ViewVC Help
View File | Revision Log | Show Annotations | Download File | Root Listing
root/jsr166/jsr166/src/jsr166y/ForkJoinPool.java
(Generate patch)

Comparing jsr166/src/jsr166y/ForkJoinPool.java (file contents):
Revision 1.54 by dl, Sun Apr 18 12:51:18 2010 UTC vs.
Revision 1.66 by dl, Sun Aug 29 23:34:46 2010 UTC

# Line 21 | Line 21 | import java.util.concurrent.CountDownLat
21   /**
22   * An {@link ExecutorService} for running {@link ForkJoinTask}s.
23   * A {@code ForkJoinPool} provides the entry point for submissions
24 < * from non-{@code ForkJoinTask}s, as well as management and
24 > * from non-{@code ForkJoinTask} clients, as well as management and
25   * monitoring operations.
26   *
27   * <p>A {@code ForkJoinPool} differs from other kinds of {@link
# Line 30 | Line 30 | import java.util.concurrent.CountDownLat
30   * execute subtasks created by other active tasks (eventually blocking
31   * waiting for work if none exist). This enables efficient processing
32   * when most tasks spawn other subtasks (as do most {@code
33 < * ForkJoinTask}s). A {@code ForkJoinPool} may also be used for mixed
34 < * execution of some plain {@code Runnable}- or {@code Callable}-
35 < * based activities along with {@code ForkJoinTask}s. When setting
36 < * {@linkplain #setAsyncMode async mode}, a {@code ForkJoinPool} may
37 < * also be appropriate for use with fine-grained tasks of any form
38 < * that are never joined. Otherwise, other {@code ExecutorService}
39 < * implementations are typically more appropriate choices.
33 > * ForkJoinTask}s). When setting <em>asyncMode</em> to true in
34 > * constructors, {@code ForkJoinPool}s may also be appropriate for use
35 > * with event-style tasks that are never joined.
36   *
37   * <p>A {@code ForkJoinPool} is constructed with a given target
38   * parallelism level; by default, equal to the number of available
39 < * processors. Unless configured otherwise via {@link
40 < * #setMaintainsParallelism}, the pool attempts to maintain this
41 < * number of active (or available) threads by dynamically adding,
42 < * suspending, or resuming internal worker threads, even if some tasks
43 < * are stalled waiting to join others. However, no such adjustments
44 < * are performed in the face of blocked IO or other unmanaged
45 < * synchronization. The nested {@link ManagedBlocker} interface
50 < * enables extension of the kinds of synchronization accommodated.
51 < * The target parallelism level may also be changed dynamically
52 < * ({@link #setParallelism}). The total number of threads may be
53 < * limited using method {@link #setMaximumPoolSize}, in which case it
54 < * may become possible for the activities of a pool to stall due to
55 < * the lack of available threads to process new tasks. When the pool
56 < * is executing tasks, these and other configuration setting methods
57 < * may only gradually affect actual pool sizes. It is normally best
58 < * practice to invoke these methods only when the pool is known to be
59 < * quiescent.
39 > * processors. The pool attempts to maintain enough active (or
40 > * available) threads by dynamically adding, suspending, or resuming
41 > * internal worker threads, even if some tasks are stalled waiting to
42 > * join others. However, no such adjustments are guaranteed in the
43 > * face of blocked IO or other unmanaged synchronization. The nested
44 > * {@link ManagedBlocker} interface enables extension of the kinds of
45 > * synchronization accommodated.
46   *
47   * <p>In addition to execution and lifecycle control methods, this
48   * class provides status check methods (for example
# Line 65 | Line 51 | import java.util.concurrent.CountDownLat
51   * {@link #toString} returns indications of pool state in a
52   * convenient form for informal monitoring.
53   *
54 + * <p> As is the case with other ExecutorServices, there are three
55 + * main task execution methods summarized in the following
56 + * table. These are designed to be used by clients not already engaged
57 + * in fork/join computations in the current pool.  The main forms of
58 + * these methods accept instances of {@code ForkJoinTask}, but
59 + * overloaded forms also allow mixed execution of plain {@code
60 + * Runnable}- or {@code Callable}- based activities as well.  However,
61 + * tasks that are already executing in a pool should normally
62 + * <em>NOT</em> use these pool execution methods, but instead use the
63 + * within-computation forms listed in the table.
64 + *
65 + * <table BORDER CELLPADDING=3 CELLSPACING=1>
66 + *  <tr>
67 + *    <td></td>
68 + *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
69 + *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
70 + *  </tr>
71 + *  <tr>
72 + *    <td> <b>Arange async execution</td>
73 + *    <td> {@link #execute(ForkJoinTask)}</td>
74 + *    <td> {@link ForkJoinTask#fork}</td>
75 + *  </tr>
76 + *  <tr>
77 + *    <td> <b>Await and obtain result</td>
78 + *    <td> {@link #invoke(ForkJoinTask)}</td>
79 + *    <td> {@link ForkJoinTask#invoke}</td>
80 + *  </tr>
81 + *  <tr>
82 + *    <td> <b>Arrange exec and obtain Future</td>
83 + *    <td> {@link #submit(ForkJoinTask)}</td>
84 + *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
85 + *  </tr>
86 + * </table>
87 + *
88   * <p><b>Sample Usage.</b> Normally a single {@code ForkJoinPool} is
89   * used for all parallel task execution in a program or subsystem.
90   * Otherwise, use would not usually outweigh the construction and
# Line 89 | Line 109 | import java.util.concurrent.CountDownLat
109   * {@code IllegalArgumentException}.
110   *
111   * <p>This implementation rejects submitted tasks (that is, by throwing
112 < * {@link RejectedExecutionException}) only when the pool is shut down.
112 > * {@link RejectedExecutionException}) only when the pool is shut down
113 > * or internal resources have been exhausted.
114   *
115   * @since 1.7
116   * @author Doug Lea
# Line 116 | Line 137 | public class ForkJoinPool extends Abstra
137       * of tasks profit from cache affinities, but others are harmed by
138       * cache pollution effects.)
139       *
140 +     * Beyond work-stealing support and essential bookkeeping, the
141 +     * main responsibility of this framework is to take actions when
142 +     * one worker is waiting to join a task stolen (or always held by)
143 +     * another.  Becauae we are multiplexing many tasks on to a pool
144 +     * of workers, we can't just let them block (as in Thread.join).
145 +     * We also cannot just reassign the joiner's run-time stack with
146 +     * another and replace it later, which would be a form of
147 +     * "continuation", that even if possible is not necessarily a good
148 +     * idea. Given that the creation costs of most threads on most
149 +     * systems mainly surrounds setting up runtime stacks, thread
150 +     * creation and switching is usually not much more expensive than
151 +     * stack creation and switching, and is more flexible). Instead we
152 +     * combine two tactics:
153 +     *
154 +     *   Helping: Arranging for the joiner to execute some task that it
155 +     *      would be running if the steal had not occurred.  Method
156 +     *      ForkJoinWorkerThread.helpJoinTask tracks joining->stealing
157 +     *      links to try to find such a task.
158 +     *
159 +     *   Compensating: Unless there are already enough live threads,
160 +     *      method helpMaintainParallelism() may create or or
161 +     *      re-activate a spare thread to compensate for blocked
162 +     *      joiners until they unblock.
163 +     *
164 +     * It is impossible to keep exactly the target (parallelism)
165 +     * number of threads running at any given time.  Determining
166 +     * existence of conservatively safe helping targets, the
167 +     * availability of already-created spares, and the apparent need
168 +     * to create new spares are all racy and require heuristic
169 +     * guidance, so we rely on multiple retries of each.  Compensation
170 +     * occurs in slow-motion. It is triggered only upon timeouts of
171 +     * Object.wait used for joins. This reduces poor decisions that
172 +     * would otherwise be made when threads are waiting for others
173 +     * that are stalled because of unrelated activities such as
174 +     * garbage collection.
175 +     *
176 +     * The ManagedBlocker extension API can't use helping so relies
177 +     * only on compensation in method awaitBlocker.
178 +     *
179       * The main throughput advantages of work-stealing stem from
180       * decentralized control -- workers mostly steal tasks from each
181       * other. We do not want to negate this by creating bottlenecks
182 <     * implementing the management responsibilities of this class. So
183 <     * we use a collection of techniques that avoid, reduce, or cope
184 <     * well with contention. These entail several instances of
185 <     * bit-packing into CASable fields to maintain only the minimally
186 <     * required atomicity. To enable such packing, we restrict maximum
187 <     * parallelism to (1<<15)-1 (enabling twice this to fit into a 16
188 <     * bit field), which is far in excess of normal operating range.
189 <     * Even though updates to some of these bookkeeping fields do
190 <     * sometimes contend with each other, they don't normally
191 <     * cache-contend with updates to others enough to warrant memory
192 <     * padding or isolation. So they are all held as fields of
193 <     * ForkJoinPool objects.  The main capabilities are as follows:
182 >     * implementing other management responsibilities. So we use a
183 >     * collection of techniques that avoid, reduce, or cope well with
184 >     * contention. These entail several instances of bit-packing into
185 >     * CASable fields to maintain only the minimally required
186 >     * atomicity. To enable such packing, we restrict maximum
187 >     * parallelism to (1<<15)-1 (enabling twice this (to accommodate
188 >     * unbalanced increments and decrements) to fit into a 16 bit
189 >     * field, which is far in excess of normal operating range.  Even
190 >     * though updates to some of these bookkeeping fields do sometimes
191 >     * contend with each other, they don't normally cache-contend with
192 >     * updates to others enough to warrant memory padding or
193 >     * isolation. So they are all held as fields of ForkJoinPool
194 >     * objects.  The main capabilities are as follows:
195       *
196       * 1. Creating and removing workers. Workers are recorded in the
197       * "workers" array. This is an array as opposed to some other data
# Line 140 | Line 201 | public class ForkJoinPool extends Abstra
201       * (workerLock) but the array is otherwise concurrently readable,
202       * and accessed directly by workers. To simplify index-based
203       * operations, the array size is always a power of two, and all
204 <     * readers must tolerate null slots. Currently, all but the first
205 <     * worker thread creation is on-demand, triggered by task
206 <     * submissions, replacement of terminated workers, and/or
207 <     * compensation for blocked workers. However, all other support
208 <     * code is set up to work with other policies.
204 >     * readers must tolerate null slots. Currently, all worker thread
205 >     * creation is on-demand, triggered by task submissions,
206 >     * replacement of terminated workers, and/or compensation for
207 >     * blocked workers. However, all other support code is set up to
208 >     * work with other policies.
209 >     *
210 >     * To ensure that we do not hold on to worker references that
211 >     * would prevent GC, ALL accesses to workers are via indices into
212 >     * the workers array (which is one source of some of the unusual
213 >     * code constructions here). In essence, the workers array serves
214 >     * as a WeakReference mechanism. Thus for example the event queue
215 >     * stores worker indices, not worker references. Access to the
216 >     * workers in associated methods (for example releaseEventWaiters)
217 >     * must both index-check and null-check the IDs. All such accesses
218 >     * ignore bad IDs by returning out early from what they are doing,
219 >     * since this can only be associated with shutdown, in which case
220 >     * it is OK to give up. On termination, we just clobber these
221 >     * data structures without trying to use them.
222       *
223       * 2. Bookkeeping for dynamically adding and removing workers. We
224 <     * maintain a given level of parallelism (or, if
225 <     * maintainsParallelism is false, at least avoid starvation). When
152 <     * some workers are known to be blocked (on joins or via
224 >     * aim to approximately maintain the given level of parallelism.
225 >     * When some workers are known to be blocked (on joins or via
226       * ManagedBlocker), we may create or resume others to take their
227       * place until they unblock (see below). Implementing this
228       * requires counts of the number of "running" threads (i.e., those
229       * that are neither blocked nor artifically suspended) as well as
230       * the total number.  These two values are packed into one field,
231       * "workerCounts" because we need accurate snapshots when deciding
232 <     * to create, resume or suspend.  To support these decisions,
233 <     * updates must be prospective (not retrospective).  For example,
234 <     * the running count is decremented before blocking by a thread
235 <     * about to block, but incremented by the thread about to unblock
163 <     * it. (In a few cases, these prospective updates may need to be
164 <     * rolled back, for example when deciding to create a new worker
165 <     * but the thread factory fails or returns null. In these cases,
166 <     * we are no worse off wrt other decisions than we would be
167 <     * otherwise.)  Updates to the workerCounts field sometimes
168 <     * transiently encounter a fair amount of contention when join
169 <     * dependencies are such that many threads block or unblock at
170 <     * about the same time. We alleviate this by sometimes bundling
171 <     * updates (for example blocking one thread on join and resuming a
172 <     * spare cancel each other out), and in most other cases
173 <     * performing an alternative action (like releasing waiters and
174 <     * finding spares; see below) as a more productive form of
175 <     * backoff.
232 >     * to create, resume or suspend.  Note however that the
233 >     * correspondance of these counts to reality is not guaranteed. In
234 >     * particular updates for unblocked threads may lag until they
235 >     * actually wake up.
236       *
237       * 3. Maintaining global run state. The run state of the pool
238       * consists of a runLevel (SHUTDOWN, TERMINATING, etc) similar to
# Line 201 | Line 261 | public class ForkJoinPool extends Abstra
261       * workers that previously could not find a task to now find one:
262       * Submission of a new task to the pool, or another worker pushing
263       * a task onto a previously empty queue.  (We also use this
264 <     * mechanism for termination and reconfiguration actions that
264 >     * mechanism for configuration and termination actions that
265       * require wakeups of idle workers).  Each worker maintains its
266       * last known event count, and blocks when a scan for work did not
267       * find a task AND its lastEventCount matches the current
# Line 212 | Line 272 | public class ForkJoinPool extends Abstra
272       * a record (field nextEventWaiter) for the next waiting worker.
273       * In addition to allowing simpler decisions about need for
274       * wakeup, the event count bits in eventWaiters serve the role of
275 <     * tags to avoid ABA errors in Treiber stacks.  To reduce delays
276 <     * in task diffusion, workers not otherwise occupied may invoke
277 <     * method releaseWaiters, that removes and signals (unparks)
278 <     * workers not waiting on current count. To minimize task
279 <     * production stalls associate with signalling, any worker pushing
280 <     * a task on an empty queue invokes the weaker method signalWork,
221 <     * that only releases idle workers until it detects interference
222 <     * by other threads trying to release, and lets them take
223 <     * over. The net effect is a tree-like diffusion of signals, where
224 <     * released threads and possibly others) help with unparks.  To
225 <     * further reduce contention effects a bit, failed CASes to
226 <     * increment field eventCount are tolerated without retries.
275 >     * tags to avoid ABA errors in Treiber stacks. Upon any wakeup,
276 >     * released threads also try to release at most two others.  The
277 >     * net effect is a tree-like diffusion of signals, where released
278 >     * threads (and possibly others) help with unparks.  To further
279 >     * reduce contention effects a bit, failed CASes to increment
280 >     * field eventCount are tolerated without retries in signalWork.
281       * Conceptually they are merged into the same event, which is OK
282       * when their only purpose is to enable workers to scan for work.
283       *
284 <     * 5. Managing suspension of extra workers. When a worker is about
285 <     * to block waiting for a join (or via ManagedBlockers), we may
286 <     * create a new thread to maintain parallelism level, or at least
287 <     * avoid starvation (see below). Usually, extra threads are needed
288 <     * for only very short periods, yet join dependencies are such
289 <     * that we sometimes need them in bursts. Rather than create new
290 <     * threads each time this happens, we suspend no-longer-needed
291 <     * extra ones as "spares". For most purposes, we don't distinguish
292 <     * "extra" spare threads from normal "core" threads: On each call
293 <     * to preStep (the only point at which we can do this) a worker
294 <     * checks to see if there are now too many running workers, and if
295 <     * so, suspends itself.  Methods preJoin and doBlock look for
296 <     * suspended threads to resume before considering creating a new
297 <     * replacement. We don't need a special data structure to maintain
298 <     * spares; simply scanning the workers array looking for
299 <     * worker.isSuspended() is fine because the calling thread is
300 <     * otherwise not doing anything useful anyway; we are at least as
301 <     * happy if after locating a spare, the caller doesn't actually
302 <     * block because the join is ready before we try to adjust and
303 <     * compensate.  Note that this is intrinsically racy.  One thread
304 <     * may become a spare at about the same time as another is
305 <     * needlessly being created. We counteract this and related slop
306 <     * in part by requiring resumed spares to immediately recheck (in
307 <     * preStep) to see whether they they should re-suspend. The only
308 <     * effective difference between "extra" and "core" threads is that
309 <     * we allow the "extra" ones to time out and die if they are not
310 <     * resumed within a keep-alive interval of a few seconds. This is
311 <     * implemented mainly within ForkJoinWorkerThread, but requires
312 <     * some coordination (isTrimmed() -- meaning killed while
313 <     * suspended) to correctly maintain pool counts.
314 <     *
315 <     * 6. Deciding when to create new workers. The main dynamic
316 <     * control in this class is deciding when to create extra threads,
317 <     * in methods preJoin and doBlock. We always need to create one
318 <     * when the number of running threads becomes zero. But because
319 <     * blocked joins are typically dependent, we don't necessarily
320 <     * need or want one-to-one replacement. Using a one-to-one
321 <     * compensation rule often leads to enough useless overhead
322 <     * creating, suspending, resuming, and/or killing threads to
323 <     * signficantly degrade throughput.  We use a rule reflecting the
324 <     * idea that, the more spare threads you already have, the more
325 <     * evidence you need to create another one; where "evidence" is
326 <     * expressed as the current deficit -- target minus running
327 <     * threads. To reduce flickering and drift around target values,
328 <     * the relation is quadratic: adding a spare if (dc*dc)>=(sc*pc)
329 <     * (where dc is deficit, sc is number of spare threads and pc is
330 <     * target parallelism.)  This effectively reduces churn at the
331 <     * price of systematically undershooting target parallelism when
332 <     * many threads are blocked.  However, biasing toward undeshooting
333 <     * partially compensates for the above mechanics to suspend extra
334 <     * threads, that normally lead to overshoot because we can only
281 <     * suspend workers in-between top-level actions. It also better
282 <     * copes with the fact that some of the methods in this class tend
283 <     * to never become compiled (but are interpreted), so some
284 <     * components of the entire set of controls might execute many
285 <     * times faster than others. And similarly for cases where the
286 <     * apparent lack of work is just due to GC stalls and other
287 <     * transient system activity.
288 <     *
289 <     * 7. Maintaining other configuration parameters and monitoring
290 <     * statistics. Updates to fields controlling parallelism level,
291 <     * max size, etc can only meaningfully take effect for individual
292 <     * threads upon their next top-level actions; i.e., between
293 <     * stealing/running tasks/submission, which are separated by calls
294 <     * to preStep.  Memory ordering for these (assumed infrequent)
295 <     * reconfiguration calls is ensured by using reads and writes to
296 <     * volatile field workerCounts (that must be read in preStep anyway)
297 <     * as "fences" -- user-level reads are preceded by reads of
298 <     * workCounts, and writes are followed by no-op CAS to
299 <     * workerCounts. The values reported by other management and
300 <     * monitoring methods are either computed on demand, or are kept
301 <     * in fields that are only updated when threads are otherwise
302 <     * idle.
284 >     * 5. Managing suspension of extra workers. When a worker notices
285 >     * (usually upon timeout of a wait()) that there are too few
286 >     * running threads, we may create a new thread to maintain
287 >     * parallelism level, or at least avoid starvation. Usually, extra
288 >     * threads are needed for only very short periods, yet join
289 >     * dependencies are such that we sometimes need them in
290 >     * bursts. Rather than create new threads each time this happens,
291 >     * we suspend no-longer-needed extra ones as "spares". For most
292 >     * purposes, we don't distinguish "extra" spare threads from
293 >     * normal "core" threads: On each call to preStep (the only point
294 >     * at which we can do this) a worker checks to see if there are
295 >     * now too many running workers, and if so, suspends itself.
296 >     * Method helpMaintainParallelism looks for suspended threads to
297 >     * resume before considering creating a new replacement. The
298 >     * spares themselves are encoded on another variant of a Treiber
299 >     * Stack, headed at field "spareWaiters".  Note that the use of
300 >     * spares is intrinsically racy.  One thread may become a spare at
301 >     * about the same time as another is needlessly being created. We
302 >     * counteract this and related slop in part by requiring resumed
303 >     * spares to immediately recheck (in preStep) to see whether they
304 >     * they should re-suspend.
305 >     *
306 >     * 6. Killing off unneeded workers. A timeout mechanism is used to
307 >     * shed unused workers: The oldest (first) event queue waiter uses
308 >     * a timed rather than hard wait. When this wait times out without
309 >     * a normal wakeup, it tries to shutdown any one (for convenience
310 >     * the newest) other spare or event waiter via
311 >     * tryShutdownUnusedWorker. This eventually reduces the number of
312 >     * worker threads to a minimum of one after a long enough period
313 >     * without use.
314 >     *
315 >     * 7. Deciding when to create new workers. The main dynamic
316 >     * control in this class is deciding when to create extra threads
317 >     * in method helpMaintainParallelism. We would like to keep
318 >     * exactly #parallelism threads running, which is an impossble
319 >     * task. We always need to create one when the number of running
320 >     * threads would become zero and all workers are busy. Beyond
321 >     * this, we must rely on heuristics that work well in the the
322 >     * presence of transients phenomena such as GC stalls, dynamic
323 >     * compilation, and wake-up lags. These transients are extremely
324 >     * common -- we are normally trying to fully saturate the CPUs on
325 >     * a machine, so almost any activity other than running tasks
326 >     * impedes accuracy. Our main defense is to allow parallelism to
327 >     * lapse for a while during joins, and use a timeout to see if,
328 >     * after the resulting settling, there is still a need for
329 >     * additional workers.  This also better copes with the fact that
330 >     * some of the methods in this class tend to never become compiled
331 >     * (but are interpreted), so some components of the entire set of
332 >     * controls might execute 100 times faster than others. And
333 >     * similarly for cases where the apparent lack of work is just due
334 >     * to GC stalls and other transient system activity.
335       *
336       * Beware that there is a lot of representation-level coupling
337       * among classes ForkJoinPool, ForkJoinWorkerThread, and
# Line 312 | Line 344 | public class ForkJoinPool extends Abstra
344       *
345       * Style notes: There are lots of inline assignments (of form
346       * "while ((local = field) != 0)") which are usually the simplest
347 <     * way to ensure read orderings. Also several occurrences of the
348 <     * unusual "do {} while(!cas...)" which is the simplest way to
349 <     * force an update of a CAS'ed variable. There are also a few
350 <     * other coding oddities that help some methods perform reasonably
351 <     * even when interpreted (not compiled).
347 >     * way to ensure the required read orderings (which are sometimes
348 >     * critical). Also several occurrences of the unusual "do {}
349 >     * while(!cas...)" which is the simplest way to force an update of
350 >     * a CAS'ed variable. There are also other coding oddities that
351 >     * help some methods perform reasonably even when interpreted (not
352 >     * compiled), at the expense of some messy constructions that
353 >     * reduce byte code counts.
354       *
355       * The order of declarations in this file is: (1) statics (2)
356       * fields (along with constants used when unpacking some of them)
# Line 345 | Line 379 | public class ForkJoinPool extends Abstra
379       * Default ForkJoinWorkerThreadFactory implementation; creates a
380       * new ForkJoinWorkerThread.
381       */
382 <    static class  DefaultForkJoinWorkerThreadFactory
382 >    static class DefaultForkJoinWorkerThreadFactory
383          implements ForkJoinWorkerThreadFactory {
384          public ForkJoinWorkerThread newThread(ForkJoinPool pool) {
385              return new ForkJoinWorkerThread(pool);
# Line 384 | Line 418 | public class ForkJoinPool extends Abstra
418          new AtomicInteger();
419  
420      /**
421 <     * Absolute bound for parallelism level. Twice this number must
422 <     * fit into a 16bit field to enable word-packing for some counts.
421 >     * The time to block in a join (see awaitJoin) before checking if
422 >     * a new worker should be (re)started to maintain parallelism
423 >     * level. The value should be short enough to maintain gloabal
424 >     * responsiveness and progress but long enough to avoid
425 >     * counterproductive firings during GC stalls or unrelated system
426 >     * activity, and to not bog down systems with continual re-firings
427 >     * on GCs or legitimately long waits.
428 >     */
429 >    private static final long JOIN_TIMEOUT_MILLIS = 250L; // 4 per second
430 >
431 >    /**
432 >     * The wakeup interval (in nanoseconds) for the oldest worker
433 >     * worker waiting for an event invokes tryShutdownUnusedWorker to shrink
434 >     * the number of workers.  The exact value does not matter too
435 >     * much, but should be long enough to slowly release resources
436 >     * during long periods without use without disrupting normal use.
437 >     */
438 >    private static final long SHRINK_RATE_NANOS =
439 >        30L * 1000L * 1000L * 1000L; // 2 per minute
440 >
441 >    /**
442 >     * Absolute bound for parallelism level. Twice this number plus
443 >     * one (i.e., 0xfff) must fit into a 16bit field to enable
444 >     * word-packing for some counts and indices.
445       */
446 <    private static final int MAX_THREADS = 0x7fff;
446 >    private static final int MAX_WORKERS   = 0x7fff;
447  
448      /**
449       * Array holding all worker threads in the pool.  Array size must
# Line 413 | Line 469 | public class ForkJoinPool extends Abstra
469      /**
470       * Latch released upon termination.
471       */
472 <    private final CountDownLatch terminationLatch;
472 >    private final Phaser termination;
473  
474      /**
475       * Creation factory for worker threads.
# Line 429 | Line 485 | public class ForkJoinPool extends Abstra
485      /**
486       * Encoded record of top of treiber stack of threads waiting for
487       * events. The top 32 bits contain the count being waited for. The
488 <     * bottom word contains one plus the pool index of waiting worker
489 <     * thread.
488 >     * bottom 16 bits contains one plus the pool index of waiting
489 >     * worker thread. (Bits 16-31 are unused.)
490       */
491      private volatile long eventWaiters;
492  
493      private static final int  EVENT_COUNT_SHIFT = 32;
494 <    private static final long WAITER_INDEX_MASK = (1L << EVENT_COUNT_SHIFT)-1L;
494 >    private static final long WAITER_ID_MASK    = (1L << 16) - 1L;
495  
496      /**
497       * A counter for events that may wake up worker threads:
498       *   - Submission of a new task to the pool
499       *   - A worker pushing a task on an empty queue
500 <     *   - termination and reconfiguration
500 >     *   - termination
501       */
502      private volatile int eventCount;
503  
504      /**
505 +     * Encoded record of top of treiber stack of spare threads waiting
506 +     * for resumption. The top 16 bits contain an arbitrary count to
507 +     * avoid ABA effects. The bottom 16bits contains one plus the pool
508 +     * index of waiting worker thread.
509 +     */
510 +    private volatile int spareWaiters;
511 +
512 +    private static final int SPARE_COUNT_SHIFT = 16;
513 +    private static final int SPARE_ID_MASK     = (1 << 16) - 1;
514 +
515 +    /**
516       * Lifecycle control. The low word contains the number of workers
517       * that are (probably) executing tasks. This value is atomically
518       * incremented before a worker gets a task to run, and decremented
# Line 456 | Line 523 | public class ForkJoinPool extends Abstra
523       * These are bundled together to ensure consistent read for
524       * termination checks (i.e., that runLevel is at least SHUTDOWN
525       * and active threads is zero).
526 +     *
527 +     * Notes: Most direct CASes are dependent on these bitfield
528 +     * positions.  Also, this field is non-private to enable direct
529 +     * performance-sensitive CASes in ForkJoinWorkerThread.
530       */
531 <    private volatile int runState;
531 >    volatile int runState;
532  
533      // Note: The order among run level values matters.
534      private static final int RUNLEVEL_SHIFT     = 16;
# Line 465 | Line 536 | public class ForkJoinPool extends Abstra
536      private static final int TERMINATING        = 1 << (RUNLEVEL_SHIFT + 1);
537      private static final int TERMINATED         = 1 << (RUNLEVEL_SHIFT + 2);
538      private static final int ACTIVE_COUNT_MASK  = (1 << RUNLEVEL_SHIFT) - 1;
468    private static final int ONE_ACTIVE         = 1; // active update delta
539  
540      /**
541       * Holds number of total (i.e., created and not yet terminated)
# Line 474 | Line 544 | public class ForkJoinPool extends Abstra
544       * making decisions about creating and suspending spare
545       * threads. Updated only by CAS. Note that adding a new worker
546       * requires incrementing both counts, since workers start off in
547 <     * running state.  This field is also used for memory-fencing
478 <     * configuration parameters.
547 >     * running state.
548       */
549      private volatile int workerCounts;
550  
# Line 484 | Line 553 | public class ForkJoinPool extends Abstra
553      private static final int ONE_RUNNING        = 1;
554      private static final int ONE_TOTAL          = 1 << TOTAL_COUNT_SHIFT;
555  
487    /*
488     * Fields parallelism. maxPoolSize, locallyFifo,
489     * maintainsParallelism, and ueh are non-volatile, but external
490     * reads/writes use workerCount fences to ensure visability.
491     */
492
556      /**
557       * The target parallelism level.
558 +     * Accessed directly by ForkJoinWorkerThreads.
559       */
560 <    private int parallelism;
497 <
498 <    /**
499 <     * The maximum allowed pool size.
500 <     */
501 <    private int maxPoolSize;
560 >    final int parallelism;
561  
562      /**
563       * True if use local fifo, not default lifo, for local polling
564 <     * Replicated by ForkJoinWorkerThreads
564 >     * Read by, and replicated by ForkJoinWorkerThreads
565       */
566 <    private boolean locallyFifo;
566 >    final boolean locallyFifo;
567  
568      /**
569 <     * Controls whether to add spares to maintain parallelism
569 >     * The uncaught exception handler used when any worker abruptly
570 >     * terminates.
571       */
572 <    private boolean maintainsParallelism;
513 <
514 <    /**
515 <     * The uncaught exception handler used when any worker
516 <     * abruptly terminates
517 <     */
518 <    private Thread.UncaughtExceptionHandler ueh;
572 >    private final Thread.UncaughtExceptionHandler ueh;
573  
574      /**
575       * Pool number, just for assigning useful names to worker threads
576       */
577      private final int poolNumber;
578  
579 <    // utilities for updating fields
579 >    // Utilities for CASing fields. Note that most of these
580 >    // are usually manually inlined by callers
581  
582      /**
583 <     * Adds delta to running count.  Used mainly by ForkJoinTask.
529 <     *
530 <     * @param delta the number to add
583 >     * Increments running count part of workerCounts
584       */
585 <    final void updateRunningCount(int delta) {
586 <        int wc;
585 >    final void incrementRunningCount() {
586 >        int c;
587          do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
588 <                                               wc = workerCounts,
589 <                                               wc + delta));
537 <    }
538 <
539 <    /**
540 <     * Write fence for user modifications of pool parameters
541 <     * (parallelism. etc).  Note that it doesn't matter if CAS fails.
542 <     */
543 <    private void workerCountWriteFence() {
544 <        int wc;
545 <        UNSAFE.compareAndSwapInt(this, workerCountsOffset,
546 <                                 wc = workerCounts, wc);
588 >                                               c = workerCounts,
589 >                                               c + ONE_RUNNING));
590      }
591  
592      /**
593 <     * Read fence for external reads of pool parameters
551 <     * (parallelism. maxPoolSize, etc).
593 >     * Tries to decrement running count unless already zero
594       */
595 <    private void workerCountReadFence() {
596 <        int ignore = workerCounts;
595 >    final boolean tryDecrementRunningCount() {
596 >        int wc = workerCounts;
597 >        if ((wc & RUNNING_COUNT_MASK) == 0)
598 >            return false;
599 >        return UNSAFE.compareAndSwapInt(this, workerCountsOffset,
600 >                                        wc, wc - ONE_RUNNING);
601      }
602  
603      /**
604 <     * Tries incrementing active count; fails on contention.
605 <     * Called by workers before executing tasks.
604 >     * Forces decrement of encoded workerCounts, awaiting nonzero if
605 >     * (rarely) necessary when other count updates lag.
606       *
607 <     * @return true on success
607 >     * @param dr -- either zero or ONE_RUNNING
608 >     * @param dt == either zero or ONE_TOTAL
609       */
610 <    final boolean tryIncrementActiveCount() {
611 <        int c;
612 <        return UNSAFE.compareAndSwapInt(this, runStateOffset,
613 <                                        c = runState, c + ONE_ACTIVE);
610 >    private void decrementWorkerCounts(int dr, int dt) {
611 >        for (;;) {
612 >            int wc = workerCounts;
613 >            if ((wc & RUNNING_COUNT_MASK)  - dr < 0 ||
614 >                (wc >>> TOTAL_COUNT_SHIFT) - dt < 0) {
615 >                if ((runState & TERMINATED) != 0)
616 >                    return; // lagging termination on a backout
617 >                Thread.yield();
618 >            }
619 >            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
620 >                                         wc, wc - (dr + dt)))
621 >                return;
622 >        }
623      }
624  
625      /**
# Line 573 | Line 629 | public class ForkJoinPool extends Abstra
629      final boolean tryDecrementActiveCount() {
630          int c;
631          return UNSAFE.compareAndSwapInt(this, runStateOffset,
632 <                                        c = runState, c - ONE_ACTIVE);
632 >                                        c = runState, c - 1);
633      }
634  
635      /**
# Line 602 | Line 658 | public class ForkJoinPool extends Abstra
658          lock.lock();
659          try {
660              ForkJoinWorkerThread[] ws = workers;
661 <            int len = ws.length;
662 <            if (k < 0 || k >= len || ws[k] != null) {
663 <                for (k = 0; k < len && ws[k] != null; ++k)
661 >            int n = ws.length;
662 >            if (k < 0 || k >= n || ws[k] != null) {
663 >                for (k = 0; k < n && ws[k] != null; ++k)
664                      ;
665 <                if (k == len)
666 <                    ws = Arrays.copyOf(ws, len << 1);
665 >                if (k == n)
666 >                    ws = Arrays.copyOf(ws, n << 1);
667              }
668              ws[k] = w;
669              workers = ws; // volatile array write ensures slot visibility
# Line 634 | Line 690 | public class ForkJoinPool extends Abstra
690          }
691      }
692  
637    // adding and removing workers
638
693      /**
694 <     * Tries to create and add new worker. Assumes that worker counts
695 <     * are already updated to accommodate the worker, so adjusts on
696 <     * failure.
694 >     * Final callback from terminating worker.  Removes record of
695 >     * worker from array, and adjusts counts. If pool is shutting
696 >     * down, tries to complete terminatation.
697       *
698 <     * @return new worker or null if creation failed
698 >     * @param w the worker
699       */
700 <    private ForkJoinWorkerThread addWorker() {
701 <        ForkJoinWorkerThread w = null;
702 <        try {
703 <            w = factory.newThread(this);
704 <        } finally { // Adjust on either null or exceptional factory return
705 <            if (w == null) {
706 <                onWorkerCreationFailure();
707 <                return null;
700 >    final void workerTerminated(ForkJoinWorkerThread w) {
701 >        forgetWorker(w);
702 >        decrementWorkerCounts(w.isTrimmed()? 0 : ONE_RUNNING, ONE_TOTAL);
703 >        while (w.stealCount != 0) // collect final count
704 >            tryAccumulateStealCount(w);
705 >        tryTerminate(false);
706 >    }
707 >
708 >    // Waiting for and signalling events
709 >
710 >    /**
711 >     * Releases workers blocked on a count not equal to current count.
712 >     * Normally called after precheck that eventWaiters isn't zero to
713 >     * avoid wasted array checks. Gives up upon a change in count or
714 >     * upon releasing two workers, letting others take over.
715 >     */
716 >    private void releaseEventWaiters() {
717 >        ForkJoinWorkerThread[] ws = workers;
718 >        int n = ws.length;
719 >        long h = eventWaiters;
720 >        int ec = eventCount;
721 >        boolean releasedOne = false;
722 >        ForkJoinWorkerThread w; int id;
723 >        while ((id = ((int)(h & WAITER_ID_MASK)) - 1) >= 0 &&
724 >               (int)(h >>> EVENT_COUNT_SHIFT) != ec &&
725 >               id < n && (w = ws[id]) != null) {
726 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
727 >                                          h,  w.nextWaiter)) {
728 >                LockSupport.unpark(w);
729 >                if (releasedOne) // exit on second release
730 >                    break;
731 >                releasedOne = true;
732              }
733 +            if (eventCount != ec)
734 +                break;
735 +            h = eventWaiters;
736          }
656        w.start(recordWorker(w), locallyFifo, ueh);
657        return w;
737      }
738  
739      /**
740 <     * Adjusts counts upon failure to create worker
740 >     * Tries to advance eventCount and releases waiters. Called only
741 >     * from workers.
742       */
743 <    private void onWorkerCreationFailure() {
744 <        int c;
745 <        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
746 <                                               c = workerCounts,
747 <                                               c - (ONE_RUNNING|ONE_TOTAL)));
668 <        tryTerminate(false); // in case of failure during shutdown
743 >    final void signalWork() {
744 >        int c; // try to increment event count -- CAS failure OK
745 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
746 >        if (eventWaiters != 0L)
747 >            releaseEventWaiters();
748      }
749  
750      /**
751 <     * Create enough total workers to establish target parallelism,
752 <     * giving up if terminating or addWorker fails
751 >     * Adds the given worker to event queue and blocks until
752 >     * terminating or event count advances from the given value
753 >     *
754 >     * @param w the calling worker thread
755 >     * @param ec the count
756       */
757 <    private void ensureEnoughTotalWorkers() {
758 <        int wc;
759 <        while (runState < TERMINATING &&
760 <               ((wc = workerCounts) >>> TOTAL_COUNT_SHIFT) < parallelism) {
761 <            if ((UNSAFE.compareAndSwapInt(this, workerCountsOffset,
762 <                                          wc, wc + (ONE_RUNNING|ONE_TOTAL)) &&
763 <                 addWorker() == null))
757 >    private void eventSync(ForkJoinWorkerThread w, int ec) {
758 >        long nh = (((long)ec) << EVENT_COUNT_SHIFT) | ((long)(w.poolIndex+1));
759 >        long h;
760 >        while ((runState < SHUTDOWN || !tryTerminate(false)) &&
761 >               (((int)((h = eventWaiters) & WAITER_ID_MASK)) == 0 ||
762 >                (int)(h >>> EVENT_COUNT_SHIFT) == ec) &&
763 >               eventCount == ec) {
764 >            if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
765 >                                          w.nextWaiter = h, nh)) {
766 >                awaitEvent(w, ec);
767                  break;
768 +            }
769          }
770      }
771  
772      /**
773 <     * Final callback from terminating worker.  Removes record of
774 <     * worker from array, and adjusts counts. If pool is shutting
775 <     * down, tries to complete terminatation, else possibly replaces
776 <     * the worker.
773 >     * Blocks the given worker (that has already been entered as an
774 >     * event waiter) until terminating or event count advances from
775 >     * the given value. The oldest (first) waiter uses a timed wait to
776 >     * occasionally one-by-one shrink the number of workers (to a
777 >     * minimum of one) if the pool has not been used for extended
778 >     * periods.
779       *
780 <     * @param w the worker
780 >     * @param w the calling worker thread
781 >     * @param ec the count
782       */
783 <    final void workerTerminated(ForkJoinWorkerThread w) {
784 <        if (w.active) { // force inactive
785 <            w.active = false;
786 <            do {} while (!tryDecrementActiveCount());
783 >    private void awaitEvent(ForkJoinWorkerThread w, int ec) {
784 >        while (eventCount == ec) {
785 >            if (tryAccumulateStealCount(w)) { // transfer while idle
786 >                boolean untimed = (w.nextWaiter != 0L ||
787 >                                   (workerCounts & RUNNING_COUNT_MASK) <= 1);
788 >                long startTime = untimed? 0 : System.nanoTime();
789 >                Thread.interrupted();         // clear/ignore interrupt
790 >                if (eventCount != ec || w.runState != 0 ||
791 >                    runState >= TERMINATING)  // recheck after clear
792 >                    break;
793 >                if (untimed)
794 >                    LockSupport.park(w);
795 >                else {
796 >                    LockSupport.parkNanos(w, SHRINK_RATE_NANOS);
797 >                    if (eventCount != ec || w.runState != 0 ||
798 >                        runState >= TERMINATING)
799 >                        break;
800 >                    if (System.nanoTime() - startTime >= SHRINK_RATE_NANOS)
801 >                        tryShutdownUnusedWorker(ec);
802 >                }
803 >            }
804          }
699        forgetWorker(w);
700
701        // decrement total count, and if was running, running count
702        int unit = w.isTrimmed()? ONE_TOTAL : (ONE_RUNNING|ONE_TOTAL);
703        int wc;
704        do {} while (!UNSAFE.compareAndSwapInt(this, workerCountsOffset,
705                                               wc = workerCounts, wc - unit));
706
707        accumulateStealCount(w); // collect final count
708        if (!tryTerminate(false))
709            ensureEnoughTotalWorkers();
805      }
806  
807 <    // Waiting for and signalling events
807 >    // Maintaining parallelism
808  
809      /**
810 <     * Ensures eventCount on exit is different (mod 2^32) than on
716 <     * entry.  CAS failures are OK -- any change in count suffices.
810 >     * Pushes worker onto the spare stack
811       */
812 <    private void advanceEventCount() {
813 <        int c;
814 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
812 >    final void pushSpare(ForkJoinWorkerThread w) {
813 >        int ns = (++w.spareCount << SPARE_COUNT_SHIFT) | (w.poolIndex + 1);
814 >        do {} while (!UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
815 >                                               w.nextSpare = spareWaiters,ns));
816      }
817  
818      /**
819 <     * Releases workers blocked on a count not equal to current count.
820 <     */
821 <    final void releaseWaiters() {
822 <        long top;
823 <        int id;
824 <        while ((id = (int)((top = eventWaiters) & WAITER_INDEX_MASK)) > 0 &&
825 <               (int)(top >>> EVENT_COUNT_SHIFT) != eventCount) {
826 <            ForkJoinWorkerThread[] ws = workers;
827 <            ForkJoinWorkerThread w;
828 <            if (ws.length >= id && (w = ws[id - 1]) != null &&
829 <                UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
830 <                                          top, w.nextWaiter))
819 >     * Tries (once) to resume a spare if the number of running
820 >     * threads is less than target.
821 >     */
822 >    private void tryResumeSpare() {
823 >        int sw, id;
824 >        ForkJoinWorkerThread[] ws = workers;
825 >        int n = ws.length;
826 >        ForkJoinWorkerThread w;
827 >        if ((sw = spareWaiters) != 0 &&
828 >            (id = (sw & SPARE_ID_MASK) - 1) >= 0 &&
829 >            id < n && (w = ws[id]) != null &&
830 >            (workerCounts & RUNNING_COUNT_MASK) < parallelism &&
831 >            spareWaiters == sw &&
832 >            UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
833 >                                     sw, w.nextSpare)) {
834 >            int c; // increment running count before resume
835 >            do {} while(!UNSAFE.compareAndSwapInt
836 >                        (this, workerCountsOffset,
837 >                         c = workerCounts, c + ONE_RUNNING));
838 >            if (w.tryUnsuspend())
839                  LockSupport.unpark(w);
840 +            else   // back out if w was shutdown
841 +                decrementWorkerCounts(ONE_RUNNING, 0);
842          }
843      }
844  
845      /**
846 <     * Advances eventCount and releases waiters until interference by
847 <     * other releasing threads is detected.
846 >     * Tries to increase the number of running workers if below target
847 >     * parallelism: If a spare exists tries to resume it via
848 >     * tryResumeSpare.  Otherwise, if not enough total workers or all
849 >     * existing workers are busy, adds a new worker. In all casses also
850 >     * helps wake up releasable workers waiting for work.
851       */
852 <    final void signalWork() {
853 <        int ec;
854 <        UNSAFE.compareAndSwapInt(this, eventCountOffset, ec=eventCount, ec+1);
855 <        outer:for (;;) {
856 <            long top = eventWaiters;
857 <            ec = eventCount;
858 <            for (;;) {
859 <                ForkJoinWorkerThread[] ws; ForkJoinWorkerThread w;
860 <                int id = (int)(top & WAITER_INDEX_MASK);
861 <                if (id <= 0 || (int)(top >>> EVENT_COUNT_SHIFT) == ec)
862 <                    return;
863 <                if ((ws = workers).length < id || (w = ws[id - 1]) == null ||
864 <                    !UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
865 <                                               top, top = w.nextWaiter))
866 <                    continue outer;      // possibly stale; reread
867 <                LockSupport.unpark(w);
868 <                if (top != eventWaiters) // let someone else take over
869 <                    return;
852 >    private void helpMaintainParallelism() {
853 >        int pc = parallelism;
854 >        int wc, rs, tc;
855 >        while (((wc = workerCounts) & RUNNING_COUNT_MASK) < pc &&
856 >               (rs = runState) < TERMINATING) {
857 >            if (spareWaiters != 0)
858 >                tryResumeSpare();
859 >            else if ((tc = wc >>> TOTAL_COUNT_SHIFT) >= MAX_WORKERS ||
860 >                     (tc >= pc && (rs & ACTIVE_COUNT_MASK) != tc))
861 >                break;   // enough total
862 >            else if (runState == rs && workerCounts == wc &&
863 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
864 >                                              wc + (ONE_RUNNING|ONE_TOTAL))) {
865 >                ForkJoinWorkerThread w = null;
866 >                try {
867 >                    w = factory.newThread(this);
868 >                } finally { // adjust on null or exceptional factory return
869 >                    if (w == null) {
870 >                        decrementWorkerCounts(ONE_RUNNING, ONE_TOTAL);
871 >                        tryTerminate(false); // handle failure during shutdown
872 >                    }
873 >                }
874 >                if (w == null)
875 >                    break;
876 >                w.start(recordWorker(w), ueh);
877 >                if ((workerCounts >>> TOTAL_COUNT_SHIFT) >= pc) {
878 >                    int c; // advance event count
879 >                    UNSAFE.compareAndSwapInt(this, eventCountOffset,
880 >                                             c = eventCount, c+1);
881 >                    break; // add at most one unless total below target
882 >                }
883              }
884          }
885 +        if (eventWaiters != 0L)
886 +            releaseEventWaiters();
887      }
888  
889      /**
890 <     * If worker is inactive, blocks until terminating or event count
891 <     * advances from last value held by worker; in any case helps
892 <     * release others.
890 >     * Callback from the oldest waiter in awaitEvent waking up after a
891 >     * period of non-use. If all workers are idle, tries (once) to
892 >     * shutdown an event waiter or a spare, if one exists. Note that
893 >     * we don't need CAS or locks here because the method is called
894 >     * only from one thread occasionally waking (and even misfires are
895 >     * OK). Note that until the shutdown worker fully terminates,
896 >     * workerCounts will overestimate total count, which is tolerable.
897       *
898 <     * @param w the calling worker thread
898 >     * @param ec the event count waited on by caller (to abort
899 >     * attempt if count has since changed).
900       */
901 <    private void eventSync(ForkJoinWorkerThread w) {
902 <        if (!w.active) {
903 <            int prev = w.lastEventCount;
904 <            long nextTop = (((long)prev << EVENT_COUNT_SHIFT) |
905 <                            ((long)(w.poolIndex + 1)));
906 <            long top;
907 <            while ((runState < SHUTDOWN || !tryTerminate(false)) &&
908 <                   (((int)(top = eventWaiters) & WAITER_INDEX_MASK) == 0 ||
909 <                    (int)(top >>> EVENT_COUNT_SHIFT) == prev) &&
910 <                   eventCount == prev) {
911 <                if (UNSAFE.compareAndSwapLong(this, eventWaitersOffset,
912 <                                              w.nextWaiter = top, nextTop)) {
913 <                    accumulateStealCount(w); // transfer steals while idle
914 <                    Thread.interrupted();    // clear/ignore interrupt
915 <                    while (eventCount == prev)
916 <                        w.doPark();
917 <                    break;
918 <                }
901 >    private void tryShutdownUnusedWorker(int ec) {
902 >        if (runState == 0 && eventCount == ec) { // only trigger if all idle
903 >            ForkJoinWorkerThread[] ws = workers;
904 >            int n = ws.length;
905 >            ForkJoinWorkerThread w = null;
906 >            boolean shutdown = false;
907 >            int sw;
908 >            long h;
909 >            if ((sw = spareWaiters) != 0) { // prefer killing spares
910 >                int id = (sw & SPARE_ID_MASK) - 1;
911 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
912 >                    UNSAFE.compareAndSwapInt(this, spareWaitersOffset,
913 >                                             sw, w.nextSpare))
914 >                    shutdown = true;
915 >            }
916 >            else if ((h = eventWaiters) != 0L) {
917 >                long nh;
918 >                int id = ((int)(h & WAITER_ID_MASK)) - 1;
919 >                if (id >= 0 && id < n && (w = ws[id]) != null &&
920 >                    (nh = w.nextWaiter) != 0L && // keep at least one worker
921 >                    UNSAFE.compareAndSwapLong(this, eventWaitersOffset, h, nh))
922 >                    shutdown = true;
923 >            }
924 >            if (w != null && shutdown) {
925 >                w.shutdown();
926 >                LockSupport.unpark(w);
927              }
792            w.lastEventCount = eventCount;
928          }
929 <        releaseWaiters();
929 >        releaseEventWaiters(); // in case of interference
930      }
931  
932      /**
933       * Callback from workers invoked upon each top-level action (i.e.,
934 <     * stealing a task or taking a submission and running
935 <     * it). Performs one or both of the following:
934 >     * stealing a task or taking a submission and running it).
935 >     * Performs one or more of the following:
936       *
937 <     * * If the worker cannot find work, updates its active status to
938 <     * inactive and updates activeCount unless there is contention, in
939 <     * which case it may try again (either in this or a subsequent
940 <     * call).  Additionally, awaits the next task event and/or helps
941 <     * wake up other releasable waiters.
942 <     *
943 <     * * If there are too many running threads, suspends this worker
944 <     * (first forcing inactivation if necessary).  If it is not
945 <     * resumed before a keepAlive elapses, the worker may be "trimmed"
946 <     * -- killed while suspended within suspendAsSpare. Otherwise,
947 <     * upon resume it rechecks to make sure that it is still needed.
937 >     * 1. If the worker is active and either did not run a task
938 >     *    or there are too many workers, try to set its active status
939 >     *    to inactive and update activeCount. On contention, we may
940 >     *    try again in this or a subsequent call.
941 >     *
942 >     * 2. If not enough total workers, help create some.
943 >     *
944 >     * 3. If there are too many running workers, suspend this worker
945 >     *    (first forcing inactive if necessary).  If it is not needed,
946 >     *    it may be shutdown while suspended (via
947 >     *    tryShutdownUnusedWorker).  Otherwise, upon resume it
948 >     *    rechecks running thread count and need for event sync.
949 >     *
950 >     * 4. If worker did not run a task, await the next task event via
951 >     *    eventSync if necessary (first forcing inactivation), upon
952 >     *    which the worker may be shutdown via
953 >     *    tryShutdownUnusedWorker.  Otherwise, help release any
954 >     *    existing event waiters that are now releasable,
955       *
956       * @param w the worker
957 <     * @param worked false if the worker scanned for work but didn't
816 <     * find any (in which case it may block waiting for work).
957 >     * @param ran true if worker ran a task since last call to this method
958       */
959 <    final void preStep(ForkJoinWorkerThread w, boolean worked) {
959 >    final void preStep(ForkJoinWorkerThread w, boolean ran) {
960 >        int wec = w.lastEventCount;
961          boolean active = w.active;
962 <        boolean inactivate = !worked & active;
963 <        for (;;) {
964 <            if (inactivate) {
965 <                int c = runState;
966 <                if (UNSAFE.compareAndSwapInt(this, runStateOffset,
967 <                                             c, c - ONE_ACTIVE))
968 <                    inactivate = active = w.active = false;
827 <            }
962 >        boolean inactivate = false;
963 >        int pc = parallelism;
964 >        int rs;
965 >        while (w.runState == 0 && (rs = runState) < TERMINATING) {
966 >            if ((inactivate || (active && (rs & ACTIVE_COUNT_MASK) >= pc)) &&
967 >                UNSAFE.compareAndSwapInt(this, runStateOffset, rs, rs - 1))
968 >                inactivate = active = w.active = false;
969              int wc = workerCounts;
970 <            if ((wc & RUNNING_COUNT_MASK) <= parallelism) {
971 <                if (!worked)
972 <                    eventSync(w);
973 <                return;
974 <            }
975 <            if (!(inactivate |= active) &&  // must inactivate to suspend
976 <                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
977 <                                         wc, wc - ONE_RUNNING) &&
978 <                !w.suspendAsSpare())        // false if trimmed
979 <                return;
980 <        }
981 <    }
982 <
983 <    /**
984 <     * Adjusts counts and creates or resumes compensating threads for
985 <     * a worker about to block on task joinMe, returning early if
845 <     * joinMe becomes ready. First tries resuming an existing spare
846 <     * (which usually also avoids any count adjustment), but must then
847 <     * decrement running count to determine whether a new thread is
848 <     * needed. See above for fuller explanation.
849 <     */
850 <    final void preJoin(ForkJoinTask<?> joinMe) {
851 <        boolean dec = false;       // true when running count decremented
852 <        for (;;) {
853 <            releaseWaiters();      // help other threads progress
854 <
855 <            if (joinMe.status < 0) // surround spare search with done checks
856 <                return;
857 <            ForkJoinWorkerThread spare = null;
858 <            for (ForkJoinWorkerThread w : workers) {
859 <                if (w != null && w.isSuspended()) {
860 <                    spare = w;
970 >            if ((wc & RUNNING_COUNT_MASK) > pc) {
971 >                if (!(inactivate |= active) && // must inactivate to suspend
972 >                    workerCounts == wc &&      // try to suspend as spare
973 >                    UNSAFE.compareAndSwapInt(this, workerCountsOffset,
974 >                                             wc, wc - ONE_RUNNING))
975 >                    w.suspendAsSpare();
976 >            }
977 >            else if ((wc >>> TOTAL_COUNT_SHIFT) < pc)
978 >                helpMaintainParallelism();     // not enough workers
979 >            else if (!ran) {
980 >                long h = eventWaiters;
981 >                int ec = eventCount;
982 >                if (h != 0L && (int)(h >>> EVENT_COUNT_SHIFT) != ec)
983 >                    releaseEventWaiters();     // release others before waiting
984 >                else if (ec != wec) {
985 >                    w.lastEventCount = ec;     // no need to wait
986                      break;
987                  }
988 +                else if (!(inactivate |= active))  
989 +                    eventSync(w, wec);         // must inactivate before sync
990              }
991 <            if (joinMe.status < 0)
992 <                return;
866 <
867 <            if (spare != null && spare.tryUnsuspend()) {
868 <                if (dec || joinMe.requestSignal() < 0) {
869 <                    int c;
870 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
871 <                                                           workerCountsOffset,
872 <                                                           c = workerCounts,
873 <                                                           c + ONE_RUNNING));
874 <                } // else no net count change
875 <                LockSupport.unpark(spare);
876 <                return;
877 <            }
878 <
879 <            int wc = workerCounts; // decrement running count
880 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0 &&
881 <                (dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
882 <                                                wc, wc -= ONE_RUNNING)) &&
883 <                joinMe.requestSignal() < 0) { // cannot block
884 <                int c;                        // back out
885 <                do {} while (!UNSAFE.compareAndSwapInt(this,
886 <                                                       workerCountsOffset,
887 <                                                       c = workerCounts,
888 <                                                       c + ONE_RUNNING));
889 <                return;
890 <            }
891 <
892 <            if (dec) {
893 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
894 <                int pc = parallelism;
895 <                int dc = pc - (wc & RUNNING_COUNT_MASK); // deficit count
896 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
897 <                                 !maintainsParallelism)) ||
898 <                    tc >= maxPoolSize) // cannot add
899 <                    return;
900 <                if (spare == null &&
901 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
902 <                                             wc + (ONE_RUNNING|ONE_TOTAL))) {
903 <                    addWorker();
904 <                    return;
905 <                }
906 <            }
991 >            else
992 >                break;
993          }
994      }
995  
996      /**
997 <     * Same idea as preJoin but with too many differing details to
998 <     * integrate: There are no task-based signal counts, and only one
999 <     * way to do the actual blocking. So for simplicity it is directly
1000 <     * incorporated into this method.
997 >     * Helps and/or blocks awaiting join of the given task.
998 >     * See above for explanation.
999 >     *
1000 >     * @param joinMe the task to join
1001 >     * @param worker the current worker thread
1002       */
1003 <    final void doBlock(ManagedBlocker blocker, boolean maintainPar)
1004 <        throws InterruptedException {
1005 <        maintainPar &= maintainsParallelism; // override
1006 <        boolean dec = false;
1007 <        boolean done = false;
1008 <        for (;;) {
922 <            releaseWaiters();
923 <            if (done = blocker.isReleasable())
924 <                break;
925 <            ForkJoinWorkerThread spare = null;
926 <            for (ForkJoinWorkerThread w : workers) {
927 <                if (w != null && w.isSuspended()) {
928 <                    spare = w;
929 <                    break;
930 <                }
931 <            }
932 <            if (done = blocker.isReleasable())
933 <                break;
934 <            if (spare != null && spare.tryUnsuspend()) {
935 <                if (dec) {
936 <                    int c;
937 <                    do {} while (!UNSAFE.compareAndSwapInt(this,
938 <                                                           workerCountsOffset,
939 <                                                           c = workerCounts,
940 <                                                           c + ONE_RUNNING));
941 <                }
942 <                LockSupport.unpark(spare);
1003 >    final void awaitJoin(ForkJoinTask<?> joinMe, ForkJoinWorkerThread worker) {
1004 >        int retries = 2 + (parallelism >> 2); // #helpJoins before blocking
1005 >        while (joinMe.status >= 0) {
1006 >            int wc;
1007 >            worker.helpJoinTask(joinMe);
1008 >            if (joinMe.status < 0)
1009                  break;
1010 <            }
1011 <            int wc = workerCounts;
1012 <            if (!dec && (wc & RUNNING_COUNT_MASK) != 0)
1013 <                dec = UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1014 <                                               wc, wc -= ONE_RUNNING);
1015 <            if (dec) {
1016 <                int tc = wc >>> TOTAL_COUNT_SHIFT;
1017 <                int pc = parallelism;
1018 <                int dc = pc - (wc & RUNNING_COUNT_MASK);
1019 <                if ((dc < pc && (dc <= 0 || (dc * dc < (tc - pc) * pc) ||
1020 <                                 !maintainPar)) ||
1021 <                    tc >= maxPoolSize)
1022 <                    break;
1023 <                if (spare == null &&
1024 <                    UNSAFE.compareAndSwapInt(this, workerCountsOffset, wc,
1025 <                                             wc + (ONE_RUNNING|ONE_TOTAL))){
1026 <                    addWorker();
1027 <                    break;
1028 <                }
1029 <            }
964 <        }
965 <
966 <        try {
967 <            if (!done)
968 <                do {} while (!blocker.isReleasable() && !blocker.block());
969 <        } finally {
970 <            if (dec) {
971 <                int c;
972 <                do {} while (!UNSAFE.compareAndSwapInt(this,
973 <                                                       workerCountsOffset,
974 <                                                       c = workerCounts,
975 <                                                       c + ONE_RUNNING));
1010 >            else if (retries > 0)
1011 >                --retries;
1012 >            else if (((wc = workerCounts) & RUNNING_COUNT_MASK) != 0 &&
1013 >                     UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1014 >                                              wc, wc - ONE_RUNNING)) {
1015 >                int stat, c; long h;
1016 >                while ((stat = joinMe.status) >= 0 &&
1017 >                       (h = eventWaiters) != 0L && // help release others
1018 >                       (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1019 >                    releaseEventWaiters();
1020 >                if (stat >= 0 &&
1021 >                    ((workerCounts & RUNNING_COUNT_MASK) == 0 ||
1022 >                     (stat =
1023 >                      joinMe.internalAwaitDone(JOIN_TIMEOUT_MILLIS)) >= 0))
1024 >                    helpMaintainParallelism(); // timeout or no running workers
1025 >                do {} while (!UNSAFE.compareAndSwapInt
1026 >                             (this, workerCountsOffset,
1027 >                              c = workerCounts, c + ONE_RUNNING));
1028 >                if (stat < 0)
1029 >                    break;   // else restart
1030              }
1031          }
1032      }
1033  
1034      /**
1035 <     * Unless there are not enough other running threads, adjusts
982 <     * counts for a a worker in performing helpJoin that cannot find
983 <     * any work, so that this worker can now block.
984 <     *
985 <     * @return true if worker may block
1035 >     * Same idea as awaitJoin, but no helping, retries, or timeouts.
1036       */
1037 <    final boolean preBlockHelpingJoin(ForkJoinTask<?> joinMe) {
1038 <        while (joinMe.status >= 0) {
1039 <            releaseWaiters(); // help other threads progress
1040 <
1041 <            // if a spare exists, resume it to maintain parallelism level
1042 <            if ((workerCounts & RUNNING_COUNT_MASK) <= parallelism) {
1043 <                ForkJoinWorkerThread spare = null;
1044 <                for (ForkJoinWorkerThread w : workers) {
1045 <                    if (w != null && w.isSuspended()) {
1046 <                        spare = w;
1047 <                        break;
1048 <                    }
1049 <                }
1050 <                if (joinMe.status < 0)
1051 <                    break;
1052 <                if (spare != null) {
1053 <                    if (spare.tryUnsuspend()) {
1054 <                        boolean canBlock = true;
1005 <                        if (joinMe.requestSignal() < 0) {
1006 <                            canBlock = false; // already done
1007 <                            int c;
1008 <                            do {} while (!UNSAFE.compareAndSwapInt
1009 <                                         (this, workerCountsOffset,
1010 <                                          c = workerCounts, c + ONE_RUNNING));
1011 <                        }
1012 <                        LockSupport.unpark(spare);
1013 <                        return canBlock;
1037 >    final void awaitBlocker(ManagedBlocker blocker)
1038 >        throws InterruptedException {
1039 >        while (!blocker.isReleasable()) {
1040 >            int wc = workerCounts;
1041 >            if ((wc & RUNNING_COUNT_MASK) != 0 &&
1042 >                UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1043 >                                         wc, wc - ONE_RUNNING)) {
1044 >                try {
1045 >                    while (!blocker.isReleasable()) {
1046 >                        long h = eventWaiters;
1047 >                        if (h != 0L &&
1048 >                            (int)(h >>> EVENT_COUNT_SHIFT) != eventCount)
1049 >                            releaseEventWaiters();
1050 >                        else if ((workerCounts & RUNNING_COUNT_MASK) == 0 &&
1051 >                                 runState < TERMINATING)
1052 >                            helpMaintainParallelism();
1053 >                        else if (blocker.block())
1054 >                            break;
1055                      }
1056 <                    continue; // recheck -- another spare may exist
1056 >                } finally {
1057 >                    int c;
1058 >                    do {} while (!UNSAFE.compareAndSwapInt
1059 >                                 (this, workerCountsOffset,
1060 >                                  c = workerCounts, c + ONE_RUNNING));
1061                  }
1017            }
1018
1019            int wc = workerCounts; // reread to shorten CAS window
1020            int rc = wc & RUNNING_COUNT_MASK;
1021            if (rc <= 2) // keep this and at most one other thread alive
1022                break;
1023
1024            if (UNSAFE.compareAndSwapInt(this, workerCountsOffset,
1025                                         wc, wc - ONE_RUNNING)) {
1026                if (joinMe.requestSignal() >= 0)
1027                    return true;
1028                int c;                        // back out
1029                do {} while (!UNSAFE.compareAndSwapInt
1030                             (this, workerCountsOffset,
1031                              c = workerCounts, c + ONE_RUNNING));
1062                  break;
1063              }
1064          }
1035        return false;
1065      }
1066  
1067      /**
# Line 1056 | Line 1085 | public class ForkJoinPool extends Abstra
1085          // Finish now if all threads terminated; else in some subsequent call
1086          if ((workerCounts >>> TOTAL_COUNT_SHIFT) == 0) {
1087              advanceRunLevel(TERMINATED);
1088 <            terminationLatch.countDown();
1088 >            termination.arrive();
1089          }
1090          return true;
1091      }
1092  
1093      /**
1094       * Actions on transition to TERMINATING
1095 +     *
1096 +     * Runs up to four passes through workers: (0) shutting down each
1097 +     * (without waking up if parked) to quickly spread notifications
1098 +     * without unnecessary bouncing around event queues etc (1) wake
1099 +     * up and help cancel tasks (2) interrupt (3) mop up races with
1100 +     * interrupted workers
1101       */
1102      private void startTerminating() {
1103 <        // Clear out and cancel submissions, ignoring exceptions
1103 >        cancelSubmissions();
1104 >        for (int passes = 0; passes < 4 && workerCounts != 0; ++passes) {
1105 >            int c; // advance event count
1106 >            UNSAFE.compareAndSwapInt(this, eventCountOffset,
1107 >                                     c = eventCount, c+1);
1108 >            eventWaiters = 0L; // clobber lists
1109 >            spareWaiters = 0;
1110 >            ForkJoinWorkerThread[] ws = workers;
1111 >            int n = ws.length;
1112 >            for (int i = 0; i < n; ++i) {
1113 >                ForkJoinWorkerThread w = ws[i];
1114 >                if (w != null) {
1115 >                    w.shutdown();
1116 >                    if (passes > 0 && !w.isTerminated()) {
1117 >                        w.cancelTasks();
1118 >                        LockSupport.unpark(w);
1119 >                        if (passes > 1) {
1120 >                            try {
1121 >                                w.interrupt();
1122 >                            } catch (SecurityException ignore) {
1123 >                            }
1124 >                        }
1125 >                    }
1126 >                }
1127 >            }
1128 >        }
1129 >    }
1130 >
1131 >    /**
1132 >     * Clear out and cancel submissions, ignoring exceptions
1133 >     */
1134 >    private void cancelSubmissions() {
1135          ForkJoinTask<?> task;
1136          while ((task = submissionQueue.poll()) != null) {
1137              try {
# Line 1073 | Line 1139 | public class ForkJoinPool extends Abstra
1139              } catch (Throwable ignore) {
1140              }
1141          }
1076        // Propagate run level
1077        for (ForkJoinWorkerThread w : workers) {
1078            if (w != null)
1079                w.shutdown();    // also resumes suspended workers
1080        }
1081        // Ensure no straggling local tasks
1082        for (ForkJoinWorkerThread w : workers) {
1083            if (w != null)
1084                w.cancelTasks();
1085        }
1086        // Wake up idle workers
1087        advanceEventCount();
1088        releaseWaiters();
1089        // Unstick pending joins
1090        for (ForkJoinWorkerThread w : workers) {
1091            if (w != null && !w.isTerminated()) {
1092                try {
1093                    w.interrupt();
1094                } catch (SecurityException ignore) {
1095                }
1096            }
1097        }
1142      }
1143  
1144      // misc support for ForkJoinWorkerThread
# Line 1107 | Line 1151 | public class ForkJoinPool extends Abstra
1151      }
1152  
1153      /**
1154 <     * Accumulates steal count from a worker, clearing
1155 <     * the worker's value
1154 >     * Tries to accumulates steal count from a worker, clearing
1155 >     * the worker's value.
1156 >     *
1157 >     * @return true if worker steal count now zero
1158       */
1159 <    final void accumulateStealCount(ForkJoinWorkerThread w) {
1159 >    final boolean tryAccumulateStealCount(ForkJoinWorkerThread w) {
1160          int sc = w.stealCount;
1161 <        if (sc != 0) {
1162 <            long c;
1163 <            w.stealCount = 0;
1164 <            do {} while (!UNSAFE.compareAndSwapLong(this, stealCountOffset,
1165 <                                                    c = stealCount, c + sc));
1161 >        long c = stealCount;
1162 >        // CAS even if zero, for fence effects
1163 >        if (UNSAFE.compareAndSwapLong(this, stealCountOffset, c, c + sc)) {
1164 >            if (sc != 0)
1165 >                w.stealCount = 0;
1166 >            return true;
1167          }
1168 +        return sc == 0;
1169      }
1170  
1171      /**
# Line 1125 | Line 1173 | public class ForkJoinPool extends Abstra
1173       * active thread.
1174       */
1175      final int idlePerActive() {
1176 +        int pc = parallelism; // use parallelism, not rc
1177          int ac = runState;    // no mask -- artifically boosts during shutdown
1129        int pc = parallelism; // use targeted parallelism, not rc
1178          // Use exact results for small values, saturate past 4
1179          return pc <= ac? 0 : pc >>> 1 <= ac? 1 : pc >>> 2 <= ac? 3 : pc >>> 3;
1180      }
# Line 1137 | Line 1185 | public class ForkJoinPool extends Abstra
1185  
1186      /**
1187       * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1188 <     * java.lang.Runtime#availableProcessors}, and using the {@linkplain
1189 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1188 >     * java.lang.Runtime#availableProcessors}, using the {@linkplain
1189 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1190 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1191       *
1192       * @throws SecurityException if a security manager exists and
1193       *         the caller is not permitted to modify threads
# Line 1147 | Line 1196 | public class ForkJoinPool extends Abstra
1196       */
1197      public ForkJoinPool() {
1198          this(Runtime.getRuntime().availableProcessors(),
1199 <             defaultForkJoinWorkerThreadFactory);
1199 >             defaultForkJoinWorkerThreadFactory, null, false);
1200      }
1201  
1202      /**
1203       * Creates a {@code ForkJoinPool} with the indicated parallelism
1204 <     * level and using the {@linkplain
1205 <     * #defaultForkJoinWorkerThreadFactory default thread factory}.
1204 >     * level, the {@linkplain
1205 >     * #defaultForkJoinWorkerThreadFactory default thread factory},
1206 >     * no UncaughtExceptionHandler, and non-async LIFO processing mode.
1207       *
1208       * @param parallelism the parallelism level
1209       * @throws IllegalArgumentException if parallelism less than or
# Line 1164 | Line 1214 | public class ForkJoinPool extends Abstra
1214       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1215       */
1216      public ForkJoinPool(int parallelism) {
1217 <        this(parallelism, defaultForkJoinWorkerThreadFactory);
1217 >        this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
1218      }
1219  
1220      /**
1221 <     * Creates a {@code ForkJoinPool} with parallelism equal to {@link
1172 <     * java.lang.Runtime#availableProcessors}, and using the given
1173 <     * thread factory.
1221 >     * Creates a {@code ForkJoinPool} with the given parameters.
1222       *
1223 <     * @param factory the factory for creating new threads
1224 <     * @throws NullPointerException if the factory is null
1225 <     * @throws SecurityException if a security manager exists and
1226 <     *         the caller is not permitted to modify threads
1227 <     *         because it does not hold {@link
1228 <     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1229 <     */
1230 <    public ForkJoinPool(ForkJoinWorkerThreadFactory factory) {
1231 <        this(Runtime.getRuntime().availableProcessors(), factory);
1232 <    }
1233 <
1234 <    /**
1235 <     * Creates a {@code ForkJoinPool} with the given parallelism and
1188 <     * thread factory.
1189 <     *
1190 <     * @param parallelism the parallelism level
1191 <     * @param factory the factory for creating new threads
1223 >     * @param parallelism the parallelism level. For default value,
1224 >     * use {@link java.lang.Runtime#availableProcessors}.
1225 >     * @param factory the factory for creating new threads. For default value,
1226 >     * use {@link #defaultForkJoinWorkerThreadFactory}.
1227 >     * @param handler the handler for internal worker threads that
1228 >     * terminate due to unrecoverable errors encountered while executing
1229 >     * tasks. For default value, use <code>null</code>.
1230 >     * @param asyncMode if true,
1231 >     * establishes local first-in-first-out scheduling mode for forked
1232 >     * tasks that are never joined. This mode may be more appropriate
1233 >     * than default locally stack-based mode in applications in which
1234 >     * worker threads only process event-style asynchronous tasks.
1235 >     * For default value, use <code>false</code>.
1236       * @throws IllegalArgumentException if parallelism less than or
1237       *         equal to zero, or greater than implementation limit
1238       * @throws NullPointerException if the factory is null
# Line 1197 | Line 1241 | public class ForkJoinPool extends Abstra
1241       *         because it does not hold {@link
1242       *         java.lang.RuntimePermission}{@code ("modifyThread")}
1243       */
1244 <    public ForkJoinPool(int parallelism, ForkJoinWorkerThreadFactory factory) {
1244 >    public ForkJoinPool(int parallelism,
1245 >                        ForkJoinWorkerThreadFactory factory,
1246 >                        Thread.UncaughtExceptionHandler handler,
1247 >                        boolean asyncMode) {
1248          checkPermission();
1249          if (factory == null)
1250              throw new NullPointerException();
1251 <        if (parallelism <= 0 || parallelism > MAX_THREADS)
1251 >        if (parallelism <= 0 || parallelism > MAX_WORKERS)
1252              throw new IllegalArgumentException();
1206        this.poolNumber = poolNumberGenerator.incrementAndGet();
1207        int arraySize = initialArraySizeFor(parallelism);
1253          this.parallelism = parallelism;
1254          this.factory = factory;
1255 <        this.maxPoolSize = MAX_THREADS;
1256 <        this.maintainsParallelism = true;
1255 >        this.ueh = handler;
1256 >        this.locallyFifo = asyncMode;
1257 >        int arraySize = initialArraySizeFor(parallelism);
1258          this.workers = new ForkJoinWorkerThread[arraySize];
1259          this.submissionQueue = new LinkedTransferQueue<ForkJoinTask<?>>();
1260          this.workerLock = new ReentrantLock();
1261 <        this.terminationLatch = new CountDownLatch(1);
1262 <        // Start first worker; remaining workers added upon first submission
1217 <        workerCounts = ONE_RUNNING | ONE_TOTAL;
1218 <        addWorker();
1261 >        this.termination = new Phaser(1);
1262 >        this.poolNumber = poolNumberGenerator.incrementAndGet();
1263      }
1264  
1265      /**
# Line 1223 | Line 1267 | public class ForkJoinPool extends Abstra
1267       * @param pc the initial parallelism level
1268       */
1269      private static int initialArraySizeFor(int pc) {
1270 <        // See Hackers Delight, sec 3.2. We know MAX_THREADS < (1 >>> 16)
1271 <        int size = pc < MAX_THREADS ? pc + 1 : MAX_THREADS;
1270 >        // If possible, initially allocate enough space for one spare
1271 >        int size = pc < MAX_WORKERS ? pc + 1 : MAX_WORKERS;
1272 >        // See Hackers Delight, sec 3.2. We know MAX_WORKERS < (1 >>> 16)
1273          size |= size >>> 1;
1274          size |= size >>> 2;
1275          size |= size >>> 4;
# Line 1243 | Line 1288 | public class ForkJoinPool extends Abstra
1288          if (runState >= SHUTDOWN)
1289              throw new RejectedExecutionException();
1290          submissionQueue.offer(task);
1291 <        advanceEventCount();
1292 <        releaseWaiters();
1293 <        if ((workerCounts >>> TOTAL_COUNT_SHIFT) < parallelism)
1249 <            ensureEnoughTotalWorkers();
1291 >        int c; // try to increment event count -- CAS failure OK
1292 >        UNSAFE.compareAndSwapInt(this, eventCountOffset, c = eventCount, c+1);
1293 >        helpMaintainParallelism(); // create, start, or resume some workers
1294      }
1295  
1296      /**
# Line 1292 | Line 1336 | public class ForkJoinPool extends Abstra
1336      }
1337  
1338      /**
1339 +     * Submits a ForkJoinTask for execution.
1340 +     *
1341 +     * @param task the task to submit
1342 +     * @return the task
1343 +     * @throws NullPointerException if the task is null
1344 +     * @throws RejectedExecutionException if the task cannot be
1345 +     *         scheduled for execution
1346 +     */
1347 +    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1348 +        doSubmit(task);
1349 +        return task;
1350 +    }
1351 +
1352 +    /**
1353       * @throws NullPointerException if the task is null
1354       * @throws RejectedExecutionException if the task cannot be
1355       *         scheduled for execution
# Line 1329 | Line 1387 | public class ForkJoinPool extends Abstra
1387      }
1388  
1389      /**
1332     * Submits a ForkJoinTask for execution.
1333     *
1334     * @param task the task to submit
1335     * @return the task
1336     * @throws NullPointerException if the task is null
1337     * @throws RejectedExecutionException if the task cannot be
1338     *         scheduled for execution
1339     */
1340    public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
1341        doSubmit(task);
1342        return task;
1343    }
1344
1345    /**
1390       * @throws NullPointerException       {@inheritDoc}
1391       * @throws RejectedExecutionException {@inheritDoc}
1392       */
# Line 1384 | Line 1428 | public class ForkJoinPool extends Abstra
1428       * @return the handler, or {@code null} if none
1429       */
1430      public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler() {
1387        workerCountReadFence();
1431          return ueh;
1432      }
1433  
1434      /**
1392     * Sets the handler for internal worker threads that terminate due
1393     * to unrecoverable errors encountered while executing tasks.
1394     * Unless set, the current default or ThreadGroup handler is used
1395     * as handler.
1396     *
1397     * @param h the new handler
1398     * @return the old handler, or {@code null} if none
1399     * @throws SecurityException if a security manager exists and
1400     *         the caller is not permitted to modify threads
1401     *         because it does not hold {@link
1402     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1403     */
1404    public Thread.UncaughtExceptionHandler
1405        setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler h) {
1406        checkPermission();
1407        workerCountReadFence();
1408        Thread.UncaughtExceptionHandler old = ueh;
1409        if (h != old) {
1410            ueh = h;
1411            workerCountWriteFence();
1412            for (ForkJoinWorkerThread w : workers) {
1413                if (w != null)
1414                    w.setUncaughtExceptionHandler(h);
1415            }
1416        }
1417        return old;
1418    }
1419
1420    /**
1421     * Sets the target parallelism level of this pool.
1422     *
1423     * @param parallelism the target parallelism
1424     * @throws IllegalArgumentException if parallelism less than or
1425     * equal to zero or greater than maximum size bounds
1426     * @throws SecurityException if a security manager exists and
1427     *         the caller is not permitted to modify threads
1428     *         because it does not hold {@link
1429     *         java.lang.RuntimePermission}{@code ("modifyThread")}
1430     */
1431    public void setParallelism(int parallelism) {
1432        checkPermission();
1433        if (parallelism <= 0 || parallelism > maxPoolSize)
1434            throw new IllegalArgumentException();
1435        workerCountReadFence();
1436        int pc = this.parallelism;
1437        if (pc != parallelism) {
1438            this.parallelism = parallelism;
1439            workerCountWriteFence();
1440            // Release spares. If too many, some will die after re-suspend
1441            for (ForkJoinWorkerThread w : workers) {
1442                if (w != null && w.tryUnsuspend()) {
1443                    updateRunningCount(1);
1444                    LockSupport.unpark(w);
1445                }
1446            }
1447            ensureEnoughTotalWorkers();
1448            advanceEventCount();
1449            releaseWaiters(); // force config recheck by existing workers
1450        }
1451    }
1452
1453    /**
1435       * Returns the targeted parallelism level of this pool.
1436       *
1437       * @return the targeted parallelism level of this pool
1438       */
1439      public int getParallelism() {
1459        //        workerCountReadFence(); // inlined below
1460        int ignore = workerCounts;
1440          return parallelism;
1441      }
1442  
# Line 1474 | Line 1453 | public class ForkJoinPool extends Abstra
1453      }
1454  
1455      /**
1477     * Returns the maximum number of threads allowed to exist in the
1478     * pool. Unless set using {@link #setMaximumPoolSize}, the
1479     * maximum is an implementation-defined value designed only to
1480     * prevent runaway growth.
1481     *
1482     * @return the maximum
1483     */
1484    public int getMaximumPoolSize() {
1485        workerCountReadFence();
1486        return maxPoolSize;
1487    }
1488
1489    /**
1490     * Sets the maximum number of threads allowed to exist in the
1491     * pool. The given value should normally be greater than or equal
1492     * to the {@link #getParallelism parallelism} level. Setting this
1493     * value has no effect on current pool size. It controls
1494     * construction of new threads. The use of this method may cause
1495     * tasks that intrinsically require extra threads for dependent
1496     * computations to indefinitely stall. If you are instead trying
1497     * to minimize internal thread creation, consider setting {link
1498     * #setMaintainsParallelism} as false.
1499     *
1500     * @throws IllegalArgumentException if negative or greater than
1501     * internal implementation limit
1502     */
1503    public void setMaximumPoolSize(int newMax) {
1504        if (newMax < 0 || newMax > MAX_THREADS)
1505            throw new IllegalArgumentException();
1506        maxPoolSize = newMax;
1507        workerCountWriteFence();
1508    }
1509
1510    /**
1511     * Returns {@code true} if this pool dynamically maintains its
1512     * target parallelism level. If false, new threads are added only
1513     * to avoid possible starvation.  This setting is by default true.
1514     *
1515     * @return {@code true} if maintains parallelism
1516     */
1517    public boolean getMaintainsParallelism() {
1518        workerCountReadFence();
1519        return maintainsParallelism;
1520    }
1521
1522    /**
1523     * Sets whether this pool dynamically maintains its target
1524     * parallelism level. If false, new threads are added only to
1525     * avoid possible starvation.
1526     *
1527     * @param enable {@code true} to maintain parallelism
1528     */
1529    public void setMaintainsParallelism(boolean enable) {
1530        maintainsParallelism = enable;
1531        workerCountWriteFence();
1532    }
1533
1534    /**
1535     * Establishes local first-in-first-out scheduling mode for forked
1536     * tasks that are never joined. This mode may be more appropriate
1537     * than default locally stack-based mode in applications in which
1538     * worker threads only process asynchronous tasks.  This method is
1539     * designed to be invoked only when the pool is quiescent, and
1540     * typically only before any tasks are submitted. The effects of
1541     * invocations at other times may be unpredictable.
1542     *
1543     * @param async if {@code true}, use locally FIFO scheduling
1544     * @return the previous mode
1545     * @see #getAsyncMode
1546     */
1547    public boolean setAsyncMode(boolean async) {
1548        workerCountReadFence();
1549        boolean oldMode = locallyFifo;
1550        if (oldMode != async) {
1551            locallyFifo = async;
1552            workerCountWriteFence();
1553            for (ForkJoinWorkerThread w : workers) {
1554                if (w != null)
1555                    w.setAsyncMode(async);
1556            }
1557        }
1558        return oldMode;
1559    }
1560
1561    /**
1456       * Returns {@code true} if this pool uses local first-in-first-out
1457       * scheduling mode for forked tasks that are never joined.
1458       *
1459       * @return {@code true} if this pool uses async mode
1566     * @see #setAsyncMode
1460       */
1461      public boolean getAsyncMode() {
1569        workerCountReadFence();
1462          return locallyFifo;
1463      }
1464  
# Line 1635 | Line 1527 | public class ForkJoinPool extends Abstra
1527       */
1528      public long getQueuedTaskCount() {
1529          long count = 0;
1530 <        for (ForkJoinWorkerThread w : workers) {
1530 >        ForkJoinWorkerThread[] ws = workers;
1531 >        int n = ws.length;
1532 >        for (int i = 0; i < n; ++i) {
1533 >            ForkJoinWorkerThread w = ws[i];
1534              if (w != null)
1535                  count += w.getQueueSize();
1536          }
# Line 1692 | Line 1587 | public class ForkJoinPool extends Abstra
1587       * @return the number of elements transferred
1588       */
1589      protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
1590 <        int n = submissionQueue.drainTo(c);
1591 <        for (ForkJoinWorkerThread w : workers) {
1590 >        int count = submissionQueue.drainTo(c);
1591 >        ForkJoinWorkerThread[] ws = workers;
1592 >        int n = ws.length;
1593 >        for (int i = 0; i < n; ++i) {
1594 >            ForkJoinWorkerThread w = ws[i];
1595              if (w != null)
1596 <                n += w.drainTasksTo(c);
1596 >                count += w.drainTasksTo(c);
1597          }
1598 <        return n;
1598 >        return count;
1599      }
1600  
1601      /**
# Line 1821 | Line 1719 | public class ForkJoinPool extends Abstra
1719       */
1720      public boolean awaitTermination(long timeout, TimeUnit unit)
1721          throws InterruptedException {
1722 <        return terminationLatch.await(timeout, unit);
1722 >        try {
1723 >            return termination.awaitAdvanceInterruptibly(0, timeout, unit) > 0;
1724 >        } catch(TimeoutException ex) {
1725 >            return false;
1726 >        }
1727      }
1728  
1729      /**
1730       * Interface for extending managed parallelism for tasks running
1731       * in {@link ForkJoinPool}s.
1732       *
1733 <     * <p>A {@code ManagedBlocker} provides two methods.
1734 <     * Method {@code isReleasable} must return {@code true} if
1735 <     * blocking is not necessary. Method {@code block} blocks the
1736 <     * current thread if necessary (perhaps internally invoking
1737 <     * {@code isReleasable} before actually blocking).
1733 >     * <p>A {@code ManagedBlocker} provides two methods.  Method
1734 >     * {@code isReleasable} must return {@code true} if blocking is
1735 >     * not necessary. Method {@code block} blocks the current thread
1736 >     * if necessary (perhaps internally invoking {@code isReleasable}
1737 >     * before actually blocking). The unusual methods in this API
1738 >     * accommodate synchronizers that may, but don't usually, block
1739 >     * for long periods. Similarly, they allow more efficient internal
1740 >     * handling of cases in which additional workers may be, but
1741 >     * usually are not, needed to ensure sufficient parallelism.
1742 >     * Toward this end, implementations of method {@code isReleasable}
1743 >     * must be amenable to repeated invocation.
1744       *
1745       * <p>For example, here is a ManagedBlocker based on a
1746       * ReentrantLock:
# Line 1850 | Line 1758 | public class ForkJoinPool extends Abstra
1758       *     return hasLock || (hasLock = lock.tryLock());
1759       *   }
1760       * }}</pre>
1761 +     *
1762 +     * <p>Here is a class that possibly blocks waiting for an
1763 +     * item on a given queue:
1764 +     *  <pre> {@code
1765 +     * class QueueTaker<E> implements ManagedBlocker {
1766 +     *   final BlockingQueue<E> queue;
1767 +     *   volatile E item = null;
1768 +     *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
1769 +     *   public boolean block() throws InterruptedException {
1770 +     *     if (item == null)
1771 +     *       item = queue.take();
1772 +     *     return true;
1773 +     *   }
1774 +     *   public boolean isReleasable() {
1775 +     *     return item != null || (item = queue.poll()) != null;
1776 +     *   }
1777 +     *   public E getItem() { // call after pool.managedBlock completes
1778 +     *     return item;
1779 +     *   }
1780 +     * }}</pre>
1781       */
1782      public static interface ManagedBlocker {
1783          /**
# Line 1873 | Line 1801 | public class ForkJoinPool extends Abstra
1801       * Blocks in accord with the given blocker.  If the current thread
1802       * is a {@link ForkJoinWorkerThread}, this method possibly
1803       * arranges for a spare thread to be activated if necessary to
1804 <     * ensure parallelism while the current thread is blocked.
1877 <     *
1878 <     * <p>If {@code maintainParallelism} is {@code true} and the pool
1879 <     * supports it ({@link #getMaintainsParallelism}), this method
1880 <     * attempts to maintain the pool's nominal parallelism. Otherwise
1881 <     * it activates a thread only if necessary to avoid complete
1882 <     * starvation. This option may be preferable when blockages use
1883 <     * timeouts, or are almost always brief.
1804 >     * ensure sufficient parallelism while the current thread is blocked.
1805       *
1806       * <p>If the caller is not a {@link ForkJoinTask}, this method is
1807       * behaviorally equivalent to
# Line 1894 | Line 1815 | public class ForkJoinPool extends Abstra
1815       * first be expanded to ensure parallelism, and later adjusted.
1816       *
1817       * @param blocker the blocker
1897     * @param maintainParallelism if {@code true} and supported by
1898     * this pool, attempt to maintain the pool's nominal parallelism;
1899     * otherwise activate a thread only if necessary to avoid
1900     * complete starvation.
1818       * @throws InterruptedException if blocker.block did so
1819       */
1820 <    public static void managedBlock(ManagedBlocker blocker,
1904 <                                    boolean maintainParallelism)
1820 >    public static void managedBlock(ManagedBlocker blocker)
1821          throws InterruptedException {
1822          Thread t = Thread.currentThread();
1823 <        if (t instanceof ForkJoinWorkerThread)
1824 <            ((ForkJoinWorkerThread) t).pool.
1825 <                doBlock(blocker, maintainParallelism);
1826 <        else
1827 <            awaitBlocker(blocker);
1828 <    }
1829 <
1914 <    /**
1915 <     * Performs Non-FJ blocking
1916 <     */
1917 <    private static void awaitBlocker(ManagedBlocker blocker)
1918 <        throws InterruptedException {
1919 <        do {} while (!blocker.isReleasable() && !blocker.block());
1823 >        if (t instanceof ForkJoinWorkerThread) {
1824 >            ForkJoinWorkerThread w = (ForkJoinWorkerThread) t;
1825 >            w.pool.awaitBlocker(blocker);
1826 >        }
1827 >        else {
1828 >            do {} while (!blocker.isReleasable() && !blocker.block());
1829 >        }
1830      }
1831  
1832      // AbstractExecutorService overrides.  These rely on undocumented
# Line 1944 | Line 1854 | public class ForkJoinPool extends Abstra
1854          objectFieldOffset("eventWaiters",ForkJoinPool.class);
1855      private static final long stealCountOffset =
1856          objectFieldOffset("stealCount",ForkJoinPool.class);
1857 <
1857 >    private static final long spareWaitersOffset =
1858 >        objectFieldOffset("spareWaiters",ForkJoinPool.class);
1859  
1860      private static long objectFieldOffset(String field, Class<?> klazz) {
1861          try {

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines