
789       */
790 <    private void updateWorkerCount(int delta) {
791 <        int d = delta + (delta << 16); // add to both lo and hi parts
792 <        int s;
793 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
790 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
791 >        while (eventCount == ec) {
792 >            if (tryAccumulateStealCount(w)) { // transfer while idle
793 >                boolean untimed = (w.nextWaiter != 0L ||
794 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
795 >                long startTime = untimed? 0 : System.nanoTime();
796 >                Thread.interrupted();         // clear/ignore interrupt
797 >                if (eventCount != ec || w.runState != 0 ||
798 >                    runState >= TERMINATING)  // recheck after clear
799 >                    break;
800 >                if (untimed)
801 >                    LockSupport.park(w);
802 >                else {
803 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
804 >                    if (eventCount != ec || w.runState != 0 ||
805 >                        runState >= TERMINATING)
806 >                        break;
807 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
808 >                        tryShutdownUnusedWorker(ec);
809 >                }
810 >            }
811 >        }
812      }
813  
814 +    // Maintaining parallelism
815 +
816      /**
817 <     * Lifecycle control. High word contains runState, low word
289 <     * contains the number of workers that are (probably) executing
290 <     * tasks. This value is atomically incremented before a worker
291 <     * gets a task to run, and decremented when worker has no tasks
292 <     * and cannot find any. These two fields are bundled together to
293 <     * support correct termination triggering.  Note: activeCount
294 <     * CAS'es cheat by assuming active count is in low word, so need
295 <     * to be modified if this changes
817 >     * Pushes worker onto the spare stack.
818       */
819 <    private volatile int runControl;
819 >    final void pushSpare(ForkJoinWorkerThread w) {
820 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
821 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
822 >                                               w.nextSpare = spareWaiters,ns));
823 >    }
824  
825 <    // RunState values. Order among values matters
826 <    private static final int RUNNING     = 0;
827 <    private static final int SHUTDOWN    = 1;
828 <    private static final int TERMINATING = 2;
829 <    private static final int TERMINATED  = 3;
825 >    /**
826 >     * Tries (once) to resume a spare if the number of running
827 >     * threads is less than target.
828 >     */
829 >    private void tryResumeSpare() {
830 >        int sw, id;
831 >        ForkJoinWorkerThread[] ws = workers;
832 >        int n = ws.length;
833 >        ForkJoinWorkerThread w;
834 >        if ((sw = spareWaiters) != 0 &&
835 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
836 >            id < n && (w = ws[id]) != null &&
837 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
838 >            spareWaiters == sw &&
839 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
840 >                                     sw, w.nextSpare)) {
841 >            int c; // increment running count before resume
842 >            do {} while (!UNSAFE.compareAndSwapInt
843 >                         (this, workerCountsOffset,
844 >                          c = workerCounts, c + ONE_RUNNING));
845 >            if (w.tryUnsuspend())
846 >                LockSupport.unpark(w);
847 >            else   // back out if w was shutdown
848 >                decrementWorkerCounts(ONE_RUNNING, 0);
849 >        }
850 >    }
851  
852 <    private static int runStateOf(int c)             { return c >>> 16; }
853 <    private static int activeCountOf(int c)          { return c & shortMask; }
854 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
852 >    /**
853 >     * Tries to increase the number of running workers if below target
854 >     * parallelism: If a spare exists tries to resume it via
855 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
856 >     * existing workers are busy, adds a new worker. In all cases also
857 >     * helps wake up releasable workers waiting for work.
858 >     */
859 >    private void helpMaintainParallelism() {
860 >        int pc = parallelism;
861 >        int wc, rs, tc;
862 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
863 >               (rs = runState) < TERMINATING) {
864 >            if (spareWaiters != 0)
865 >                tryResumeSpare();
866 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
867 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
868 >                break;   // enough total
869 >            else if (runState == rs && workerCounts == wc &&
870 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
871 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
872 >                ForkJoinWorkerThread w = null;
873 >                try {
874 >                    w = factory.newThread(this);
875 >                } finally { // adjust on null or exceptional factory return
876 >                    if (w == null) {
877 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
878 >                        tryTerminate(false); // handle failure during shutdown
879 >                    }
880 >                }
881 >                if (w == null)
882 >                    break;
883 >                w.start(recordWorker(w), ueh);
884 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
885 >                    int c; // advance event count
886 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
887 >                                             c = eventCount, c+1);
888 >                    break; // add at most one unless total below target
889 >                }
890 >            }
891 >        }
892 >        if (eventWaiters != 0L)
893 >            releaseEventWaiters();
894 >    }
895  
896      /**
897 <     * Tries incrementing active count; fails on contention.
898 <     * Called by workers before/during executing tasks.
897 >     * Callback from the oldest waiter in awaitEvent waking up after a
898 >     * period of non-use. If all workers are idle, tries (once) to
899 >     * shutdown an event waiter or a spare, if one exists. Note that
900 >     * we don't need CAS or locks here because the method is called
901 >     * only from one thread occasionally waking (and even misfires are
902 >     * OK). Note that until the shutdown worker fully terminates,
903 >     * workerCounts will overestimate total count, which is tolerable.
904       *
905 <     * @return true on success
905 >     * @param ec the event count waited on by caller (to abort
906 >     * attempt if count has since changed).
907       */
908 <    final boolean tryIncrementActiveCount() {
909 <        int c = runControl;
910 <        return casRunControl(c, c+1);
908 >    private void tryShutdownUnusedWorker(int ec) {
909 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
910 >            ForkJoinWorkerThread[] ws = workers;
911 >            int n = ws.length;
912 >            ForkJoinWorkerThread w = null;
913 >            boolean shutdown = false;
914 >            int sw;
915 >            long h;
916 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
917 >                int id = (sw & SPARE_ID_MASK) - 1;
918 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
919 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
920 >                                             sw, w.nextSpare))
921 >                    shutdown = true;
922 >            }
923 >            else if ((h = eventWaiters) != 0L) {
924 >                long nh;
925 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
926 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
927 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
928 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
929 >                    shutdown = true;
930 >            }
931 >            if (w != null && shutdown) {
932 >                w.shutdown();
933 >                LockSupport.unpark(w);
934 >            }
935 >        }
936 >        releaseEventWaiters(); // in case of interference
937      }
938  
939      /**
940 <     * Tries decrementing active count; fails on contention.
941 <     * Possibly triggers termination on success.
942 <     * Called by workers when they can't find tasks.
940 >     * Callback from workers invoked upon each top-level action (i.e.,
941 >     * stealing a task or taking a submission and running it).
942 >     * Performs one or more of the following:
943 >     *
944 >     * 1. If the worker is active and either did not run a task
945 >     *    or there are too many workers, try to set its active status
946 >     *    to inactive and update activeCount. On contention, we may
947 >     *    try again in this or a subsequent call.
948 >     *
949 >     * 2. If not enough total workers, help create some.
950 >     *
951 >     * 3. If there are too many running workers, suspend this worker
952 >     *    (first forcing inactive if necessary).  If it is not needed,
953 >     *    it may be shutdown while suspended (via
954 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
955 >     *    rechecks running thread count and need for event sync.
956 >     *
957 >     * 4. If worker did not run a task, await the next task event via
958 >     *    eventSync if necessary (first forcing inactivation), upon
959 >     *    which the worker may be shutdown via
960 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
961 >     *    existing event waiters that are now releasable,
962       *
963 <     * @return true on success
963 >     * @param w the worker
964 >     * @param ran true if worker ran a task since last call to this method
965       */
966 <    final boolean tryDecrementActiveCount() {
967 <        int c = runControl;
968 <        int nextc = c - 1;
969 <        if (!casRunControl(c, nextc))
966 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
967 >        int wec = w.lastEventCount;
968 >        boolean active = w.active;
969 >        boolean inactivate = false;
970 >        int pc = parallelism;
971 >        int rs;
972 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
973 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
974 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
975 >                inactivate = active = w.active = false;
976 >            int wc = workerCounts;
977 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
978 >                if (!(inactivate |= active) && // must inactivate to suspend
979 >                    workerCounts == wc &&      // try to suspend as spare
980 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
981 >                                             wc, wc - ONE_RUNNING))
982 >                    w.suspendAsSpare();
983 >            }
984 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
985 >                helpMaintainParallelism();     // not enough workers
986 >            else if (!ran) {
987 >                long h = eventWaiters;
988 >                int ec = eventCount;
989 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
990 >                    releaseEventWaiters();     // release others before waiting
991 >                else if (ec != wec) {
992 >                    w.lastEventCount = ec;     // no need to wait
993 >                    break;
994 >                }
995 >                else if (!(inactivate |= active))
996 >                    eventSync(w, wec);         // must inactivate before sync
997 >            }
998 >            else
999 >                break;
1000 >        }
1001 >    }
1002 >
1003 >    /**
1004 >     * Helps and/or blocks awaiting join of the given task.
1005 >     * See above for explanation.
1006 >     *
1007 >     * @param joinMe the task to join
1008 >     * @param worker the current worker thread
1009 >     */
1010 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1011 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1012 >        while (joinMe.status >= 0) {
1013 >            int wc;
1014 >            worker.helpJoinTask(joinMe);
1015 >            if (joinMe.status < 0)
1016 >                break;
1017 >            else if (retries > 0)
1018 >                --retries;
1019 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1020 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1021 >                                              wc, wc - ONE_RUNNING)) {
1022 >                int stat, c; long h;
1023 >                while ((stat = joinMe.status) >= 0 &&
1024 >                       (h = eventWaiters) != 0L && // help release others
1025 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1026 >                    releaseEventWaiters();
1027 >                if (stat >= 0 &&
1028 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1029 >                     (stat =
1030 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1031 >                    helpMaintainParallelism(); // timeout or no running workers
1032 >                do {} while (!UNSAFE.compareAndSwapInt
1033 >                             (this, workerCountsOffset,
1034 >                              c = workerCounts, c + ONE_RUNNING));
1035 >                if (stat < 0)
1036 >                    break;   // else restart
1037 >            }
1038 >        }
1039 >    }
1040 >
1041 >    /**
1042 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1043 >     */
1044 >    final void awaitBlocker(ManagedBlocker blocker)
1045 >        throws InterruptedException {
1046 >        while (!blocker.isReleasable()) {
1047 >            int wc = workerCounts;
1048 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1049 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1050 >                                         wc, wc - ONE_RUNNING)) {
1051 >                try {
1052 >                    while (!blocker.isReleasable()) {
1053 >                        long h = eventWaiters;
1054 >                        if (h != 0L &&
1055 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1056 >                            releaseEventWaiters();
1057 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1058 >                                 runState < TERMINATING)
1059 >                            helpMaintainParallelism();
1060 >                        else if (blocker.block())
1061 >                            break;
1062 >                    }
1063 >                } finally {
1064 >                    int c;
1065 >                    do {} while (!UNSAFE.compareAndSwapInt
1066 >                                 (this, workerCountsOffset,
1067 >                                  c = workerCounts, c + ONE_RUNNING));
1068 >                }
1069 >                break;
1070 >            }
1071 >        }
1072 >    }
1073 >
1074 >    /**
1075 >     * Possibly initiates and/or completes termination.
1076 >     *
1077 >     * @param now if true, unconditionally terminate, else only
1078 >     * if shutdown and empty queue and no active workers
1079 >     * @return true if now terminating or terminated
1080 >     */
1081 >    private boolean tryTerminate(boolean now) {
1082 >        if (now)
1083 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
1084 >        else if (runState < SHUTDOWN ||
1085 >                 !submissionQueue.isEmpty() ||
1086 >                 (runState & ACTIVE_COUNT_MASK) != 0)
1087              return false;
1088 <        if (canTerminateOnShutdown(nextc))
1089 <            terminateOnShutdown();
1088 >
1089 >        if (advanceRunLevel(TERMINATING))
1090 >            startTerminating();
1091 >
1092 >        // Finish now if all threads terminated; else in some subsequent call
1093 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1094 >            advanceRunLevel(TERMINATED);
1095 >            termination.arrive();
1096 >        }
1097          return true;
1098      }
1099  
1100      /**
1101 <     * Returns {@code true} if argument represents zero active count
1102 <     * and nonzero runstate, which is the triggering condition for
1103 <     * terminating on shutdown.
1101 >     * Actions on transition to TERMINATING
1102 >     *
1103 >     * Runs up to four passes through workers: (0) shutting down each
1104 >     * (without waking up if parked) to quickly spread notifications
1105 >     * without unnecessary bouncing around event queues etc (1) wake
1106 >     * up and help cancel tasks (2) interrupt (3) mop up races with
1107 >     * interrupted workers
1108 >     */
1109 >    private void startTerminating() {
1110 >        cancelSubmissions();
1111 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1112 >            int c; // advance event count
1113 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1114 >                                     c = eventCount, c+1);
1115 >            eventWaiters = 0L; // clobber lists
1116 >            spareWaiters = 0;
1117 >            for (ForkJoinWorkerThread w : workers) {
1118 >                if (w != null) {
1119 >                    w.shutdown();
1120 >                    if (passes > 0 && !w.isTerminated()) {
1121 >                        w.cancelTasks();
1122 >                        LockSupport.unpark(w);
1123 >                        if (passes > 1) {
1124 >                            try {
1125 >                                w.interrupt();
1126 >                            } catch (SecurityException ignore) {
1127 >                            }
1128 >                        }
1129 >                    }
1130 >                }
1131 >            }
1132 >        }
1133 >    }
1134 >
1135 >    /**
1136 >     * Clears out and cancels submissions, ignoring exceptions.
1137       */
1138 <    private static boolean canTerminateOnShutdown(int c) {
1139 <        // i.e. least bit is nonzero runState bit
1140 <        return ((c & -c) >>> 16) != 0;
1138 >    private void cancelSubmissions() {
1139 >        ForkJoinTask<?> task;
1140 >        while ((task = submissionQueue.poll()) != null) {
1141 >            try {
1142 >                task.cancel(false);
1143 >            } catch (Throwable ignore) {
1144 >            }
1145 >        }
1146      }
1147  
1148 +    // misc support for ForkJoinWorkerThread
1149 +
1150      /**
1151 <     * Transition run state to at least the given state. Return true
349 <     * if not already at least given state.
1151 >     * Returns pool number.
1152       */
1153 <    private boolean transitionRunStateTo(int state) {
1154 <        for (;;) {
1155 <            int c = runControl;
1156 <            if (runStateOf(c) >= state)
1157 <                return false;
1158 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1159 <                return true;
1153 >    final int getPoolNumber() {
1154 >        return poolNumber;
1155 >    }
1156 >
1157 >    /**
1158 >     * Tries to accumulate steal count from a worker, clearing
1159 >     * the worker's value if successful.
1160 >     *
1161 >     * @return true if worker steal count now zero
1162 >     */
1163 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1164 >        int sc = w.stealCount;
1165 >        long c = stealCount;
1166 >        // CAS even if zero, for fence effects
1167 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1168 >            if (sc != 0)
1169 >                w.stealCount = 0;
1170 >            return true;
1171          }
1172 +        return sc == 0;
1173      }
1174  
1175      /**
1176 <     * Controls whether to add spares to maintain parallelism
1176 >     * Returns the approximate (non-atomic) number of idle threads per
1177 >     * active thread.
1178       */
1179 <    private volatile boolean maintainsParallelism;
1179 >    final int idlePerActive() {
1180 >        int pc = parallelism; // use parallelism, not rc
1181 >        int ac = runState;    // no mask -- artificially boosts during shutdown
1182 >        // Use exact results for small values, saturate past 4
1183 >        return ((pc <= ac) ? 0 :
1184 >                (pc >>> 1 <= ac) ? 1 :
1185 >                (pc >>> 2 <= ac) ? 3 :
1186 >                pc >>> 3);
1187 >    }
1188 >
1189 >    // Public and protected methods
1190  
1191      // Constructors
1192  
1193      /**
1194       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1195 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1196 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1195 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1196 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1197 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1198       *
1199       * @throws SecurityException if a security manager exists and
1200       *         the caller is not permitted to modify threads
# Line 377 | Line 1203 | public class ForkJoinPool extends Abstra
1203       */
1204      public ForkJoinPool() {
1205          this(Runtime.getRuntime().availableProcessors(),
1206 <             defaultForkJoinWorkerThreadFactory);
1206 >             defaultForkJoinWorkerThreadFactory, null, false);
1207      }
1208  
1209      /**
1210       * Creates a {@code ForkJoinPool} with the indicated parallelism
1211 <     * level and using the {@linkplain
1212 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1211 >     * level, the {@linkplain
1212 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1213 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1214       *
1215       * @param parallelism the parallelism level
1216       * @throws IllegalArgumentException if parallelism less than or
# Line 394 | Line 1221 | public class ForkJoinPool extends Abstra
1221       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1222       */
1223      public ForkJoinPool(int parallelism) {
1224 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
398 <    }
399 <
400 <    /**
401 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
402 <     * java.lang.Runtime#availableProcessors}, and using the given
403 <     * thread factory.
404 <     *
405 <     * @param factory the factory for creating new threads
406 <     * @throws NullPointerException if the factory is null
407 <     * @throws SecurityException if a security manager exists and
408 <     *         the caller is not permitted to modify threads
409 <     *         because it does not hold {@link
410 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
411 <     */
412 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
413 <        this(Runtime.getRuntime().availableProcessors(), factory);
1224 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1225      }
1226  
1227      /**
1228 <     * Creates a {@code ForkJoinPool} with the given parallelism and
418 <     * thread factory.
1228 >     * Creates a {@code ForkJoinPool} with the given parameters.
1229       *
1230 <     * @param parallelism the parallelism level
1231 <     * @param factory the factory for creating new threads
1230 >     * @param parallelism the parallelism level. For default value,
1231 >     * use {@link java.lang.Runtime#availableProcessors}.
1232 >     * @param factory the factory for creating new threads. For default value,
1233 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1234 >     * @param handler the handler for internal worker threads that
1235 >     * terminate due to unrecoverable errors encountered while executing
1236 >     * tasks. For default value, use {@code null}.
1237 >     * @param asyncMode if true,
1238 >     * establishes local first-in-first-out scheduling mode for forked
1239 >     * tasks that are never joined. This mode may be more appropriate
1240 >     * than default locally stack-based mode in applications in which
1241 >     * worker threads only process event-style asynchronous tasks.
1242 >     * For default value, use {@code false}.
1243       * @throws IllegalArgumentException if parallelism less than or
1244       *         equal to zero, or greater than implementation limit
1245       * @throws NullPointerException if the factory is null
# Line 427 | Line 1248 | public class ForkJoinPool extends Abstra
1248       *         because it does not hold {@link
1249       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1250       */
1251 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1252 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1253 <            throw new IllegalArgumentException();
1251 >    public ForkJoinPool(int parallelism,
1252 >                        ForkJoinWorkerThreadFactory factory,
1253 >                        Thread.UncaughtExceptionHandler handler,
1254 >                        boolean asyncMode) {
1255 >        checkPermission();
1256          if (factory == null)
1257              throw new NullPointerException();
1258 <        checkPermission();
1259 <        this.factory = factory;
1258 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1259 >            throw new IllegalArgumentException();
1260          this.parallelism = parallelism;
1261 <        this.maxPoolSize = MAX_THREADS;
1262 <        this.maintainsParallelism = true;
1263 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
1264 <        this.workerLock = new ReentrantLock();
1265 <        this.termination = workerLock.newCondition();
443 <        this.stealCount = new AtomicLong();
1261 >        this.factory = factory;
1262 >        this.ueh = handler;
1263 >        this.locallyFifo = asyncMode;
1264 >        int arraySize = initialArraySizeFor(parallelism);
1265 >        this.workers = new ForkJoinWorkerThread[arraySize];
1266          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1267 <        // worker array and workers are lazily constructed
1268 <    }
1269 <
448 <    /**
449 <     * Creates a new worker thread using factory.
450 <     *
451 <     * @param index the index to assign worker
452 <     * @return new worker, or null if factory failed
453 <     */
454 <    private ForkJoinWorkerThread createWorker(int index) {
455 <        Thread.UncaughtExceptionHandler h = ueh;
456 <        ForkJoinWorkerThread w = factory.newThread(this);
457 <        if (w != null) {
458 <            w.poolIndex = index;
459 <            w.setDaemon(true);
460 <            w.setAsyncMode(locallyFifo);
461 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
462 <            if (h != null)
463 <                w.setUncaughtExceptionHandler(h);
464 <        }
465 <        return w;
466 <    }
467 <
468 <    /**
469 <     * Returns a good size for worker array given pool size.
470 <     * Currently requires size to be a power of two.
471 <     */
472 <    private static int arraySizeFor(int poolSize) {
473 <        if (poolSize <= 1)
474 <            return 1;
475 <        // See Hackers Delight, sec 3.2
476 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
477 <        c |= c >>>  1;
478 <        c |= c >>>  2;
479 <        c |= c >>>  4;
480 <        c |= c >>>  8;
481 <        c |= c >>> 16;
482 <        return c + 1;
483 <    }
484 <
485 <    /**
486 <     * Creates or resizes array if necessary to hold newLength.
487 <     * Call only under exclusion.
488 <     *
489 <     * @return the array
490 <     */
491 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
492 <        ForkJoinWorkerThread[] ws = workers;
493 <        if (ws == null)
494 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
495 <        else if (newLength > ws.length)
496 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
497 <        else
498 <            return ws;
499 <    }
500 <
501 <    /**
502 <     * Tries to shrink workers into smaller array after one or more terminate.
503 <     */
504 <    private void tryShrinkWorkerArray() {
505 <        ForkJoinWorkerThread[] ws = workers;
506 <        if (ws != null) {
507 <            int len = ws.length;
508 <            int last = len - 1;
509 <            while (last >= 0 && ws[last] == null)
510 <                --last;
511 <            int newLength = arraySizeFor(last+1);
512 <            if (newLength < len)
513 <                workers = Arrays.copyOf(ws, newLength);
514 <        }
515 <    }
516 <
517 <    /**
518 <     * Initializes workers if necessary.
519 <     */
520 <    final void ensureWorkerInitialization() {
521 <        ForkJoinWorkerThread[] ws = workers;
522 <        if (ws == null) {
523 <            final ReentrantLock lock = this.workerLock;
524 <            lock.lock();
525 <            try {
526 <                ws = workers;
527 <                if (ws == null) {
528 <                    int ps = parallelism;
529 <                    updateWorkerCount(ps);
530 <                    ws = ensureWorkerArrayCapacity(ps);
531 <                    for (int i = 0; i < ps; ++i) {
532 <                        ForkJoinWorkerThread w = createWorker(i);
533 <                        if (w != null) {
534 <                            ws[i] = w;
535 <                            w.start();
536 <                        }
537 <                        else
538 <                            updateWorkerCount(-1);
539 <                    }
540 <                }
541 <            } finally {
542 <                lock.unlock();
543 <            }
544 <        }
1267 >        this.workerLock = new ReentrantLock();
1268 >        this.termination = new Phaser(1);
1269 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1270      }
1271  
1272      /**
1273 <     * Worker creation and startup for threads added via setParallelism.
1273 >     * Returns initial power of two size for workers array.
1274 >     * @param pc the initial parallelism level
1275       */
1276 <    private void createAndStartAddedWorkers() {
1277 <        resumeAllSpares();  // Allow spares to convert to nonspare
1278 <        int ps = parallelism;
1279 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1280 <        int len = ws.length;
1281 <        // Sweep through slots, to keep lowest indices most populated
1282 <        int k = 0;
1283 <        while (k < len) {
1284 <            if (ws[k] != null) {
559 <                ++k;
560 <                continue;
561 <            }
562 <            int s = workerCounts;
563 <            int tc = totalCountOf(s);
564 <            int rc = runningCountOf(s);
565 <            if (rc >= ps || tc >= ps)
566 <                break;
567 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
568 <                ForkJoinWorkerThread w = createWorker(k);
569 <                if (w != null) {
570 <                    ws[k++] = w;
571 <                    w.start();
572 <                }
573 <                else {
574 <                    updateWorkerCount(-1); // back out on failed creation
575 <                    break;
576 <                }
577 <            }
578 <        }
1276 >    private static int initialArraySizeFor(int pc) {
1277 >        // If possible, initially allocate enough space for one spare
1278 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1279 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1280 >        size |= size >>> 1;
1281 >        size |= size >>> 2;
1282 >        size |= size >>> 4;
1283 >        size |= size >>> 8;
1284 >        return size + 1;
1285      }
1286  
1287      // Execution methods
# Line 586 | Line 1292 | public class ForkJoinPool extends Abstra
1292      private <T> void doSubmit(ForkJoinTask<T> task) {
1293          if (task == null)
1294              throw new NullPointerException();
1295 <        if (isShutdown())
1295 >        if (runState >= SHUTDOWN)
1296              throw new RejectedExecutionException();
591        if (workers == null)
592            ensureWorkerInitialization();
1297          submissionQueue.offer(task);
1298 <        signalIdleWorkers();
1298 >        int c; // try to increment event count -- CAS failure OK
1299 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1300 >        helpMaintainParallelism(); // create, start, or resume some workers
1301      }
1302  
1303      /**
# Line 637 | Line 1343 | public class ForkJoinPool extends Abstra
1343      }
1344  
1345      /**
1346 +     * Submits a ForkJoinTask for execution.
1347 +     *
1348 +     * @param task the task to submit
1349 +     * @return the task
1350 +     * @throws NullPointerException if the task is null
1351 +     * @throws RejectedExecutionException if the task cannot be
1352 +     *         scheduled for execution
1353 +     */
1354 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1355 +        doSubmit(task);
1356 +        return task;
1357 +    }
1358 +
1359 +    /**
1360       * @throws NullPointerException if the task is null
1361       * @throws RejectedExecutionException if the task cannot be
1362       *         scheduled for execution
# Line 674 | Line 1394 | public class ForkJoinPool extends Abstra
1394      }
1395  
1396      /**
677     * Submits a ForkJoinTask for execution.
678     *
679     * @param task the task to submit
680     * @return the task
681     * @throws NullPointerException if the task is null
682     * @throws RejectedExecutionException if the task cannot be
683     *         scheduled for execution
684     */
685    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
686        doSubmit(task);
687        return task;
688    }
689
690
691    /**
1397       * @throws NullPointerException       {@inheritDoc}
1398       * @throws RejectedExecutionException {@inheritDoc}
1399       */
# Line 700 | Line 1405 | public class ForkJoinPool extends Abstra
1405          invoke(new InvokeAll<T>(forkJoinTasks));
1406  
1407          @SuppressWarnings({"unchecked", "rawtypes"})
1408 <        List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1408 >            List<Future<T>> futures = (List<Future<T>>) (List) forkJoinTasks;
1409          return futures;
1410      }
1411  
# Line 714 | Line 1419 | public class ForkJoinPool extends Abstra
1419          private static final long serialVersionUID = -7914297376763021607L;
1420      }
1421  
717    // Configuration and status settings and queries
718
1422      /**
1423       * Returns the factory used for constructing new workers.
1424       *
# Line 732 | Line 1435 | public class ForkJoinPool extends Abstra
1435       * @return the handler, or {@code null} if none
1436       */
1437      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1438 <        Thread.UncaughtExceptionHandler h;
736 <        final ReentrantLock lock = this.workerLock;
737 <        lock.lock();
738 <        try {
739 <            h = ueh;
740 <        } finally {
741 <            lock.unlock();
742 <        }
743 <        return h;
744 <    }
745 <
746 <    /**
747 <     * Sets the handler for internal worker threads that terminate due
748 <     * to unrecoverable errors encountered while executing tasks.
749 <     * Unless set, the current default or ThreadGroup handler is used
750 <     * as handler.
751 <     *
752 <     * @param h the new handler
753 <     * @return the old handler, or {@code null} if none
754 <     * @throws SecurityException if a security manager exists and
755 <     *         the caller is not permitted to modify threads
756 <     *         because it does not hold {@link
757 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
758 <     */
759 <    public Thread.UncaughtExceptionHandler
760 <        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
761 <        checkPermission();
762 <        Thread.UncaughtExceptionHandler old = null;
763 <        final ReentrantLock lock = this.workerLock;
764 <        lock.lock();
765 <        try {
766 <            old = ueh;
767 <            ueh = h;
768 <            ForkJoinWorkerThread[] ws = workers;
769 <            if (ws != null) {
770 <                for (int i = 0; i < ws.length; ++i) {
771 <                    ForkJoinWorkerThread w = ws[i];
772 <                    if (w != null)
773 <                        w.setUncaughtExceptionHandler(h);
774 <                }
775 <            }
776 <        } finally {
777 <            lock.unlock();
778 <        }
779 <        return old;
780 <    }
781 <
782 <
783 <    /**
784 <     * Sets the target parallelism level of this pool.
785 <     *
786 <     * @param parallelism the target parallelism
787 <     * @throws IllegalArgumentException if parallelism less than or
788 <     * equal to zero or greater than maximum size bounds
789 <     * @throws SecurityException if a security manager exists and
790 <     *         the caller is not permitted to modify threads
791 <     *         because it does not hold {@link
792 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
793 <     */
794 <    public void setParallelism(int parallelism) {
795 <        checkPermission();
796 <        if (parallelism <= 0 || parallelism > maxPoolSize)
797 <            throw new IllegalArgumentException();
798 <        final ReentrantLock lock = this.workerLock;
799 <        lock.lock();
800 <        try {
801 <            if (isProcessingTasks()) {
802 <                int p = this.parallelism;
803 <                this.parallelism = parallelism;
804 <                if (workers != null) {
805 <                    if (parallelism > p)
806 <                        createAndStartAddedWorkers();
807 <                    else
808 <                        trimSpares();
809 <                }
810 <            }
811 <        } finally {
812 <            lock.unlock();
813 <        }
814 <        signalIdleWorkers();
1438 >        return ueh;
1439      }
1440  
1441      /**
# Line 825 | Line 1449 | public class ForkJoinPool extends Abstra
1449  
1450      /**
1451       * Returns the number of worker threads that have started but not
1452 <     * yet terminated.  This result returned by this method may differ
1452 >     * yet terminated.  The result returned by this method may differ
1453       * from {@link #getParallelism} when threads are created to
1454       * maintain parallelism when others are cooperatively blocked.
1455       *
1456       * @return the number of worker threads
1457       */
1458      public int getPoolSize() {
1459 <        return totalCountOf(workerCounts);
836 <    }
837 <
838 <    /**
839 <     * Returns the maximum number of threads allowed to exist in the
840 <     * pool. Unless set using {@link #setMaximumPoolSize}, the
841 <     * maximum is an implementation-defined value designed only to
842 <     * prevent runaway growth.
843 <     *
844 <     * @return the maximum
845 <     */
846 <    public int getMaximumPoolSize() {
847 <        return maxPoolSize;
848 <    }
849 <
850 <    /**
851 <     * Sets the maximum number of threads allowed to exist in the
852 <     * pool. The given value should normally be greater than or equal
853 <     * to the {@link #getParallelism parallelism} level. Setting this
854 <     * value has no effect on current pool size. It controls
855 <     * construction of new threads.
856 <     *
857 <     * @throws IllegalArgumentException if negative or greater than
858 <     * internal implementation limit
859 <     */
860 <    public void setMaximumPoolSize(int newMax) {
861 <        if (newMax < 0 || newMax > MAX_THREADS)
862 <            throw new IllegalArgumentException();
863 <        maxPoolSize = newMax;
864 <    }
865 <
866 <
867 <    /**
868 <     * Returns {@code true} if this pool dynamically maintains its
869 <     * target parallelism level. If false, new threads are added only
870 <     * to avoid possible starvation.  This setting is by default true.
871 <     *
872 <     * @return {@code true} if maintains parallelism
873 <     */
874 <    public boolean getMaintainsParallelism() {
875 <        return maintainsParallelism;
876 <    }
877 <
878 <    /**
879 <     * Sets whether this pool dynamically maintains its target
880 <     * parallelism level. If false, new threads are added only to
881 <     * avoid possible starvation.
882 <     *
883 <     * @param enable {@code true} to maintain parallelism
884 <     */
885 <    public void setMaintainsParallelism(boolean enable) {
886 <        maintainsParallelism = enable;
887 <    }
888 <
889 <    /**
890 <     * Establishes local first-in-first-out scheduling mode for forked
891 <     * tasks that are never joined. This mode may be more appropriate
892 <     * than default locally stack-based mode in applications in which
893 <     * worker threads only process asynchronous tasks.  This method is
894 <     * designed to be invoked only when the pool is quiescent, and
895 <     * typically only before any tasks are submitted. The effects of
896 <     * invocations at other times may be unpredictable.
897 <     *
898 <     * @param async if {@code true}, use locally FIFO scheduling
899 <     * @return the previous mode
900 <     * @see #getAsyncMode
901 <     */
902 <    public boolean setAsyncMode(boolean async) {
903 <        boolean oldMode = locallyFifo;
904 <        locallyFifo = async;
905 <        ForkJoinWorkerThread[] ws = workers;
906 <        if (ws != null) {
907 <            for (int i = 0; i < ws.length; ++i) {
908 <                ForkJoinWorkerThread t = ws[i];
909 <                if (t != null)
910 <                    t.setAsyncMode(async);
911 <            }
912 <        }
913 <        return oldMode;
1459 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1460      }
1461  
1462      /**
# Line 918 | Line 1464 | public class ForkJoinPool extends Abstra
1464       * scheduling mode for forked tasks that are never joined.
1465       *
1466       * @return {@code true} if this pool uses async mode
921     * @see #setAsyncMode
1467       */
1468      public boolean getAsyncMode() {
1469          return locallyFifo;
# Line 927 | Line 1472 | public class ForkJoinPool extends Abstra
1472      /**
1473       * Returns an estimate of the number of worker threads that are
1474       * not blocked waiting to join tasks or for other managed
1475 <     * synchronization.
1475 >     * synchronization. This method may overestimate the
1476 >     * number of running threads.
1477       *
1478       * @return the number of worker threads
1479       */
1480      public int getRunningThreadCount() {
1481 <        return runningCountOf(workerCounts);
1481 >        return workerCounts & RUNNING_COUNT_MASK;
1482      }
1483  
1484      /**
# Line 943 | Line 1489 | public class ForkJoinPool extends Abstra
1489       * @return the number of active threads
1490       */
1491      public int getActiveThreadCount() {
1492 <        return activeCountOf(runControl);
947 <    }
948 <
949 <    /**
950 <     * Returns an estimate of the number of threads that are currently
951 <     * idle waiting for tasks. This method may underestimate the
952 <     * number of idle threads.
953 <     *
954 <     * @return the number of idle threads
955 <     */
956 <    final int getIdleThreadCount() {
957 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
958 <        return (c <= 0) ? 0 : c;
1492 >        return runState & ACTIVE_COUNT_MASK;
1493      }
1494  
1495      /**
# Line 970 | Line 1504 | public class ForkJoinPool extends Abstra
1504       * @return {@code true} if all threads are currently idle
1505       */
1506      public boolean isQuiescent() {
1507 <        return activeCountOf(runControl) == 0;
1507 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1508      }
1509  
1510      /**
# Line 985 | Line 1519 | public class ForkJoinPool extends Abstra
1519       * @return the number of steals
1520       */
1521      public long getStealCount() {
1522 <        return stealCount.get();
989 <    }
990 <
991 <    /**
992 <     * Accumulates steal count from a worker.
993 <     * Call only when worker known to be idle.
994 <     */
995 <    private void updateStealCount(ForkJoinWorkerThread w) {
996 <        int sc = w.getAndClearStealCount();
997 <        if (sc != 0)
998 <            stealCount.addAndGet(sc);
1522 >        return stealCount;
1523      }
1524  
1525      /**
# Line 1010 | Line 1534 | public class ForkJoinPool extends Abstra
1534       */
1535      public long getQueuedTaskCount() {
1536          long count = 0;
1537 <        ForkJoinWorkerThread[] ws = workers;
1538 <        if (ws != null) {
1539 <            for (int i = 0; i < ws.length; ++i) {
1016 <                ForkJoinWorkerThread t = ws[i];
1017 <                if (t != null)
1018 <                    count += t.getQueueSize();
1019 <            }
1020 <        }
1537 >        for (ForkJoinWorkerThread w : workers)
1538 >            if (w != null)
1539 >                count += w.getQueueSize();
1540          return count;
1541      }
1542  
# Line 1071 | Line 1590 | public class ForkJoinPool extends Abstra
1590       * @return the number of elements transferred
1591       */
1592      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1593 <        int n = submissionQueue.drainTo(c);
1594 <        ForkJoinWorkerThread[] ws = workers;
1595 <        if (ws != null) {
1596 <            for (int i = 0; i < ws.length; ++i) {
1597 <                ForkJoinWorkerThread w = ws[i];
1079 <                if (w != null)
1080 <                    n += w.drainTasksTo(c);
1081 <            }
1082 <        }
1083 <        return n;
1593 >        int count = submissionQueue.drainTo(c);
1594 >        for (ForkJoinWorkerThread w : workers)
1595 >            if (w != null)
1596 >                count += w.drainTasksTo(c);
1597 >        return count;
1598      }
1599  
1600      /**
# Line 1091 | Line 1605 | public class ForkJoinPool extends Abstra
1605       * @return a string identifying this pool, as well as its state
1606       */
1607      public String toString() {
1094        int ps = parallelism;
1095        int wc = workerCounts;
1096        int rc = runControl;
1608          long st = getStealCount();
1609          long qt = getQueuedTaskCount();
1610          long qs = getQueuedSubmissionCount();
1611 +        int wc = workerCounts;
1612 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1613 +        int rc = wc & RUNNING_COUNT_MASK;
1614 +        int pc = parallelism;
1615 +        int rs = runState;
1616 +        int ac = rs & ACTIVE_COUNT_MASK;
1617          return super.toString() +
1618 <            "[" + runStateToString(runStateOf(rc)) +
1619 <            ", parallelism = " + ps +
1620 <            ", size = " + totalCountOf(wc) +
1621 <            ", active = " + activeCountOf(rc) +
1622 <            ", running = " + runningCountOf(wc) +
1618 >            "[" + runLevelToString(rs) +
1619 >            ", parallelism = " + pc +
1620 >            ", size = " + tc +
1621 >            ", active = " + ac +
1622 >            ", running = " + rc +
1623              ", steals = " + st +
1624              ", tasks = " + qt +
1625              ", submissions = " + qs +
1626              "]";
1627      }
1628  
1629 <    private static String runStateToString(int rs) {
1630 <        switch (rs) {
1631 <        case RUNNING: return "Running";
1632 <        case SHUTDOWN: return "Shutting down";
1633 <        case TERMINATING: return "Terminating";
1117 <        case TERMINATED: return "Terminated";
1118 <        default: throw new Error("Unknown run state");
1119 <        }
1629 >    private static String runLevelToString(int s) {
1630 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1631 >                ((s & TERMINATING) != 0 ? "Terminating" :
1632 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1633 >                  "Running")));
1634      }
1635  
1122    // lifecycle control
1123
1636      /**
1637       * Initiates an orderly shutdown in which previously submitted
1638       * tasks are executed, but no new tasks will be accepted.
# Line 1135 | Line 1647 | public class ForkJoinPool extends Abstra
1647       */
1648      public void shutdown() {
1649          checkPermission();
1650 <        transitionRunStateTo(SHUTDOWN);
1651 <        if (canTerminateOnShutdown(runControl)) {
1140 <            if (workers == null) { // shutting down before workers created
1141 <                final ReentrantLock lock = this.workerLock;
1142 <                lock.lock();
1143 <                try {
1144 <                    if (workers == null) {
1145 <                        terminate();
1146 <                        transitionRunStateTo(TERMINATED);
1147 <                        termination.signalAll();
1148 <                    }
1149 <                } finally {
1150 <                    lock.unlock();
1151 <                }
1152 <            }
1153 <            terminateOnShutdown();
1154 <        }
1650 >        advanceRunLevel(SHUTDOWN);
1651 >        tryTerminate(false);
1652      }
1653  
1654      /**
# Line 1172 | Line 1669 | public class ForkJoinPool extends Abstra
1669       */
1670      public List<Runnable> shutdownNow() {
1671          checkPermission();
1672 <        terminate();
1672 >        tryTerminate(true);
1673          return Collections.emptyList();
1674      }
1675  
# Line 1182 | Line 1679 | public class ForkJoinPool extends Abstra
1679       * @return {@code true} if all tasks have completed following shut down
1680       */
1681      public boolean isTerminated() {
1682 <        return runStateOf(runControl) == TERMINATED;
1682 >        return runState >= TERMINATED;
1683      }
1684  
1685      /**
# Line 1196 | Line 1693 | public class ForkJoinPool extends Abstra
1693       * @return {@code true} if terminating but not yet terminated
1694       */
1695      public boolean isTerminating() {
1696 <        return runStateOf(runControl) == TERMINATING;
1696 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1697      }
1698  
1699      /**
# Line 1205 | Line 1702 | public class ForkJoinPool extends Abstra
1702       * @return {@code true} if this pool has been shut down
1703       */
1704      public boolean isShutdown() {
1705 <        return runStateOf(runControl) >= SHUTDOWN;
1209 <    }
1210 <
1211 <    /**
1212 <     * Returns true if pool is not terminating or terminated.
1213 <     * Used internally to suppress execution when terminating.
1214 <     */
1215 <    final boolean isProcessingTasks() {
1216 <        return runStateOf(runControl) < TERMINATING;
1705 >        return runState >= SHUTDOWN;
1706      }
1707  
1708      /**
# Line 1229 | Line 1718 | public class ForkJoinPool extends Abstra
1718       */
1719      public boolean awaitTermination(long timeout, TimeUnit unit)
1720          throws InterruptedException {
1232        long nanos = unit.toNanos(timeout);
1233        final ReentrantLock lock = this.workerLock;
1234        lock.lock();
1235        try {
1236            for (;;) {
1237                if (isTerminated())
1238                    return true;
1239                if (nanos <= 0)
1240                    return false;
1241                nanos = termination.awaitNanos(nanos);
1242            }
1243        } finally {
1244            lock.unlock();
1245        }
1246    }
1247
1248    // Shutdown and termination support
1249
1250    /**
1251     * Callback from terminating worker. Nulls out the corresponding
1252     * workers slot, and if terminating, tries to terminate; else
1253     * tries to shrink workers array.
1254     *
1255     * @param w the worker
1256     */
1257    final void workerTerminated(ForkJoinWorkerThread w) {
1258        updateStealCount(w);
1259        updateWorkerCount(-1);
1260        final ReentrantLock lock = this.workerLock;
1261        lock.lock();
1262        try {
1263            ForkJoinWorkerThread[] ws = workers;
1264            if (ws != null) {
1265                int idx = w.poolIndex;
1266                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1267                    ws[idx] = null;
1268                if (totalCountOf(workerCounts) == 0) {
1269                    terminate(); // no-op if already terminating
1270                    transitionRunStateTo(TERMINATED);
1271                    termination.signalAll();
1272                }
1273                else if (isProcessingTasks()) {
1274                    tryShrinkWorkerArray();
1275                    tryResumeSpare(true); // allow replacement
1276                }
1277            }
1278        } finally {
1279            lock.unlock();
1280        }
1281        signalIdleWorkers();
1282    }
1283
1284    /**
1285     * Initiates termination.
1286     */
1287    private void terminate() {
1288        if (transitionRunStateTo(TERMINATING)) {
1289            stopAllWorkers();
1290            resumeAllSpares();
1291            signalIdleWorkers();
1292            cancelQueuedSubmissions();
1293            cancelQueuedWorkerTasks();
1294            interruptUnterminatedWorkers();
1295            signalIdleWorkers(); // resignal after interrupt
1296        }
1297    }
1298
1299    /**
1300     * Possibly terminates when on shutdown state.
1301     */
1302    private void terminateOnShutdown() {
1303        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1304            terminate();
1305    }
1306
1307    /**
1308     * Clears out and cancels submissions.
1309     */
1310    private void cancelQueuedSubmissions() {
1311        ForkJoinTask<?> task;
1312        while ((task = pollSubmission()) != null)
1313            task.cancel(false);
1314    }
1315
1316    /**
1317     * Cleans out worker queues.
1318     */
1319    private void cancelQueuedWorkerTasks() {
1320        final ReentrantLock lock = this.workerLock;
1321        lock.lock();
1721          try {
1722 <            ForkJoinWorkerThread[] ws = workers;
1723 <            if (ws != null) {
1724 <                for (int i = 0; i < ws.length; ++i) {
1326 <                    ForkJoinWorkerThread t = ws[i];
1327 <                    if (t != null)
1328 <                        t.cancelTasks();
1329 <                }
1330 <            }
1331 <        } finally {
1332 <            lock.unlock();
1333 <        }
1334 <    }
1335 <
1336 <    /**
1337 <     * Sets each worker's status to terminating. Requires lock to avoid
1338 <     * conflicts with add/remove.
1339 <     */
1340 <    private void stopAllWorkers() {
1341 <        final ReentrantLock lock = this.workerLock;
1342 <        lock.lock();
1343 <        try {
1344 <            ForkJoinWorkerThread[] ws = workers;
1345 <            if (ws != null) {
1346 <                for (int i = 0; i < ws.length; ++i) {
1347 <                    ForkJoinWorkerThread t = ws[i];
1348 <                    if (t != null)
1349 <                        t.shutdownNow();
1350 <                }
1351 <            }
1352 <        } finally {
1353 <            lock.unlock();
1354 <        }
1355 <    }
1356 <
1357 <    /**
1358 <     * Interrupts all unterminated workers.  This is not required for
1359 <     * sake of internal control, but may help unstick user code during
1360 <     * shutdown.
1361 <     */
1362 <    private void interruptUnterminatedWorkers() {
1363 <        final ReentrantLock lock = this.workerLock;
1364 <        lock.lock();
1365 <        try {
1366 <            ForkJoinWorkerThread[] ws = workers;
1367 <            if (ws != null) {
1368 <                for (int i = 0; i < ws.length; ++i) {
1369 <                    ForkJoinWorkerThread t = ws[i];
1370 <                    if (t != null && !t.isTerminated()) {
1371 <                        try {
1372 <                            t.interrupt();
1373 <                        } catch (SecurityException ignore) {
1374 <                        }
1375 <                    }
1376 <                }
1377 <            }
1378 <        } finally {
1379 <            lock.unlock();
1380 <        }
1381 <    }
1382 <
1383 <    /*
1384 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1385 <     * are basic Treiber stack nodes, also used for spare stack.
1386 <     *
1387 <     * The event barrier has an event count and a wait queue (actually
1388 <     * a Treiber stack).  Workers are enabled to look for work when
1389 <     * the eventCount is incremented. If they fail to find work, they
1390 <     * may wait for next count. Upon release, threads help others wake
1391 <     * up.
1392 <     *
1393 <     * Synchronization events occur only in enough contexts to
1394 <     * maintain overall liveness:
1395 <     *
1396 <     *   - Submission of a new task to the pool
1397 <     *   - Resizes or other changes to the workers array
1398 <     *   - pool termination
1399 <     *   - A worker pushing a task on an empty queue
1400 <     *
1401 <     * The case of pushing a task occurs often enough, and is heavy
1402 <     * enough compared to simple stack pushes, to require special
1403 <     * handling: Method signalWork returns without advancing count if
1404 <     * the queue appears to be empty.  This would ordinarily result in
1405 <     * races causing some queued waiters not to be woken up. To avoid
1406 <     * this, the first worker enqueued in method sync rescans for
1407 <     * tasks after being enqueued, and helps signal if any are
1408 <     * found. This works well because the worker has nothing better to
1409 <     * do, and so might as well help alleviate the overhead and
1410 <     * contention on the threads actually doing work.  Also, since
1411 <     * event counts increments on task availability exist to maintain
1412 <     * liveness (rather than to force refreshes etc), it is OK for
1413 <     * callers to exit early if contending with another signaller.
1414 <     */
1415 <    static final class WaitQueueNode {
1416 <        WaitQueueNode next; // only written before enqueued
1417 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1418 <        final long count; // unused for spare stack
1419 <
1420 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1421 <            count = c;
1422 <            thread = w;
1423 <        }
1424 <
1425 <        /**
1426 <         * Wakes up waiter, returning false if known to already be awake
1427 <         */
1428 <        boolean signal() {
1429 <            ForkJoinWorkerThread t = thread;
1430 <            if (t == null)
1431 <                return false;
1432 <            thread = null;
1433 <            LockSupport.unpark(t);
1434 <            return true;
1435 <        }
1436 <    }
1437 <
1438 <    /**
1439 <     * Ensures that no thread is waiting for count to advance from the
1440 <     * current value of eventCount read on entry to this method, by
1441 <     * releasing waiting threads if necessary.
1442 <     */
1443 <    final void ensureSync() {
1444 <        long c = eventCount;
1445 <        WaitQueueNode q;
1446 <        while ((q = syncStack) != null && q.count < c) {
1447 <            if (casBarrierStack(q, null)) {
1448 <                do {
1449 <                    q.signal();
1450 <                } while ((q = q.next) != null);
1451 <                break;
1452 <            }
1453 <        }
1454 <    }
1455 <
1456 <    /**
1457 <     * Increments event count and releases waiting threads.
1458 <     */
1459 <    private void signalIdleWorkers() {
1460 <        long c;
1461 <        do {} while (!casEventCount(c = eventCount, c+1));
1462 <        ensureSync();
1463 <    }
1464 <
1465 <    /**
1466 <     * Signals threads waiting to poll a task. Because method sync
1467 <     * rechecks availability, it is OK to only proceed if queue
1468 <     * appears to be non-empty, and OK if CAS to increment count
1469 <     * fails (since some other thread succeeded).
1470 <     */
1471 <    final void signalWork() {
1472 <        if (syncStack != null) {
1473 <            long c;
1474 <            casEventCount(c = eventCount, c+1);
1475 <            WaitQueueNode q = syncStack;
1476 <            if (q != null && q.count <= c &&
1477 <                (!casBarrierStack(q, q.next) || !q.signal()))
1478 <                ensureSync();
1479 <        }
1480 <    }
1481 <
1482 <    /**
1483 <     * Waits until event count advances from last value held by
1484 <     * caller, or if excess threads, caller is resumed as spare, or
1485 <     * caller or pool is terminating. Updates caller's event on exit.
1486 <     *
1487 <     * @param w the calling worker thread
1488 <     */
1489 <    final void sync(ForkJoinWorkerThread w) {
1490 <        updateStealCount(w); // Transfer w's count while it is idle
1491 <
1492 <        if (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1493 <            long prev = w.lastEventCount;
1494 <            WaitQueueNode node = null;
1495 <            WaitQueueNode h;
1496 <            long ec;
1497 <            while ((ec = eventCount) == prev &&
1498 <                   ((h = syncStack) == null || h.count == prev)) {
1499 <                if (node == null)
1500 <                    node = new WaitQueueNode(prev, w);
1501 <                if (casBarrierStack(node.next = h, node)) {
1502 <                    if (!Thread.interrupted() &&
1503 <                        node.thread != null &&
1504 <                        eventCount == prev &&
1505 <                        (h != null || // cover signalWork race
1506 <                         (!ForkJoinWorkerThread.hasQueuedTasks(workers) &&
1507 <                          eventCount == prev)))
1508 <                        LockSupport.park(this);
1509 <                    ec = eventCount;
1510 <                    if (node.thread != null) {
1511 <                        node.thread = null;
1512 <                        if (ec == prev)
1513 <                            casEventCount(prev, prev + 1); // help signal
1514 <                    }
1515 <                    break;
1516 <                }
1517 <            }
1518 <            w.lastEventCount = ec;
1519 <            ensureSync();
1520 <        }
1521 <    }
1522 <
1523 <    /**
1524 <     * Returns {@code true} if a new sync event occurred since last
1525 <     * call to sync or this method, if so, updating caller's count.
1526 <     */
1527 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1528 <        long lc = w.lastEventCount;
1529 <        long ec = eventCount;
1530 <        if (lc != ec)
1531 <            w.lastEventCount = ec;
1532 <        ensureSync();
1533 <        return lc != ec || lc != eventCount;
1534 <    }
1535 <
1536 <    //  Parallelism maintenance
1537 <
1538 <    /**
1539 <     * Decrements running count; if too low, adds spare.
1540 <     *
1541 <     * Conceptually, all we need to do here is add or resume a
1542 <     * spare thread when one is about to block (and remove or
1543 <     * suspend it later when unblocked -- see suspendIfSpare).
1544 <     * However, implementing this idea requires coping with
1545 <     * several problems: we have imperfect information about the
1546 <     * states of threads. Some count updates can and usually do
1547 <     * lag run state changes, despite arrangements to keep them
1548 <     * accurate (for example, when possible, updating counts
1549 <     * before signalling or resuming), especially when running on
1550 <     * dynamic JVMs that don't optimize the infrequent paths that
1551 <     * update counts. Generating too many threads can make these
1552 <     * problems become worse, because excess threads are more
1553 <     * likely to be context-switched with others, slowing them all
1554 <     * down, especially if there is no work available, so all are
1555 <     * busy scanning or idling.  Also, excess spare threads can
1556 <     * only be suspended or removed when they are idle, not
1557 <     * immediately when they aren't needed. So adding threads will
1558 <     * raise parallelism level for longer than necessary.  Also,
1559 <     * FJ applications often encounter highly transient peaks when
1560 <     * many threads are blocked joining, but for less time than it
1561 <     * takes to create or resume spares.
1562 <     *
1563 <     * @param joinMe if non-null, return early if done
1564 <     * @param maintainParallelism if true, try to stay within
1565 <     * target counts, else create only to avoid starvation
1566 <     * @return true if joinMe known to be done
1567 <     */
1568 <    final boolean preJoin(ForkJoinTask<?> joinMe,
1569 <                          boolean maintainParallelism) {
1570 <        maintainParallelism &= maintainsParallelism; // overrride
1571 <        boolean dec = false;  // true when running count decremented
1572 <        while (spareStack == null || !tryResumeSpare(dec)) {
1573 <            int counts = workerCounts;
1574 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1575 <                if (!needSpare(counts, maintainParallelism))
1576 <                    break;
1577 <                if (joinMe.status < 0)
1578 <                    return true;
1579 <                if (tryAddSpare(counts))
1580 <                    break;
1581 <            }
1582 <        }
1583 <        return false;
1584 <    }
1585 <
1586 <    /**
1587 <     * Same idea as preJoin
1588 <     */
1589 <    final boolean preBlock(ManagedBlocker blocker,
1590 <                           boolean maintainParallelism) {
1591 <        maintainParallelism &= maintainsParallelism;
1592 <        boolean dec = false;
1593 <        while (spareStack == null || !tryResumeSpare(dec)) {
1594 <            int counts = workerCounts;
1595 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1596 <                if (!needSpare(counts, maintainParallelism))
1597 <                    break;
1598 <                if (blocker.isReleasable())
1599 <                    return true;
1600 <                if (tryAddSpare(counts))
1601 <                    break;
1602 <            }
1603 <        }
1604 <        return false;
1605 <    }
1606 <
1607 <    /**
1608 <     * Returns {@code true} if a spare thread appears to be needed.
1609 <     * If maintaining parallelism, returns true when the deficit in
1610 <     * running threads is more than the surplus of total threads, and
1611 <     * there is apparently some work to do.  This self-limiting rule
1612 <     * means that the more threads that have already been added, the
1613 <     * less parallelism we will tolerate before adding another.
1614 <     *
1615 <     * @param counts current worker counts
1616 <     * @param maintainParallelism try to maintain parallelism
1617 <     */
1618 <    private boolean needSpare(int counts, boolean maintainParallelism) {
1619 <        int ps = parallelism;
1620 <        int rc = runningCountOf(counts);
1621 <        int tc = totalCountOf(counts);
1622 <        int runningDeficit = ps - rc;
1623 <        int totalSurplus = tc - ps;
1624 <        return (tc < maxPoolSize &&
1625 <                (rc == 0 || totalSurplus < 0 ||
1626 <                 (maintainParallelism &&
1627 <                  runningDeficit > totalSurplus &&
1628 <                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1629 <    }
1630 <
1631 <    /**
1632 <     * Adds a spare worker if lock available and no more than the
1633 <     * expected numbers of threads exist.
1634 <     *
1635 <     * @return true if successful
1636 <     */
1637 <    private boolean tryAddSpare(int expectedCounts) {
1638 <        final ReentrantLock lock = this.workerLock;
1639 <        int expectedRunning = runningCountOf(expectedCounts);
1640 <        int expectedTotal = totalCountOf(expectedCounts);
1641 <        boolean success = false;
1642 <        boolean locked = false;
1643 <        // confirm counts while locking; CAS after obtaining lock
1644 <        try {
1645 <            for (;;) {
1646 <                int s = workerCounts;
1647 <                int tc = totalCountOf(s);
1648 <                int rc = runningCountOf(s);
1649 <                if (rc > expectedRunning || tc > expectedTotal)
1650 <                    break;
1651 <                if (!locked && !(locked = lock.tryLock()))
1652 <                    break;
1653 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1654 <                    createAndStartSpare(tc);
1655 <                    success = true;
1656 <                    break;
1657 <                }
1658 <            }
1659 <        } finally {
1660 <            if (locked)
1661 <                lock.unlock();
1662 <        }
1663 <        return success;
1664 <    }
1665 <
1666 <    /**
1667 <     * Adds the kth spare worker. On entry, pool counts are already
1668 <     * adjusted to reflect addition.
1669 <     */
1670 <    private void createAndStartSpare(int k) {
1671 <        ForkJoinWorkerThread w = null;
1672 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1673 <        int len = ws.length;
1674 <        // Probably, we can place at slot k. If not, find empty slot
1675 <        if (k < len && ws[k] != null) {
1676 <            for (k = 0; k < len && ws[k] != null; ++k)
1677 <                ;
1678 <        }
1679 <        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1680 <            ws[k] = w;
1681 <            w.start();
1682 <        }
1683 <        else
1684 <            updateWorkerCount(-1); // adjust on failure
1685 <        signalIdleWorkers();
1686 <    }
1687 <
1688 <    /**
1689 <     * Suspends calling thread w if there are excess threads.  Called
1690 <     * only from sync.  Spares are enqueued in a Treiber stack using
1691 <     * the same WaitQueueNodes as barriers.  They are resumed mainly
1692 <     * in preJoin, but are also woken on pool events that require all
1693 <     * threads to check run state.
1694 <     *
1695 <     * @param w the caller
1696 <     */
1697 <    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1698 <        WaitQueueNode node = null;
1699 <        for (;;) {
1700 <            int p = parallelism;
1701 <            int s = workerCounts;
1702 <            int r = runningCountOf(s);
1703 <            int t = totalCountOf(s);
1704 <            // use t as bound if r transiently out of sync
1705 <            if (t <= p || r <= p)
1706 <                return false; // not a spare
1707 <            if (node == null)
1708 <                node = new WaitQueueNode(0, w);
1709 <            if (casWorkerCounts(s, workerCountsFor(t, r - 1)))
1710 <                break;
1711 <        }
1712 <        // push onto stack
1713 <        do {} while (!casSpareStack(node.next = spareStack, node));
1714 <        // block until released by resumeSpare
1715 <        while (!Thread.interrupted() && node.thread != null)
1716 <            LockSupport.park(this);
1717 <        return true;
1718 <    }
1719 <
1720 <    /**
1721 <     * Tries to pop and resume a spare thread.
1722 <     *
1723 <     * @param updateCount if true, increment running count on success
1724 <     * @return true if successful
1725 <     */
1726 <    private boolean tryResumeSpare(boolean updateCount) {
1727 <        WaitQueueNode q;
1728 <        while ((q = spareStack) != null) {
1729 <            if (casSpareStack(q, q.next)) {
1730 <                if (updateCount)
1731 <                    updateRunningCount(1);
1732 <                q.signal();
1733 <                return true;
1734 <            }
1735 <        }
1736 <        return false;
1737 <    }
1738 <
1739 <    /**
1740 <     * Pops and resumes all spare threads. Same idea as ensureSync.
1741 <     *
1742 <     * @return true if any spares released
1743 <     */
1744 <    private boolean resumeAllSpares() {
1745 <        WaitQueueNode q;
1746 <        while ( (q = spareStack) != null) {
1747 <            if (casSpareStack(q, null)) {
1748 <                do {
1749 <                    updateRunningCount(1);
1750 <                    q.signal();
1751 <                } while ((q = q.next) != null);
1752 <                return true;
1753 <            }
1754 <        }
1755 <        return false;
1756 <    }
1757 <
1758 <    /**
1759 <     * Pops and shuts down excessive spare threads. Call only while
1760 <     * holding lock. This is not guaranteed to eliminate all excess
1761 <     * threads, only those suspended as spares, which are the ones
1762 <     * unlikely to be needed in the future.
1763 <     */
1764 <    private void trimSpares() {
1765 <        int surplus = totalCountOf(workerCounts) - parallelism;
1766 <        WaitQueueNode q;
1767 <        while (surplus > 0 && (q = spareStack) != null) {
1768 <            if (casSpareStack(q, null)) {
1769 <                do {
1770 <                    updateRunningCount(1);
1771 <                    ForkJoinWorkerThread w = q.thread;
1772 <                    if (w != null && surplus > 0 &&
1773 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1774 <                        --surplus;
1775 <                    q.signal();
1776 <                } while ((q = q.next) != null);
1777 <            }
1722 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1723 >        } catch (TimeoutException ex) {
1724 >            return false;
1725          }
1726      }
1727  
# Line 1782 | Line 1729 | public class ForkJoinPool extends Abstra
1729       * Interface for extending managed parallelism for tasks running
1730       * in {@link ForkJoinPool}s.
1731       *
1732 <     * <p>A {@code ManagedBlocker} provides two methods.
1733 <     * Method {@code isReleasable} must return {@code true} if
1734 <     * blocking is not necessary. Method {@code block} blocks the
1735 <     * current thread if necessary (perhaps internally invoking
1736 <     * {@code isReleasable} before actually blocking).
1732 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1733 >     * {@code isReleasable} must return {@code true} if blocking is
1734 >     * not necessary. Method {@code block} blocks the current thread
1735 >     * if necessary (perhaps internally invoking {@code isReleasable}
1736 >     * before actually blocking). The unusual methods in this API
1737 >     * accommodate synchronizers that may, but don't usually, block
1738 >     * for long periods. Similarly, they allow more efficient internal
1739 >     * handling of cases in which additional workers may be, but
1740 >     * usually are not, needed to ensure sufficient parallelism.
1741 >     * Toward this end, implementations of method {@code isReleasable}
1742 >     * must be amenable to repeated invocation.
1743       *
1744       * <p>For example, here is a ManagedBlocker based on a
1745       * ReentrantLock:
# Line 1804 | Line 1757 | public class ForkJoinPool extends Abstra
1757       *     return hasLock || (hasLock = lock.tryLock());
1758       *   }
1759       * }}</pre>
1760 +     *
1761 +     * <p>Here is a class that possibly blocks waiting for an
1762 +     * item on a given queue:
1763 +     *  <pre> {@code
1764 +     * class QueueTaker<E> implements ManagedBlocker {
1765 +     *   final BlockingQueue<E> queue;
1766 +     *   volatile E item = null;
1767 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1768 +     *   public boolean block() throws InterruptedException {
1769 +     *     if (item == null)
1770 +     *       item = queue.take();
1771 +     *     return true;
1772 +     *   }
1773 +     *   public boolean isReleasable() {
1774 +     *     return item != null || (item = queue.poll()) != null;
1775 +     *   }
1776 +     *   public E getItem() { // call after pool.managedBlock completes
1777 +     *     return item;
1778 +     *   }
1779 +     * }}</pre>
1780       */
1781      public static interface ManagedBlocker {
1782          /**
# Line 1827 | Line 1800 | public class ForkJoinPool extends Abstra
1800       * Blocks in accord with the given blocker.  If the current thread
1801       * is a {@link ForkJoinWorkerThread}, this method possibly
1802       * arranges for a spare thread to be activated if necessary to
1803 <     * ensure parallelism while the current thread is blocked.
1831 <     *
1832 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1833 <     * supports it ({@link #getMaintainsParallelism}), this method
1834 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1835 <     * it activates a thread only if necessary to avoid complete
1836 <     * starvation. This option may be preferable when blockages use
1837 <     * timeouts, or are almost always brief.
1803 >     * ensure sufficient parallelism while the current thread is blocked.
1804       *
1805       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1806       * behaviorally equivalent to
# Line 1848 | Line 1814 | public class ForkJoinPool extends Abstra
1814       * first be expanded to ensure parallelism, and later adjusted.
1815       *
1816       * @param blocker the blocker
1851     * @param maintainParallelism if {@code true} and supported by
1852     * this pool, attempt to maintain the pool's nominal parallelism;
1853     * otherwise activate a thread only if necessary to avoid
1854     * complete starvation.
1817       * @throws InterruptedException if blocker.block did so
1818       */
1819 <    public static void managedBlock(ManagedBlocker blocker,
1858 <                                    boolean maintainParallelism)
1819 >    public static void managedBlock(ManagedBlocker blocker)
1820          throws InterruptedException {
1821          Thread t = Thread.currentThread();
1822 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1823 <                             ((ForkJoinWorkerThread) t).pool : null);
1824 <        if (!blocker.isReleasable()) {
1825 <            try {
1826 <                if (pool == null ||
1827 <                    !pool.preBlock(blocker, maintainParallelism))
1867 <                    awaitBlocker(blocker);
1868 <            } finally {
1869 <                if (pool != null)
1870 <                    pool.updateRunningCount(1);
1871 <            }
1822 >        if (t instanceof ForkJoinWorkerThread) {
1823 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1824 >            w.pool.awaitBlocker(blocker);
1825 >        }
1826 >        else {
1827 >            do {} while (!blocker.isReleasable() && !blocker.block());
1828          }
1873    }
1874
1875    private static void awaitBlocker(ManagedBlocker blocker)
1876        throws InterruptedException {
1877        do {} while (!blocker.isReleasable() && !blocker.block());
1829      }
1830  
1831      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1892 | Line 1843 | public class ForkJoinPool extends Abstra
1843      // Unsafe mechanics
1844  
1845      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1895    private static final long eventCountOffset =
1896        objectFieldOffset("eventCount", ForkJoinPool.class);
1846      private static final long workerCountsOffset =
1847          objectFieldOffset("workerCounts", ForkJoinPool.class);
1848 <    private static final long runControlOffset =
1849 <        objectFieldOffset("runControl", ForkJoinPool.class);
1850 <    private static final long syncStackOffset =
1851 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1852 <    private static final long spareStackOffset =
1853 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1854 <
1855 <    private boolean casEventCount(long cmp, long val) {
1856 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1857 <    }
1909 <    private boolean casWorkerCounts(int cmp, int val) {
1910 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1911 <    }
1912 <    private boolean casRunControl(int cmp, int val) {
1913 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1914 <    }
1915 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1916 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1917 <    }
1918 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1919 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1920 <    }
1848 >    private static final long runStateOffset =
1849 >        objectFieldOffset("runState", ForkJoinPool.class);
1850 >    private static final long eventCountOffset =
1851 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1852 >    private static final long eventWaitersOffset =
1853 >        objectFieldOffset("eventWaiters", ForkJoinPool.class);
1854 >    private static final long stealCountOffset =
1855 >        objectFieldOffset("stealCount", ForkJoinPool.class);
1856 >    private static final long spareWaitersOffset =
1857 >        objectFieldOffset("spareWaiters", ForkJoinPool.class);
1858  
1859      private static long objectFieldOffset(String field, Class<?> klazz) {
1860          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines