ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.52 by dl, Sat Dec 5 11:39:03 2009 UTC vs.
Revision 1.53 by dl, Mon Apr 5 15:52:26 2010 UTC

# Line 13 | Line 13 | import java.util.Arrays;
13   import java.util.Collection;
14   import java.util.Collections;
15   import java.util.List;
16 import java.util.concurrent.locks.Condition;
16   import java.util.concurrent.locks.LockSupport;
17   import java.util.concurrent.locks.ReentrantLock;
18   import java.util.concurrent.atomic.AtomicInteger;
19 < import java.util.concurrent.atomic.AtomicLong;
19 > import java.util.concurrent.CountDownLatch;
20  
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
# Line 53 | Line 52 | import java.util.concurrent.atomic.Atomi
52   * ({@link #setParallelism}). The total number of threads may be
53   * limited using method {@link #setMaximumPoolSize}, in which case it
54   * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks.
55 > * the lack of available threads to process new tasks. When the pool
56 > * is executing tasks, these and other configuration setting methods
57 > * may only gradually affect actual pool sizes. It is normally best
58 > * practice to invoke these methods only when the pool is known to be
59 > * quiescent.
60   *
61   * <p>In addition to execution and lifecycle control methods, this
62   * class provides status check methods (for example
# Line 94 | Line 97 | import java.util.concurrent.atomic.Atomi
97   public class ForkJoinPool extends AbstractExecutorService {
98  
99      /*
100 <     * See the extended comments interspersed below for design,
101 <     * rationale, and walkthroughs.
100 >     * Implementation Overview
101 >     *
102 >     * This class provides the central bookkeeping and control for a
103 >     * set of worker threads: Submissions from non-FJ threads enter
104 >     * into a submission queue. Workers take these tasks and typically
105 >     * split them into subtasks that may be stolen by other workers.
106 >     * The main work-stealing mechanics implemented in class
107 >     * ForkJoinWorkerThread give first priority to processing tasks
108 >     * from their own queues (LIFO or FIFO, depending on mode), then
109 >     * to randomized FIFO steals of tasks in other worker queues, and
110 >     * lastly to new submissions. These mechanics do not consider
111 >     * affinities, loads, cache localities, etc, so rarely provide the
112 >     * best possible performance on a given machine, but portably
113 >     * provide good throughput by averaging over these factors.
114 >     * (Further, even if we did try to use such information, we do not
115 >     * usually have a basis for exploiting it. For example, some sets
116 >     * of tasks profit from cache affinities, but others are harmed by
117 >     * cache pollution effects.)
118 >     *
119 >     * The main throughput advantages of work-stealing stem from
120 >     * decentralized control -- workers mostly steal tasks from each
121 >     * other. We do not want to negate this by creating bottlenecks
122 >     * implementing the management responsibilities of this class. So
123 >     * we use a collection of techniques that avoid, reduce, or cope
124 >     * well with contention. These entail several instances of
125 >     * bit-packing into CASable fields to maintain only the minimally
126 >     * required atomicity. To enable such packing, we restrict maximum
127 >     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
128 >     * bit field), which is far in excess of normal operating range.
129 >     * Even though updates to some of these bookkeeping fields do
130 >     * sometimes contend with each other, they don't normally
131 >     * cache-contend with updates to others enough to warrant memory
132 >     * padding or isolation. So they are all held as fields of
133 >     * ForkJoinPool objects.  The main capabilities are as follows:
134 >     *
135 >     * 1. Creating and removing workers. Workers are recorded in the
136 >     * "workers" array. This is an array as opposed to some other data
137 >     * structure to support index-based random steals by workers.
138 >     * Updates to the array recording new workers and unrecording
139 >     * terminated ones are protected from each other by a lock
140 >     * (workerLock) but the array is otherwise concurrently readable,
141 >     * and accessed directly by workers. To simplify index-based
142 >     * operations, the array size is always a power of two, and all
143 >     * readers must tolerate null slots. Currently, all but the first
144 >     * worker thread creation is on-demand, triggered by task
145 >     * submissions, replacement of terminated workers, and/or
146 >     * compensation for blocked workers. However, all other support
147 >     * code is set up to work with other policies.
148 >     *
149 >     * 2. Bookkeeping for dynamically adding and removing workers. We
150 >     * maintain a given level of parallelism (or, if
151 >     * maintainsParallelism is false, at least avoid starvation). When
152 >     * some workers are known to be blocked (on joins or via
153 >     * ManagedBlocker), we may create or resume others to take their
154 >     * place until they unblock (see below). Implementing this
155 >     * requires counts of the number of "running" threads (i.e., those
156 >     * that are neither blocked nor artifically suspended) as well as
157 >     * the total number.  These two values are packed into one field,
158 >     * "workerCounts" because we need accurate snapshots when deciding
159 >     * to create, resume or suspend.  To support these decisions,
160 >     * updates must be prospective (not retrospective).  For example,
161 >     * the running count is decremented before blocking by a thread
162 >     * about to block, but incremented by the thread about to unblock
163 >     * it. (In a few cases, these prospective updates may need to be
164 >     * rolled back, for example when deciding to create a new worker
165 >     * but the thread factory fails or returns null. In these cases,
166 >     * we are no worse off wrt other decisions than we would be
167 >     * otherwise.)  Updates to the workerCounts field sometimes
168 >     * transiently encounter a fair amount of contention when join
169 >     * dependencies are such that many threads block or unblock at
170 >     * about the same time. We alleviate this by sometimes bundling
171 >     * updates (for example blocking one thread on join and resuming a
172 >     * spare cancel each other out), and in most other cases
173 >     * performing an alternative action (like releasing waiters and
174 >     * finding spares; see below) as a more productive form of
175 >     * backoff.
176 >     *
177 >     * 3. Maintaining global run state. The run state of the pool
178 >     * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
179 >     * those in other Executor implementations, as well as a count of
180 >     * "active" workers -- those that are, or soon will be, or
181 >     * recently were executing tasks. The runLevel and active count
182 >     * are packed together in order to correctly trigger shutdown and
183 >     * termination. Without care, active counts can be subject to very
184 >     * high contention.  We substantially reduce this contention by
185 >     * relaxing update rules.  A worker must claim active status
186 >     * prospectively, by activating if it sees that a submitted or
187 >     * stealable task exists (it may find after activating that the
188 >     * task no longer exists). It stays active while processing this
189 >     * task (if it exists) and any other local subtasks it produces,
190 >     * until it cannot find any other tasks. It then tries
191 >     * inactivating (see method preStep), but upon update contention
192 >     * instead scans for more tasks, later retrying inactivation if it
193 >     * doesn't find any.
194 >     *
195 >     * 4. Managing idle workers waiting for tasks. We cannot let
196 >     * workers spin indefinitely scanning for tasks when none are
197 >     * available. On the other hand, we must quickly prod them into
198 >     * action when new tasks are submitted or generated.  We
199 >     * park/unpark these idle workers using an event-count scheme.
200 >     * Field eventCount is incremented upon events that may enable
201 >     * workers that previously could not find a task to now find one:
202 >     * Submission of a new task to the pool, or another worker pushing
203 >     * a task onto a previously empty queue.  (We also use this
204 >     * mechanism for termination and reconfiguration actions that
205 >     * require wakeups of idle workers).  Each worker maintains its
206 >     * last known event count, and blocks when a scan for work did not
207 >     * find a task AND its lastEventCount matches the current
208 >     * eventCount. Waiting idle workers are recorded in a variant of
209 >     * Treiber stack headed by field eventWaiters which, when nonzero,
210 >     * encodes the thread index and count awaited for by the worker
211 >     * thread most recently calling eventSync. This thread in turn has
212 >     * a record (field nextEventWaiter) for the next waiting worker.
213 >     * In addition to allowing simpler decisions about need for
214 >     * wakeup, the event count bits in eventWaiters serve the role of
215 >     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
216 >     * in task diffusion, workers not otherwise occupied may invoke
217 >     * method releaseWaiters, that removes and signals (unparks)
218 >     * workers not waiting on current count. To minimize task
219 >     * production stalls associate with signalling, any worker pushing
220 >     * a task on an empty queue invokes the weaker method signalWork,
221 >     * that only releases idle workers until it detects interference
222 >     * by other threads trying to release, and lets them take
223 >     * over. The net effect is a tree-like diffusion of signals, where
224 >     * released threads and possibly others) help with unparks.  To
225 >     * further reduce contention effects a bit, failed CASes to
226 >     * increment field eventCount are tolerated without retries.
227 >     * Conceptually they are merged into the same event, which is OK
228 >     * when their only purpose is to enable workers to scan for work.
229 >     *
230 >     * 5. Managing suspension of extra workers. When a worker is about
231 >     * to block waiting for a join (or via ManagedBlockers), we may
232 >     * create a new thread to maintain parallelism level, or at least
233 >     * avoid starvation (see below). Usually, extra threads are needed
234 >     * for only very short periods, yet join dependencies are such
235 >     * that we sometimes need them in bursts. Rather than create new
236 >     * threads each time this happens, we suspend no-longer-needed
237 >     * extra ones as "spares". For most purposes, we don't distinguish
238 >     * "extra" spare threads from normal "core" threads: On each call
239 >     * to preStep (the only point at which we can do this) a worker
240 >     * checks to see if there are now too many running workers, and if
241 >     * so, suspends itself.  Methods preJoin and doBlock look for
242 >     * suspended threads to resume before considering creating a new
243 >     * replacement. We don't need a special data structure to maintain
244 >     * spares; simply scanning the workers array looking for
245 >     * worker.isSuspended() is fine because the calling thread is
246 >     * otherwise not doing anything useful anyway; we are at least as
247 >     * happy if after locating a spare, the caller doesn't actually
248 >     * block because the join is ready before we try to adjust and
249 >     * compensate.  Note that this is intrinsically racy.  One thread
250 >     * may become a spare at about the same time as another is
251 >     * needlessly being created. We counteract this and related slop
252 >     * in part by requiring resumed spares to immediately recheck (in
253 >     * preStep) to see whether they they should re-suspend. The only
254 >     * effective difference between "extra" and "core" threads is that
255 >     * we allow the "extra" ones to time out and die if they are not
256 >     * resumed within a keep-alive interval of a few seconds. This is
257 >     * implemented mainly within ForkJoinWorkerThread, but requires
258 >     * some coordination (isTrimmed() -- meaning killed while
259 >     * suspended) to correctly maintain pool counts.
260 >     *
261 >     * 6. Deciding when to create new workers. The main dynamic
262 >     * control in this class is deciding when to create extra threads,
263 >     * in methods preJoin and doBlock. We always need to create one
264 >     * when the number of running threads becomes zero. But because
265 >     * blocked joins are typically dependent, we don't necessarily
266 >     * need or want one-to-one replacement. Using a one-to-one
267 >     * compensation rule often leads to enough useless overhead
268 >     * creating, suspending, resuming, and/or killing threads to
269 >     * signficantly degrade throughput.  We use a rule reflecting the
270 >     * idea that, the more spare threads you already have, the more
271 >     * evidence you need to create another one; where "evidence" is
272 >     * expressed as the current deficit -- target minus running
273 >     * threads. To reduce flickering and drift around target values,
274 >     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
275 >     * (where dc is deficit, sc is number of spare threads and pc is
276 >     * target parallelism.)  This effectively reduces churn at the
277 >     * price of systematically undershooting target parallelism when
278 >     * many threads are blocked.  However, biasing toward undeshooting
279 >     * partially compensates for the above mechanics to suspend extra
280 >     * threads, that normally lead to overshoot because we can only
281 >     * suspend workers in-between top-level actions. It also better
282 >     * copes with the fact that some of the methods in this class tend
283 >     * to never become compiled (but are interpreted), so some
284 >     * components of the entire set of controls might execute many
285 >     * times faster than others. And similarly for cases where the
286 >     * apparent lack of work is just due to GC stalls and other
287 >     * transient system activity.
288 >     *
289 >     * 7. Maintaining other configuration parameters and monitoring
290 >     * statistics. Updates to fields controlling parallelism level,
291 >     * max size, etc can only meaningfully take effect for individual
292 >     * threads upon their next top-level actions; i.e., between
293 >     * stealing/running tasks/submission, which are separated by calls
294 >     * to preStep.  Memory ordering for these (assumed infrequent)
295 >     * reconfiguration calls is ensured by using reads and writes to
296 >     * volatile field workerCounts (that must be read in preStep anyway)
297 >     * as "fences" -- user-level reads are preceded by reads of
298 >     * workCounts, and writes are followed by no-op CAS to
299 >     * workerCounts. The values reported by other management and
300 >     * monitoring methods are either computed on demand, or are kept
301 >     * in fields that are only updated when threads are otherwise
302 >     * idle.
303 >     *
304 >     * Beware that there is a lot of representation-level coupling
305 >     * among classes ForkJoinPool, ForkJoinWorkerThread, and
306 >     * ForkJoinTask.  For example, direct access to "workers" array by
307 >     * workers, and direct access to ForkJoinTask.status by both
308 >     * ForkJoinPool and ForkJoinWorkerThread.  There is little point
309 >     * trying to reduce this, since any associated future changes in
310 >     * representations will need to be accompanied by algorithmic
311 >     * changes anyway.
312 >     *
313 >     * Style notes: There are lots of inline assignments (of form
314 >     * "while ((local = field) != 0)") which are usually the simplest
315 >     * way to ensure read orderings. Also several occurrences of the
316 >     * unusual "do {} while(!cas...)" which is the simplest way to
317 >     * force an update of a CAS'ed variable. There are also a few
318 >     * other coding oddities that help some methods perform reasonably
319 >     * even when interpreted (not compiled).
320 >     *
321 >     * The order of declarations in this file is: (1) statics (2)
322 >     * fields (along with constants used when unpacking some of them)
323 >     * (3) internal control methods (4) callbacks and other support
324 >     * for ForkJoinTask and ForkJoinWorkerThread classes, (5) exported
325 >     * methods (plus a few little helpers).
326       */
327  
101    /** Mask for packing and unpacking shorts */
102    private static final int  shortMask = 0xffff;
103
104    /** Max pool size -- must be a power of two minus 1 */
105    private static final int MAX_THREADS =  0x7FFF;
106
328      /**
329       * Factory for creating new {@link ForkJoinWorkerThread}s.
330       * A {@code ForkJoinWorkerThreadFactory} must be defined and used
# Line 127 | Line 348 | public class ForkJoinPool extends Abstra
348      static class  DefaultForkJoinWorkerThreadFactory
349          implements ForkJoinWorkerThreadFactory {
350          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
351 <            try {
131 <                return new ForkJoinWorkerThread(pool);
132 <            } catch (OutOfMemoryError oom)  {
133 <                return null;
134 <            }
351 >            return new ForkJoinWorkerThread(pool);
352          }
353      }
354  
# Line 167 | Line 384 | public class ForkJoinPool extends Abstra
384          new AtomicInteger();
385  
386      /**
387 <     * Array holding all worker threads in the pool. Initialized upon
388 <     * first use. Array size must be a power of two.  Updates and
389 <     * replacements are protected by workerLock, but it is always kept
390 <     * in a consistent enough state to be randomly accessed without
391 <     * locking by workers performing work-stealing.
387 >     * Absolute bound for parallelism level. Twice this number must
388 >     * fit into a 16bit field to enable word-packing for some counts.
389 >     */
390 >    private static final int MAX_THREADS = 0x7fff;
391 >
392 >    /**
393 >     * Array holding all worker threads in the pool.  Array size must
394 >     * be a power of two.  Updates and replacements are protected by
395 >     * workerLock, but the array is always kept in a consistent enough
396 >     * state to be randomly accessed without locking by workers
397 >     * performing work-stealing, as well as other traversal-based
398 >     * methods in this class. All readers must tolerate that some
399 >     * array slots may be null.
400       */
401      volatile ForkJoinWorkerThread[] workers;
402  
403      /**
404 <     * Lock protecting access to workers.
404 >     * Queue for external submissions.
405       */
406 <    private final ReentrantLock workerLock;
406 >    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
407  
408      /**
409 <     * Condition for awaitTermination.
409 >     * Lock protecting updates to workers array.
410       */
411 <    private final Condition termination;
411 >    private final ReentrantLock workerLock;
412  
413      /**
414 <     * The uncaught exception handler used when any worker
190 <     * abruptly terminates
414 >     * Latch released upon termination.
415       */
416 <    private Thread.UncaughtExceptionHandler ueh;
416 >    private final CountDownLatch terminationLatch;
417  
418      /**
419       * Creation factory for worker threads.
# Line 197 | Line 421 | public class ForkJoinPool extends Abstra
421      private final ForkJoinWorkerThreadFactory factory;
422  
423      /**
424 <     * Head of stack of threads that were created to maintain
425 <     * parallelism when other threads blocked, but have since
202 <     * suspended when the parallelism level rose.
424 >     * Sum of per-thread steal counts, updated only when threads are
425 >     * idle or terminating.
426       */
427 <    private volatile WaitQueueNode spareStack;
427 >    private volatile long stealCount;
428  
429      /**
430 <     * Sum of per-thread steal counts, updated only when threads are
431 <     * idle or terminating.
430 >     * Encoded record of top of treiber stack of threads waiting for
431 >     * events. The top 32 bits contain the count being waited for. The
432 >     * bottom word contains one plus the pool index of waiting worker
433 >     * thread.
434       */
435 <    private final AtomicLong stealCount;
435 >    private volatile long eventWaiters;
436 >
437 >    private static final int  EVENT_COUNT_SHIFT = 32;
438 >    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
439  
440      /**
441 <     * Queue for external submissions.
441 >     * A counter for events that may wake up worker threads:
442 >     *   - Submission of a new task to the pool
443 >     *   - A worker pushing a task on an empty queue
444 >     *   - termination and reconfiguration
445       */
446 <    private final LinkedTransferQueue<ForkJoinTask<?>> submissionQueue;
446 >    private volatile int eventCount;
447 >
448 >    /**
449 >     * Lifecycle control. The low word contains the number of workers
450 >     * that are (probably) executing tasks. This value is atomically
451 >     * incremented before a worker gets a task to run, and decremented
452 >     * when worker has no tasks and cannot find any.  Bits 16-18
453 >     * contain runLevel value. When all are zero, the pool is
454 >     * running. Level transitions are monotonic (running -> shutdown
455 >     * -> terminating -> terminated) so each transition adds a bit.
456 >     * These are bundled together to ensure consistent read for
457 >     * termination checks (i.e., that runLevel is at least SHUTDOWN
458 >     * and active threads is zero).
459 >     */
460 >    private volatile int runState;
461 >
462 >    // Note: The order among run level values matters.
463 >    private static final int RUNLEVEL_SHIFT     = 16;
464 >    private static final int SHUTDOWN           = 1 << RUNLEVEL_SHIFT;
465 >    private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
466 >    private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
467 >    private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
468 >    private static final int ONE_ACTIVE         = 1; // active update delta
469  
470      /**
471 <     * Head of Treiber stack for barrier sync. See below for explanation.
471 >     * Holds number of total (i.e., created and not yet terminated)
472 >     * and running (i.e., not blocked on joins or other managed sync)
473 >     * threads, packed together to ensure consistent snapshot when
474 >     * making decisions about creating and suspending spare
475 >     * threads. Updated only by CAS. Note that adding a new worker
476 >     * requires incrementing both counts, since workers start off in
477 >     * running state.  This field is also used for memory-fencing
478 >     * configuration parameters.
479 >     */
480 >    private volatile int workerCounts;
481 >
482 >    private static final int TOTAL_COUNT_SHIFT  = 16;
483 >    private static final int RUNNING_COUNT_MASK = (1 << TOTAL_COUNT_SHIFT) - 1;
484 >    private static final int ONE_RUNNING        = 1;
485 >    private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
486 >
487 >    /*
488 >     * Fields parallelism. maxPoolSize, locallyFifo,
489 >     * maintainsParallelism, and ueh are non-volatile, but external
490 >     * reads/writes use workerCount fences to ensure visability.
491       */
220    private volatile WaitQueueNode syncStack;
492  
493      /**
494 <     * The count for event barrier
494 >     * The target parallelism level.
495       */
496 <    private volatile long eventCount;
496 >    private int parallelism;
497  
498      /**
499 <     * Pool number, just for assigning useful names to worker threads
499 >     * The maximum allowed pool size.
500       */
501 <    private final int poolNumber;
501 >    private int maxPoolSize;
502  
503      /**
504 <     * The maximum allowed pool size
504 >     * True if use local fifo, not default lifo, for local polling
505 >     * Replicated by ForkJoinWorkerThreads
506       */
507 <    private volatile int maxPoolSize;
507 >    private boolean locallyFifo;
508  
509      /**
510 <     * The desired parallelism level, updated only under workerLock.
510 >     * Controls whether to add spares to maintain parallelism
511       */
512 <    private volatile int parallelism;
512 >    private boolean maintainsParallelism;
513  
514      /**
515 <     * True if use local fifo, not default lifo, for local polling
515 >     * The uncaught exception handler used when any worker
516 >     * abruptly terminates
517       */
518 <    private volatile boolean locallyFifo;
518 >    private Thread.UncaughtExceptionHandler ueh;
519  
520      /**
521 <     * Holds number of total (i.e., created and not yet terminated)
249 <     * and running (i.e., not blocked on joins or other managed sync)
250 <     * threads, packed into one int to ensure consistent snapshot when
251 <     * making decisions about creating and suspending spare
252 <     * threads. Updated only by CAS.  Note: CASes in
253 <     * updateRunningCount and preJoin assume that running active count
254 <     * is in low word, so need to be modified if this changes.
521 >     * Pool number, just for assigning useful names to worker threads
522       */
523 <    private volatile int workerCounts;
523 >    private final int poolNumber;
524  
525 <    private static int totalCountOf(int s)           { return s >>> 16;  }
259 <    private static int runningCountOf(int s)         { return s & shortMask; }
260 <    private static int workerCountsFor(int t, int r) { return (t << 16) + r; }
525 >    // utilities for updating fields
526  
527      /**
528 <     * Adds delta (which may be negative) to running count.  This must
264 <     * be called before (with negative arg) and after (with positive)
265 <     * any managed synchronization (i.e., mainly, joins).
528 >     * Adds delta to running count.  Used mainly by ForkJoinTask.
529       *
530       * @param delta the number to add
531       */
532      final void updateRunningCount(int delta) {
533 <        int s;
534 <        do {} while (!casWorkerCounts(s = workerCounts, s + delta));
533 >        int wc;
534 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
535 >                                               wc = workerCounts,
536 >                                               wc + delta));
537      }
538  
539      /**
540 <     * Adds delta (which may be negative) to both total and running
541 <     * count.  This must be called upon creation and termination of
277 <     * worker threads.
278 <     *
279 <     * @param delta the number to add
540 >     * Write fence for user modifications of pool parameters
541 >     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
542       */
543 <    private void updateWorkerCount(int delta) {
544 <        int d = delta + (delta << 16); // add to both lo and hi parts
545 <        int s;
546 <        do {} while (!casWorkerCounts(s = workerCounts, s + d));
543 >    private void workerCountWriteFence() {
544 >        int wc;
545 >        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 >                                 wc = workerCounts, wc);
547      }
548  
549      /**
550 <     * Lifecycle control. High word contains runState, low word
551 <     * contains the number of workers that are (probably) executing
552 <     * tasks. This value is atomically incremented before a worker
553 <     * gets a task to run, and decremented when worker has no tasks
554 <     * and cannot find any. These two fields are bundled together to
555 <     * support correct termination triggering.  Note: activeCount
294 <     * CAS'es cheat by assuming active count is in low word, so need
295 <     * to be modified if this changes
296 <     */
297 <    private volatile int runControl;
298 <
299 <    // RunState values. Order among values matters
300 <    private static final int RUNNING     = 0;
301 <    private static final int SHUTDOWN    = 1;
302 <    private static final int TERMINATING = 2;
303 <    private static final int TERMINATED  = 3;
304 <
305 <    private static int runStateOf(int c)             { return c >>> 16; }
306 <    private static int activeCountOf(int c)          { return c & shortMask; }
307 <    private static int runControlFor(int r, int a)   { return (r << 16) + a; }
550 >     * Read fence for external reads of pool parameters
551 >     * (parallelism. maxPoolSize, etc).
552 >     */
553 >    private void workerCountReadFence() {
554 >        int ignore = workerCounts;
555 >    }
556  
557      /**
558       * Tries incrementing active count; fails on contention.
559 <     * Called by workers before/during executing tasks.
559 >     * Called by workers before executing tasks.
560       *
561       * @return true on success
562       */
563      final boolean tryIncrementActiveCount() {
564 <        int c = runControl;
565 <        return casRunControl(c, c+1);
564 >        int c;
565 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
566 >                                        c = runState, c + ONE_ACTIVE);
567      }
568  
569      /**
570       * Tries decrementing active count; fails on contention.
571 <     * Possibly triggers termination on success.
323 <     * Called by workers when they can't find tasks.
324 <     *
325 <     * @return true on success
571 >     * Called when workers cannot find tasks to run.
572       */
573      final boolean tryDecrementActiveCount() {
574 <        int c = runControl;
575 <        int nextc = c - 1;
576 <        if (!casRunControl(c, nextc))
574 >        int c;
575 >        return UNSAFE.compareAndSwapInt(this, runStateOffset,
576 >                                        c = runState, c - ONE_ACTIVE);
577 >    }
578 >
579 >    /**
580 >     * Advances to at least the given level. Returns true if not
581 >     * already in at least the given level.
582 >     */
583 >    private boolean advanceRunLevel(int level) {
584 >        for (;;) {
585 >            int s = runState;
586 >            if ((s & level) != 0)
587 >                return false;
588 >            if (UNSAFE.compareAndSwapInt(this, runStateOffset, s, s | level))
589 >                return true;
590 >        }
591 >    }
592 >
593 >    // workers array maintenance
594 >
595 >    /**
596 >     * Records and returns a workers array index for new worker.
597 >     */
598 >    private int recordWorker(ForkJoinWorkerThread w) {
599 >        // Try using slot totalCount-1. If not available, scan and/or resize
600 >        int k = (workerCounts >>> TOTAL_COUNT_SHIFT) - 1;
601 >        final ReentrantLock lock = this.workerLock;
602 >        lock.lock();
603 >        try {
604 >            ForkJoinWorkerThread[] ws = workers;
605 >            int len = ws.length;
606 >            if (k < 0 || k >= len || ws[k] != null) {
607 >                for (k = 0; k < len && ws[k] != null; ++k)
608 >                    ;
609 >                if (k == len)
610 >                    ws = Arrays.copyOf(ws, len << 1);
611 >            }
612 >            ws[k] = w;
613 >            workers = ws; // volatile array write ensures slot visibility
614 >        } finally {
615 >            lock.unlock();
616 >        }
617 >        return k;
618 >    }
619 >
620 >    /**
621 >     * Nulls out record of worker in workers array
622 >     */
623 >    private void forgetWorker(ForkJoinWorkerThread w) {
624 >        int idx = w.poolIndex;
625 >        // Locking helps method recordWorker avoid unecessary expansion
626 >        final ReentrantLock lock = this.workerLock;
627 >        lock.lock();
628 >        try {
629 >            ForkJoinWorkerThread[] ws = workers;
630 >            if (idx >= 0 && idx < ws.length && ws[idx] == w) // verify
631 >                ws[idx] = null;
632 >        } finally {
633 >            lock.unlock();
634 >        }
635 >    }
636 >
637 >    // adding and removing workers
638 >
639 >    /**
640 >     * Tries to create and add new worker. Assumes that worker counts
641 >     * are already updated to accommodate the worker, so adjusts on
642 >     * failure.
643 >     *
644 >     * @return new worker or null if creation failed
645 >     */
646 >    private ForkJoinWorkerThread addWorker() {
647 >        ForkJoinWorkerThread w = null;
648 >        try {
649 >            w = factory.newThread(this);
650 >        } finally { // Adjust on either null or exceptional factory return
651 >            if (w == null) {
652 >                onWorkerCreationFailure();
653 >                return null;
654 >            }
655 >        }
656 >        w.start(recordWorker(w), locallyFifo, ueh);
657 >        return w;
658 >    }
659 >
660 >    /**
661 >     * Adjusts counts upon failure to create worker
662 >     */
663 >    private void onWorkerCreationFailure() {
664 >        int c;
665 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
666 >                                               c = workerCounts,
667 >                                               c - (ONE_RUNNING|ONE_TOTAL)));
668 >        tryTerminate(false); // in case of failure during shutdown
669 >    }
670 >
671 >    /**
672 >     * Create enough total workers to establish target parallelism,
673 >     * giving up if terminating or addWorker fails
674 >     */
675 >    private void ensureEnoughTotalWorkers() {
676 >        int wc;
677 >        while (runState < TERMINATING &&
678 >               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
679 >            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
680 >                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
681 >                 addWorker() == null))
682 >                break;
683 >        }
684 >    }
685 >
686 >    /**
687 >     * Final callback from terminating worker.  Removes record of
688 >     * worker from array, and adjusts counts. If pool is shutting
689 >     * down, tries to complete terminatation, else possibly replaces
690 >     * the worker.
691 >     *
692 >     * @param w the worker
693 >     */
694 >    final void workerTerminated(ForkJoinWorkerThread w) {
695 >        if (w.active) { // force inactive
696 >            w.active = false;
697 >            do {} while (!tryDecrementActiveCount());
698 >        }
699 >        forgetWorker(w);
700 >
701 >        // decrement total count, and if was running, running count
702 >        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703 >        int wc;
704 >        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705 >                                               wc = workerCounts, wc - unit));
706 >
707 >        accumulateStealCount(w); // collect final count
708 >        if (!tryTerminate(false))
709 >            ensureEnoughTotalWorkers();
710 >    }
711 >
712 >    // Waiting for and signalling events
713 >
714 >    /**
715 >     * Ensures eventCount on exit is different (mod 2^32) than on
716 >     * entry.  CAS failures are OK -- any change in count suffices.
717 >     */
718 >    private void advanceEventCount() {
719 >        int c;
720 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
721 >    }
722 >
723 >    /**
724 >     * Releases workers blocked on a count not equal to current count.
725 >     */
726 >    final void releaseWaiters() {
727 >        long top;
728 >        int id;
729 >        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
730 >               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
731 >            ForkJoinWorkerThread[] ws = workers;
732 >            ForkJoinWorkerThread w;
733 >            if (ws.length >= id && (w = ws[id - 1]) != null &&
734 >                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
735 >                                          top, w.nextWaiter))
736 >                LockSupport.unpark(w);
737 >        }
738 >    }
739 >
740 >    /**
741 >     * Advances eventCount and releases waiters until interference by
742 >     * other releasing threads is detected.
743 >     */
744 >    final void signalWork() {
745 >        int ec;
746 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
747 >        outer:for (;;) {
748 >            long top = eventWaiters;
749 >            ec = eventCount;
750 >            for (;;) {
751 >                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
752 >                int id = (int)(top & WAITER_INDEX_MASK);
753 >                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
754 >                    return;
755 >                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
756 >                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
757 >                                               top, top = w.nextWaiter))
758 >                    continue outer;      // possibly stale; reread
759 >                LockSupport.unpark(w);
760 >                if (top != eventWaiters) // let someone else take over
761 >                    return;
762 >            }
763 >        }
764 >    }
765 >
766 >    /**
767 >     * If worker is inactive, blocks until terminating or event count
768 >     * advances from last value held by worker; in any case helps
769 >     * release others.
770 >     *
771 >     * @param w the calling worker thread
772 >     */
773 >    private void eventSync(ForkJoinWorkerThread w) {
774 >        if (!w.active) {
775 >            int prev = w.lastEventCount;
776 >            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
777 >                            ((long)(w.poolIndex + 1)));
778 >            long top;
779 >            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
780 >                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
781 >                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
782 >                   eventCount == prev) {
783 >                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
784 >                                              w.nextWaiter = top, nextTop)) {
785 >                    accumulateStealCount(w); // transfer steals while idle
786 >                    Thread.interrupted();    // clear/ignore interrupt
787 >                    while (eventCount == prev)
788 >                        w.doPark();
789 >                    break;
790 >                }
791 >            }
792 >            w.lastEventCount = eventCount;
793 >        }
794 >        releaseWaiters();
795 >    }
796 >
797 >    /**
798 >     * Callback from workers invoked upon each top-level action (i.e.,
799 >     * stealing a task or taking a submission and running
800 >     * it). Performs one or both of the following:
801 >     *
802 >     * * If the worker cannot find work, updates its active status to
803 >     * inactive and updates activeCount unless there is contention, in
804 >     * which case it may try again (either in this or a subsequent
805 >     * call).  Additionally, awaits the next task event and/or helps
806 >     * wake up other releasable waiters.
807 >     *
808 >     * * If there are too many running threads, suspends this worker
809 >     * (first forcing inactivation if necessary).  If it is not
810 >     * resumed before a keepAlive elapses, the worker may be "trimmed"
811 >     * -- killed while suspended within suspendAsSpare. Otherwise,
812 >     * upon resume it rechecks to make sure that it is still needed.
813 >     *
814 >     * @param w the worker
815 >     * @param worked false if the worker scanned for work but didn't
816 >     * find any (in which case it may block waiting for work).
817 >     */
818 >    final void preStep(ForkJoinWorkerThread w, boolean worked) {
819 >        boolean active = w.active;
820 >        boolean inactivate = !worked & active;
821 >        for (;;) {
822 >            if (inactivate) {
823 >                int c = runState;
824 >                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
825 >                                             c, c - ONE_ACTIVE))
826 >                    inactivate = active = w.active = false;
827 >            }
828 >            int wc = workerCounts;
829 >            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
830 >                if (!worked)
831 >                    eventSync(w);
832 >                return;
833 >            }
834 >            if (!(inactivate |= active) &&  // must inactivate to suspend
835 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
836 >                                         wc, wc - ONE_RUNNING) &&
837 >                !w.suspendAsSpare())        // false if trimmed
838 >                return;
839 >        }
840 >    }
841 >
842 >    /**
843 >     * Adjusts counts and creates or resumes compensating threads for
844 >     * a worker about to block on task joinMe, returning early if
845 >     * joinMe becomes ready. First tries resuming an existing spare
846 >     * (which usually also avoids any count adjustment), but must then
847 >     * decrement running count to determine whether a new thread is
848 >     * needed. See above for fuller explanation.
849 >     */
850 >    final void preJoin(ForkJoinTask<?> joinMe) {
851 >        boolean dec = false;       // true when running count decremented
852 >        for (;;) {
853 >            releaseWaiters();      // help other threads progress
854 >
855 >            if (joinMe.status < 0) // surround spare search with done checks
856 >                return;
857 >            ForkJoinWorkerThread spare = null;
858 >            for (ForkJoinWorkerThread w : workers) {
859 >                if (w != null && w.isSuspended()) {
860 >                    spare = w;
861 >                    break;
862 >                }
863 >            }
864 >            if (joinMe.status < 0)
865 >                return;
866 >
867 >            if (spare != null && spare.tryUnsuspend()) {
868 >                if (dec || joinMe.requestSignal() < 0) {
869 >                    int c;
870 >                    do {} while (!UNSAFE.compareAndSwapInt(this,
871 >                                                           workerCountsOffset,
872 >                                                           c = workerCounts,
873 >                                                           c + ONE_RUNNING));
874 >                } // else no net count change
875 >                LockSupport.unpark(spare);
876 >                return;
877 >            }
878 >
879 >            int wc = workerCounts; // decrement running count
880 >            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 >                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 >                                                wc, wc -= ONE_RUNNING)) &&
883 >                joinMe.requestSignal() < 0) { // cannot block
884 >                int c;                        // back out
885 >                do {} while (!UNSAFE.compareAndSwapInt(this,
886 >                                                       workerCountsOffset,
887 >                                                       c = workerCounts,
888 >                                                       c + ONE_RUNNING));
889 >                return;
890 >            }
891 >
892 >            if (dec) {
893 >                int tc = wc >>> TOTAL_COUNT_SHIFT;
894 >                int pc = parallelism;
895 >                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896 >                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897 >                                 !maintainsParallelism)) ||
898 >                    tc >= maxPoolSize) // cannot add
899 >                    return;
900 >                if (spare == null &&
901 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 >                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 >                    addWorker();
904 >                    return;
905 >                }
906 >            }
907 >        }
908 >    }
909 >
910 >    /**
911 >     * Same idea as preJoin but with too many differing details to
912 >     * integrate: There are no task-based signal counts, and only one
913 >     * way to do the actual blocking. So for simplicity it is directly
914 >     * incorporated into this method.
915 >     */
916 >    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
917 >        throws InterruptedException {
918 >        maintainPar &= maintainsParallelism; // override
919 >        boolean dec = false;
920 >        boolean done = false;
921 >        for (;;) {
922 >            releaseWaiters();
923 >            if (done = blocker.isReleasable())
924 >                break;
925 >            ForkJoinWorkerThread spare = null;
926 >            for (ForkJoinWorkerThread w : workers) {
927 >                if (w != null && w.isSuspended()) {
928 >                    spare = w;
929 >                    break;
930 >                }
931 >            }
932 >            if (done = blocker.isReleasable())
933 >                break;
934 >            if (spare != null && spare.tryUnsuspend()) {
935 >                if (dec) {
936 >                    int c;
937 >                    do {} while (!UNSAFE.compareAndSwapInt(this,
938 >                                                           workerCountsOffset,
939 >                                                           c = workerCounts,
940 >                                                           c + ONE_RUNNING));
941 >                }
942 >                LockSupport.unpark(spare);
943 >                break;
944 >            }
945 >            int wc = workerCounts;
946 >            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
947 >                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
948 >                                               wc, wc -= ONE_RUNNING);
949 >            if (dec) {
950 >                int tc = wc >>> TOTAL_COUNT_SHIFT;
951 >                int pc = parallelism;
952 >                int dc = pc - (wc & RUNNING_COUNT_MASK);
953 >                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
954 >                                 !maintainPar)) ||
955 >                    tc >= maxPoolSize)
956 >                    break;
957 >                if (spare == null &&
958 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
959 >                                             wc + (ONE_RUNNING|ONE_TOTAL))){
960 >                    addWorker();
961 >                    break;
962 >                }
963 >            }
964 >        }
965 >
966 >        try {
967 >            if (!done)
968 >                do {} while (!blocker.isReleasable() && !blocker.block());
969 >        } finally {
970 >            if (dec) {
971 >                int c;
972 >                do {} while (!UNSAFE.compareAndSwapInt(this,
973 >                                                       workerCountsOffset,
974 >                                                       c = workerCounts,
975 >                                                       c + ONE_RUNNING));
976 >            }
977 >        }
978 >    }
979 >
980 >    /**
981 >     * Possibly initiates and/or completes termination.
982 >     *
983 >     * @param now if true, unconditionally terminate, else only
984 >     * if shutdown and empty queue and no active workers
985 >     * @return true if now terminating or terminated
986 >     */
987 >    private boolean tryTerminate(boolean now) {
988 >        if (now)
989 >            advanceRunLevel(SHUTDOWN); // ensure at least SHUTDOWN
990 >        else if (runState < SHUTDOWN ||
991 >                 !submissionQueue.isEmpty() ||
992 >                 (runState & ACTIVE_COUNT_MASK) != 0)
993              return false;
994 <        if (canTerminateOnShutdown(nextc))
995 <            terminateOnShutdown();
994 >
995 >        if (advanceRunLevel(TERMINATING))
996 >            startTerminating();
997 >
998 >        // Finish now if all threads terminated; else in some subsequent call
999 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1000 >            advanceRunLevel(TERMINATED);
1001 >            terminationLatch.countDown();
1002 >        }
1003          return true;
1004      }
1005  
1006      /**
1007 <     * Returns {@code true} if argument represents zero active count
339 <     * and nonzero runstate, which is the triggering condition for
340 <     * terminating on shutdown.
1007 >     * Actions on transition to TERMINATING
1008       */
1009 <    private static boolean canTerminateOnShutdown(int c) {
1010 <        // i.e. least bit is nonzero runState bit
1011 <        return ((c & -c) >>> 16) != 0;
1009 >    private void startTerminating() {
1010 >        // Clear out and cancel submissions, ignoring exceptions
1011 >        ForkJoinTask<?> task;
1012 >        while ((task = submissionQueue.poll()) != null) {
1013 >            try {
1014 >                task.cancel(false);
1015 >            } catch (Throwable ignore) {
1016 >            }
1017 >        }
1018 >        // Propagate run level
1019 >        for (ForkJoinWorkerThread w : workers) {
1020 >            if (w != null)
1021 >                w.shutdown();    // also resumes suspended workers
1022 >        }
1023 >        // Ensure no straggling local tasks
1024 >        for (ForkJoinWorkerThread w : workers) {
1025 >            if (w != null)
1026 >                w.cancelTasks();
1027 >        }
1028 >        // Wake up idle workers
1029 >        advanceEventCount();
1030 >        releaseWaiters();
1031 >        // Unstick pending joins
1032 >        for (ForkJoinWorkerThread w : workers) {
1033 >            if (w != null && !w.isTerminated()) {
1034 >                try {
1035 >                    w.interrupt();
1036 >                } catch (SecurityException ignore) {
1037 >                }
1038 >            }
1039 >        }
1040      }
1041  
1042 +    // misc support for ForkJoinWorkerThread
1043 +
1044      /**
1045 <     * Transition run state to at least the given state. Return true
349 <     * if not already at least given state.
1045 >     * Returns pool number
1046       */
1047 <    private boolean transitionRunStateTo(int state) {
1048 <        for (;;) {
1049 <            int c = runControl;
1050 <            if (runStateOf(c) >= state)
1051 <                return false;
1052 <            if (casRunControl(c, runControlFor(state, activeCountOf(c))))
1053 <                return true;
1047 >    final int getPoolNumber() {
1048 >        return poolNumber;
1049 >    }
1050 >
1051 >    /**
1052 >     * Accumulates steal count from a worker, clearing
1053 >     * the worker's value
1054 >     */
1055 >    final void accumulateStealCount(ForkJoinWorkerThread w) {
1056 >        int sc = w.stealCount;
1057 >        if (sc != 0) {
1058 >            long c;
1059 >            w.stealCount = 0;
1060 >            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1061 >                                                    c = stealCount, c + sc));
1062          }
1063      }
1064  
1065      /**
1066 <     * Controls whether to add spares to maintain parallelism
1066 >     * Returns the approximate (non-atomic) number of idle threads per
1067 >     * active thread.
1068       */
1069 <    private volatile boolean maintainsParallelism;
1069 >    final int idlePerActive() {
1070 >        int ac = runState;    // no mask -- artifically boosts during shutdown
1071 >        int pc = parallelism; // use targeted parallelism, not rc
1072 >        // Use exact results for small values, saturate past 4
1073 >        return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1074 >    }
1075 >
1076 >    /**
1077 >     * Returns the approximate (non-atomic) difference between running
1078 >     * and active counts.
1079 >     */
1080 >    final int inactiveCount() {
1081 >        return (workerCounts & RUNNING_COUNT_MASK) -
1082 >            (runState & ACTIVE_COUNT_MASK);
1083 >    }
1084 >
1085 >    // Public and protected methods
1086  
1087      // Constructors
1088  
# Line 428 | Line 1149 | public class ForkJoinPool extends Abstra
1149       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1150       */
1151      public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1152 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
432 <            throw new IllegalArgumentException();
1152 >        checkPermission();
1153          if (factory == null)
1154              throw new NullPointerException();
1155 <        checkPermission();
1156 <        this.factory = factory;
1155 >        if (parallelism <= 0 || parallelism > MAX_THREADS)
1156 >            throw new IllegalArgumentException();
1157 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1158 >        int arraySize = initialArraySizeFor(parallelism);
1159          this.parallelism = parallelism;
1160 +        this.factory = factory;
1161          this.maxPoolSize = MAX_THREADS;
1162          this.maintainsParallelism = true;
1163 <        this.poolNumber = poolNumberGenerator.incrementAndGet();
441 <        this.workerLock = new ReentrantLock();
442 <        this.termination = workerLock.newCondition();
443 <        this.stealCount = new AtomicLong();
1163 >        this.workers = new ForkJoinWorkerThread[arraySize];
1164          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1165 <        // worker array and workers are lazily constructed
1166 <    }
1167 <
1168 <    /**
1169 <     * Creates a new worker thread using factory.
450 <     *
451 <     * @param index the index to assign worker
452 <     * @return new worker, or null if factory failed
453 <     */
454 <    private ForkJoinWorkerThread createWorker(int index) {
455 <        Thread.UncaughtExceptionHandler h = ueh;
456 <        ForkJoinWorkerThread w = factory.newThread(this);
457 <        if (w != null) {
458 <            w.poolIndex = index;
459 <            w.setDaemon(true);
460 <            w.setAsyncMode(locallyFifo);
461 <            w.setName("ForkJoinPool-" + poolNumber + "-worker-" + index);
462 <            if (h != null)
463 <                w.setUncaughtExceptionHandler(h);
464 <        }
465 <        return w;
466 <    }
467 <
468 <    /**
469 <     * Returns a good size for worker array given pool size.
470 <     * Currently requires size to be a power of two.
471 <     */
472 <    private static int arraySizeFor(int poolSize) {
473 <        if (poolSize <= 1)
474 <            return 1;
475 <        // See Hackers Delight, sec 3.2
476 <        int c = poolSize >= MAX_THREADS ? MAX_THREADS : (poolSize - 1);
477 <        c |= c >>>  1;
478 <        c |= c >>>  2;
479 <        c |= c >>>  4;
480 <        c |= c >>>  8;
481 <        c |= c >>> 16;
482 <        return c + 1;
483 <    }
484 <
485 <    /**
486 <     * Creates or resizes array if necessary to hold newLength.
487 <     * Call only under exclusion.
488 <     *
489 <     * @return the array
490 <     */
491 <    private ForkJoinWorkerThread[] ensureWorkerArrayCapacity(int newLength) {
492 <        ForkJoinWorkerThread[] ws = workers;
493 <        if (ws == null)
494 <            return workers = new ForkJoinWorkerThread[arraySizeFor(newLength)];
495 <        else if (newLength > ws.length)
496 <            return workers = Arrays.copyOf(ws, arraySizeFor(newLength));
497 <        else
498 <            return ws;
499 <    }
500 <
501 <    /**
502 <     * Tries to shrink workers into smaller array after one or more terminate.
503 <     */
504 <    private void tryShrinkWorkerArray() {
505 <        ForkJoinWorkerThread[] ws = workers;
506 <        if (ws != null) {
507 <            int len = ws.length;
508 <            int last = len - 1;
509 <            while (last >= 0 && ws[last] == null)
510 <                --last;
511 <            int newLength = arraySizeFor(last+1);
512 <            if (newLength < len)
513 <                workers = Arrays.copyOf(ws, newLength);
514 <        }
515 <    }
516 <
517 <    /**
518 <     * Initializes workers if necessary.
519 <     */
520 <    final void ensureWorkerInitialization() {
521 <        ForkJoinWorkerThread[] ws = workers;
522 <        if (ws == null) {
523 <            final ReentrantLock lock = this.workerLock;
524 <            lock.lock();
525 <            try {
526 <                ws = workers;
527 <                if (ws == null) {
528 <                    int ps = parallelism;
529 <                    updateWorkerCount(ps);
530 <                    ws = ensureWorkerArrayCapacity(ps);
531 <                    for (int i = 0; i < ps; ++i) {
532 <                        ForkJoinWorkerThread w = createWorker(i);
533 <                        if (w != null) {
534 <                            ws[i] = w;
535 <                            w.start();
536 <                        }
537 <                        else
538 <                            updateWorkerCount(-1);
539 <                    }
540 <                }
541 <            } finally {
542 <                lock.unlock();
543 <            }
544 <        }
1165 >        this.workerLock = new ReentrantLock();
1166 >        this.terminationLatch = new CountDownLatch(1);
1167 >        // Start first worker; remaining workers added upon first submission
1168 >        workerCounts = ONE_RUNNING | ONE_TOTAL;
1169 >        addWorker();
1170      }
1171  
1172      /**
1173 <     * Worker creation and startup for threads added via setParallelism.
1174 <     */
1175 <    private void createAndStartAddedWorkers() {
1176 <        resumeAllSpares();  // Allow spares to convert to nonspare
1177 <        int ps = parallelism;
1178 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(ps);
1179 <        int len = ws.length;
1180 <        // Sweep through slots, to keep lowest indices most populated
1181 <        int k = 0;
1182 <        while (k < len) {
1183 <            if (ws[k] != null) {
559 <                ++k;
560 <                continue;
561 <            }
562 <            int s = workerCounts;
563 <            int tc = totalCountOf(s);
564 <            int rc = runningCountOf(s);
565 <            if (rc >= ps || tc >= ps)
566 <                break;
567 <            if (casWorkerCounts (s, workerCountsFor(tc+1, rc+1))) {
568 <                ForkJoinWorkerThread w = createWorker(k);
569 <                if (w != null) {
570 <                    ws[k++] = w;
571 <                    w.start();
572 <                }
573 <                else {
574 <                    updateWorkerCount(-1); // back out on failed creation
575 <                    break;
576 <                }
577 <            }
578 <        }
1173 >     * Returns initial power of two size for workers array.
1174 >     * @param pc the initial parallelism level
1175 >     */
1176 >    private static int initialArraySizeFor(int pc) {
1177 >        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1178 >        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1179 >        size |= size >>> 1;
1180 >        size |= size >>> 2;
1181 >        size |= size >>> 4;
1182 >        size |= size >>> 8;
1183 >        return size + 1;
1184      }
1185  
1186      // Execution methods
# Line 586 | Line 1191 | public class ForkJoinPool extends Abstra
1191      private <T> void doSubmit(ForkJoinTask<T> task) {
1192          if (task == null)
1193              throw new NullPointerException();
1194 <        if (isShutdown())
1194 >        if (runState >= SHUTDOWN)
1195              throw new RejectedExecutionException();
591        if (workers == null)
592            ensureWorkerInitialization();
1196          submissionQueue.offer(task);
1197 <        signalIdleWorkers();
1197 >        advanceEventCount();
1198 >        releaseWaiters();
1199 >        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1200 >            ensureEnoughTotalWorkers();
1201      }
1202  
1203      /**
# Line 687 | Line 1293 | public class ForkJoinPool extends Abstra
1293          return task;
1294      }
1295  
690
1296      /**
1297       * @throws NullPointerException       {@inheritDoc}
1298       * @throws RejectedExecutionException {@inheritDoc}
# Line 714 | Line 1319 | public class ForkJoinPool extends Abstra
1319          private static final long serialVersionUID = -7914297376763021607L;
1320      }
1321  
717    // Configuration and status settings and queries
718
1322      /**
1323       * Returns the factory used for constructing new workers.
1324       *
# Line 732 | Line 1335 | public class ForkJoinPool extends Abstra
1335       * @return the handler, or {@code null} if none
1336       */
1337      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1338 <        Thread.UncaughtExceptionHandler h;
1339 <        final ReentrantLock lock = this.workerLock;
737 <        lock.lock();
738 <        try {
739 <            h = ueh;
740 <        } finally {
741 <            lock.unlock();
742 <        }
743 <        return h;
1338 >        workerCountReadFence();
1339 >        return ueh;
1340      }
1341  
1342      /**
# Line 759 | Line 1355 | public class ForkJoinPool extends Abstra
1355      public Thread.UncaughtExceptionHandler
1356          setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1357          checkPermission();
1358 <        Thread.UncaughtExceptionHandler old = null;
1359 <        final ReentrantLock lock = this.workerLock;
1360 <        lock.lock();
765 <        try {
766 <            old = ueh;
1358 >        workerCountReadFence();
1359 >        Thread.UncaughtExceptionHandler old = ueh;
1360 >        if (h != old) {
1361              ueh = h;
1362 <            ForkJoinWorkerThread[] ws = workers;
1363 <            if (ws != null) {
1364 <                for (int i = 0; i < ws.length; ++i) {
1365 <                    ForkJoinWorkerThread w = ws[i];
772 <                    if (w != null)
773 <                        w.setUncaughtExceptionHandler(h);
774 <                }
1362 >            workerCountWriteFence();
1363 >            for (ForkJoinWorkerThread w : workers) {
1364 >                if (w != null)
1365 >                    w.setUncaughtExceptionHandler(h);
1366              }
776        } finally {
777            lock.unlock();
1367          }
1368          return old;
1369      }
1370  
782
1371      /**
1372       * Sets the target parallelism level of this pool.
1373       *
# Line 795 | Line 1383 | public class ForkJoinPool extends Abstra
1383          checkPermission();
1384          if (parallelism <= 0 || parallelism > maxPoolSize)
1385              throw new IllegalArgumentException();
1386 <        final ReentrantLock lock = this.workerLock;
1387 <        lock.lock();
1388 <        try {
1389 <            if (isProcessingTasks()) {
1390 <                int p = this.parallelism;
1391 <                this.parallelism = parallelism;
1392 <                if (workers != null) {
1393 <                    if (parallelism > p)
1394 <                        createAndStartAddedWorkers();
1395 <                    else
808 <                        trimSpares();
1386 >        workerCountReadFence();
1387 >        int pc = this.parallelism;
1388 >        if (pc != parallelism) {
1389 >            this.parallelism = parallelism;
1390 >            workerCountWriteFence();
1391 >            // Release spares. If too many, some will die after re-suspend
1392 >            for (ForkJoinWorkerThread w : workers) {
1393 >                if (w != null && w.tryUnsuspend()) {
1394 >                    updateRunningCount(1);
1395 >                    LockSupport.unpark(w);
1396                  }
1397              }
1398 <        } finally {
1399 <            lock.unlock();
1398 >            ensureEnoughTotalWorkers();
1399 >            advanceEventCount();
1400 >            releaseWaiters(); // force config recheck by existing workers
1401          }
814        signalIdleWorkers();
1402      }
1403  
1404      /**
# Line 820 | Line 1407 | public class ForkJoinPool extends Abstra
1407       * @return the targeted parallelism level of this pool
1408       */
1409      public int getParallelism() {
1410 +        //        workerCountReadFence(); // inlined below
1411 +        int ignore = workerCounts;
1412          return parallelism;
1413      }
1414  
# Line 832 | Line 1421 | public class ForkJoinPool extends Abstra
1421       * @return the number of worker threads
1422       */
1423      public int getPoolSize() {
1424 <        return totalCountOf(workerCounts);
1424 >        return workerCounts >>> TOTAL_COUNT_SHIFT;
1425      }
1426  
1427      /**
# Line 844 | Line 1433 | public class ForkJoinPool extends Abstra
1433       * @return the maximum
1434       */
1435      public int getMaximumPoolSize() {
1436 +        workerCountReadFence();
1437          return maxPoolSize;
1438      }
1439  
# Line 861 | Line 1451 | public class ForkJoinPool extends Abstra
1451          if (newMax < 0 || newMax > MAX_THREADS)
1452              throw new IllegalArgumentException();
1453          maxPoolSize = newMax;
1454 +        workerCountWriteFence();
1455      }
1456  
866
1457      /**
1458       * Returns {@code true} if this pool dynamically maintains its
1459       * target parallelism level. If false, new threads are added only
# Line 872 | Line 1462 | public class ForkJoinPool extends Abstra
1462       * @return {@code true} if maintains parallelism
1463       */
1464      public boolean getMaintainsParallelism() {
1465 +        workerCountReadFence();
1466          return maintainsParallelism;
1467      }
1468  
# Line 884 | Line 1475 | public class ForkJoinPool extends Abstra
1475       */
1476      public void setMaintainsParallelism(boolean enable) {
1477          maintainsParallelism = enable;
1478 +        workerCountWriteFence();
1479      }
1480  
1481      /**
# Line 900 | Line 1492 | public class ForkJoinPool extends Abstra
1492       * @see #getAsyncMode
1493       */
1494      public boolean setAsyncMode(boolean async) {
1495 +        workerCountReadFence();
1496          boolean oldMode = locallyFifo;
1497 <        locallyFifo = async;
1498 <        ForkJoinWorkerThread[] ws = workers;
1499 <        if (ws != null) {
1500 <            for (int i = 0; i < ws.length; ++i) {
1501 <                ForkJoinWorkerThread t = ws[i];
1502 <                if (t != null)
910 <                    t.setAsyncMode(async);
1497 >        if (oldMode != async) {
1498 >            locallyFifo = async;
1499 >            workerCountWriteFence();
1500 >            for (ForkJoinWorkerThread w : workers) {
1501 >                if (w != null)
1502 >                    w.setAsyncMode(async);
1503              }
1504          }
1505          return oldMode;
# Line 921 | Line 1513 | public class ForkJoinPool extends Abstra
1513       * @see #setAsyncMode
1514       */
1515      public boolean getAsyncMode() {
1516 +        workerCountReadFence();
1517          return locallyFifo;
1518      }
1519  
1520      /**
1521       * Returns an estimate of the number of worker threads that are
1522       * not blocked waiting to join tasks or for other managed
1523 <     * synchronization.
1523 >     * synchronization. This method may overestimate the
1524 >     * number of running threads.
1525       *
1526       * @return the number of worker threads
1527       */
1528      public int getRunningThreadCount() {
1529 <        return runningCountOf(workerCounts);
1529 >        return workerCounts & RUNNING_COUNT_MASK;
1530      }
1531  
1532      /**
# Line 943 | Line 1537 | public class ForkJoinPool extends Abstra
1537       * @return the number of active threads
1538       */
1539      public int getActiveThreadCount() {
1540 <        return activeCountOf(runControl);
947 <    }
948 <
949 <    /**
950 <     * Returns an estimate of the number of threads that are currently
951 <     * idle waiting for tasks. This method may underestimate the
952 <     * number of idle threads.
953 <     *
954 <     * @return the number of idle threads
955 <     */
956 <    final int getIdleThreadCount() {
957 <        int c = runningCountOf(workerCounts) - activeCountOf(runControl);
958 <        return (c <= 0) ? 0 : c;
1540 >        return runState & ACTIVE_COUNT_MASK;
1541      }
1542  
1543      /**
# Line 970 | Line 1552 | public class ForkJoinPool extends Abstra
1552       * @return {@code true} if all threads are currently idle
1553       */
1554      public boolean isQuiescent() {
1555 <        return activeCountOf(runControl) == 0;
1555 >        return (runState & ACTIVE_COUNT_MASK) == 0;
1556      }
1557  
1558      /**
# Line 985 | Line 1567 | public class ForkJoinPool extends Abstra
1567       * @return the number of steals
1568       */
1569      public long getStealCount() {
1570 <        return stealCount.get();
989 <    }
990 <
991 <    /**
992 <     * Accumulates steal count from a worker.
993 <     * Call only when worker known to be idle.
994 <     */
995 <    private void updateStealCount(ForkJoinWorkerThread w) {
996 <        int sc = w.getAndClearStealCount();
997 <        if (sc != 0)
998 <            stealCount.addAndGet(sc);
1570 >        return stealCount;
1571      }
1572  
1573      /**
# Line 1010 | Line 1582 | public class ForkJoinPool extends Abstra
1582       */
1583      public long getQueuedTaskCount() {
1584          long count = 0;
1585 <        ForkJoinWorkerThread[] ws = workers;
1586 <        if (ws != null) {
1587 <            for (int i = 0; i < ws.length; ++i) {
1016 <                ForkJoinWorkerThread t = ws[i];
1017 <                if (t != null)
1018 <                    count += t.getQueueSize();
1019 <            }
1585 >        for (ForkJoinWorkerThread w : workers) {
1586 >            if (w != null)
1587 >                count += w.getQueueSize();
1588          }
1589          return count;
1590      }
# Line 1072 | Line 1640 | public class ForkJoinPool extends Abstra
1640       */
1641      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1642          int n = submissionQueue.drainTo(c);
1643 <        ForkJoinWorkerThread[] ws = workers;
1644 <        if (ws != null) {
1645 <            for (int i = 0; i < ws.length; ++i) {
1078 <                ForkJoinWorkerThread w = ws[i];
1079 <                if (w != null)
1080 <                    n += w.drainTasksTo(c);
1081 <            }
1643 >        for (ForkJoinWorkerThread w : workers) {
1644 >            if (w != null)
1645 >                n += w.drainTasksTo(c);
1646          }
1647          return n;
1648      }
# Line 1091 | Line 1655 | public class ForkJoinPool extends Abstra
1655       * @return a string identifying this pool, as well as its state
1656       */
1657      public String toString() {
1094        int ps = parallelism;
1095        int wc = workerCounts;
1096        int rc = runControl;
1658          long st = getStealCount();
1659          long qt = getQueuedTaskCount();
1660          long qs = getQueuedSubmissionCount();
1661 +        int wc = workerCounts;
1662 +        int tc = wc >>> TOTAL_COUNT_SHIFT;
1663 +        int rc = wc & RUNNING_COUNT_MASK;
1664 +        int pc = parallelism;
1665 +        int rs = runState;
1666 +        int ac = rs & ACTIVE_COUNT_MASK;
1667          return super.toString() +
1668 <            "[" + runStateToString(runStateOf(rc)) +
1669 <            ", parallelism = " + ps +
1670 <            ", size = " + totalCountOf(wc) +
1671 <            ", active = " + activeCountOf(rc) +
1672 <            ", running = " + runningCountOf(wc) +
1668 >            "[" + runLevelToString(rs) +
1669 >            ", parallelism = " + pc +
1670 >            ", size = " + tc +
1671 >            ", active = " + ac +
1672 >            ", running = " + rc +
1673              ", steals = " + st +
1674              ", tasks = " + qt +
1675              ", submissions = " + qs +
1676              "]";
1677      }
1678  
1679 <    private static String runStateToString(int rs) {
1680 <        switch (rs) {
1681 <        case RUNNING: return "Running";
1682 <        case SHUTDOWN: return "Shutting down";
1683 <        case TERMINATING: return "Terminating";
1117 <        case TERMINATED: return "Terminated";
1118 <        default: throw new Error("Unknown run state");
1119 <        }
1679 >    private static String runLevelToString(int s) {
1680 >        return ((s & TERMINATED) != 0 ? "Terminated" :
1681 >                ((s & TERMINATING) != 0 ? "Terminating" :
1682 >                 ((s & SHUTDOWN) != 0 ? "Shutting down" :
1683 >                  "Running")));
1684      }
1685  
1122    // lifecycle control
1123
1686      /**
1687       * Initiates an orderly shutdown in which previously submitted
1688       * tasks are executed, but no new tasks will be accepted.
# Line 1135 | Line 1697 | public class ForkJoinPool extends Abstra
1697       */
1698      public void shutdown() {
1699          checkPermission();
1700 <        transitionRunStateTo(SHUTDOWN);
1701 <        if (canTerminateOnShutdown(runControl)) {
1140 <            if (workers == null) { // shutting down before workers created
1141 <                final ReentrantLock lock = this.workerLock;
1142 <                lock.lock();
1143 <                try {
1144 <                    if (workers == null) {
1145 <                        terminate();
1146 <                        transitionRunStateTo(TERMINATED);
1147 <                        termination.signalAll();
1148 <                    }
1149 <                } finally {
1150 <                    lock.unlock();
1151 <                }
1152 <            }
1153 <            terminateOnShutdown();
1154 <        }
1700 >        advanceRunLevel(SHUTDOWN);
1701 >        tryTerminate(false);
1702      }
1703  
1704      /**
# Line 1172 | Line 1719 | public class ForkJoinPool extends Abstra
1719       */
1720      public List<Runnable> shutdownNow() {
1721          checkPermission();
1722 <        terminate();
1722 >        tryTerminate(true);
1723          return Collections.emptyList();
1724      }
1725  
# Line 1182 | Line 1729 | public class ForkJoinPool extends Abstra
1729       * @return {@code true} if all tasks have completed following shut down
1730       */
1731      public boolean isTerminated() {
1732 <        return runStateOf(runControl) == TERMINATED;
1732 >        return runState >= TERMINATED;
1733      }
1734  
1735      /**
# Line 1196 | Line 1743 | public class ForkJoinPool extends Abstra
1743       * @return {@code true} if terminating but not yet terminated
1744       */
1745      public boolean isTerminating() {
1746 <        return runStateOf(runControl) == TERMINATING;
1746 >        return (runState & (TERMINATING|TERMINATED)) == TERMINATING;
1747      }
1748  
1749      /**
# Line 1205 | Line 1752 | public class ForkJoinPool extends Abstra
1752       * @return {@code true} if this pool has been shut down
1753       */
1754      public boolean isShutdown() {
1755 <        return runStateOf(runControl) >= SHUTDOWN;
1209 <    }
1210 <
1211 <    /**
1212 <     * Returns true if pool is not terminating or terminated.
1213 <     * Used internally to suppress execution when terminating.
1214 <     */
1215 <    final boolean isProcessingTasks() {
1216 <        return runStateOf(runControl) < TERMINATING;
1755 >        return runState >= SHUTDOWN;
1756      }
1757  
1758      /**
# Line 1229 | Line 1768 | public class ForkJoinPool extends Abstra
1768       */
1769      public boolean awaitTermination(long timeout, TimeUnit unit)
1770          throws InterruptedException {
1771 <        long nanos = unit.toNanos(timeout);
1233 <        final ReentrantLock lock = this.workerLock;
1234 <        lock.lock();
1235 <        try {
1236 <            for (;;) {
1237 <                if (isTerminated())
1238 <                    return true;
1239 <                if (nanos <= 0)
1240 <                    return false;
1241 <                nanos = termination.awaitNanos(nanos);
1242 <            }
1243 <        } finally {
1244 <            lock.unlock();
1245 <        }
1246 <    }
1247 <
1248 <    // Shutdown and termination support
1249 <
1250 <    /**
1251 <     * Callback from terminating worker. Nulls out the corresponding
1252 <     * workers slot, and if terminating, tries to terminate; else
1253 <     * tries to shrink workers array.
1254 <     *
1255 <     * @param w the worker
1256 <     */
1257 <    final void workerTerminated(ForkJoinWorkerThread w) {
1258 <        updateStealCount(w);
1259 <        updateWorkerCount(-1);
1260 <        final ReentrantLock lock = this.workerLock;
1261 <        lock.lock();
1262 <        try {
1263 <            ForkJoinWorkerThread[] ws = workers;
1264 <            if (ws != null) {
1265 <                int idx = w.poolIndex;
1266 <                if (idx >= 0 && idx < ws.length && ws[idx] == w)
1267 <                    ws[idx] = null;
1268 <                if (totalCountOf(workerCounts) == 0) {
1269 <                    terminate(); // no-op if already terminating
1270 <                    transitionRunStateTo(TERMINATED);
1271 <                    termination.signalAll();
1272 <                }
1273 <                else if (isProcessingTasks()) {
1274 <                    tryShrinkWorkerArray();
1275 <                    tryResumeSpare(true); // allow replacement
1276 <                }
1277 <            }
1278 <        } finally {
1279 <            lock.unlock();
1280 <        }
1281 <        signalIdleWorkers();
1282 <    }
1283 <
1284 <    /**
1285 <     * Initiates termination.
1286 <     */
1287 <    private void terminate() {
1288 <        if (transitionRunStateTo(TERMINATING)) {
1289 <            stopAllWorkers();
1290 <            resumeAllSpares();
1291 <            signalIdleWorkers();
1292 <            cancelQueuedSubmissions();
1293 <            cancelQueuedWorkerTasks();
1294 <            interruptUnterminatedWorkers();
1295 <            signalIdleWorkers(); // resignal after interrupt
1296 <        }
1297 <    }
1298 <
1299 <    /**
1300 <     * Possibly terminates when on shutdown state.
1301 <     */
1302 <    private void terminateOnShutdown() {
1303 <        if (!hasQueuedSubmissions() && canTerminateOnShutdown(runControl))
1304 <            terminate();
1305 <    }
1306 <
1307 <    /**
1308 <     * Clears out and cancels submissions.
1309 <     */
1310 <    private void cancelQueuedSubmissions() {
1311 <        ForkJoinTask<?> task;
1312 <        while ((task = pollSubmission()) != null)
1313 <            task.cancel(false);
1314 <    }
1315 <
1316 <    /**
1317 <     * Cleans out worker queues.
1318 <     */
1319 <    private void cancelQueuedWorkerTasks() {
1320 <        final ReentrantLock lock = this.workerLock;
1321 <        lock.lock();
1322 <        try {
1323 <            ForkJoinWorkerThread[] ws = workers;
1324 <            if (ws != null) {
1325 <                for (int i = 0; i < ws.length; ++i) {
1326 <                    ForkJoinWorkerThread t = ws[i];
1327 <                    if (t != null)
1328 <                        t.cancelTasks();
1329 <                }
1330 <            }
1331 <        } finally {
1332 <            lock.unlock();
1333 <        }
1334 <    }
1335 <
1336 <    /**
1337 <     * Sets each worker's status to terminating. Requires lock to avoid
1338 <     * conflicts with add/remove.
1339 <     */
1340 <    private void stopAllWorkers() {
1341 <        final ReentrantLock lock = this.workerLock;
1342 <        lock.lock();
1343 <        try {
1344 <            ForkJoinWorkerThread[] ws = workers;
1345 <            if (ws != null) {
1346 <                for (int i = 0; i < ws.length; ++i) {
1347 <                    ForkJoinWorkerThread t = ws[i];
1348 <                    if (t != null)
1349 <                        t.shutdownNow();
1350 <                }
1351 <            }
1352 <        } finally {
1353 <            lock.unlock();
1354 <        }
1355 <    }
1356 <
1357 <    /**
1358 <     * Interrupts all unterminated workers.  This is not required for
1359 <     * sake of internal control, but may help unstick user code during
1360 <     * shutdown.
1361 <     */
1362 <    private void interruptUnterminatedWorkers() {
1363 <        final ReentrantLock lock = this.workerLock;
1364 <        lock.lock();
1365 <        try {
1366 <            ForkJoinWorkerThread[] ws = workers;
1367 <            if (ws != null) {
1368 <                for (int i = 0; i < ws.length; ++i) {
1369 <                    ForkJoinWorkerThread t = ws[i];
1370 <                    if (t != null && !t.isTerminated()) {
1371 <                        try {
1372 <                            t.interrupt();
1373 <                        } catch (SecurityException ignore) {
1374 <                        }
1375 <                    }
1376 <                }
1377 <            }
1378 <        } finally {
1379 <            lock.unlock();
1380 <        }
1381 <    }
1382 <
1383 <    /*
1384 <     * Nodes for event barrier to manage idle threads.  Queue nodes
1385 <     * are basic Treiber stack nodes, also used for spare stack.
1386 <     *
1387 <     * The event barrier has an event count and a wait queue (actually
1388 <     * a Treiber stack).  Workers are enabled to look for work when
1389 <     * the eventCount is incremented. If they fail to find work, they
1390 <     * may wait for next count. Upon release, threads help others wake
1391 <     * up.
1392 <     *
1393 <     * Synchronization events occur only in enough contexts to
1394 <     * maintain overall liveness:
1395 <     *
1396 <     *   - Submission of a new task to the pool
1397 <     *   - Resizes or other changes to the workers array
1398 <     *   - pool termination
1399 <     *   - A worker pushing a task on an empty queue
1400 <     *
1401 <     * The case of pushing a task occurs often enough, and is heavy
1402 <     * enough compared to simple stack pushes, to require special
1403 <     * handling: Method signalWork returns without advancing count if
1404 <     * the queue appears to be empty.  This would ordinarily result in
1405 <     * races causing some queued waiters not to be woken up. To avoid
1406 <     * this, the first worker enqueued in method sync rescans for
1407 <     * tasks after being enqueued, and helps signal if any are
1408 <     * found. This works well because the worker has nothing better to
1409 <     * do, and so might as well help alleviate the overhead and
1410 <     * contention on the threads actually doing work.  Also, since
1411 <     * event counts increments on task availability exist to maintain
1412 <     * liveness (rather than to force refreshes etc), it is OK for
1413 <     * callers to exit early if contending with another signaller.
1414 <     */
1415 <    static final class WaitQueueNode {
1416 <        WaitQueueNode next; // only written before enqueued
1417 <        volatile ForkJoinWorkerThread thread; // nulled to cancel wait
1418 <        final long count; // unused for spare stack
1419 <
1420 <        WaitQueueNode(long c, ForkJoinWorkerThread w) {
1421 <            count = c;
1422 <            thread = w;
1423 <        }
1424 <
1425 <        /**
1426 <         * Wakes up waiter, also clearing thread field
1427 <         */
1428 <        void signal() {
1429 <            ForkJoinWorkerThread t = thread;
1430 <            if (t != null) {
1431 <                thread = null;
1432 <                LockSupport.unpark(t);
1433 <            }
1434 <        }
1435 <    }
1436 <
1437 <    /**
1438 <     * Ensures that no thread is waiting for count to advance from the
1439 <     * current value of eventCount read on entry to this method, by
1440 <     * releasing waiting threads if necessary.
1441 <     */
1442 <    final void ensureSync() {
1443 <        long c = eventCount;
1444 <        WaitQueueNode q;
1445 <        while ((q = syncStack) != null && q.count < c) {
1446 <            if (casBarrierStack(q, null)) {
1447 <                do {
1448 <                    q.signal();
1449 <                } while ((q = q.next) != null);
1450 <                break;
1451 <            }
1452 <        }
1453 <    }
1454 <
1455 <    /**
1456 <     * Increments event count and releases waiting threads.
1457 <     */
1458 <    private void signalIdleWorkers() {
1459 <        long c;
1460 <        do {} while (!casEventCount(c = eventCount, c+1));
1461 <        ensureSync();
1462 <    }
1463 <
1464 <    /**
1465 <     * Signals threads waiting to poll a task. Because method sync
1466 <     * rechecks availability, it is OK to only proceed if queue
1467 <     * appears to be non-empty, and OK if CAS to increment count
1468 <     * fails (since some other thread succeeded).
1469 <     */
1470 <    final void signalWork() {
1471 <        if (syncStack != null) {
1472 <            long c = eventCount;
1473 <            casEventCount(c, c+1);
1474 <            WaitQueueNode q = syncStack;
1475 <            if (q != null && q.count <= c) {
1476 <                if (casBarrierStack(q, q.next))
1477 <                    q.signal();
1478 <                else
1479 <                    ensureSync(); // awaken all on contention
1480 <            }
1481 <        }
1482 <    }
1483 <
1484 <    /**
1485 <     * Possibly blocks until event count advances from last value held
1486 <     * by caller, or if excess threads, caller is resumed as spare, or
1487 <     * caller or pool is terminating. Updates caller's event on exit.
1488 <     *
1489 <     * @param w the calling worker thread
1490 <     */
1491 <    final void sync(ForkJoinWorkerThread w) {
1492 <        updateStealCount(w); // Transfer w's count while it is idle
1493 <
1494 <        if (!w.isShutdown() && isProcessingTasks() && !suspendIfSpare(w)) {
1495 <            long prev = w.lastEventCount;
1496 <            WaitQueueNode node = null;
1497 <            WaitQueueNode h;
1498 <            long c;
1499 <            while ((c = eventCount) == prev &&
1500 <                   ((h = syncStack) == null || h.count == prev)) {
1501 <                if (node == null)
1502 <                    node = new WaitQueueNode(prev, w);
1503 <                if (casBarrierStack(node.next = h, node)) {
1504 <                    if (!Thread.interrupted() &&
1505 <                        node.thread != null &&
1506 <                        eventCount == prev &&
1507 <                        (h != null || // cover signalWork race
1508 <                         (!ForkJoinWorkerThread.hasQueuedTasks(workers) &&
1509 <                          eventCount == prev)))
1510 <                        LockSupport.park(this);
1511 <                    c = eventCount;
1512 <                    if (node.thread != null) { // help signal if not unparked
1513 <                        node.thread = null;
1514 <                        if (c == prev)
1515 <                            casEventCount(prev, prev + 1);
1516 <                    }
1517 <                    break;
1518 <                }
1519 <            }
1520 <            w.lastEventCount = c;
1521 <            ensureSync();
1522 <        }
1523 <    }
1524 <
1525 <    /**
1526 <     * Returns {@code true} if a new sync event occurred since last
1527 <     * call to sync or this method, if so, updating caller's count.
1528 <     */
1529 <    final boolean hasNewSyncEvent(ForkJoinWorkerThread w) {
1530 <        long wc = w.lastEventCount;
1531 <        long c = eventCount;
1532 <        if (wc != c)
1533 <            w.lastEventCount = c;
1534 <        ensureSync();
1535 <        return wc != c || wc != eventCount;
1536 <    }
1537 <
1538 <    //  Parallelism maintenance
1539 <
1540 <    /**
1541 <     * Decrements running count; if too low, adds spare.
1542 <     *
1543 <     * Conceptually, all we need to do here is add or resume a
1544 <     * spare thread when one is about to block (and remove or
1545 <     * suspend it later when unblocked -- see suspendIfSpare).
1546 <     * However, implementing this idea requires coping with
1547 <     * several problems: we have imperfect information about the
1548 <     * states of threads. Some count updates can and usually do
1549 <     * lag run state changes, despite arrangements to keep them
1550 <     * accurate (for example, when possible, updating counts
1551 <     * before signalling or resuming), especially when running on
1552 <     * dynamic JVMs that don't optimize the infrequent paths that
1553 <     * update counts. Generating too many threads can make these
1554 <     * problems become worse, because excess threads are more
1555 <     * likely to be context-switched with others, slowing them all
1556 <     * down, especially if there is no work available, so all are
1557 <     * busy scanning or idling.  Also, excess spare threads can
1558 <     * only be suspended or removed when they are idle, not
1559 <     * immediately when they aren't needed. So adding threads will
1560 <     * raise parallelism level for longer than necessary.  Also,
1561 <     * FJ applications often encounter highly transient peaks when
1562 <     * many threads are blocked joining, but for less time than it
1563 <     * takes to create or resume spares.
1564 <     *
1565 <     * @param joinMe if non-null, return early if done
1566 <     * @param maintainParallelism if true, try to stay within
1567 <     * target counts, else create only to avoid starvation
1568 <     * @return true if joinMe known to be done
1569 <     */
1570 <    final boolean preJoin(ForkJoinTask<?> joinMe,
1571 <                          boolean maintainParallelism) {
1572 <        maintainParallelism &= maintainsParallelism; // overrride
1573 <        boolean dec = false;  // true when running count decremented
1574 <        while (spareStack == null || !tryResumeSpare(dec)) {
1575 <            int counts = workerCounts;
1576 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1577 <                if (!needSpare(counts, maintainParallelism))
1578 <                    break;
1579 <                if (joinMe.status < 0)
1580 <                    return true;
1581 <                if (tryAddSpare(counts))
1582 <                    break;
1583 <            }
1584 <        }
1585 <        return false;
1586 <    }
1587 <
1588 <    /**
1589 <     * Same idea as preJoin
1590 <     */
1591 <    final boolean preBlock(ManagedBlocker blocker,
1592 <                           boolean maintainParallelism) {
1593 <        maintainParallelism &= maintainsParallelism;
1594 <        boolean dec = false;
1595 <        while (spareStack == null || !tryResumeSpare(dec)) {
1596 <            int counts = workerCounts;
1597 <            if (dec || (dec = casWorkerCounts(counts, --counts))) {
1598 <                if (!needSpare(counts, maintainParallelism))
1599 <                    break;
1600 <                if (blocker.isReleasable())
1601 <                    return true;
1602 <                if (tryAddSpare(counts))
1603 <                    break;
1604 <            }
1605 <        }
1606 <        return false;
1607 <    }
1608 <
1609 <    /**
1610 <     * Returns {@code true} if a spare thread appears to be needed.
1611 <     * If maintaining parallelism, returns true when the deficit in
1612 <     * running threads is more than the surplus of total threads, and
1613 <     * there is apparently some work to do.  This self-limiting rule
1614 <     * means that the more threads that have already been added, the
1615 <     * less parallelism we will tolerate before adding another.
1616 <     *
1617 <     * @param counts current worker counts
1618 <     * @param maintainParallelism try to maintain parallelism
1619 <     */
1620 <    private boolean needSpare(int counts, boolean maintainParallelism) {
1621 <        int ps = parallelism;
1622 <        int rc = runningCountOf(counts);
1623 <        int tc = totalCountOf(counts);
1624 <        int runningDeficit = ps - rc;
1625 <        int totalSurplus = tc - ps;
1626 <        return (tc < maxPoolSize &&
1627 <                (rc == 0 || totalSurplus < 0 ||
1628 <                 (maintainParallelism &&
1629 <                  runningDeficit > totalSurplus &&
1630 <                  ForkJoinWorkerThread.hasQueuedTasks(workers))));
1631 <    }
1632 <
1633 <    /**
1634 <     * Adds a spare worker if lock available and no more than the
1635 <     * expected numbers of threads exist.
1636 <     *
1637 <     * @return true if successful
1638 <     */
1639 <    private boolean tryAddSpare(int expectedCounts) {
1640 <        final ReentrantLock lock = this.workerLock;
1641 <        int expectedRunning = runningCountOf(expectedCounts);
1642 <        int expectedTotal = totalCountOf(expectedCounts);
1643 <        boolean success = false;
1644 <        boolean locked = false;
1645 <        // confirm counts while locking; CAS after obtaining lock
1646 <        try {
1647 <            for (;;) {
1648 <                int s = workerCounts;
1649 <                int tc = totalCountOf(s);
1650 <                int rc = runningCountOf(s);
1651 <                if (rc > expectedRunning || tc > expectedTotal)
1652 <                    break;
1653 <                if (!locked && !(locked = lock.tryLock()))
1654 <                    break;
1655 <                if (casWorkerCounts(s, workerCountsFor(tc+1, rc+1))) {
1656 <                    createAndStartSpare(tc);
1657 <                    success = true;
1658 <                    break;
1659 <                }
1660 <            }
1661 <        } finally {
1662 <            if (locked)
1663 <                lock.unlock();
1664 <        }
1665 <        return success;
1666 <    }
1667 <
1668 <    /**
1669 <     * Adds the kth spare worker. On entry, pool counts are already
1670 <     * adjusted to reflect addition.
1671 <     */
1672 <    private void createAndStartSpare(int k) {
1673 <        ForkJoinWorkerThread w = null;
1674 <        ForkJoinWorkerThread[] ws = ensureWorkerArrayCapacity(k + 1);
1675 <        int len = ws.length;
1676 <        // Probably, we can place at slot k. If not, find empty slot
1677 <        if (k < len && ws[k] != null) {
1678 <            for (k = 0; k < len && ws[k] != null; ++k)
1679 <                ;
1680 <        }
1681 <        if (k < len && isProcessingTasks() && (w = createWorker(k)) != null) {
1682 <            ws[k] = w;
1683 <            w.start();
1684 <        }
1685 <        else
1686 <            updateWorkerCount(-1); // adjust on failure
1687 <        signalIdleWorkers();
1688 <    }
1689 <
1690 <    /**
1691 <     * Suspends calling thread w if there are excess threads.  Called
1692 <     * only from sync.  Spares are enqueued in a Treiber stack using
1693 <     * the same WaitQueueNodes as barriers.  They are resumed mainly
1694 <     * in preJoin, but are also woken on pool events that require all
1695 <     * threads to check run state.
1696 <     *
1697 <     * @param w the caller
1698 <     */
1699 <    private boolean suspendIfSpare(ForkJoinWorkerThread w) {
1700 <        WaitQueueNode node = null;
1701 <        for (;;) {
1702 <            int s = workerCounts;
1703 <            int rc = runningCountOf(s);
1704 <            int tc = totalCountOf(s);
1705 <            int ps = parallelism;
1706 <            // use tc as bound if rc transiently out of sync
1707 <            if (tc <= ps || rc <= ps)
1708 <                return false; // not a spare
1709 <            if (node == null)
1710 <                node = new WaitQueueNode(0, w);
1711 <            if (casWorkerCounts(s, workerCountsFor(tc, rc - 1)))
1712 <                break;
1713 <        }
1714 <        // push onto stack
1715 <        do {} while (!casSpareStack(node.next = spareStack, node));
1716 <        // block until released by resumeSpare
1717 <        while (!Thread.interrupted() && node.thread != null)
1718 <            LockSupport.park(this);
1719 <        return true;
1720 <    }
1721 <
1722 <    /**
1723 <     * Tries to pop and resume a spare thread.
1724 <     *
1725 <     * @param updateCount if true, increment running count on success
1726 <     * @return true if successful
1727 <     */
1728 <    private boolean tryResumeSpare(boolean updateCount) {
1729 <        WaitQueueNode q;
1730 <        while ((q = spareStack) != null) {
1731 <            if (casSpareStack(q, q.next)) {
1732 <                if (updateCount)
1733 <                    updateRunningCount(1);
1734 <                q.signal();
1735 <                return true;
1736 <            }
1737 <        }
1738 <        return false;
1739 <    }
1740 <
1741 <    /**
1742 <     * Pops and resumes all spare threads. Same idea as ensureSync.
1743 <     *
1744 <     * @return true if any spares released
1745 <     */
1746 <    private boolean resumeAllSpares() {
1747 <        WaitQueueNode q;
1748 <        while ( (q = spareStack) != null) {
1749 <            if (casSpareStack(q, null)) {
1750 <                do {
1751 <                    updateRunningCount(1);
1752 <                    q.signal();
1753 <                } while ((q = q.next) != null);
1754 <                return true;
1755 <            }
1756 <        }
1757 <        return false;
1758 <    }
1759 <
1760 <    /**
1761 <     * Pops and shuts down excessive spare threads. Call only while
1762 <     * holding lock. This is not guaranteed to eliminate all excess
1763 <     * threads, only those suspended as spares, which are the ones
1764 <     * unlikely to be needed in the future.
1765 <     */
1766 <    private void trimSpares() {
1767 <        int surplus = totalCountOf(workerCounts) - parallelism;
1768 <        WaitQueueNode q;
1769 <        while (surplus > 0 && (q = spareStack) != null) {
1770 <            if (casSpareStack(q, null)) {
1771 <                do {
1772 <                    updateRunningCount(1);
1773 <                    ForkJoinWorkerThread w = q.thread;
1774 <                    if (w != null && surplus > 0 &&
1775 <                        runningCountOf(workerCounts) > 0 && w.shutdown())
1776 <                        --surplus;
1777 <                    q.signal();
1778 <                } while ((q = q.next) != null);
1779 <            }
1780 <        }
1771 >        return terminationLatch.await(timeout, unit);
1772      }
1773  
1774      /**
# Line 1860 | Line 1851 | public class ForkJoinPool extends Abstra
1851                                      boolean maintainParallelism)
1852          throws InterruptedException {
1853          Thread t = Thread.currentThread();
1854 <        ForkJoinPool pool = ((t instanceof ForkJoinWorkerThread) ?
1855 <                             ((ForkJoinWorkerThread) t).pool : null);
1856 <        if (!blocker.isReleasable()) {
1857 <            try {
1858 <                if (pool == null ||
1868 <                    !pool.preBlock(blocker, maintainParallelism))
1869 <                    awaitBlocker(blocker);
1870 <            } finally {
1871 <                if (pool != null)
1872 <                    pool.updateRunningCount(1);
1873 <            }
1874 <        }
1854 >        if (t instanceof ForkJoinWorkerThread)
1855 >            ((ForkJoinWorkerThread) t).pool.
1856 >                doBlock(blocker, maintainParallelism);
1857 >        else
1858 >            awaitBlocker(blocker);
1859      }
1860  
1861 +    /**
1862 +     * Performs Non-FJ blocking
1863 +     */
1864      private static void awaitBlocker(ManagedBlocker blocker)
1865          throws InterruptedException {
1866          do {} while (!blocker.isReleasable() && !blocker.block());
# Line 1894 | Line 1881 | public class ForkJoinPool extends Abstra
1881      // Unsafe mechanics
1882  
1883      private static final sun.misc.Unsafe UNSAFE = getUnsafe();
1897    private static final long eventCountOffset =
1898        objectFieldOffset("eventCount", ForkJoinPool.class);
1884      private static final long workerCountsOffset =
1885          objectFieldOffset("workerCounts", ForkJoinPool.class);
1886 <    private static final long runControlOffset =
1887 <        objectFieldOffset("runControl", ForkJoinPool.class);
1888 <    private static final long syncStackOffset =
1889 <        objectFieldOffset("syncStack",ForkJoinPool.class);
1890 <    private static final long spareStackOffset =
1891 <        objectFieldOffset("spareStack", ForkJoinPool.class);
1892 <
1893 <    private boolean casEventCount(long cmp, long val) {
1894 <        return UNSAFE.compareAndSwapLong(this, eventCountOffset, cmp, val);
1910 <    }
1911 <    private boolean casWorkerCounts(int cmp, int val) {
1912 <        return UNSAFE.compareAndSwapInt(this, workerCountsOffset, cmp, val);
1913 <    }
1914 <    private boolean casRunControl(int cmp, int val) {
1915 <        return UNSAFE.compareAndSwapInt(this, runControlOffset, cmp, val);
1916 <    }
1917 <    private boolean casSpareStack(WaitQueueNode cmp, WaitQueueNode val) {
1918 <        return UNSAFE.compareAndSwapObject(this, spareStackOffset, cmp, val);
1919 <    }
1920 <    private boolean casBarrierStack(WaitQueueNode cmp, WaitQueueNode val) {
1921 <        return UNSAFE.compareAndSwapObject(this, syncStackOffset, cmp, val);
1922 <    }
1886 >    private static final long runStateOffset =
1887 >        objectFieldOffset("runState", ForkJoinPool.class);
1888 >    private static final long eventCountOffset =
1889 >        objectFieldOffset("eventCount", ForkJoinPool.class);
1890 >    private static final long eventWaitersOffset =
1891 >        objectFieldOffset("eventWaiters",ForkJoinPool.class);
1892 >    private static final long stealCountOffset =
1893 >        objectFieldOffset("stealCount",ForkJoinPool.class);
1894 >
1895  
1896      private static long objectFieldOffset(String field, Class<?> klazz) {
1897          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines